
IMPLEMENTATION / SIMULATION OF A
UNIVERSAL MODULATION IDENTIFIER AND

DEMODULATOR FOR COMMUNICATION
INTELLIGENT (COMMINT) SYSTEM

By

GC Hassan Maqbool
GC Mehmood ur Rehman

GC Fahad Nadir
GC Umair Gillani

DS

Maj Imran Rashid
Maj Dr. Shoab Ahmad Khan

(Center for Advanced Research in Engineering)

Electrical Engineering Department
Military College of Signals, Rawalpindi

April 2005

gÉ ÉâÜ uxÄÉäxw ctÜxÇàá

tÇw

YÜ|xÇwá

ÂVÜxtà|Çz |ÇàxÜxáà |á t zÜxtà ãtç àÉ z|äx
çÉâÜáxÄy à{x ÅÉà|ätà|ÉÇ àÉ tv{|xäx çÉâÜ zÉtÄáAÊ

DECLARATION

NO PART OF THIS DOCUMENT HAS BEEN
PRESENTED AND PUBLISHED ELSEWHERE IN

WHOLE OR PARTIAL FORM.

PREFACE

The concept of modulation identification first evolved in the last quarter of
the last century. Since then many researchers and developers have developed
different methods and algorithms. Out of the many algorithms and methods
available a few are based on the maximum likelihood method, statistical method,
constellation rebuilding and recognition, wavelets analysis of the signal spectrum,
vector space recognition and the power matrices methods. Many algorithms have
been developed since then for the modulation identification. But none of the
algorithms, however, has been able to identify more than 3 or 4 modulation
techniques simultaneously. Hence a Universal Modulation Identification
Algorithm (UMIA) has yet not been possible.

The concept of modulation identification relates to the idea of integration

of different digital receivers to form a single, common receiver. This receiver shall
be able to receive, demodulate and decode all the signals received by it. The
integration of receivers here does not mean just the combination of the receivers
into a single box but the working on a common platform with ‘minimum number of
resources’ and ‘maximum processing speed’.

Modulation identification is a specific area in the field of communication

theory. In cooperative communication theory, almost of parameters involved in
the identification at the receiver end are supposed to be known a priori or are
accessible. In a general receiver, the parameters including modulation type,
carrier frequency, bandwidth, symbol rate, and carrier phase is known.
Therefore, the received signal can be demodulated without ambiguity and then
the data can be extracted. Modulation identification, which is used to identify the
modulation type of a received signal, however, is another story. Intrinsically,
modulation identifier does not have much information about the signal emitter, in
our case only the bit symbol duration is required to be known, and modulation
identification is generally invisible to the signal emitter and is used as a means to
pick up some useful information. The criterion of performance of receiver in
digital communication systems is usually the bit error probability; in the
meanwhile, the criterion for modulation identification is the probability of correct
identification.

With the rapid growth in the radio communication technologies, a concept

of software defined radio (SDR) has been introduced to integrate wireless
applications working over any air interface and protocol. SDR can provide the
standard communication platforms for adaptive receiver which enables non-
restrictive wireless roaming across numerous radio technologies such as TDMA,
CDMA, and GSM. Users with adaptive receiver can communicate in all the
regions of the world where different communication standard is adopted. In order
to realize the adaptive receiver, it is required to identify the digital modulation

type of a signal. There have been several efforts to develop a digital modulation
identification (DMI) method.

Automatic identification of the digital modulation type of a signal has found

applications in many areas, including electronic warfare, surveillance and threat
analysis. The application of such an identifier has been the need both in the
military as well as the commercial fields. In the military perspectives, its
application lies in Electronic Support Measures (ESM), in Electronic Counter
Measures (ECM) and in Electronic Counter-Counter Measures (ECCM). Further,
in military applications, modulation identification can be employed for electronic
surveillance, interference identification and monitoring. In the commercial field, its
application is quite evident in the Software Defined Radio (SDR), spectrum
management, network traffic administration, different data rate allocation etc.

[táátÇ `tÖuÉÉÄ

ACKNOWLEDGEMENTS

We are indebted and grateful to ALMIGHTY ALLAH who gave us
knowledge, motivation and strength to struggle for the completion of our project.

We are really grateful to MAJ IMRAN RASHID for his kind supervision for

the project and guiding us as and when needed.

We also thank MAJ Dr. SHOAIB AHMAD KHAN for guiding us to handle

the project in a sequential manner and helping us through whenever we needed
his help. His advice as and when, we needed was available to us and his time for
us out of his busy schedule.

We are obliged to MAJ IMTIAZ KHOKHAR for his kind guidance and

direction.

We are also thankful to LEC. IRTIZA ALI for his guidance at the very

beginning of the project.

We would also like to acknowledge the efforts of Mr. MUHAMMAD ALI

CHAUDARY for his kind assistance in MATLAB programming.

We are thankful to our parents, families and teachers, whose motivation,

guidance and prayers have made us to reach this point of completion of our
project.

We are really grateful to our course mates and colleagues who have

motivated us through to reach to the completion of the project. They may include
AAMIR JAVED, RASHID IQBAL, YASIR BILAL, UMAIR KALIMI, HAMMAD
JAVED and GHEESA ISRAR.

ABSTRACT

We, in our project, has developed and implemented a new algorithm for

modulation identification in ideal channel conditions. This algorithm may be
classified in the statistical method category. It has been totally our thinking and
work that has led us to develop such an algorithm that is based truly on the
modulating parameters. Hence, it could be said that any modulation technique
can be identified as long as the modulating parameters can be extracted from the
received signal. Our algorithm ha been termed as ’Histogram-Count Modulation
Identification’ (HCMI) method. In the algorithm, we have derived the modulating
parameters as the identification parameters. First we plot the histograms of the
respective modulating parameters, which give us the number of these
parameters. Basing upon which, we identify the modulation technique.

 The implementation of the project has been divided into three stages.
These stages are mentioned as follows: -

1. Implementation of the Digital Modulators.
2. Implementation of Digital Modulation Identifier.
3. Implementation of Digital Demodulators.

Our project is Matlab based. Basically the algorithm has been simulated in
Matlab. The version used as the platform is Matlab 7. Our secondary goal is the
implementation of the project on a DSP TMS320C6000. But the secondary goal
is in view to the time line available for the project. Certainly due to non-availability
of the card and the time we have not been able to achieve our secondary goal
but we do not regret our achievement.

TABLE OF CONTENTS

S.No. Title Page No.

1. Declaration iii
2. Preface iv
3. Acknowledgments vi
4. Abstract vii
5. Table of Contents viii
6. List of Figures x
7. List of Tables xii

8. Chapter 1: Introduction 1
 1.1 Introduction to the Project. 2
 1.2 Why Modulate? 4
 1.3 Analog vs. Digital 6
 1.4 Fourier Transform 13
 1.5 Phase Locked Loop (PLL) 17
 1.6 Modulation Identification 19
 1.7 Applications of the Project Module 21
 1.8 Summary 21

9. Chapter 2: Modulation Techniques 23
 2.1 Quadrature Amplitude Modulation 24
 2.1.1 QAM-4 25
 2.1.2 QAM-8 27
 2.1.3 QAM-16 28
 2.1.4 QAM-32 29
 2.1.5 QAM-64 30
 2.2 Amplitude Shift Keying 30
 2.2.1 ASK-2 33
 2.2.2 ASK-4 33
 2.2.3 ASK-8 33
 2.3 Phase Shift Keying 34
 2.3.1 Phase Shift 34
 2.3.2 Phase Modulation 34
 2.3.3 PSK-2 34
 2.3.5 QPSK 37
 2.3.6 PSK-8 39
 2.4 Summary 39

10. Chapter 3: Modulating Hopping Transceiver

System 41
 3.1 Background 42
 3.2 Modules of MHTS 43

 3.3 Working of MHTS 48
 3.4 Proposed technical Characteristics of MHTS 50
 3.5 Proposed technical Characteristics of UR 51
 3.6 Summary 52

11. Chapter 4: Modulation Identification Algorithm 54
 4.1 Background 55
 4.2 Algorithm Explanation 56
 4.3 Identification Statements 61
 4.4 Identification of MFSK 64
 4.5 Phase Count Ambiguity 64
 4.6 Summary 65

12. Chapter 5: Manual for Project GUI 67

13. Chapter 6: Simulation and Results 80
 6.1 Steps of Simulation 81
 6.2 Simulation of Modulators and its Results 86
 6.3 Simulation of Demodulators and its Results 89
 6.4 Simulation of MIA and its Results 90

14. Conclusion / Future Recommendations 95

15. Appendix ‘A’: MATLAB Codes 96

16. Appendix ‘B’: Paper Accepted for Presentation

and publication at CCCT ’05 158

17. References / Bibliography 164

LIST OF FIGURES

Figure No. Title Page No.

1.a Block Diagram of UMID 4
1.b Process of Sampling 7
1.c Process of Uniform Quantization 8
1.d Non-uniform Quantization as a sequence of compression,

uniform quantization and expansion 9
1.e Noise Immunity 11
1.f. x[n] for fourier transform 13
1.g x~[n] for fourier transform 14
1.h Graphical representation of equation 1.8 16
1.i Block Diagram of PLL 17
1.j Circuit Diagram of Basic PLL 19
1.k Non-restrictive wireless roaming with adaptive

Receiver 20

2.a QAM Modulator 25
2.b QAM-4 Modulator 25
2.c QAM-4 Demodulator 26
2.d Transmitted Waveform of QAM-4 27
2.e Vector form of QAM-4 27
2.f Transmitted Waveform of QAM-8 28
2.g Transmitted Waveform of QAM-16 29
2.h Vector Space Diagram of QAM-16 29
2.i Transmitted Waveform of QAM-32 30
2.j Transmitted Waveform of QAM-64 30
2.k Carrier Signal 31
2.l Modulating Signal 31
2.m Modulated Signal 32
2.n Vector Diagram for ASK-2 33
2.o Vector Diagram for ASK-4 33
2.p Vector Diagram for ASK-8 34
2.q Signal 35
2.r Shifted Signal 35
2.s PSK Signal 36
2.t Binary PSK 37
2.u Vector Diagram for PSK-2 37
2.v Signal Space and Decision region of QPSK 38
2.w Phase Time Diagram 39

3.a Transmitter Block Diagram for MHTS 46
3.b Receiver Block Diagram for MHTS 47

4.a Method I for working of Algorithm 58
4.b Method II for working of Algorithm 61
4.c Phase Ambiguity Explanation 65

5.a GUI 1: Figure 1 68
5.b GUI 1: Figure 2 69
5.c GUI 1: Figure 3 70
5.d GUI 1: Figure 4 71
5.e GUI 1: Figure 5 72
5.f GUI 1: Figure 6 73
5.g GUI 1: Figure 7 74
5.h GUI 1: Figure 8 75
5.i GUI 1: Figure 9 75
5.j GUI 1: Figure 10 76
5.k GUI 1: Figure 11 77
5.l GUI 1: Figure 12 78
5.m GUI 1: Figure 13 79

6.a Steps of Simulation 85
6.b ASCII Codes 86
6.c Input Bit Stream 88
6.d Output Waveform QAM-16 88
6.e Demodulated Bit Stream 90
6.f Amplitude Histogram for QAM-16 91
6.g Normalized Output for QAM-16 92
6.h Normalized Amplitude Histogram for QAM-16 93
6.i Explanatory diagram for Phase Ambiguity 94
6.j Phase Histogram for QAM-16 94

LIST OF TABLES

Table No. Title Page No.

2.1 Symbol for QAM-8 28

3.1 Data Types and Respective Headers 44

4.1 Numerical Values of Identification Parameters 64

6.1 Headers for source type recognition 82
6.2 Symbol and Assigned Wave for QAM-16 87

CHAPTER 1

INTRODUCTION

INTRODUCTION

 This chapter covers the introductory part of the project. It introduces a few
basic concepts and ideas, which forecasts the advantages of the project. On the
completion of this chapter, the reader will be acquainting himself with the
following ideas and concepts: -

1.1 Introduction to the Project.
1.2 Why Modulate.
1.3 Analog vs. Digital.
1.4 Fourier Transforms.
1.5 Phase Locked Loop.
1.6 Modulation Identification.
1.7 Applications of project modules.
1.8 Summary.

1.1 INTRODUCTION TO THE PROJECT

 Space belongs to everyone and anything once transmitted through it
knows no boundaries and could be interrupted, intercepted and decoded for
information extraction by any third party. No one can ever wonder how powerful
and efficient the third party would be.

 Our project could be considered as the fundamental module of any
communication system, with its multi-dimensional application in Electronic
Support Measures (ESM), Electronic Counter Measures (ECM) and Electronic
Counter-Counter Measures (ECCM).

 In terms of ESM, a ‘Modulation Hoping Transceiver System’ (MHTS) 1
would enable the forces to communicate in a more secure and swift environment,
with a comparatively decreased probability of interruption, interception,
interpretation and detection. The transmitter transmits the data or voice over the
channel by changing the digital modulation technique after every few instances.
Hence the third party is always in state of chaos, as how to know the modulation
technique that is being used at that instant. Hence the third party either fails or
works too hard to extract the original message or data out of it.

In terms of ECM and ECCM, the project module works on stand alone
basis, meaning thereby the module is able to identify the modulation technique,
the third party may be working on. Consequent upon which, the identified
modulation’s demodulator attached to it would retrieve the data out of the
intercepted signal. But here one thing is to be made clear that the data retrieved
might be encrypted using some algorithms and keys.
__
1. A new concept for secure communication been introduced by us.

Hence if encryption has been done on the data then our module would not

be able to decrypt but would certainly be able to demodulate the encrypted data.
In order to decrypt it, a decrypting module may be required. This is something
beyond the scope of our project and hence be considered so.

 Our main stress is on the modulation identification, neither on the
demodulation nor on the decryption. So we have developed an algorithm
altogether by ourselves for the modulation identification. This algorithm has been
tested upon 11 modulation techniques, including the CDMA 2000 (QPSK), IS95
(BPSK) and the other communication based on different modulation techniques.
The results for identification have been quite extra ordinary with a success rate of
almost cent percent. The 11 modulation techniques are as follows: -

1. Binary Amplitude Shift Keying (BASK).
2. Quadrature Amplitude Shift Keying (QASK).
3. 8ary Amplitude Shift Keying (ASK8).
4. Binary Phase Shift Keying (BPSK).
5. Quadrature Phase Shift Keying (QPSK).
6. 8ary Phase Shift Keying (PSK8).
7. Quadrature Amplitude Modulation-4 (QAM-4).
8. Quadrature Amplitude Modulation-8 (QAM-8).
9. Quadrature Amplitude Modulation-16 (QAM-16).
10. Quadrature Amplitude Modulation-32 (QAM-32).
11. Quadrature Amplitude Modulation-64 (QAM-64).

Successfully we have been able to implement the demodulators too.

Hence, a complete ‘modulation-identification-demodulation’ system or in short
UMID 1, as we call it, system has been implemented, as shown in the block
diagram 1.a.

The source may be data (text), image, audio signal or video signal. The

signal from the source, whichever it may be, has to be converted to binary bits
(digitized) as is the need for its transmission. The sink on the other hand could
also be of one of the four types mentioned provided we know what was
transmitted and how to convert it back to analog form.

1. UMID – Universal Modulation Identifier and Demodulator

Figure 1.a. Block Diagram of UMID

1.2 WHY MODULATE? [1]

The technique of superimposing the message signal on the carrier is
known as modulation. The process of shifting of spectrum of the signal from a
lower frequency to a higher frequency is called modulation and the reverse
process is known as demodulation. Modulation is the process by which a
property or parameter of one signal (in this case the carrier) is varied in
proportion to the second signal (in this case the message signal). Modulation
techniques can be broadly classified as follows: -

1. Digital versus Analog Modulation
2. Baseband versus Bandpass (Passband) Modulation
3. Binary versus M-ary Modulation
4. Memory-less Modulation versus Modulation with memory
5. Linear versus Nonlinear Modulation
6. Constant envelope versus Non-constant envelope Modulation
7. Power efficient versus Bandwidth efficient Modulation

Basing upon the ways of transmission and the waveform types, the

modulations can be classified into following two categories: -

1. Baseband Modulation.
2. Passband Modulation.

Baseband Modulation has pulses as the waveforms, but in case of

passband modulation a carrier waveform is a sinusoid.

Digital modulation is a process by which digital symbols are transformed

into waveforms that are compatible with the characteristics of the channel. In the
case of baseband modulation, these waveforms are pulses, but in the case of
bandpass modulation the desired information signal modulates a sinusoid called
a carrier wave, or simply a carrier. For radio transmission the carrier is converted
to Electromagnetic (EM) field for propagation to the desired destination.

Now the question arises, why it is necessary to use a carrier for the radio

transmission of baseband signals. This is because the transmission of EM fields
through the space is accomplished with the use of antennas. In order to
efficiently couple the transmitted EM energy into space, the dimensions of the
antenna aperture is to be as large as the wavelength being transmitted.
Wavelength, λ, is equal to c / f, where c is the speed of light and f is the
frequency of the wave being transmitted. For baseband signal with frequency f =
3000 Hz, λ = 1,00,000 m, antenna length (l) ≈ 60 miles. To efficiently transmit a
3000 Hz signal through space without carrier wave modulation, an antenna that
spans at least 60 miles would be required. Even if we are willing to inefficiently
transmit the EM energy with an antenna measuring 1/10th of a wavelength, we
are faced with an impossible antenna size. However, if the information to be
transmitted is first modulated on a higher frequency carrier, for example 30 GHz
carrier, the equivalent antenna diameter is then less than ½ in. For this reason,
carrier wave or bandpass modulation is an essential step for all systems
involving radio transmission. But certainly a higher frequency carrier may not be
needed in case of baseband modulation, where the channel is usually wired or
the distance is comparatively too small.

Bandpass modulation can provide other important benefits in signal

transmission. If more than one signal utilizes a single channel, modulation may
be used to separate the different signals. Such a technique is known as FDM 1,
TDM 2. Modulation can be used to minimize the effects of interference. A class of
such modulation schemes, known as Spread Spectrum Modulation, requires a
system band width that would be required by the message. Modulation can also
be used to place a signal is frequency band where design requirements, such as

1. FDM – Frequency Division Multiplexing
2. TDM – Time Division Multiplexing

amplification and filtering, can easily be met. This is the case when RF (Radio
Frequency) signals are converted to an IF (Intermediate Frequency) at the
receiver.

Effects of Inter-symbol Interference

Detection may be treated as the detection of signals in the presence of
AWGN under the assumption that there is no inter-symbol interference (ISI).
Then the analysis would be straightforward, since the zero-mean AWGN process
is characterized by its variance alone. In practice we find that ISI is often a
second source of interference which must be accounted for. ISI can be
generated by the use of band-limiting filters at the transmitter output, in the
channel, or at the receiver input. The result of this additional interference is to
degrade the error probabilities for coherent as well as for non coherent reception.
Analysis involving ISI in addition to AWGN is much more complicated since it
involves the impulse response of the channel.

1.3 ANALOG vs. DIGITAL

 Analog signal is continuous both along the time and the amplitude axis.
Discrete signal is continuous on amplitude axis but discrete along the time axis.
Digital signal, however, is discrete both along the amplitude and time axis.
Respectively, x(t), x(kT) and x[n] represent the mentioned signals.

More elaborately, an analog signal is continuous function of time; that is,

x(t) is uniquely defined for all values of t. An electrical analog signal arises when
a physical waveform is converted into an electrical signal by means of a
transducer. By comparison, a discrete signal is one that exists only at discrete
times; it is characterized by a sequence of numbers defined for each time, kT,
where k is and integer and T is a fixed time interval or the time for which the
signal is defined. On the contrary, x[n] would exist at discrete times and defined
by discrete magnitudes only, where n is the step.

1.3.1 Analog-to-Digital Conversion [2]

a. Sampling

The conversion of an analog signal to a digital one involves
a number of stages and processes. The primary step being the
sampling of the analog signal, to convert analog signal to a discrete
signal at first instance. The sampling process must satisfy the
Nyquist’s Criterion i.e. the sampling frequency must at least be
twice the maximum frequency in the signal. Rather to be more
precise it must satisfy the Engineer’s version of Nyquist’s Criterion
i.e. 2.2 times the maximum frequency in the signal. This criterion

helps in avoiding aliasing 1. The process of sampling is shown in
figure 1.b.

Figure 1.b. Process of sampling

b. Quantization

After the process of sampling has occurred, we have the

discrete signal. The next step is the conversion of discrete signal to
digital signal. This process is known as quantization. In
quantization, each sample’s amplitude is approximated or rounded
off to the nearest quantized level. Consider that a signal be m(t)
has amplitudes in the range (-mp, mp), which is partitioned into L
levels, where L is known as the quantization level, each of
magnitude ∆v = 2mp / L. Each sample magnitude is approximated to
the midpoint of the interval in which the sample value falls. Each
sample is now approximated to one of the L numbers. The
information is thus digitized.

The quantized signal is an approximation of the original
signal. The accuracy of quantized signal can be improved upon to
any desired degree by increasing the number of levels L. For
intelligibility of voice signals, for example L = 8 or L = 16 is
sufficient. For commercial use L = 32 is a minimum, and for
telephone communication, L = 128 or 256 is commonly used. The
process of uniform quantization is illustrated in figure 1.c.

1. Aliasing is the process of overlapping of the samples at the receiver while detection / reconstruction take place.

Figure 1.c. Process of uniform quantization

During each sampling interval, one quantized sample is

transmitted, which has taken on one of the quantized levels. Each
of the L levels is encoded to binary bits. This is known as ‘binary
encoding of data’. The number of binary bits that each level
requires to be encoded depends on the total number of quantized
levels. For example if L = 16, we would need only, 24 = 16, i.e. 4
bits and if we increase the levels to 32, we would need, 25 = 32, i.e.
5 bits. Hence if the number of levels is increased, the number of
encoding bits will also increase, resulting in large data to be
transmitted, but good communication quality.

c. Non-uniform Quantization [3]

Uniform quantizers are the most common type of ADCs

because they are the most robust. By ‘robust’ we mean that they
are relatively insensitive to small changes in the input statistics.
They achieve this robustness by not being finely tuned to one
specific set of input parameters. This allows them to perform well
even in the face of uncertain input parameters, and it means that
small changes in input statistics will results in only small changes in
output statistics.

When there is small uncertainty in the input signal statistics,

it is possible to design a non-uniform quantizer which exhibits a
smaller SNR than a uniform quantizer using the same number of
bits. This is accomplished by partitioning the input dynamic range
into non-uniform intervals such that the noise power, weighted by
the probability of occurrence in each interval, is the same. Iterative
solutions for the decision boundaries and step sizes for an optimal
quantizer can be found for specific density functions and for a small
number of bits. This task is simplified by modeling the non-uniform
quantizer as a sequence operators, as depicted in figure 1.d,
below.

The input levels are first mapped, via a non-linear function

called a compressor, to an alternative range of levels. These levels
are uniformly quantized and the quantized signal levels are then
mapped, via a complementary non-linear function called an
expander, to the output range of levels. Borrowing part of the
names from each of the operations COMpress and expand, we
have the acronym by which this process is commonly identified as
companding.

Figure 1.e. Non-uniform quantization as a sequence of compression, uniform quantization
and expansion.

The approximation or rounding off during quantization

creates an error, when decoded at the receiver during a process
known as ‘binary decoding of data’. This error is known as the

quantization error. This can however be reduced by increasing the
quantization levels. Consequently, increased number of encoding
bits. However this results is good communication quality.

1.3.2 Advantages of Digital over Analog

a. Noise Immunity of Digital Signals

Digital message are transmitted by using a finite set of electrical

waveforms. For example in the mores code, a mark can be
transmitted by an electrical pulse of amplitude A/2, and a space can
be transmitted by a pulse of amplitude –A/2. In an M-ary case, M-
distinct electrical pulses (or waveforms) reused; each of the M
pulses represents one of the M possible symbols. The task of the
receiver is to extract a message from a distorted or noisy signal at
the channel output. Message extraction is often easier from digital
signals than from an analog signal. Consider a binary case; two
symbols are encoded as rectangular pulses of amplitude A/2 and
-A/2. The only decision at the receiver is the selection between two
possible pulses received, not the details of the pulse shape. The
decision is readily made with reasonable certainty if the pulses are
noisy or distorted. This has been illustrated in figure 1.e.

The digital message in the figure is distorted by the channel as

shown in figure yet if the distortion is with in limits we can recover
the data without error because we need only to make a simple
binary decision as to whether the received pulse is positive or
negative. Figure shows the same data with channel distortion and
noise. Here again, the data can be recovered correctly as long as
the distortion and the noise are with in limits. In contrast, the
waveform in an analog message is important, and even a slight
distortion or interference in the waveform will cause an error in the
received signal. Clearly, a digital communication system is more
rugged then an analog communication system in the sense that it
can better take care of the possible errors that may occur due to
noise and distortion (as long as they are with in limits).

Figure 1.e. (a) transmitted signal (b) received distorted signal (without noise)

(c) received distorted signal with noise (d) regenerated signal (delayed)

b. Viability of Regenerative Repeaters in Digital
Communication

The main reason for the superiority of the digital system over

the analog ones is the viability of regenerative repeaters in the
former. Repeater stations are placed along the communication path
of a digital system at distances short enough to ensure that noise
and distortion remains within a limit. This allows pulse direction with
high accuracy. At each repeater station the incoming pulses are
detected and new clean pulses are transmitted to next repeater
station. This process prevents the accumulation of noise and
distortion along the path by cleaning the pulses periodically at the
repeater station we can thus transmit messages over longer
distances with greater accuracy.

For analog system, there is no way to avoid accumulation of

noise and distortion along the path. As a result, the distortion and

the noise interference are accumulative over the entire
transmission to compound the difficulty the signal is attenuated
continuously over the transmission path thus with increasing
distance the signal becomes weaker, where as distortion and the
noise becomes stronger. Ultimately, the signal overwhelm by the
distortion and noise, is mutilated. Amplification is of little help,
because it enhances the signal and the noise in the same
proportion i.e. SNR remains constant. Consequently, the distance
over which the analog message can be transmitted is limited by the
transmitter power. Despite these problems, analog communication
was used widely and successfully in the past. Because of the
advent of optical fiber and the dramatic cost reduction achieved in
the fabrication of digital circuitry, almost all new communication
system being installed are digital.

c. The two types (analog and digital signals) of communication
are difficult to combine over the same medium in analog domain.
Using digital techniques, it is possible to combine both formats for
transmission through a common medium.

d. Packet Switching is possible in digital communication
systems whereas Circuit Switching takes place in analog
communication systems.

e. Encryption and other privacy techniques are easy to
implement in digital communication systems.

f. Digital Communication Systems are inherently more efficient
than analog in realizing the exchange of SNR for bandwidth.

g. Digital signals can be decoded to yield extremely of rates
high fidelity as well as privacy.

h. Two-state signal representation.

The input to a digital system is in the form a sequence of bits
(binary or M-ary).

i. Hardware is more flexible.

Digital hardware implementation is flexible and permits the
use of microprocessors, mini-processors, digital switching and
VLSI. Also it has shorter design and production cycle.

j. Low Cost.

The use of VLSI and LSI in the design of components and
systems have resulted in lower cost.

k. Easier and more efficient to multiplex several digital
signals.
Digital multiplexing techniques like Time Division Multiple

Access (TDMA) and Code Division Multiple Access (CDMA) are
easier to implement than analog techniques such as Frequency
Division Multiple Access (FDMA).

1.4 FOURIER TRANSFORM [4]

 Fourier Transform is a method or transformation that is helpful in order to
know the frequency components in a signal.

 This is an extension to Fourier Series representation of any signal. This is
to the fact that if the time period of any signal goes to infinity, the Fourier Series
representation converges to Fourier Transforms.

 Consider a general sequence x[n] that is of finite duration, as shown in
equation 1.1 below.

 ………………….. EQ 1.1

 This signal is shown in figure 1.f. [3] from this aperiodic signal, we can
construct a periodic sequence x~[n] for which x[n] is one period, as illustrated in
figure 1.g. As we choose the period N to be large, x~[n] is identical to x[n] over a
longer interval, and as N ∞, x~[n] = x[n] for any finite value of n.

Figure 1.f. x[n]

Figure 1.g. x~[n]

 Let us now examine the Fourier Series representation of the signal x~[n].
Specifically, the analysis and the synthesis equations for the Fourier Series
representation of the signal. These equations are equation 1.2 and 1.3, below.

…………………… EQ 1.2

…………… EQ 1.3

 Since x[n] = x~[n] over a period that includes the interval N1 <= n <=N2 it
is convenient to choose the interval of summation in equation 1.3 to include this
interval, so that x~[n] can be replaced by x[n] in summation. Therefore,

 ……………… EQ 1.4

 Where in the second equality in equation 1.4, we have used the fact that
x[n] is zero outside the interval N1 <= n<= N2. Defining the function,

 ……………………… EQ 1.5
 We see that the coefficients aK are proportional to the samples of X(e jw),
i.e.,

 …………………………….... EQ 1.6
 Where w0 = 2 π /N is the spacing of the samples in the frequency domain,
combining equations 1.2 and 1.6 yields,

 ……………. EQ 1.7

 Since w0 = 2 π /N, or equivalently, 1/N = w0 / 2 π, equation 1.7 can be
rewritten as,

…….. EQ 1.8

 As N increases w0 decreases, and as N ∞ equation 1.8 passes to an
integral. To see this more clearly, consider X(ejw) ejwn as sketched in figure 1.g.
From equation 1.5, X(ejw) is seen to be periodic in w with a period 2 π, and so is
ejwn. Thus, the product X(ejw) ejwn will also be periodic. As depicted in the figure,
each term in the summation in equation 1.8 represents the area of rectangle of
height X(ejwo) ejwon and width w0. As w0 0, the summation becomes an integral.
Furthermore, since the summation is carried out over N consecutive intervals of
width w0 = 2 π /N, the total interval of integration will always be 2 π. Therefore,
as N ∞, x~[n] = x[n], and equation 1.8 becomes,

…… EQ 1.9

 Where X(ejwo) ejwon is periodic with period 2 π, the interval of integration
can be taken as any length 2 π. Thus, we have the following pairs of equations,
1.10 and 1.11. The function X(ejw) is referred to as the discrete-time Fourier
transform and the pair of equations as the discrete-time Fourier transform pair.
Equation 1.10 is the synthesis equation and 1.11 is the analysis equation.

Figure 1.h. Graphical interpretation of equation 1.8

 The derivation indicates how an aperiodic sequence can be thought of as
a linear combination of complex exponentials. In particular the synthesis equation
is infact a representation of x[n] as a linear combination of complex exponentials
infinitesimally close in frequency and with amplitudes X(ejw)(dw/2π). For this
reason, as in continuous time, the Fourier transform X(ejw) will often be referred
to as the spectrum of x[n], because it provides the information an how x[n] is
composed of complex exponentials of different frequencies.

…………. EQ 1.10

………………………. EQ 1.11

1.5 PHASE LOCKED LOOP [5]

PLL is short for phase-locked loop, an electronic circuit that controls an
oscillator so that it maintains a constant phase angle (i.e., lock) on the frequency
of an input, or reference, signal. A PLL ensures that a communication signal is
locked on a specific frequency and can also be used to generate, modulate and
demodulate a signal and divide a frequency.

PLL is used often in wireless communications where the oscillator is

usually at the receiver and the input signal is extracted from the signal received
from the remote transmitter.

Figure 1.i. Block Diagram of PLL

PLL stands for 'Phase-Locked Loop' and is basically a closed loop

frequency control system, which functioning is based on the phase sensitive
detection of phase difference between the input and output signals of the
controlled oscillator (CO). First a little bit of history of the Phase-Locked Loop and
prior to that with the super-heterodyne. In the early 1930's, the super-heterodyne
receiver was king. Edwin Howard Armstrong is widely regarded as one of the
foremost contributors to the field of radio-electronics. Among his principal
contributions were regenerative feedback circuits, the super-heterodyne radio
receiver, and a frequency-modulation radio broadcasting system. It superseded
the tuned radio frequency receiver TRF also invented by Armstrong in 1918. He
was inducted into the National Inventors Hall of Fame in 1980. Armstrong was
born on December 18, 1890, in New York City, where he was to spend much of
his professional career. He graduated with a degree in electrical engineering
from Columbia University in 1913, and observed the phenomenon of
regenerative feedback in vacuum-tube circuits while still an undergraduate. At
Columbia, he came under the influence of the legendary professor-inventor.

Michael I. Pupin, who served as a role model for Armstrong and became

an effective promoter of the young inventor. In 1915 Armstrong presented an
influential paper on regenerative amplifiers and oscillators to the IRE.

Subsequently, regenerative feedback was incorporated into a
comprehensive engineering science developed by Harold Black, Harry Nyquist,
Hendrik Bode, and others in the period between 1915 and 1940. Armstrong
conceived the super-heterodyne radio receiver principle in 1918, while serving in
the Army Signal Corps in France. He played a key role in the commercialization
of the invention during the early 1920's. The Radio Corporation of America (RCA)
used his super-heterodyne patent to monopolize the market for this type of
receiver until 1930. The super-heterodyne eventually extended its domain far
beyond commercial broadcast receivers and, for example, proved ideal for
microwave radar receivers developed during World War II.

However, because of the number of tuned stages in a super-heterodyne, a

simpler method was desired. In 1932, a team of British scientists experimented
with a method to surpass the super-heterodyne. This new type of receiver, called
the ‘homodyne’ and later renamed to ‘synchrodyne’, first consisted of a local
oscillator, a mixer, and an audio amplifier. When the input signal and the local
oscillator were mixed at the same phase and frequency, the output was an exact
audio representation of the modulated carrier. Initial tests were encouraging, but
the synchronous reception after a period of time became difficult due to the slight
drift in frequency of the local oscillator. To counteract this frequency drift, the
frequency of the local oscillator was compared with the input by a phase detector
so that a correction voltage would be generated and fed back to the local
oscillator, thus keeping it on frequency. This technique had worked for electronic
servo systems, so why wouldn't it work with oscillators? This type of feedback
circuit began the evolution of the Phase-Locked Loop.

As a matter of fact, in 1932 a scientist in France by the name of H.de

Bellescise, already wrote a subject on the findings of PLL called ‘La Réception
Synchrone’, published in Onde Electrique, volume 11. I guess he lacked the
funding or did not know how to implement his findings. In either case it is my
personal belief that the British scientist team developed further on the findings of
Bellescise. No problem, good stuff. That's why papers like Bellescise are there
for.

Although the synchronous, or homodyne, receiver was superior to the
super-heterodyne method, the cost of a phase-locked loop circuit outweighed its
advantages. Because of this prohibitive cost the widespread use of this principle
did not begin until the development of the monolithic integrated circuit and
incorporation of complete phased-lock loop circuits in low-cost IC packages, then
things started to happen. In the 1940s, the first widespread use of the phase-
locked loop was in the synchronization of the horizontal and vertical sweep
oscillators in television receivers to the transmitted sync pulses. Such circuits
carried the names ’Synchro-Lock’ and ’Synchro-Guide’. Since that time, the
electronic phase-locked loop principle has been extended to other applications.

For example, radio telemetry data from satellites used narrow-band,
phase-locked loop receivers to recover low-level signals in the presence of noise.

Other applications now include AM and FM demodulators, FSK decoders, motor
speed controls, Touch-Tone® decoders, light-coupled analog isolators, Robotics,
and Radio Control transmitters and receivers. Nowadays our technology driven
society would be at a loss without this technique; our cell phones and satellite
TV's would be useless, well, actually they would not exist.

Figure 1.j. Circuit Diagram of Basic PLL

Applications

• Data and Tape Synchronization.
• Modems.
• FSK Modulation.
• FM Demodulation.
• Frequency Synthesizer.
• Tone Decoding.
• Frequency Multiplication and Division.
• SCA Demodulators (‘Hidden’ Radios).
• Telemetry Radios.
• Signal Regeneration.
• Coherent Demodulators.
• Satellite.
• Robotics and Radio Control.

1.6 MODULATION IDENTIFICATION

 The process of classifying, identifying or recognizing modulation technique
using some method is known as modulation identification.

 The need of modulation identification arises from the advancement in
Software Defined Radio (SDR). Many modulation techniques and many ways of
transmission are used for various purposes of communication. TDM, FDM and
CDMA 1 are different ways of transmission using separate modulation
techniques.

Figure 1.k. Non-restrictive wireless roaming with adaptive receiver.

 The modern modulation techniques include the GSM, CDMA 2000 that
uses the QPSK and the IS 95 that uses BPSK. The Phase Shift Keying
modulations are the most commonly used modulation techniques with special
application in satellite communication. They are most immuned to noise with the
least probability of error on the detection side.

 The receiver receives, demodulates and decodes only those signals, that
it recognizes and has the demodulator of. It shall not be able to extract
information out of the signal, whose modulation technique it does not recognize.

 Therefore, in various commercial and military applications the need for
modulation identification arises. Integrating different receivers, working on
different modulation techniques, needs a module prior to demodulators that shall
be able to identify modulation. Many algorithms have been developed by many
researchers and developers. A few of the common methods include statistical
methods, maximum likelihood methods, power matrices, wavelet analysis etc.

 We, in our project, have devised another algorithm by ourselves for the
said purpose of identification. Thus has been termed as ‘Histogram-Count
Modulation Identification’ method and may be placed under the category of
statistical methods of modulation identification. This is based on calculating the
modulating parameters out of the received signal. The modulating parameters
thus become the identification parameters. In the second phase of the project,
we calculate the values of modulating parameters and feed them to demodulator
of the identified modulation technique for demodulation.

 The algorithm is explained in detail in the following chapters of the
documentation.

1. CDMA – Code Division Multiple Access

1.7 APPLICATIONS OF PROJECT MODULE

 With its wide applications in the military and commercial sector, the project
module can be applied in the following fields: -

• ECCM.
• ECM.
• SDR.
• MHTS.
• Digital Receivers.
• Stenography.

1.8 SUMMARY

Space belongs to everyone and anything once transmitted through it
knows no boundaries and could be interrupted, intercepted and decoded for
information extraction by any third party. No one can ever wonder how powerful
and efficient the third party would be.

 The technique of superimposing the message signal on the carrier is
known as modulation. The process of shifting of spectrum of the signal from a
lower frequency to a higher frequency is called modulation and the reverse
process is known as demodulation. Modulation is the process by which a
property or parameter of one signal (in this case the carrier) is varied in
proportion to the second signal (in this case the message signal).

 Analog signal is continuous both along the time and the amplitude axis.
Discrete signal is continuous on amplitude axis but discrete along the time axis.
Digital signal, however, is discrete both along the amplitude and time axis.
Respectively, x(t), x(kT) and x[n] represent the mentioned signals.

 Fourier Transform is a method or transformation that is helpful in order to
know the frequency components in a signal. This is an extension to Fourier
Series representation of any signal. This is to the fact that if the time period of
any signal goes to infinity, the Fourier Series representation converges to Fourier
Transforms.

PLL is short for phase-locked loop, an electronic circuit that controls an
oscillator so that it maintains a constant phase angle (i.e., lock) on the frequency
of an input, or reference, signal. A PLL ensures that a communication signal is
locked on a specific frequency and can also be used to generate, modulate and
demodulate a signal and divide a frequency.

 The process of classifying, identifying or recognizing modulation technique
using some method is known as modulation identification. The need of

modulation identification arises from the advancement in Software Defined Radio
(SDR). Many modulation techniques and many ways of transmission are used for
various purposes of communication. TDM, FDM and CDMA are different ways of
transmission using separate modulation techniques.

REFERENCES

[1, 3] Bernard Sklar, Digital Communication Systems.
[2] B.P.Lathi, Modern Communication and Analog Communication Systems.
[4] Openheim, Signals and Systems.
[5] http://www.howstuffworks.com.

CHAPTER 2

MODULATION
TECHNIQUES

INTRODUCTION

The transmission of digital signals is increasing at a rapid rate. Low-

frequency analogue signals are often converted to digital format (PAM) before
transmission. The source signals are generally referred to as base band signals.
Of course, we can send analogue and digital signals directly over a medium.
From electro-magnetic theory, for efficient radiation of electrical energy from an
antenna it must be at least in the order of magnitude of a wavelength in size;
c = f * lamda, where c is the velocity of light, f is the signal frequency and lamda
is the wavelength. For a 1 kHz audio signal, the wavelength is 300 km. An
antenna of this size is not practical for efficient transmission. The low-frequency
signal is often frequency-translated to a higher frequency range for efficient
transmission. The process is called modulation. The use of a higher frequency
range reduces antenna size. In the modulation process, the base band signals
constitute the modulating signal and the high-frequency carrier signal is a
sinusoidal waveform.

There are three basic ways of modulating a sine wave carrier. For binary

digital modulation, they are called binary amplitude-shift keying (BASK), binary
frequency-shift keying (BFSK) and binary phase shift keying (BPSK).

This chapter explains the following things: -

2.1 QAM.
2.2 ASK.
2.3 PSK.
2.4 Summary.

2.1 QUADRATURE AMPLITUDE MODULATION

QAM is a combination of ASK and PSKQAM is a modulation process that
incorporates the techniques of digital (coded) Phase Shift Keying (PSK) and
digital (quantized) Amplitude Modulation. In addition, QAM can process and
transmit the codes of two input signals phased 90 apart: the I and Q signals. This
is the "quadrature” part of QAM. Two different signals sent simultaneously on the
same carrier frequency. The modulation technique can be represented using
equation 2.1.

Figure 2.a. A simple QAM MODULATOR

 …………Equation 2.1

2.1.1 QAM-4

QAM-4 consists of two amplitudes and two phases. For QAM-4, 2

bits constitue a symbol, resulting in a total of 4 bits The modulator of
QAM-4 is shown in figure 2.b, below.

Figure 2.b. a QAM-4 modulator

Reshape /
symbol
formation

A sinwt

A sin(wt+pi)

B sinwt

B sin(wt+pi)

00

01

10

11

Σ
Input
bits

() () () tftdtftdts cc ππ 2sin2cos 21 +=

The demodulator of QAM-4 is shown in figure 2.c, below:

Figure 2.c. A QAM-4 demodulator

The waveform for QAM-4 is shown in figure 2.d, below:

Figure 2.d. transmitted waveform of QAM-4

00

01

10

11

 Asinwt

Asin(wt+pi)

 Bsinwt

Bsin(wt+pi)

Σ Received
wave

The vector form of QAM-4 is shown in figure 2.e, below:-

Figure 2.e. vector form of the QAM-4

2.1.2 QAM-8

QAM-8 consists of two amplitudes and four phases. The symbols

size for QAM-8 modulation technique is 3 bits and they have been shown
in table 2.1, below.

Table 2.1. Symbols for QAM 8

S.No. Symbols

1. 000
2. 001
3. 010
4. 011
5. 100
6. 101
7. 110
8. 111

The waveform for QAM-8 is shown in figure 2.f, below.

Figure2.f. transmitted waveform of QAM-8

2.1.3 QAM-16

In 16-QAM there are 16 possible states, that is, 16 possible

combinations of signal amplitude and phase in its constellation. It consists
of eight phases and two amplitudes. Its symbol consists of 4 binary bits.
The waveform for QAM-16 is shown in figure 2.g, below.

Figure 2.g. transmitted waveform of QAM-16

And the vector space diagram is shown in figure 2.h, below.

Figure 2.h. Vector space diagram for QAM-16
2.1.4 QAM-32

In QAM-32 we have four amplitudes and eight phases. The symbol

of QAM-32 consists of 5 binary bits. As the type itself describes it will have
32 constellation points. The waveform of QAM-32 si shown in figure 2.i,
below.

Figure 2.i. Transmitted waveform of QAM-32

2.1.5 QAM-64

The waveform for QAM-64 will be :-

Figure 2.j. transmitted waveform of QAM-64

In QAM-64 we have four amplitudes and sixteen phases. The

symbol of QAM-32 consists of 6 binary bits, each. Its constellation
consists of 64 points.

2.2 AMPLITUDE SHIFT KEYING

In communication when there is need to transmit signal over radio link or
satellites link we need to modulate them through different techniques ,because
baseband signals have sizable power at low frequencies & cannot be transmitted
over radio or steatite link. Hence, for such purpose, the signal spectrum must be
shifted to high frequency range. The spectrum of a signal can be shifted to higher
frequency by modulating a high frequency sinusoid by the baseband signal. An
unmodulated carrier is shown in fig. The on-off baseband signal m(t) is also
shown .When the carrier amplitude is varied in proportion to m(t).then we have a

modulated carrier m(t) cos w c(t) as shown in figure . here modulated signal is still
in on-off signal. This modulation scheme of transmitting binary data is known as
on-off keying (OOK) or Amplitude shift keying(ASK).

Amplitude shift keying (ASK) in the context of digital communications is a

modulation process, which imparts to a sinusoid two or more discrete amplitude
levels. These are related to the number of levels adopted by the digital message.
For a binary message sequence there are two levels, one of which is typically
zero. Thus the modulated waveform consists of bursts of a sinusoid.

The BASK signal sequence generated by the binary sequence 1 0 1 1 0 0

1. The amplitude of a carrier is switched or keyed by the binary signal m (t) as
shown in fig.2.2.b.This is sometimes called on-off keying (OOK).

A binary amplitude-shift keying (BASK) signal can be defined by

S (t) = A*m (t) cos 2*pi *fc *t, 0 < t < T

and this carrier is varied in proportion.
Where,

 A is a constant
 m(t) = 1 or 0
 fc is the carrier frequency
T is the bit duration.

Figure 2.k. Carrier Signal

Figure 2.l. Modulating Signal

Figure 2.m. Modulated Signal

There are sharp discontinuities shown in fig 2.2.c at the transition points.
These result in the signal having an unnecessarily wide bandwidth. Band limiting
is generally introduced before transmission, in which case these discontinuities
would be ‘rounded off’. The band limiting may be applied to the digital message,
or the modulated signal itself. The data rate is often made a sub-multiple of the
carrier frequency.

The effect of multiplication by the carrier signal A*cos (2*pi*fc*t) is simply
to shift the spectrum of the modulating signal m (t) to fc.

The sharp discontinuities in the ASK waveform imply a wide bandwidth. A
significant reduction can be accepted before errors at the receiver increase
unacceptably. This can be brought about by band limiting (pulse shaping) the
message before modulation, or band limiting the ASK signal itself after
generation. Having a very definite envelope, an envelope detector can be used
as the first step in recovering the original sequence. Further processing can be
employed to regenerate the true binary waveform.

ASK signal has a well defined envelope. Thus it is amenable to
demodulation by an envelope detector.
Demodulation is a two-stage process:

1. Recovery of the band limited bit stream
2. Regeneration of the binary bit stream

Having a very definite envelope, an envelope detector can be used as the

first step in recovering the original sequence. Further processing can be
employed to regenerate the true binary waveform.

2.2.1 ASK-2

For a binary message sequence there are two levels, one of which is
typically zero. The vector diagram for ASK-2 modulation technique is shown in
figure 2.n.

Amplitudes = 2
Normalized amplitude = 2
Phases = 1

Figure 2.n. Vector Diagram for ASK-2

2.2.2 ASK-4

 For a binary message sequence there are four levels and each level
shows different amplitude. The vector diagram for ASK-4 is shown in figure 2.o,
below.

Amplitudes = 4
Normalized amplitude = 2
Phases = 1

Figure 2.o. Vector Diagram for ASK-4

2.2.3 ASK-8

For a binary message sequence there are eight levels each showing

different values. The vector diagram for ASK-8 is shown in figure 2.p, below.
Amplitudes = 8
Normalized amplitude = 2
Phases = 1

M = 4

S3 S4

Figure 2.p. Vector Diagram for ASK-8

2.3 PHASE SHIFT KEYING

2.3.1 Phase shift:

The change in phase of a periodic signal with respect to a

reference is called phase shift.

2.3.2 Phase modulation:

(PM) is the encoding of information into a carrier wave by variation
of its phase in accordance with an input signal. Phase modulation can be
regarded as a special case of frequency modulation where the carrier
frequency modulation is the time derivative of the PM modulating signal.
Phase modulation can also be regarded as a special case of quadrature
amplitude modulation.

2.3.3 Phase-shift keying (PSK):
 In digital transmission, angle modulation in which the phase of the

carrier is discretely varied in relation either to a reference phase or to the
phase of the immediately preceding signal element, in accordance with
data being transmitted.Phase-shift keying refers to the simple case of
phase modulation by a simple signal with a discrete number of states. For
example, with only two states, the technique is Binary Phase Shift Keying
(BPSK). With four states, it's known as Quadrature Phase Shift Keying
(QPSK), with eight states, it's known as 8-PSK, 16 states is 16-PSK, and
so on.

The simplest PSK technique is called binary phase-shift keying
(BPSK). It uses two opposite signal phases (0 and 180 degrees). The
digital signal is broken up time wise into individual bits (binary digits). The
state of each bit is determined according to the state of the preceding bit.
If the phase of the wave does not change, then the signal state stays the

M = 8

S1 s2 s3 s4 s5 s6 s7 S0
Ψ(t)

same (0 or 1). If the phase of the wave changes by 180 degrees -- that is,
if the phase reverses -- then the signal state changes (from 0 to 1, or from
1 to 0). Because there are two possible wave phases, BPSK is sometimes
called biphase modulation. Phase-shift-keying offers a simple way of
increasing the number of levels in the transmission without increasing the
bandwidth by introducing smaller phase shifts

More sophisticated forms of PSK exist. In m-ary or multiple phase-
shift keying (MPSK), there are more than two phases, usually four (0, +90,
-90, and 180 degrees) or eight (0, +45, -45, +90, -90, +135, -135, and 180
degrees). If there are four phases (m = 4), the MPSK mode is called
quadrature phase-shift keying or quaternary phase-shift keying (QPSK),
and each phase shift represents two signal elements. If there are eight
phases (m = 8), the MPSK mode is known as octal phase-shift keying
(OPSK), and each phase shift represents three signal elements. In MPSK,
data can be transmitted at a faster rate, relative to the number of phase
changes per unit time, than is the case in BPSK.

It can also be define Phase shift keying is a technique which shifts
the period of a wave.

Figure 2.q. Signal

This wave has a period of p, & starting from point ‘0’

Figure 2.r. Shifted Signal

This is the same wave as the first, but its phase has been shifted.
The period starts at the wave's highest point (1). Here we have shifted this
wave by one quarter of the wave's full period. We can shift it another
quarter, if we wanted to, so the original wave would be shifted by half its
period. And we could do it one more time, so that it would be shifted three
quarters of its original period.

This means we have 4 separate waves, if we consider each wave
for some binary value. Since there are 4, we can let each wave signify 2
bits (00, 01, 10, 11):

Bit value Phase Shift
00 0
01 Pi/4
10 Pi/2
11 Pi/4

Figure 2.s. PSK Signal

This technique of letting each shift of a wave represent some bit
value is phase shift keying. But the real key is to shift each wave relative
to the wave that came before it. The correct pattern should be: 00 00 10
00 10 00.

 In a
communications system, the representing of characters, such as bits or
quaternary digits, by a shift in the phase of an electromagnetic carrier
wave with respect to a reference, by an amount corresponding to the
symbol being encoded. For example, when encoding bits, the phase shift
could be 0° for encoding a "0," and 180° for encoding a "1," or the phase
shift could be -90 for "0" and +90° for a "1," thus making the
representations for "0" and "1" a total of 180° apart.

 In PSK systems designed so that the carrier can assume only two
different phase angles, each change of phase carries one bit of
information, i.e., the bit rate equals the modulation rate. If the number of
recognizable phase angles is increased to 4, then 2 bits of information can
be encoded into each signal element; likewise, 8 phase angles can
encode 3 bits in each signal element.

Figure 2.t. Binary phase shift keying

The number of times the signal parameter (amplitude, frequency,
and phase) is changed per second is called the signaling rate. So Phase-
shift keying (PSK) is a method of digital communication in which the phase
of a transmitted signal is varied to convey information.

Figure 2.u. Vector Diagram for PSK-2

2.3.5 QUADRATURE PHASE-SHIFT KEYING (QPSK)

QPSK is a form of phase shift keying (PSK) using four phase states,
normally 90 degrees apart. Quadrature phase-shift keying (quadriphase,
quaternary phase-shift keying) is a form of modulation in which a carrier is sent in
four phases, 45, 135, 225, and 315 degrees, and the change in phase from one
symbol to the next encodes two bits per symbol. In QPSK, the four angles are
usually out of phase by 90°.This a significant advantage over the normal Phase
shift Keying of two values effectively doubling the bandwidth.

If we explained through figure then it describes a four-level (4-ary) PSK or

quadriphase shift keying (QPSK) where M= 4.Binary Digit source digits are
collected two at a time & for each symbol interval the two sequential digits

instruct the modulator as to which of the four waveforms to produce. For typical
coherent M-ary PSK system, s(t) can be expressed as

s(t) = sqre (2E / T cos (w t - 2 * pi / M)) 0 <= t <= T
 ……………..Equation 2.2

Figure 2.v. Signal Space & decision region for QPSK system

E is the energy constant of s(t) over each symbol duration T, and w is the

carrier frequency.

 QPSK is the unique among MPSK signal set in the sense that QPSK
waveform set is represented by combination of antipodal and orthogonal
members. the decision boundaries partition the signal space into M = 4 regions:
the construction is similar to the procedure for M = 2.the decision rule for the
detector is to decide that s(t) is transmitted if the if the received signal vector falls
in region 1 and s2(t) is transmitted if the received signal vector falls in region 2
and so on .

Figure 2.w. Phase Time Diagram

Figure 2.x. Phase Time Diagram

QPSK is a digital frequency modulation technique used for sending data
over coaxial cable networks.It's both easy to implement and fairly resistant to
noise, QPSK is used primarily for sending data from the cable subscriber
upstream to the Internet

2.3.6 PSK-8

PSK 8 has a symbol size of three bits. The basic parameters are
listed below.

Amplitudes = 1
Normalized amplitude = 1
Phases = 5

2.4 SUMMARY

All modulated signals have three modulating parameters: -

Amplitude

The amplitude of a signal is the height of the wave above or below a given
reference point.

Frequency

The frequency is the number of times a signal makes a complete cycle
within a given time frame. Spectrum - The range of frequencies that a signal
spans from minimum to maximum. Bandwidth - The absolute value of the
difference between the lowest and highest frequencies of a signal. For example,
consider an average voice: The average voice has a frequency range of roughly
300 Hz to 3100 Hz. The spectrum would thus be 300 - 3100 Hz the bandwidth
would be 2800 Hz

Phase

The phase of a signal is the position of the waveform relative to a given
moment of time or relative to time zero. A change in phase can be any number of
angles between 0 and 360 degrees. Phase changes often occur on common
angles, such as 45, 90, 135, etc.

CHAPTER 3

MODULATION
HOPPING

TRANSCEIVER
SYSTEM
(MHTS)

INTRODUCTION

This chapter explains the concept of the newly proposed transceiver
system. It explains all the modules of the transceiver system briefly and then the
working of the transceiver system in detail. The objectives set forth for this
chapter are as follows: -

3.1 Background.
3.2 Modules of MHTS.
3.3 Working of MHTS.
3.4 Proposed Technical Characteristics of the MHTS.
3.5 Proposed Technical Characteristics of the Universal Receiver.
3.6 Summary.

3.1 BACKGROUND

Space belongs to everyone and anything once transmitted through it

knows no boundaries and could be received, demodulated and decoded by any
third party interrupting and intruding into the communication. No one ever knows
how efficient the third party may be.

Our project is aimed at the integration or combination of different digital

demodulators. This gives rise to an idea of Universal Receiver. This concept
arises from its application and need in the Communication Security.

From military point of view, its application is quite understandable in the

Electronic Support Measures (ESM), Electronic Counter Measures (ECM) and
Electronic Counter-Counter Measures (ECCM). Any one worried about the
communication taking place between two enemy terminals would certainly need
to know about the modulation technique that is been used for communication.
Hence an application that speaks by itself.

From commercial point of view, its application is in view of integrating

different things to a common platform. What if a user can use his mobile for the
following purposes: -

a. Receiving the radio broadcast.
b. Receiving the television broadcast.
c. Monitoring the satellite communication.
d. Monitoring the mobile communication in ones area.
e. Scanning any communication taking place on any modulation

techniques.

Certainly the user would be pleased and would never mind paying

anything for it. So this is what our proposed transceiver system is aiming to.

If I have to provide security to my communication, I would either resort to
the ciphering device, encryption, frequency hopping or may be some of the other
security techniques. But all that I shall be using would be commercial and the
breaking codes and algorithms would have been developed already. Hence my
communication is not cent percent secure.

Talking about the military communication systems, so far the security to

the communication has been provided by ciphering devices and the frequency
hopping devices, which themselves have not been able to provide 100 %
interception-free and secure communication. These two methods though much
secure but are modulation specific and hence have limited applications. Just as
the ciphering device CD-411 (Ericsson), which is an accessory of RL-421
(Ericsson), works only on Frequency Modulation (FM).

Further the ciphering devices always have a deciphering device, thus it

greatly requires key security etc. though the probability of detection is quite less
but still much can be screened out through the spectrum of the signal, modulated
on a single modulation technique transmitted through the space. This is even
then not that much secure that one be sure what he has transmitted through the
space and would be received only by that individual for whom it was transmitted.

Frequency hoping has been a much talked about concept for secure

communication, but the transmission rate and hoping speed i.e. hops per
second, decrease the security of the information flow and limits implementation in
the field. For example, RL-421 has maximum transmission rate of 1024 KBPS in
frequency hoping mode. Hence it cannot support any communication system that
requires a 2 MB data stream that is required for its interface with PASCOM
system. So its applications are limited.

3.2 MODULES OF MHTS

The block diagram for the Modulation Hopping Transceiver System is
shown in figure 3.a and 3.b. Its modules are listed below: -

1. Transmitter end

a. Source.
b. ADC (Analog-to-Digital Converter).
c. ECE (Error Correction Encoder).
d. Encryption Module.
e. Modulators.
f. Modulation Selector.
g. Frequency Hopping Module.
h. Transmitter.

2. Receiver End
 a. Receiver.

 b. Frequency Identifier.
 c. Modulation Identifier.
 d. Demodulators.
 e. Decryption Module.
 f. ECD (Error Correction Decoder).
 g. DAC (Digital-to-Analog Converter).
 h. Sink.

• Source and Sink

The source and sink may be of one of the under-mentioned data

types. A header may be used in order to define the type of data that is
been transmitted. The ‘text’ may be referred to for the demonstration
purposes. This is because of quick digitization and less number of bits.
The data types and the respective headers have been shown in table 3.1,
below. Any header other than the mentioned below may be used for
identification of different data types.

Table 3.1. Data types and the respective headers

S.No. Data Type Header

1. Data (Text) 00
2. Image 01
3. Audio 10
4. Video 11

• ADC and DAC

Most of the data types would be in analog form. For any digital
communication system the data must be in digital form. Hence the
digitization of the data i.e. conversion of analog data into binary bits is
needed to be done. This is done by ADC at the transmitter end. This
conversion process has been described in Chapter 1 in detail. At the
receiver end the reverse process takes place at the DAC. DAC is
undertaken after the identification of the data type. Since this process is
different for each type of the data. Text is converted using the ASCII
codes. Image is digitized by pixel values. The audio and the video are
converted by the normal process of digitization. An added process in video
digitization is the separation of audio and video signal that usually exists in
the video signal and the digitization is done after separation, separately.

• ECE and ECD

The Error Correction Information (ECI) is needed to be transmitted
along with the data been transmitted. This is necessary because the
errors are needed to be corrected after demodulation etc at the receiver
end that might have occurred because of the due to channel effects and
other circuitry noises etc. This is to make sure that all the data is received
in the correct manner. This is one of the effective ways of FEC 1.
Previously the retransmission request was the only method available, if
the data received was not understandable. This resulted in time delays
and bandwidth utilization. The ECI is embedded at the transmitter into the
data using the ECE and at the receiver it extracted out of the data using
the ECD.

• Encryption and Decryption Modules

The data security is provided by one of the encryption techniques.
In encryption process the data is transformed into a not understandable
language. This is to say, if two people are able to speak and understand
English and French simultaneously, and a third man, knowing only
English, gets in between them and wants to listen to them and the two do
not wish that the third should know what they are talking about, they would
certainly like to switch to French. This rightly is encryption. We convert our
data into some thing that seems like noise or something liked that to an
intruder who is trying to get the information what he is not suppose to get.

• Modulators and Demodulators

Many different digital modulators are fed the digitized, encrypted

data simultaneously. All the modulators modulate the data and feed it
forward. At the receiver end, the identified modulation technique’s
demodulator is used for the demodulation purpose. It is to be kept in mind
that if we are talking about ‘MHTS’, the modulators and demodulators at
the transmitter and the receiver end must be same. Along with that, one
other thing is to be taken care of that the modulation techniques must
have the same data rate and the requirement if PASCOM system i.e. 2MB
stream must be seen for. This will ensure the easy and effective interface
of the MHTS with the PASCOM system that is not available with the
PATCOM system, which is presently the backbone of the Pakistan Army
field communication. But if we are talking in terms of the ‘Universal

1. FEC – Forward Error Correction

Figure 3.a. Transmitter block diagram of the ‘MHTS’

Source

ADC

ECE

Encryption
Module

Modulation
Selector

Frequency Hopping
Module

Transmitter

ASK2 ASK4 ASK8 PSK2

QAM4 QAM8 QAM16 QAM32 QAM64

PSK8 PSK4

Figure 3.b. Receiver’s block diagram of the ‘MHTS’

__

* The dashed arrows show the one line feeding not parallel feeding as is done at the transmitter end.

Modulation
Identifier

Frequency
Identification Module

Receiver

ASK2 ASK4 ASK8 PSK2

QAM4 QAM8 QAM16 QAM32 QAM64

PSK8 PSK4

DAC

Sink

ECD

Decryption
Module

Receiver’, the demodulators are needed to be of all the modulation
techniques that may exist in the area of its operation. This is to ensure that
no data is left unchecked. This means that all that is transmitted and
received through the space in your area of interest is monitored by you.

• Modulation Selector and Modulation Identifier

The modulators’ output is fed to the Modulation Selector, where by

one of the modulators’ output is selected at random for transmission
purpose. At the receiver end, the Modulation Identifier identifies the
modulation technique using the algorithm been developed by us.

• Frequency Hopping and Frequency Identification Module

The frequency hopping is a much talked about topic. This is one of

the effective ways of avoiding jamming during transmission. Normally the
frequency hopping takes place using a key at the transmitter and the
same key at the receiver for the easy identification of the frequency. But
this some how seems unsafe. This is so because of the second
application of frequency hopping. The second application may be the
security aspect. This is to say if the third party is unable to identify the
frequency of the signal it would not be able to get the data or information
out of it. So if the key is secretly leaked out, the security of the
communication is at risk. Hence in the ‘MHTS’ we are talking about
Frequency Hopping without keying.

• Transmitter and Receiver

The transmitter and receiver are basically the antennas, which shall

be liable to receive any type of modulation at any frequency. Since in
space nothing except the modulation technique and the frequency is to be
catered for detection and evaluation. So the antenna shape and
polarization etc must be able to get the unknown signal with unknown
parameters and giving it a measurable gain both at the transmitter and the
receiver.

3.3 WORKING OF MHTS

The working of the transceiver system can be explained in the following

steps: -
1. The data is taken from the user on the transmitter. The data can be of one

of the four types mentioned. The data is then digitized i.e. conversion to
binary bits (‘0’ and ‘1’). The data can be an input from the user (audio
signal) or a PC (text, stored image, stored video) or a camera (image or
video signal) or from any other source.

2. After digitization the bits are fed to the ECE where the error correction
information is added to the data. This would help in the error identification
and correction at the receiver end, which might have occurred due to one
reason or the other.

3. The data thus obtained is encrypted to provide security to the

communication. The encryption may be done using one of the many
algorithms available (in case more than one algorithm is implemented for
the encryption at the transmitter).

4. The encrypted data is again in the binary forms and hence fed in-parallel

to all the modulators available at the transmitter. The modulation is done
in parallel and the output of each modulator is fed to the modulation
selector.

5. The modulation selector then randomly selects one of the modulators’

output for the transmission of data at that instant.

 6. After modulation selection the data is fed to the frequency hoping module

where the respective process occurs. This module may or may not be
involved during operation, as is done in case of RL-421.

7. The transmitter than transmits the data through the space.

8. At the receiver end, the very first step would be the frequency

identification. Since, we need to bring down the frequency to some IF for
further processing. So the identification of the frequency is needed to be
done prior to any other operation.

9. After IF signal has been obtained the next operation would be the

modulation identification. This is done by our module. The improvement in
this algorithm is still needed because it is working for ideal channel
conditions and hence not reliable in real-time application. Once we talk
about the transceiver system it has to be real-time and hence the
improvement is needed. One way is to add a de-noiser module that shall
be able to extract an ideal channel-like signal from the noised one.

10. Once identified with the modulation technique the next step is the

demodulation of the signal. The signal received is fed to the identified
modulation technique’s demodulator. This in return would give us the
encrypted data.

11. The encrypted data is needed to be decrypted that is done by the

respective decryptor if in case more than one algorithm has been
implemented for encryption at the transmitter.

12. The ECD must be able to identify error and correct it, if the error has
occurred due to any reason.

13. The next step is the conversion of the demodulated data back to analog

form. This is done once the data type has been identified using one of the
headers that might be present there.

14. The last step is the sink by itself which is the user or a PC.

3.4 PROPSED TECHNICAL CHARACTERISTICS OF THE

MHTS

S.No. Characteristic Remarks/Proposed Value

1. Frequency Range Shall mainly cover the HF

band.

2. Maximum Communication Range 25 km to 30 km (keeping in

view the earth curvature

restriction).

3. Power Supply AC (220 V) and DC.

4. No. of Modulators At least 10 (with equal data

rate, but may differ

depending on the

requirement).

5. Direct PASCOM Connectivity YES.

6. Receiver as Standalone YES (for ECM utilization).

7. Frequency Hopping 240 TPM.

8. Modulation Hopping 60 TPM.

9. Operating Temperature Both in the Field and Office

utilization.

10. TDM (FF) Transmission Any but must support 2048

kbps for PASCOM

connectivity.

11. TDM (FH) Transmission Any but must support 2048

kbps for PASCOM

connectivity.

12. No. of Channels 2000

13. PATCOM Interface YES.

14. Channel Spacing 100KHz.

15. Power Output Auto selection.

16. Clock Input NRZ.

17. Encryption YES. (as and when needed)

By one of the implemented

techniques or algorithms.

A few of the proposed technical characteristics for MHTS are based upon

the already existing PATCOM equipment, presently in work in the PAK Army. By
doing so a quick and easy development of the project may be the result. Added
to this would be less utilization of resources. Since integrating the existing
modules may be a bit easy than to develop new and then join them.

3.5 PROPSED TECHNICAL CHARACTERISTICS OF THE

UNIVERSAL RECEIVER

S.No. Characteristic Remarks/Proposed Value

1. Frequency Range Almost infinity (at least till

10 GHz)

2. Maximum Communication Range 25 km to 30 km (keeping in

view the earth curvature

restriction).

3. Power Supply Battery as used in cellular

phones.

4. No. of Modulators All of those modulators that

may be needed for

commercial usage. For

Pakistan it may include the

following: -

• TV.

• Radio.

• GSM. (Ufone, Mobilink,

Telenor, Paktel GSM)

• CDMA.

• Satellite.

Communication.

• AMPS. (Instaphone,

Paktel)

• Other which may be

region restricted.

5. Receiver as Standalone Only for TV and radio

broadcast.

3.6 SUMMARY

Our project is aimed at the integration or combination of different digital

demodulators. This gives rise to an idea of Universal Receiver. This concept
arises from its application and need in the Communication Security.

The modules of the MHTS are as follows: -

1. Transmitter end

i. Source.
j. ADC (Analog-to-Digital Converter).
k. ECE (Error Correction Encoder).
l. Encryption Module.
m. Modulators.
n. Modulation Selector.
o. Frequency Hopping Module.
p. Transmitter.

2. Receiver End
 a. Receiver.
 b. Frequency Identifier.
 c. Modulation Identifier.
 d. Demodulators.
 e. Decryption Module.
 f. ECD (Error Correction Decoder).
 g. DAC (Digital-to-Analog Converter).
 h. Sink.

 Data is always to be digitized before feeding to the modulators for
transmission. The signal received at the receiver would give us the parameters
for identification of modulation technique. Remember no header has been added
for modulation identification. It is based totally on the modulated signal received
at the receiver.

CHAPTER 4

MODULATION
IDENTIFCATION

ALGORITHM

INTRODUCTION

This chapter explains the modulation identification algorithm. The theoretical
background is given in chapter 2. Refer to ha chapter for better understanding as and
when needed. The objectives for this chapter are: -

4.1 Background.
4.2 Algorithm Explanation.
4.3 Identification Statements.
4.4 MFSK Identification.
4.5 Phase Count Ambiguity.
4.6 Summary.

4.1 BACKGROUND

Many algorithms have been developed for modulation identification. The need for

modulation identification arises from the development and advancements in the field of
communication especially in SDR. Many modulation techniques with certain advantages
over the other are in use. The transmission method has also been varying with
development and need. Different modulation techniques have come into existence
looking into the needs of data type to be transmitted, extent of precision needed, data rate,
probability of error, spectrum available, pdf 1 and other parameters.

PSK 2 -16 and QAM 3 -64 are widely used in satellite communication. QPSK is

used in CDMA 2000 and BPSK in IS 95 4. Further other modulation techniques have
rendered their usage and application in various fields. But the Phase Shift Keying
modulation technique and the Amplitude-Phase keying modulation technique are widely
used because of the existence of the constellation diagram or state space diagram of these
modulation techniques.

The ease in the detection and reconstruction of the constellation diagram at the

receiving end has enhanced the application of such modulation techniques many folds.

Since the advancement in communication, the world has diverted to digital
communication systems from their analog counter parts. This is because of enhanced data
rate and higher noise immunity that almost all the modern communication systems are
now digital ones.

 __
1. Power Density Function.
2. Phase Shift Keying.
3. Quadrature Amplitude Modulation.
4. American mobile communication standards.

 Since there exists a large bank of digital modulation techniques, therefore, there is
a need for modulation identification to cater for advancements in SDR. For this a large
number of methods and algorithms have been proposed be researchers and developer,
each with some advantages over the other. A few of the techniques and methods are as
follows: -

1. Maximum Likelihood method.
2. Power Matrices method.
3. Statistical methods.
4. Vector Analysis.
5. Wavelet Analysis.
6. Spectrum Analysis.
7. DMRA (Digital Modulation Recognition Algorithms).

There may be other methods for modulation identification that have not been

mentioned above. Each method has certain advantages over the other. Basing on the
application area and fields, different methods have been proposed.

4.2 ALGORITHM EXPLAINATION

The algorithm that is been used in our project has been developed and simulated
by us. The algorithm may be placed under the statistical method heading. It has been
termed as ‘Histogram-Count Modulation Identification (HCMI)’ method. There are two
ways the algorithm can be made to work. These two ways are shown in figure 3.a and
3.b.

Method I

For the first way there are two stages of the algorithm, which are as follows: -

a. Amplitude Histogram.
b. Phase Histogram.

For the first way the techniques are identified at various stages of the algorithm.

As has been shown in figure 3.a ASK 2, ASK 4, ASK 8 and QAM-M are identified at the
first stage. QAM-M is further identified at the second stage to QAM-4, QAM-8, QAM-
16, QAM-32 and QAM-64. MPSK is further identified by repeating stage two. The
values in the brackets show the obtained values of the identification parameters. The
shaded boxes show the technique that has been identified, then.

All the modulation techniques have certain parameters basing upon which

modulation takes place. The explanation below describes them in a better way. Suppose
the received unknown signal at the receiver end be s(t). Then, s(t) can generally be
represented with the help of following equation:

s(t) = s~(t) * sin (wc t + θc)

where,
 wc = carrier frequency
 θc = carrier phase

and s~(t) for each modulation technique is defined here. For ASK

s~(t) = d(t) *A
where,
 d(t) = bit stream (0,1)
 A = Amplitude of wave
and wc and θc as constants.

For PSK,

s~(t) = di (t) with θc = θi

where,
 i = bit position

wc ,amplitude as constant.

For FSK,
s~(t) = di (t) with wc = wi

where,
 i = bit position

θc , amplitude as constant.
For QAM,

s~(t) = di (t)* Ai with wc = wi

where,
 i = symbol position

wc , frequency as constant.

Let’s take an example of QAM 8. QAM 8 has two amplitudes and four phases

resulting into eight possible combinations, one each for the respective symbols. For QAM
8, we have eight symbols of 3 bits each. Hence this becomes the identification parameter
for the QAM 8. Such are the parameters of each modulation technique that helps us in the
developed algorithm to identify the modulation technique occurring, then.

Figure 4.a. Method I for the working of the Algorithm

The received unknown signal with unknown modulation technique is fed to

‘Amplitude Calculator’. The amplitude calculator plots the instantaneous amplitude
histogram with the number of instantaneous amplitudes on y-axis and the values of
instantaneous amplitudes of x-axis. This then counts the number of instantaneous

amplitudes in the unknown received signal. The identification parameter is the number of
instantaneous amplitudes, which is independent of the values of the instantaneous
amplitudes. Hence, the identification parameter is the number of instantaneous
amplitudes not the value of the instantaneous amplitudes. This number is counted and this
majorly identifies the ASK modulation techniques.

If the number of instantaneous amplitudes is ‘4’, QASK is identified as the
modulation technique occurring. Likewise, if the number of instantaneous amplitudes is
‘8’, ASK 8 is identified as the modulation technique occurring. But the problem arises
when ASK 2 is needed to be identified uniquely. Since ASK 2, QAM 4, QAM 8 and
QAM 16, all the three have two instantaneous amplitudes as the modulating parameter.
Therefore, amplitude normalization is done to identify ASK 2 from the three. After the
instantaneous amplitude normalization has occurred, ASK 2 would still have ‘2’
instantaneous amplitudes (one would be ‘0’ and the other will be ‘1’). Where as, the other
three modulation techniques would have single constant amplitude. Hence ASK 2 is
identified uniquely from QAM4, QAM 8 and QAM 16. Till this point, the three
Amplitude modulation techniques and the QAM-M has been identified. Further if the
number of instantaneous amplitudes in the received unknown signal, before the
normalization is ‘1’, MPSK is the modulation technique. Since, it has constant amplitude
throughout its occurrence.

The unknown received signal with its normalized amplitude is fed to the ‘Phase
Calculator’. Here, again the identification parameter is the number of instantaneous
phases not the value of these instantaneous phases. The ‘Phase Calculator’ plots the
histogram of the instantaneous phases with number of instantaneous phases on the y-axis
and values of instantaneous phases on x-axis, just like ‘Amplitude Calculator’, which
gives the number of instantaneous phases. If the number of instantaneous phases is ‘1’
along with the number of instantaneous amplitudes as 2, QAM 4 is the identified
modulation technique. If the number of instantaneous phases is ‘3’ along with the known
‘2’ instantaneous amplitudes, the modulation technique identified would be QAM 8.
Likewise, if the number of instantaneous phases is ‘5’ along with the known ‘2’
instantaneous amplitudes, the identified modulation technique would be QAM 16. If the
number of instantaneous phases is ‘5’ along with the number of instantaneous amplitudes
as ‘4’, QAM32 is the identified modulation technique. Lastly if the number of
instantaneous phases is ‘8’ along with the number of instantaneous amplitudes as ‘4’,
QAM 64 is the identified modulation technique.

Now if the number of instantaneous amplitudes is ‘1’, further identification with

in MPSK is needed. With the number of instantaneous amplitudes, both before and after
normalization as ‘1’, MPSK is needed to be further identified with in its own domain.
Like QAM, the MPSK signal is fed to the ‘Phase Calculator’, which plots the histogram
of the instantaneous phase and gives their number. If the number of instantaneous phases
is ‘1’, PSK 2, if ‘3’, PSK4 and if ‘5’, PSK 8 is identified. The obtained numbers are
different from the expected numbers because of calculation restrictions.

Hence we have identified 11 modulation techniques that include ASK 2, ASK 4,
ASK 8, PSK 2, PSK 4, PSK 8, QAM 4, QAM 8, QAM 16, QAM 32 and QAM 64, using
this algorithm. Here the symbol duration of the received unknown signal is known only.
Generally speaking, we can say that this algorithm would help us in the identification of
Mary-ASK, Mary-PSK, Mary-FSK and QAM-M. For the first three modulations, we
have

M > 2 & M = 2 ^n

For QAM-M, M is defined as

M > 4 & M = 2^ n
where,
 n = positive integer

Method II

 The second way of working of the algorithm is shown in figure 4.b. It has three
stages, which are listed below: -

 a. Amplitude Calculator.
 b. Phase Calculator.
 c. Identifier.

 The parameters are calculated just like in Method I. here the difference arises
during the identification process. The first two stages calculate the three identification
parameters values, and feed them in parallel to the identifier where a set of logical
statements help in the identification of the digital modulation technique. Here the
techniques are identified at the last stage.

Figure 4.b. Method II for the working of the Algorithm

Comparison

Method I Method II
Requires less processing Requires more processing
Early identification i.e. stage-wise
identification

Identification at the last stage

Some probability of error occurs Confirm identification

4.3 IDENTIFICATION STATEMENTS

The eleven modulation techniques that have been implemented in our project are

identified using the respective basic properties i.e. the parameters basing upon which
each modulation takes place. These have been numerically listed in table 4.1, below.
Followings are the identification statements for each: -

ASK 2

1. No variation in Phase i.e. the instantaneous phase count from the phase histogram

is ‘1’.
2. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
3. Two amplitudes both before and after normalization i.e. the instantaneous

amplitude count from the amplitude histogram is ‘2’ both before and after
normalization.

ASK 4

1. No variation in Phase i.e. the instantaneous phase count from the phase histogram

is ‘1’.
2. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
3. Four amplitudes both before and after normalization i.e. the instantaneous

amplitude count from the amplitude histogram is ‘4’ both before and after
normalization.

ASK 8

1. No variation in Phase i.e. the instantaneous phase count from the phase histogram

is ‘1’.
2. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.

3. Eight amplitudes both before and after normalization i.e. the instantaneous
amplitude count from the amplitude histogram is ‘8’ both before and after
normalization.

PSK 2

1. No variation in Amplitude i.e. the instantaneous amplitude count from the

amplitude histogram is ‘1’.
2. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
3. Two phases i.e. the instantaneous phase count from the phase histogram is ‘2’.

PSK 4

1. No variation in Amplitude i.e. the instantaneous amplitude count from the

amplitude histogram is ‘1’.
2. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
3. Four phases i.e. the instantaneous phase count from the phases histogram is ‘4’.

PSK 8

1. No variation in Amplitude i.e. the instantaneous amplitude count from the

amplitude histogram is ‘1’.
2. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
3. Four phases i.e. the instantaneous phase count from the phase histogram is ‘8’.

QAM 4

1. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
2. Two amplitudes before normalization and one amplitude after normalization i.e.

the instantaneous amplitude count from the amplitude histogram is ‘2’ before
normalization and ‘1’ after normalization.

3. Two phases i.e. the instantaneous phase count from the phase histogram is ‘2’.

QAM 8

1. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
2. Two amplitudes before normalization and one amplitude after normalization i.e.

the instantaneous amplitude count from the amplitude histogram is ‘2’ before
normalization and ‘1’ after normalization.

3. Four phases i.e. the instantaneous phase count from the phase histogram is ‘4’.

QAM 16

1. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
2. Two amplitudes before normalization and one amplitude after normalization i.e.

the instantaneous amplitude count from the amplitude histogram is ‘2’ before
normalization and ‘1’ after normalization.

3. Eight phases i.e. the instantaneous phase count from the phase histogram is ‘8’.

QAM 32

1. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
2. Four amplitudes before normalization and one amplitude after normalization i.e.

the instantaneous amplitude count from the amplitude histogram is ‘4’ before
normalization and ‘1’ after normalization.

3. Eight phases i.e. the instantaneous phase count from the phase histogram is ‘2’.

QAM 64

1. No variation in Frequency i.e. the instantaneous frequency count from the

frequency histogram is ‘1’.
2. Four amplitudes before normalization and one amplitude after normalization i.e.

the instantaneous amplitude count from the amplitude histogram is ‘4’ before
normalization and ‘1’ after normalization.

3. Sixteen phases i.e. the instantaneous phase count from the phase histogram is
‘16’.

Table 4.1 Numerical Values of Identification Parameters

S. No. Technique No. of Identification Parameters
Amp Norm. Amp Phases Freq

1. ASK 2 2 2 1 1
2. ASK 4 4 2 1 1
3. ASK 8 8 2 1 1
4. PSK 2 1 1 1 1
5. PSK 4 1 1 3 1
6. PSK 8 1 1 5 1
7. QAM 4 2 1 1 1
8. QAM 8 2 1 3 1
9. QAM 16 2 1 5 1
10. QAM 32 4 1 5 1
11. QAM 64 4 1 8 1

4.4 IDENTIFICATION OF MFSK

MFSK can also be identified uniquely basing on its modulating parameters. It has

constant phase and amplitude. The only varying parameter in it is its frequency. Hence if
we are able to identify the number of instantaneous frequencies in the received unknown
signal, we shall be able to identify MFSK. A few of the methods for calculation of
frequencies are as follows: -

a. Fourier Transformation.
b. PLL.
c. Filters.

Hence a slight modification in the algorithm would certainly help us in the

identification of modulation techniques where the frequency is also a varying modulating
parameter.

4.5 PHASE COUNT AMBIGUITY

Following questions may come to an individual’s mind once the number of phases

is detected during the Phase Calculation: -

a. Why there is ‘1’ phase instead of ‘2’ for BPSK and QAM-4?
b. Why there is ‘3’ phases instead of ‘4’ for QPSK and QAM-8?
c. Why there is ‘5’ phases instead of ‘8’ for PSK-8 and QAM-16, QAM32?
d. Why there is ‘8’ phases instead of ‘16’ for QAM-64?

 The answer is quite simple: the calculation restriction. Figure 4.c illustrates this
fact in a better manner.

Figure 4.c. Phase Ambiguity illustration for PSK-8, QAM-16 and QAM-32

45/45

0/0

90/90
45/13

0/180

-45/225
-90/270

-45/315

KEY:
Calculated Value / True Value

 Very clearly the calculation restriction is shown in the figure above. It is so
because

sin(45) = sin(135) 45 =135
sin(315) = sin(225) 225 = 315

sin(0) = sin(180) 0 = 180

 Therefore, we have ‘5’ phases instead of ‘8’ phases for PSK-8, QAM-16 and
QAM-32. And likewise we have for other modulation techniques, as has been mentioned
above in the questions.

4.7 SUMMARY

Many algorithms have been developed for modulation identification. The need for

modulation identification arises from the development and advancements in the field of
communication especially in SDR. Many modulation techniques with certain advantages
over the other are in use. The transmission method has also been varying with
development and need. Different modulation techniques have come into existence
looking into the needs of data type to be transmitted, extent of precision needed, data rate,
probability of error, spectrum available, pdf and other parameters.

There are three parameters for modulation identification: -
• Number of Amplitudes.
• Number of Normalized Amplitudes.
• Number of Phases.

A novelistic approach has been described for identification of M-FSK. Added to

this the phase ambiguity is due to calculation restriction.

CHAPTER 5

MANUAL
FOR THE

PROJECT ‘GUI’

INTRODUCTION

 The Graphical User Interface (GUI) for the project is also Matlab 7.0
based. This chapter would help the user to go through the GUI for project
demonstration. Behind every figure of the GUI files same .m files are running that
have been written for the command window purpose. But here it is to be kept in
mind that many things have been added in the GUI .m files. Therefore both the
.m files may be consulted in case of any ambiguity in understanding. To use the
GUI proceed with the following steps: -

STEP 1:

Type ‘gui1’ in the command window and press ‘enter’. A figure, like 5.a as
shown below, would appear.

Figure 5.a. gui1 figure of the GUI

 This is the opening window of the GUI. The window is showing the project
name and the project logo.

STEP 2:

Press ‘Next’ to proceed to the next GUI window. The figure 5.b would
appear. This figure is showing the name of the syndicate members, the college
and the project DS. This figure is labeled as ‘gui2’.

Figure 5.b. gui2 figure of the GUI

STEP 3:

 Press ‘Next’ to proceed to the next window of GUI titled ‘GUI CHOICES’.
This figure looks like figure 5.c. This figure shows the GUI choices. It is titled as
‘gui3’. The choices include the followings: -

• Introduction to the Project.
• MATLAB codes.
• Identification Algorithm.

These are the radio buttons options. Select either of the four options and
then press ‘NEXT’ to proceed with the options. These three options are the
theoretical part of the project and hence do not require any further guidance. Go
through them to acquaint yourself with the theory related problems of the project.
A big push button in the middle of the GUI titled ‘PROJECT DEMONSTRATION’.

Figure 5.c. gui3 figure of the GUI

STEP 4:

 Press ‘PROJECT DEMONSTRATION’ push button for project demo. The
following figure, figure 5.d will appear. Pressing this push button also executes
the ‘clear all;’ command, that has been written so in its .m file. This figure is titled
as ‘datasel’ as shown in figure 5.d.

Figure 5.d. ‘datasel’

STEP 5:

Select the type of data to be transmitted. press ‘SELECTED’ to enter the
data type as the input. Once done press ‘OK’ to proceed. This figure is titled as
‘gui3demo’ that would appear. This has been shown in figure 5.e. Here the GUI
asks the user to select whether to select the modulation technique manually or
let it be selected automatically. Let’s first explain the process by manually
selecting the modulation technique.

Figure 5.e. gui3demo figure of the GUI

STEP 6:

 Select ‘Manual’ radio button and press ‘Proceed’. This figure is titled as
‘demomanual’. The following figure 5.f. appears then. This is the transmitter
window of the UMID. The data has been entered already, so select the
modulation technique. The entered text would appear in the edit text box 1 titled
‘Text to be transmitted’. The next step is to select the modulation technique from
popup menu 1 and press ‘Modulation Selected’. Here the modulation takes
place. The values of the input data, modulator’s output are stored as follows: -

• save('manual','s'); the bit source
• save('man','y'); the modulator’s output

They are retrieved afterwards for identification and demodulation. Select

the data to be plotted from popup menu 2 and press ‘Update Figure’. The axes 1
would display the plotted data. Press ‘Transmit’ to go the receiver’s end or press
‘Back’ to go back to the ‘gui3demo’. The ‘RESET TRANSMITTER’ button on the
top resets all the fields of the transmitter.

Figure 5.f. demomanual figure for GUI

STEP 7:

 Pressing ‘Transmit’ on the demomanual leads us to manualtx. Now we are
at the receiver end. Here the data of modulator’s data is again loaded.

• load(‘man’,’y’); load the modulator’s output

Figure 5.h would appear. This figure has been shown below. Here the

identification algorithm has been sequentially shown. The push buttons on the
right size are the algorithm steps. Follow them in the sequence they are because
many parameters are saved during the algorithm process. They are as follows: -

• save('Amplitude','Amp','M'); AmpHist.m executes
• save('NAmp','NO'); amp_norm.m executes
• save('NA','Amp1','N') ; AmpHist.m executes again after normalization
• save('Ph','Phase','P'); PhaseDetect.m executes
• save('Fop','FOP'); Fop.m executes for Fourier transforms.

Like for the previous figure, select the data to be plotted from the popup

menu 1 and press ‘Update Figure’. The top three edit text boxes shows the
identification parameters values. The fourth long edit text box displays the

identified modulation technique. Press ‘Demodulate’ to go to the next figure. The
‘Reset Receiver’ clears all the fields of the figure.

Figure 5.g. manualtx figure for the GUI

STEP 8:

 The next step is the ‘manual demodulation’. Here the waveform is
demodulated. Select the demodulator manually from the popup menu 1 and
press demodulate. Edit box 1 display the identified data type. Edit box 2 and 3
display the ‘transmitted bits’ and the ‘demodulated bit’ respectively. Select the
data to be plotted from popup menu 2 and press update figure for the plot. The
next button is the ‘BER Calculation’, which calculates the BER. It is shown in Edit
box 4. The ‘Back to Transmitter’ would take the user back to the transmitter
figure. Here the input data is loaded for BER calculation.

• load(‘manual’,’s’); load the bit stream that was given as input to the
modulator at the transmitter end

.
The ‘Reset Demodulator’ would clear all the fields of the figure. Press ‘Exit

Demo’ to end the demonstration. A dialogue box would appear as shown in
figure 5.i. Confirm you action, then.

Figure 5.h. manualdemodulation figure for GUI

Figure 5.i. Finish figure for GUI

STEP 9:

 The identified data type is obtained by pressing the ‘get data’ button. The
figure shown in figure 5.j. appears and shows the data that was transmitted.

Figure 5.j. figure for data showing

STEP 10:

Now let’s proceed with the automatic demonstration method. Select
‘Automatic’ instead of ‘Manual’ in step 5 and click ‘Proceed’. The ‘Demoauto’
figure will be opened. This is shown in figure 5.k below. Rest all the working is
same instead of the selection method of the modulation technique. Press
‘Autoselect Modulation’ push button to auto select the modulation. Once the
modulation technique has been auto selected, the push button becomes inactive.
Select the data to be plotted and press ‘Update Figure’, or press ‘Reset
Transmitter’ push button to reset all the fields, or press ‘Transmit’ to go to the
receiver’s end. Here again the source data and modulator’s output is stored as
follows: -

• save('modop','y','s'); where modop is the file name, y is the modulator’s
output and s is the source data.

Figure 5.k. demoauto figure for the GUI

STEP 11:

Once on the receiver’s side all the working is same less the identification
algorithm works at its own instead of the user making it through its stages. Press
‘Identify Modulation and Demodulate’ to allow the autorun of the algorithm and let
it demodulate using the respective demodulator by itself. The top three left edit
text boxes shows the values achieved. The righjt most edit text box shows the
identified modulation technique. The edit boxes below shows the number of
transmitted bits, number of received bits and BER respectively. The longer edit
box below the figures shows the received text. The figure is named as
demoalgorithm and is shown if figure 5.lbelow. The ‘Back to Transmitter’ push
button will take the user back to the transmitter’s end.

Figure 5.l. demoalgorithm figure for GUI

STEP 11:

 Once demodulated press ‘GET DATA’ to see which data type was
transmitted and what was transmitted. See figure 5.m for figure illustration. All
you need to do is to press SHOW’.

Figure 5.m. figure showing the transmitted data

NOTE:
 A ‘Message Alert’ appears in almost all the figures of the GUI during the
demonstration of the project in the bottom of the axes. If anything goes wrong or
a wrong button is pressed, a warning would appear in the area. The user is
required to act according to the warning that appears in the area. Else the
identification may have certain problems and may go wrong.

CHAPTER 6

SIMULATION
AND

RESULTS

INTRODUCTION

 This chapter will show the working of the project as has been implemented during
its course time. The working has been explained by taking one of the modulation
techniques (QAM 16) as an example. On the completion of this chapter, the reader shall
have in-depth understanding of the working of the project, its simulation and the results.
This chapter has the following objectives: -

6.1 Steps of Simulation.
6.2 Simulation of Source and its Results.
6.3 Simulation of modulators and its Results.
6.4 Simulation of Demodulators and its Results.
6.5 Simulation of Modulation Identification Algorithm and its results.

6.1 STEPS OF SIMULATION

 The flow of the simulation goes in a number of steps. Each step is important at its
stage and hence cannot be omitted or overseen no matter which so ever be the modulation
technique being used. The sequential flow is shown in figure 6.a. These steps are as
follows: -

1. Source

The source may be of one of the following four types: -

a. Data (Text).
b. Image.
c. Audio.
d. Video.

2. A-to-D Conversion

The source has to be digitized i.e. converted to binary bits as is the

requirement for digital modulation to occur. We have been able to convert the
first three sources’ types to binary bits and are working on the fourth one. The
binary stream thus generated is saved for BER calculation after demodulation has
occurred for confirmation of complete data recovery. It is to be made clear that
certain headers are used to identify the source type for its recovery at the sink. For
simplicity the headers are listed in table 6.1 below.

Table 6.1. Headers for Source type recognition

Source Type Header

Data 00
Image 01
Audio 10
Video 11

3. Modulation

The binary stream is fed to all the 11 modulators as input, where the

respective modulations take place. One of the modulator’s output is chosen and
the output is virtually transmitted

4. Receive

The virtually transmitted wave is virtually received with no channel

effects, since the channel has been considered as ideal channel. Hence no
attenuation or distortion occurs.

5. Amplitude Histogram

After receiving the wave, the first step at the receiver is the ‘Modulation

Identification’. For this we start with plotting the instantaneous amplitude
histogram. This would give us the number if instantaneous amplitudes. This is our
first identification parameter. The values of these amplitudes are calculated for
use at the demodulator for demodulation.

6. Sort Amplitude Array

The values of instantaneous amplitude calculated in step 5 are sorted in an

ascending order. This is the shape of the amplitude array that is useable at the
demodulator for demodulation.

7. Amplitude Normalization

The received signal is fed to the amplitude normalizing module that
normalizes every amplitude to unity. After normalization has occurred, the wave
has constant ‘1’ amplitude for a all modulation except M-ASK. Hence resulting in
one single amplitude. For M-ASK, all the amplitudes except ‘0’ are normalized to
unity. ‘0’ amplitude however remain undisturbed at ‘0’.

8. Normalized Amplitude Histogram

Again after normalization, we plot the amplitude histogram. This gives is
the number of normalized amplitudes. This is our second identification parameter.
The amplitude normalized waveform is the input.

9. Phase Histogram

Here again the normalized amplitude waveform is the input. This module

plots the instantaneous phase histogram. This plot gives us the number of
instantaneous phases that becomes our third identification parameter.

10. Phase Values

In this module the number of instantaneous phases is taken as input from

step 9. This gives us the array of values of the phases in ascending order, which is
used for demodulation.

11. Identification of Modulation Technique

As shown in figure 3.1 and 3.2, we have two ways in which the algorithm

identifies the modulation technique. For the first case the techniques are identified
at various stages. However in case 2, value from step 5, 8, 9 and 11 are taken and
modulation is identified then.

12. Demodulation

The received waveform, values from step 6, 10 and 11 are fed to that

demodulator whose modulation technique has been identified during the
identification process. The output is the data stream in terms of ‘0’ and ‘1’.

13. BER Calculation

The BER is calculated by using the output of step 2 and step 13. Since the

channel is ideal, so the BER must always be 0 %, i.e. the ideal case.

Figure 6.a. Steps of Simulation

 14. D-to-A Conversion

 The header identifies the source type that was transmitted. Once identified
with the source modulation using the header, the demodulated bit stream is

converted back to the source type by D-to-A conversion. After this the actual
shape of the data is retrieved.

6.2 SIMULATION OF SOURCE AND ITS RESULTS

Depending on the source type, the conversion to binary bits takes place. For data

as an example, the text is taken as the input from the user. The string thus entered is
converted to the respective ASCII codes, which on conversion would give us the binary
bits. Figure 6.b. below shows the ASCII codes and the binary stream then generated for
the character ‘identification’.

Figure 6.b. ‘Identification’, ASCII Codes and Binary Bits

6.2 SIMULATION OF MODULATORS AND ITS
RESULTS

To explain form here onwards, we shall take an example of one of the modulation

techniques, say QAM-16. The input to the modulator is the bit steam generated by the
source. The file for the simulation of QAM-16 modulation is ‘qam16_mod.m’. The first
step for QAM-16 is the conversion of serial data to parallel data, since the symbol for
QAM-16 constitutes 4 bits each, resulting in a total of 16 possible symbols. Hence a bank
of 112 bit is converted to a bank of 28 symbols only.

The second step is the generation of respective symbol waveforms. 16 sinusoidal

waveforms, one for each symbol, are generated. The symbol number, the symbol
formation and the assigned waveform for QAM-16 are listed in table 6.1.

As and when the symbol is formed one of the 16 sinusoidal waveforms is
assigned to it. The waves are then accumulated till the time all the data has been assigned
one waveform or the other. Once accumulated, the modulation is complete and the wave
is virtually transmitted.

Here we have two sets of data for plotting. One is the input bit stream plot shown
in figure 6.c and the second is the output waveform plot, shown in figure 6.d, below.

Table 6.1. Symbol and Assigned Wave for QAM-16

Decimal Symbol Formation Assigned Waveform

0 0000 Amp(1)*sin((w*t)+Phase(1))
1 0001 Amp(1)*sin((w*t)+Phase(2))
2 0010 Amp(1)*sin((w*t)+Phase(3))
3 0011 Amp(1)*sin((w*t)+Phase(4))
4 0100 Amp(1)*sin((w*t)+Phase(5))
5 0101 Amp(1)*sin((w*t)+Phase(6))
6 0110 Amp(1)*sin((w*t)+Phase(7))
7 0111 Amp(1)*sin((w*t)+Phase(8))
8 1000 Amp(2)*sin((w*t)+Phase(1))
9 1001 Amp(2)*sin((w*t)+Phase(2))
10 1010 Amp(2)*sin((w*t)+Phase(3))
11 1011 Amp(2)*sin((w*t)+Phase(4))
12 1100 Amp(2)*sin((w*t)+Phase(5))
13 1101 Amp(2)*sin((w*t)+Phase(6))
14 1110 Amp(2)*sin((w*t)+Phase(7))
15 1111 Amp(2)*sin((w*t)+Phase(8))

Figure 6.c. Input bit stream

Figure 6.d. Output Waveform for QAM-16 Modulator

6.4 SIMULATION OF DEMODULATORS AND ITS
RESULTS

The identification is a long process and shall be described in section 6.5 later.

However at the demodulator the inputs are: -

1. Modulator’s Output.
2. Amplitude Array.
3. Phase Array.

The inputs excluding the first one are obtained at the receiver and during the

identification process of the modulation technique. At the demodulator, the modulator’s
output is accessed symbol by symbol. For each symbol duration, we have 101 data
points. So each of the 101 data points are checked point-by-point for its correspondence
with all the 16 waveforms. If all the data points correspond to one of the 16 waveforms,
the corresponding symbol is taken as the data been carried by that wave. However, in
certain cases if 100 out 0f 101 data points correspond correctly to either of the waves,
then the corresponding symbol is taken as the data carried. This is so because in certain
techniques the first data point of the symbol duration is 0 and is taken as a part of
previous data set, resulting in 100 data points for the next one. So we confine ourselves to
this and take the respective symbol as the data carried. Here all the waves are checked
and the data is accumulated symbol by symbol. Here we do not need the parallel to serial
conversion of the data demodulated, because the obtained shape of the data is already the
bit stream. Here, we have only of set of data for plot, which is the demodulated bits
stream, shown in figure 6.e, below. The BER is calculated for confirmation of recovery
of complete data. The demodulated bit stream is converted back to the source type.

Figure 6.e. Demodulated Stream for QAM-16 Demodulator

6.5 SIMULATION OF MODULATION IDENTIFICATION

ALGORITHM AND ITS RESULTS

The modulation identification algorithm has five stages as mentioned below. They

are explained one-by-one, then.

1. Amplitude Histogram.
2. Amplitude Normalization.
3. Normalized Amplitude Histogram.
4. Phase Histogram.
5. Identification.

1. The input to the identifier is the modulator’s output only. For the first step, it is

fed to ‘AmpHist.m’. This m file plots the amplitude histogram and gives us the
number of instantaneous amplitudes. The input is divided symbol by symbol and
is checked for maximum value. This gives us the amplitude of the symbol. The
amplitude is rounded off to the nearest integer, since it is assumed that the
amplitudes can be integer only. This is done for each symbol. The values are
stored separately. The amplitude histogram for QAM-16, which has been taken as
an example for explanation, is shown in figure 6.f, below. The values of the

amplitudes are stored in ascending order to be used for demodulation. The ‘count’
is our first identification parameter.

Figure 6.f Amplitude Histogram for QAM-16

2. The next step ts the amplitude normalization. This process is undertaken
by ‘amp_norm.m’ that takes the modulators output as the input. This is also
undertaken symbol by symbol. The amplitude for each symbol is calculated and
whole symbol data points are divided by it. This will give us a normalized output.
Here one thing is to be kept in mind, that a zero amplitude is not normalized to
one, since it helps in identification between ASK2 and QAM, mainly. The zero
amplitude normalization can neither be done because 0/0 is calculated to be NaN
1 by Matlab. Hence a calculation restriction. This waveform is used for further
processing. The normalized output waveform for QAM-16 is shown in figure 6.g,
below.

__

1. NaN – Not a number

Figure 6.g. Normalized Output of QAM-16

3. The next step is the Normalized Amplitude Histogram. The normalized amplitude

waveform is fed as the input to ‘amp_norm.m’ and the amplitude histogram is
plotted much in the same way as is done in step 1. Here the difference is that the
values of the amplitudes are of no use to us and hence are not stored. But the
count is stored, which is our second identification parameter. The normalized
amplitude histogram for QAM-16 is shown in figure 6.h, below.

Figure 6.h. Normalized Amplitude Histogram for QAM-16

4. The fourth step is the Phase Histogram that uses ‘PhaseDetect.m’. The

normalized amplitude waveform is fed as the input. Like for amplitude histogram,
the waveform is accessed symbol by symbol. The phase for each symbol is
calculated. The values are not stored due to calculation restriction. However, the
count is stored, which is our third identification parameter. The calculation
restriction is some what the calculation of two angles as same. This is well
illustrated in the following equation 6.1 and the figure 6.i, below.

.....….. EQ 6.1

Figure 6.i. Explanatory diagram for Calculation Restriction of Phase

 The phase histogram is obtained, as shown in figure 6.j, below. The phase
count obtained is used to get the array of he phases in ascending order from
‘Phase.m’.

Figure 6.j. Phase Histogram for QAM-16

5. The last step is identification module. Here either of the two ways of
identification is followed, which is shown in figure 4.a and 4.b. The comparison
between the two has also been short listed in table 4.1. Depending on the usage
and application any of the methods may be used for the identification purpose.

CONCLUSION

We, in our project, have developed and simulated a new algorithm for digital

modulation identification in ideal channel conditions. This algorithm may be
classified in the statistical method category. It has been totally our thinking and
work that has led us to develop such an algorithm that is based truly on the
modulating parameters. Hence, it could be said that any modulation technique
can be identified through this algorithm, as long as the modulating parameters of
the modulation technique can be extracted from the received signal. Our
algorithm has been termed as ’Histogram - Count Modulation Identification’
(HCMI) method. The identified demodulator demodulates the data into bit
streams. The data is further identified as whether to be image, audio or text,
and is thus brought back to its original shape, via respective converters.

With its wide applications in the military and commercial sector, the project
module can be applied in the following fields: -

• ECCM.
• ECM.
• SDR.
• MHTS.
• Digital Receivers.
• Stenography.

FUTURE RECOMMENDATIONS

Added to it, we have proposed a new concept of secure communication,

which is the Modulation Hopping Transceiver System (MHTS). In this the
modulation technique would change many times a unit time, along with other
security devices like ciphering devices etc.

The development and improvement areas are as follows: -

1. Improvement in algorithm.
2. Development of encryption module for MHTS.
3. Development of frequency hopping module for MHTS.
4. Interfacing of modules.
5. Hardware implementation.

We are really thankful to ALMIGHTY ALLAH, our FAMILIES, our FRIENDS and
all those who have helped us to attain what we have attained.

REFERENCES / BIBLIOGRAPHY

BOOKS

[1] Digital Communication Systems, Second Edition by Bernard Sklar
[2] Modern Digital and Analog Communication Systems by B.P. Lathi
[3] Signal and Systems, Second Edition by A.V. Oppenheim and A.V. Willsky
[4] Discrete Time Signal Processing by A.V. Oppenheim and P.W. Sehaffer
[5] Automatic Modulation Recognition Algorithms by E.E. Azzouz and A.K.

Nandi

RESEARCH PAPERS

[6] E.E. Azzouz and A.K. Nandi “Automatic Modulation Identification of Digital

Modulation Types” Signal processing, vol.47, no.1, pp.55-69, November
1995

[7] B.F. Beidas and C.L. Weber, “Higher-order correlation based approach to
modulation classification of digitally frequency-modulated signal,” IEEE
journal on Selected areas in communication vol.13,no.1,pp.89-101,jaunary
1995.

[8] Char-Dir Chung and A. Polydoros, “Envelope based classification
schemes for continuous-phase binary frequency-shift-keyed modulations”
in proceeding of MILCOM’94,Fort Monmouth ,NJ,USA , October 1994,vol.
3,pp. 796 -800

[9] S.-Z. Hsue and S.S Soliman,”Automatic modulation classification using
zero crossing” IEEE Proceedings F(Radar and Signal Processing), vol.
137,no .6, pp.459-64,December 1990.

[10] Chung –Yu Huang and A. polydoros,”Likelyhood methods for MPSK
modulation classification,” IEEE Transaction on Communications, vol. 43,
no. 2-4, pp.1493-504, February 1995.

 [11] A.K Nandi and E.E Azzouz, “Automatic analog modulation recognition,”
Signal processing vol. 46, no. 2, pp.211-22, October 1995.

[12] A.K Nandi and E.E Azzouz, “Modulation recognition using artificial neural
networks” Signal processing, vol. 56, no. 2, pp.165-75, January 1997.

[13] A .Polydoros and K.Kim, “On the detection and classification of quadrature
digital modulation in broadband noise,” IEEE Transactions on
Communications,vol. 38,no.8,pp.1190-211,August 1990.

[14] S.Z Hsue and S.S Soliman,”Automatic modulation classification using zero
crossing,” in IEEE proceedings F (Radar and Signal
processing),vol.137,no.6,pp.459-464,December 1990.

[15] B.F Beidas and C.L.Weber, “Higher order correlation based approach to
modulation classification of digitally modulated signals.” In IEEE journal on
selected area in Communications, vol. 13, no.1, pp.89-101, January 1995.

[16] Alfred O. Hero III and Hafez Hadinjed Mahram, “Digital Modulation
classification and power moment matrices,” in proceedings IEEE ICASSP-
98,May 1998.

[17] Xiaming Huo and David Donoho,”A Simple and robust Modulation
classification method via counting,” in proceeding IEEE ICASSP-98, May
1998.

[18] A. Polydoros and K.Kim, “On the detection and classification of
Quadrature digital modulation in broad-band noise,” in IEEE transaction
on communication, vol. 38, no.8, pp.1199-1211, August 1990.

APPENDIX ‘A’

MATLAB CODES

CODE FOR ASK2 MODULATOR

function [ASK2Output]=ask2_mod(Data)

% ----------- MODULATION PARAMETERS -----------------

DataLength=length(Data);
Freq=2;
Amp=[0 1];
t=0:0.01:1;
% bit duration
T=length(t);
w=2*pi*Freq;
% obtained angular frequency

% ------------ WAVES GENERATED FOR MODULATION ---------

x1=Amp(1)*sin(w*t); % wave for bit '1'
x2=Amp(2)*sin(w*t); % wave for bit '0'

% ---------- MODULATION --------------------

ASK2Output=[]; % initializing output of the transmitter
for i=1:DataLength % assigning waves to the bits
 switch Data(i)
 case 1
 ASK2Output=[ASK2Output,x1];
 case 0
 ASK2Output=[ASK2Output,x2];
 end
end

% ------------- OUTPUT WAVEFORM THAT IS TRANSMITTED -----

% plot(ASK2Output,'r'); % output waveform of the modulator
% grid;

CODE FOR ASK2 DEMODULATOR

function [outputd]=ask2_demod(outputm,amp,P)

% ------------ KNOWN PARAMETERS ------------

t=0:0.01:1;
T=length(t);

Freq=2;

% ------------- CALCULATED PARAMETERS --------------

datalen=length(outputm); % total data points
pw=datalen/T; % duration data points
w=2*pi*Freq; % obtained angular frequency

% ------------- DEMODULATION ------------------

outputd=[]; % initializing bit stream
count=0; % initializing step count
for i=1:pw % loop for next bit duration
 bit0=0; % calculation of amplitude 0
 bit1=0; % calculation of amplitude 1
 for j=1:T
 switch outputm(count+j)
 case amp(1)*sin(w*t(j)) % for bit '1'
 bit0=bit0+1; % addition of amplitude zero
 case amp(2)*sin(w*t(j)) % for bit '0'
 bit1=bit1+1; % addition of amplitude one
 end
 end
 count=count+T; % count added with number of

data points in one duration
 if bit1==T-1 % first point of sine wave is also 0
 outputd=[outputd,0]; % accumulation of bit '0'
 elseif bit0==T
 outputd=[outputd,1]; % accumulation of bit '1'
 end
 stem(outputd,'r');
 grid;
 drawnow;
end

CODE FOR ASK4 MODULATOR
function [ASK4Output]=ask4_mod(Data)

% ------------ MODULATION PARAMETERS ---------------

DataLength=length(Data);
Phase=0;
Freq=2;
Amp=[0 1 2 3];

t=0:0.01:1;
% bit duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% ----------- WAVES GENERATED FOR MODULATION -------------

x1=Amp(1)*(sin((w*t)+Phase)); % wave for symbol '00'
x2=Amp(2)*(sin((w*t)+Phase)); % wave for symbol '01'
x3=Amp(3)*(sin((w*t)+Phase)); % wave for symbol '10'
x4=Amp(4)*(sin((w*t)+Phase)); % wave for symbol '11'

% --- SERIAL TO PARALLEL CONVERSION (SYMBOL FORMATION) ---

sym=2;
z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% --------------- MODULATION ----------------------

ASK4Output=[]; % initializing empty vectors
for i=1:n % assigning waves to the symbols
 if z([1,2],i)'==[0 0]
 ASK4Output=[ASK4Output,x1];
 elseif z([1,2],i)'==[0 1]
 ASK4Output=[ASK4Output,x2];
 elseif z([1,2],i)'==[1 0]
 ASK4Output=[ASK4Output,x3];
 elseif z([1,2],i)'==[1 1]
 ASK4Output=[ASK4Output,x4];
 end
end

% ------ OUTPUT WAVEFORM THAT IS TRANSMITTED ----------

% plot(ASK4Output,'r'); % output waveform of the modulator
% grid;

CODE FOR ASK4 DEMODULATOR
function [outputd]=ask4_demod(outputm,amp,P)

% ------------ KNOWN PARAMETERS ----------------

t=0:0.01:1;
T=length(t);

Freq=2;

% ------------ CALCULATED PARAMETERS --------------

datalen=length(outputm); % total data points
pw=datalen/T; % duration data points
w=2*pi*Freq; % obtained angular frequency

% ------------ DEMODULATION -----------------------

outputd=[]; % initializing bit stream
count=0; % initializing step count
for i=1:pw % loop for next bit duration
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 for j=1:T
 if outputm(count+j)==amp(1)*sin(w*t(j))

% for symbol '00'
 bit0=bit0+1;
 elseif outputm(count+j)==amp(2)*sin(w*t(j))

% for symbol '01'
 bit1=bit1+1;
 elseif outputm(count+j)==amp(3)*sin(w*t(j))

% for symbol '10'
 bit2=bit2+1;
 elseif outputm(count+j)==amp(4)*sin(w*t(j))

% for symbol '11'
 bit3=bit3+1;
 end
 end

 count=count+T; % count added with number of data

points in one duration
 if bit0==T
 outputd=[outputd,0 0];% accumulation of symbol '00'
 elseif bit1==T-1 % first point of sine wave is also 0
 outputd=[outputd,0 1];% accumulation of symbol '01'
 elseif bit2==T-1 % first point of sine wave is also 0
 outputd=[outputd,1 0];% accumulation of symbol '10'
 elseif bit3==T-1 % first point of sine wave is also 0
 outputd=[outputd,1 1];% accumulation of symbol '11'
 end
 stem(outputd,'r');
 grid;
 drawnow;

end

CODE FOR ASK8 MODULATOR
function [ASK8Output]=ask8_mod(Data)

% -------------- MODULATION PARAMETERS ----------------

DataLength=length(Data);
Phase=0;
Freq=2;
Amp=[0 1 2 3 4 5 6 7];
t=0:0.01:1; % bit duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% ----------- WAVES GENERATED FOR MODULATION --------

x1=Amp(1)*(sin((w*t)+Phase)); % wave for symbol '000'
x2=Amp(2)*(sin((w*t)+Phase)); % wave for symbol '001'
x3=Amp(3)*(sin((w*t)+Phase)); % wave for symbol '010'
x4=Amp(4)*(sin((w*t)+Phase)); % wave for symbol '011'
x5=Amp(5)*(sin((w*t)+Phase)); % wave for symbol '100'
x6=Amp(6)*(sin((w*t)+Phase)); % wave for symbol '101'
x7=Amp(7)*(sin((w*t)+Phase)); % wave for symbol '110'
x8=Amp(8)*(sin((w*t)+Phase)); % wave for symbol '111'

% --- SERIAL TO PARALLEL CONVERSION (SYMBOL FORMATION) ---

sym=3;
z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% --------- MODULATION ----------

ASK8Output=[]; % initializing empty vectors
for i=1:n
 if z([1,2,3],i)'==[0 0 0]
 ASK8Output=[ASK8Output,x1];
 elseif z([1,2,3],i)'==[0 0 1]
 ASK8Output=[ASK8Output,x2];
 elseif z([1,2,3],i)'==[0 1 0]
 ASK8Output=[ASK8Output,x3];
 elseif z([1,2,3],i)'==[0 1 1]
 ASK8Output=[ASK8Output,x4];
 elseif z([1,2,3],i)'==[1 0 0]

 ASK8Output=[ASK8Output,x5];
 elseif z([1,2,3],i)'==[1 0 1]
 ASK8Output=[ASK8Output,x6];
 elseif z([1,2,3],i)'==[1 1 0]
 ASK8Output=[ASK8Output,x7];
 elseif z([1,2,3],i)'==[1 1 1]
 ASK8Output=[ASK8Output,x8];
 end
end

% --------- OUTPUT WAVEFORM THAT IS TRANSMITTED --------

% plot(ASK8Output,'r');% output waveform of the modulator
% grid;

CODE FOR ASK8 DEMODULATOR
function [outputd]=ask8_demod(outputm,amp,P)

% ------------------ KNOWN PARAMETERS -------------

t=0:0.01:1;
T=length(t);
Freq=2;

% ----------- CALCULATED PARAMETERS ---------------

datalen=length(outputm); % total data points
pw=datalen/T; % duration data points
w=2*pi*Freq; % obtained angular frequency

% ------------ DEMODULATION --------------------

outputd=[]; % initializing bit stream
count=0; % initializing step count
for i=1:pw % loop for next bit duration
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 bit4=0;
 bit5=0;
 bit6=0;
 bit7=0;
 for j=1:T

 if outputm(count+j)==amp(1)*sin(w*t(j))
 % for symbol '000'
 bit0=bit0+1;
 elseif outputm(count+j)==amp(2)*sin(w*t(j))
 % for symbol '001'
 bit1=bit1+1;
 elseif outputm(count+j)==amp(3)*sin(w*t(j))
 % for symbol '010'
 bit2=bit2+1;
 elseif outputm(count+j)==amp(4)*sin(w*t(j))
 % for symbol '011'
 bit3=bit3+1;
 elseif outputm(count+j)==amp(5)*sin(w*t(j))
 % for symbol '100'
 bit4=bit4+1;
 elseif outputm(count+j)==amp(6)*sin(w*t(j))
 % for symbol '101'
 bit5=bit5+1;
 elseif outputm(count+j)==amp(7)*sin(w*t(j))
 % for symbol '110'
 bit6=bit6+1;
 elseif outputm(count+j)==amp(8)*sin(w*t(j))
 % for symbol '111'
 bit7=bit7+1;
 end
 end
 count=count+T; % count added with number of data

points in one duration
 if bit0==T
 outputd=[outputd,0 0 0]; % accumulation of

symbol '000'
 elseif bit1==T-1 % first point of sine wave is also 0
 outputd=[outputd,0 0 1]; % accumulation of

symbol '001'
 elseif bit2==T-1 % first point of sine wave is also 0
 outputd=[outputd,0 1 0]; % accumulation of

symbol '010'
 elseif bit3==T-1 % first point of sine wave is also 0
 outputd=[outputd,0 1 1]; % accumulation of

symbol '011'
 elseif bit4==T-1 % first point of sine wave is also 0
 outputd=[outputd,1 0 0]; % accumulation of

symbol '000'
 elseif bit5==T-1 % first point of sine wave is also 0
 outputd=[outputd,1 0 1]; % accumulation of

symbol '001'
 elseif bit6==T-1 % first point of sine wave is also 0

 outputd=[outputd,1 1 0]; % accumulation of
symbol '010'

 elseif bit7==T-1 % first point of sine wave is also 0
 outputd=[outputd,1 1 1]; % accumulation of

symbol '011'
 end
 stem(outputd,'r');
 grid;
 drawnow;
end

CODE FOR PSK2 MODULATOR
function [PSK2Output]=psk2_mod(Data)

% ------------ MODULATION PARAMETERS ----------------

DataLength=length(Data);
Freq=2;
Amp=1;
Phase=[0 pi];
t=0:0.01:1; % bit duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% -------- WAVES GENERATED FOR MODULATION ------------

x1=Amp*(sin((w*t)+Phase(1))); % wave for bit '1'
x2=Amp*(sin((w*t)+Phase(2))); % wave for bit '0'

% ------------ MODULATION ----------------

PSK2Output=[]; % initialization output of the transmitter
for j=1:DataLength % assigning waves to the bits
 if Data(j)==1;
 PSK2Output=[PSK2Output,x1];
 elseif Data(j)==0;
 PSK2Output=[PSK2Output,x2];
 end
end

% ----------- OUTPUT WAVEFORM THAT IS TRANSMITTED --------

% plot(PSK2Output,'r'); % output waveform of modulator
% grid;

CODE FOR PSK2 DEMODULATOR
function [output_demod]=psk2_demod(output_mod,amp,phase)

% ------------------ KNOWN DEMODULATION PARAMETERS ------

freq=2; % intermediate frequency
t=0:0.01:1; % bit duration
T=length(t);

% --------- CALCULATED DEMODULATION PARMETERS ------------

datalen=length(output_mod); % total data points
pw=datalen/T; % duration data points
w=2*pi*freq; % obtained angular frequency

% ------------------ DEMODULATION -------------------

output_demod=[]; % initializing bit stream
count=0; % step count
for i=1:pw % loop for next bit duration
 bit0=0; % calculation of points for '0'
 bit1=0; % calculation of points for '1'
 for j=1:T
 if output_mod(count+j)==amp*sin((w*t(j))+phase(1))

% for bit '1'
 bit1=bit1+1;
 elseif output_mod(count+j)==amp*sin((w*t(j))+

phase(2)) % for bit '0'
 bit0=bit0+1;
 end
 end
 count=count+T;
% count added with number of data points in one duration
 if bit0==T
 output_demod=[output_demod,0]; % accumulation

of bit '0'
 elseif bit1==T
 output_demod=[output_demod,1]; % accumulation

of bit '1'
 end
 stem(output_demod,'r'); % plot of output of PSK

demodulator
 grid;
 drawnow;
end

CODE FOR PSK4 MODULATOR
function [PSK4Output]=psk4_mod(Data);

% ----------- MODULATING PARAMETERS ------------------

freq=2;
amp=1;
phase=[0 pi/2 pi 3*pi/2];
t=0:0.01:1;

% ---------- CALCULATED MODULATING PARAMETERS --------

DataLength=length(Data);
w=2*pi*freq;

% ----------- WAVES GENERATED FOR MODULATION --------

x1=sin((w*t)+phase(1));
x2=sin((w*t)+phase(4));
x3=sin((w*t)+phase(3));
x4=sin((w*t)+phase(2));

% ------------ SERIAL TO PARALLEL CONVERSION -----------

sym=2;
r=rem(DataLength,sym);
if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 Data=[Data,r2];
end

z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% -------------- MODULATION -------------------

PSK4Output=[]; % initializing empty vectors
for i=1:n % assigning waves to the symbols
 if z([1,2],i)'==[0 0]
 PSK4Output=[PSK4Output,x1];
 elseif z([1,2],i)'==[0 1]
 PSK4Output=[PSK4Output,x2];
 elseif z([1,2],i)'==[1 0]
 PSK4Output=[PSK4Output,x3];
 elseif z([1,2],i)'==[1 1]
 PSK4Output=[PSK4Output,x4];

 end
end

% ---------- MODULATOR'S OUTPUT --------------------------

% plot(PSK4Output,'m');
% grid;
% xlabel('output wave of QPSK modulator');

CODE FOR PSK4 DEMODULATOR
function [output_demod]=psk4_demod(output_mod,amp,phase)

% ----------- KNOWN DEMODULATING PARAMETERS ----------

freq=2;
t=0:0.01:1;

% -------- CALCULATED MODULATING PARAMETERS ----------

T=length(t);
datalen=length(output_mod);
pw=datalen/T;
w=2*pi*freq;

% ------------------- DEMODULATION ------------

output_demod=[];
count=0;
for i=1:pw
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 for j=1:T
 if output_mod(count+j)==amp*sin((w*t(j))+phase(1))
 bit0=bit0+1;
 elseif
output_mod(count+j)==amp*sin((w*t(j))+phase(3))
 bit1=bit1+1;
 elseif
output_mod(count+j)==amp*sin((w*t(j))+phase(4))
 bit2=bit2+1;
 elseif
output_mod(count+j)==amp*sin((w*t(j))+phase(2))
 bit3=bit3+1;

 end
 end
 count=count+T;
 if bit0==T
 output_demod=[output_demod,0 0];
 elseif bit1==T
 output_demod=[output_demod,1 0];
 elseif bit2==T
 output_demod=[output_demod,0 1];
 elseif bit3==T
 output_demod=[output_demod,1 1];
 end
 stem(output_demod,'r');
 grid;
 drawnow;
end

CODE FOR PSK8 MODULATOR
function [PSK8Output]=psk8_mod(Data)

% ------------- MODULATION PARAMETERS --------------------

DataLength=length(Data);
Freq=2;
Amp=1;
Phase=[0 pi/4 pi/2 3*pi/4 pi 5*pi/4 3*pi/2 7*pi/4];
t=0:0.01:1; % symbol duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% ------------- WAVES GENERATED FOR MODULATION ----

x1=Amp*(sin((w*t)+(Phase(1)))); % wave for symbol '000'
x2=Amp*(sin((w*t)+(Phase(2)))); % wave for symbol '001'
x3=Amp*(sin((w*t)+(Phase(3)))); % wave for symbol '010'
x4=Amp*(sin((w*t)+(Phase(4)))); % wave for symbol '011'
x5=Amp*(sin((w*t)+(Phase(5)))); % wave for symbol '100'
x6=Amp*(sin((w*t)+(Phase(6)))); % wave for symbol '101'
x7=Amp*(sin((w*t)+(Phase(7)))); % wave for symbol '110'
x8=Amp*(sin((w*t)+(Phase(8)))); % wave for symbol '111'

% -- SERIAL TO PARALLEL CONVERSION (SYMBOL FORMATION) ---

sym=3;
r=rem(DataLength,sym);
if r~=0
 r1=sym-r;

 r2=zeros(1,r1);
 Data=[Data,r2];
end

z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% -------------- MODULATION -------------------------

PSK8Output=[]; % initializing empty vector
for i=1:n
 if z([1,2,3],i)'==[0 0 0]
 PSK8Output=[PSK8Output,x1];
 elseif z([1,2,3],i)'==[0 0 1]
 PSK8Output=[PSK8Output,x2];
 elseif z([1,2,3],i)'==[0 1 0]
 PSK8Output=[PSK8Output,x3];
 elseif z([1,2,3],i)'==[0 1 1]
 PSK8Output=[PSK8Output,x4];
 elseif z([1,2,3],i)'==[1 0 0]
 PSK8Output=[PSK8Output,x5];
 elseif z([1,2,3],i)'==[1 0 1]
 PSK8Output=[PSK8Output,x6];
 elseif z([1,2,3],i)'==[1 1 0]
 PSK8Output=[PSK8Output,x7];
 elseif z([1,2,3],i)'==[1 1 1]
 PSK8Output=[PSK8Output,x8];
 end
end

% ------------- OUTPUT WAVEFORM THAT IS TRANSMITTED ------

% plot(PSK8Output,'r'); % output waveform of modulator
% grid;

CODE FOR PSK8 DEMODULATOR
function [DemodStream]=psk8_demod(ModOutput,Amp,Phases)

% ----------- KNOWN DEMODULATION PARAMETERS ----------

Freq=2;
w=2*pi*Freq;
t=0:0.01:1;
T=length(t);

% ------- CALCULATED DEMODULATION PARMETERS -----

RecLength=length(ModOutput);
RecSymbols=RecLength/T;
DemodStream=[];
count=0;

% -------------- DEMODULATION --------------

for i=1:RecSymbols
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 bit4=0;
 bit5=0;
 bit6=0;
 bit7=0;
 for j=1:T
 if ModOutput(count+j)==Amp*sin(w*t(j)+Phases(1))
 bit0=bit0+1;
 elseif
ModOutput(count+j)==Amp*sin(w*t(j)+Phases(2))
 bit1=bit1+1;
 elseif
ModOutput(count+j)==Amp*sin(w*t(j)+Phases(3))
 bit2=bit2+1;
 elseif
ModOutput(count+j)==Amp*sin(w*t(j)+Phases(4))
 bit3=bit3+1;
 elseif
ModOutput(count+j)==Amp*sin(w*t(j)+Phases(5))
 bit4=bit4+1;
 elseif
ModOutput(count+j)==Amp*sin(w*t(j)+Phases(6))
 bit5=bit5+1;
 elseif
ModOutput(count+j)==Amp*sin(w*t(j)+Phases(7))
 bit6=bit6+1;
 elseif
ModOutput(count+j)==Amp*sin(w*t(j)+Phases(8))
 bit7=bit7+1;
 end
 end

 count=count+T;

 if bit0==T
 DemodStream=[DemodStream,0 0 0];
 elseif bit1==T
 DemodStream=[DemodStream,0 0 1];
 elseif bit2==T
 DemodStream=[DemodStream,0 1 0];
 elseif bit3==T
 DemodStream=[DemodStream,0 1 1];
 elseif bit4==T
 DemodStream=[DemodStream,1 0 0];
 elseif bit5==T
 DemodStream=[DemodStream,1 0 1];
 elseif bit6==T
 DemodStream=[DemodStream,1 1 0];
 elseif bit7==T
 DemodStream=[DemodStream,1 1 1];
 end
 stem(DemodStream,'r');
 grid;
 drawnow;
end

CODE FOR QAM4 MODULATOR
function [QAM4Output]=qam4_mod(Data)

% ---------- MODULATING PARAMETERS -----------------

t=0:0.01:1;
f=2;
w=2*pi*f;
amp=[1 2];
phase=[0 pi];
DataLength=length(Data);

% ----------------- MODULATING WAVES ---------------

x1=amp(1)*sin((w*t)+phase(1));
x2=amp(1)*sin((w*t)+phase(2));
x3=amp(2)*sin((w*t)+phase(1));
x4=amp(2)*sin((w*t)+phase(2));

% ------ PARALLEL TO SERIAL CONVERSION OF DATA -------

sym=2;
r=rem(DataLength,sym);

if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 Data=[Data,r2];
end

z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% ------------------ MODULATION --------------------------

QAM4Output=[]; % initializing empty vectors
for i=1:n % assigning waves to the symbols
 if z([1,2],i)'==[0 0]
 QAM4Output=[QAM4Output,x1];
 elseif z([1,2],i)'==[0 1]
 QAM4Output=[QAM4Output,x2];
 elseif z([1,2],i)'==[1 0]
 QAM4Output=[QAM4Output,x3];
 elseif z([1,2],i)'==[1 1]
 QAM4Output=[QAM4Output,x4];
 end
end

% ------------ MODULATOR'S OUTPUT -----------------

% plot(ModulatorOutput,'r');
% grid;
% title('OUTPUT WAVEFORM OF QAM-4 MODULATOR');

CODE FOR QAM4 DEMODULATOR
function [Demod]=qam4_demod(MO,amp,phase)

% ------------------ KNOWN PARAMETERS ---------

t=0:0.01:1;
T=length(t);
Freq=2;

% -------------- CALCULATED PARAMETERS ----------------

datalen=length(MO); % total data points
pw=datalen/T; % duration data points
w=2*pi*Freq; % obtained angular frequency

% --------------- DEMODULATION ---------------------

Demod=[]; % initializing bit stream
count=0; % initializing step count
for i=1:pw % loop for next bit duration
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 for j=1:T
 if MO(count+j)==amp(1)*sin(w*t(j)+phase(1))

% for symbol '00'
 bit0=bit0+1;
 elseif MO(count+j)==amp(1)*sin(w*t(j)+phase(2))

% for symbol '01'
 bit1=bit1+1;
 elseif MO(count+j)==amp(2)*sin(w*t(j)+phase(1))

% for symbol '10'
 bit2=bit2+1;
 elseif MO(count+j)==amp(2)*sin(w*t(j)+phase(2))

% for symbol '11'
 bit3=bit3+1;
 end
 end
 count=count+T; % count added with number of data

points in one duration
 if bit0==T
 Demod=[Demod,0 0]; % accumulation of symbol '00'
 elseif bit1==T % first point of sine wave is also 0
 Demod=[Demod,0 1]; % accumulation of symbol '01'
 elseif bit2==T-1 % first point of sine wave is also 0
 Demod=[Demod,1 0]; % accumulation of symbol '10'
 elseif bit3==T % first point of sine wave is also 0
 Demod=[Demod,1 1]; % accumulation of symbol '11'
 end
 stem(Demod,'r');
 grid;
 drawnow;
end

CODE FOR QAM8 MODULATOR
function [QAM8Output]=qam8_mod(Data)

% ---------- MODULATION PARAMETERS ----------------------

DataLength=length(Data);
Freq=2;
Amp=[1 2];
Phase=[0 pi/2 pi 3*pi/2];
t=0:0.01:1; % symbol duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% ----------- WAVES GENERATED FOR MODULATION -----------

x1=Amp(1)*(sin((w*t)+Phase(1))); % wave for '000'
x2=Amp(1)*(sin((w*t)+Phase(2))); % wave for '001'
x3=Amp(1)*(sin((w*t)+Phase(3))); % wave for '010'
x4=Amp(1)*(sin((w*t)+Phase(4))); % wave for '011'
x5=Amp(2)*(sin((w*t)+Phase(1))); % wave for '100'
x6=Amp(2)*(sin((w*t)+Phase(2))); % wave for '101'
x7=Amp(2)*(sin((w*t)+Phase(3))); % wave for '110'
x8=Amp(2)*(sin((w*t)+Phase(4))); % wave for '111'

% --- SERIAL TO PARALLEL CONVERSION (SYMBOL FORMATION) ---

sym=3;
r=rem(DataLength,sym);
if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 Data=[Data,r2];
end

z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% ---------------- MODULATION ------------------

QAM8Output=[]; % initializing empty vectors
for i=1:n
 if z([1,2,3],i)'==[0 0 0]
 QAM8Output=[QAM8Output,x1];
 elseif z([1,2,3],i)'==[0 0 1]
 QAM8Output=[QAM8Output,x2];
 elseif z([1,2,3],i)'==[0 1 0]
 QAM8Output=[QAM8Output,x3];
 elseif z([1,2,3],i)'==[0 1 1]
 QAM8Output=[QAM8Output,x4];
 elseif z([1,2,3],i)'==[1 0 0]
 QAM8Output=[QAM8Output,x5];
 elseif z([1,2,3],i)'==[1 0 1]

 QAM8Output=[QAM8Output,x6];
 elseif z([1,2,3],i)'==[1 1 0]
 QAM8Output=[QAM8Output,x7];
 elseif z([1,2,3],i)'==[1 1 1]
 QAM8Output=[QAM8Output,x8];
 end
end

% ---------- OUTPUT WAVEFORM THAT IS TRANSMITTED -------

% plot(QAM8Output,'r'); % output waveform of modulator
% grid;

CODE FOR QAM8 DEMODULATOR
function [output_demod]=qam8_demod(output_mod,amp,phase)

% -------- KNOWN DEMODULATION PARAMETERS ----------

freq=2;
t=0:0.01:1; % bit duration
T=length(t);

% --------- CALCULATED DEMODULATION PARMETERS ----------

datalen=length(output_mod); % total data points
pw=datalen/T; % duration data points
w=2*pi*freq; % obtained angular frequency

% ----------------- DEMODULATION --------------------

output_demod=[]; % initializing bit stream
count=0;
% step count
for i=1:pw % loop for next bit duration
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 bit4=0;
 bit5=0;
 bit6=0;
 bit7=0;
 for j=1:T
 if
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(1))
 bit0=bit0+1;

 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(2))
 bit1=bit1+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(3))
 bit2=bit2+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(4))
 bit3=bit3+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(1))
 bit4=bit4+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(2))
 bit5=bit5+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(3))
 bit6=bit6+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(4))
 bit7=bit7+1;
 end
 end

 count=count+T;
% count added with number of data points in one duration

 if bit0==T
 output_demod=[output_demod,0 0 0];
 elseif bit1==T
 output_demod=[output_demod,0 0 1];
 elseif bit2==T
 output_demod=[output_demod,0 1 0];
 elseif bit3==T
 output_demod=[output_demod,0 1 1];
 elseif bit4==T-1
 output_demod=[output_demod,1 0 0];
 elseif bit5==T
 output_demod=[output_demod,1 0 1];
 elseif bit6==T
 output_demod=[output_demod,1 1 0];
 elseif bit7==T
 output_demod=[output_demod,1 1 1];
 end
 stem(output_demod,'r');
 grid;
 drawnow;

end

CODE FOR QAM16 MODULATOR
function [QAM16Output]=qam16_mod(Data)

% -------------- MODULATION PARAMETERS -------------

DataLength=length(Data);
Freq=2;
Amp=[1 2];
Phase=[0 pi/4 pi/2 3*pi/4 pi 5*pi/4 3*pi/2 7*pi/4];
t=0:0.01:1; % symbol duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% ------- WAVES GENERATED FOR MODULATION -------------

x1=Amp(1)*(sin((w*t)+Phase(1))); % wave for '0000'
x2=Amp(1)*(sin((w*t)+Phase(2))); % wave for '0001'
x3=Amp(1)*(sin((w*t)+Phase(3))); % wave for '0010'
x4=Amp(1)*(sin((w*t)+Phase(4))); % wave for '0011'
x5=Amp(1)*(sin((w*t)+Phase(5))); % wave for '0100'
x6=Amp(1)*(sin((w*t)+Phase(6))); % wave for '0101'
x7=Amp(1)*(sin((w*t)+Phase(7))); % wave for '0110'
x8=Amp(1)*(sin((w*t)+Phase(8))); % wave for '0111'
x9=Amp(2)*(sin((w*t)+Phase(1))); % wave for '1000'
x10=Amp(2)*(sin((w*t)+Phase(2))); % wave for '1001'
x11=Amp(2)*(sin((w*t)+Phase(3))); % wave for '1010'
x12=Amp(2)*(sin((w*t)+Phase(4))); % wave for '1011'
x13=Amp(2)*(sin((w*t)+Phase(5))); % wave for '1100'
x14=Amp(2)*(sin((w*t)+Phase(6))); % wave for '1101'
x15=Amp(2)*(sin((w*t)+Phase(7))); % wave for '1110'
x16=Amp(2)*(sin((w*t)+Phase(8))); % wave for '1111'

% --- SERIAL TO PARALLEL CONVERSION (SYMBOL FORMATION) ---

sym=4;
r=rem(DataLength,sym);
if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 Data=[Data,r2];
end

z=reshape(Data,sym,length(Data)/sym);

[m,n]=size(z);

% ------------------ MODULATION ----------------------

QAM16Output=[]; % initializing output of the transmitter

for i=1:n
 if z([1,2,3,4],i)'==[0 0 0 0]
 QAM16Output=[QAM16Output,x1];
 elseif z([1,2,3,4],i)'==[0 0 0 1]
 QAM16Output=[QAM16Output,x2];
 elseif z([1,2,3,4],i)'==[0 0 1 0]
 QAM16Output=[QAM16Output,x3];
 elseif z([1,2,3,4],i)'==[0 0 1 1]
 QAM16Output=[QAM16Output,x4];
 elseif z([1,2,3,4],i)'==[0 1 0 0]
 QAM16Output=[QAM16Output,x5];
 elseif z([1,2,3,4],i)'==[0 1 0 1]
 QAM16Output=[QAM16Output,x6];
 elseif z([1,2,3,4],i)'==[0 1 1 0]
 QAM16Output=[QAM16Output,x7];
 elseif z([1,2,3,4],i)'==[0 1 1 1]
 QAM16Output=[QAM16Output,x8];
 elseif z([1,2,3,4],i)'==[1 0 0 0]
 QAM16Output=[QAM16Output,x9];
 elseif z([1,2,3,4],i)'==[1 0 0 1]
 QAM16Output=[QAM16Output,x10];
 elseif z([1,2,3,4],i)'==[1 0 1 0]
 QAM16Output=[QAM16Output,x11];
 elseif z([1,2,3,4],i)'==[1 0 1 1]
 QAM16Output=[QAM16Output,x12];
 elseif z([1,2,3,4],i)'==[1 1 0 0]
 QAM16Output=[QAM16Output,x13];
 elseif z([1,2,3,4],i)'==[1 1 0 1]
 QAM16Output=[QAM16Output,x14];
 elseif z([1,2,3,4],i)'==[1 1 1 0]
 QAM16Output=[QAM16Output,x15];
 elseif z([1,2,3,4],i)'==[1 1 1 1]
 QAM16Output=[QAM16Output,x16];
 end
end

% ----------- OUTPUT WAVEFORM THAT IS TRANSMITTED -------

% plot(QAM16Output,'r'); % output waveform of modulator
% grid;

CODE FOR QAM16 DEMODULATOR
function [output_demod]=qam16_demod(output_mod,amp,phase)

% --------KNOWN DEMODULATION PARAMETERS ---------------

freq=2; % intermediate frequency
t=0:0.01:1; % bit duration
T=length(t);

% ---------- CALCULATED DEMODULATION PARMETERS --------

datalen=length(output_mod); % total data points
pw=datalen/T; % duration data points
w=2*pi*freq; % obtained angular frequency

% ------------ DEMODULATION -----------------

output_demod=[]; % initializing bit stream
count=0; % step count
for i=1:pw % loop for next bit duration
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 bit4=0;
 bit5=0;
 bit6=0;
 bit7=0;
 bit8=0;
 bit9=0;
 bit10=0;
 bit11=0;
 bit12=0;
 bit13=0;
 bit14=0;
 bit15=0;
 for j=1:T
 if
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(1))
 bit0=bit0+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(2))
 bit1=bit1+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(3))
 bit2=bit2+1;

 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(4))
 bit3=bit3+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(5))
 bit4=bit4+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(6))
 bit5=bit5+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(7))
 bit6=bit6+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(8))
 bit7=bit7+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(1))
 bit8=bit8+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(2))
 bit9=bit9+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(3))
 bit10=bit10+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(4))
 bit11=bit11+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(5))
 bit12=bit12+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(6))
 bit13=bit13+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(7))
 bit14=bit14+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(8))
 bit15=bit15+1;
 end
 end

 count=count+T;
% count added with number of data points in one duration

 if bit0==T
 output_demod=[output_demod,0 0 0 0];

 elseif bit1==T
 output_demod=[output_demod,0 0 0 1];
 elseif bit2==T
 output_demod=[output_demod,0 0 1 0];
 elseif bit3==T
 output_demod=[output_demod,0 0 1 1];
 elseif bit4==T
 output_demod=[output_demod,0 1 0 0];
 elseif bit5==T
 output_demod=[output_demod,0 1 0 1];
 elseif bit6==T
 output_demod=[output_demod,0 1 1 0];
 elseif bit7==T
 output_demod=[output_demod,0 1 1 1];
 elseif bit8==T-1
 output_demod=[output_demod,1 0 0 0];
 elseif bit9==T
 output_demod=[output_demod,1 0 0 1];
 elseif bit10==T
 output_demod=[output_demod,1 0 1 0];
 elseif bit11==T
 output_demod=[output_demod,1 0 1 1];
 elseif bit12==T
 output_demod=[output_demod,1 1 0 0];
 elseif bit13==T
 output_demod=[output_demod,1 1 0 1];
 elseif bit14==T
 output_demod=[output_demod,1 1 1 0];
 elseif bit15==T
 output_demod=[output_demod,1 1 1 1];
 end
 stem(output_demod,'r');
 grid;
 drawnow;
end

CODE FOR QAM32 MODULATOR
function [QAM32Output]=qam32_mod(Data)

% ---------- MODULATION PARAMETERS --------------------

DataLength=length(Data);
Freq=2;
Amp=[1 2 3 4];
Phase=[0 pi/4 pi/2 3*pi/4 pi 5*pi/4 3*pi/2 7*pi/4];

t=0:0.01:1; % symbol duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% ------------- WAVES GENERATED FOR MODULATION ---------

x1=Amp(1)*(sin((w*t)+Phase(1)));
x2=Amp(1)*(sin((w*t)+Phase(2)));
x3=Amp(1)*(sin((w*t)+Phase(3)));
x4=Amp(1)*(sin((w*t)+Phase(4)));
x5=Amp(1)*(sin((w*t)+Phase(5)));
x6=Amp(1)*(sin((w*t)+Phase(6)));
x7=Amp(1)*(sin((w*t)+Phase(7)));
x8=Amp(1)*(sin((w*t)+Phase(8)));
x9=Amp(2)*(sin((w*t)+Phase(1)));
x10=Amp(2)*(sin((w*t)+Phase(2)));
x11=Amp(2)*(sin((w*t)+Phase(3)));
x12=Amp(2)*(sin((w*t)+Phase(4)));
x13=Amp(2)*(sin((w*t)+Phase(5)));
x14=Amp(2)*(sin((w*t)+Phase(6)));
x15=Amp(2)*(sin((w*t)+Phase(7)));
x16=Amp(2)*(sin((w*t)+Phase(8)));
x17=Amp(3)*(sin((w*t)+Phase(1)));
x18=Amp(3)*(sin((w*t)+Phase(2)));
x19=Amp(3)*(sin((w*t)+Phase(3)));
x20=Amp(3)*(sin((w*t)+Phase(4)));
x21=Amp(3)*(sin((w*t)+Phase(5)));
x22=Amp(3)*(sin((w*t)+Phase(6)));
x23=Amp(3)*(sin((w*t)+Phase(7)));
x24=Amp(3)*(sin((w*t)+Phase(8)));
x25=Amp(4)*(sin((w*t)+Phase(1)));
x26=Amp(4)*(sin((w*t)+Phase(2)));
x27=Amp(4)*(sin((w*t)+Phase(3)));
x28=Amp(4)*(sin((w*t)+Phase(4)));
x29=Amp(4)*(sin((w*t)+Phase(5)));
x30=Amp(4)*(sin((w*t)+Phase(6)));
x31=Amp(4)*(sin((w*t)+Phase(7)));
x32=Amp(4)*(sin((w*t)+Phase(8)));

% --- SERIAL TO PARALLEL CONVERSION (SYMBOL FORMATION) ---

sym=5;
z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% -------------- MODULATION ------------------

QAM32Output=[];% initializing output of the transmitter

for i=1:n
 if z([1,2,3,4,5],i)'==[0 0 0 0 0]
 QAM32Output=[QAM32Output,x1];
 elseif z([1,2,3,4,5],i)'==[0 0 0 0 1]
 QAM32Output=[QAM32Output,x2];
 elseif z([1,2,3,4,5],i)'==[0 0 0 1 0]
 QAM32Output=[QAM32Output,x3];
 elseif z([1,2,3,4,5],i)'==[0 0 0 1 1]
 QAM32Output=[QAM32Output,x4];
 elseif z([1,2,3,4,5],i)'==[0 0 1 0 0]
 QAM32Output=[QAM32Output,x5];
 elseif z([1,2,3,4,5],i)'==[0 0 1 0 1]
 QAM32Output=[QAM32Output,x6];
 elseif z([1,2,3,4,5],i)'==[0 0 1 1 0]
 QAM32Output=[QAM32Output,x7];
 elseif z([1,2,3,4,5],i)'==[0 0 1 1 1]
 QAM32Output=[QAM32Output,x8];
 elseif z([1,2,3,4,5],i)'==[0 1 0 0 0]
 QAM32Output=[QAM32Output,x9];
 elseif z([1,2,3,4,5],i)'==[0 1 0 0 1]
 QAM32Output=[QAM32Output,x10];
 elseif z([1,2,3,4,5],i)'==[0 1 0 1 0]
 QAM32Output=[QAM32Output,x11];
 elseif z([1,2,3,4,5],i)'==[0 1 0 1 1]
 QAM32Output=[QAM32Output,x12];
 elseif z([1,2,3,4,5],i)'==[0 1 1 0 0]
 QAM32Output=[QAM32Output,x13];
 elseif z([1,2,3,4,5],i)'==[0 1 1 0 1]
 QAM32Output=[QAM32Output,x14];
 elseif z([1,2,3,4,5],i)'==[0 1 1 1 0]
 QAM32Output=[QAM32Output,x15];
 elseif z([1,2,3,4,5],i)'==[0 1 1 1 1]
 QAM32Output=[QAM32Output,x16];
 elseif z([1,2,3,4,5],i)'==[1 0 0 0 0]
 QAM32Output=[QAM32Output,x17];
 elseif z([1,2,3,4,5],i)'==[1 0 0 0 1]
 QAM32Output=[QAM32Output,x18];
 elseif z([1,2,3,4,5],i)'==[1 0 0 1 0]
 QAM32Output=[QAM32Output,x19];
 elseif z([1,2,3,4,5],i)'==[1 0 0 1 1]
 QAM32Output=[QAM32Output,x20];
 elseif z([1,2,3,4,5],i)'==[1 0 1 0 0]
 QAM32Output=[QAM32Output,x21];
 elseif z([1,2,3,4,5],i)'==[1 0 1 0 1]
 QAM32Output=[QAM32Output,x22];

 elseif z([1,2,3,4,5],i)'==[1 0 1 1 0]
 QAM32Output=[QAM32Output,x23];
 elseif z([1,2,3,4,5],i)'==[1 0 1 1 1]
 QAM32Output=[QAM32Output,x24];
 elseif z([1,2,3,4,5],i)'==[1 1 0 0 0]
 QAM32Output=[QAM32Output,x25];
 elseif z([1,2,3,4,5],i)'==[1 1 0 0 1]
 QAM32Output=[QAM32Output,x26];
 elseif z([1,2,3,4,5],i)'==[1 1 0 1 0]
 QAM32Output=[QAM32Output,x27];
 elseif z([1,2,3,4,5],i)'==[1 1 0 1 1]
 QAM32Output=[QAM32Output,x28];
 elseif z([1,2,3,4,5],i)'==[1 1 1 0 0]
 QAM32Output=[QAM32Output,x29];
 elseif z([1,2,3,4,5],i)'==[1 1 1 0 1]
 QAM32Output=[QAM32Output,x30];
 elseif z([1,2,3,4,5],i)'==[1 1 1 1 0]
 QAM32Output=[QAM32Output,x31];
 elseif z([1,2,3,4,5],i)'==[1 1 1 1 1]
 QAM32Output=[QAM32Output,x32];
 end
end

% ---------- OUTPUT WAVEFORM THAT IS TRANSMITTED ----

% plot(QAM32Output,'r'); % output waveform of modulator
% grid;

CODE FOR QAM32 DEMODULATOR
function [output_demod]=qam32_demod(output_mod,amp,phase)

% --------- KNOWN DEMODULATION PARAMETERS ----------

freq=2;
t=0:0.01:1; % bit duration
T=length(t);

% -------- CALCULATED DEMODULATION PARMETERS ----------

datalen=length(output_mod); % total data points
pw=datalen/T; % duration data points
w=2*pi*freq; % obtained angular frequency

% ----------- DEMODULATION -------------------

output_demod=[]; % initializing bit stream
count=0; % step count
for i=1:pw % loop for next bit duration
 bit0=0;
 bit1=0;
 bit2=0;
 bit3=0;
 bit4=0;
 bit5=0;
 bit6=0;
 bit7=0;
 bit8=0;
 bit9=0;
 bit10=0;
 bit11=0;
 bit12=0;
 bit13=0;
 bit14=0;
 bit15=0;
 bit16=0;
 bit17=0;
 bit18=0;
 bit19=0;
 bit20=0;
 bit21=0;
 bit22=0;
 bit23=0;
 bit24=0;
 bit25=0;
 bit26=0;
 bit27=0;
 bit28=0;
 bit29=0;
 bit30=0;
 bit31=0;

 for j=1:T
 if
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(1))
 bit0=bit0+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(2))
 bit1=bit1+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(3))
 bit2=bit2+1;

 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(4))
 bit3=bit3+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(5))
 bit4=bit4+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(6))
 bit5=bit5+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(7))
 bit6=bit6+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(8))
 bit7=bit7+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(1))
 bit8=bit8+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(2))
 bit9=bit9+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(3))
 bit10=bit10+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(4))
 bit11=bit11+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(5))
 bit12=bit12+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(6))
 bit13=bit13+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(7))
 bit14=bit14+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(8))
 bit15=bit15+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(1))
 bit16=bit16+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(2))
 bit17=bit17+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(3))

 bit18=bit18+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(4))
 bit19=bit19+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(5))
 bit20=bit20+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(6))
 bit21=bit21+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(7))
 bit22=bit22+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(8))
 bit23=bit23+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(1))
 bit24=bit24+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(2))
 bit25=bit25+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(3))
 bit26=bit26+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(4))
 bit27=bit27+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(5))
 bit28=bit28+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(6))
 bit29=bit29+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(7))
 bit30=bit30+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(8))
 bit31=bit31+1;
 end
 end

 count=count+T;
% count added with number of data points in one duration

 if bit0==T

 output_demod=[output_demod,0 0 0 0 0];
 elseif bit1==T
 output_demod=[output_demod,0 0 0 0 1];
 elseif bit2==T
 output_demod=[output_demod,0 0 0 1 0];
 elseif bit3==T
 output_demod=[output_demod,0 0 0 1 1];
 elseif bit4==T
 output_demod=[output_demod,0 0 1 0 0];
 elseif bit5==T
 output_demod=[output_demod,0 0 1 0 1];
 elseif bit6==T
 output_demod=[output_demod,0 0 1 1 0];
 elseif bit7==T
 output_demod=[output_demod,0 0 1 1 1];
 elseif bit8==T-1
 output_demod=[output_demod,0 1 0 0 0];
 elseif bit9==T
 output_demod=[output_demod,0 1 0 0 1];
 elseif bit10==T
 output_demod=[output_demod,0 1 0 1 0];
 elseif bit11==T
 output_demod=[output_demod,0 1 0 1 1];
 elseif bit12==T
 output_demod=[output_demod,0 1 1 0 0];
 elseif bit13==T
 output_demod=[output_demod,0 1 1 0 1];
 elseif bit14==T
 output_demod=[output_demod,0 1 1 1 0];
 elseif bit15==T
 output_demod=[output_demod,0 1 1 1 1];
 elseif bit16==T-1
 output_demod=[output_demod,1 0 0 0 0];
 elseif bit17==T
 output_demod=[output_demod,1 0 0 0 1];
 elseif bit18==T
 output_demod=[output_demod,1 0 0 1 0];
 elseif bit19==T
 output_demod=[output_demod,1 0 0 1 1];
 elseif bit20==T
 output_demod=[output_demod,1 0 1 0 0];
 elseif bit21==T
 output_demod=[output_demod,1 0 1 0 1];
 elseif bit22==T
 output_demod=[output_demod,1 0 1 1 0];
 elseif bit23==T
 output_demod=[output_demod,1 0 1 1 1];

 elseif bit24==T-1
 output_demod=[output_demod,1 1 0 0 0];
 elseif bit25==T
 output_demod=[output_demod,1 1 0 0 1];
 elseif bit26==T
 output_demod=[output_demod,1 1 0 1 0];
 elseif bit27==T
 output_demod=[output_demod,1 1 0 1 1];
 elseif bit28==T
 output_demod=[output_demod,1 1 1 0 0];
 elseif bit29==T
 output_demod=[output_demod,1 1 1 0 1];
 elseif bit30==T
 output_demod=[output_demod,1 1 1 1 0];
 elseif bit31==T
 output_demod=[output_demod,1 1 1 1 1];
 end
 stem(output_demod,'r');
 grid;
 drawnow;
end

CODE FOR QAM64 MODULATOR
function [QAM64Output]=qam64_mod(Data)

% ----------- MODULATION PARAMETERS ---------------

DataLength=length(Data);
Freq=2;
Amp=[1 2 3 4];
Phase=[0 pi/8 pi/4 3*pi/8 pi/2 5*pi/8 3*pi/4 7*pi/8 pi
9*pi/8 5*pi/4 11*pi/8 4*pi/3 13*pi/8 7*pi/8 15*pi/8];
t=0:0.01:1; % symbol duration
T=length(t);
w=2*pi*Freq; % obtained angular frequency

% --------- WAVES GENERATED FOR MODULATION --------

x1=Amp(1)*(sin((w*t)+Phase(1)));
x2=Amp(1)*(sin((w*t)+Phase(2)));
x3=Amp(1)*(sin((w*t)+Phase(3)));
x4=Amp(1)*(sin((w*t)+Phase(4)));
x5=Amp(1)*(sin((w*t)+Phase(5)));
x6=Amp(1)*(sin((w*t)+Phase(6)));
x7=Amp(1)*(sin((w*t)+Phase(7)));
x8=Amp(1)*(sin((w*t)+Phase(8)));

x9=Amp(1)*(sin((w*t)+Phase(9)));
x10=Amp(1)*(sin((w*t)+Phase(10)));
x11=Amp(1)*(sin((w*t)+Phase(11)));
x12=Amp(1)*(sin((w*t)+Phase(12)));
x13=Amp(1)*(sin((w*t)+Phase(13)));
x14=Amp(1)*(sin((w*t)+Phase(14)));
x15=Amp(1)*(sin((w*t)+Phase(15)));
x16=Amp(1)*(sin((w*t)+Phase(16)));
x17=Amp(2)*(sin((w*t)+Phase(1)));
x18=Amp(2)*(sin((w*t)+Phase(2)));
x19=Amp(2)*(sin((w*t)+Phase(3)));
x20=Amp(2)*(sin((w*t)+Phase(4)));
x21=Amp(2)*(sin((w*t)+Phase(5)));
x22=Amp(2)*(sin((w*t)+Phase(6)));
x23=Amp(2)*(sin((w*t)+Phase(7)));
x24=Amp(2)*(sin((w*t)+Phase(8)));
x25=Amp(2)*(sin((w*t)+Phase(9)));
x26=Amp(2)*(sin((w*t)+Phase(10)));
x27=Amp(2)*(sin((w*t)+Phase(11)));
x28=Amp(2)*(sin((w*t)+Phase(12)));
x29=Amp(2)*(sin((w*t)+Phase(13)));
x30=Amp(2)*(sin((w*t)+Phase(14)));
x31=Amp(2)*(sin((w*t)+Phase(15)));
x32=Amp(2)*(sin((w*t)+Phase(16)));
x33=Amp(3)*(sin((w*t)+Phase(1)));
x34=Amp(3)*(sin((w*t)+Phase(2)));
x35=Amp(3)*(sin((w*t)+Phase(3)));
x36=Amp(3)*(sin((w*t)+Phase(4)));
x37=Amp(3)*(sin((w*t)+Phase(5)));
x38=Amp(3)*(sin((w*t)+Phase(6)));
x39=Amp(3)*(sin((w*t)+Phase(7)));
x40=Amp(3)*(sin((w*t)+Phase(8)));
x41=Amp(3)*(sin((w*t)+Phase(9)));
x42=Amp(3)*(sin((w*t)+Phase(10)));
x43=Amp(3)*(sin((w*t)+Phase(11)));
x44=Amp(3)*(sin((w*t)+Phase(12)));
x45=Amp(3)*(sin((w*t)+Phase(13)));
x46=Amp(3)*(sin((w*t)+Phase(14)));
x47=Amp(3)*(sin((w*t)+Phase(15)));
x48=Amp(3)*(sin((w*t)+Phase(16)));
x49=Amp(4)*(sin((w*t)+Phase(1)));
x50=Amp(4)*(sin((w*t)+Phase(2)));
x51=Amp(4)*(sin((w*t)+Phase(3)));
x52=Amp(4)*(sin((w*t)+Phase(4)));
x53=Amp(4)*(sin((w*t)+Phase(5)));
x54=Amp(4)*(sin((w*t)+Phase(6)));
x55=Amp(4)*(sin((w*t)+Phase(7)));

x56=Amp(4)*(sin((w*t)+Phase(8)));
x57=Amp(4)*(sin((w*t)+Phase(9)));
x58=Amp(4)*(sin((w*t)+Phase(10)));
x59=Amp(4)*(sin((w*t)+Phase(11)));
x60=Amp(4)*(sin((w*t)+Phase(12)));
x61=Amp(4)*(sin((w*t)+Phase(13)));
x62=Amp(4)*(sin((w*t)+Phase(14)));
x63=Amp(4)*(sin((w*t)+Phase(15)));
x64=Amp(4)*(sin((w*t)+Phase(16)));

% --- SERIAL TO PARALLEL CONVERSION (SYMBOL FORMATION) ---

sym=6;
r=rem(DataLength,sym);
if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 Data=[Data,r2];
end

z=reshape(Data,sym,length(Data)/sym);
[m,n]=size(z);

% ------------------- MODULATION ------------------

QAM64Output=[]; % initializing output of the transmitter

for i=1:n
 if z([1,2,3,4,5,6],i)'==[0 0 0 0 0 0]
 QAM64Output=[QAM64Output,x1];
 elseif z([1,2,3,4,5,6],i)'==[0 0 0 0 0 1]
 QAM64Output=[QAM64Output,x2];
 elseif z([1,2,3,4,5,6],i)'==[0 0 0 0 1 0]
 QAM64Output=[QAM64Output,x3];
 elseif z([1,2,3,4,5,6],i)'==[0 0 0 0 1 1]
 QAM64Output=[QAM64Output,x4];
 elseif z([1,2,3,4,5,6],i)'==[0 0 0 1 0 0]
 QAM64Output=[QAM64Output,x5];
 elseif z([1,2,3,4,5,6],i)'==[0 0 0 1 0 1]
 QAM64Output=[QAM64Output,x6];
 elseif z([1,2,3,4,5,6],i)'==[0 0 0 1 1 0]
 QAM64Output=[QAM64Output,x7];
 elseif z([1,2,3,4,5,6],i)'==[0 0 0 1 1 1]
 QAM64Output=[QAM64Output,x8];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 0 0 0]
 QAM64Output=[QAM64Output,x9];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 0 0 1]

 QAM64Output=[QAM64Output,x10];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 0 1 0]
 QAM64Output=[QAM64Output,x11];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 0 1 1]
 QAM64Output=[QAM64Output,x12];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 1 0 0]
 QAM64Output=[QAM64Output,x13];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 1 0 1]
 QAM64Output=[QAM64Output,x14];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 1 1 0]
 QAM64Output=[QAM64Output,x15];
 elseif z([1,2,3,4,5,6],i)'==[0 0 1 1 1 1]
 QAM64Output=[QAM64Output,x16];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 0 0 0]
 QAM64Output=[QAM64Output,x17];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 0 0 1]
 QAM64Output=[QAM64Output,x18];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 0 1 0]
 QAM64Output=[QAM64Output,x19];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 0 1 1]
 QAM64Output=[QAM64Output,x20];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 1 0 0]
 QAM64Output=[QAM64Output,x21];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 1 0 1]
 QAM64Output=[QAM64Output,x22];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 1 1 0]
 QAM64Output=[QAM64Output,x23];
 elseif z([1,2,3,4,5,6],i)'==[0 1 0 1 1 1]
 QAM64Output=[QAM64Output,x24];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 0 0 0]
 QAM64Output=[QAM64Output,x25];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 0 0 1]
 QAM64Output=[QAM64Output,x26];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 0 1 0]
 QAM64Output=[QAM64Output,x27];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 0 1 1]
 QAM64Output=[QAM64Output,x28];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 1 0 0]
 QAM64Output=[QAM64Output,x29];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 1 0 1]
 QAM64Output=[QAM64Output,x30];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 1 1 0]
 QAM64Output=[QAM64Output,x31];
 elseif z([1,2,3,4,5,6],i)'==[0 1 1 1 1 1]
 QAM64Output=[QAM64Output,x32];
 elseif z([1,2,3,4,5,6],i)'==[1 0 0 0 0 0]
 QAM64Output=[QAM64Output,x33];

 elseif z([1,2,3,4,5,6],i)'==[1 0 0 0 0 1]
 QAM64Output=[QAM64Output,x34];
 elseif z([1,2,3,4,5,6],i)'==[1 0 0 0 1 0]
 QAM64Output=[QAM64Output,x35];
 elseif z([1,2,3,4,5,6],i)'==[1 0 0 0 1 1]
 QAM64Output=[QAM64Output,x36];
 elseif z([1,2,3,4,5,6],i)'==[1 0 0 1 0 0]
 QAM64Output=[QAM64Output,x37];
 elseif z([1,2,3,4,5,6],i)'==[1 0 0 1 0 1]
 QAM64Output=[QAM64Output,x38];
 elseif z([1,2,3,4,5,6],i)'==[1 0 0 1 1 0]
 QAM64Output=[QAM64Output,x39];
 elseif z([1,2,3,4,5,6],i)'==[1 0 0 1 1 1]
 QAM64Output=[QAM64Output,x40];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 0 0 0]
 QAM64Output=[QAM64Output,x41];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 0 0 1]
 QAM64Output=[QAM64Output,x42];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 0 1 0]
 QAM64Output=[QAM64Output,x43];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 0 1 1]
 QAM64Output=[QAM64Output,x44];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 1 0 0]
 QAM64Output=[QAM64Output,x45];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 1 0 1]
 QAM64Output=[QAM64Output,x46];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 1 1 0]
 QAM64Output=[QAM64Output,x47];
 elseif z([1,2,3,4,5,6],i)'==[1 0 1 1 1 1]
 QAM64Output=[QAM64Output,x48];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 0 0 0]
 QAM64Output=[QAM64Output,x49];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 0 0 1]
 QAM64Output=[QAM64Output,x50];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 0 1 0]
 QAM64Output=[QAM64Output,x51];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 0 1 1]
 QAM64Output=[QAM64Output,x52];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 1 0 0]
 QAM64Output=[QAM64Output,x53];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 1 0 1]
 QAM64Output=[QAM64Output,x54];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 1 1 0]
 QAM64Output=[QAM64Output,x55];
 elseif z([1,2,3,4,5,6],i)'==[1 1 0 1 1 1]
 QAM64Output=[QAM64Output,x56];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 0 0 0]

 QAM64Output=[QAM64Output,x57];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 0 0 1]
 QAM64Output=[QAM64Output,x58];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 0 1 0]
 QAM64Output=[QAM64Output,x59];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 0 1 1]
 QAM64Output=[QAM64Output,x60];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 1 0 0]
 QAM64Output=[QAM64Output,x61];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 1 0 1]
 QAM64Output=[QAM64Output,x62];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 1 1 0]
 QAM64Output=[QAM64Output,x63];
 elseif z([1,2,3,4,5,6],i)'==[1 1 1 1 1 1]
 QAM64Output=[QAM64Output,x64];
 end
end

% ------- OUTPUT WAVEFORM THAT IS TRANSMITTED -----------

% plot(QAM64Output,'r'); % output waveform of modulator
% grid;

CODE FOR QAM64 DEMODULATOR
function [output_demod]=qam64_demod(output_mod,amp,phase)

% ------ KNOWN DEMODULATION PARAMETERS ---------------

freq=2;
t=0:0.01:1; % bit duration
T=length(t);

% ------------ CALCULATED DEMODULATION PARMETERS ----------

datalen=length(output_mod); % total data points
pw=datalen/T; % duration data points
w=2*pi*freq; % obtained angular frequency

% -------------- DEMODULATION ---------------

output_demod=[]; % initializing bit stream
count=0; % step count
for i=1:pw % loop for next bit duration
 bit0=0;

 bit1=0;
 bit2=0;
 bit3=0;
 bit4=0;
 bit5=0;
 bit6=0;
 bit7=0;
 bit8=0;
 bit9=0;
 bit10=0;
 bit11=0;
 bit12=0;
 bit13=0;
 bit14=0;
 bit15=0;
 bit16=0;
 bit17=0;
 bit18=0;
 bit19=0;
 bit20=0;
 bit21=0;
 bit22=0;
 bit23=0;
 bit24=0;
 bit25=0;
 bit26=0;
 bit27=0;
 bit28=0;
 bit29=0;
 bit30=0;
 bit31=0;
 bit32=0;
 bit33=0;
 bit34=0;
 bit35=0;
 bit36=0;
 bit37=0;
 bit38=0;
 bit39=0;
 bit40=0;
 bit41=0;
 bit42=0;
 bit43=0;
 bit44=0;
 bit45=0;
 bit46=0;
 bit47=0;

 bit48=0;
 bit49=0;
 bit50=0;
 bit51=0;
 bit52=0;
 bit53=0;
 bit54=0;
 bit55=0;
 bit56=0;
 bit57=0;
 bit58=0;
 bit59=0;
 bit60=0;
 bit61=0;
 bit62=0;
 bit63=0;
 bit64=0;

 for j=1:T
 if
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(1))
 bit0=bit0+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(2))
 bit1=bit1+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(3))
 bit2=bit2+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(4))
 bit3=bit3+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(5))
 bit4=bit4+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(6))
 bit5=bit5+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(7))
 bit6=bit6+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(8))
 bit7=bit7+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(9))
 bit8=bit8+1;

 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(10))
 bit9=bit9+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(11))
 bit10=bit10+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(12))
 bit11=bit11+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(13))
 bit12=bit12+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(14))
 bit13=bit13+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(15))
 bit14=bit14+1;
 elseif
output_mod(count+j)==amp(1)*sin((w*t(j))+phase(16))
 bit15=bit15+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(1))
 bit16=bit16+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(2))
 bit17=bit17+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(3))
 bit18=bit18+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(4))
 bit19=bit19+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(5))
 bit20=bit20+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(6))
 bit21=bit21+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(7))
 bit22=bit22+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(8))
 bit23=bit23+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(9))

 bit24=bit24+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(10))
 bit25=bit25+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(11))
 bit26=bit26+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(12))
 bit27=bit27+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(13))
 bit28=bit28+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(14))
 bit29=bit29+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(15))
 bit30=bit30+1;
 elseif
output_mod(count+j)==amp(2)*sin((w*t(j))+phase(16))
 bit31=bit31+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(1))
 bit32=bit32+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(2))
 bit33=bit33+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(3))
 bit34=bit34+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(4))
 bit35=bit35+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(5))
 bit36=bit36+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(6))
 bit37=bit37+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(7))
 bit38=bit38+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(8))
 bit39=bit39+1;

 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(9))
 bit40=bit40+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(10))
 bit41=bit41+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(11))
 bit42=bit42+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(12))
 bit43=bit43+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(13))
 bit44=bit44+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(14))
 bit45=bit45+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(15))
 bit46=bit46+1;
 elseif
output_mod(count+j)==amp(3)*sin((w*t(j))+phase(16))
 bit47=bit47+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(1))
 bit48=bit48+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(2))
 bit49=bit49+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(3))
 bit50=bit50+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(4))
 bit51=bit51+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(5))
 bit52=bit52+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(6))
 bit53=bit53+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(7))
 bit54=bit54+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(8))

 bit55=bit55+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(9))
 bit56=bit56+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(10))
 bit57=bit57+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(11))
 bit58=bit58+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(12))
 bit59=bit59+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(13))
 bit60=bit60+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(14))
 bit61=bit61+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(15))
 bit62=bit62+1;
 elseif
output_mod(count+j)==amp(4)*sin((w*t(j))+phase(16))
 bit63=bit63+1;
 end
 end

 count=count+T;
% count added with number of data points in one duration

 if bit0==T
 output_demod=[output_demod,0 0 0 0 0 0];
 elseif bit1==T
 output_demod=[output_demod,0 0 0 0 0 1];
 elseif bit2==T
 output_demod=[output_demod,0 0 0 0 1 0];
 elseif bit3==T
 output_demod=[output_demod,0 0 0 0 1 1];
 elseif bit4==T
 output_demod=[output_demod,0 0 0 1 0 0];
 elseif bit5==T-1
 output_demod=[output_demod,0 0 0 1 0 1];
 elseif bit6==T
 output_demod=[output_demod,0 0 0 1 1 0];
 elseif bit7==T
 output_demod=[output_demod,0 0 0 1 1 1];

 elseif bit8==T
 output_demod=[output_demod,0 0 1 0 0 0];
 elseif bit9==T
 output_demod=[output_demod,0 0 1 0 0 1];
 elseif bit10==T
 output_demod=[output_demod,0 0 1 0 1 0];
 elseif bit11==T
 output_demod=[output_demod,0 0 1 0 1 1];
 elseif bit12==T
 output_demod=[output_demod,0 0 1 1 0 0];
 elseif bit13==T
 output_demod=[output_demod,0 0 1 1 0 1];
 elseif bit14==T
 output_demod=[output_demod,0 0 1 1 1 0];
 elseif bit15==T
 output_demod=[output_demod,0 0 1 1 1 1];
 elseif bit16==T-1
 output_demod=[output_demod,0 1 0 0 0 0];
 elseif bit17==T
 output_demod=[output_demod,0 1 0 0 0 1];
 elseif bit18==T
 output_demod=[output_demod,0 1 0 0 1 0];
 elseif bit19==T
 output_demod=[output_demod,0 1 0 0 1 1];
 elseif bit20==T
 output_demod=[output_demod,0 1 0 1 0 0];
 elseif bit21==T-1
 output_demod=[output_demod,0 1 0 1 0 1];
 elseif bit22==T
 output_demod=[output_demod,0 1 0 1 1 0];
 elseif bit23==T
 output_demod=[output_demod,0 1 0 1 1 1];
 elseif bit24==T-1
 output_demod=[output_demod,0 1 1 0 0 0];
 elseif bit25==T
 output_demod=[output_demod,0 1 1 0 0 1];
 elseif bit26==T
 output_demod=[output_demod,0 1 1 0 1 0];
 elseif bit27==T
 output_demod=[output_demod,0 1 1 0 1 1];
 elseif bit28==T
 output_demod=[output_demod,0 1 1 1 0 0];
 elseif bit29==T
 output_demod=[output_demod,0 1 1 1 0 1];
 elseif bit30==T
 output_demod=[output_demod,0 1 1 1 1 0];
 elseif bit31==T

 output_demod=[output_demod,0 1 1 1 1 1];
 elseif bit32==T-1
 output_demod=[output_demod,1 0 0 0 0 0];
 elseif bit33==T
 output_demod=[output_demod,1 0 0 0 0 1];
 elseif bit34==T
 output_demod=[output_demod,1 0 0 0 1 0];
 elseif bit35==T
 output_demod=[output_demod,1 0 0 0 1 1];
 elseif bit36==T
 output_demod=[output_demod,1 0 0 1 0 0];
 elseif bit37==T
 output_demod=[output_demod,1 0 0 1 0 1];
 elseif bit38==T
 output_demod=[output_demod,1 0 0 1 1 0];
 elseif bit39==T
 output_demod=[output_demod,1 0 0 1 1 1];
 elseif bit40==T-1
 output_demod=[output_demod,1 0 1 0 0 0];
 elseif bit41==T
 output_demod=[output_demod,1 0 1 0 0 1];
 elseif bit42==T
 output_demod=[output_demod,1 0 1 0 1 0];
 elseif bit43==T
 output_demod=[output_demod,1 0 1 0 1 1];
 elseif bit44==T
 output_demod=[output_demod,1 0 1 1 0 0];
 elseif bit45==T
 output_demod=[output_demod,1 0 1 1 0 1];
 elseif bit46==T
 output_demod=[output_demod,1 0 1 1 1 0];
 elseif bit47==T
 output_demod=[output_demod,1 0 1 1 1 1];
 elseif bit48==T-1
 output_demod=[output_demod,1 1 0 0 0 0];
 elseif bit49==T
 output_demod=[output_demod,1 1 0 0 0 1];
 elseif bit50==T
 output_demod=[output_demod,1 1 0 0 1 0];
 elseif bit51==T
 output_demod=[output_demod,1 1 0 0 1 1];
 elseif bit52==T
 output_demod=[output_demod,1 1 0 1 0 0];
 elseif bit53==T
 output_demod=[output_demod,1 1 0 1 0 1];
 elseif bit54==T
 output_demod=[output_demod,1 1 0 1 1 0];

 elseif bit55==T
 output_demod=[output_demod,1 1 0 1 1 1];
 elseif bit56==T-1
 output_demod=[output_demod,1 1 1 0 0 0];
 elseif bit57==T
 output_demod=[output_demod,1 1 1 0 0 1];
 elseif bit58==T
 output_demod=[output_demod,1 1 1 0 1 0];
 elseif bit59==T
 output_demod=[output_demod,1 1 1 0 1 1];
 elseif bit60==T
 output_demod=[output_demod,1 1 1 1 0 0];
 elseif bit61==T
 output_demod=[output_demod,1 1 1 1 0 1];
 elseif bit62==T
 output_demod=[output_demod,1 1 1 1 1 0];
 elseif bit63==T
 output_demod=[output_demod,1 1 1 1 1 1];
 end
 stem(output_demod,'m');
 title('DEMODULATED BITS TREAM');
 grid;
 drawnow;
end

CODE FOR AMPLITUDE HISTOGRAM
function [M,Amplitude]=AmpHist(ModulatorOutput)

t=0:0.01:1;
BitDuration=length(t);
DataLength=length(ModulatorOutput);
BitPoints=DataLength/BitDuration;

Amplitude=[];
count=0;
for i=1:BitPoints
 Points=[];
 for j=1:BitDuration
 points(j)=ModulatorOutput(count+j);
 Points=[Points,points(j)];
 end
 amp=max(Points);
 Amp=round(amp);
 Amplitude=[Amplitude,Amp];
 count=count+BitDuration;

 Histogram=hist(Amplitude);
 bar(Histogram,0.5);
 grid;
 drawnow;
 colormap([127/255 1 212/255]);
end

M=0;
for j=1:length(Histogram)
 if Histogram(j)~=0
 M=M+1;
 end
end

CODE FOR AMPLITUDE NORMALIZATION
function [NormalizedOutput]=amp_norm(output_mod)

t=0:0.01:1;
T=length(t);
DataLength=length(output_mod);
DataBits=DataLength/T;

count=0; % initializing variables and vectors
NormalizedOutput=[];
amp=[];
points=[];

for i=1:DataBits
 for j=1:T
 Points(j)=output_mod(count+j);
 points=[points,Points(j)];
 end
 amp=max(points); % amplitude per symbol duration
 count=count+T;
 points=[]; % reinitializing to 0
 if amp~=0
 Normalization=Points/amp; % normalizing
 NormalizedOutput=[NormalizedOutput,Normalization];

% accumulating if amplitude not equal 0
 elseif amp==0
 NormalizedOutput=[NormalizedOutput,Points];

% accumulating if amplitude 0
 end
 plot(NormalizedOutput,'r');
 grid;
 drawnow;
end

CODE FOR SORT AMPLITUDE ARRAY
function [SortAmp]=Ampl(Array)

amp=[];
count=0;
amp=Array(1);

for i=2:length(Array)
 if amp~=Array(i);
 amp=[amp,Array(i)];
 end
end
SortAmp=sort(amp);

CODE FOR AUDIO-TO-BINARY CONVERSION
function c=au2bin(s)

s=map(s,0,2);

a=dec2bin(s);

[m,n]=size(a);

c=[];
for i=1:m
 for j=1:n
 c=[c,a(i,j)];
 end
end

c=c';
c=str2num(c);
c=c';

CODE FOR BER CALCULATION
function [BER]=ber(s,a)

if length(s)<length(a)
 for i=1:length(s)
 z(i)=a(i);
 end

 sum1=sum(s~=z);
elseif length(a)<length(s)
 for i=1:length(a)
 z(i)=s(i);
 end
 sum1=sum(a~=z);
elseif length(a)==length(s)
 sum1=sum(a~=s);
end

BER=sum1/length(s)*100;

CODE FOR BINARY-TO-IMAGE CONVERSION
function [image]=bin2im(a,a1,a2)

% a = binary bits of the image
% a1 = width resolution
% a2 = height resolution

a=a';
a=num2str(a);
a=a';

b=length(a);
c=b/8;

n=1;
for i=1:c
 for j=1:8
 bin(i,j)=a(n);
 n=n+1;
 end
end

v=bin2dec(bin);

m=1;
for l=1:3 % because the bit depth for RGB is always 3
 for j=1:a1
 for k=1:a2
 image(k,j,l)=v(m);
 m=m+1;
 end
 end
end

CODE FOR IMAGE-TO-BINARY TRANSFORM
function c=im2bin(s)

a=dec2bin(s);

[m,n]=size(a);

c=[];
for i=1:m
 for j=1:n
 c=[c,a(i,j)];
 end
end

c=c';
c=str2num(c);
c=c';

CODE FOR STRING-TO-BINARY CONVERSION
function [c]=str2bin(word)

u=double(word);
u=hex(u);
v=hex2dec(u);
bin=dec2bin(v);
[m,n]=size(bin);

c=[];
for i=1:m
 for j=1:n
 c=[c,bin(i,j)];
 end
end

c=c';
c=str2num(c);
c=c';

% ---

function [u] = hex(u)

u=u';
a=u;
u=num2str(u);

for i=1:length(u)
 r=mod(a(i),100);
 if(r>=0 & r<10)
 m=num2str(a(i));
 u(i,:)=strcat('0a',m(1,3));
 elseif(r>=10 & r<20)
 m=num2str(a(i));
 u(i,:)=strcat('0b',m(1,3));
 elseif(r>=20 & r<29)
 m=num2str(a(i));
 u(i,:)=strcat('0c',m(1,3));
 elseif(r>=30 & r<39)
 m=num2str(a(i));
 u(i,:)=strcat('0d',m(1,3));
 elseif(r>=40 & r<49)
 m=num2str(a(i));
 u(i,:)=strcat('0e',m(1,3));
 elseif(r>=50 & r<59)
 m=num2str(a(i));
 u(i,:)=strcat('0f',m(1,3));
 end
end

CODE FOR BINARY-TO-STRING CONVERSION
function [str]=bin2str(nbin)

nbin=nbin';
nbin=num2str(nbin);
nbin=nbin';

l=length(nbin)/8;
n=1;
for(i=1:l)
 for(j=1:8)
 bin(i,j)=nbin(n);
 n=n+1;
 end
end

v=bin2dec(bin);
w=dec2hex(v);
len=length(w);
x=zeros(len,1);
x=num2str(x);

x(:,2)=w(:,1);
x(:,3)=w(:,2);

for(i=1:len)
 if x(i,2)=='A'
 x(i,:)=strcat('10',x(i,3));
 elseif x(i,2)=='B'
 x(i,:)=strcat('11',x(i,3));
 elseif x(i,2)=='C'
 x(i,:)=strcat('12',x(i,3));
 elseif x(i,2)=='D'
 x(i,:)=strcat('13',x(i,3));
 elseif x(i,2)=='E'
 x(i,:)=strcat('14',x(i,3));
 elseif x(i,2)=='F'
 x(i,:)=strcat('15',x(i,3));
 end
end
x=str2num(x)';
str=char(x);

CODE FOR DATA DISTRIBUTION FOR MODULATION
function [y]=datadist(s,r)

DataLength=length(s);

switch r
 case 2
 d=1;
 a=floor(length(s)/d);
 n=0;
 y=[];
 for i=1:a
 z=ask2_mod(s(1,1+n:d+n));
 n=n+d;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 3
 sym=2;
 r=rem(DataLength,sym);

 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end
 a=floor(length(s)/sym);
 n=0;
 y=[];
 for i=1:a
 z=ask4_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 4
 sym=3;
 r=rem(DataLength,sym);
 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end
 a=floor(length(s)/sym);
 n=0;
 y=[];
 for i=1:a
 z=ask8_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 5
 d=1;
 a=floor(length(s)/d);
 n=0;
 y=[];
 for i=1:a
 z=psk2_mod(s(1,1+n:d+n));
 n=n+d;
 y=[y,z];
 plot(y,'r');

 grid;
 drawnow;
 end
 save('man','y');
 case 6
 sym=2;
 r=rem(DataLength,sym);
 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end
 a=floor(length(s)/sym);
 n=0;
 y=[];
 for i=1:a
 z=psk4_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 7
 sym=3;
 r=rem(DataLength,sym);
 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end
 a=floor(length(s)/sym);
 n=0;
 y=[];
 for i=1:a
 z=psk8_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 8
 sym=2;
 r=rem(DataLength,sym);

 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end
 a=floor(length(s)/sym);
 n=0;
 y=[];
 for i=1:a
 z=qam4_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 9
 sym=3;
 r=rem(DataLength,sym);
 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end
 a=floor(length(s)/sym);
 n=0;
 y=[];
 for i=1:a
 z=qam8_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 10
 sym=4;
 r=rem(DataLength,sym);
 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end
 a=floor(length(s)/sym);
 n=0;

 y=[];
 for i=1:a
 z=qam16_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
 case 11
 sym=5;
 r=rem(DataLength,sym);
 if r~=0
 r1=sym-r;
 r2=zeros(1,r1);
 s=[s,r2];
 end

 a=floor(length(s)/sym);
 n=0;
 y=[];
 for i=1:a
 z=qam32_mod(s(1,1+n:sym+n));
 n=n+sym;
 y=[y,z];
 plot(y,'r');
 grid;
 drawnow;
 end
 save('man','y');
end

CODE FOR FOURIER TRANSFORM
function [FOP]=fop(mod_op)

a=fft(mod_op);
FOP=abs(a);

CODE FOR MAPPING AUDIO SIGNAL
function xx=map(kk,low,high)

zz=(kk-min(min(kk)))./(max(max(kk))-min(min(kk)));

xx=zz.*(high-low)+low;

CODE FOR PHASE HISTOGRAM
function [M,Phase]=PhaseDetect(output_mod)

t=0:0.01:1;
T=length(t);

DataLength=length(output_mod);
DataBits=DataLength/T;

count=0;
Phase=[];
count=0;
amp1=[];

for i=1:DataBits
 for j=1:T
 Points(j)=output_mod(count+j);
 amp1=[amp1,Points(j)];
 end
 amp=amp1(T); % amplitude per symbol duration
 if abs(amp)<0.01
 amp=0;
 end
 y=asin(amp);
 z=180*y/pi;
 Phase=[Phase,z];
 count=count+T;
 amp1=[]; % reinitializing to 0
 Histogram=hist(Phase);
 bar(Histogram,0.5);
 grid;
 colormap([127/255 1 212/255]);
 drawnow;
end

M=0;
for j=1:length(Histogram)
 if Histogram(j)~=0
 M=M+1;
 end
end

CODE FOR ASSIGNING PHASES
function [Phase]=Phase(M)

if M==1
 Phase=[0 pi];
elseif M==3
 Phase=[0 pi/2 pi 3*pi/2];
elseif M==5
 Phase=[0 pi/4 pi/2 3*pi/4 pi 5*pi/4 3*pi/2 7*pi/4];
elseif M==8
 Phase=[0 pi/8 pi/4 3*pi/8 pi/2 5*pi/8 3*pi/4 7*pi/8 pi
9*pi/8 5*pi/4 11*pi/8 4*pi/3 13*pi/8 7*pi/8 15*pi/8];
end

CODE FOR AUDIO RECORD
function s=recsound

r=audiorecorder(8912,8,1);
recordblocking(r,1);
s=getaudiodata(r);

CODE FOR AUTO MODULATION SELECTION
function [y,X,a]=transmitter(s)

a=randint(1,1,10);
if a==0
 [y]=ask2_mod(s);
 X=('MODULATION USED: ASK2');
elseif a==1
 [y]=ask4_mod(s);
 X=('MODULATION USED: ASK4');
elseif a==2
 [y]=ask8_mod(s);
 X=('MODULATION USED: ASK8');
elseif a==3
 [y]=psk2_mod(s);
 X=('MODULATION USED: PSK2');
elseif a==4
 [y]=psk4_mod(s);
 X=('MODULATION USED: PSK4');
elseif a==5

 [y]=psk8_mod(s);
 X=('MODULATION USED: PSK8');
elseif a==6
 [y]=qam8_mod(s);
 X=('MODULATION USED: QAM8');
elseif a==7
 [y]=qam16_mod(s);
 X=('MODULATION USED: QAM16');
elseif a==8
 [y]=qam4_mod(s);
 X=('MODULATION USED: QAM4');
elseif a==9
 [y]=qam32_mod(s);
 X=('MODULATION USED: QAM32');
end

CODE FOR AUTO MODULATION IDENTIFICATION AND
DEMODULATION
function
[M,N,P,X,NormalizedOutput,Amplitude,Ph,Amp1,Fop]=algorithm(
ModulatorOutput)

t=0:0.01:1;
T=length(t);

[M,Amplitude]=AmpHist(ModulatorOutput);
[NormalizedOutput]=amp_norm(ModulatorOutput);
[N,Amp]=AmpHist(NormalizedOutput);
Amp1=Ampl(Amplitude);
P=PhaseDetect(NormalizedOutput);
Ph=Phase(P);
save('array','Amplitude','P');
[Fop]=fop(ModulatorOutput);

if M==2 & N==2 & P==1
 X=('IDENTIFIED MODULATION : ASK2');
elseif M==4 & N==2 & P==1
 X=('IDENTIFIED MODULATION : ASK4');
elseif M==8 & N==2 & P==1
 X=('IDENTIFIED MODULATION : ASK8');
elseif M==1 & N==1 & P==1
 X=('IDENTIFIED MODULATION : PSK2');
elseif M==1 & N==1 & P==3
 X=('IDENTIFIED MODULATION : PSK4');
elseif M==1 & N==1 & P==5

 X=('IDENTIFIED MODULATION : PSK8');
elseif M==2 & N==1 & P==3
 X=('IDENTIFIED MODULATION : QAM8');
elseif M==2 & N==1 & P==5
 X=('IDENTIFIED MODULATION : QAM16');
elseif M==2 & N==1 & P==1
 X=('IDENTIFIED MODULATION : QAM4');
elseif M==4 & N==1 & P==5
 X=('IDENTIFIED MODULATION : QAM32');
end

