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Abstract 

People of all age groups are affected by a number of retinal diseases. These diseases are 

identified by conducting different medical examinations primary of which are visual 

examinations. One of the key issues in visual diagnosis of diseases is the human error due to 

poor decision making, for that a number of research projects are conducted which use the 

visual data and directly or the symptoms and generate decisions. An upcoming inter-

disciplinary technology named Computer Aided Medical Diagnostic System provides precise 

detection and prediction of disease. Automated image analysis methods are far more helpful 

for early identification and evaluation of disease as compared to cryptic and time taking 

manual techniques of digital medical imaging. This thesis aims to develop an automated 

method for identification of eye disorders that affect the human retina which if left 

unidentified may result in blindness due to delayed detection and analysis. Image data was 

acquired by publically available STARE Database having fundus images and by 

implementation of exclusion and inclusion criterion it was pre-processed on MATLAB. 

Initial pre-processing increased the significance of the data to be analyzed. From 186 images, 

16 diseases and 22 features were deduced. A support vector machine classifier was used for 

automated identification and classification, resulting in an accuracy of 94% and specificity of 

98%. In the chosen technique sensitivity, specificity and accuracy of the results was affected 

by the problem of one-sided data. For the reduction of dimensionality of data (redundancy 

reduction) principal component analysis was employed. 5, 10 and 22 Principal components 

were obtained to reduce the amount of variables. PCA was performed prior to training of the 

SVM, results for different data dimensionality were compared for completeness.  

Keywords: Image processing, support vector machine, principal component analysis, 

MATLAB, fundus images, retinal diseases 
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Chapter 1: INTRODUCTION 
 

1.1 Anatomy of the Human Eye 

Retina of human is composed cells known as rods and cones that are responsible for the 

image and color identification. The neural layer connected to the retina through the optic 

nerve serves the most pivotal part in the human vision (Rath, 2017). In the structure of the 

human eye, blood vessels, optic disc, fovea and macula are fundamental elements which form 

the retina. To avoid confusion in the terminology the Latin terms for the Right and Left Eye 

(Oculus Dexter and Oculus Sinister respectively) are dropped in favor of English terms. The 

abbreviation for the Optic Disc is OD, in the figure below, the brightest parts shown as 

curved orange and pale pink form Optic Disc (OD). 

  

Figure 1.1 The Anatomy of the Human Eye 
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The focal point of the OD is also called the blind spot because it does not have any 

photoreceptor(Nirmala, Nath, & Dandapat, 2011). The OD is also the convergence point of 

the blood vessels in the eye. The macula lutea is an oval shaped dim spot around 0.4mm in 

width located parallel to blind spot in eye. The center of the macula, about the size of a pin 

head is called Fovea Centralis and it has only cones to assist in sharp vision(Wu et al., 2016). 

Most of the cones are present in macula and its thickness gradually reduces progressing 

towards the periphery. The blood circulation sustains the retina through the artery and the 

central vein vacates the eye through the focal point of OD, this vascular system can be 

observed directly through an ophthalmoscope. 

1.2 Degeneration of the Human Retina 

Human retina undergoes several retinal deformities due to unhealthy living style, which 

influences the overall health of the eye. Abnormalities such as hemorrhages, macular 

degeneration, glaucoma and diabetic retinopathy are a few of the many degenerative 

conditions of the retina (Sowmya, 2016).A wide range of characteristic changes occur in the 

retina due to different diseases, a few of the symptoms are hemorrhages, cotton wool spots, 

exudates and micro aneurisms of the retina. Evaluation of the retinal health can also predict 

events leading to visual impairment. Early and proper diagnosis of the diseases under various 

symptoms is crucial to predictive and preventive medical treatment of the patient. 

1.3 Diagnosis of Retinal Diseases 

A number of automated techniques are present in the latest research literature for 

identification of features of the human eye and their underlying abnormalities(Gharaibeh, 

2016). Vision loss can be cured if it is diagnosed earlier, but for the treatment of advanced 

stages and intense conditions more complex procedures needs to be followed. As such the 

digital image processing techniques have seen remarkable development in the recent years, 
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however for the detection, analysis and treatment of the diseases there is need to further 

improve the existing methods and develop new ones (Kumar & P, 2017). The solution is 

presented by modern advancements in the digital imaging. The diagnosis and treatment 

related conclusions are easily and accurately drawn by the physician using automated medical 

image analysis. Essentially, these procedures reduce the repetitive and error prone part of 

physician during analysis by automating the recursive tasks. For the detection of retinal 

diseases in patients in Fundus photographs Kale et. al. have discussed a number of techniques 

in their study(Kale & Janwe, 2017). A number of automated techniques utilize machine 

learning and reinforcement learning as a primary solution for the decision and classification 

problems. Algorithms such as Support Vector Machines (SVM), Artificial Neural Networks, 

K-Nearest Neighbor and Naïve Bayes Classification are a few of the most popular techniques 

of diseases identification and classification. 

1.4 STARE Database 

The faculty of University of California, San Diego published the project “Structured Analysis 

of the Retina” under the acronym STARE for the detailed study of the human retina in 1975. 

Funded by various U.S. National Health Institutes it has contributed large databases for the 

research and development of diagnostic techniques of the diseases pertaining to the human 

eye (“The STARE Project,” n.d.).The publically available data in the STARE Database was 

employed in this research to perform the automated classification of retinal diseases using 

support vector machine (SVM) classifier. 

1.5 Support Vector Machines (SVM) 

In numerically extensive automation applications such as data analysis, pattern recognition, 

classification and regression a very popular technique called the Support vector machine 

(SVM) is used to perform supervised learning with an associated learning algorithm (Shveta 
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&Kaur, 2015). This is a classification technique which was introduced by Boser et. al. in 

1992(Boser, Guyon, & Vapnik, 1992). SVMs are widely used in bioinformatics and many 

other fields of engineering and machine learning because of its higher accuracies and tunable 

parameters and kernels. It can be readily employed to data with high-dimensionality such as 

that of the symptoms of retinal or any biological conditions. A few of the marked benefits of 

SVMs are their enhanced flexibility of design, conciseness of solution in large data sets, the 

ability to manage large feature spaces and reasonable control for the over-fitting problem 

(Karthikram, Kavya, Keerthika, & Veenmathi, 2016). 
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Chapter 2: LITRETURE REVIEW 

Humans typically employ sight the most, among their five main senses, to perceive the 

incoming information from the world around them. A considerably large part of the human 

brain is dedicated exclusively to process visual information. The human eye can be 

considered a camera to the effect that it converts light into information that can be understood 

by the brain. Similar to a camera, the eye contains a lens that can concentrate and change the 

point of focus in the outside world. The aperture of the human eye is controlled by the iris 

which opens or closes to control the incoming luminance. A camera generates a picture by 

projecting the light from the lens onto a thin film whereas inside the human eye the image 

from the lens is focused onto the retina, a specialized layer of cells which convey image 

information to the brain. 

As far as the operation is considered, this is as far as the similarity between the human eye 

and a camera goes, beyond this the human eye is far more superior to a camera. The human 

eye can resolve image orders of magnitude precisely in comparison to a camera. Also the 

rapid luminance control, brightness control and real time stereo focus adjust acts 

instantaneously. 

The light approaching the eye initially passes through the cornea that focuses the image by 

passing through it first. To keep the front of eye firm and slightly covered with a layer of 

fluid, the inner part of the eye is filled with a fluid known as aqueous humor. For focusing the 

light on retina, the lens squeezes and stretches according to the image. The human brain 

actively controls all the muscles inside the eye and generates a seamless image, needless to 

say this is a sort of neural training every human being goes through in the early months after 

birth.The interior surface opposite to the lens is called the fundus which includes the multi-

layered sensory tissue, retina (Cassin & Rubin, n.d.).The light rays falling on the retina are 
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converted into electrical impulses by photoreceptors present in retina. When these electrical 

impulses travel to brain through optic nerve the visual cortex generates appropriate visual 

perception inside the brain. Retina has two kinds of photoreceptors which, as their names 

suggest, have ‘rods’ and ‘cones’ shapes. Rod cells have high sensitivity and at low lights they 

change their contrast and recognize movements, but they are not-precise and sensitive to 

color. Generally, the rods are located at the retinal margin and they are utilized for night time 

vision. Contrary to this, cones are the highly precise cells that have the ability to recognize 

colors. The area of the retina responsible for day time vision is macula and it comprise mostly 

of cones. Fovea is the center of the macula, which helps human eyes to differentiate fine 

details in the image. 

The loss of peripheral vision can go unnoticed for years, even decades, in conditions such as 

Glaucoma, whereas the loss of central vision is evident immediately and can occur when the 

macula is damaged (Wyszecki & Stiles, 2000). Approximately 1.2 million nerve fiber 

endings connects the photoreceptors to the brain (Jonas, Schneider, & Naumann, 1992). 

These nerve fibers exit the eye in a highly unusual array in the optic nerve. Punctum caecum 

is the opening in the retina from where the optic nerve originates and leaves the eye. The 

sustaining nutrients, salts and oxygen are provided to the internal and external layers of retina 

by many retinal blood vessels. The inner layers contain 35% of the blood vessels and become 

noticeable through transparent humor in normal images of fundus. Other 65% blood vessels 

are for the external layers of retina and infrequently manifest in images of fundus camera 

because they are located in choroid(Abràmoff, Garvin, & Sonka, 2010). 
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With the help of bipolar and amacrine cells, the type of neuron cells named ganglion cells 

receives signals from photoreceptors. To combine the signals received from photoreceptors, 

interconnecting neurons known as horizontal cells are responsible (Masland, 2001). 

2.1 Techniques of Retinal Imaging 

With the use of funduscopic techniques, the eye is illustrated by optometrists. The 

ophthalmoscope is used to determine the health of the retina. Earlier, an instrument with 

several lenses having the ability to amplify up to 15 times, was used to provide the wide 

perspective view of the eye fundus. Its size was around that of a small flashlight, then later it 

was modified to the size of headband and a wearable alternate was developed to facilitate the 

physician (Chernecky & Berger, 2004). Nowadays a camera is available which directly 

captures the fundus images (Hutchinson et al., 2000; Lin, Blumenkranz, Brothers, & 

Grosvenor, 2002). Internal exposure of eye including posterior pole, retina, macula and optic 

disc are viewed upright and magnified by the modern fundus camera. 

 

Figure 2.1 Layers of Retina (Williams et al., Gray’s Anatomy, 1989) 
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Figure 2.2 (a) Healthy retinal image; (b) retinal image having micro aneurism’s signs; (c) 

retinal image with hemorrhage’s signs (STARE Database) 

A typical camera with an amplification of 2.5 views around 30-50 degrees area of the retina 

but with slight adjustments through additional lenses about 5 times the amplification can be 

achieved for a viewing angle of around 15 degrees (Saine & Tyler, 2002). Stereo fundus 

photography, hyper spectral imaging, Fluorescein Angiography (FA), scanning laser 

ophthalmoscope (SLO) are also uses for image acquisition instead of color digital fundus 

cameras. Optical coherence tomography (OCT) is another important imaging technique. It is 

a non-invasive imaging technique utilizing an interferometer to quantify the light’s traveling 

time that is backscattered by the retina. In vivo illustrations of the retinal anatomical layers 

are obtained through this technique. Thus it can be utilized to analyze diseases, for example, 

AMD, Glaucoma and DME, with a considerably higher accuracy than with a basic image of 

fundus(Walsh, Wildey, Lara, Ouyang, & Sadda, 2010). 

2.2 Retinal Abnormalities 



 

9 

Figure 2.3 Fundus image; (a) fundus image’s anatomy (b) abnormalities in fundus images 

(Sohini Roy Chowdhury, 2014) 

2.2.1 Micro Aneurism 

Micro aneurisms (MA’s) are responsible lesions that may leak blood and fluid into retina, 

resulting in macular edema, hemorrhages and exudates whish are dangerous for vision. For 

the cure of macular edema and diabetic retinopathy, by laser, these MA lesions are the basic 

focus. 

2.2.2 Hemorrhage 

The loss of blood from the vasculature is called Hemorrhage. They come into view in the 

fundus as a red structure of various shapes and sizes. In retina their shape may be deeply 

correlated to the symptoms of the disease causing it. A flame shaped hemorrhages near to 

ganglion layer have a tendency to vanish inside a brief timeframe. Round shaped 

hemorrhages located in inner nuclear of retina are referred to as blot and dot 

hemorrhages(Niki, Muraoka, & Shimizu, 1984). 
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2.2.3 Exudate 

Yellowish fluid accumulation composed of proteins and fats inside the sensory retina are 

called exudates. MAs due to increased pressure, having thinner walls than normal capillaries 

are typically responsible for the leakage of lipid and proteins resulting in exudates. 

2.2.4 Cotton Wool Spots 

A reduced blood supply to the nerve fiber layers causes cotton wool spots, which are micro 

obstructions which appear as yellowish or white composition or smudges with blurred edges. 

They are exceedingly correlated with conditions that influence the retinal flow, for example, 

diabetic retinopathy but they do not cause visual difficulties themselves. 

2.2.5 Drusen 

Yellow accumulations, located outside the cells, beneath the retina in the Bruch’s layer are 

called drusen. These are the indications of macular degeneration and sometimes, they are not 

clearly visible in a fundus image because they are beneath the retina. 

2.2.6 Diabetic Retinopathy 

If Diabetic retinopathy is not treated at earlier stage it can damage the retina which leads to 

permanent loss of vision. As compared to non-diabetic subjects, the diabetic patients are 25 

times more likely to have blindness. It is a vascular difficulty of diabetes mellitus(Baker, 

Hand, Wang, & Wong, 2008). 

2.2.7 Diabetic Macular Edema 

The most typical reason of sight loss is diabetic macular edema (DME) that known as a 

drawback or DR (Singer, Nathan, Fogel, & Schachat, 1992). This results in retinal swelling in 

patients of diabetes by fluid leakage from micro aneurisms, inside the center of macula, 

which is a result of incurable damage caused by high blood sugar levels. 
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2.2.8 Age-Related Macular Degeneration 

Age-Related Macular Degeneration (AMD) has a similar impact as diabetic retinopathy, 

which influences the macula of retina. Main attribute of initial stage of AMD is existence of 

soft drusen. It not always the case that macular degeneration is present in a person that has 

drusen, however both conditions have strong correlation to build up macular degeneration.  

Dry or wet AMD are the two forms of late AMD. Leakage of blood/serum is not caused by 

dry AMD but vision loss can happen. These patients may have good focal vision yet 

numerous functional constraints that include: reading hindrance due to the central vision 

limitation, fluctuating vision and night time restricted vision. Wet AMD causes the growth of 

abnormal blood vessels beneath the retina and macula, this directly causes the loss of 

patient’s central vision(Gottlieb, 2002). 

2.2.9 Glaucoma 

Glaucoma damages the ganglion cells and their axons that eventually affect the retina. Due to 

increasing pressure on optic nerves it causes peripheral visual field loss initially and 

progresses gradually inward. It usually goes undetected for many years and it has turned into 

the second most prominent reason for visual impairment in whole world (Resnikoff et al., 

2004). 
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2.3 Publically Available Databases 

To design, implement and test algorithms that are capable of analyzing retinal morphology or 

diagnosis in the field of medical imaging, there are some annotated and publicly available 

collections, STARE, DRIVE, DIARETDB, MESSIDOR, HEI-MED, etc have retinal images 

for with conditions and characteristics. Their purpose comprises DR diagnosis, vessel 

segmentation and localization of micro aneurisms. However, the photographs separately are 

not sufficient to make dataset valuable for algorithm expansion. The main feature is the 

ground truth information that gives the golden level that can be achieved by training 

algorithms and testing them. The pros and cons of proposed approaches were computable and 

comparable, whenever a single common data set (with GT) was used by different research 

groups(Niemeijer et al., 2010). 

2.4 Prior Work 

Keith P. Thompson (1992) promoted the rapid development of laser applications in 

ophthalmology, including access to the human eye, its transparency and the properties of its 

internal tissue absorption. In the eye, with photo disruptive, photo-thermal and photochemical 

processes, laser achieves its effect. 

Spencer et al. (1996) median filteredthe image on green channel to evaluate the retinal 

background and then from that real image they subtract the estimated background.  

Lee and Wang (1999) approached the problem of automatically detecting the quality of the 

fundus image. Their approach starts from the perspective of addressing a pure signal by 

applying the global image intensity chart roughly by the Gaussian distribution. 

Lee and Wang's approach was extended by Lalonde et al. (2001) using two distinct sets of 

attributes: edge distribution in the image and pixel intensity’s local distribution. Instead of 
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accurately associating image quality with noise, its quality concept depends upon capability 

of experts for making the right diagnosis. 

Jim Beach (2002) provides spectral reflection curves obtained using a spectral camera from 

structures that produce hemoglobin signatures. These include retinal artery, macular area, 

veins and optic disk. For the diagnosis of oxygen-dependent changes in hemoglobin signature 

surrounding vessels and tissues were used. 

In 2003 Ushar et al. applied a vessel fragmentation algorithm that evaluates image 

deformation. Through solid threshold, monitored vessel area is directly related to image 

quality. 

Li and Chutatape (2004)used edge detection to reduce the region size for computational 

issues. Then to identify all structures with expected shapes, morphological operators were 

used in grayscale (e.gvesicles).  

In 2005 Foracchia et al. specified pixels by assessing the standard deviations and mean on the 

local window, these pixels belonged to the background and a normalized image was obtained 

through the background pixels.Feng et al. (2007) adopted a contour-based approach that was 

a multi-scale image evaluation process depending upon Wavelets theory. 

Kevin Noronha (2006) elaborated the ways to reveal key attributes of the fundus images like 

the optic disc, blood vessels, fovea and exudates. Afterwards they applied the Hough 

transform to detect the brightest part of the fundus.  

Sanjayol Lee (2007) suggested a variety of ways to record retinal images, but evaluating such 

methods objectively was difficult because there was no benchmark for real alignment of the 

individual images that make up the montage. The author also provides a validation tool for 
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any method of recording an image of retina by tracking the distortion path and recording 

miss-alignment from the reference benchmark.    

E. Ricci and R. Perfetti (2007) used the line operators and the SVM with a set of 3 features 

per pixel. This method was very sensitive to training data and due to SVM classifier this was 

computationally intensive. 

S. Sekhar (2008) used a retinal image to diagnose and treat several diseases of eye like 

glaucoma and diabetic retinopathy. In initial stage, a round area of significance was found by 

disconnecting the brightest locale of the picture by morphological procedures. In the next 

stage, to detect a circular feature the Hough transform was used. 

Riries Rulaningtyas and Khusnul Ain (2009) used edge detection for glaucoma detection. In 

this work, glaucoma is diagnosed by doctors. Doctors typically tend to disagree on the 

detection of Glaucoma thus in order to facilitate the physicians in the diagnosis, a software 

research was developed with edge detection methods which could give the glaucoma and 

retinal edge pattern itself. The accurate detection of glaucoma in this study is the first step in 

the study of glaucoma classification. This research found the best way to detect the glaucoma 

between Sobel, Prewitt and Robert edge filters. Out of those three techniques, the Sobel edge 

filter was appropriate for glaucoma detection. The Sobel filter was one standard deviation 

value smaller than the other edge detection methods. 

Ehab F. Badran, Esraa Galal Mahmoud and Nader Hamdy (2010) elaborate the new 

algorithm for detecting brain infection. They introduced a computer-based method to identify 

the retinal infection area using magnetic resonance imaging (MRI) images. The retina was 

first classified as either healthy or infectious and further classified into a benign or malignant 

infection. 
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N. Nandha Gopal, Dr. M. Karnan (2010) presented the discovery of glaucoma using the C-

Mean clustering algorithm. In this research, an intelligent system for the diagnosis of 

glaucoma was designed through magnetic resonance imaging by utilizing image processing 

aggregation algorithms, which was Fuzzy C Means accompanied by intelligent optimization 

tools. 

Yanqing Xue, Shuicai Wu and Hongjian Gao (2011) created a three-dimensional image of the 

retina. In their work, the support vector machine (SVM) was used for automated detection of 

glaucoma and the classic mobile cube algorithm was used to obtain 3D visualization model of 

glaucoma. In addition, three-dimensional model coefficients based on morphological analysis 

were extracted, providing reliable information on the quantization of radio-glaucoma 

eradication. 

Zafer Yavuz (2011) suggested a method for automatically categorizing the blood vessels of 

the retina. In this study, the author applied a top-hat transform after the Gabor filter to 

improve blood vessels. Later, the output of the transform was converted to a binary image 

with a p-tile threshold. 

K.Sangeetha (2012) revealed irregularities in diabetic patient’s eye for early identification of 

DR. The system was introduced, utilizing digital image processing (DIP), for the 

programmed identification of veins and irregularities in the eye of diabetic patients.  

Geeta Ramani (2012) introduced a new approach to automate disease detection, which was 

proposed to be used to analyze retinal images along with data extraction techniques to 

accurately classify diseases in retinal images such as diabetic retinopathy.  

Kumar Parasuraman (2012) has proposed another procedure that gathers data about all veins 

in the retina and recognizes the genuine vessel in image of retina. In the proposed technique, 

the input image was chosen first then the blood vessels go under fragmentation. From this, 
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the intersection point identification was used to distinguish the vessels that cross each other 

utilizing the window with adjoining pixels. 

G.T. Pavai and S.T. Selvi (2013) have fragmented the optic disc using intrusive texture 

descriptors, inertia, entropy and energy. 

R.A. Welikala, et al. (2014) utilized an adjusted line administrator and double categorization 

in retinal image investigation to distinguish new vessels while lessening false reactions 

caused by other basic retinal attributes. 

Nasr Al-Gharaibeh, Al-Huson (2015) suggested an approach that consists of pretreatment, 

vascular segmentation (FPCM), localization of necrosis, fovea removal, extraction and 

classification of malignant neural features. Neuro-Fuzzy states as a hybrid of fuzzy logical 

and neural networks were employed in the design. Evaluations were performed utilizing 

MATLAB and the MESSIDOR database for their analysis that provides productive 

conclusions in vulnerability, quality, categorization, precision and reliability. 

Jing Wu et al. (2016) introduced a fully documented approach to detect fovea SD-OCT scans 

in a healthy and diseased macula. This allows the use of the fovea as a key parameter in 

building a population reference frame to identify and exact key spatial temporal features from 

a large group of patients consisting of different time points, devices and imaging modalities. 

Priyanka B. Kale and Nitin Janwe (2017) proposed using an automated system to identify 

patients with diabetic retinopathy using fundus images. To enhance intensity of images and 

noise removal images were pre-processed. After blood vessels detection they delete them and 

focused on hemorrhages. Finally, the textured area was used to classify images into severe, 

moderate and normal DR. STARE database was used to test this approach. 
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2.5 Machine Learning 

2.5.1 Naive Bayes 

In the medical data the Naïve-Bayes NB classification has been widely applied(Arora & 

Sharma, 2015). The NB classifier is one of the most efficient classification algorithms, in 

comparison to other techniques such as nearest neighbor, logistic regression, decision tree, 

neural network and rule based on medical datasets. Classifiers are compared for the region 

under the ROC curve(Mangai, Nayak, & Kumar, n.d.). Kononenko (2001) considered NB as 

the reference algorithm in any medical field to be tested before any other advanced method. 

Naive Bayes are simple, computationally efficient and require relatively little training data 

and require many parameters and are naturally robust to non-available data and noise in 

contrast to other classifiers. 

2.5.2 KNN 

The K Nearest Neighbor is a type of instance-based learning, where the function is rounded 

locally only and each computation is converted up to the classification. Because it does not 

require any extensive training or simple training phase this technique is called lazy learning. 

All training data is required only during the testing phase so that if we have a large set of 

data, we need a special way to work on a piece of data that is known as the algorithmic 

approach. This can also be used to estimate the density inside a population. From all 

automated learning algorithms the KNN algorithm is one of the simplest algorithms. The 

KNN classification has been formulated from the requirement for multiple analyses. 

2.5.3 Support Vector Machine (SVM) 

SVM is a supervised learning framework with a linked learning algorithm that can analyze 

data and identify patterns that are then used for regression analysis and classification(Shveta 
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& Kaur, 2015). Given a set of training examples, each of which has been set as a reference 

for one category in one of two categories, the SVM training algorithm creates a model that 

divides new examples into one class or the other and distributes them in a non-probability 

linear binary classifier. The SVM model is representative of the example where the points are 

divided into the space assigned to those examples from different categories(Arora & Sharma, 

2015). In addition to linear classification performance, SVM can quickly execute a non-linear 

classification using a trick called the kernel trick, meaning implicitly assigning it in distinct 

spaces of high dimensions. 

2.5.4 Hidden Markov Model (HMM) 

A HMM-based approach for recognition and detection uses an effective set of observational 

vectors acquired from binary-DCT coefficients. HMM embedded dimension sculpture can 

have two dimensional data of one-dimensional HMM which is less difficult than two-

dimensional HMM. This model is quite suitable for facial images because it exploits the 

important facial properties and structure of the "cases" within each of these super states. 

2.5.5 DCT 

In image processing and recognition, DCT and linear discrimination are widely used 

technologies. It can dramatically improve face recognition and palm pattern recognition rates 

and effectively reduce the dimensions of feature space (Arora & Sharma, 2015). 

2.5.6 PCA 

A new technique is formulated in which a two-dimensional component analysis is performed 

to represent images. Instead, image contrast measurements are created directly using the 

original image matrices and their self-extracting content is derived to extract the image 
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features. The experimental result shows that drawing image features is a very effective way 

of using 2DPCA instead of simple PCA. 

2.5.7 AUC 

The AUC is part of the regression matrix. It is an evaluation matrix widely used for binary 

classification problems, such as predicting an existing disease. 
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Chapter 3: METHODOLOGY 

Publically accessible database of retinal image at Structured Analysis of the Retina (STARE) 

project was used to evaluate automated classification of retinal diseases. The initial idea was 

an image interpretation approach that differentiates the diseases of retina using fundus 

images. This contain colored images  of retina obtained using 50 fundus camera that is of 

TRV (Topcon Corp., Tokyo, Japan) with 605x700 pixels resolution at 35 degree field. 397 

images in 14 disease categories are present in database including cilio retinal artery occlusion 

(CRAO), emboli, branch retinal artery occlusion (BRAO), hemi-CRVO, proliferative diabetic 

retinopathy (PDR), arteriosclerotic retinopathy, central background diabetic retinopathy 

(BDR), branch retinal vein occlusion (BRVO), choroidal neo-vascularization (CNV), 

hypertensive retinopathy, Coat’s disease, retinal vein occlusion (CRVO), macroaneurism, and 

other retinal status. These other retinal statuses were further separately classified with new 

codes resulting in 41 diseases. 

  

Figure 3.1 Proposed Procedure 
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Images were tallied for every disease in MATLAB and a reduction criteria was employed for 

diseases, features and images. Database contains 402 images, 41 diseases and 37 features. 

 

Among 402 images only 311 images have valid information about features and diseases. First 

criteria was the removal of diseases with less than 5 images. 91 images were removed due to 

improper diagnosis (according to the database), thus resulting in 21 diseases afirst reduction, 

2 categories (unknown diagnosis and choroidal haemangioma) were not used as r 

recommended by the STARE project, leaving only 19 diseases, 37 features and 301 images in 

second reduction case. 

The following listings show the MATLAB code for the reduction of the images in the 

database to satisfy the selection criterion. 

  

Figure 3.2 Total image count (%) for each disease 
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% IMAGE VS FEATURE ANALYSIS FOR EACH DISEASE 

 

finalFea = xlsread('finalFea.xls'); 

finalDis = xlsread('finalDis.xls'); 

 

% Diseases are remapped as following 

% Old Disease Number        -       New Disease Number 

%   1-17                    -           1-17 

%   18                      -       Insufficient Cases 

%   19,20                   -           18,19 

%   21-clc 

%   23                      -       Insufficient Cases 

% Features are mapped as following 

% Old Feature Number        -       New Feature Number 

%   1-37                    -           1-37 

%   38-44   `               -           Not Used 

 

redDis = zeros([402 19], 'logical'); 

redDis(:,1:17) = finalDis(:,1:17); 

redDis(:,18:19) = finalDis(:,19:20); 

redFea = zeros([402 37], 'logical'); 

redFea = finalFea(:,1:37); 

[nImg, nFeat] = size(finalFea); 

[nImg, nDis] = size(finalDis); 

nIperD = sum(finalDis); 

nIperF = sum(finalFea); 

DFchart = zeros([length(finalDis) nFeat nDis], 'logical'); 

 

for k = 1:1:nDis 

    for m = 1:1:length(finalDis) 

        if(finalDis(m,k)) 

            DFchart(m,:,k) = finalFea(m,:); 

        end 

    end 

end 

 

scd = sum(sum(DFchart(:,:,testDis))); 

dScat = zeros([2 scd]); 

[rd, cd] = size(DFchart(:,:,testDis)); 

counter = 1; 

 

for m = 1:1:rd 

    for n = 1:1:cd 

        if(DFchart(m,n,testDis)) 

            dScat(:,counter) = [m n]'; 

            counter = counter + 1; 

        end 

    end 

end 



 

23 

 

% IMAGE VS DISEASE ANALYSIS FOR EACH FEATURE 

 

nIperF = sum(finalFea); 

 

FDchart = zeros([length(finalFea) nDis nFeat], 'logical'); 

 

 

for k = 1:1:nFeat 

    for m = 1:1:length(finalFea) 

        if(finalFea(m,k)) 

            FDchart(m,:,k) = finalDis(m,:); 

        end 

    end 

 

end 

 

 

scf = sum(sum(FDchart(:,:,testFeat))); 

 

fScat = zeros([2 scf]); 

 

[rf, cf] = size(FDchart(:,:,testFeat)); 

 

counter = 1; 

for m = 1:1:rf 

    for n = 1:1:cf 

        if(FDchart(m,n,testFeat)) 

            fScat(:,counter) = [m n]'; 

            counter = counter + 1; 

        end 

    end 

end 

Listing 3.1 Matlab® Code for First Reduction less than 5 images 
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% DISEASE VERSUS FEATURE TABLE FOR REDUCED COUNTS 

% FvD - Features / Diseases Table 

 

FvD = zeros([37 19]); 

 

for i = 1:1:402 

    for j = 1:1:37 

        if(redFea(i,j)) 

            FvD(j,:) = FvD(j,:) + redDis(i,:); 

        end 

    end 

end 

 

FvDcheck = zeros([37 19], 'logical'); 

 

for i = 1:1:37 

    for j = 1:1:19 

        if(FvD(i,j) > 0) 

            FvDcheck(i,j) = 1; 

        end 

    end 

end 

 

% FvDcheck shows if a feature and disease are present together 

% Less than 50% check for reduction of features 

 

redFea2 = zeros([402 22], 'logical'); 

 

% Features Mapping Sequence 

% Old Features      -       New Features 

% 1-5               -       1-5 

% 7,8               -       6,7 

% 10                -       8 

% 15,16             -       9,10 

% 19,20             -       11,12 

% 22                -       13 

% 25                -       14 

% 28                -       15 

% 30                -       16 

% 32-37             -       17-22 

 

% Features removed by 50% disease occurance check are; 

% 6, 9, 11, 12, 13, 14, 17, 18, 21, 23, 24, 26, 27, 29, 31 



 

25 

 

redFea2(:,1:5)      = redFea(:,1:5); 

redFea2(:,6:7)      = redFea(:,7:8); 

redFea2(:,8)        = redFea(:,10); 

redFea2(:,9:10)     = redFea(:,15:16); 

redFea2(:,11:12)    = redFea(:,19:20); 

redFea2(:,13)       = redFea(:,22); 

redFea2(:,14)       = redFea(:,25); 

redFea2(:,15)       = redFea(:,28); 

redFea2(:,16)       = redFea(:,30); 

redFea2(:,17:22)    = redFea(:,32:37); 

 

% Feature Suppression mask 

fsm = ones([1 37] , 'logical'); 

fsm(6) = 0; 

fsm(9) = 0; 

fsm(11:14) = 0; 

fsm(17:18) = 0; 

fsm(21) = 0; 

fsm(23:24) = 0; 

fsm(26:27) = 0; 

fsm(29) = 0; 

 

fsm(31) = 0; 

 

frm = ~fsm; 

 

for i = 1:1:402 

    maskFea(i,:) = redFea(i,:).*fsm; 

end 

 

F = (sum(redFea'))'; 

M = (sum(maskFea'))'; 

 

redDis2 = redDis; 

 

for i = 1:1:402 

    if(M(i) == 0) 

        redFea2(i,:) = zeros([1 22], 'logical'); 

        redDis2(i,:) = zeros([1 19], 'logical'); 

    end 

end 

Listing 3.2 Matlab Code for the second reduction for 50% features 
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Afterwards the dataset was further reduced by applying a 50% criteria to 19 diseases 

eliminating 15 features and 112 images as a result we get 189 valid images for 22 features 

with 19 diseases. 

The images which were removed in the above step also had some images of valid 19 diseases 

that causes skewed results for instance none of the 22 selected features were present however 

the disease was present in the image diagnosis. So a final reduction to fix the diseases was 

performed and images of 3 diseases were removed leaving valid 186 images and 16 diseases. 

 

  

Figure 3.3 Reduced image count for each disease 
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Listing 3.3MATLAB Code for the third reduction (16 Diseases with 22 Features in 186 

images) 

% Removing diseases with less than 5 valid images 

% These are Diseases 8, 16 and 19 

 

redDis3 = zeros([402 16], 'logical'); 

redDis3(:,1:7)      = redDis2(:,1:7); 

redDis3(:,8:14)     = redDis2(:,9:15); 

redDis3(:,15:16)    = redDis2(:,17:18); 

 

% Final Datasets 

 

validImg = zeros([402 1],'logical'); 

 

temp = sum(redDis3'); 

 

for i=1:1:402 

    if(temp(i) > 0) 

        validImg(i) = true; 

    end 

end 

Figure 3.4 Disease reduction containing 5 images 
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In order to utilize a Support Vector Machine the Data is separated into training and testing 

samples. Biasedrandom sampling was performed on the reduced data of 186 images to split 

into 70% training and 30% testing data. The listing 3.4 shows the MATLAB Code for the 

biased random sampling of the data. 

 

nImg = sum(validImg); 

IvF = zeros([nImg 22], 'logical'); 

IvD = zeros([nImg 16], 'logical'); 

 

sweep = 1; 

for i = 1:1:402 

    if(validImg(i)) 

        IvF(sweep,:) = redFea2(i,:); 

        IvD(sweep,:) = redDis3(i,:); 

        sweep = sweep + 1; 

    end 

end 

 

% The Matrices IvF and IvD are the training / testing Matrices 

% IvF -> Input Matrix for training / testing Features for Valid 

Images 

% IvD -> Output Matrix for training  / testing Diseases for 

Valid Images 

 

DiseaseCount = 16; 

totalSamplesPerDisease = 186; 

positiveSamplesPerDisease = sum(IvD); 

pIndexPerDisease = zeros([max(positiveSamplesPerDisease) 

DiseaseCount]); 

% A value of 0 in the pIndexPerDisease corresponds to no image 

 

sweepCounter = ones([1 16]); 

for i = 1:1:totalSamplesPerDisease 

    for j = 1:1:DiseaseCount 

        if(IvD(i,j)) 

            pIndexPerDisease(sweepCounter(j),j) = i; 

            sweepCounter(j) = sweepCounter(j) + 1; 

        end 

    end 

end 
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mxLine = positiveSamplesPerDisease; 

mxRepVal = max(mxLine) + 1; 

minIndex = 0; 

minVal = 0; 

 

totalTrainingSamples = floor(0.7*totalSamplesPerDisease); 

totalTestingSamples = totalSamplesPerDisease - 

totalTrainingSamples; 

 

trainingSamples = zeros([totalTrainingSamples 1]); 

trainingIndex = 1; 

 

testingSamples = zeros([totalTestingSamples 1]); 

testingIndex = 1; 

 

trainingPositiveSamplesCountPerDisease = 

floor(0.7*positiveSamplesPerDisease); 

testingPositiveSamplesCountPerDisease = 

positiveSamplesPerDisease - 

trainingPositiveSamplesCountPerDisease; 

 

for i = 1:1:DiseaseCount 

    if(testingIndex > totalTestingSamples) 

        break; 

    end 

    [minVal, minIndex] = min(mxLine); 

    rTrainSample = 

datasample(pIndexPerDisease(1:minVal,minIndex),trainingPositive

SamplesCountPerDisease(minIndex),'Replace',false); 

    rTestSample = 

setdiff(pIndexPerDisease(1:minVal,minIndex),rTrainSample); 

 

    crossCheckTrain = ismember(rTrainSample, trainingSamples); 

    crossCheckTest = ismember(rTrainSample, testingSamples); 

 

    for j = 1:1:length(crossCheckTrain) 

        if(~(crossCheckTrain(j)||crossCheckTest(j))) 

            trainingSamples(trainingIndex) = rTrainSample(j); 

            trainingIndex = trainingIndex + 1; 

        end 

    end 

 

    crossCheckTrain = ismember(rTestSample, trainingSamples); 

    crossCheckTest = ismember(rTestSample, testingSamples); 
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    for k = 1:1:length(crossCheckTest) 

        if(~(crossCheckTrain(k)||crossCheckTest(k))) 

            testingSamples(testingIndex) = rTestSample(k); 

            testingIndex = testingIndex + 1; 

        end 

        if(testingIndex > totalTestingSamples) 

            break; 

        end 

    end 

    mxLine(minIndex) = mxRepVal; 

end 

 

allSamples = 1:1:totalSamplesPerDisease; 

remainingSamples = setdiff(allSamples,trainingSamples); 

remainingSamples = setdiff(remainingSamples,testingSamples); 

 

trainingSamples(trainingIndex:end) = remainingSamples; 

 

testingSamples = sort(testingSamples); 

trainingSamples = sort(trainingSamples); 

 

%clearvars -except IvF IvD trainingSamples testingSamples 

 

% Partitioning Training and Testing Data 

 

TrainingIvF = zeros([0 0],'logical'); 

TestingIvF = zeros([0 0],'logical'); 

 

TrainingIvD = zeros([0 0],'logical'); 

TestingIvD = zeros([0 0],'logical'); 

 

for i=1:1:186 

    if(ismember(i,trainingSamples)) 

        TrainingIvF(end+1,:) = IvF(i,:); 

        TrainingIvD(end+1,:) = IvD(i,:); 

    else 

        TestingIvF(end+1,:) = IvF(i,:); 

        TestingIvD(end+1,:) = IvD(i,:); 

    end 

end 

 

clearvars -except TestingIvD TestingIvF TrainingIvD TrainingIvF 

Listing 3.4 MATLAB Code for Biased Random Sampling 
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This data was split into training and testing samples through biased random sampling in the 

ascending order of positive samples of the diseases, min number of occurrences were for 

disease no. 15 (i.e. 5 positive samples). This ensured that the uneven distribution of the data 

was catered for in the sampling process. Around 70% of the samples were sampled through 

biased random sampling for training and the remaining 30% were separated for testing. 

Total 130 images were separated for training (i. e 70 % of total no. of images available) and 

remaining 56 images were separated for testing purpose.  

The Table 3.1 below shows the split positive samples of data for all diseases in the available 

reduced data. The diseases with very less positive samples were prone to over-fitting in the 

case of true random sampling, hence biased random sampling was performed to minimize 

over-fitting.   

Figure 3.5 Final disease count (16 Diseases, 22 Features and 186 Images) 
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Disease 
Total Positive 

Samples 

Total Negative 

Samples 

Training Positive 

Samples 

Testing Positive 

Samples 

1 35 145 25 10 

2 51 129 41 10 

3 7 173 4 3 

4 25 155 16 9 

5 39 141 28 11 

6 10 170 7 3 

7 22 158 14 8 

8 6 174 4 2 

9 7 173 4 3 

10 8 172 5 3 

11 8 172 5 3 

12 9 171 6 3 

13 17 164 10 7 

14 7 173 5 2 

15 5 175 3 2 

16 8 172 6 2 

Table 3.1 Count of total, training and testing positive samples for each disease  

Figure 3.6 Representation of positive samples for training and testing (Blue: total positive 

samples. Red: total Positive training samples, Green: Total positive testing samples) 
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This biased random sampling was used because total number of positive samples per disease 

varies from 5 to 51 with normal random sampling all positive samples of some diseases were 

selected for training; while down to 50% of the positive samples of some diseases were 

selected for training. Biasing the random sampling ensures the diseases with least number of 

positive samples were treated first while ensuring random sampling for training. Figure 2.17 

proves that biased random sampling (green line trend) is more closely related to 70% training 

set (blue reference line for 70%) as compared to normal random sampling (red line trend). 
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Each sample point has 22 features and labels for presence (or absence) of 16 diseases. A total 

of 130 samples were used for training and 56 samples were used for testing the SVM 

algorithm. 

Figure 3.7 Graph showing trend of biased random sampling 
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A Support Vector Machine (SVM) performs classification by finding the hyper plane that 

maximizes the margin between the two classes. The vectors (cases) that define the hyper 

plane are termed as the support vectors (Umesh, Mrunalini, & Shinde, 2016). 

The kernel can be changed to incorporate data that is not linearly separable by a hyperplane 

boundary. In machine learning, kernel methods are a class of algorithms for pattern analysis, 

any linear model can be turned into a non-linear model by applying a non-linear kernel. 

% Support Vector Machine Training Algorithm 

 

% Parameters: 

% Matrix         Description         Size        Data Type 

% TrainingIvF    Training Feature    130 x 22    binary (1-0) 

% TrainingIvD    Training Labels     130 x 16    binary (1-0) 

% TestingIvF     Testing Features    56 x 22     binary (1-0) 

% TestingIvD     Testing Labels      56 x 16     binary (1-0) 

 

% Since the SVM requires the data to be numerical instead of 

logical 

% (binary), it must first be converted into an equivalent 

representation 

Listing 3.5 The parameters of the training and testing data for SVM 

Figure 3.8 Basic Scheme of an SVM Classifier 
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Three different kernel functions were tested for classification, Linear Kernel, Gaussian 

Kernel (radial basis function) and a Polynomial Kernel to analyze which performed better. 

Kernel is shape of separation boundary- linear/nonlinear boundary represents the similarity of 

vectors (training samples) in a feature space.  

Four types of data sets were analyzed DDC (Direct Data Conversion) in which logical data (0 

and 1) converted to numerical data (0 and 1), PCA Full (22 feature were reoriented into 22 

Principal components), PCA10 / PCARED (22 feature were reoriented into 22 Principal 

components and 10 were used) and PCA05 (22 feature were reoriented into 22 Principal 

components and only 05 were used). 

% For this 3 types of data matrices are created; 

% 

% 1- Direct Data Conversion: 

%       logical 1 is converted to numerical 1  

%       logical 0 is converted to numerical 0 

% 2- PCA Full: 

%       All 22 features are reoriented into 22 Principle 

Components 

% 3- PCA Reduced: 

%       All 22 features are reoriented and 10 Principle 

Components are used 

 

% *** DIRECT DATA CONVERSION *** 

TrainingIvF_DDC = double(TrainingIvF); 

TestingIvF_DDC = double(TestingIvF); 

% *** PRINCIPLE COMPONENT ANALYSIS 

LoadingsIvF = pca(TrainingIvF_DDC); 

% *** PCA FULL *** 

TrainingIvF_PCA_FULL = TrainingIvF_DDC * LoadingsIvF; 

TestingIvF_PCA_FULL = TestingIvF_DDC * LoadingsIvF; 

% *** PCA REDUCED *** 

TrainingIvF_PCA_RED = TrainingIvF_PCA_FULL(:,1:10); 

TestingIvF_PCA_RED = TestingIvF_PCA_FULL(:,1:10); 

% *** PCA REDUCED 5 PC *** 

TrainingIvF_PCA_RED_5 = TrainingIvF_PCA_FULL(:,1:5); 

TestingIvF_PCA_RED_5 = TestingIvF_PCA_FULL(:,1:5); 

Listing 3.6 MATLAB Code for generating different datasets for SVM 
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The different datasets were used to initially train and afterwards test the SVM algorithm for 

three different kernels, the following listing 3.7 represents the MATLAB code for training 

and testing the data for ‘Linear’ Kernel. 

% USING SVM ALGORITHM FOR SEPARATION 

Kern = 'linear'; 

% For 16 Diseases and 56 Testing cases we have; 

% 56 x 16 predicted scores 

Dis_Pred_DDC = zeros([56 16]); 

Dis_Scor_DDC = zeros([56 16 2]); 

Dis_Pred_PCA_FULL = zeros([56 16]); 

Dis_Scor_PCA_FULL = zeros([56 16 2]); 

Dis_Pred_PCA_RED = zeros([56 16]); 

Dis_Scor_PCA_RED = zeros([56 16 2]); 

Dis_Pred_PCA_RED_5 = zeros([56 16]); 

Dis_Scor_PCA_RED_5 = zeros([56 16 2]); 

for i = 1 : 1 : 16 

    SVMModel = 

fitcsvm(TrainingIvF_DDC,TrainingIvD(:,i),'KernelFunction',Kern)

; 

    [label score] = predict(SVMModel, TestingIvF_DDC); 

    Dis_Pred_DDC(:,i) = label; 

    Dis_Scor_DDC(:,i,:) = score; 

end 

for i = 1 : 1 : 16 

    SVMModel = 

fitcsvm(TrainingIvF_PCA_FULL,TrainingIvD(:,i),'KernelFunction',

Kern); 

    [label score] = predict(SVMModel, TestingIvF_PCA_FULL); 

    Dis_Pred_PCA_FULL(:,i) = label; 

    Dis_Scor_PCA_FULL(:,i,:) = score; 

end 

for i = 1 : 1 : 16 

    SVMModel = 

fitcsvm(TrainingIvF_PCA_RED,TrainingIvD(:,i),'KernelFunction',K

ern); 

    [label score] = predict(SVMModel, TestingIvF_PCA_RED); 

    Dis_Pred_PCA_RED(:,i) = label; 

    Dis_Scor_PCA_RED(:,i,:) = score; 

end 

for i = 1 : 1 : 16 

    SVMModel = 

fitcsvm(TrainingIvF_PCA_RED_5,TrainingIvD(:,i),'KernelFunction'

,Kern); 

    [label score] = predict(SVMModel, TestingIvF_PCA_RED_5); 

    Dis_Pred_PCA_RED_5(:,i) = label; 

    Dis_Scor_PCA_RED_5(:,i,:) = score; 

end Listing 3.7 MATLAB Code for training and testing SVM 
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For the assessment of the performance of classifiers prediction values were calculated for all 

3 kernels using all 4 datasets. 

 

% Calculating Correct Predictions 

Match_DDC = Dis_Pred_DDC == TestingIvD; 

Match_PCA = Dis_Pred_PCA_FULL == TestingIvD; 

Match_RED = Dis_Pred_PCA_RED == TestingIvD; 

Match_5PC = Dis_Pred_PCA_RED_5 == TestingIvD; 

 

% Initializing Wrong Predictions 

Miss_DDC = 1 - Match_DDC; 

Miss_PCA = 1 - Match_PCA; 

Miss_RED = 1 - Match_RED; 

Miss_5PC = 1 - Match_5PC; 

 

% Initializing True Positives 

TP_DDC = zeros([1 16]); 

TP_PCA = zeros([1 16]); 

TP_RED = zeros([1 16]); 

TP_5PC = zeros([1 16]); 

 

% Initializing True Negatives 

TN_DDC = zeros([1 16]); 

TN_PCA = zeros([1 16]); 

TN_RED = zeros([1 16]); 

TN_5PC = zeros([1 16]); 

 

% InitializingFalse Positives 

FP_DDC = zeros([1 16]); 

FP_PCA = zeros([1 16]); 

FP_RED = zeros([1 16]); 

FP_5PC = zeros([1 16]); 

 

% InitializingFalse Negatives 

FN_DDC = zeros([1 16]); 

FN_PCA = zeros([1 16]); 

FN_RED = zeros([1 16]); 

FN_5PC = zeros([1 16]); 
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for i = 1:1:56 

    for j = 1:1:16 

        if( Miss_DDC(i,j) ) 

            if( TestingIvD(i,j) ) 

                FN_DDC(j) = FN_DDC(j) + 1; 

            else 

                FP_DDC(j) = FP_DDC(j) + 1; 

            end 

 

        else 

            if( TestingIvD(i,j) ) 

                TP_DDC(j) = TP_DDC(j) + 1; 

            else 

                TN_DDC(j) = TN_DDC(j) + 1; 

            end 

        end 

        if( Miss_PCA(i,j) ) 

            if( TestingIvD(i,j) ) 

                FN_PCA(j) = FN_PCA(j) + 1; 

            else 

                FP_PCA(j) = FP_PCA(j) + 1; 

            end 

        else 

            if( TestingIvD(i,j) ) 

                TP_PCA(j) = TP_PCA(j) + 1; 

            else 

                TN_PCA(j) = TN_PCA(j) + 1; 

            end 

        end 

 

        if( Miss_RED(i,j) ) 

            if( TestingIvD(i,j) ) 

                FN_RED(j) = FN_RED(j) + 1; 

            else 

                FP_RED(j) = FP_RED(j) + 1; 

            end 

        else 

            if( TestingIvD(i,j) ) 

                TP_RED(j) = TP_RED(j) + 1; 

            else 

                TN_RED(j) = TN_RED(j) + 1; 

            end 

        end 
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PCA Reduced (10 and 5 Principal components) represent the reduction of dimensionality that 

can be made in two distinctive methods: by just keeping the most applicable factors from the 

first dataset or by exploiting the redundancy present inherently in the data.For the reduction 

of data dimensionality principal component analysis (PCA) is used, eitherusing the factors 

from the first set or using redundancy in the reoriented features (Bro & Smilde, 2014). Linear 

combinations are used to distinguish the variance-covariance structure of an arrangement of 

factors. 

Lastly the predictions were analyzed to assess classifier performance in all cases, the 

reporting scores of accuracy, precision, sensitivity, specificity and F1-score were estimated 

through the MATLAB code shown in Listing 3.9 below. 

  

if( Miss_5PC(i,j) ) 

            if( TestingIvD(i,j) ) 

                FN_5PC(j) = FN_5PC(j) + 1; 

            else 

                FP_5PC(j) = FP_5PC(j) + 1; 

            end 

        else 

            if( TestingIvD(i,j) ) 

                TP_5PC(j) = TP_5PC(j) + 1; 

            else 

                TN_5PC(j) = TN_5PC(j) + 1; 

            end 

        end 

    end 

end 

Listing 3.8 MATLAB Code for checking predictions 



 

41 

The following chapter 4 discusses the results of the analysis performed in this chapter. 

Acc = zeros([16 4]); 

Pre = zeros([16 4]); 

Rec = zeros([16 4]); 

Spe = zeros([16 4]); 

F1 = zeros([16 4]); 

 

Acc(:,1) = (TP_DDC + TN_DDC)/56; 

Acc(:,2) = (TP_PCA + TN_PCA)/56; 

Acc(:,3) = (TP_RED + TN_RED)/56; 

Acc(:,4) = (TP_5PC + TN_5PC)/56; 

 

Pre(:,1) = TP_DDC ./ (TP_DDC + FP_DDC); 

Pre(:,2) = TP_PCA ./ (TP_PCA + FP_PCA); 

Pre(:,3) = TP_RED ./ (TP_RED + FP_RED); 

Pre(:,4) = TP_5PC ./ (TP_5PC + FP_5PC); 

 

Rec(:,1) = TP_DDC ./ (TP_DDC + FN_DDC); 

Rec(:,2) = TP_PCA ./ (TP_PCA + FN_PCA); 

Rec(:,3) = TP_RED ./ (TP_RED + FN_RED); 

Rec(:,4) = TP_5PC ./ (TP_5PC + FN_5PC); 

 

Spe(:,1) = TN_DDC ./ (TN_DDC + FP_DDC); 

Spe(:,2) = TN_PCA ./ (TN_PCA + FP_PCA); 

Spe(:,3) = TN_RED ./ (TN_RED + FP_RED); 

Spe(:,4) = TN_5PC ./ (TN_5PC + FP_5PC); 

 

F1 = 2 * Pre .* Rec ./ (Pre + Rec); 

Listing 3.9 Classifier Performance Estimation 
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Chapter 4: RESULTS 

In total four types of data sets were analyzed for 16 diseases using Support Vector Machine 

algorithm in MATLAB to check the effect of dimensionality reduction in the original data. 

The total training labels of all 16 diseases are shown in the table below. 

Disease 
Training 

Positive Negative 
1 25 105 

2 41 89 

3 4 126 

4 16 114 

5 28 102 

6 7 123 

7 14 116 

8 4 126 

9 4 126 

10 5 125 

11 5 125 

12 6 124 

13 10 120 

14 5 125 

15 3 127 

16 6 124 

Table 4.1 Training Samples of all Diseases 

The 4 datasetsanalyzed were labeled DDC (Direct Data Conversion), PCA22 (All 22 

Principal Components used as new features), PCA10 (10 Principal Components were used as 

new features) and PCA5 (5 Principal Components were used as new features). In DDC, 

binary data converted to numerical because the SVM Classifier cannot operate on logical 

data. After this all three kernels Linear, Polynomial (with order 3) and Gaussian were applied 

to all four types of data separately, kernel is a shape of separation boundary each kernel has 

different physical/dimensional shape. Accuracy, precision, recall, specificity and f1 score 

were calculated for performance analysis and results are shown in the following tables; 
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Disease 
 

Accuracy  Precision 

  
DDC PCA 22 PCA10 PCA5  DDC PCA 22 PCA 10 PCA5 

1 
 

0.9107 0.9107 0.8393 0.7679  0.7778 0.7778 0.5385 0.4118 

2 
 

0.9464 0.9286 0.9464 0.9643  0.7692 0.7143 0.7692 0.9 

3 
 

1 1 0.9643 0.9464  1 1 1 --- 

4 
 

0.8929 0.8929 0.8929 0.8393  0.6667 0.6667 0.6667 --- 

5 
 

0.9643 0.9643 0.9643 0.9643  1 1 1 1 

6 
 

0.9821 0.9821 0.9286 0.9464  1 1 0 --- 

7 
 

0.8571 0.8571 0.8571 0.8571  --- --- --- --- 

8 
 

0.9643 0.9643 0.9643 0.9643  --- --- --- --- 

9 
 

0.9286 0.9286 0.9643 0.9464  0.3333 0.3333 0.6667 0.5 

10 
 

0.9464 0.9464 0.9464 0.9464  --- --- --- --- 

11 
 

0.9464 0.9464 0.9464 0.9464  --- --- --- --- 

12 
 

0.9107 0.9107 0.9464 0.9464  0.25 0.25 --- --- 

13 
 

0.9464 0.9464 0.9643 0.875  1 1 1 --- 

14 
 

0.9643 0.9643 0.9643 0.9643  0.5 0.5 --- --- 

15 
 

0.9643 0.9643 0.9643 0.9643  --- --- --- --- 

16 
 

0.9643 0.9643 0.9643 0.9643  --- --- --- --- 

Table 4.2 Accuracy and Precision for the Linear Kernel 
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Disease 
 

Recall 
 

Specificity 

  
DDC PCA 22 PCA10 PCA5 

 
DDC PCA22 PCA10 PCA 5 

1 
 

0.7 0.7 0.7 0.7 
 

0.9565 0.9565 0.8696 0.7826 

2 
 

1 1 1 0.9 
 

0.9348 0.913 0.9348 0.9783 

3 
 

1 1 0.3333 0 
 

1 1 1 1 

4 
 

0.6667 0.6667 0.6667 0 
 

0.9362 0.9362 0.9362 1 

5 
 

0.8182 0.8182 0.8182 0.8182 
 

1 1 1 1 

6 
 

0.6667 0.6667 0 0 
 

1 1 0.9811 1 

7 
 

0 0 0 0 
 

1 1 1 1 

8 
 

0 0 0 0 
 

1 1 1 1 

9 
 

0.3333 0.3333 0.6667 0.3333 
 

0.9623 0.9623 0.9811 0.9811 

10 
 

0 0 0 0 
 

1 1 1 1 

11 
 

0 0 0 0 
 

1 1 1 1 

12 
 

0.3333 0.3333 0 0 
 

0.9434 0.9434 1 1 

13 
 

0.5714 0.5714 0.7143 0 
 

1 1 1 1 

14 
 

1 1 0 0 
 

0.963 0.963 1 1 

15 
 

0 0 0 0 
 

1 1 1 1 

16 
 

0 0 0 0 
 

1 1 1 1 

Table 4.3 Recall and Specificty for Linear Kernel 

Disease 
 

F1 Score 

  
DDC PCA 22 PCA 10 PCA 5 

1 
 

0.7368 0.7368 0.6087 0.5185 

2 
 

0.8696 0.8333 0.8696 0.9 

3 
 

1 1 0.5 ---- 

4 
 

0.6667 0.6667 0.6667 ---- 

5 
 

0.9 0.9 0.9 0.9 

6 
 

0.8 0.8 ---- ---- 

7 
 

---- ---- ---- ---- 

8 
 

---- ---- ---- ---- 

9 
 

0.3333 0.3333 0.6667 0.4 

10 
 

---- ---- ---- ---- 

11 
 

---- ---- ---- ---- 

12 
 

0.2857 0.2857 ---- ---- 

13 
 

0.7273 0.7273 0.8333 ---- 

14 
 

0.6667 0.6667 ---- ---- 

15 
 

---- ---- ---- ---- 

16 
 

---- ---- ---- ---- 

Table 4.4 F1 Score values for the Linear Kernel 

In the case of linear kernel the classifier had different performance for every disease and 

every condition, some of the diseases showed higher score in DDC data but some has better 
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results with other data types. Each data type shows significant results with overall accuracy 

of 94%, 98% specificity 69% F1-score. As expected the dimensionality reduction (PCA22, 

PCA10 and PCA5) tends towards reduced accuracy however this decrease in performance is 

really insignificant. 

The table 4.5 below shows the Accuracy and Precision for a Polynomial Kernel with an order 

of 3. 

Disease 
 

Accuracy 
 

Precision 

  
DDC PCA 22 PCA 10 PCA 5 

 
DDC PCA 22 PCA 10 PCA 5 

1 
 

0.9286 0.9286 0.8929 0.8571 
 

0.75 0.75 0.7 0.5833 

2 
 

0.9286 0.9286 0.9464 0.9464 
 

0.7143 0.7143 0.7692 0.7692 

3 
 

1 1 1 1 
 

1 1 1 1 

4 
 

0.8214 0.8214 0.8214 0.8571 
 

0.4 0.4 0.4 1 

5 
 

0.9286 0.9286 0.9643 0.9643 
 

0.7692 0.7692 0.8462 0.9091 

6 
 

0.9464 0.9464 0.9464 0.9464 
 

---- ---- ---- ---- 

7 
 

0.8036 0.8036 0.7857 0.8571 
 

0.2857 0.2857 0 ---- 

8 
 

0.9643 0.9643 0.9643 0.9643 
 

---- ---- ---- ---- 

9 
 

0.9643 0.9643 0.9643 0.9464 
 

1 1 1 0.5 

10 
 

0.9464 0.9464 0.9464 0.9464 
 

---- ---- ---- ---- 

11 
 

0.9643 0.9643 0.9286 0.9464 
 

1 1 0.3333 ---- 

12 
 

0.9107 0.9107 0.9464 0.9286 
 

0.3333 0.3333 0.5 0 

13 
 

0.9464 0.9464 0.9286 0.875 
 

1 1 1 ---- 

14 
 

0.9643 0.9643 0.9643 0.9464 
 

0.5 0.5 0.5 0 

15 
 

0.9643 0.9643 0.9643 0.9643 
 

---- ---- ---- ---- 

16 
 

0.9107 0.9107 0.9286 0.9643 
 

0.2 0.2 0.25 ---- 

Table 4.5 Accuracy and Precision for the Polynomial Kernel 
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Disease 
 

Recall 
 

Specificity 

  
DDC PCA 22 PCA 10 PCA 5 

 
DDC PCA 22 PCA 10 PCA 5 

1 
 

0.9 0.9 0.7 0.7 
 

0.9348 0.9348 0.9348 0.8913 

2 
 

1 1 1 1 
 

0.913 0.913 0.9348 0.9348 

3 
 

1 1 1 1 
 

1 1 1 1 

4 
 

0.2222 0.2222 0.2222 0.1111 
 

0.9362 0.9362 0.9362 1 

5 
 

0.9091 0.9091 1 0.9091 
 

0.9333 0.9333 0.9556 0.9778 

6 
 

0 0 0 0 
 

1 1 1 1 

7 
 

0.25 0.25 0 0 
 

0.8958 0.8958 0.9167 1 

8 
 

0 0 0 0 
 

1 1 1 1 

9 
 

0.3333 0.3333 0.3333 0.3333 
 

1 1 1 0.9811 

10 
 

0 0 0 0 
 

1 1 1 1 

11 
 

0.3333 0.3333 0.3333 0 
 

1 1 0.9623 1 

12 
 

0.6667 0.6667 0.3333 0 
 

0.9245 0.9245 0.9811 0.9811 

13 
 

0.5714 0.5714 0.4286 0 
 

1 1 1 1 

14 
 

1 1 1 0 
 

0.963 0.963 0.963 0.9815 

15 
 

0 0 0 0 
 

1 1 1 1 

16 
 

0.5 0.5 0.5 0 
 

0.9259 0.9259 0.9444 1 

Table 4.6 Recall and Specificity Values for the Polynomial Kernel 

Disease 
 

F1 Score 

  
DDC PCA 22 PCA 10 PCA 5 

1 
 

0.8182 0.8182 0.7 0.6364 

2 
 

0.8333 0.8333 0.8696 0.8696 

3 
 

1 1 1 1 

4 
 

0.2857 0.2857 0.2857 0.2 

5 
 

0.8333 0.8333 0.9167 0.9091 

6 
 

---- ---- ---- ---- 

7 
 

0.2667 0.2667 ---- ---- 

8 
 

---- ---- ---- ---- 

9 
 

0.5 0.5 0.5 0.4 

10 
 

---- ---- ---- ---- 

11 
 

0.5 0.5 0.3333 ---- 

12 
 

0.4444 0.4444 0.4 ---- 

13 
 

0.7273 0.7273 0.6 ---- 

14 
 

0.6667 0.6667 0.6667 ---- 

15 
 

---- ---- ---- ---- 

16 
 

0.2857 0.2857 0.3333 ---- 

Table 4.7 F1Scores for the Polynomial Kernel 

Lastly the tables 4.8 through 4.10 show the performance of the Gaussian Kernel based SVM. 
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Disease 
 

Accuracy 
 

Precision 

  
DDC PCA22 PCA 10 PCA 5 

 
DDC PCA 22 PCA 10 PCA 5 

1 
 

0.9643 0.9643 0.9107 0.8036 
 

1 1 0.7778 0.4667 

2 
 

0.9643 0.9643 0.9643 0.9643 
 

0.8333 0.8333 0.8333 0.8333 

3 
 

0.9464 0.9464 0.9464 0.9464 
 

---- ---- ---- ---- 

4 
 

0.8214 0.8214 0.8393 0.8393 
 

0.3333 0.3333 0.5 ---- 

5 
 

0.9643 0.9643 0.9821 0.9821 
 

0.9091 0.9091 0.9167 1 

6 
 

0.9464 0.9464 0.9464 0.9464 
 

---- ---- ---- ---- 

7 
 

0.875 0.875 0.8571 0.8571 
 

1 1 ---- ---- 

8 
 

0.9643 0.9643 0.9643 0.9643 
 

---- ---- ---- ---- 

9 
 

0.9643 0.9643 0.9821 0.9821 
 

1 1 1 1 

10 
 

0.9464 0.9464 0.9464 0.9464 
 

---- ---- ---- ---- 

11 
 

0.9464 0.9464 0.9464 0.9464 
 

---- ---- ---- ---- 

12 
 

0.9464 0.9464 0.9464 0.9464 
 

0.5 0.5 ---- ---- 

13 
 

0.9286 0.9286 0.9464 0.875 
 

1 1 1 ---- 

14 
 

0.9821 0.9821 0.9643 0.9643 
 

0.6667 0.6667 ---- ---- 

15 
 

0.9643 0.9643 0.9643 0.9643 
 

---- ---- ---- ---- 

16 
 

0.9643 0.9643 0.9643 0.9643 
 

0.5 0.5 ---- ---- 

Table 4.8 Accuracy and Precision of the SVM based on Gaussian Kernel 

Disease 
 

Recall 
 

Specificity 

  
DDC PCA22 PCA10 PCA5 

 
DDC PCA22 PCA10 PCA5 

1 
 

0.8 0.8 0.7 0.7 
 

1 1 0.9565 0.8261 

2 
 

1 1 1 1 
 

0.9565 0.9565 0.9565 0.9565 

3 
 

0 0 0 0 
 

1 1 1 1 

4 
 

0.1111 0.1111 0.2222 0 
 

0.9574 0.9574 0.9574 1 

5 
 

0.9091 0.9091 1 0.9091 
 

0.9778 0.9778 0.9778 1 

6 
 

0 0 0 0 
 

1 1 1 1 

7 
 

0.125 0.125 0 0 
 

1 1 1 1 

8 
 

0 0 0 0 
 

1 1 1 1 

9 
 

0.3333 0.3333 0.6667 0.6667 
 

1 1 1 1 

10 
 

0 0 0 0 
 

1 1 1 1 

11 
 

0 0 0 0 
 

1 1 1 1 

12 
 

0.3333 0.3333 0 0 
 

0.9811 0.9811 1 1 

13 
 

0.4286 0.4286 0.5714 0 
 

1 1 1 1 

14 
 

1 1 0 0 
 

0.9815 0.9815 1 1 

15 
 

0 0 0 0 
 

1 1 1 1 

16 
 

0.5 0.5 0 0 
 

0.9815 0.9815 1 1 

Table 4.9 Recall and Specificity of the SVM based on Gaussian Kernel 
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Disease 
 

F1 Score 

  
DDC PCA22 PCA10 PCA5 

1 
 

0.8889 0.8889 0.7368 0.56 

2 
 

0.9091 0.9091 0.9091 0.9091 

3 
 

---- ---- ---- ---- 

4 
 

0.1667 0.1667 0.3077 ---- 

5 
 

0.9091 0.9091 0.9565 0.9524 

6 
 

---- ---- ---- ---- 

7 
 

0.2222 0.2222 ---- ---- 

8 
 

---- ---- ---- ---- 

9 
 

0.5 0.5 0.8 0.8 

10 
 

---- ---- ---- ---- 

11 
 

---- ---- ---- ---- 

12 
 

0.4 0.4 ---- ---- 

13 
 

0.6 0.6 0.7273 ---- 

14 
 

0.8 0.8 ---- ---- 

15 
 

---- ---- ---- ---- 

16 
 

0.5 0.5 ---- ---- 

Table 4.10 F1 Score of an SVM Classifier based on a Guassian Kernel 

 

The results were tabulated for both Polynomial and Gaussian Kernels. The Polynomial 

Kernel based SVM shows an overall average accuracy of across all diseases 93% and the 

Gaussian Kernel based SVM shows an overall average accuracy across all diseases of 94%. 

Similar to the Linear Kernel, the difference between the different datasets was insignificant 

for both Polynomial and Gaussian Kernels. 

All diseases have significant result but some of the diseases show extraordinary results 

because the training data was skewed because the number of positive sample images was far 

less than the number of negative samples for the disease. This was catered for slightly by the 

biased random sampling for the training set in the data, however the overall effect of over-

fitting is prominent in the data. 

This also meant that for some diseases after splitting the data randomly for training and 

testing the positive samples were significantly reduced which resulted in lack of information. 



 

50 

Hence some of the diseases (e.g. 5 images for disease 15) resulted in heavily biased training. 

A considerably low number of positive samples in data is the major contributing factor for 

the low recall scores of all classifiers in all datasets for almost all diseases. 

In dimensionality reduction it was noted that as move towards 5 Principal Components 

instead of 10 or 22, the accuracy showed a slight decreasing trend but number of false 

positive increased due to which number of true positive also increased. 
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Chapter 5: DISCUSSION & CONCLUSION 

Using digital retinal imaging various clinical disorders of the human eye can be examined 

noninvasively. Automated image analysis can assist in the early detection of a disease based 

on its earlier symptoms. In order to facilitate the physicians in making better diagnosis, 

different measurements can be done to detect the retinal diseases quickly and make accurate 

suggestions based on machine learning algorithms. The aim of this study was to develop an 

automated tool for classification of retinal diseases in STARE database using SVM classifier 

in MATLAB, this approach resulted in an average accuracy of 94%. 

The proposed algorithm results in significant accuracies forthe classification of disease with 

problems like over-fitting because of biased random sampling for the training data. This also 

tries to adjust the disproportionate number of positive sample images for some of the 

diseases.  A few diseases were not detected at all due to a heavily biasing training, resulting 

in wrong classification, it is also expected since the training set consists of 3 positive samples 

and 127 negative samples for some of the diseases. 

The effect of dimensionality reduction on performance was studied, as the system moves 

towards the lower dimensionality, accuracies generally reduced however this reduction in 

accuracy was insignificant. Among all three kernels linear, polynomial and gaussian there 

were insignificant differences between results as gaussian perform just slightly better for our 

dataset. 

On accounts of heavily biased training, resulting in false negative, a problem arose for the 

diseases with less number of positive samples in the database. This can be improved by 

applying slightly adjusting the cutoff criterion such as, increasing the number of positive 

samples (up to 15 instead of 5). This can also be corrected by changing the classifier type or 

using more features. 
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