SECURE SD CARD READER

By

CAPT MUHAMMAD UMAIR SIDDIQUI
CAPT MUHAMMAD UMAR KHAN
CAPT RANA EHTESHAM-UL-HAQ

Submitted to Department of Electrical Engineering, Military
College of Signals National University of Sciences and
Technology, Rawalpindi in partial fulfillment for the
requirements of a B.E Degree in Telecom Engineering
June 2014

ABSTRACT
SECURE SD CARD READER

With countless portable devices easily available such as SD-Cards, CDs,
Flash drives and MP3 playersas well as Internet access on nearly every
workstation, businesses run an increased risk of data theft by employees
and others with access to confidential data. Data theft continues to rise and
create problems with companies every day. Data theft is a term used to
describe when information is unlawfully copied or taken from a business or
other individual. SD-Card widespread use sometimes makes them relatively

safer than they are.

In fact, even popular and advantageous innovative devices making use of
SD-Card may have significant risks. Not surprisingly, if the portable device
or media contains tax returns or other sensitive information, you could be
ethically, legally and financially responsible for a security breach and its
consequences. The danger is too great to ignore, but these convenient

devices have become a tactical necessity for everyone on the go.

Secure SD-Card reader mitigates the risks of portable data storage devices
SO you can use them without hesitation. The SD-Card reader uses advanced
encryption standard for encryption and decryption of data. The project will
be completed in two phases in first phase read/write from SD-card will take
place using microcontroller and in second phase we will implement

Advanced Encryption Standard for the encryption of data.

CERTIFICATE OF CORRECTNESS AND APPROVAL

It is certified that the work contained in this thesis titled “Secure SD Card
Reader”, carried out by Muhammad Umair Siddiqui, Muhammad Umar Khan
and RanaEhtesham-UIl-Haq under the supervision of Lt CollshtiagKiyani in
partial fulfillment of the Bachelors of Telecommunication Engineering, is

correct and approved.

Approved By

Asst. Prof. IshtiagKiyani

Project Supervisor

Military College of Signals, NUST

DEDICATION

Almighty Allah,

Our parents for their prayers

And Faculty for their help

ACKNOWLEDGEMENTS

Nothing happens without the will of Allah Almighty. Special thanks to
Allah Almighty for giving us knowledge and strength to accomplish this

task successfully.

The team likes to thank our project supervisor, Lt CollshtiagKiyani,
without his support and encouragement; it would not have been

possible to complete this project.

Special thanks to our parents for their unrelenting support and belief

in us and for their prayers.

Table of Contents

I N @ 15 1 L O 1 1] 1
L. A OVERV I E W .. ettt ettt et 1
1.2PROJECT DESCRIPTION ...ttt et ettt e e e e e e e e eeeeeeeeenns 1
G Y 0] 3
2LITERATURE REVIEW .. e eeeee 3
2.1ARDUINO MEGAZ560 ...ttt ettt ettt ee e eeeeeeeeeeeeeeeeens 3
2. 2 AT 32U C B A28 .. 5
2. A TMEG AL 28 .. 6
2.4HIGH LEVEL DESCRIPTION OF AES ... it eeeeeee 7
P2 N I =Y b o = 1 g 1< T o 1P 7
A Sy o o Y o X T] o 8
2.4.2.70N1tIal ROUNG. ... e e e e 8
2.4, 2. 2ROUNGAS ..ttt et et ettt e e 8
2.4.2. 3 SUD By S . e 9
2. 4.2 ASNITE ROWS. ..ttt ettt ettt et et 9
2.4.2.5MiX COIOUIMNS ..ttt ettt e eaeeeas 10
2.4.2.6Add ROUNG KBY ...ttt ettt et eeeens 10
2. 4.2.7FINAl ROUNG ettt eeaas 10
A G T D T o Y 0 1 0 10
2.4.3.1INverse Shift ROWSo e aeeeas 11
2.4.3.2INVErSe SUD BYleS ... e 11
2.4.3.3INverse MiX COIOUMN ...ttt eeeaas 12
P G T2 A o Lo I Lo 18 T =/ 12
3. DE S I GIN Lo 13
3.1 INTRODUCTION ... nnnnnes 13
3.2 ARDUINO MEGA . .. nmnnnnnnes 13
3.3 CIRCUIT DESIGN AND IMPLEMENTATION. ..ceeeeeees 14
3.3.1 ACCESSING SD Card ...ttt 15

Vi

3.3.2 Adding EXternal MemOrYt e e e 15

3.3.3 Reading/Writing From COMPUEET. ...cviii et e e e eeeeeeeeans 15
B34 RSO .. e 16
B.3.5 OSCHIATOr ... e 16
3.3.6 IMplementation ... e 16
337 GUI s 16
4PROJECT ANALYSIS AND EVALUATION 17
4. ARESULT AND ANALY SIS Lo 17
S5RECOMMENDATIONS / FUTURE WORK ... 17
BCON C LU S I ON . ettt ettt ettt ettt et e e eeeeeeeeeeeeeeeaens 18
G I O] = N | O I Y 18
6. 2APP LI C AT IONS e 18
G G 7 I 11 1N I I 18
BIBLIOGRAPHY e 19
APPENDIX A 2 COST ON PROJECT ... 21
APPENDIX B 2 TIMELINE. ... 22
APPENDIX C : Code For reading/writing SD-Card Using Arduino

=T 0 =124 5 2 23
APPENDIX D : Code For AES Implementation..........ccccvvvviiiiiiiiiiennnaannns 25
APPENDIX E : Code For Accessing SD Card.......oviiiiiiiiiiiiiiiiiiiii e 37

vii

LIST OF TABLES

Table 2-1 Sub BytesS S-BOX......cviiiiiiiiiiiiiii i eeeaans

Table 2-2 Inverse Sub Bytes S-BOXccoceiiiiiiiiiiiiiiiiias

LIST OF FIGURES

Figure 1-1 Block Diagramccciiieiiiiiiiiiii e eeeeceeeeeeeens
Figure 2-1 Arduino mega2560ccovviiiiiiiieiiiiiiiieeeenns
Figure 2-2 Add Round Key Function............ccceevviiiiiiinnnnn...
Figure 2-3 ShIft ROWScoiiiiii e
Figure 2-4 MixX COloUMN ... e e
Figure 2-5 Inverse Shift ROWS......ccoooiiiiiiiiii e
Figure 2-6 Inverse Column MatriXcooiiiiiiiiiiiiiiiinnnnnnn.
Figure 2-7 AES Algorithm ... e
Figure 3-1 Arduino Ethernet Shield............ccooeiiiiiiiiiiinn..
Figure 3-2 Circuit Diagram of Devicecccoeviiiiiiiiiinnannnn.

Figure 3-3 AppPliCatioNoooiii e

viii

List of Abbreviations

SD Secure Digital

SDHC Secure Digital High Capacity

CD Compact Disk

MP3 MPEG-1 Part 3 (Moving Picture Expert Group)
LED Light Emitting Diode

USB Universal Serial Bus

HDD Hard Disk Drive

PWM Pulse Width Modulation

UART Universal Asynchronous Receiver/Transmitter
ICSP In Circuit Serial Programming

RISC Reduced Instruction Set Computing

FAT File Allocation Table

SRAM Static Random Access Memory

MPU Memory Protection Unit

PDCA Peripheral Direct Memory Access Controller
DMACA Direct Memory Access controller

SDIO Secure Digital Input Output

MMC MultiMediaCard

GPIO General purpose Input Output

SPI Serial to parallel Interface

NIST National Institute of Standards and Technology
AES Advanced Encryption Standard

1.INTRODUCTION

1.1 OVERVIEW

Data theft continues to rise and create problems with companies every
day.

It is important to understand the possibilities and consequences of
data theft. It is also important to understand how to prevent data
theft. Data theft is a growing problem primarily perpetrated by office
workers with access to technology such as desktop computers and
hand-held devices capable of storing digital information such as USB
flash drives, SD Cards, iPods and even gadgetry using memory cards.
Since employees often spend a considerable amount of time
developing contacts and confidential and copyrighted information for
the company they work for, they often feel they have some right to
the information and are inclined to copy and/or delete part of it when
they leave the company, or misuse it while they are still in
employment. While most organizations have implemented firewalls
and intrusion-detection systems very few take into account the threat
from the average employee that copies proprietary data for personal
gain or use by another company. A common scenario is where a sales
person makes a copy of the contact database for use in their next job.
Typically this is a clear violation of their terms of employment.
Unfortunately, data theft is rising every day. Steps must be taken to
assure proper protection. This motivation to protect the data lead us to
make a device that will encrypt the data before storing it in a portable

device and decrypt the data before retrieving it.

1.2 PROJECT DESCRIPTION

The purpose of this project is to secure data from unauthorized access.
Data Security means protecting a database from destructive forces
and the unwanted actions of unauthorized users. One common
approach is to encrypt the data for storage, and then transfer that
storage media. In this way only the authorize users will have access to

the data.

It's worth highlighting an often-underappreciated advantage of
encrypting data on portable storage devices. Specifically, properly
encrypted data offers a safety net against potentially embarrassing or
damaging data surfacing from storage devices that were discarded or
sold off. Many businesses don't realize how easily deleted files can be
retrieved with off-the-shelf recovery software from mechanical storage
devices such as SD-cards, hard disk drives (HDD) or USB drives.
Reconstituting previously encrypted data, on the other hand, is far
more difficult, as it that requires the original credentials or even a copy
of the decryption key. An encrypted storage device with a decryption
key that's been erased, or one with a good authentication passphrase,
offers a good safeguard against malicious data recovery. A thoroughly
wiped or physically destroyed storage device remains the most secure

defense against data leakage, though.

Data integrity refers to maintaining and assuring the accuracy and
consistency of data over its entire life-cycle. The purpose of this
project is also to ensure integrity of data stored in SD-card. Since only
the authorize users have access to the contents of the memory card,
no one can change the data without authentication. It also restricts
auto run viruses to move into SD-card and damages everything on the

card and stop further replication of auto run virus on other computers.

Xi

<D Card Reader

AES Algo Implementation

Figure 1-1 Block Diagram

Our device will be capable of reading and writing from SD Card in a
secure manner. In order to achieve that security and protection we
have implemented AES encryption on it. All the data that passes from
computer to the SD card will be encrypted using AES encryption and
on the other hand all the data from SD card to computer will be

decrypted to use it.

1.3 SCOPE

The scope of our project is to make a SD-Card reader which will
encrypt the data before storing it in a SD Card and decrypt the data
before using it again with the help of Advanced Encryption Standard
(AES).

2. LITERATURE REVIEW

In the first step read and write from SD Card will have to be done for
this purpose some open source hardware computing platforms were

used some of them are:-

Xii

2.1ARDUINO MEGA2560

The Arduino Mega is a microcontroller board based on the
ATmegal280. It has 54 digital input/output pins (of which 14 can be
used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial
ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an
ICSP header, and a reset button. It contains everything needed to
support the microcontroller; simply connect it to a computer with a
USB cable or power it with a AC-to-DC adapter or battery to get
started.[1]

® & ARG

-
Arduino MEGA
vuu.arduino.cc

——ANALOG IN ——————

I R B L o '
GND UIN W owel N W D WD D O3 O vl vl v wdwd v i+ o
gL Al " I L .,

- = -

Figure 2-1 Arduino mega2560

Summary

Microcontroller ATmegal280
Operating Voltage 5V

Input Voltage 7-12v

xiii

(recommended)

Input Voltage (limits) 6-20V
Digital 1/0 Pins 54 (of which 15 provide PWM output)
Analog Input Pins 16

128 KB of which 4 KB used by
Flash Memory

bootloader
SRAM 8 KB
EEPROM 4 KB
Clock Speed 16 MHz

2.2AT32UC3A3218S

The AT32UC3A3/A4 is a complete System-On-Chip microcontroller
based on the AVR32 UC RISC processor running at frequencies up to
84MHz. AVR32 UC is a high-performance 32-bit RISC microprocessor
core, designed for cost-sensitive embedded applications, with
particular emphasis on low power consumption, high code density and
high performance. The processor implements a Memory Protection Unit
(MPU) and a fast and flexible interrupt controller for supporting
modern operating systems and real-time operating systems. Higher
computation capabilities are achievable using a rich set of DSP
instructions. The AT32UC3A3218 incorporates on-chip Flash and SRAM
memories for secure and fast access. 64 KBytes of SRAM are directly
coupled to the AVR32 UC for performances optimization. The

Peripheral Direct Memory Access Controller (PDCA) enables data

Xiv

transfers between peripherals and memories without processor
involvement. The PDCA drastically reduces processing overhead when
transferring continuous and large data streams. The peripheral set
includes a High Speed MCI for SDIO/SD/MMC and a hardware
encryption module based on AES algorithm. The Direct Memory Access
controller (DMACA) allows high bandwidth data flows between high
speed peripherals (USB, External Memories, MMC, SDIO) and through
high speed internal features (AES). The Embedded Host interface
allows device like a USB Flash disk or a USB printer to be directly
connected to the processor. This peripheral has its own dedicated DMA

and is perfect for Mass Storage application.[2]
Features:-

o High Performance, Low Power 32-bit Microcontroller
. Internal High-Speed Flash

. External Storage device support

. Buffer Encryption/Decryption Capabilities

. Support for SPI

o Processing Speed of 84 MHz

. Single 3.3V Power Supply

2.3 ATMEGA1281

The ATmegal281 is a low-power CMOS 8-bit microcontroller based on
the AVR enhanced RISC architecture. By executing powerful
instructions in a single clock cycle, the ATmegal281 achieves
throughputs approaching 1 MIPS per MHz allowing the system
designed to optimize power consumption versus processing speed. Its

main features are:-[3]
Features:-

XV

e High Performance

e Low Power 8-Bit Microcontroller

e 16 MIPS Throughput at 16MHz

e 128KBytes of In-System Self-Programmable Flash
e 8Kbytes Internal SRAM

e Two Programmable Serial USART

e Master/Slave SPI Serial Interface

e 54 Programmable 1/0 Lines

In our project we will encrypt data using AES Algorithm. The Advanced
Encryption Standard (AES) is a specification for the encryption of
electronic data established by the U.S. National Institute of Standards
and Technology (NIST) in 2001. AES is based on
the Rijndael cipher developed by two Belgian cryptographers, Joan
Daemen and Vincent Rijmen, who submitted a proposal to NIST during
the AES selection process. Rijndael is a family of ciphers with different
key and block sizes. For AES, NIST selected three members of the
Rijndael family, each with a block size of 128 bits, but three different
key lengths: 128, 192 and 256 bits.

2.4 HIGH-LEVEL DESCRIPTION OF AES

The Advanced Encryption Standard (AES) specifies a FIPS-approved
cryptographic algorithm that can be used to protect electronic data.
The AES algorithm is a symmetric block cipher that can encrypt
(encipher) and decrypt (decipher) information. Encryption converts
data to an unintelligible form called cipher text; decrypting the cipher
text converts the data back into its original form, called plaintext. The
AES algorithm is capable of using cryptographic keys of 128, 192, and
256 bits to encrypt and decrypt data in blocks of 128 bits.[4]

2.4.1 Key Expansion

XVi

Round keys are derived from the cipher key using Rijndael’'s key
schedule. AES requires a separate 128-bit round key block for each
round plus one more. The AES algorithm takes the Cipher Key and
performs a Key Expansion routine to generate a key schedule. The
algorithm requires an initial set of 4 words, and each round requires 4
words of key data. The resulting key schedule consists of a linear array
of 4-byte words. First we applied RotWord() function to the last word.
The function RotWord() takes a word [a0,al,a2,a3] as input, performs
a cyclic permutation, and returns the word [al,a2,a3,a0]. Then we
carry out SubWord() function. The SubWord() is a function that takes
a four-byte input word and applies the S-box to each of the four bytes
to produce an output word. This output word is now XORed with the
first word and first word of Rcon[] array. The Rconl[i] is a round
constant word array. The first word of the expanded key are filled with
the Cipher Key. Every following word is equal to the XOR of the
previous word, and the word 4 positions earlier. In this way we have
formed key matrix for the one round and for subsequent rounds last

word is taken and repeat the process.[5]
2.4.2 Encryption
2.4.2.1 Initial Round

In initial round AddRoundKey function is performed where each byte of
the state is combined with a block of the round key using bitwise XOR.

As shown in the figure 2-2.[6]

XVii

I = rowund * Nb
‘g(P.c 510;(? -
So0.0 2| So.3 I So0.0 - 2| Sos
5 | _—— Wit I Y
l.c [— ! l.c B
5 -——“"‘5"-‘ . 5
1.0 - 1.3 €|—> W, s [~ N
S2 o SZ.C 5 | 8o 3 S5 a S‘: c f - ,5--173
S3.0 S3. b2 | %33 530 530 f.2 '5':;.%
— |
Figure 2-2 Add Round Key Function
2.4.2.2 Rounds
Four functions are performed in each round of AES, for AES of 128 bit
the block size of data is 128 bit and there are 10 rounds in it.[7]
2.4.2.3 SubBytes
A non-linear substitution step where each byte is replaced with
another according to a lookup table 2-1.
L'
o] 1 2 32 4 5 6 7 8 =] a b c d e £
o] 63 T 77 b £f2 eb ef cb 30 o1 a7 2b fe a7 ab 76
1 ca 82 <9 74 fa 59 47 £f0 ad d4a az2 af Sc ad T2 <0
2 b7 fd4d a3 26 36 3f £7 cc 34 asb eb £f1 71 ds8s 31 15
3 o4 a7 23 c3 i8 Se6 o5 Sa o7 12 80 el eb 27 b2 75
4 oS 83 2c la 1b ce 5a a0 52 3b de b3 29 el3 2f 84
5 53 dl 00 ed 20 fo bl 5b 6a cb be 39 da dc 58 cf
& 40 ef aa fb 43 44 33 85 45 £9 o2 TE 50 3c Sf as
x 7 51 a3 40 8f 92 ad 38 £5 bc ba da 21 10 £ £3 d2
8 cd Oc 13 ec 5f 97 44 17 cd a7 Te 34 64 54 19 73
S a0 81 4f dc 22 2a SO 88 46 ea b8 14 de S5e Ob db
a =0 32 3a Da 49 o6 24 5¢ o2 d3 ac 62 91 a5 ed 79
b a7 cB 37 6d 8d d5 de a9 6c 56 £fa ea 65 Ta ae o8
c ba 78 25 2e 1l a6 b4 c6 e8 dd 74 1f 4b bd 8b Ba
d 70 3e b5 66 48 03 f6 Oe 6l 35 57 b9 86 cl 1d Se
e el £8 98 11 69 == B8e o4 Shb le 87 e9 ce 55 28 4df
£ 8c al 89 o4d bf et 42 68 41 99 2d of b0 54 bb 16

XViii

Table 2-1Sub Bytes S-Box
2.4.2.4 ShiftRows

A transposition step where the last three rows of the state are shifted

cyclically a certain number of steps as shown in figure 2-3.

ShiftRows ()

Figure 2-3 Shift Rows
2.4.2.5Mix Columns

A mixing operation which operates on the columns of the state,

combining the four bytes in each column as shown in figure 2-4.

s,.] [02 03 01 01][s,.
s | |01 02 03 01f|s,,
s, | lo1 01 02 03]]s,,
s;.| |03 01 01 02]]s;, |

Figure 2-4 Mix Coloumn

XiX

2.4.2.6 AddRoundKey
Same as performed in initial round.
2.4.2.7 Final Round

In final round no mix column function is performed. Only SubBytes,

ShiftRows and AddRoundKey functions are performed.
2.4.3 Decryption

The Cipher transformations can be inverted and then implemented in
reverse order to produce a straightforward Inverse Cipher for the AES
algorithm. The individual transformations used in the Inverse Cipher
are Inverse ShiftRows, Inverse SubBytes,Inverse MixColumns, and

AddRound Key.[7]

2.4.3.1 Inverse Shift Rows

Inverse ShiftRows is the inverse of the ShiftRows transformation. The
bytes in the last three rows of the State are cyclically shifted over
different numbers of bytes. The first row, r = O, is not shifted. The
bottom three rows are cyclically shifted by the row numberas shown in

figure 2-5.

XX

InvShiftRows ()

/

2.4.3.2

'SI'O 'SI 1 I‘SJ 2 'szs
Y
So.0 | o1 | So.2 | So.3
Spto | S | Stz | Sis
Sop | S21 | S22 | 523
S30 | 31 | S3.2 | S33

L L
mEEEEy

S,olsia |5 2|5
s
So.0 | So1 | So2 | Sos
Sps | Sto | i | Sz
S22 | S23 | 20 | S2a
S31 | 3.2 | S33 | 30

Figure 2-5 Inverse ShiftRows

Inverse SubBytes

Inverse SubBytesis the inverse of the byte substitution transformation,

in which the inverse S-box is applied to each byte of the Statetable 2-

3.
7

0 1 2 3 4 5 6 7 8 9 a b = d e £

0] 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 £3 d7 fb

1| 7e e3 39 82 9b 2f ££ 87 34 8e 43 44 cd de e9 cb

2] 54 7b 94 32 a6 a2 23 3d ee 4c 95 Ob 42 fa c3 de

3] o8 2e al 66 28 de 24 b2 76 5b a2 49 6d 8b dl 25

4| 72 £8 £f6 64 86 68 o8 16 d4 ad S5c cc 54 65 bé 92

5| 6¢ 70 48 50 fd ed b9 da S5e 15 46 57 a7 8d od 84

6| 20 ds ab 00 8ec be d3 Oa £7 el 58 05 b8 b3 45 06

x 7] 40 2c le 8f ca 3f Of o2 cl af bd 03 o1 13 8a &b
8| 3a 91 11 41 4f 67 dc ea 97 £f2 cf ce £f0 b4 e6 73

9] 96 ac T4 22 e’ ad 35 85 el £9 37 e8 lc 75 daf 6e

al 47 £1 la 71 1d 29 a5 89 6f b7 62 Oe aa 18 be 1b

bl fe 56 3e 4b c6 d2 79 20 Sa db <0 fe 78 cd 5a £f4

c| 1f dd aB 33 88 07 a7 31 bl 12 10 59 27 80 ec 5f

d] 60 51 7£ a9 19 b5 d4a od 2d e5 Ta Sf 93 a9 9¢c ef

e]| a0 e 3b 4d ae 2a £5 b0 [=%:] eb bb 3e 83 53 29 61

£] 17 2b 04 Te ba 77 de6e 26 el 69 14 63 55 21 Oc 74

Table 2-2 Inverse Sub Bytes S-Box
2.4.3.3 Inverse Mix Columns

XXi

Inverse Mix Columnsis the inverse of the MixColumns transformation.

Inverse MixColumns operates on the State column-by-columnas shown

in figure 2-6.

_S::,_L,_ Qe
sie | |09
s, . | od
s;.| | 0D

0b
Oe
09
0d

Od
0b
Oe
09

09
0d
0b
Oe

Figure 2-6 Inverse Column Matrix

2.4.3.4 AddRoundKey

Add round key function which was described earlier, is its own inverse,

since it only involves an application of the XOR operation.

PLAINTEXT

!

AddRoundKey I

SubBytes

L 2

v

MixColumns

v

ShiftRows I
AddRoundKey I

ENCRYPTION

ShiftRows I

v

AddRoundKey I

3. DESIGN

CIPHERTEXT

X Nr-1

DECRYPTION

PLAINTEXT

R I — _

Figure 2-7 AES Algorithm

XXii

LAST ROUND

AddRoundKey

¥

InvSubBytes

*

InvShiftRows

AddRoundKey

¥

InvMixColumns

*

InvSubBytes

¥

InvShiftRows

AddRoundKey

;

CIPHERTEXT

X Nr-1

3.1 INTRODUCTION

Our project is divided into two parts first we have to read/write from
SD card and then we have to implement AES on it. For this purpose
first we have used smart board Arduino mega and then designed our

own circuit using ATMegal281 microcontroller.

3.2 ARDUINO MEGA

We have used Arduino mega smart board to access SD Card and read
write files from it. For this purpose we have used Arduino Ethernet

shield to access SD Cardshown in figure 3-1. [8]

I!II|I|| _I

|
~ "
o . HANANS

Figure 3-1 Arduino Ethernet Shield
The code for read/write from SD card is attached as per appendix ‘C’.

3.3 CIRCUIT DESIGN AND IMPLEMENTATION

As Arduino mega is a smart board and it includes many other
accessories which are not required. In order to meet our desired

design we used ATMegal281 which is same micro controller used in

Arduino board and then made our own circuit. We have made all the

simulations and circuit design on proteus. Circuit as shown in figure 3-
2

XXiii

Rz R3
1k 10k
el Ly
- |2
2 = : cam 4 J2 SDCARD
1 FDAGOANNT] —22 Sos
HKTALl ROZREDIANTE [+ wos
5 HTAL2 POATED 1ANTA = Lo D+
. FOHICP1 i Crat =t =TE«T- D-
+51 | papgpn P OSEC ' BT GHO
L paimnd POETI 2
142 paompa POTAD ' 7 L AR & &
c4 A2 poampa o LED - — =TET=
T 1AL plamoe PELRXDILPC INTEPR D L DS ET E
=TER | =TET= 42 | pasmps PELTXDOP D0 5 RS
A2 pasmps PE200C FOMIND 2!
— e L PEACICAAEINT 2 = Z
= = ' __ PELOCIBANTE o STEST- PR
Al pans=rPciNTD RESOCICANTS [1— =TExTe
—BEMCLE 11 pRes I9PCINT PEGTMNTE 2!
12 PESMOSIPCINTZ PERACEACLMOANTT 32— Js
13 pERmMEOACINTI '
At paLoCzamCINTL pEO@OCO 2k PGMC LK =] 25T PG
HE) pESOCTARCINTS PF1@0CT 2 o3 4o
18 pEROCTBACINTG RF2@OCE 2. 5 &
1T p AT C OO 1C RS INTT RFAmDCT (2 ! CORR-DIE
1 PF &@0C $TCH 21 ~FE<T-
1 pones PESADCSTIE 22 | ===
(X poima PFEMDCHTDO 22 1
I pezmin PFTDCToDN 2]
12 poamit _ ' —
13 po iz PGOLIR 4%5‘—'—‘ D2 E
i] PG 1RD +
AL peemii PGZBLE 32 ?“S\H R4
142 poTmas reaToscz 2] I
: PG RTOSCT 2 LED =l
VB2 AREF PESOCOE —TE
B : el
il T = o ol sl el il Il i I il il e i
TEST

M -COMPLUTER
WiTC

GHD
AUVIDEF & &
e m— = TFxT=

Figure 3-2 Circuit Diagram of Device

3.3.1 Accessing SD Card

ATMegal281 is a microcontroller which has 7 1/0 ports namely from
port A to port G. We used port D to transmit data to SD card for this
we use pin 28 of microcontroller to transmit data and pin 27 to receive

data. [9]

3.3.2 Adding External Memory

We have added 8 Kbit Electrically Erasable PROM to increase our
memory requirement. We have connected serial data pin of chip

24AA08 on pin 26 and serial clock of this chip on pin 25.

3.3.3Reading/Writing From Computer

XXiv

We have used port G of microcontroller to read and write data from
computer. For this we used pin 33 to write data and pin 34 to read
data through USB.

3.3.4Reset

We have added a button to reset the microcontroller and for this we

uses reset pin of controller that is pin 20.
3.3.50scillator

We have attached 16 MHz crystal oscillator on pin 23 and pin 24 of the

controller.
3.3.6 Implementation

We have used Atmel Studio 6.1 to code our microcontroller. The code
for implementation of AES is attached as per appendix ‘D’ and code for

read/write from SD Card is attached as per Annex ‘E’.
3.3.7GUI

We have designed a GUI of working of our project in c# visual basic to

show the functionality of our project on computer.

XXV

o5l Secure SD Card Reader

= | =
Secure SD Card Reader fiﬂ?\
Encryption Key
Plain Text
CipherText
Encypt | [Decopt |
open a File
SawveResults

Figure 3-3 Application
4. PROJECT ANALYSIS AND EVALUATION
4.1 RESULTS AND ANALYSIS

From the results and output obtained from the (Proteus) simulation
implementation of AES is confirmed. Hardware design has also been
completed. Our aim was to make a device that can secure data from
unauthorized access while moving data from one place to another. We
have successfully implemented encryption of data before storing it on
a SD card and decrypting it before accessing it again.

Overall project was in working condition but due to small memory
available and slow processing speed of microcontroller we cannot able
to encrypt large file with our design, however using a 32 bit
microcontroller with more space and high processing speed we can
also encrypt and decrypt large files. In our project we have used a fix

key for encryption and decryption this means only one reader can

XXVi

access the data which has encrypted it. We have implemented AES128

bit for the encryption of data.

5. RECOMMENDATIONS/ FUTURE WORK

Following are recommended for improvement of the project in future:

e Amendments may be made in AES algorithm for example
changing the values of S-Box, changing the sequence of round
functions will make AES cipher difficult to break.

e Instead of using a fix key, adding a keypad on device will
facilitate everyone to select its own key to encrypt the data
and further enhance the security.

e Micro controller of 16 bit or more should be used for fast
processing and encrypting large capacity file. This will also

solve our problem of adding an external memory.

6. CONCLUSION

The purpose of this project is to secure data from unauthorized access.
All the data that passes from computer to the SD card will be
encrypted using AES encryption and on the other hand all the data

from SD card to computer will be decrypted to use it.

6.1 OBJECTIVE

We have successfully achieved our aim of securing data using AES
algorithm and making of hardware device. However our device it is not
able to secure large files due to low processing speed and less memory

of microcontroller.

XXVii

6.2 APPLICATIONS

Data safety and integrity is one of the main issues of organizations and
this device can be used to avoid unauthorized access and alteration in
the data. Encrypted Data is stored in SD card so data recovery tools
can only recovered the encrypted data which is of no use without

authentic pass key.

6.3 Limitations

Microcontroller of 32 bit and its accessories are not easily available,
which forced us to select 8-bit microcontroller which has slow
processing speed and low memory. Programmer for microcontroller is

also not available.

XXViii

7. BIBLIOGRAPHY

1. Arduino - ArduinoBoardMega2560. (n.d.). Retrieved from
http://arduino.cc/en/Main/arduinoBoardMega2560

2. AT32UC3A3128S. (n.d.). Retrieved from

http://www.atmel.com/devices/at32uc3a3128s.aspx

3. ATmegal281. (n.d.). Retrieved from

http://www.atmel.com/devices/atmegal281.aspx

4. Advanced Encryption Standard - Wikipedia, the free
encyclopedia. (n.d.). Retrieved March 25, 2014, from
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

5. NIST Computer Security Division - Cryptographic Toolkit. (n.d.).
Retrieved from http://csrc.nist.gov/groups/ST/toolkit/index.html

6. block cipher - AES AddRoundKey - Cryptography Stack
Exchange. (n.d.). Retrieved from
http://crypto.stackexchange.com/questions/8043/aes-
addroundkey

7. NIST.gov - Computer Security Division - Computer Security
Resource Center. (n.d.). Retrieved from

http://csrc.nist.gov/groups/ST/toolkit/key _management.html

8. How to Interface SD Card with Arduino: Arduino SD Card Project
with Circuit Diagram. (n.d.). Retrieved from
http://www.engineersgarage.com/embedded/arduino/how-to-

interface-sd-card-with-arduino-project-circuit

9. Simple SD Card Read/Write Setup. (n.d.). Retrieved from
http://wiki.dxarts.washington.edu/groups/general/wiki/1c44f/Si
mple_SD_Card_ReadWrite_Setup.html

XXiX

10. Secure Digital - Wikipedia, the free encyclopedia. (n.d.).
Retrieved March 25, 2014, from
http://en.wikipedia.org/wiki/Secure_Digital

XXX

SERIAL

Appendix ‘A’

COST ON PROJECT

WORK DONE
Purchase & Shipment of Arduino Mega2560
Purchase of 2 x ATMegal281
Shipment Charges for ATMegal281
Construction of Device Circuit

Total Cost

XXXi

COST

Rs 6000

Rs 4000

Rs 8000

Rs 4000

22000

Appendix ‘B’

TIME LINE

Secure SD Card Reader

Literarture| |AQuiing of Chouit — .
i P — fion)

Rewi Arduing P Implemen OF‘TF?'E;

R Tese Desgning tation Of of Project
AES
Jan-14 Fepb-14 Mar-14 Apr-14 May-14 Jun-14
Defence Read Wi Aqurng of
FYP f?am dSD‘ ATMega1281

XXXii

Appendix ‘C’

Code for reading/Zwriting SD card using Arduino Mega2560

#include <SD.h>

File myFile;

void setup()

{

// Open serial communications and wait for port to open:
Serial.begin(9600);
Serial.print("Initializing SD card...");
pinMode (10, OUTPUT);

if (1SD.begin(4)) {
Serial.printin(initialization failed!");
return;

by
Serial.printin(initialization done.");
myFile = SD.open("test.txt", FILE_WRITE);

// if the file opened okay, write to it:
if (myFile) {

Serial.print("Writing to test.txt...");

myFile.printin("testing 1, 2, 3.");

// close the file:

myFile.close();

Serial.printin(done.");

}else {

XXXiii

Serial.printin(*error opening test.txt");

}

myFile = SD.open("test.txt");
if (myFile) {
Serial.printin("test.txt:");
// read from the file until there's nothing else in it:
while (myFile.available()) {
Serial.write(myFile.read());
} // close the file:
myFile.close();
} else {
Serial.printin(error opening test.txt");
by
by

void loop()

{
}

XXXiV

Appendix ‘D’

Code for AES implementation

Aesl128.h File

#ifndef uint8_t
#define uint8_t unsigned char
#Hendif

#ifdef __ cplusplus
extern "C" {
#endif

typedefstruct apple {
uint8_t key[16];
uint8_tenckey[16];
uint8_tdeckey[16];
} aesl28 context;
void aes128 init(aes1l28_ context *, uint8_t *);
void aes128 done(aesl28 context *);
void aes128 encrypt_ecb(aes1l28 context *, uint8_t *);

void aes128 decrypt_ecb(aesl28 context *, uint8_t *);

XXXV

#ifdef __ cplusplus

b5
#Hendif

AES.c File

#include "aes128.h"

#define F(xX) (((X)<<1) ™ ((((X)=>=>7) & 1) * 0x1b))
#define FD(X) (((X) >> 1) ™ (((X) & 1) ? 0x8d : 0))

uint8_t gf _alog(uint8_t x) {
uint8 tatb =1, z;

while (x--) {z = atb; atb<<= 1; if (z & 0x80) atb™~= 0x1b; atb ~= z;}

returnatb;

by
uint8_t gf _log(uint8_t x) {
uint8 tatb =1,i =0, z;

do {
if (atb == x) break;
z = atb; atb<<=1; if (z & 0x80) atb™= Ox1b; atb ™= z;
} while (++i> 0);

returni;

by
uint8_t gf_mulinv(uint8_t x)

{

XXXVi

return (x) ? gf_alog(255 - gf _log(x)) : O;

by
uint8_t rj_sbox(uint8_t x)

{
uint8_tvy, sb;

sb =y = gf_mulinv(x);
y = (y<<1)|(y>=>7); sb "=y; y = (y<<DI|(y>>7); sb *=y;
y = (y<<D|(y=>=>7); sb *=y; y = (y<<1)|(y>=>7); sb *=y;

return (sb ™ 0x63);
by

uint8_t rj_sbox_inv(uint8_t x)

{
uint8_tvy, sb;

y = X ™ OX63;
sb =y = (y<<DI(y>>7);
y = (y<<2)|(y==6); sb *=y; y = (y<<3)|(y>>5); sh *=y;

returngf_mulinv(sb);

}

uint8_t rj_xtime(uint8_t x)

{
return (x & 0x80) ? ((x << 1) ™ 0x1b) : (x << 1);

s
voidaes_subBytes(uint8_t *buf)

XXXVii

{
register uint8_t i = 16;

while (i--) buf[i] = rj_sbox(buf[i]);
ks

voidaes_subBytes_inv(uint8_t *buf)

{
register uint8_t i = 16;

while (i--) buf[i] = rj_sbox_inv(buf[i]);
by
voidaes_addRoundKey(uint8_t *buf, uint8_t *key)

{
register uint8_t i = 16;

while (i--) buf[i] ~= key[i]; }
voidaes_addRoundKey_ cpy(uint8_t *buf, uint8_t *key, uint8_t *cpk)

{
register uint8_ti = 16;

while (i--) buf[i] ™= (cpk[i] = key[i]), cpk[16+i] = key[16 + i];
by

voidaes_shiftRows(uint8_t *buf)

{

register uint8_ti, j;

i = buf[1]; buf[1] = buf[5]; buf[5] = buf[9]; buf[9] = buf[13];
buf[13] = i;

i = buf[10]; buf[10] = buf[2]; buf[2] = i;

XXXViii

j = buf[3]; buf[3] = buf[15]; buf[15] = buf[11]; buf[11] = buf[7];
buf[7] = j;
j = buf[14]; buf[14] = buf[6]; buf[6] = j:

by
voidaes_shiftRows_inv(uint8_t *buf)
{
register uint8_t i, j;
i = buf[1]; buf[1] = buf[13]; buf[13] = buf[9]; buf[9] = buf[5];
buf[5] = i;
i = buf[2]; buf[2] = buf[10]; buf[10] = i;
j = buf[3]; buf[3] = buf[7]; buf[7] = buf[11]; buf[11] = buf[15];
buf[15] = j;
J = buf[6]; buf[6] = buf[14]; buf[14] = j;

voidaes_mixColumns(uint8_t *buf)

{

register uint8_t i, a, b, c, d, e;

for (Ii=0; i< 16; i +=4)
{
a = buf[i]; b = buf[i + 1]; ¢ = buf[i + 2]; d = buf[i + 3];
e=a™~b~™c™d;
buf[i] ~= e ™ rj_xtime(a”™b); buf[i+1] ™= e ™ rj_xtime(b”c);
buf[i+2] ™= e ™ rj_xtime(c™d); buf[i+3] = e ™ rj_xtime(d™a);

}

XXXiX

voidaes_mixColumns_inv(uint8_t *buf)

{

register uint8 _ti, a, b, ¢, d, e, X, y, z;

for (i=0; i< 16;i +=4)
{
a = buf[i]; b = buf[i + 1]; ¢ = buf[i + 2]; d = buf[i + 3];
e=a™~b~™c™d;
z = rj_xtime(e);
X = e N rj_xtime(rj_xtime(z™a™c)); y=e"
rj_xtime(rj_xtime(z™b™d));
buf[i] = x ™ rj_xtime(a”™b); buf[i+1] ™=y ™ rj_xtime(b”c);
buf[i+2] ™= x ™ rj_xtime(c™d); buf[i+3] ™=y ™ rj_xtime(d™a);
by
by
voidaes_expandEncKey(uint8_t *k, uint8_t *rc)

{

register uint8_t i;

K[O] ™= rj_sbox(k[29]) ™ (*rc);
K[1] ™= rj_sbox(k[30]);
k[2] ™= rj_sbox(k[31]);
kK[3] ™= rj_sbox(k[28]);

*rc = F(*rc);

for(i = 4; i< 16; i +=4) K[i] ~= K[i-4], k[i+1] ™= K[i-3],
k[i+2] ~= K[i-2], k[i+3] ~= K[i-1];

k[16] ™= rj_sbox(k[12]);

k[17] ™= rj_sbox(k[13]);

xI

k[18] ™= rj_sbox(k[14]);
k[19] ™= rj_sbox(k[15]);

for(i = 20; i< 32; i += 4) k[i] ~= k[i-4], k[i+1] ~= K[i-3],
k[i+2] ~= k[i-2], k[i+3] ~= K[i-1];

s

voidaes_expandDecKey(uint8_t *k, uint8_t *rc)

{

uint8_ti;

for(i = 28; i> 16; i -= 4) k[i+0] ™= Kk[i-4], k[i+1] ™= K[i-3],

k[i+2] ~= K[i-2], k[i+3] ~= K[i-11;

k[16] ™= rj_sbox(k[12]);
k[17] ™= rj_sbox(k[13]);
k[18] ™= rj_sbox(k[14]);
k[19] ™= rj_sbox(k[15]);

for(i = 12; i> 0; i -= 4) K[i+0] ~= K[i-4], k[i+1] ~= K[i-3],
k[i+2] ~= K[i-2], k[i+3] ~= K[i-1];

*rc = FD(*rc);
k[O] ™= rj_sbox(k[29]) ™ (*rc);
k[1] ™= rj_sbox(k[30]);
k[2] ™= rj_sbox(k[31]);
K[3] ™= rj_sbox(k[28]);
by

void aes128 init(aes1l28_context *ctx, uint8_t *k)

xli

{
uint8_trcon = 1;

register uint8_t i;

for (i = O; i<sizeof(ctx->key); i++) ctx->enckey[i] = ctx->deckey[i]
= k[I;
for (i = 8;--i;) aes_expandEncKey(ctx->deckey, &rcon);

}

void aes128 done(aesl28 context *ctx)

{

register uint8_t i;

for (i = 0; i<sizeof(ctx->key); i++)
ctx->key[i] = ctx-=>enckey[i] = ctx->deckey[i] = O;
by

void aes128 encrypt_ecb(aesl28 context *ctx, uint8_t *buf)

{

uint8_ti, rcon;

aes_addRoundKey_ cpy(buf, ctx->enckey, ctx->key);
for(i=1, rcon = 1; i< 10; ++i)
{
aes_subBytes(buf);
aes_shiftRows(buf);
aes_mixColumns(buf);
if(i& 1) aes_addRoundKey(buf, &ctx->key[16]);
elseaes_expandEncKey(ctx->key, &rcon), aes_addRoundKey(buf, ctx-

>key);

xlii

by
aes_subBytes(buf);

aes_shiftRows(buf);
aes_expandEncKey(ctx->key, &rcon);
aes_addRoundKey(buf, ctx->key);

+
void aes128 decrypt_ecb(aesl28 context *ctx, uint8_t *buf)

{

uint8_ti, rcon;

aes_addRoundKey cpy(buf, ctx->deckey, ctx->key);
aes_shiftRows_inv(buf);

aes_subBytes_inv(buf);

for (i = 10, rcon = 0x80; --i;)
{
if((i&1))
{
aes_expandDecKey(ctx->key, &rcon);
aes_addRoundKey(buf, &ctx->key[16]);
¥
elseaes _addRoundKey(buf, ctx->key);
aes_mixColumns_inv(buf);
aes_shiftRows_inv(buf);
aes_subBytes_inv(buf);
by
aes_addRoundKey(buf, ctx->key);

}

Writing the main function

xliii

#include<ATMegal281.h>
#include"aes128.h"

_CONFIG2(FNOSC_FRC & FCKSM_CSECMD & POSCMOD_NONE &
OSCIOFNC_ON)
_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

uint8_t key[33]="0123456789012345";
uint8_tbuf[]="This program takes 16 bytes of a text and encryptes
it.";
uint8_t keyl[]="KEY....";
uint8_t textl[]="TEXT:...";
uint8_t cyphertextl[]="CIPERTEXT...";
uint8_t decr_text1[]="DECRYPTED TEXT..";
uint8_tm,t;
intz,n,p;
inti,q,w,e,X,j,V,Y;

intu,e,w,v,bb,nnn,zz,wx,qq,yy;

void aes128 print(uint8_t *,int,int);
voiden_de_display(uint8_t*,int,int,int);
voidcarriage_return(void);

aesl28 contextctx;

int main(void)

{

_CO0SCz2;

_CO0sC1;

_COsSCo;

U1MODEDbits.UARTEN=1;

xliv

U1STADbits.UTXEN=1;
U1MODE = 0; // Clear UART1 mode register
U1STA = 0;// Clear UART1 status register

U1BRG = 25;
IPC2bits.U1RXIP = 4; //set recieve interrupt priority to 4
IECObits.U1RXIE = 1; //recieve interrupt enable
_U1RXIF=0; // Clear UART RX Interrupt Flag
U1STAbIits.URXISEL = 0O; //interrupt when any character is

recieved
U1MODEDits.UARTEN = 1; // Enable UART1 module
U1STADbits.UTXEN = 1; // Enable UART1 transmit

Aes128 print(textl,sizeof(textl),0);
carriage_return();
aesl28 print(buf,sizeof(buf),0); // send the text

carriage_return();

aes128 print(keyl,sizeof(keyl),0);
carriage_return();

aesl28 print(key,sizeof(key),0); // send the key
carriage_return();

yy=sizeof(buf);

aes128 print(cyphertextl,sizeof(cyphertextl),0);
en_de_display(buf,yy,0,0); // cipher text

aes128 print(decr_textl,sizeof(decr_textl1),0);

xlv

en_de display(buf,yy,0,1); // decrypted text

while(1); //end

return O;
by
voiden_de_display(uint8_t* array ,intmm,intconstant,int flag)
{
intz,n,p;
inti,q,w,e,X,j,V;
unsigned char sub[16],b[16];
n=mm-1;//total n=9
p=n%16;

carriage_return();

if((p!'=0)&&(flag==0))// check if we have exact 16 byte chunks and
encryption required
{
W=n-p,

X=0;
for(g=w;q<w+p;q++)

{
b[x]=array[q];

X4+

by
for(e=p;e<16;e++)
b[e]='0"; // zeros added
¥

xlvi

if(n>=16)

{
J=0;
for(v=0;v<=n-p-1;v++)
{
sub[j]=array[V]; j++;
if(j==16)
{
if(flag==0) //if encryption required
{

Aes128_init(&ctx,key);
Aesl1l28 encrypt_ecb(&ctx,sub);

Aesl128 print(sub,17,constant);
for(qq=0;qgq<16;qq++)
array[(v-15+qq)]=sub[qq]; //again shifting encrypted data to
array
by
if(flag==1) //if decryption is required
{ // aes128 init(&ctx,key);
Aes128 decrypt_ecb(&ctx,sub);
Aes128 print(sub,17,constant);

xlvii

Appendix ‘E’

Code for accessing SD Card

Sd.h file

#ifndef _ SD_H__ #define _ SD_H
#include <SdFat.h>
#include <SdFatUtil.h>

#define FILE_READ O_READ
#define FILE_WRITE (O_READ | O_WRITE | O_CREAT)

classFile:public Stream {
private:
char _name[13];
SdFile*_file;
public:
File(SdFile f, constchar*name);
File(void);
virtualsize_twrite(uint8_t);

virtualsize twrite(constuint8_t*buf, size t size);

xlviii

virtualintread();

virtualintpeek();
virtualintavailable();
virtualvoidflush();
intread(void*buf, uintl6_tnbyte);
booleanseek(uint32_tpos);
uint32_tposition();
uint32_tsize();

voidclose();

operatorbool();

char*name();

booleanisDirectory(void);
File openNextFile(uint8_t mode = O_RDONLY);

voidrewindDirectory(void);

using Print::write;

j &

classSDClass {

private:
Sd2Card card;
SdVolume volume;

SdFile root;
SdFilegetParentDir(constchar*filepath, int*indx);
public:

booleanbegin(uint8_tcsPin= SD_CHIP_SELECT_PIN);

xlix

File open(constchar*filename, uint8_t mode = FILE_READ);

booleanexists(char*filepath);

booleanmkdir(char*filepath);

booleanremove(char*filepath);

booleanrmdir(char*filepath);

private:

intfileOpenMode;

friendclassFile;

friendbooleancallback openPath(SdFile&, char*, boolean, void*);

j &

externSDClass SD;

Hendif

	LIST OF TABLES
	LIST OF FIGURES
	1.INTRODUCTION
	1.2 PROJECT DESCRIPTION
	1.3 SCOPE
	2.1ARDUINO MEGA2560
	2.2AT32UC3A3218S
	3.1 INTRODUCTION
	3.2 ARDUINO MEGA
	3.3 CIRCUIT DESIGN AND IMPLEMENTATION
	4. PROJECT ANALYSIS AND EVALUATION
	4.1 RESULTS AND ANALYSIS
	6.1 OBJECTIVE
	6.2 APPLICATIONS
	6.3 Limitations

