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ABSTRACT 
    We have endeavored to develop an optimal communication system by 

considering different trade-offs pertinent to the communication system. 

The design objective is  achieved by an acceptable compromise  between 

information flow, error rate, capital  and operation cost.  

   Focusing onto the maximum bit rate and minimum bit error 

rate, we have analyzed different  digital modulation  and channel  coding 

techniques . Maintaining the same optimization criteria an efficient 

receiver design has been undertaken Receiver is incorporated with 

sophisticated algorithms including adaptive equalization and 

synchronization algorithms. Optimality of the selected algorithms  is 

proven analytically through rigorous simulations. 
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                                   CHAPTER  1                                         
 

OPTIMAL COMMUNICATION SYSTEM 

CONCEPT 
 

1.1  INTRODUCTION 

  The   extension of  man’s nervous system around the surface  of the earth is 

shrinking our  world to a “global village”. The  revolutionary potential of new  

communications “electric” technology is the subject of many articles and  books .

 The communications satellite, on-line real time computers, large  scale   

integration, the helical wave guide  and the laser are  just a few of the 

technological inventions of the revolution. Just as exciting to the specialist, 

although inaccessible to   the layman, are the theoretical break- throughs which 

will make their impact in the   efficient utilization of this new technology. The 

aim of this project is to briefly   introduce the  reader  with  a science or 

engineering background to  some of  the   theoretical  problems and Trade-offs 

associated  with communication systems,  and  to  illustrate by example the 

application of theoretical results to a practical  communication system problem. 

1.2 WHY OPTIMIZE.? 

Optimization is to get the best out of your available resources. With the advent 

of new technologies the EM spectrum is getting expensive day by day. 

Competition between different companies is on mounting. One has to use its 

available resources in a best possible way in order to achieve the best results and 

gain customer satisfaction 

1.3 OUR DESIGN 

    Our project is an analytical research based project where we have implemented 

different algorithms. We consider  the usual communication  system  model (see 

fig. 1) consisting of   transmitter (modulator  and channel encoder), 

communication channel and  receiver (demodulator).Clearly the design objective is 

to  achieve an acceptable compromise  between information flow, error rate, 



 

 

capital equipment cost and operating cost.  

 

 

 
                                                   Fig 1..Our Design 

 

      In order to achieve this we have to compromise between different situations and deal 

with different kinds of trade-offs. for example moving to a higher modulation scheme 

improves bandwidth efficiency but degrades probability of bit error. Similarly 

introducing error correction coding gives improved performance but requires extra 

bandwidth. We have studied these different trades-offs and tried to simulate a good 

communication system. We have handled each module of our system individually and 

considered different algorithms for that module and compared their performance. In the 

end we have developed a QPSK transmitter/Receiver capable of functionalities like 

scrambling channel codeing..timing and phase recovery and equalization. Simulation is 

done in matlab and care       has been taken to avoid complexity. 
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CHAPTER  2 
 

SCRAMBLING 
 
2.1  SCRAMBLING 

 
      In general, a scrambler tends to make the data more random by removing long 
strings of 1's or 0's. Scrambling can be helpful in timing, extraction by removing long 
strings of 0's in binary data. Scramblers, however, are primarily used for preventing 
unauthorized access to the data, and are optimized for that purpose. 

Figure 2.1 shows a typical scrambler and descrambler. The scrambler consists of 
a feedback shift register, and the matching descrambler has a feed forward shift 
register. as illustrated in Fig. 2.1 Each stage in the shift register delays a bit by one 
unit. To analyze the scrambler and the matched descrambler, consider the output 
sequence T of the scrambler (Fig. 2.1(a)). If S is the input sequence to the scrambler, 
then 

 
 
 
 
 
 
 
 
 
 
 
 
 
                Figure 2.1(a)   Scrambler                                                 Figure (2.1)b      Descrambler 
 
 

                                         
                                                S ⊕  D3T ⊕  D5T =T                                       
(2.1) 
 
                                                 
Where D represents the delay operator that is DnT is the sequence T delayed by n 
units. The symbol ⊕  indicates modulo 2 sum.Now recall that the modulo 2 sum of 
any sequence with itself gives a sequence of all 0’s. Adding (D3 ⊕  D5)T to both sides 
of Eq. (2.1), we get 
                   
                                          S= T ⊕ (D3 ⊕  D5) T 
                    = [1 ⊕ (D3 ⊕  D5)]T 
                                                   = (1 ⊕  F)T                where F = (D3 ⊕  D5)     (2.2) 
 

To design the descrambler at the receiver, we start with T, the sequence received 



 

 

at the descrambler. From Eq. (2.2) , it follows that 
 = T ⊕  FT = T ⊕ (D3 ⊕  D5)T 
 
This equation, where we regenerate the input sequence S from the received sequence 
T, is readily implemented by the descrambler shown in Fig.2.1 (b). 

Note that a single detection error in the received sequence T will affect three 
output bits in R. Hence, scrambling has the disadvantage of causing multiple errors 
for a single received bit error.[8] 
 



 

 

CHAPTER  3 

 

CHANNEL CODING 
  

3.1   INFORMATION THEORY 
      Information theory describes the fundamental limits in communication .The 

fundamental measure of performance is the capacity of a channel. Information theory 

was invented by Claude Shannon in 1948 to characterize the fundamental limits of 

reliable communication . Before Shannon, it was widely believed that to the only way 

achieve reliable communication over a noisy channel, i.e. to make the error 

probability as small as desired, is to reduce the data rate,  Shannon however showed 

the surprising result that this is not necessary: by appropriate coding of the 

information, one can communicate at a positive rate but at the same time with as small 

an error probability as desired. However, there is a maximal rate, called the capacity 

of the channel, for which this can be done: if one attempts to communicate at rates 

above the channel capacity, then it is impossible to drive the error probability to zero. 

The capacity of a channel depends on the statistical characteristics of the channel, and 

for a wide class of channels, Shannon showed how the channel capacity can be 

computed. Channel capacity is therefore the fundamental measure of performance 

limit on reliable communication. The most common and probably the most important 

channel for a communication engineer is the gaussian channel, given by 

y[n] = x[n] + w[n]                                                     (8.1) 

where x[n] and y[n] are real inputs at time n and ]}[{ nw  is an i.i.d. sequence of 

),0( 2σN  noise. Given a power constraint of P  on the transmitted signal, the 

capacity is given by 

  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

2
1log

2
1

σ
PC                                                   (8.2) 

Capacity is measured in bits per symbol. This is probably the most well-known result 

of information theory, but it is in fact only a special case of Shannon’s general theory 

applied to a specific channel.   

 



 

 

 

 

3.2   WHY USE ERROR CORRECTION CODING?  

                  Error correction coding can be considered as a vehicle for effecting 

various system trade-offs. Figure 3.1 compares two curves depicting bit-error 

performance versus Eb/N0.One curve represents a typical Modulation scheme without 

coding. The Second curve represents the same Modulation with coding. Now we 

discuss the benefits and trade-offs that can be achieved with the help of channel 

coding 

 

 

 

 

 

 

 

 

 

 

 

 

                   Fig.3.1 TRADE OFF : Performance versus bandwidth 



 

 

        Imagine that a simple, inexpensive voice communication system has just been 

developed and delivered to a customer. The system does not use error-correction 

coding. Consider that the operating point of the system can be depicted by point A in 

Figure 3.1 (Eb/No = 8 dB, and PB = 10-2). After a few trials, there are complaints 

about the voice quality; the customer suggests that the bit-error probability should be 

lowered to 10-4. The usual way of obtaining better error performance in such a system 

would be by effecting an operating point movement from point A to, say, point B in 

Figure 3.1. However, suppose that the EblNo of 8 dB is the most that is available in 

this system. The figure suggests that one possible trade-off is to move the operating 

point from point A to point C. That is, "walking'" down the vertical line to point C on 

the coded curve can provide the customer with improved error performance. What 

does it cost? Aside from the new components (encoder and de. coder) needed, the 

price is more transmission bandwidth. Error-correction coding needs redundancy. If 

we assume that the system is a real-time communication system (such that the 

message may not be delayed),The addition of redundant bits dictates a faster rate of 

transmission, which of course means more bandwidth. 

 
3.2.1 TRADE-OFF:2 POWER VERSUS BANDWIDTH 

Consider that a system without coding, operating at point D in Figure 3.1 

(Eb/No = 14 dB, and PB = 10-6), has been delivered to a customer. The customer has 

no complaints about the quality of the data, but the equipment is having some 

reliability problems as a result of providing an EblNo of 14 dB. In other words, the 

equipment keeps breaking down. If the requirement on EblNo or power could be 

reduced, the reliability difficulties might also be reduced. Figure 3.1 suggests a trade-

off by moving the operating point from point D to point E. That is, if error correction 

coding is introduced, a reduction in the required EblNo can be achieved. Thus, the 

trade-off is one in which the same quality of data is achieved, but the coding allows 

for a reduction in power or EblNo. What is the cost? The same as before-more  

bandwidth. 

Notice that for non-real-time communication systems, error-correction coding 

can be used with a somewhat different trade-off. It is possible to obtain improved bit-

error probability or reduced power (similar to trade-off 1 or 2 above) by paying the 

price of delay instead of bandwidth. 



 

 

 

3.3 CODING GAIN 

The trade-off example described in the previous section has allowed a reduc 

tion in EblNo from 14 dB to 9 dB, while maintaining the same error performance. In 

the context of this example and Figure 6.9, we now define coding gain. For a given 

bit-error probability, coding gain is defined as the "relief" or reduction in EblNo that 

can be realized through the use of the code. Coding gain G is generally expressed in 

dB, such as 

                        G(dB) = (Eb/N0)u (dB) – (Eb/N0)c (dB) 

Where (Eb/N0)u and (Eb/N0)c  represent the required Eb/N0  uncoded and coded 

respectively.[7] 

 

3.4   CHANNEL CODING 

        The purpose of forward error correction (FEC) is to improve the capacity of a channel 

by adding some carefully designed redundant information to the data being transmitted 

through the channel . The process of adding this redundant information is known as channel 

coding. Convolutional coding and block coding are the two major forms of channel coding. 

Convolutional codes operate on serial data, one or a few bits at a time. Block codes operate 

on relatively large (typically, up to a couple of hundred bytes) message blocks. There are a 

variety of useful convolutional and block codes, and a variety of algorithms for decoding 

the received coded information sequences to recover the original data. 

 

3.5 LINEAR BLOCK CODES 

       Linear block codes are a class of parity check codes that can be characterized by the 

(n, k) notation. The encoder transforms a block of k message digits (a message vector) 

into a longer block of n codeword digits (a code vector) constructed from a given 

alphabet of elements. When the alphabet consists of two elements (0 and 1), the code is a 

binary code comprising binary digits (bits). Our discussion of linear block codes is re-

stricted to binary codes unless otherwise noted. 



 

 

       The k-bit messages form 2k distinct message sequences, referred to as k- tuples 

(sequences of k digits). The n-bit blocks can form as many as 2" distinct sequences, 

referred to as n-tuples. The encoding procedure assigns to each of the 2k message k-tuples 

one of the 2" n-tuples. A block code represents a one-to-one assignment, whereby the 2k 

message k-tuples are uniquely mapped into a new set of 2k codeword n-tuples; the 

mapping can be accomplished via a look-up table. For linear codes, the mapping 

transformation is, of course linear. 

 
3.5.1 VECTOR SPACES AND SUBSPACES 
 

   The set of all binary n-tuples, Vn is called a vector space over the binary field of two 

elements (0 and 1). 

A subset S of the vector space Vn is called a subspace if the following two conditions 

are met: 

1. The all-zeros vector is in S. 

2. The sum of any two vectors in S is also in S (known as the closure property). 

 

For example, the vector space V4 is totally populated by the following 24 = 

sixteen 4-tuples 

 

0000      0001     0010    0011    0100    0101    0110    0111 

1000      1001     1010    1011    1100    1101    1110    1111 

 

An example of a subset of V4 that forms a subspace is 

 

0000    0101    1010    1111 

 

3.5.2 GENERATOR MATRIX 
        If k is large, a table look-up implementation of the encoder becomes prohibitive. 

For a (127, 92) code there are 292 or approximately 5 x 1027 code vectors. If the 

encoding procedure consists of a simple look-up table, imagine the size of the 

memory necessary to contain such a large number of codewords. Fortunately, it is 

possible to reduce complexity by generating the required codewords as needed, 

instead of storing them. 



 

 

Since a set of codewords that forms a linear block code is a k-dimensional 

subspace of the n-dimensional binary vector space (k < n), it is always possible to find 

a set of n-tuples fewer than 2k, that can generate all the 2k codewords of the subspace. 

The generating set of vectors is said to span the subspace. The smallest linearly 

independent set that spans the subspace is called a basis of the subspace, and the 

number of vectors in this basis set is the dimension of the subspace. Any basis set of k 

linearly independent n-tuples V1 V2, . . . , Vk can be used to generate the required 

linear block code vectors, since each code vector is a linear combination of V1 to V2, . 

. . , Vk . That is, each of the set of 2k codewords (U) can be described by 

                  U= m1V1 + m2V2 +…….+ mkVk 

In general we can define a generator matrix by  the following k*n array 

 

 

 

 

 

 

 

 

Code vectors, by convention, are usually designated as row vectors. Thus, the 

message m  a sequence of k message bits, is shown below as a row vector (1 x k 

matrix having one row and k columns): 

                                     M= m1, m2, m3……….mk 

 

The generation of the codeword U is written in matrix notation as the product of m 

and G, and we write 

                                            U=mG 

 

3.5.3 SYSTEMATIC LINEAR BLOCK CODES 
          A systematic (n, k) linear block code is a mapping from a k-dimensional 

message vector to an n-dimensional codeword in such a way that part of the 

sequence generated coincides with the k message digits. The remaining (n - k) digits 

are parity digits. A systematic linear block code will have a generator matrix of the 



 

 

form 

 

 

 

 

 

 

 

 

Where P is the parity array portion of the generator matrix Pij = (0 or 1), and Ik is the 

k x k identity matrix. Notice that with the systematic generator, the encoding 

complexity is further reduced since it is not necessary to store the identity matrix 

portion of the array. 

 

3.5.4 PARITY CHECK MATRIX 
      Let us define a matrix H. called the parity-check matrix that will enable us to 

decode the received vectors. For each (k x n) generator matrix G, there exists an (n - 

k) x n matrix H. such that the rows of G are orthogonal to the rows of H; that is, GHT 

= 0, where HT is the transpose of H, and 0 is a k x (n - k) all-zeros matrix. HT is an n x 

(n - k) matrix whose rows are the columns of H and whose columns are the rows of H. 

To fulfill the orthogonality requirements for a systematic code, the components of the 

H matrix are written as 

 

 

Hence HT can be written as 

 

 

 

3.5.5 SYNDROME TESTING 

      Let r = r1, r2,…….; rn be a received vector resulting from the transmission of U = 

U1 U2, . . . , Un (one of 2k n-tuples). We can therefore describe r as 

.



 

 

 

r=U + e 

 

Where e = e1, e2 ... , en is an error vector or error pattern introduced by the 

channel.The syndrome of r is defined as 

                             S = rHT 

 

The syndrome is the result of a parity check performed on r to determine whether  r is 

a valid member of the codeword set. If in fact. r is a member, the syndrome S has a 

value 0, If r contains detectable errors, the syndrome has some nonzero value. If r 

contains correctable errors, the syndrome  has some nonzero value that can earmark 

the particular error pattern. The decoder, depending upon whether it has been 

implemented to perform FEC or ARQ, will then take actions to locate the errors and 

correct them (FEC), or else it will request a retransmission (ARQ). Combining 

Equations (6.34) and (6.35), the syndrome of r is seen to be 

 

S = (U+ e)HT 

 = UHT + eHT                                    

 However, UHT = 0 for all members of the codeword set. Therefore, 

S = eUT                                                                                                                     (3.1) 

Equation (3.1), is evidence that the syndrome test, whether performed on either a 

corrupted code vector or on the error pattern that caused it, yields the same 

syndrome. An important property of linear block codes, fundamental to the 

decoding process, is that the mapping between correctable error patterns and 

syndromes is one to one. 

 

3.5.6 ERROR CORRECTION 
        The last discussion gives us a clue that we not only can detect the error, but 

since there is a one-to-one correspondence between correctable error patterns and 

syndromes, we can correct such error patterns. Let us arrange the 2n n-tuples that 

represent possible received vectors in an array, called the standard array, such that 

the first row contains all the codewords, starting with the all-zeros codeword, and the 

first column contains all the correctable error patterns.Each row, called a coset, 



 

 

consists of an error pattern in the first column,followed by the code words perturbed 

by that error pattern.. The array contains all2n n-tuples in the space Vn.  n-tuple 

appears in only one location-none are missing, and none are replicated. Each coset 

consists of 2k n-tuples. Therefore, there are (2n/2k)  

= 2n-k cosets. 

        U1              U2                     .. ….Ui                      ……U2
k 

        e2              U2 +e2               ……Ui + e2             …… U2
k + e2 

        e3              U2 + e3              ……Ui + e2               ..… U2
k + e3       

        .                  .                                 .                             . 

        .                  .                                 .                             . 

        .                  .                                 .                             . 

        e2
n-k        U2 + e2

n-k                 Ui + e2
n-k                     U2

k + e2
n-k 

 

 The decoding algorithm calls for replacing a corrupted vector with a valid 

codeword from the top of the column containing the corrupted vector. Suppose that a 

codeword Vi (i = 1, . . . , 2k) is transmitted over a noisy channel, resulting in a 

received (corrupted) vector Vi + ej If the error pattern ej caused by the channel is a 

coset leader, where the index j = 1, . . . , 2n - k, the received vector will be decoded 

correctly into the transmitted codeword Vi, If the error pattern is not a coset leader, 

then an erroneous decoding will result.[7] 

 

3.5.7 ERROR CORRECTION CODING 
The procedure for error correction decoding proceeds as follows 

1. Calculate the syndrome of r using S = rHT 

2. Locate the coset leader (error pattern)ej whose syndrome equals rHT 

3. This error pattern is assumed to be the corruption caused by the channel.  

4. The corrected received vector, or codeword, is identified as U = r + ej. We can 

say that we retrieve the valid codeword by subtracting out the identified error; in 

modulo-2 arithmetic, the operation of subtraction is identical to that of addition 

 

3.5.8 ERROR CORRECTION AND DETECTION CAPABILITY 

       The task of the decoder, having received the vector r, is to estimate the 

transmitted codeword Vi, The optimal decoder strategy can be expressed in terms of 



 

 

the maximum likelihood algorithm as follows: Decide in favor of Ui if 

 

P(r | Ui) = max P(r I Ui)  over all Ui 

 

Since for the binary symmetric channel (BSC), the likelihood of Ui with respect to r is 

inversely proportional to the distance between r and Ui, we can write: Decide in favor 

of Ui if 

 

d(r. Ui) = min d(r,Ui) 

 over all Ui 

 

In other words the decoder determines the distance between r and each of the possible 

transmitted codewords Uj and selects as most likely a Ui for which 

d(r,Ui) ≤   d(r,Uj)             for i,,j =1,……,M and i ≠ j  

where M = 2k 

 

In general, the error-correcting capability t of a code is defined as the maximum 

number of guaranteed correctable errors per codeword, and is written  

          t = 
min 1
2

d −⎡ ⎤
⎢ ⎥⎣ ⎦

 

where t is the largest integer not to exceed [d-1]/2 

In general a t -error correcting (n,k) linear code is capable of correcting a total of 

2n-k error pattern. The Decoded Bit Error probability PB  (for BSC channel with 

transition probability p) depends on the particular code and decoder. It can be 

expressed by the following approximation [7] 

 

  

 

An (n,k) code is capable of detecting 2n-2k error patterns of length n.For large n where 

2k << 2n only a small fraction of error patterns are undetected. 

 

3.6 CONVOLUTIONAL CODING 
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       Convolutional encoding with Viterbi decoding is a FEC technique that is 

particularly suited to a channel in which the transmitted signal is corrupted mainly by 

additive white Gaussian noise (AWGN). By using the convolutional channel coding 

significant improvement in SNR can be achieved.  

    Convolutional codes are usually described using two parameters: the code rate and 

the constraint length. The code rate, k/n, is expressed as a ratio of the number of bits 

into the convolutional encoder (k) to the number of channel symbols output by the 

convolutional encoder (n) in a given encoder cycle. The constraint length parameter, 

K, denotes the "length" of the convolutional encoder, i.e. how many k-bit stages are 

available to feed the combinatorial logic that produces the output symbols. Closely 

related to K is the parameter m, which indicates how many encoder cycles an input bit 

is retained and used for encoding after it first appears at the input to the convolutional 

encoder. The m parameter can be thought of as the memory length of the encoder. 

Since we have used code rate of 1/2,so we focus on rate 1/2 convolutional codes.  

Viterbi decoding is one of two types of decoding algorithms used with convolutional 

encoding-the other type is sequential decoding. Sequential decoding has the 

advantage that it can perform very well with long-constraint-length convolutional 

codes, but it has a variable decoding time. 

Viterbi decoding has the advantage that it has a fixed decoding time. It is well suited 

to hardware decoder implementation. But its computational requirements grow 

exponentially as a function of the constraint length, so it is usually limited in practice 

to constraint lengths of K = 9 or less. 

  But there's a tradeoff-the same data rate with rate 1/2 convolutional coding takes 

twice the bandwidth of the same signal without it, given that the modulation technique 

is the same. That's because with rate 1/2 convolutional encoding, you transmit two 

channel symbols per data bit. However, if you think of the tradeoff as a 5 dB power 

savings for a 3 dB bandwidth expansion, you can see that you come out ahead. 

Remember: if the modulation technique stays the same, the bandwidth expansion 

factor of a convolutional code is simply n/k. [14] 

 

3.7   CONVOLUTIONAL ENCODING  

        Convolutionally encoding the data is accomplished using a shift register and 

associated combinatorial logic that performs modulo-two addition. (A shift register is 



 

 

merely a chain of flip-flops wherein the output of the nth flip-flop is tied to the input 

of the (n+1)th flip-flop. Every time the active edge of the clock occurs, the input to 

the flip-flop is clocked through to the output, and thus the data are shifted over one 

stage.) The combinatorial logic is often in the form of cascaded exclusive-or gates that 

implements the table 8.1 

 

Input 
A 

Input 
B 

Output

(A xor B) 
0 0 0
0 1 1
1 0 1
1 1 0

 

Table 3.1: Convolutional Encoder output table  

  The exclusive-or gate performs modulo-two addition of its inputs. When you 

cascade q two-input exclusive-or gates, with the output of the first one feeding one of 

the inputs of the second one, the output of the second one feeding one of the inputs of 

the third one, etc., the output of the last one in the chain is the modulo-two sum of the 

q + 1 inputs.  

    Now that we have the two basic components of the convolutional encoder (flip-

flops comprising the shift register and exclusive-or gates comprising the associated 

modulo-two adders) defined, let's look at Figure 3.2 to see a picture of a convolutional 

encoder for a rate 1/2, K = 3, m = 2 code.  



 

 

 

Figure 3.2: A typical convolutional encoder implementation for code rate 1/2  

 In this encoder, data bits are provided at a rate of k bits per second. Channel symbols 

are output at a rate of n = 2k symbols per second. The input bit is stable during the 

encoder cycle. The encoder cycle starts when an input clock edge occurs. When the 

input clock edge occurs, the output of the left-hand flip-flop is clocked into the right-

hand flip-flop, the previous input bit is clocked into the left-hand flip-flop, and a new 

input bit becomes available. Then the outputs of the upper and lower modulo-two 

adders become stable. The output selector (SEL A/B block) cycles through two states-

in the first state, it selects and outputs the output of the upper modulo-two adder; in 

the second state, it selects and outputs the output of the lower modulo-two adder.  

   The encoder shown above encodes the K = 3, (7, 5) convolutional code. The octal 

numbers 7 and 5 represent the code generator polynomials, which when read in binary 

(1112 and 1012) correspond to the shift register connections to the upper and lower 

modulo-two adders, respectively. This code has been determined to be the "best" code 

for rate 1/2, K = 3. It is the code I will use for the remaining discussion and examples, 

for reasons that will become readily apparent when we get into the Viterbi decoder 

algorithm.  

Let's look at an example input data stream, and the corresponding output data stream: 

Let the input sequence be 0 1 0 1 1 1 0 0 1 0 1 0 0 0 12.  

  Assume that the outputs of both of the flip-flops in the shift register are initially 

cleared, i.e. their outputs are zeroes. The first clock cycle makes the first input bit, a 

zero, available to the encoder. The flip-flop outputs are both zeroes. The inputs to the 



 

 

modulo-two adders are all zeroes, so the output of the encoder is 002. The second 

clock cycle makes the second input bit available to the encoder. The left-hand flip-

flop clocks in the previous bit, which was a zero, and the right-hand flip-flop clocks in 

the zero output by the left-hand flip-flop. The inputs to the top modulo-two adder are 

1002, so the output is a one. The inputs to the bottom modulo-two adder are 102, so 

the output is also a one. So the encoder outputs 112 for the channel symbols. The third 

clock cycle makes the third input bit, a zero, available to the encoder. The left-hand 

flip-flop clocks in the previous bit, which was a one, and the right-hand flip-flop 

clocks in the zero from two bit-times ago. The inputs to the top modulo-two adder are 

0102, so the output is a one. The inputs to the bottom modulo-two adder are 002, so 

the output is zero. So the encoder outputs 102 for the channel symbols.  And so on.  

 

  After all of the inputs have been presented to the encoder, the output sequence will 

be: 00 11 10 00 01 10 01 11 11 10 00 10 11 00 112. 

  You can see from the structure of the rate 1/2 K = 3 convolutional encoder and from 

the example given above that each input bit has an effect on three successive pairs of 

output symbols. That is an extremely important point and that is what gives the 

convolutional code its error-correcting power. The reason why will become evident 

when we get into the Viterbi decoder algorithm. Now if we are only going to send the 

15 data bits given above, in order for the last bit to affect three pairs of output 

symbols, we need to output two more pairs of symbols. This is accomplished in our 

example encoder by clocking the convolutional encoder flip-flops two more times, 

while holding the input at zero. This is called "flushing" the encoder, and results in 

two more pairs of output symbols. The final binary output of the encoder is thus 00 11 

10 00 01 10 01 11 11 10 00 10 11 00 11 10 112. If we don't perform the flushing 

operation, the last m bits of the message have less error-correction capability than the 

first through (m - 1)th bits had. This is a pretty important thing to remember if you're 

going to use this FEC technique in a burst-mode environment. So's the step of 

clearing the shift register at the beginning of each burst. The encoder must start in a 

known state and end in a known state for the decoder to be able to reconstruct the 

input data sequence properly.  



 

 

   The table 3.2 gives the next state given the current state and the input, with the 

states given in binary. 

 

   Next State, if  
Current 

State
Input = 0: Input = 1: 

00 00 10 
01 00 10
10 01 11 
11 01 11 

 
Table 3.2: State transition table 

   The table 3.2 is often called a state transition table. We'll refer to it as the next 

state table 3.3. Now let us look at a table that lists the channel output symbols, 

given the current state and the input data, which we'll refer to as the output table :  

 

 Output Symbols, if
Current 

State 
Input = 0: Input = 1: 

00 00 11 
01 11 00 
10 10 01 
11 01 10 

Table 3.3: Output table 

 

You should now see that with these two tables, you can completely describe the 

behavior of the example rate 1/2, K = 3 convolutional encoder. Note that both of these 

tables have 2(K - 1) rows, and 2k columns, where K is the constraint length and k is the 

number of bits input to the encoder for each cycle. These two tables will come in 

handy when we start discussing the Viterbi decoder algorithm.  



 

 

 

3.8 SOFT Vs HARD DECISION  

       An ideal Viterbi decoder would work with infinite precision, or at least with 

floating-point numbers. In practical systems, we quantize the received channel 

symbols with one or a few bits of precision in order to reduce the complexity of the 

Viterbi decoder, not to mention the circuits that precede it. If the received channel 

symbols are quantized to one-bit precision (< 0V = 1, > 0V = 0), the result is called 

hard-decision data. If the received channel symbols are quantized with more than one 

bit of precision, the result is called soft-decision data. A Viterbi decoder with soft 

decision data inputs quantized to three or four bits of precision can perform about 2 

dB better than one working with hard-decision inputs. The usual quantization 

precision is three bits. More bits provide little additional improvement  

 We will assume hard decision for Viterbi decoding. [7] 

 

3.9  VITERBI DECODING     
     The single most important concept to aid in understanding the Viterbi algorithm is 

the trellis diagram. The figure 3.3 shows the trellis diagram for our example rate 1/2 

K = 3 convolutional encoder, for a 15-bit message:  

 

 

Figure 3.3: Trellis diagram  

The four possible states of the encoder are depicted as four rows of horizontal dots. 

There is one column of four dots for the initial state of the encoder and one for each 



 

 

time instant during the message. For a 15-bit message with two encoder memory 

flushing bits, there are 17 time instants in addition to t = 0, which represents the initial 

condition of the encoder. The solid lines connecting dots in the diagram represent 

state transitions when the input bit is a one. The dotted lines represent state transitions 

when the input bit is a zero. Notice the correspondence between the arrows in the 

trellis diagram and the state transition table discussed above. Also notice that since the 

initial condition of the encoder is State 002, and the two memory flushing bits are 

zeroes, the arrows start out at State 002 and end up at the same state [7].  

 The figure 3.4 shows the states of the trellis that are actually reached during the 

encoding of our example 15-bit message:  

 

 

 

Figure 3.4: Actually reached path through trellis diagram  

 

   The encoder input bits and output symbols are shown at the bottom of the diagram. 

Notice the correspondence between the encoder output symbols and the output table 

discussed above. Let's look at that in more detail, using the expanded version of the 

transition between one time instant to the figure 3.5 



 

 

 

Figure 3.5: Diagram showing transition from one state to other  

The two-bit numbers labeling the lines are the corresponding convolutional encoder 

channel symbol outputs. Remember that dotted lines represent cases where the 

encoder input is a zero, and solid lines represent cases where the encoder input is a 

one. (In the figure above, the two-bit binary numbers labeling dotted lines are on the 

left, and the two-bit binary numbers labeling solid lines are on the right.  Now let's 

start looking at how the Viterbi decoding algorithm actually works. For our example, 

we're going to use hard-decision symbol inputs to keep things simple. Suppose we 

receive the above-encoded message with a couple of bit errors as shown in figure 3.6.  

   Each time we receive a pair of channel symbols, we're going to compute a metric to 

measure the "distance" between what we received and all of the possible channel 

symbol pairs we could have received. Going from t = 0 to t = 1, there are only two 

possible channel symbol pairs we could have received: 002, and 112. That's because 

we know the convolutional encoder was initialized to the all-zeroes state, and given 

one input bit = one or zero, there are only two states we could transition to and two 

possible outputs of the encoder. These possible outputs of the encoder are 00 2 and 

112.  

 



 

 

 

 

Figure 3.6:  Path through the trellis diagram for received bits 

 

   The metric we're going to use for now is the Hamming distance between the 

received channel symbol pair and the possible channel symbol pairs. The Hamming 

distance is computed by simply counting how many bits are different between the 

received channel symbol pair and the possible channel symbol pairs. The results can 

only be zero, one, or two. The Hamming distance (or other metric) values we compute 

at each time instant for the paths between the states at the previous time instant and 

the states at the current time instant are called branch metrics. For the first time 

instant, we're going to save these results as "accumulated error metric" values, 

associated with states. For the second time instant on, the accumulated error metrics 

will be computed by adding the previous accumulated error metrics to the current 

branch metrics.[7]  

    At t = 1, we received 002. The only possible channel symbol pairs we could have 

received are 002 and 112. The Hamming distance between 002 and 002 is zero. The 

Hamming distance between 002 and 112 is two. Therefore, the branch metric value for 

the branch from State 002 to State 002 is zero, and for the branch from State 002 to 

State 102 it's two. Since the previous accumulated error metric values are equal to 

zero, the accumulated metric values for State 002 and for State 102 are equal to the 

branch metric values. The accumulated error metric values for the other two states are 

undefined. The figure 3.7 illustrates the results at t = 1.Note that the solid lines 

between states at t = 1 and the state at t = 0 illustrate the predecessor-successor 



 

 

relationship between the states at t = 1 and the state at t = 0 respectively. This 

information is shown graphically in the figure, but is stored numerically in the actual 

implementation. To be more specific, or maybe clear is a better word, at each time 

instant t, we will store the number of the predecessor state that led to each of the 

current states at t.  

 

 

 

Figure 3.7: Trellis diagram at t=1 

 

  Now let's look what happens at t = 2. We received a 112 channel symbol pair. The 

possible channel symbol pairs we could have received in going from t = 1 to t = 2 are 

002 going from State 002 to State 002, 112 going from State 002 to State 102, 102 going 

from State 102 to State 01 2, and 012 going from State 102 to State 11 2. The Hamming 

distance between 002 and 112 is two, between 112 and 112 is zero, and between 10 2 or 

012 and 112 is one. We add these branch metric values to the previous accumulated 

error metric values associated with each state that we came from to get to the current 

states. At t = 1, we could only be at State 002 or State 102. The accumulated error 

metric values associated with those states were 0 and 2 respectively. The figure 3.8 

below shows the calculation of the accumulated error metric associated with each 

state, at t = 2.  

 



 

 

 

 

Figure 3.8: Trellis diagram at t=2 

 

  That's all the computation for t = 2. What we carry forward to t = 3 will be the 

accumulated error metrics for each state, and the predecessor states for each of the 

four states at t = 2, corresponding to the state relationships shown by the solid lines in 

the illustration of the trellis.  

  Now look at the figure for t = 3. Things get a bit more complicated here, since there 

are now two different ways that we could get from each of the four states that were 

valid at t = 2 to the four states that are valid at t = 3. So how do we handle that? The 

answer is, we compare the accumulated error metrics associated with each branch, 

and discard the larger one of each pair of branches leading into a given state. If the 

members of a pair of accumulated error metrics going into a particular state are equal, 

we just save that value. The other thing that's affected is the predecessor-successor 

history we're keeping. For each state, the predecessor that survives is the one with the 

lower branch metric. If the two accumulated error metrics are equal, some people use 

a fair coin toss to choose the surviving predecessor state. Others simply pick one of 

them consistently, i.e. the upper branch or the lower branch. It probably doesn't matter 

which method you use. The operation of adding the previous accumulated error 

metrics to the new branch metrics, comparing the results, and selecting the smaller 

(smallest) accumulated error metric to be retained for the next time instant is called 

the add-compare-select operation. The figure 3.9 shows the results of processing t = 3:  

 



 

 

 

 

Figure 3.9: Trellis diagram at t=3 

 

Note that the third channel symbol pair we received had a one-symbol error. The 

smallest accumulated error metric is a one, and there are two of these.  

Let's see what happens now at t = 4. The processing is the same as it was for     t = 3. 

The results are shown in the figure 3.10:  

 

 

 

Figure 3.10: Trellis diagram at t=4 

Notice that at t = 4, the path through the trellis of the actual transmitted message, 

shown in bold, is again associated with the smallest accumulated error metric. Let's 

look at t = 5 as shown in figure 3.11:  



 

 

 

 

 

Figure 3.11: Trellis diagram at t=5 

 

 At t = 5, the path through the trellis corresponding to the actual message, shown in 

bold, is still associated with the smallest accumulated error metric. This is the thing 

that the Viterbi decoder exploits to recover the original message. At t = 17, the trellis 

looks like this, with the clutter of the intermediate state history removed:  

 

 

Figure 3.12: Trellis diagram for complete packet 

 



 

 

The decoding process begins with building the accumulated error metric for some 

number of received channel symbol pairs, and the history of what states preceded the 

states at each time instant t with the smallest accumulated error metric. Once this 

information is built up, the Viterbi decoder is ready to recreate the sequence of bits 

that were input to the convolutional encoder when the message was encoded for 

transmission. This is accomplished by  following steps  

• First, select the state having the smallest accumulated error metric and save the 

state number of that state.  

• Iteratively perform the following step until the beginning of the trellis is reached: 

Working backward through the state history table, for the selected state, select a new 

state which is listed in the state history table as being the predecessor to that state. 

Save the state number of each selected state. This step is called traceback.  

• Now work forward through the list of selected states saved in the previous steps. 

Look up what input bit corresponds to a transition from each predecessor state to its 

successor state. That is the bit that must have been encoded by the convolutional 

encoder.[7]  



 

 

CHAPTER  4 

 

MODULATION, MATCH FILTERING AND 

PULSE SHAPING 
 

 

   Many information bearing signals are transmitted by some type of carrier 

modulation. The channel over which the signal is transmitted is limited in bandwidth 

to an interval of frequencies centered about the carrier.The modulation performed at 

the transmitting end of the communication system to generate the bandpass signal and 

the modulation performed at the receiving end to recover the digital information 

involves the frequency translations.  

,     4.1 WHY MODULATE? 
 

        Digital modulation is the process by which digital symbols are transformed into 

waveforms that are compatible with the characteristics of the channel. In the case of 

baseband modulation, these waveforms usually take the form of shaped pulses. But in 

the case of bandpass modulation the shaped pulses modulate a sinusoid called a 

carrier wave, or simply a carrier; for radio transmission the carrier is converted to an 

electromagnetic (EM) field for propagation to the desired destination. One might ask 

why it is necessary to use a carrier for the radio transmission of baseband signals. The 

answer is as follows. The transmission of EM fields through space is accomplished 

with the use of antennas. The size of the antenna depends on the wavelength λ  and 

the application. For cellular telephones, antennas are typically λ /4 in size, where 

wavelength is equal to c/f and c, the speed of light, is 3 x 108 m/s. Consider sending a 

baseband signal (say, f = 3000 Hz) by coupling it to an antenna directly without a 

carrier wave. How large would the antenna have to be? Let us size it by using the 

telephone industry benchmark of λ /4 as the antenna dimension. For the 3,000 Hz 

baseband signal, λ /4 = 2.5 x 104 m= 15 miles. To transmit a 3,000 Hz signal through 

space. without carrier-wave modulation, an antenna that spans 15 miles would be 

required. However. if the baseband information is first modulated on a higher 



 

 

frequency carrier, for example a 900 MHz.[7]. carrier, the equivalent antenna 

diameter would be about 8 cm. For this reason, carrier-wave or bandpass modulation 

is an essential step for all systems involving radio transmission. 

 

4.2   DIGITAL BANDPASS MODULATION 
       Digital modulation is the process by which digital symbols are transformed into 

waveforms that are compatible with the characteristics of the channel and 

demodulation is the reverse process of again recovering the original message. In the 

case of baseband modulation, these waveforms usually take the form of shaped 

pulses. But in the case of bandpass modulation the shaped pulses modulate a sinusoid 

called a carrier wave, or simply a carrier; for radio transmission the carrier is 

converted to an electromagnetic (EM) field for propagation to the desired destination 

[7].  

   The modulating process transforms the low frequency baseband signal to a bandpass 

signal around a carrier frequency as sketched in figure 4.1. The bandpass signal is the 

one actually transmitted to the receiver where the demodulator reconstructs the low-

frequency baseband message. 
 

 
 

Figure 4.1: Power spectra for signals in the modulation and demodulation processes. 
 

Bandpass modulation (either analog or digital) is the process by which an 

information signal is converted to a sinusoidal waveform; for digital modulation, such 

a sinusoid of duration T is referred to as a digital symbol. The sinusoid has just three 

features that can be used to distinguish it from other sinusoids: amplitude, frequency, 

and phase. Thus bandpass modulation can be defined as the process whereby the 

amplitude, frequency, or phase of an RF carrier, or a combination of them, is varied in 

accordance with the information to be transmitted. The general form of the carrier 



 

 

wave is 

                                     )(cos)()( ttAts θ=                                                   (4.1) 

where A(t) is the time-varying amplitude and θ (t) is the time-varying angle. It is 

convenient to write 

)()( ttt O φωθ +=                                                   (4.2)     

so that 

[ ])(cos)((( tttAts φω ο +=                                               (4.3) 

Where WO is the radian frequency of the carrier and θ (t) is the phase. The terms f and 

θ  will each be used to denote frequency. When f is used, frequency in hertz is 

intended; when θ  is used, frequency in radians per second is intended.  
 

4.2.1   PHASE SHIFT KEYING 
   Under phase-shift keying (PSK), the information bits determine the phase of a 

carrier, which takes values from a discrete set in accordance with the information bits. 

The general form of PSK signals is given by 
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T
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where the phase term, θi , will have M discrete values, typically given by 
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is the signal energy (the same for all signals). We will assume that the signal is 

bipolar rectangular pulse of duration T until the discussion about pulse shaping. 

Equation 4.6 can be re-written in a slightly different form as 
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where )(1 tφ  and )(2 tφ  are easily seen to be orthonormal. Thus, PSK signals are 

points in a two-dimensional space spanned by )(1 tφ and )(2 tφ  [7]. 
 

4.2.2   QPSK TRANSMITTER 



 

 

      For the binary PSK M = 2 this means that modulating data signal shifts the phase 

of the waveform )(tsi  to one of the two states either zero or π . Similarly for 

quadriphase or quadrature shift keying M = 4 and the waveform )(tsi shifts the phase 

to one of 4 phases separated by π/4. The constellation diagram for QPSK signal using 

relation in equation 4.7 is shown in figure 4.2. 
 

 
Figure 4.2: QPSK Constellation diagram 

 

   The illustrated constellation mapping in figure 4.2, known as Gray coding, has the 

property that adjacent signals are assigned binary sequences that differ in only one bit.  
 

   Now using the complex baseband representation the QPSK transmitter is drawn in 

figure 4.3. QPSK lookup table in figure 4.3 is simply the assignment of one phase to 

each of four symbols. Transmit filter is a filter which shapes the bit stream to a 

waveform. After constellation mapping we are having only phase as shown in table 

below. It is the transmit filter which convert them in a waveform We will discuss it 

later. 
 

Table 4.1: QPSK lookup table 

 

 

 

Symbol Phase 

00 4/πje  

01 4/πje−  

10 4/3πje  

11 4/3π−je  



 

 

 
Figure 4.3: QPSK Transmitter 

4.2.3   QPSK DETECTION 
    There are two approaches for detection of any modulated signal. One is called 

coherent detection and other is called non-coherent detection. When the receiver 

exploits knowledge of the carrier's phase to detect the signals, the process is called 

coherent detection; when the receiver does not utilize such phase reference 

information, the process is called no coherent detection. In ideal coherent detection, 

there is available at the receiver a prototype of each possible arriving signal. These 

prototype waveforms attempt to duplicate the transmitted signal set in every respect, 

even RF phase. The receiver is then said to be phase locked with the incoming signal. 

While for non-coherent detection the there is no need for the receiver to be phase 

locked with the transmitter because the phase information is provided to the receiver 

by differentially encoding the symbols at the receiver. Thus the receiver design is 

simplified. 

   We are not using the differential encoding, so we will only discuss the coherent 

detection. In coherent detection the receiver has the decision regions as shown in 

figure 4.4.  



 

 

 
Figure 4.4: Decision regions for QPSK signal 

 

If the symbol is in region 1 then the receiver makes the decision that it is 00 and so 

on. The receiver structure is shown in figure 4.5. After recovering the complex 

baseband signal from the real received signal we have to determine only the phase and 

according to that phase we have to select that particular region in which phase is 

lying. After selecting the region the only job left is to recover the two bits which 

conveyed by the phase using the same lookup table as shown before. We will discuss 

the receive filter later.             
 

 
 

Figure 4.5: QPSK Receiver structure 
 

   So far we have explained complex envelop representation of bandpass signals and 

QPSK modulation/demodulation. From now on we will not use the receiver structure 

explained above but only the complex baseband part will be used. The frequency 

translation part will be removed because it the same for all. The baseband receiver 

structure is given in figure 4.6. 
 



 

 

 
 

Figure 4.6: Baseband model for QPSK communication system    

4.3   DETECTION IN ADDITIVE WHITE GAUSSIAN NOISE  

4.3.1   ADDITIVE WHITE GAUSSIAN NOISE 
   So far we have assuming the ideal channel because we are receiving the same signal 

which we are transmitting. But this will never happen in practice. There are many 

sources of noise which corrupt the transmitted signal like galaxy and atmospheric 

noise, switching transients, interfering signals from other sources and many many 

more sources. With proper precautions much of the noise and interference entering 

the receiver can be reduced or even eliminated. However there is one noise source 

that cannot be eliminated and that is the noise caused by the thermal motion of 

electrons in any conducting media. This motion produces thermal noise in amplifiers 

and circuits and corrupts the signal. 

   The noise can be thought as a random process. Any random process can be 

modelled statistically using normal or Gaussian. An important case of a random signal 

is the case where the autocorrelation function is a dirac delta function which has zero 

value everywhere except when τ = 0. In other words, the case where 
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where Rx(τ) is the auto-correlation function of a random variable x(t) and N0 is any 

constant. The auto-correlation at τ = 0 is also called the power of the signal. The 

Fourier transform of auto-correlation function is called as the power spectral density 

and power spectral density for noise is 

2
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In this special case where the autocorrelation is a “spike” the Fourier transform results 

in a constant frequency spectrum as shown in figure 4.7. This is in fact a description 

of white noise, which be thought of both as having power at all frequencies in the 

spectrum, and being completely uncorrelated with itself at any time except the present 

(τ = 0). This latter interpretation is what leads white noise signals to be called 

independent. Any sample of the signal at one time is completely independent 

(uncorrelated) from a sample at any other time. While impossible to achieve or see in 

practice (no system can exhibit infinite energy throughout an infinite spectrum), white 

noise is an important building block for design and analysis. Often random signals can 

be modeled as filtered or shaped white noise. Literally this means that one could filter 

the output of a (hypothetical) white noise source to achieve a non-white or colored 

noise source that is both band-limited in the frequency domain, and more correlated in 

the time domain. 

 

 
Figure 4.7: White noise shown in both the time (left) and frequency domain (right). 

 

From above it is clear why thermal noise is called Additive white Gaussian noise 

(AWGN). Additive because it adds in the signal not multiplies. White because it has 

the same power for all the frequencies. Gaussian because it can be modelled using 

Gaussian or normal distribution and power for any normally distributed random 

variable is 2
0σ , where 2

0σ  is the variance of the random variable. 

 

4.3.2   SNR MAXIMIZATION WITH A MATCHED FILTER 
      SNR is a good measure for a system’s performance, describing the ratio of signal 

power (message) to unwanted noise power. The SNR at the output of a filter is 

defined as the ratio of the modulated signal’s energy to the mean-square value of the 

noise. The SNR can be defined for both continuous- and discrete-time processes; the 

discrete SNR is SNR of the samples of the received and filtered waveform. A 



 

 

matched filter is a linear filter designed to provide the maximum signal-to-noise 

power ratio at its output for a given transmitted symbol waveform. It is called match 

filter because it impulse response exactly matches with the impulse response of the 

transmitted signal1 [7]. It will be proved now. 

   Consider that a known signal s(t) plus AWGN n(t) is the input to a linear, time-

invariant (receiving) filter followed by a sampler, as shown in Figure 4.8 Actually the 

receive filter is replaced with match filter. At time t = T, the sampler output z(T) 

consists of a signal component ai and a noise component n0 . 

z (T) = ai + n0                                                       (4.10) 

 The variance of the output noise (average noise power) is denoted by 2
0σ , so that the 

ratio of the instantaneous signal power to average noise power. (S/N)T. at time t = T, 

out of the sampler in step 1, is 
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Figure 4.8 QPSK receiver with sampler at symbol rate T and match filter 
 

   We wish to find the filter transfer function Ho(f) that maximizes equation 4.11 We 

can express the signal ai(t) at the filter output in terms of the filter transfer function 

H(f) (before optimization) and the Fourier transform of the input signal,  
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   where S(f) is the Fourier transform of the input signal, S(t). If the two-sided power 

spectra} density of the input noise is No/2 watts/hertz, then, we can express the output 

noise power as              
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We then combine equations 4.27 to 4.29 to express (S/N)T. as follows 
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We next find that value of H(f) = Ho(f) for which the maximum (S/N)T is achieved, by 

using Schwarz's inequality. One form of the inequality can be stated as 
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The equality holds if f1(x) = kf*2(x) where k is an arbitrary constant and * indicates 

complex conjugate. If we identify H(f) with f1(x) and S(f) eTf�j2 with f2(x), then 
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Substituting into Equation 4.15 yields 
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Where the energy E of the input signal S(t) is 
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Thus, the maximum output (S/N)T depends on the input signal energy and the power 

spectral density of the noise, not on the particular shape of the waveform that is used. 

The equality in Equation 4.17 holds only if the optimum filter transfer function HO(f) 

is employed, such that 
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Since S(t) is a real-valued signal, we can write, 
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Thus, the impulse response of a filter that produces the maximum output signal-to-

noise ratio is the mirror image of the message signal s(t), delayed by the symbol time 

duration T. Note that the delay of T seconds makes Equation 4.21 causal; that is, the 

delay of T seconds makes h(t) a function of positive time in the interval 0 < t < T as 

shown in figure 4.9. Without the delay of T seconds, the response s(–t) is unrealizable 

because it describes a response as a function of negative time.  



 

 

 
 

Figure 4.9: Impulse responses of received signal and match filter  
 

   The above mathematical discussion proves that if the impulse responses of the 

received signal and the match filter are mirror images of each other then at t=T the 

SNR is maximized. Actually the convolution with itself is a process of integration. By 

match filtering we are actually integrating the received signal. AWGN is a zero mean 

random variable. By averaging we are trying to force it to zero. It can be verified that 

as T approaches ∞  the noise averaged to zero.    

The QPSK receiver with match filter can be redrawn in figure 4.10.    

 
Figure 4.10: QPSK receiver with match filter 

 

4.4   INTERSYMBOL INTERFERENCE AND PULSE SHAPING  
       The spreading and smearing of symbols such that the energy from one symbol 

effects the next ones in such a way that the received signal has a higher probability of 

being interpreted incorrectly is called inter symbol interference (ISI). 

  Let’s assume that the transmit filter has a impulse response of a rectangular pulse as 

shown. We know that the frequency response of rectangular pulse is a sinc function 

which is from [ ∞∞− , ].  This means that it has infinite bandwidth which is not the 

requirement and also the rectangular pulse is not possible to design practically.   



 

 

 
 

Figure 4.11: Time and frequency response of rectangular pulse 
 

   Another solution is that we used the sinc in time domain because it has a gate 

function in frequency domain which has very pleasant from bandwidth requirement. 

But the problem is that the impulse response of one pulse has infinite length. But the 

sinc pulse is passing through zero after every multiple of T as shown above. Now if 

we transmit the successive pulses such that a pulse has its max peak value when the 

others are passing through zero. In this case we may have ISI at the other time but this 

will ensure that there is no ISI at the multiples of symbol interval as shown in figure 

4.11.  

Sinc pulse has problem that it is also impractical to design and also it has infinite 

impulse response. A single pulse is affecting all the pulses before or after it. Slight 

misadjustment in time will result in effecting all the pulses.  

     



 

 

 
 

Figure 4.12: pulse shaping using sinc. 
 

Nyquist offered ways to build (realizable) shapes that had the same good qualities as 

the sinc pulse and less of the disadvantages. One class of pulses he proposed are 

called the raised cosine pulses. They are really a modification of the sinc pulse. Where 

the sinc pulse has a bandwidth of W, which is given as 

W  =  1 / 2T                                                         (4.22) 

The raised cosine pulses have an adjustable bandwidth which can be varied from W to 

2W. We want to get as close to W, which is called the Nyquist bandwidth, as possible 

with a reasonable amount of power. The factor α  related the achieved bandwidth to 

the ideal bandwidth W as 
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  where W is Nyquist bandwidth, and W0 is the utilized bandwidth. 

   The factor � is called the roll-of factor. It indicates how much bandwidth is being 

used over the ideal bandwidth. Smaller this factor, the more efficient will be the 

scheme. The percentage over the minimum required W is called the excess bandwidth. 

It is 100% for roll-off of 1.0 and 50% for roll-off of 50%. The alternate way to 

express the utilized bandwidth is.  

sRW )1(0 α+=
                                                                                 (4.24) 

Typical roll-off values used for wireless communications range from 2 to 4. 

Obviously we want to use as small a roll-off as possible, since this gives the smallest 

bandwidth. Here is how the class of raised cosine pulse is defined in time domain. 
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The first part is the sinc pulse. The second part is a cosine correction applied to the 

sinc pulse to make it behave better. The sinc pulse insures that the function transitions 

at integer multiples of symbol rate which makes it easy to extract timing information 

of the signal. The cosine part works to reduce the excursion in between the sampling 

instants.  The bandwidth is now adjustable. It can be any where from 1/2 Rs to Rs.  It 

is greater than the Nyquist bandwidth by a factor       (1+ α ). For α  = 0, the above 

equation reduces to the sinc pulse, and for α   = 1, the equation becomes that of a pure 

square pulse. 

 

 
 

Figure 4.13: Impulse responses of raised cosine filter with 1,5.0,0=α   

In frequency domain, the relationship is given by 

 



 

 

                   (4.26) 

   Why do they call it raised cosine? Because the above response has a cosine function 

in the frequency domain, although other many other trigonometric representations of 

this equation that do not have the cosine-squared term, so it is not always clear why 

these are called raised cosine. 

  The frequency response looks somewhat like a square pulse as we would expect. A 

range of bandwidths are possible depending on the chosen �. The bandwidth can be 

anywhere from 1/2 Rs (this term same as W, the Nyquist bandwidth) for the sinc pulse 

to Rs for the square pulse. The bandwidth utilized is greater than the Nyquist 

bandwidth by a factor (1 + α  ). For α  = 1 the above equation reduces to the sinc 

pulse, and for α  = 1 the equation becomes that of a pure square pulse. 

 
 

Figure 4.14: Frequency responses of raised cosine filter with 1,5.0,0=α  
 

  To implement the raised cosine response, we split the filtering in two parts to create 

a matched set. When we split the raised cosine filtering in two parts, each part is 

called the root-raised cosine.  In frequency domain, we take the square root of the 

frequency response hence the name root-raised cosine.   

Yes, the whole raised cosine can be applied at once at the transmitter but in practice it 

has been found that concatenating two filters each with a root raised cosine response 

(called split-filtering) works better. 
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The root raised cosine shaping of pulses is also called baseband filtering. The 

frequency response of the root raised cosine is given by 
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Compare the impulse response of the root raised filter to that of the raised cosine. We 

do not see much of a difference except that there is a little bit more excursion in the 

root-raised cosine response. The time domain function is of course NOT the square 

root. The root part applies to frequency domain 
 

 
Figure 4.15: Frequency responses of raised cosine and rootraised cosine filters 

 

By splitting the raised cosine into two root raised cosine filter we are achieving two 

things. First is that by doing so we are forcing the ISI to zero at the receiver. There is 

ISI when we are transmitting but there is no ISI at the receiver. Second is match 

filtering because the impulse response of transmit and receiver filters are exactly 

matched. This will give us the highest SNR point at the symbol interval. Now the 

final baseband communication system is given below. Two wire connections are for 

complex data. 



 

 

 

    
Figure 4.16: Baseband model of QPSK communication system 

 

4.5   DISCRETE TIME MODEL OF COMMUNICATION SYSTEM 
   So far we have explained discrete partial analog communication system. In figure 

4.15 the only analog portion is raised cosine filter. If we realize it in discrete time the 

complete system will become digital. We know that the raised cosine filter requires 

the excess bandwidth. So in order to filter the QPSK symbol we have to upsample by 

at least factor of 2 because the maximum excess bandwidth is equal to the Nyquist 

bandwidth. The upsampling is done by the insertion of  M–1 zeros in between the 

QPSK symbol stream and then interpolation is done by the digital raised cosine filter. 

If we are sampling by a factor of M then we will say that we have M samples per 

symbol. At the receiver we have to downsample by a factor of M in order to recover 

the QPSK symbol stream. The complete discrete time model is given below 

 
Figure 4.17: Discrete time baseband model of QPSK communication system 

 

4.6 SIMULATION RESULTS 
  A simulation is run for QPSK modulation and pulse shaping using raised cosine 

pulse shaping. The constellation diagram for QPSK symbols at transmitter is  



 

 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

in
ar

y 
A

xi
s

 
Figure 4.18: QPSK Constellation diagram at transmitter 

 

QPSK constellation diagram after the coherent detection at the receiver is  
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Figure 4.19: QPSK Constellation diagram at receiver 

 

Raised cosine filter is splitted into root raised cosine filters at transmitter and receiver 

for match filtering and pulse shaping. 10 samples per symbol are chosen for 

convenience in plotting and the length of filters is 101. The impulse response of the 

raised cosine and root raised cosine filters are shown in figures.    
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Figure 4.20: Impulse response of root raised cosine pulse 

 

From the above figure you can see that impulse response is not passing through zero 

crossings at symbol intervals (multiples of 10) 
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Figure 4.21: Impulse response of  raised cosine pulse 

 

In the above the impulse response is passing through zero crossings at symbol 

intervals and this guarantees the zero ISI at symbol intervals. 

In the following two figures the eye-diagram at transmitter and receiver is plotted and 

from these figures it is clear that there is ISI at the transmitter after filtering using root 

raised cosine filter but the ISI is removed at the receiver after root raised cosine 

filtering because both of them collectively make a raised cosine filter.       
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Figure 4.22: Eye diagram at transmitter (there is ISI) 
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Figure 4.23: Eye diagram at receive (no ISI) 

 

 

 

 

 



 

 

CHAPTER  5 

 

SYNCHRONIZATION 
 

5.1   INTRODUCTION 
         Synchronization (“syn” meaning “together” and “chronous” meaning “time”) is 

the process of reconstructing this time base. There are two synchronization problems 

encountered in passband communication systems: Symbol timing recovery and 

Carrier recovery. Symbol timing recovery enables the receiver to select the proper 

samples for decision. Carrier recovery is required for the operation of a 

phase-coherent demodulator. 

    The carrier frequency of the received signal may be different from that of the 

nominal value of the transmitter carrier frequency. This discrepancy can be the results 

of the deviation of the transmitter oscillator from the nominal frequency and, more 

importantly, the Doppler Effect when the transmitter is in motion relative to the 

receiver. 

              In reality, it takes a finite amount of time for the information-bearing 

electromagnetic wave to travel from the transmitter to the receiver. This transmission 

delay introduces a mismatch between the symbol timing at the transmitter and that at 

the receiver. Recall that we need to sample the output of the matched filter at an exact 

time to optimize the error performance. We need to know the symbol timing at the 

receiver (or equivalently, the transmission delay) in order to eliminate the 

performance degradation. Due to the timing mismatch Implementation of the receiver 

by digital techniques implies sampling of the signal. In some circumstances, the 

sampling can be synchronized to the symbol rate of the incoming signal  
   Phase lock loops (PLLs) are key components of modern communication systems 

which are used in synchronization [4]. Before going into the discussion of carrier and 

timing recovery techniques it is necessary to provide a detailed overview of PLL.   

 

 

5.2   PHASE LOCKED LOOPS 



 

 

        The basic PLL structure is shown in Figure 5.1. The voltage-controlled oscillator 

(VCO) attempts to produce a signal v(t) that tracks the phase of the input y(t). A phase 

detector measures the phase error between the input y(t) and the VCO output v(t). The 

resulting error signal can be filtered to become a control signal that drives the VCO. 

The basic idea is obvious—if the VCO phase gets ahead of the phase of the input, the 

control signal should be reduced. If the VCO phase gets behind, the control signal 

should be increased. As with any feedback system, the parameters must be chosen to 

ensure stability. The goal in design of the PLL varies with the application. 

 
Figure 5.1: Basic structure of a continuous-time PLL. 

 

5.3  IDEAL CONTINUOUS TIME PLL 
         PLLs are conceptually simple, but they are inherently non-linear systems and 

their analysis can be difficult. However, with some carefully crafted simplifying 

assumptions we can develop powerful analytical tools that simplify the analysis. 

First assume a particular form for the input 

              ( ))(cos)( ttwAty vy θ+=                                            (5.1) 

where yA  and vw are constants. The output of the VCO is assumed to have a similar 

form 

              ( ))(cos)( ttwAtv vv φ+=                                           (5.2) 

When )(tφ  is a constant the frequency of the VCO output is vw , called the natural or 

free-running frequency of the VCO. 
 

5.3.1   IDEAL PHASE DETECTOR 
         Assuming forms (5.1) and (5.2) the output of an ideal phase detector is 

              ( ))()()( ttWt φθε −=                                                    (5-3)                         

where the function W(.), shown in Figure 5.2, reflects the 2π  ambiguity in the phase 

difference. Because of the shape of W(.), this phase detector is called a sawtooth 

phase detector. We have assumed unity slope for the function W(.), although in prac-

tice the phase detector may exhibit some other gain, often written PK . That gain is 



 

 

easily modeled as part of the loop filter gain, so its explicit inclusion is not necessary. 

Because of the 2π  ambiguities in an ideal phase detector, sudden changes of 2π in 

)(tθ or )(tφ  have no effect on the system (they are not detected by the phase 

detector). Such changes are called clicks, and are usually detrimental. 

 
Figure 5.2: An ideal phase detector which can detect phase errors ψ  modulo 2π . 

 

5.3.2   IDEAL VCO 
          The ideal VCO, with properties summarized in Figure 5.3, produces the output 

(5.2), which has instantaneous frequency 

        [ ]
dt

tdwttw
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d

vv
)()( φφ +=+                                        (5.4) 

Again, a practical VCO may have gain, often written vK , that can be modeled as part 

of the gain of the loop filter. Intuitively, we would like to directly control the instan-

taneous frequency with the control input c(t). The VCO should therefore be designed 

so that 

           )())(( tc
dt

td
=

φ                                              (5.5) 

Taking the Laplace transform of equation (7.5), 

            )()()()( sEsLsCss ==Φ                                         (5.6) 

where C(s) is the Laplace transform of the control signal and E(s) is the Laplace 

transform of the error signal )(tε . 

 
Figure 5.3: An ideal VCO 

 

5.3.3   PHASE AND AVERAGE-FREQUENCY LOCK 
The ideal PLL is phase locked if 

φθφ += )()( tt                                                 (5.7) 



 

 

for some constant φ .If 0=φ , the PLL is perfectly phase locked. In other words, the 

VCO output is exactly tracking the phase of the input. It is locked to an average fre-

quency Kwv +  if 

           Ktt =)(φ                                                    (5.8) 

for some constant K . The VCO output frequency is presumably exactly the same as 

the input average frequency. Intuitively, there must be some limitations on the input 

phase Q(t ) for the PLL to be phase or average-frequency locked because the phase 

detector output is bounded by ±π . To find the limitations, assume a simple form for 

the phase of the input, 

            θθ += twt 0)(                                               (5.9) 

In other words, the input y(t) is a sinusoid with frequency 0wwv +  and phase θ , a 

constant. Assume the PLL is phase locked. In order for it to remain phase locked, the 

frequency offset 0w must not exceed a limited range called the lock range or hold-in 

range of the PLL.[4] 
 

5.3.4   ANALYSIS OF THE LINEARIZED DYNAMICS 
           Phase and average-frequency lock are static concepts. They assume the PLL is 

in steady state. If we assume that the phase error is small enough for all t 

 , πφθ <− )()( tt                                           (5.10) 

then the phase detector is operating in its linear range (Figure 7.2) 

 )()()( ttt φθε −=                                              (5.11) 

and the analysis of the dynamics of the PLL is simple. The transfer function from the 

phase )(tθ of the input to the phase )(tφ of the VCO follows by taking the Laplace 

transform of (5. 11), 

)()()( sssE Φ−Θ=                                          (5.12) 

and from (5.6), 
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Combining these and solving for )(
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s

Θ
Φ  we get the phase transfer function 
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From above transfer function it is clear that the order of PLL (transfer function) is 

always 1 greater than the order of the loop filter. Evaluating transfer function     (5. 

14) at s =0, for a zero order loop filter, the PLL has unity gain for dc phase errors. In 

other words, when the input phase is constant, Kt =)(θ , then the output phase is the 

same constant Kt =)(φ , In this case we get perfect phase lock with any loop filter.  

   The bandwidth of a PLL is loosely defined to be the bandwidth of the transfer 

function )(
)(

s
s

Θ
Φ . Lowering the bandwidth means increasing the attenuation of high 

frequency components in the input phase or noise, but for the first order PLL, it also 

reduces the lock range. It is possible to reduce the bandwidth without reducing the 

lock range by using a second-order PLL (first order loop filter) [4]. 

Transfer function for the typical first order PLL is 

s
KsKsL L
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=                                               (5.15) 

This is sometimes called a proportional plus integral loop filter. The closed-loop 

phase response is 
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The PLL with above loop filter has unity gain at dc. It has an integrator in the loop 

filter. In fact, by convention, the "type" of a PLL is the number of integrators in the 

loop filter plus one. Its main advantage is that the integrator leads to perfect phase 

lock even in the face of frequency offset.  
 

5.3.5   STEADY-STATE RESPONSE 
      It is often useful to know precisely the steady-state operating point of a PLL given 

certain inputs. The steady-state phase error is defined to be 

          )(lim t
tss εε

∞→
=                                              (5.17) 

If the PLL does not achieve perfect phase lock then 0≠ssε . If 0)( =tε  for t < 0 then 

we can (usually) find ssε  using the final value theorem for Laplace transforms, 
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0

ssE
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 Laplace transform of )(tε  in terms of the input phase is, 
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5.4   DISCRETE TIME PLL 
        In digital communications systems, especially for software radio applications,   

analog continuous-time PLLs like those discussed in section 5.3 are rare.  So we have 

to have the discrete time equivalent for the continuous time PLLs [4]. 

A typical all digital PLL is shown in figure 5.4. Assumptions about the form of the 

input signal and the output of the digital VCO which is also called numerically 

controlled oscillator (NCO) are analogous to that of continuous time PLL.  
 

5.4.1   PHASE ERROR DETECTOR 
     The PED is a discrete time version of the continuous PED discussed previously. 

)( kkk W φθε −=                                                (5.20) 

Where W(.) is shown in figure 5.2. 

 
Figure 5.4: A typical discrete time PLL 

 

     

First order PLL (with zero order loop filter) can track a phase step with a zero steady 

state error. But it is unable to track a frequency step or phase ramp with a zero steady 

state error. In fact it does track the phase ramp but with a constant steady state error. 

Second order PLL (with a first order loop filter) can track the both phase step and 

phase ramp with a zero steady state error. But it unable to track the frequency ramp, 

which may result if the transmitter and receiver are moving with constant 

acceleration. But the frequency ramp very rarely occurs in practical conditions. There 

is another advantage of second order PLLs that they are unconditionally stable and 

they are most of the time used for synchronization. Third order PLL (with a second 

order loop filter) can track the phase step, phase ramp and frequency ramp with a zero 

steady state error. But they are not unconditionally stable and they are never used in 

synchronization. They have some applications in GPS. 

5.4.2 COMPLEX PHASE ERROR DETECTORS 



 

 

        We are using the QPSK modulation technique. The input to the phase error 

detector is a complex QPSK signal. So we must have a complex phase error detector.  

A simple phase detector for complex signals is shown in Figure 5.5. For small phase 

errors, the phase detector is approximately linear, 

          [ ])()()( ttAAt yv φθε −≈                                                (5.21) 

 
Figure 5.5: A simple phase error detector for complex signals 

But we are having the discrete time data. We have to modify the above PED by just 

replacing the t by k.  

It concludes our discussion about the PLL. Now we will discuss phase recovery.  [4] 

 

5.5 PHASE RECOVERY 

      As described in chapter 4 we are doing coherent detection of QPSK symbols and 

for coherent detection the receiver and transmitter must be locked in phase. One 

solution is to use PLL before the timing recovery (discussed in the next section). But 

it is slightly difficult because we have more than one sample per symbol. So we are 

putting it after the timing recovery because our timing recovery loop is independent of 

phase errors. If there is any mismatch in phases of transmitter and receiver carriers 

then it will rotate the constellation according to the amount of mismatch. Our PLL is 

operating at baseband complex QPSK signal. We are employing all digital, non data 

aided and feedback phase recovery.  The phase recovery loop recovery loop is given 

in figure 5.6.  

 



 

 

Figure 5.6: NDA Phase recovery loop for one sample per symbol 
 

The above phase recovery method is called raise to power M phase recovery. The 

BPSK signal at the baseband is just ±1(either cos(0) or cos(π)). By taking power of 2 

for BPSK signal the modulation is removed. Similarly for QPSK which has 4 phases 

taking power of 4 the modulation is removed. 

The incoming signal has phase )()( kk yθφ ∆+ , where )(kφ  is the QPSK modulation 

phase at time instant k and given by the relation 

3,1
4

±±== iwhereii
πφ                                   (5.22) 

and )(kyθ∆  is the phase distortion. Before discussing each component individually 

one important thing we want to mention.  The values of VCO and PED constants are 

considered in calculating loop filter’s constants (explained shortly). So we will 

assume them 1 from now on.   
 

5.5.1 PHASE ERROR DETECTOR 
            The PED operation is to multiply the incoming signal with the NCO output 

and then take raise to power 4 to remove modulation. The signal at the output of PED 

is the imaginary part of raised to power 4 error signal. The imaginary part is chosen 

because it is proportional and odd function of error signal. 

Let’s assume that the input signal to the PED at any time k is 

)])()([exp()( kkjky yθφ ∆+×=                                    (5.23) 

the phase )(kyθ of the signal y(k) is 

)()()( kkk yy θφθ ∆+=                                             (5.24) 

the phase )(kyθ  is added in the NCO phase vv k θθ ∆−=)(  and the output  

)()()( kkk vye θθθ −=                                                 (5.25) 

is the phase difference between the two. By taking raise to power 4 
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You can see that the modulation is removed but the error is also becomes 4 times. 

Taking power ¼ will give us the error )()( kk vy θθ ∆−∆  only.  

[ ] 4/1)()( kzkr =                                           (5.27) 



 

 

Now next step is to take imaginary part of the output because it proportional part and 

also sin is odd function of input. The input signal to the loop filter is  

))(()( krke ℑ=                                             (5.28) 

The open loop characteristic curve for PED which is also called S-curve is shown in 

figure below . This is the same as shown in figure 5.2. 
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Figure 5.7: Characteristic S-Curve for PED from pi/4 to –pi/4 

 

This is from [–pi/4,pi/4] and it shows that the PED will track the phase variations. It has 

zero value at the center when phase error is zero. Actually PLL will start locking at any 

point and then recursively take it to the origin where error is zero. This S-curve will 

guarantee that the in the close loop the PLL will lock the phase. 
 

5.5.2   NCO 

Output signal from  the loop filter kε is the input to the NCO. The NCO has the same 

operation as explained above. The output phase of NCO is   

))(()()1( kKkk vv εθθ +∆=+                                     (5.29) 

The loop is said to be phase locked if the difference between )(kvθ∆  and yθ∆  is 

zero. 

5.5.3  LOOP FILTER 
       As explained before the order of the PLL is always one greater than the order of 

the loop filter because the NCO is also an integrator. The bandwidth of the loop filter 

is actually the bandwidth of the PLL. So in deciding the loop bandwidth one must 

take care of the bandwidth of the error. For example the max frequency offset 

between the transmitter and receiver in case of carrier recovery.   Here is the block 

diagram of most commonly used first order loop filter.      

 



 

 

 
 

Figure 5.8: First order digital loop filter  
 

   Let us examine this block diagram. The phase detector output, x, is multiplied by 

the proportional gain constant Kp in the upper arm. In the lower arm, the phase 

detector output is first multiplied by Ki, the integral gain constant. The result of this 

multiplication is fed into an integrator comprising an adder and a register (unit delay). 

The final output y is the sum of the product of the proportional gain constant Kp and 

the phase error computed in the upper arm, and the output of the integrator in the 

lower arm.  

This loop filter could be implemented in software using the following equation: 

y(n) = Kp * x(n) + Ki * x(n-1) + y(n-1) - Kp * x(n-1)                          (5.30) 

The phase detector output is computed and the filter output updated every Ts seconds, 

where Ts is the sampling interval. Kp and Ki can be calculated using the relation 
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where BL is the single sided loop bandwidth and Ts is the sampling time. Typical 

values for BL are 10<BL<100 Hz. BLTs is called normalized loop bandwidth. 

We have explained the phase recovery in detail. Now we will discuss the timing 

recovery. 
 

 

 

5.6   TIMING RECOVERY 



 

 

   Symbol Timing Recovery (STR) or Clock Synchronization is the process of 

recovering the optimum sampling time that corresponds to the maximum opening of 

the eye diagram. This process is often overlooked but it is in fact the most critical in 

the design of digital communication systems: its failure has devastating effects in the 

receiver data. The inherent problem of clock synchronization is that sampling clock of 

the receiver is not synchronized to the strobes of the transmitter. [4] 

The digital information embedded in the transmitted signal is recovered at the receiver 

by means of a decision device. This decision device operates on samples of the noisy 

signal );( εty  taken at symbol rate T
1  at the receive filter output, which is given by  

)()();( tnTmTtgaty
m

m +−−≡ ∑ εε                                    (5.33) 

  In equation above { }ma   is a sequence of zero-mean data symbols (complex QPSK 

symbols). g(t) is the baseband  pulse at the receive filter output, Tε  is an unknown 

fractional time delay ( )2
1

2
1 ≤≤− ε  and n(t) represents zero-mean additive noise. For 

maximum noise immunity, the samples upon which the receiver's decision is based 

should be taken at the instants of maximum eye" opening. As the decision instants are 

a priori unknown (because of the unknown delay Tε ) the receiver must contain a 

device which makes an estimate of the normalized delay. Such a device is called a 

clock synchronizer or symbol synchronizer. The timing estimate is used to bring the 

sampling clock, which activates the sampler at the receive filter output, in close 

synchronism with the received PAM signal. This is achieved by adjusting the phase of 

this sampling clock according to the value of the estimate.  

   The received noisy signal contains no periodic components, because the channel 

symbols { }ma  have zero mean. Therefore, an ordinary PLL operating on the filtered 

received signal );( εty  cannot be used to generate a clock signal which is in 

synchronism with the received QPSK signal. Let us illustrate this fact by considering 

a PLL with multiplying timing error detector: the local reference signal )';( εtr given 

by  
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and is multiplied with the noisy QPSK signal );( εty  as shown in Figure 5.9. Taking 

into account equation ( i ), the timing error detector output signal equals  
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For any values of ε and 'ε  .the statistical average of the timing error detector output is 

identically zero, because the channel symbols { }ma and the additive noise n(t) have 

zero mean. As the average timing error detector output is zero irrespective of ε and 

'ε there is no deterministic force that makes the PLL lock onto the received signal .  
 

 
 

Figure 5.9: Ordinary PLL operating on baseband QPSK signal 
 

5.6.1   CATEGORIZATION OF TIMING SYNCHRONIZERS 
   From the operating principle point of view, two categories of synchronizers are 

distinguished i.e., error-tracking (or feedback, or closed Loop} synchronizers and 

feedforward (or open loop) synchronizers.  

A general error-tracking synchronizer is shown in figure 7.11. The noisy baseband 

QPSK signal );( εty  and a locally generated reference signal )';( εtr  are “compared” 

by means of a timing error detector, whose output gives an indication of the 

magnitude and the sign of the timing error 'εε −=e . The filtered timing error 

detector output signal adjusts the timing estimate 'ε  in order to reduce the timing 

error e. The timing estimate 'ε  is the normalized delay of the reference signal )';( εtr  

which activates the sampler operating on );( εty . Hence, error-tracking synchronizers 

use the principle of the PLL to extract a sampling clock which is in close synchronism 

with the received baseband QPSK signal.  



 

 

 
 

Figure 5.10: General Error Tracking Synchronizer 
 

Figure 5.11 below shows a general feed forward synchronizer. The noisy baseband 

QPSK receive signal );( εty  enters a timing detector, which “measures” the 

instantaneous value of ε (or a function thereof). The noisy measurements at the timing 

detector output are averaged to yield the timing estimate 'ε  (or a function thereof).  

 
Figure 5.11: General Feedforward Synchronizer 

 

 

5.7   TIMING RECOVERY USING EARLY LATE GATE 
  Among the most popular of the closed-loop symbol synchronizers is the early 

late-gate synchronizer. An example of such a synchronizer is shown schemati-

cally in Figure 7.13. The synchronizer operates by performing two separate inte-

grations of the incoming signal energy over two different (T - d) second portions 

of a symbol interval. The first integration (the early gate) begins integration at 



 

 

the loop's best estimate of the beginning of a symbol period (the nominal time 

zero) and integrates for the next (T -- d) seconds. The second integral (the late 

gate) delays the start of its integration for d seconds, and then integrates to the 

end of the  symbol period (the nominal time T). The difference in the absolute 

values of the  outputs of these two integrations, y1 and y2, is a measure of the 

receiver's symbol timing error, and it can be fed back to the loop's timing 

reference to correct loop timing. 

 
                                               Figure 5.12   Early Late Gate 

 

 

The action of the early/late-gate synchronizer can be understood by referring to  

Figure 5.13. In the case of perfect synchronization, Figure 5.13a shows that both gates 

are entirely within a signal symbol interval. In this case, both integrators will 

accumulate the same amount of signal, and their difference (the error signal e, in 

Figure 5.13) is zero. Thus, when the device is synchronized, it is stable-there is no 

tendency to drive itself away from synchronization. The case shown in Figure 5.13b is 

for a receiver whose data clock is early relative to the incoming data. In this case the 

first portion of the early gate falls in the previous bit interval, while the late gate is 

still entirely inside the current symbol. The late-gate integrator will accumulate signal 

F(w) 
 
        VCO 

Absolute  
value 

Absolute 
value 

T

d
dt∫

0

T d
dt

−

∫

Late gate 

Early gate 

+

Input 



 

 

over its entire (T - d) integration interval, as in the case in Figure 5.13a; but the early-

gate integrator will end up with energy accumulated only over [(T - d) - 2 � )], where 

�  is the portion of the early-gate interval falling in the previous bit interval. Thus, for 

this case, the error signal will be e = -2 � , which will lower the input voltage to the 

VCO in Figure 5.12. This will reduce the VCO output frequency and retard the 

receiver's timing to bring it back toward the incoming signal's bit timing. Using 

Figure 5.13 as a guide, it can be seen that if the receiver's timing had been late, the 

amounts of energy integrated in the early gate and late gate would be reversed, as 

would the sign of the error signal. Thus, late receiver timing produces an increase in 

the VCO input voltage, increasing the output frequency and advancing the receiver's 

timing toward that of the incoming signal. 

 

 

 

 

 

 

 

 

 

 
                         Fig 5.13  a)correct timing recovery   b)Early receiver timing 

                

The example illustrated in Figure 5.13 tacitly assumes that there will be data 

state changes before and after the channel symbol of interest. If there are no transi-

tions, it can be seen that the early gate and late gate will have the same integrated en-

ergy. Thus, there will be no error signal generated for cases where there is no data-

state change. This is a practical implementation consideration in the use of all symbol 

synchronizers. Reconsider Figure 5.12. It is not possible to build two integrators that 

are exactly the same. Thus, the signals. from the two arms of the early/late-gate loop 

will contain an offset with respect to each other, even when they should be identical. 

This offset will be small for well-designed integrators but will cause the loop to drift 

out of synchronism if there are long sequences of identical data symbols. There are 

two common responses to this problem. The first, and perhaps most obvious, is to 



 

 

format the data in a manner which ensures that there will be no transition less 

intervals that are long enough to allow the loop to break lock. The second response is 

to modify the loop design so that it contains a single integrator. 

 

 
 

5.8   SIMULATION RESULTS 

5.8.1 Phase Recovery 

 A simulation was run for phase recovery. The phase plus frequency errors are 

introduced. The constellation for received QPSK symbols is given below 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Real Axis

Im
ag

in
ar

y 
A

xi
s

Constellation for received Symbols(Frequency+pahse errors)

 
Figure 5.14: Constellation for received QPSK symbols   

At the output of phase recovery PLL the constellation is given below. You can see 

that the phase errors are removed. 
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Figure 5.15: Constellation after phase recovery   

 



 

 

The output error signal from the loop filter is shown below. The steady state value of 

the error is zero which sows that the phase errors are removed. 
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Figure 5.16: Output signal from the loop filter 

 

From the above figure it can be seen that PLL the takes 3000 samples to converge. 

This can be improved by increasing the gain of the PLL. The signal at the output of 

the accumulator is shown in figure 7.21. 

0 1000 2000 3000 4000 5000 6000
-5

-4

-3

-2

-1

0

1

2
x 10-5

Samples

A
m

pl
itu

de

Accumulator output signal

 
Figure 5.17: Accumulator output signal 

       Another simulation was run for timing recovery for two sample per symbols. 

Various fractional timing delays are introduced and the performance of the timing 

recovery loop is checked. For the fractional delay of T/2 the eye diagram for the 

signal at the input of the loop is 
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Figure 5.18: Eye diagram after delaying T/2. 

 

You can see the ISI very clearly. At the output of the timing recovery loop the eye 

diagram is given in the figure 7.23. In this diagram you can see that the ISI is almost 

removed. 
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Figure 5.19: Eye diagram after timing recovery. 

 

 

 

 

 

 



 

 

 

 

 

 
 
 



 

 

CHAPTER  6 

 
CHANNEL EQUALIZATION 

 

 

6.1   INTRODUCTION 
          Intersymbol interference and Communication channels are inseparable. 

Communication channels being susceptible to Intersymbol Interference (ISI), without 

channel equalization, the utilization of the channel bandwidth becomes inefficient. 

Objective of channel equalization is to compensate for the effects caused by a band-

limited channel, hence enabling higher data rates. Equalization describes a set of 

operations intended to eliminate ISI and the effects of multipath propagation in 

communication channels. One can define an equalizer as 

“An equalizer is a device that compensates for unwanted channel effects and 

provides the receiver with a sequence of samples with acceptable levels of 

ISI”. 

   Sources of corruption in the received symbol are due to the dispersive transmission 

medium (e.g. telephone cables) and the multipath effects in the radio channel. Figure 

6.1 where the equalizer is incorporated within the receiver while the channel 

introduces intersymbol interference. If the additive noise could be ignored, then the 

task of equalizer would be rather straightforward. For a channel H(z), an equalizer 

with transfer function W(z) = II H(z) could do the job perfectly, as this results in an 

overall channel-equalizer transfer function H(z) W(z) = 1, which implies that the 

transmitted data sequence, s(n), will appear at the detector input without any 

distortion. Unfortunately, this is an ideal situation which cannot be used in most of the 

practical applications. 

We note that the inverse of the channel transfer function, i.e. 1/ H(z), may be non-

causal if H(z) happens to have a zero outside the unit circle, thus making it 

unrealizable in practice. This problem is solved by selecting the equalizer so that H(z) 

W(z) z−≈ �  where �   is an appropriate integer delay. This is equivalent to saying that 

a delayed replica of the transmitted symbols appears at the equalizer output. 



 

 

We also note that the choice of W(z) = 1/ H(z)  may lead to a significant 

enhancement of the additive noise, v(n), in those frequency bands where the 

magnitude of H(z) is small (i.e. 1/ H(z) is large). Hence, in choosing an equalizer, 

W(z), we should keep a balance between residual ISI and noise enhancement at the  

equalizer output. A Wiener filter is a solution with such a balance  

Figure 6.3 presents the details of a baseband transmission system, equipped with an 

adaptive equalizer. The equalizer is usually implemented in the form of a transversal 

filter. Initial training of the equalizer requires knowledge of the transmitted data 

symbols (or, to be more accurate, a delayed replica of them) since they should be used 

as the desired signal samples for adaptation of the equalizer tap weights. This follows 

from the fact that the equalizer output should ideally be the same as the transmitted 

data symbols. We thus require an initialization period during which the transmitter 

sends a sequence of training symbols that are known to the receiver. This is called the 

training mode.  

At the end of the training mode the tap weights of the equalizer would have 

converged close to their optimal values. The detected symbols would then be similar 

to the transmitted symbols with probability close to one. Hence, from then onwards, 

the detected symbols can be treated as the desired signal for further adaptation of the 

equalizer so that possible variations in the channel can be tracked. This mode of 

operation of the equalizer is called the decision directed mode. The decision directed 

mode successfully works as long as the channel variation is slow enough so that the 

adaptation algorithm is able to follow the channel variations satisfactorily. This is 

necessary for the purpose of ensuring low symbol error rates in detection so that these 

symbols can still be used as the desired signal.[5] 

. To transmit high speed data over a bandlimited channel, the frequency response of 

the channel is usually not known with sufficient precision to design an optimum 

match filter. The equalizer is, therefore, designed to be adaptive to the channel 

variation.  

 
Figure 6.1: A typical communication system. 



 

 

 

 
Figure 6.2: A simple linear channel equalizer configuration. 

 

 

 

 

 

 

 

 

 

 
                                              Figure 6.3:baseband system with adaptive equalizer. 

 

 Equalization does not have the effect of completely removing the channel distortions  

rather it provides the receiver enough information which is necessary to make a 

decision.  

 

6.2   COMMUNICATION SYSTEM MODEL WITH EQUALIZER 

 

6.2.1 CONTINUOUS-TIME MODEL  
        For our communication system which is employing a linear modulation, QPSK, 

through a dispersive channel, the whole system can be described the conceptual 

model in Figure 6.3, in which the sequence of information symbols is denoted by 

}{ kI and )(),( fHfH CT and )( fH R are the transfer functions of the transmission 

(root raised cosine pulse-shaping) filter, the dispersive channel and the receiving 

filter, respectively. The Nyquist condition for no ISI developed in previous chapter 



 

 

can be easily generalized to the above communication system. Letting 

)()()()( fHfHfHfX RCT=  the condition for no ISI is that the folded 

spectrum )( fX , is constant for all frequencies, i.e. 
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Figure 6.4: Continuous-time communication model over a multipath dispersive channel 

 

One method to achieve the Nyquist condition is to fix the receiving filter to be the 

matched filter, i.e. set )()()( fHfHfH CTR
∗∗= , and choose the transmission filter 

so that (6.3) is satisfied. This is the Nyquist pulse design method described in 

previous chapter. The major disadvantage of this pulse shaping method is that it is in 

general difficult to construct the appropriate analog filters for )( fH T  and )( fH R in 

practice. Moreover, we have to know the channel response )( fH C in advance to 

construct the transmission and receiving filters. 

   An alternative method is to fix the transmission filter4 and choose the receiving 

filter )( fH R  to satisfy the condition in (6.3). As for the previous method, it is also 

difficult to build the appropriate analog filter )( fH R  to eliminate ISI. However, 

notice that what we want eventually are the samples at intervals T at the receiver. 

Therefore, we may choose to build a simpler (practical) filter )( fH R , take samples at 

intervals T, and put a digital filter, called equalizer, at the output to eliminate ISI as 

shown below in Figure 6.5. This approach to remove ISI is usually known as 

equalization. The main advantage of this approach is that a digital filter is easy to 

build and is easy to alter for different equalization schemes, as well as to fit different 

channel conditions. 

 
Figure 6.5: Communication system with equalizer 



 

 

 

6.2.2   EQUIVALENT DISCRETE-TIME MODEL 
         Our goal is to design the equalizer which can remove (or suppress) ISI. To do 

so, we translate the continuous-time communication system model in Figure 6.7 to an 

equivalent discrete-time model that is easier to work with. The following steps 

describe the translation process: 

• Instead of considering AWGN being added before the receiving filter )( fH R , we 

can consider an equivalent colored Gaussian noise being added after )( fH R  when we 

analyze the system. The equivalent colored noise is the output of )( fH R  due to 

AWGN. The resulting model is shown in Figure 6.6 

• We input a bit or a symbol to the communication system every T seconds, and get 

back a sample at the output of the sampler every T seconds. Therefore, we can 

represent the communication system in Figure 6.6 from the information source to the 

sampler as a digital filter. 

 

 
 

Figure 6.6: Equivalent communication system with colored Gaussian noise 

Since )(),( fHfH CT and )( fH R  are LTI filters, they can be combined and 

represented by an equivalent digital LTI filter. Denote its transfer function by H(z) 

and its impulse response by ∞
−∞=kkh }{ . The result is the discrete time-linear filter 

model shown in Figure 6.7, in which the output sequence }{ kI ′  is given by 
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                                             (6.4) 

In general, hj ≠ 0 for some j ≠ 0. Therefore, ISI is present. Notice that the noise 

sequence }{ kn consists of samples of the colored Gaussian noise (AWGN filtered 

by )( fH R ), and is not white in general. 



 

 

 
Figure 6.7: Equivalent discrete-time communication system model with colored noise 

 

• Usually, the equalizer consists of two parts, namely, a noise-whitening digital 

filter )(zHW  and an equalizing circuit that equalizes the noise-whitened output as 

shown in Figure 6.8. The effect of )(zHW  is to “whiten” the noise sequence so that 

the noise samples are uncorrelated. Notice that )(zHW  depends only on )( fH R , and 

can be determined a prior according to our choice of )( fH R  . At the output of 

)(zHW , the noise sequence is white. Therefore, equivalently, we can consider the 

equivalent discrete-time model shown in Figure 6.9, in which }{ kn  is an AWGN 

sequence. 

 
 

Figure 6.8: Typical equalizer 

• Let )()()( zHzHzG W= . The communication system from the information source 

to the output of the noise whitening filter can now be represented by the discrete-time 

white-noise linear filter model in Figure 6.10. The output sequence }~{ kI  is given by: 
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                                         (6.5) 

Where }{ kg  is the impulse response corresponding to the transfer function G(z), and 

}{ kn  is an AWGN sequence. We will work with this discrete-time model in all the 

following sections. 

 



 

 

 
Figure 6.9: Equivalent discrete-time communication system model with white noise 

 

 
Figure 6.10: Equivalent discrete-time white-noise linear filter model 

 

  Finally, the equalizing circuit (we simply call it the equalizer from now on) attempts 

to remove ISI from the output of G(z). The focus of our coming discussion is the 

design of this equalizer. Suppose that the equalizer is also an LTI filter with transfer 

function )(zH E  and corresponding impulse response }{ Ejh . Then the output of the 

equalizer is given by 

∑ −=
j

Ejjkk hII ~ˆ                                                     (6.6) 

Ideally kÎ contains only contributions from the current symbol Ik and the AWGN 

sequence with small variance.[4]     

 

 

6.3 CLASSIFICATION OF EQUALIZERS 
        Equalizers are classified into two main classes. Linear Equalizers Non-linear 

Equalizers 

Linear equalizers (LE) only have feedback from linear devices and can be 

implemented as a simple FIR filter (transversal filter)also called linear transversal 

equalizer (LTE). They are easy to implement cheap, suboptimal performance, high 

BER they have problem like enhances noise and bad for channels with spectral nulls 

as we will see shortly. They can also be implemented as lattice filter to achieve 

numerical stability and fast convergence but they are more complicated to implement. 



 

 

 Non-linear equalizers (NLE) have feedback from non-linear devices (i.e. quantizer) 

and they have better performance than linear equalizers like fine with spectral nulls 

and also fine with large distortion.  

Decision Feedback Equalizers (DFE) are non linear equalizers. They are more 

complex than a linear transversal equalizer. They have both feed forward and 

feedback filters. They are cheap, better performance than LTE and they can equalize 

severely distorted channels & handle spectral nulls. 

Maximum Likelihood Symbol Detection (MLSD) is also included in the class of non 

linear equalizers. They have optimal performance at the cost of high cost & 

exponential computational complexity. They use trellis approach with probability 

methods and Viterbi algorithm. 

Maximum Likelihood Sequence Estimation (MLSE) is another category of non linear 

equalizers. Like MLSD they also have optimal performance. They are different from 

MLSD because ML applied to sequences rather than symbols. They are often too 

computationally complex to implement in a mobile receiver. 

In figure 6.11 types of equalizers, their structures and the algorithm for learning 

channel environment is given. 

 

 
Figure 6.11: Classification of equalizers 

  

  Non-linear equalization is important in providing optimum performance for ill-

conditioned channels that non-linear techniques require more computation and 

controls. However, in order the study the gradient descent-based adaptive algorithms’ 

performance, the linear equalizer is more appropriate.  Table 6.1 also gives some 



 

 

performance, computation complexity and implementation cost measures of the 

equalizers. 

  

 

 
Table 6.1: Cost, performance and complexity analysis of equalizers 

 

Equalization System Complexity Cost Performance

Linear Transversal Equalize Low Cheap Suboptimal 

Decision Feedback Equaliz Medium Average Suboptimal 

Maximum Likelihood 

Sequence Estimation 
High High Optimal 

Maximum Likelihood 

Symbol Detection 
High High Optimal 

 

6.4 ZERO FORCING EQUALIZER 
        It is really not necessary to eliminate or minimize ISI with neighboring pulses for all 

t. All That is needed is to eliminate or minimize interference with neighboring pulse at 

their respective sampling instants only, because the decision is based only on sample 

values. This can be accomplished by the transversal filter equalizer encountered  called 

ZERO FORCING EQUALIZER, which forces the equalizer output pulse to have zero 

values at the sampling instants.Figure 6.12 shows a diagram of a ZFE.The time delay 

between successive taps is chosen to be Tb the interval between pulses. 

 

 
Fig.6.12(a) Zero Forcing Equalizer 



 

 

 

 

 

 

 

 

 
Fig 6.12(b)  Before Equalization                                 Fig 6.12(c) After Equalization 

 

                                       To begin with set the tap gains c0 = 1 and ck = 0 for all other 

values of k in the transversal filter in fig.(6.12)(a).Thus the output of the filter will be the 

same as the input delayed by NTb.This delay is not relevant to our discussion so we will 

ignore it. We require that the output pulse po(t) satisfy the nyquist criterion or the 

controlled ISI criterion, as the case may be.For the Nyquist criterion the output pulse po(t) 

must have zero values at all the multiples of Tb.From Fig.(6.12)(b) we see that the pulse 

amplitudes a1,a-1, and a2 at Tb, T-b and 2Tb,respectively are not negligible .by adjusting the 

tap gains (ck  ’s),we generate additional shifted pulses of proper amplitudes that will force 

the resulting output pulse to have desired values at t=0,Tb,2Tb…..The output p0(t)(fig 

6.12(c)) is the sum of pulses of the form ckpr(t-kTb).Thus. 

o b

( ) ( )                                                                                     (6.7)
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 Using a more convenient notation pr[k] to denote pr(kTb) Eq. (6.8) can be expressed as. 

 

[ ] [ ]                     k=0, 1, 2.......                                  (6.9)
N

o n r
n N

p k c p k n
=−

= − ± ±∑  

The Nyquist criterion requires the samples po[k] = 0 for k = 0 and po[k] =  for 

k=0.Substituting these values into Eq (6.9) we obtain a set of simultaneous equations in 

terms of 2N+1 variables. Clearly it is not possible to solve this set of equations. However 

if we specify the values of po[k] only at 2N+1 points as 
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                                                                 (6.10) 

 

Then a unique solution exists. This assures that a pulse will have zero interference at the 

sampling instants of N preceding and N succeeding pulses. Because the pulse amplitudes 

decays rapidly interference beyond the Nth pulse is not significant for N>2 in general. 

Substitution of condition (6.10) in (6.9) yields a set of 2N+1 simultaneous equations in 

2N+1 variables:[8] 
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The tap gains ck can be obtained by solving this set of equations.[8] 

 

 

6.5 WEINER FILTER THEORY 
           In the theory of Wiener filters the underlying signals are assumed to be random 

processes and the filter is designed using the statistics obtained by ensemble averaging 

6.5.1 MEAN-SQUARE ERROR CRITERION  
 

 

 

 

 

 

             

                                                     Figure  6.13 

 

Figure 6.13 shows the block schematic of a linear discrete-time filter W(z) in the 

context of estimating a desired signal den) based on an excitation x(n). Here, we 



 

 

assume that both x(n) and d(n) are samples of infinite length, random processes. The 

filter output is y(n) and e(n) is the estimation error. Clearly, the smaller the estimation 

error, the better the filter performance. As the error approaches zero, the output of the 

filter approaches the desired signal, d(n). Hence, the question that arises is the 

following: What is the most appropriate choice for the parameters of the filter which 

would result in the smallest possible estimation error? To a certain extent, the 

statement of this question itself gives us some hints on the choice of the filter 

parameters. Since we want the estimation error to be as small as possible, a 

straightforward approach to the design of the filter parameters appears to be 'to choose 

an appropriate function of this estimation error as a cost function and select that set of 

filter parameters which optimizes this cost function in some sense'. This is indeed the 

philosophy that underlies almost all filter design approaches. The various details of 

this design principle will become clear as we go along. Commonly used synonyms for 

the cost function are the performance function and the performance surface. 

In choosing a performance function the following points have to be considered: 

1. The performance function must be mathematically tractable. 

2. The performance function should preferably have a single minimum (or maximum) 

point, so that the optimum set of filter parameters could be selected unambiguously. 

The tractability of the performance function is essential, as it permits analysis of the 

filter and also greatly simplifies the development of adaptive algorithms for 

adjustment of the filter parameters. The number of minima (or maxima) points for a 

performance function is closely related to the filter structure. The recursive (infinite-

duration impulse response - IIR) filters, in general, result in performance functions 

that may have many minima (or maxima) points, whereas the non recursive (finite-

duration impulse response - FIR) filters are guaranteed to have a single global 

minimum (or maximum) point if a proper performance function is used. Because of 

this, application of the IIR filters in adaptive filtering has been very limited.  

In Wiener filters the performance function is chosen to be 

 

                              ξ =E[|e(n)|2]                                                                       (6.11) 
 
 
where E[.] denotes statistical expectation. In fact, the performance function ξ ,  
 



 

 

which is also called the mean-square error criterion, turns out to be the simplest 

possible function that satisfies the two requirements noted above. It can easily be 

handled mathematically, and in many cases of interest it has a single global minimum. 

In particular, in the case of FIR filters the performance function ξ  is a 

hyperparaboloid (bowl shaped) with a single minimum point which can easily be 

calculated by using the second-order statistics of the underlying random processes.[5] 

 

6.5.2 WEINER FILTER  
Consider a transversal filter as shown in Figure 6.14 
 
 
 
.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                              Figure 6.14   A Transversal filter 
 
 
The filter input, x(n), and its desired output, d(n), are assumed to be real-valued 

stationary processes. The filter tap weights, w0,w1,w2,……..wN-1 are also assumed to 

be real-valued. The filter input and tap-weight vectors are defined, respectively, as the 

column vectors 

 
                            w = [w0  w1  w2 …… wN-1] 

And 

                            x(n) = [ x(n)  x(n-1)  ……. x(n-N+1)]T 



 

 

 where  T stands for transpose. 

The filter output is   
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Which can also be written as  

                                       ( ) ( )Ty n x n w=                                                            (6.13) 

Since wTx(n) is a scalar and thus it is equal to its transpose i.e wTx(n) = (wTx(n))T 

Thus we may write 
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Using (6.10) in (6.7) we get 

          2[ ( )] [( ( ) ( ))( ( ) ( ))]T TE e n E d n w x n d n x nξ = = − −                                        (6.15) 

Expanding the right hand side of (6.11) 

        2[ ( )] [ ( ) ( )] [ ( ) ( )] [ ( ) ( )]T T T TE d n w E x n d n E d n x n w w E x n x n wξ = − − +              

(6.16) 

Next we define the N*1 cross-correlation vector 
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(6.17) 

 This is a quadratic function of the tap weight vector w  with a single global minimum 

To obtain the set  of tap weights that maximizes the performance  function ξ  we need to 

solve the system of equations that results from setting the partial derivatives of ξ  with 

respect to every tap weight to zero. That is, 



 

 

      for i=0,1,......N-1

These equations may collectively be written as
0

solving these equations we reach to the conclusion
2 2

letting 0 gives the following equation from which the opti

iw

Rw p

δξ
δ

ξ

ξ
ξ

∇ =

∇ = −
∇ = mum tap-weights 

can be obtained
                                                                                                                                  (6.18)oRw p=

 Equation (6.14) which is known as Weiner-Hopf equation has the following solution: 

                                W0=R-1p 

Where wo is the optimum filter tap weights vector. 

 

 

6.6 SEARCH METHODS 
                 We saw that the optimum filter coefficients can be obtained by solving 

Weiner-Hopf equation  an alternative way of finding the optimum filter tap weights is to 

use an iterative algorithm that starts at some arbitrary initial point and progressively 

moves towards the optimum tap weights vectors in steps.Now we will discuss  two 

recursive algorithms the steepest descent algorithm and the least mean square algorithm 

 

 6.6.1 METHOD OF STEEPEST DESCENT 
      Consider the Filter shown in Figure 6.14.In finding the solution of Weiner-Hopf 

equation we assumed that R and p are available, but here we resort to a different 

approach to find wo. Instead of trying to solve equation (6.14) directly, we choose an 

iterative search method in which starting with an initial guess for wo, say w(0), a 

recursive search method that may require many iterations (steps) to converge to Wo is 

used. An understanding of this method is basic to the development of the iterative 

algorithms which are commonly used in the implementation of adaptive filters in 

practice. 

The method of steepest descent is a general scheme that uses the following steps to 

search for the minimum point of any convex function of a set of parameters: 

1. Start with an initial guess of the parameters whose optimum values arc to be found 



 

 

for 

minimizing the function. 

2. Find the gradient of the function with respect to these parameters at the present 

point.  

3. Update the parameters by taking a step in the opposite direction of the gradient 

vector obtained in Step 2. This corresponds to a step in the direction of steepest 

descent in the cost function at the present point. Furthermore, the size of the step 

taken is chosen proportional to the size of the gradient vector. 

4. Repeat Steps 2 and 3 until no further significant change is observed in the 

parameters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                     Figure 6.15: Operation of steepest descent algorithm 
 
 

To implement this procedure in the case of the transversal filter shown in Figure 

6.13, we recall equation (6.14) 

 
2 2Rw pξ∇ = −                                                                                                         

(6.15)  
Where ∇  is the gradient operator defined as the column vector 

1 1

   ............. 
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o Nw w w −

⎡ ⎤∂ ∂ ∂
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According to the above procedure, if w(k) is the tap-weight vector at the kth iteration, 

then the following recursive equation may be used to update w(k): 

( 1) ( )                                                                    (6 .19)kw k w k µ ξ+ = − ∇
 



 

 

where µ is a positive scalar called the step size and kξ∇  denotes the gradient vector 

evaluated at the point w=w(k).Substituting (6.154) in (6.16) we get 

( 1) ( ) 2 ( ( ) )                                                                          (6.20)w k w k Rw k pµ+ = − −
 

6.6.2 A SIMPLE CHOICE FOR µ 
      The value of µ should be carefully chosen so that the recursive  algorithm converges 

quickly, choosing large value for µ can cause the algorithm to diverge whereas a very 

small value can make the algorithm converge after a long time.If  0 1, 2 1, ,.......... Nλ λ λ λ −  are 

the eigenvalues of R then the step size µ should be chosen such that  

|1 2 | 1       for i=0 ,1,......,N-1iµλ− <  

Or 

10
i

µ
λ

< < ,        for i=0,1,……,N-1 

Noting that the step size parameter is common for all values of i, convergence of the 

steepest descent algorithm is guaranteed only when 

max

10 µ
λ

< <                                                                                                     (6.21) 

  

 
Where   maxλ   is the maximum of the eigenvalues 0 1, 2 1, ,.......... Nλ λ λ λ − .The   left limit in 

(6.18) refers to the fact that the tap\weight correction must be in opposite direction of the 

gradient vector.[5] 

 

6.6.3 THE LMS ALGORITHM 
       The LMS algorithm, which was first proposed by Widrow and Hoff in 1960, is 

the most widely used adaptive filtering algorithm, in practice. This wide spectrum of 

applications of the LMS algorithm can be attributed to its simplicity and robustness to 

signal statistics.  

 
DERIVATION OF THE LMS ALGORITHM 
 
Figure 6.13 depicts an N-tap transversal adaptive filter. The filter input, x(n), desired 

output, d(n), and the filter output  
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are assumed to be real-valued sequences. The tap weights wo(n),w1(n),.. ., wN -1  are 

selected so that the difference (error) 

 
e(n) = d(n) - y(n),                                                                                            (6.23) 
 
 
is minimized in some sense. It may be noted that the filter tap weights are explicitly 

indicated to be functions of the time index n. This signifies that in an adaptive filter, 

in general, tap weights are time varying, since they are continuously being adapted so 

that any variations in the signal's statistics could be tracked. The LMS algorithm 

changes (adapts) the filter tap weights so that e(n) is minimized in the mean-square 

sense, thus the name least mean square. When the processes x(n) and d(n) are jointly 

stationary, this algorithm converges to a se. In other words, the LMS algorithm is a 

practical scheme for realizing Wiener filters, without explicitly solving the Wiener-

.Hopf equation. It is a sequential algorithm which can be used to adapt the tap weights 

of a filter by continuous observation of its input, x(n), and desired output, d(n). 

                         The Conventional LMS Algorithm is a stochastic implementation of 

the steepest descent algorithm.It replaces the cost function 2[ ( )]E e nξ =  by its 

instantaneous coarse estimate 2 ( )e nξ
∧

= .Thus replacing the iteration index k by the 

time index n in equation (6.16) we obtain 

              w(n+1) = w(n) - 2 ( )e nµ∇                                                                    (6.24) 
                      
substituting (6.20) in (6.21) we get the LMS recursion equation 

                              

( 1) ( ) 2 ( ) ( )                                                             (6 .25)w n w n e n x nµ+ = +
 

While the LMS algorithm enables us to find the optimal equalizer coefficients without 

any prior knowledge of the channel, it suffers from one drawback – slow convergence. A 

faster algorithm, but more complex, is the recursive least square (RLS) algorithm.[5] 

 The beauty of the approach is that the only parameter to be adjusted is the adaptation step 

size µ. Through an iterative process, explained above, all filter tap weights are adjusted 



 

 

during each sample period in the training sequence. Eventually, the filter will reach a 

configuration that minimizes the mean square error between the equalized signal and the 

stored reference. As might be expected, the choice of µ involves a tradeoff between rapid 

convergence and residual steady-state error. A too-large setting for µ can result in a 

system that converges rapidly on start-up, but then chops around the optimal coefficient 

settings at steady state.  

  The LMS equalizer can also be shown to have better noise performance than the ZFE. 

Heuristically, the ZFE calculates coefficients based upon the received samples of one 

training signal. Since the captured data will always contain some noise, the calculated 

coefficients will be noisy (noise in / noise out). On the other hand, the LMS algorithm 

gradually adapts a filter based on many cycles of the training signal. If the noise is zero 

mean and is averaged over time, its effect will be minimized (noise integrates to 0).  

 

6.7  SIMULATION RESULTS 
          The two ray channel model is used for simulation with equal gain for both rays. 

The normalized delay spread is greater than T where T is symbol interval to create 

frequency selective fading effects. Two samples per symbol are used.      

6.7.1   LINEAR  LMS 
        Various equalizer taps are tried and 11 taps are found to be optimum. Similarly 

various step sizes are tried and 0.075 is found to be optimum. The learning curve for 

LMS algorithm is given below. 
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Figure 6.16: Learning curve for LMS algorithm  

 

From the above figure you can see that the algorithm converges after approximately 

600 to 800 samples. Eye diagram for faded received signal is 
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Figure 6.17: Eye diagram for received faded signal 

 

Eye diagram for the equalized signal is given below 
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Figure 6.18: Eye diagram for equalized signal 

6.7.2 ZERO FORCING EQUALIZER 
Optimum length of ZFE is found to be equal to 5 taps . Eye diagram for faded 

received signal is 
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Figure 6.19: Eye diagram for received faded signal 

 

The eye diagram before decision making device is plotted on the next page. Which 

shows that the ISI is forced to zeros at the input of the decision device.    
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Figure 6.20: Eye diagram for equalized signal 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

CHAPTER 7 
 

CONCLUSIONS 
 
 
         We have covered all individual modules of a communication system and studied 

various algorithms of each module. When developing an optimal communication 

system one must know each part of a communication system in detail in order come u 

with the best possible solution. The main task in the end is how to integrate those 

individual modules .If the user has ample bandwidth available then channel coding 

should be used just as we purposed. However if bandwidth is limited then block codes 

can be left out from channel coding. Similarly the use of higher modulation scheme 

should be done if user has enough power available because sending more bits per 

symbol increases probability of bit error and u need more power in order to achieve 

the same BER as before. Timing is the first issue one has to deal at receiver because 

one must know where is the start the symbol before so we purpose that after match 

filtering our timing loop should be used because it requires more than one sample per 

symbol and is independent of phase errors. After that the problem is to whether use 

the equalizer or phase recovery. Since our phase recovery loop requires one sample 

per symbol we purpose that it should be put after equalization. So in the end our 

receiver should look like this 

 
 

 
  
                                                     Fig 7.1 Complete Receiver Design 
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