

SECURE SD CARD READER

By

CAPT MUHAMMAD UMAIR SIDDIQUI

CAPT MUHAMMAD UMAR KHAN

CAPT RANA EHTESHAM-UL-HAQ

Submitted to Department of Electrical Engineering, Military
College of Signals National University of Sciences and
Technology, Rawalpindi in partial fulfillment for the

requirements of a B.E Degree in Telecom Engineering
June 2014

ABSTRACT
SECURE SD CARD READER

With countless portable devices easily available such as SD-Cards, CDs,

Flash drives and MP3 playersas well as Internet access on nearly every

workstation, businesses run an increased risk of data theft by employees

and others with access to confidential data. Data theft continues to rise and

create problems with companies every day. Data theft is a term used to

describe when information is unlawfully copied or taken from a business or

other individual. SD-Card widespread use sometimes makes them relatively

safer than they are.

In fact, even popular and advantageous innovative devices making use of

SD-Card may have significant risks. Not surprisingly, if the portable device

or media contains tax returns or other sensitive information, you could be

ethically, legally and financially responsible for a security breach and its

consequences. The danger is too great to ignore, but these convenient

devices have become a tactical necessity for everyone on the go.

Secure SD-Card reader mitigates the risks of portable data storage devices

so you can use them without hesitation. The SD-Card reader uses advanced

encryption standard for encryption and decryption of data. The project will

be completed in two phases in first phase read/write from SD-card will take

place using microcontroller and in second phase we will implement

Advanced Encryption Standard for the encryption of data.

CERTIFICATE OF CORRECTNESS AND APPROVAL

It is certified that the work contained in this thesis titled “Secure SD Card

Reader”, carried out by Muhammad Umair Siddiqui, Muhammad Umar Khan

and RanaEhtesham-Ul-Haq under the supervision of Lt ColIshtiaqKiyani in

partial fulfillment of the Bachelors of Telecommunication Engineering, is

correct and approved.

Approved By

Asst. Prof. IshtiaqKiyani

Project Supervisor

Military College of Signals, NUST

iv

DEDICATION

Almighty Allah,

Our parents for their prayers

And Faculty for their help

v

ACKNOWLEDGEMENTS

Nothing happens without the will of Allah Almighty. Special thanks to

Allah Almighty for giving us knowledge and strength to accomplish this

task successfully.

The team likes to thank our project supervisor, Lt ColIshtiaqKiyani,

without his support and encouragement; it would not have been

possible to complete this project.

Special thanks to our parents for their unrelenting support and belief

in us and for their prayers.

vi

Table of Contents

1INTRODUCTION ... 1

1.1OVERVIEW .. 1

1.2PROJECT DESCRIPTION .. 1

1.3SCOPE.. 3

2LITERATURE REVIEW .. 3

2.1ARDUINO MEGA2560 ... 3

2.2AT32UC3A3218S ... 5

2.3ATMEGA1281 .. 6

2.4HIGH LEVEL DESCRIPTION OF AES .. 7

2.4.1Key Expansion .. 7

2.4.2 Encryption .. 8

2.4.2.1Initial Round .. 8

2.4.2.2Rounds ... 8

2.4.2.3Sub Bytes ... 9

2.4.2.4Shift Rows ... 9

2.4.2.5Mix Coloumns .. 10

2.4.2.6Add Round Key .. 10

2.4.2.7Final Round ... 10

2.4.3 Decryption .. 10

2.4.3.1Inverse Shift Rows ... 11

2.4.3.2Inverse Sub Bytes .. 11

2.4.3.3Inverse Mix Coloumn .. 12

2.4.3.4Add Round Key .. 12

3. DESIGN .. 13

3.1 INTRODUCTION ... 13

3.2 ARDUINO MEGA ... 13

3.3 CIRCUIT DESIGN AND IMPLEMENTATION 14

3.3.1 Accessing SD Card ... 15

vii

3.3.2 Adding External Memory ... 15

3.3.3 Reading/Writing From Computer. ... 15

3.3.4 Reset ... 16

3.3.5 Oscillator .. 16

3.3.6 Implementation ... 16

3.3.7 GUI .. 16

4PROJECT ANALYSIS AND EVALUATION .. 17

4.1RESULT AND ANALYSIS .. 17

5RECOMMENDATIONS / FUTURE WORK .. 17

6CONCLUSION ... 18

6.1OBJECTIVE ... 18

6.2APPLICATIONS ... 18

6.3LIMITATIONS ... 18

7BIBLIOGRAPHY ... 19

APPENDIX A : COST ON PROJECT ... 21
APPENDIX B : TIMELINE .. 22
APPENDIX C : Code For reading/writing SD-Card Using Arduino
Mega256 ... 23
APPENDIX D : Code For AES Implementation ... 25
APPENDIX E : Code For Accessing SD Card .. 37

viii

LIST OF TABLES

Table 2-1 Sub Bytes S-Box .. 9

Table 2-2 Inverse Sub Bytes S-Box .. 12

LIST OF FIGURES

Figure 1-1 Block Diagram .. 3

Figure 2-1 Arduino mega2560 ... 4

Figure 2-2 Add Round Key Function .. 8

Figure 2-3 Shift Rows ... 9

Figure 2-4 Mix Coloumn .. 10

Figure 2-5 Inverse Shift Rows .. 11

Figure 2-6 Inverse Column Matrix .. 12

Figure 2-7 AES Algorithm .. 12

Figure 3-1 Arduino Ethernet Shield ... 13

Figure 3-2 Circuit Diagram of Device .. 14

Figure 3-3 Application ... 15

ix

List of Abbreviations

SD Secure Digital

SDHC Secure Digital High Capacity

CD Compact Disk

MP3 MPEG-1 Part 3 (Moving Picture Expert Group)

LED Light Emitting Diode

USB Universal Serial Bus

HDD Hard Disk Drive

PWM Pulse Width Modulation

UART Universal Asynchronous Receiver/Transmitter

ICSP In Circuit Serial Programming

RISC Reduced Instruction Set Computing

FAT File Allocation Table

SRAM Static Random Access Memory

MPU Memory Protection Unit

PDCA Peripheral Direct Memory Access Controller

DMACA Direct Memory Access controller

SDIO Secure Digital Input Output

MMC MultiMediaCard

GPIO General purpose Input Output

SPI Serial to parallel Interface

NIST National Institute of Standards and Technology

AES Advanced Encryption Standard

x

1.INTRODUCTION

1.1 OVERVIEW

Data theft continues to rise and create problems with companies every

day.

It is important to understand the possibilities and consequences of

data theft. It is also important to understand how to prevent data

theft. Data theft is a growing problem primarily perpetrated by office

workers with access to technology such as desktop computers and

hand-held devices capable of storing digital information such as USB

flash drives, SD Cards, iPods and even gadgetry using memory cards.

Since employees often spend a considerable amount of time

developing contacts and confidential and copyrighted information for

the company they work for, they often feel they have some right to

the information and are inclined to copy and/or delete part of it when

they leave the company, or misuse it while they are still in

employment. While most organizations have implemented firewalls

and intrusion-detection systems very few take into account the threat

from the average employee that copies proprietary data for personal

gain or use by another company. A common scenario is where a sales

person makes a copy of the contact database for use in their next job.

Typically this is a clear violation of their terms of employment.

Unfortunately, data theft is rising every day. Steps must be taken to

assure proper protection. This motivation to protect the data lead us to

make a device that will encrypt the data before storing it in a portable

device and decrypt the data before retrieving it.

xi

1.2 PROJECT DESCRIPTION

The purpose of this project is to secure data from unauthorized access.

Data Security means protecting a database from destructive forces

and the unwanted actions of unauthorized users. One common

approach is to encrypt the data for storage, and then transfer that

storage media. In this way only the authorize users will have access to

the data.

It’s worth highlighting an often-underappreciated advantage of

encrypting data on portable storage devices. Specifically, properly

encrypted data offers a safety net against potentially embarrassing or

damaging data surfacing from storage devices that were discarded or

sold off. Many businesses don't realize how easily deleted files can be

retrieved with off-the-shelf recovery software from mechanical storage

devices such as SD-cards, hard disk drives (HDD) or USB drives.

Reconstituting previously encrypted data, on the other hand, is far

more difficult, as it that requires the original credentials or even a copy

of the decryption key. An encrypted storage device with a decryption

key that's been erased, or one with a good authentication passphrase,

offers a good safeguard against malicious data recovery. A thoroughly

wiped or physically destroyed storage device remains the most secure

defense against data leakage, though.

Data integrity refers to maintaining and assuring the accuracy and

consistency of data over its entire life-cycle. The purpose of this

project is also to ensure integrity of data stored in SD-card. Since only

the authorize users have access to the contents of the memory card,

no one can change the data without authentication. It also restricts

auto run viruses to move into SD-card and damages everything on the

card and stop further replication of auto run virus on other computers.

xii

Figure 1-1 Block Diagram

Our device will be capable of reading and writing from SD Card in a

secure manner. In order to achieve that security and protection we

have implemented AES encryption on it. All the data that passes from

computer to the SD card will be encrypted using AES encryption and

on the other hand all the data from SD card to computer will be

decrypted to use it.

1.3 SCOPE

The scope of our project is to make a SD-Card reader which will

encrypt the data before storing it in a SD Card and decrypt the data

before using it again with the help of Advanced Encryption Standard

(AES).

2. LITERATURE REVIEW

In the first step read and write from SD Card will have to be done for

this purpose some open source hardware computing platforms were

used some of them are:-

xiii

2.1ARDUINO MEGA2560

The Arduino Mega is a microcontroller board based on the

ATmega1280. It has 54 digital input/output pins (of which 14 can be

used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial

ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an

ICSP header, and a reset button. It contains everything needed to

support the microcontroller; simply connect it to a computer with a

USB cable or power it with a AC-to-DC adapter or battery to get

started.[1]

Figure 2-1 Arduino mega2560

Summary

Microcontroller ATmega1280

Operating Voltage 5V

Input Voltage 7-12V

xiv

(recommended)

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

Flash Memory
128 KB of which 4 KB used by

bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

2.2AT32UC3A3218S

The AT32UC3A3/A4 is a complete System-On-Chip microcontroller

based on the AVR32 UC RISC processor running at frequencies up to

84MHz. AVR32 UC is a high-performance 32-bit RISC microprocessor

core, designed for cost-sensitive embedded applications, with

particular emphasis on low power consumption, high code density and

high performance. The processor implements a Memory Protection Unit

(MPU) and a fast and flexible interrupt controller for supporting

modern operating systems and real-time operating systems. Higher

computation capabilities are achievable using a rich set of DSP

instructions. The AT32UC3A3218 incorporates on-chip Flash and SRAM

memories for secure and fast access. 64 KBytes of SRAM are directly

coupled to the AVR32 UC for performances optimization. The

Peripheral Direct Memory Access Controller (PDCA) enables data

xv

transfers between peripherals and memories without processor

involvement. The PDCA drastically reduces processing overhead when

transferring continuous and large data streams. The peripheral set

includes a High Speed MCI for SDIO/SD/MMC and a hardware

encryption module based on AES algorithm. The Direct Memory Access

controller (DMACA) allows high bandwidth data flows between high

speed peripherals (USB, External Memories, MMC, SDIO) and through

high speed internal features (AES). The Embedded Host interface

allows device like a USB Flash disk or a USB printer to be directly

connected to the processor. This peripheral has its own dedicated DMA

and is perfect for Mass Storage application.[2]

 Features:-

• High Performance, Low Power 32-bit Microcontroller

• Internal High-Speed Flash

• External Storage device support

• Buffer Encryption/Decryption Capabilities

• Support for SPI

• Processing Speed of 84 MHz

• Single 3.3V Power Supply

2.3 ATMEGA1281

The ATmega1281 is a low-power CMOS 8-bit microcontroller based on

the AVR enhanced RISC architecture. By executing powerful

instructions in a single clock cycle, the ATmega1281 achieves

throughputs approaching 1 MIPS per MHz allowing the system

designed to optimize power consumption versus processing speed. Its

main features are:-[3]

Features:-

xvi

• High Performance

• Low Power 8-Bit Microcontroller

• 16 MIPS Throughput at 16MHz

• 128KBytes of In-System Self-Programmable Flash

• 8Kbytes Internal SRAM

• Two Programmable Serial USART

• Master/Slave SPI Serial Interface

• 54 Programmable I/O Lines

In our project we will encrypt data using AES Algorithm. The Advanced

Encryption Standard (AES) is a specification for the encryption of

electronic data established by the U.S. National Institute of Standards

and Technology (NIST) in 2001. AES is based on

the Rijndael cipher developed by two Belgian cryptographers, Joan

Daemen and Vincent Rijmen, who submitted a proposal to NIST during

the AES selection process. Rijndael is a family of ciphers with different

key and block sizes. For AES, NIST selected three members of the

Rijndael family, each with a block size of 128 bits, but three different

key lengths: 128, 192 and 256 bits.

2.4 HIGH-LEVEL DESCRIPTION OF AES

The Advanced Encryption Standard (AES) specifies a FIPS-approved

cryptographic algorithm that can be used to protect electronic data.

The AES algorithm is a symmetric block cipher that can encrypt

(encipher) and decrypt (decipher) information. Encryption converts

data to an unintelligible form called cipher text; decrypting the cipher

text converts the data back into its original form, called plaintext. The

AES algorithm is capable of using cryptographic keys of 128, 192, and

256 bits to encrypt and decrypt data in blocks of 128 bits.[4]

2.4.1 Key Expansion

xvii

Round keys are derived from the cipher key using Rijndael's key

schedule. AES requires a separate 128-bit round key block for each

round plus one more. The AES algorithm takes the Cipher Key and

performs a Key Expansion routine to generate a key schedule. The

algorithm requires an initial set of 4 words, and each round requires 4

words of key data. The resulting key schedule consists of a linear array

of 4-byte words. First we applied RotWord() function to the last word.

The function RotWord() takes a word [a0,a1,a2,a3] as input, performs

a cyclic permutation, and returns the word [a1,a2,a3,a0]. Then we

carry out SubWord() function. The SubWord() is a function that takes

a four-byte input word and applies the S-box to each of the four bytes

to produce an output word. This output word is now XORed with the

first word and first word of Rcon[] array. The Rcon[i] is a round

constant word array. The first word of the expanded key are filled with

the Cipher Key. Every following word is equal to the XOR of the

previous word, and the word 4 positions earlier. In this way we have

formed key matrix for the one round and for subsequent rounds last

word is taken and repeat the process.[5]

2.4.2 Encryption

2.4.2.1 Initial Round

In initial round AddRoundKey function is performed where each byte of

the state is combined with a block of the round key using bitwise XOR.

As shown in the figure 2-2.[6]

xviii

Figure 2-2 Add Round Key Function

2.4.2.2 Rounds

Four functions are performed in each round of AES, for AES of 128 bit

the block size of data is 128 bit and there are 10 rounds in it.[7]

2.4.2.3 SubBytes

A non-linear substitution step where each byte is replaced with

another according to a lookup table 2-1.

xix

Table 2-1Sub Bytes S-Box

2.4.2.4 ShiftRows

 A transposition step where the last three rows of the state are shifted

cyclically a certain number of steps as shown in figure 2-3.

Figure 2-3 Shift Rows

2.4.2.5Mix Columns

A mixing operation which operates on the columns of the state,

combining the four bytes in each column as shown in figure 2-4.

Figure 2-4 Mix Coloumn

xx

2.4.2.6 AddRoundKey

Same as performed in initial round.

2.4.2.7 Final Round

In final round no mix column function is performed. Only SubBytes,

ShiftRows and AddRoundKey functions are performed.

2.4.3 Decryption

The Cipher transformations can be inverted and then implemented in

reverse order to produce a straightforward Inverse Cipher for the AES

algorithm. The individual transformations used in the Inverse Cipher

are Inverse ShiftRows, Inverse SubBytes,Inverse MixColumns, and

AddRound Key.[7]

2.4.3.1 Inverse Shift Rows

Inverse ShiftRows is the inverse of the ShiftRows transformation. The

bytes in the last three rows of the State are cyclically shifted over

different numbers of bytes. The first row, r = 0, is not shifted. The

bottom three rows are cyclically shifted by the row numberas shown in

figure 2-5.

xxi

Figure 2-5 Inverse ShiftRows

2.4.3.2 Inverse SubBytes

Inverse SubBytesis the inverse of the byte substitution transformation,

in which the inverse S-box is applied to each byte of the Statetable 2-

3.

Table 2-2 Inverse Sub Bytes S-Box

2.4.3.3 Inverse Mix Columns

xxii

Inverse Mix Columnsis the inverse of the MixColumns transformation.

Inverse MixColumns operates on the State column-by-columnas shown

in figure 2-6.

Figure 2-6 Inverse Column Matrix

2.4.3.4 AddRoundKey

Add round key function which was described earlier, is its own inverse,

since it only involves an application of the XOR operation.

Figure 2-7 AES Algorithm

3. DESIGN

xxiii

3.1 INTRODUCTION

Our project is divided into two parts first we have to read/write from

SD card and then we have to implement AES on it. For this purpose

first we have used smart board Arduino mega and then designed our

own circuit using ATMega1281 microcontroller.

3.2 ARDUINO MEGA

We have used Arduino mega smart board to access SD Card and read

write files from it. For this purpose we have used Arduino Ethernet

shield to access SD Cardshown in figure 3-1. [8]

Figure 3-1 Arduino Ethernet Shield

The code for read/write from SD card is attached as per appendix ‘C’.

3.3 CIRCUIT DESIGN AND IMPLEMENTATION

As Arduino mega is a smart board and it includes many other

accessories which are not required. In order to meet our desired

design we used ATMega1281 which is same micro controller used in

Arduino board and then made our own circuit. We have made all the

simulations and circuit design on proteus. Circuit as shown in figure 3-

2

xxiv

Figure 3-2 Circuit Diagram of Device

3.3.1 Accessing SD Card

ATMega1281 is a microcontroller which has 7 I/O ports namely from

port A to port G. We used port D to transmit data to SD card for this

we use pin 28 of microcontroller to transmit data and pin 27 to receive

data. [9]

3.3.2 Adding External Memory

We have added 8 Kbit Electrically Erasable PROM to increase our

memory requirement. We have connected serial data pin of chip

24AA08 on pin 26 and serial clock of this chip on pin 25.

3.3.3 Reading/Writing From Computer

xxv

We have used port G of microcontroller to read and write data from

computer. For this we used pin 33 to write data and pin 34 to read

data through USB.

3.3.4 Reset

We have added a button to reset the microcontroller and for this we

uses reset pin of controller that is pin 20.

3.3.5 Oscillator

We have attached 16 MHz crystal oscillator on pin 23 and pin 24 of the

controller.

3.3.6 Implementation

We have used Atmel Studio 6.1 to code our microcontroller. The code

for implementation of AES is attached as per appendix ‘D’ and code for

read/write from SD Card is attached as per Annex ‘E’.

3.3.7 GUI

We have designed a GUI of working of our project in c# visual basic to

show the functionality of our project on computer.

xxvi

Figure 3-3 Application

4. PROJECT ANALYSIS AND EVALUATION

4.1 RESULTS AND ANALYSIS

From the results and output obtained from the (Proteus) simulation

implementation of AES is confirmed. Hardware design has also been

completed. Our aim was to make a device that can secure data from

unauthorized access while moving data from one place to another. We

have successfully implemented encryption of data before storing it on

a SD card and decrypting it before accessing it again.

Overall project was in working condition but due to small memory

available and slow processing speed of microcontroller we cannot able

to encrypt large file with our design, however using a 32 bit

microcontroller with more space and high processing speed we can

also encrypt and decrypt large files. In our project we have used a fix

key for encryption and decryption this means only one reader can

xxvii

access the data which has encrypted it. We have implemented AES128

bit for the encryption of data.

5. RECOMMENDATIONS/ FUTURE WORK

Following are recommended for improvement of the project in future:

• Amendments may be made in AES algorithm for example

changing the values of S-Box, changing the sequence of round

functions will make AES cipher difficult to break.

• Instead of using a fix key, adding a keypad on device will

facilitate everyone to select its own key to encrypt the data

and further enhance the security.

• Micro controller of 16 bit or more should be used for fast

processing and encrypting large capacity file. This will also

solve our problem of adding an external memory.

6. CONCLUSION

The purpose of this project is to secure data from unauthorized access.

All the data that passes from computer to the SD card will be

encrypted using AES encryption and on the other hand all the data

from SD card to computer will be decrypted to use it.

6.1 OBJECTIVE

We have successfully achieved our aim of securing data using AES

algorithm and making of hardware device. However our device it is not

able to secure large files due to low processing speed and less memory

of microcontroller.

xxviii

6.2 APPLICATIONS

Data safety and integrity is one of the main issues of organizations and

this device can be used to avoid unauthorized access and alteration in

the data. Encrypted Data is stored in SD card so data recovery tools

can only recovered the encrypted data which is of no use without

authentic pass key.

6.3 Limitations

Microcontroller of 32 bit and its accessories are not easily available,

which forced us to select 8-bit microcontroller which has slow

processing speed and low memory. Programmer for microcontroller is

also not available.

xxix

7. BIBLIOGRAPHY
1. Arduino - ArduinoBoardMega2560. (n.d.). Retrieved from

http://arduino.cc/en/Main/arduinoBoardMega2560

2. AT32UC3A3128S. (n.d.). Retrieved from

http://www.atmel.com/devices/at32uc3a3128s.aspx

3. ATmega1281. (n.d.). Retrieved from

http://www.atmel.com/devices/atmega1281.aspx

4. Advanced Encryption Standard - Wikipedia, the free

encyclopedia. (n.d.). Retrieved March 25, 2014, from

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard

5. NIST Computer Security Division - Cryptographic Toolkit. (n.d.).

Retrieved from http://csrc.nist.gov/groups/ST/toolkit/index.html

6. block cipher - AES AddRoundKey - Cryptography Stack

Exchange. (n.d.). Retrieved from

http://crypto.stackexchange.com/questions/8043/aes-

addroundkey

7. NIST.gov - Computer Security Division - Computer Security

Resource Center. (n.d.). Retrieved from

http://csrc.nist.gov/groups/ST/toolkit/key_management.html

8. How to Interface SD Card with Arduino: Arduino SD Card Project

with Circuit Diagram. (n.d.). Retrieved from

http://www.engineersgarage.com/embedded/arduino/how-to-

interface-sd-card-with-arduino-project-circuit

9. Simple SD Card Read/Write Setup. (n.d.). Retrieved from

http://wiki.dxarts.washington.edu/groups/general/wiki/1c44f/Si

mple_SD_Card_ReadWrite_Setup.html

xxx

10. Secure Digital - Wikipedia, the free encyclopedia. (n.d.).

Retrieved March 25, 2014, from

http://en.wikipedia.org/wiki/Secure_Digital

xxxi

 Appendix ‘A’

COST ON PROJECT

SERIAL WORK DONE COST

1 Purchase & Shipment of Arduino Mega2560 Rs 6000

2 Purchase of 2 x ATMega1281 Rs 4000

3 Shipment Charges for ATMega1281 Rs 8000

4 Construction of Device Circuit Rs 4000

5 Total Cost 22000

xxxii

Appendix ‘B’

TIME LINE

xxxiii

Appendix ‘C’

Code for reading/writing SD card using Arduino Mega2560

#include <SD.h>

File myFile;

void setup()

{

 // Open serial communications and wait for port to open:

 Serial.begin(9600);

 Serial.print("Initializing SD card...");

 pinMode(10, OUTPUT);

 if (!SD.begin(4)) {

 Serial.println("initialization failed!");

 return;

 }

 Serial.println("initialization done.");

 myFile = SD.open("test.txt", FILE_WRITE);

 // if the file opened okay, write to it:

 if (myFile) {

 Serial.print("Writing to test.txt...");

 myFile.println("testing 1, 2, 3.");

 // close the file:

 myFile.close();

 Serial.println("done.");

 } else {

xxxiv

 Serial.println("error opening test.txt");

 }

 myFile = SD.open("test.txt");

 if (myFile) {

 Serial.println("test.txt:");

 // read from the file until there's nothing else in it:

 while (myFile.available()) {

 Serial.write(myFile.read());

 } // close the file:

 myFile.close();

 } else {

 Serial.println("error opening test.txt");

 }

}

void loop()

{

}

xxxv

Appendix ‘D’

Code for AES implementation

Aes128.h File

#ifndef uint8_t

#define uint8_t unsigned char

#endif

#ifdef __cplusplus

extern "C" {

#endif

typedefstruct apple {

uint8_t key[16];

uint8_tenckey[16];

uint8_tdeckey[16];

 } aes128_context;

void aes128_init(aes128_context *, uint8_t *);

void aes128_done(aes128_context *);

void aes128_encrypt_ecb(aes128_context *, uint8_t *);

void aes128_decrypt_ecb(aes128_context *, uint8_t *);

xxxvi

#ifdef __cplusplus

}

#endif

AES.c File

#include "aes128.h"

#define F(x) (((x)<<1) ^ ((((x)>>7) & 1) * 0x1b))

#define FD(x) (((x) >> 1) ^ (((x) & 1) ? 0x8d : 0))

uint8_t gf_alog(uint8_t x) {

uint8_tatb = 1, z;

while (x--) {z = atb; atb<<= 1; if (z & 0x80) atb^= 0x1b; atb ^= z;}

returnatb;

}

uint8_t gf_log(uint8_t x) {

uint8_tatb = 1, i = 0, z;

do {

if (atb == x) break;

 z = atb; atb<<= 1; if (z & 0x80) atb^= 0x1b; atb ^= z;

 } while (++i> 0);

returni;

}

uint8_t gf_mulinv(uint8_t x)

{

xxxvii

return (x) ? gf_alog(255 - gf_log(x)) : 0;

}

uint8_t rj_sbox(uint8_t x)

{

uint8_t y, sb;

sb = y = gf_mulinv(x);

 y = (y<<1)|(y>>7); sb ^= y; y = (y<<1)|(y>>7); sb ^= y;

 y = (y<<1)|(y>>7); sb ^= y; y = (y<<1)|(y>>7); sb ^= y;

return (sb ^ 0x63);

}

uint8_t rj_sbox_inv(uint8_t x)

{

uint8_t y, sb;

 y = x ^ 0x63;

sb = y = (y<<1)|(y>>7);

 y = (y<<2)|(y>>6); sb ^= y; y = (y<<3)|(y>>5); sb ^= y;

returngf_mulinv(sb);

}

uint8_t rj_xtime(uint8_t x)

{

return (x & 0x80) ? ((x << 1) ^ 0x1b) : (x << 1);

}

voidaes_subBytes(uint8_t *buf)

xxxviii

{

register uint8_t i = 16;

while (i--) buf[i] = rj_sbox(buf[i]);

}

voidaes_subBytes_inv(uint8_t *buf)

{

register uint8_t i = 16;

while (i--) buf[i] = rj_sbox_inv(buf[i]);

}

voidaes_addRoundKey(uint8_t *buf, uint8_t *key)

{

register uint8_t i = 16;

while (i--) buf[i] ^= key[i]; }

voidaes_addRoundKey_cpy(uint8_t *buf, uint8_t *key, uint8_t *cpk)

{

register uint8_t i = 16;

while (i--) buf[i] ^= (cpk[i] = key[i]), cpk[16+i] = key[16 + i];

}

voidaes_shiftRows(uint8_t *buf)

{

register uint8_t i, j;

i = buf[1]; buf[1] = buf[5]; buf[5] = buf[9]; buf[9] = buf[13];

buf[13] = i;

i = buf[10]; buf[10] = buf[2]; buf[2] = i;

xxxix

 j = buf[3]; buf[3] = buf[15]; buf[15] = buf[11]; buf[11] = buf[7];

buf[7] = j;

 j = buf[14]; buf[14] = buf[6]; buf[6] = j;

}

voidaes_shiftRows_inv(uint8_t *buf)

{

register uint8_t i, j;

i = buf[1]; buf[1] = buf[13]; buf[13] = buf[9]; buf[9] = buf[5];

buf[5] = i;

i = buf[2]; buf[2] = buf[10]; buf[10] = i;

 j = buf[3]; buf[3] = buf[7]; buf[7] = buf[11]; buf[11] = buf[15];

buf[15] = j;

 j = buf[6]; buf[6] = buf[14]; buf[14] = j;

}

voidaes_mixColumns(uint8_t *buf)

{

register uint8_t i, a, b, c, d, e;

for (i = 0; i< 16; i += 4)

 {

 a = buf[i]; b = buf[i + 1]; c = buf[i + 2]; d = buf[i + 3];

 e = a ^ b ^ c ^ d;

buf[i] ^= e ^ rj_xtime(a^b); buf[i+1] ^= e ^ rj_xtime(b^c);

buf[i+2] ^= e ^ rj_xtime(c^d); buf[i+3] ^= e ^ rj_xtime(d^a);

 }

}

xl

voidaes_mixColumns_inv(uint8_t *buf)

{

register uint8_t i, a, b, c, d, e, x, y, z;

for (i = 0; i< 16; i += 4)

 {

 a = buf[i]; b = buf[i + 1]; c = buf[i + 2]; d = buf[i + 3];

 e = a ^ b ^ c ^ d;

 z = rj_xtime(e);

 x = e ^ rj_xtime(rj_xtime(z^a^c)); y = e ^

rj_xtime(rj_xtime(z^b^d));

buf[i] ^= x ^ rj_xtime(a^b); buf[i+1] ^= y ^ rj_xtime(b^c);

buf[i+2] ^= x ^ rj_xtime(c^d); buf[i+3] ^= y ^ rj_xtime(d^a);

 }

}

voidaes_expandEncKey(uint8_t *k, uint8_t *rc)

{

register uint8_t i;

k[0] ^= rj_sbox(k[29]) ^ (*rc);

k[1] ^= rj_sbox(k[30]);

k[2] ^= rj_sbox(k[31]);

k[3] ^= rj_sbox(k[28]);

 *rc = F(*rc);

for(i = 4; i< 16; i += 4) k[i] ^= k[i-4], k[i+1] ^= k[i-3],

k[i+2] ^= k[i-2], k[i+3] ^= k[i-1];

k[16] ^= rj_sbox(k[12]);

k[17] ^= rj_sbox(k[13]);

xli

k[18] ^= rj_sbox(k[14]);

k[19] ^= rj_sbox(k[15]);

for(i = 20; i< 32; i += 4) k[i] ^= k[i-4], k[i+1] ^= k[i-3],

k[i+2] ^= k[i-2], k[i+3] ^= k[i-1];

}

voidaes_expandDecKey(uint8_t *k, uint8_t *rc)

{

uint8_ti;

for(i = 28; i> 16; i -= 4) k[i+0] ^= k[i-4], k[i+1] ^= k[i-3],

k[i+2] ^= k[i-2], k[i+3] ^= k[i-1];

k[16] ^= rj_sbox(k[12]);

k[17] ^= rj_sbox(k[13]);

k[18] ^= rj_sbox(k[14]);

k[19] ^= rj_sbox(k[15]);

for(i = 12; i> 0; i -= 4) k[i+0] ^= k[i-4], k[i+1] ^= k[i-3],

k[i+2] ^= k[i-2], k[i+3] ^= k[i-1];

 *rc = FD(*rc);

k[0] ^= rj_sbox(k[29]) ^ (*rc);

k[1] ^= rj_sbox(k[30]);

k[2] ^= rj_sbox(k[31]);

k[3] ^= rj_sbox(k[28]);

}

void aes128_init(aes128_context *ctx, uint8_t *k)

xlii

{

uint8_trcon = 1;

register uint8_t i;

for (i = 0; i<sizeof(ctx->key); i++) ctx->enckey[i] = ctx->deckey[i]

= k[i];

for (i = 8;--i;) aes_expandEncKey(ctx->deckey, &rcon);

}

void aes128_done(aes128_context *ctx)

{

register uint8_t i;

for (i = 0; i<sizeof(ctx->key); i++)

ctx->key[i] = ctx->enckey[i] = ctx->deckey[i] = 0;

}

void aes128_encrypt_ecb(aes128_context *ctx, uint8_t *buf)

{

uint8_ti, rcon;

aes_addRoundKey_cpy(buf, ctx->enckey, ctx->key);

for(i = 1, rcon = 1; i< 10; ++i)

 {

aes_subBytes(buf);

aes_shiftRows(buf);

aes_mixColumns(buf);

if(i& 1) aes_addRoundKey(buf, &ctx->key[16]);

elseaes_expandEncKey(ctx->key, &rcon), aes_addRoundKey(buf, ctx-

>key);

xliii

 }

aes_subBytes(buf);

aes_shiftRows(buf);

aes_expandEncKey(ctx->key, &rcon);

aes_addRoundKey(buf, ctx->key);

}

void aes128_decrypt_ecb(aes128_context *ctx, uint8_t *buf)

{

uint8_ti, rcon;

aes_addRoundKey_cpy(buf, ctx->deckey, ctx->key);

aes_shiftRows_inv(buf);

aes_subBytes_inv(buf);

for (i = 10, rcon = 0x80; --i;)

 {

if((i& 1))

 {

aes_expandDecKey(ctx->key, &rcon);

aes_addRoundKey(buf, &ctx->key[16]);

 }

elseaes_addRoundKey(buf, ctx->key);

aes_mixColumns_inv(buf);

aes_shiftRows_inv(buf);

aes_subBytes_inv(buf);

 }

aes_addRoundKey(buf, ctx->key);

}

Writing the main function

xliv

#include<ATMega1281.h>

#include"aes128.h"

_CONFIG2(FNOSC_FRC & FCKSM_CSECMD & POSCMOD_NONE &

OSCIOFNC_ON)

_CONFIG1(FWDTEN_OFF & JTAGEN_OFF)

uint8_t key[33]="0123456789012345";

uint8_tbuf[]="This program takes 16 bytes of a text and encryptes

it.";

 uint8_t key1[]="KEY....";

 uint8_t text1[]="TEXT:...";

 uint8_t cyphertext1[]="CIPERTEXT...";

 uint8_t decr_text1[]="DECRYPTED TEXT..";

uint8_tm,t;

intz,n,p;

inti,q,w,e,x,j,v,y;

intu,e,w,v,bb,nnn,zz,wx,qq,yy;

void aes128_print(uint8_t *,int,int);

voiden_de_display(uint8_t*,int,int,int);

voidcarriage_return(void);

aes128_contextctx;

int main(void)

{

_COSC2;

_COSC1;

_COSC0;

U1MODEbits.UARTEN=1;

xlv

U1STAbits.UTXEN=1;

 U1MODE = 0; // Clear UART1 mode register

 U1STA = 0; // Clear UART1 status register

 U1BRG = 25;

 IPC2bits.U1RXIP = 4; //set recieve interrupt priority to 4

 IEC0bits.U1RXIE = 1; //recieve interrupt enable

 _U1RXIF=0; // Clear UART RX Interrupt Flag

 U1STAbits.URXISEL = 0; //interrupt when any character is

recieved

 U1MODEbits.UARTEN = 1; // Enable UART1 module

 U1STAbits.UTXEN = 1; // Enable UART1 transmit

Aes128_print(text1,sizeof(text1),0);

carriage_return();

aes128_print(buf,sizeof(buf),0); // send the text

carriage_return();

aes128_print(key1,sizeof(key1),0);

carriage_return();

aes128_print(key,sizeof(key),0); // send the key

carriage_return();

yy=sizeof(buf);

aes128_print(cyphertext1,sizeof(cyphertext1),0);

en_de_display(buf,yy,0,0); // cipher text

aes128_print(decr_text1,sizeof(decr_text1),0);

xlvi

en_de_display(buf,yy,0,1); // decrypted text

while(1); //end

return 0;

 }

voiden_de_display(uint8_t* array ,intmm,intconstant,int flag)

{

intz,n,p;

inti,q,w,e,x,j,v;

unsigned char sub[16],b[16];

 n=mm-1;//total n=9

 p=n%16;

carriage_return();

if((p!=0)&&(flag==0))// check if we have exact 16 byte chunks and

encryption required

{

 w=n-p;

 x=0;

for(q=w;q<w+p;q++)

 {

b[x]=array[q];

x++;

 }

for(e=p;e<16;e++)

b[e]='0'; // zeros added

 }

xlvii

if(n>=16)

{

j=0;

for(v=0;v<=n-p-1;v++)

 {

sub[j]=array[v]; j++;

if(j==16)

 {

if(flag==0) //if encryption required

 {

 Aes128_init(&ctx,key);

 Aes128_encrypt_ecb(&ctx,sub);

Aes128_print(sub,17,constant);

for(qq=0;qq<16;qq++)

array[(v-15+qq)]=sub[qq]; //again shifting encrypted data to

array

 }

if(flag==1) //if decryption is required

{ // aes128_init(&ctx,key);

 Aes128_decrypt_ecb(&ctx,sub);

 Aes128_print(sub,17,constant);

 }

 j=0;

 }

 }

xlviii

}

Appendix ‘E’

Code for accessing SD Card

Sd.h file

#ifndef __SD_H__#define __SD_H__

#include <SdFat.h>

#include <SdFatUtil.h>

#define FILE_READ O_READ

#define FILE_WRITE (O_READ | O_WRITE | O_CREAT)

classFile:public Stream {

 private:

 char _name[13];

 SdFile*_file;

public:

 File(SdFile f, constchar*name);

 File(void);

 virtualsize_twrite(uint8_t);

 virtualsize_twrite(constuint8_t*buf, size_t size);

xlix

 virtualintread();

 virtualintpeek();

 virtualintavailable();

 virtualvoidflush();

 intread(void*buf, uint16_tnbyte);

 booleanseek(uint32_tpos);

 uint32_tposition();

 uint32_tsize();

 voidclose();

 operatorbool();

 char*name();

 booleanisDirectory(void);

 File openNextFile(uint8_t mode = O_RDONLY);

 voidrewindDirectory(void);

 using Print::write;

};

classSDClass {

private:

 Sd2Card card;

 SdVolume volume;

 SdFile root;

 SdFilegetParentDir(constchar*filepath, int*indx);

public:

 booleanbegin(uint8_tcsPin= SD_CHIP_SELECT_PIN);

l

 File open(constchar*filename, uint8_t mode = FILE_READ);

 booleanexists(char*filepath);

 booleanmkdir(char*filepath);

 booleanremove(char*filepath);

 booleanrmdir(char*filepath);

private:

 intfileOpenMode;

 friendclassFile;

 friendbooleancallback_openPath(SdFile&, char*, boolean, void*);

};

externSDClass SD;

#endif

	LIST OF TABLES
	LIST OF FIGURES
	1.INTRODUCTION
	1.2 PROJECT DESCRIPTION
	1.3 SCOPE
	2.1ARDUINO MEGA2560
	2.2AT32UC3A3218S
	3.1 INTRODUCTION
	3.2 ARDUINO MEGA
	3.3 CIRCUIT DESIGN AND IMPLEMENTATION
	4. PROJECT ANALYSIS AND EVALUATION
	4.1 RESULTS AND ANALYSIS
	6.1 OBJECTIVE
	6.2 APPLICATIONS
	6.3 Limitations

