
“Android based Meter Reader”

By

Kashif Manzoor (2011-NUST-SEECS-BE-SE-221)

Muhammad Unnus (2011-NUST-SEECS-BE-SE-240)

Usman Khan (2010-NUST-SEECS-BE-SE-273)

Project documentation submitted in partial fulfillment of the

requirements for the degree of

Bachelors of Engineering in Software Engineering (BESE)

NUST School of Electrical Engineering and Computer Science

National University of Sciences and Technology

Islamabad, Pakistan

(2015)

CERTIFICATE

It is certified that the contents and the form of this report titled “Android

based Meter Reader” submitted by Kashif Manzoor (2011-NUST-

SEECS-BE-SE-221), Muhammad Unnus (2011-NUST-SEECS-BE-SE-

240), Usman Khan (2010-NUST-SEECS-BE-SE-273) have been found

satisfactory for the requirement of degree.

Advisor : _______________________________________

(Dr. Khalid Latif)

Co-Advisor : ___________________________________

(Dr. Asad Anwar Butt)

DEDICATION

To Allah the Almighty

&

To our Parents and Faculty

ACKNOWLEDGEMENTS

We are deeply thankful to our Advisor and Co-Advisor, Dr. Khalid Latif, and

Dr. Asad Anwar Butt for helping us throughout the course in accomplishing our final

project. Their guidance, support and motivation enabled us in achieving the objectives

of the project.

 We are also thankful to our committee members Mr. Maajid Maqbool and Mr.

Jaudat Mamoon for their valuable feedback. Apart from them we are also thankful to

Mr. Iqbal Shah (Line Superintendent, WAPDA) for arranging our visits to meter reading

offices, which helped us clarify the requirements for the project.

1

TABLE OF CONTENTS

INTRODUCTION __ 4

1.1 DOMAIN INTRODUCTION ___ 4

1.2 PROBLEM BACKGROUND ___ 6

1.3 SOLUTION METHODOLOGY ___ 7

LITERATURE REVIEW __ 9

2.1 EXISTING SOLUTIONS __ 9

2.2 RESEARCH ARTICLE __ 10

2.3 VISIT TO METER READING OFFICES __________________________________ 10

2.4 DELIVERABLES ___ 12

WEB APPLICATION __ 15

3.1 DATABASE DESIGN ___ 15

3.2 WEB API ___ 21

3.3 INTERFACE DESIGN ___ 25

3.4 CHOOSING TECHNOLOGIES __ 33

3.5 FRAMEWORKS AND NODE.JS MODULES ______________________________ 34

3.6 FEATURE IMPLEMENTATIONS _______________________________________ 41

MOBILE APPLICATION __ 56

4.1 CHOOSING TECHNOLOGY ___ 56

4.2 INTERFACE DESIGN ___ 56

4.3 DATABASE DESIGN ___ 61

4.4 IMPLEMENTING SYNC FEATURE _____________________________________ 63

4.5 IMPLEMENTING GOOGLE MAPS IN ANDROID APPLICATION ____________ 64

4.6 IMPLEMENTING OCR IN ANDROID APPLICATION ______________________ 65

IMAGE PROCESSING ___ 67

5.1 DATA SET PREPARATION __ 67

5.2 TESTING EXISTING SOLUTIONS ______________________________________ 70

5.3 IMAGE PREPROCESSING ___ 73

2

5.4 TESSERACT OCR __ 78

5.5 IMPLEMENTATION ON ANDROID _____________________________________ 82

CONCLUSION ___ 87

6.1 LEARNING OUTCOMES __ 87

6.2 LIMITATIONS ___ 87

6.3 FUTURE WORK ___ 87

6.4 COMMERCIALIZATION __ 88

6.5 IMPACT ON SOCIETY __ 88

REFRENCES ___ 89

3

ABSTRACT

Reading meters for electricity and other utilities is a manual and error prone

process. This project automates the process of meter reading and billing. This helps

reduce billing errors caused due to manual readings and also guides meter readers about

the locations of different customers.

The system consists of a web application and an android application. The

website administrator can add customers and meter readers to the system database using

the web application. He can assign meters from a particular location to meter readers

for reading. The meter reader receives locations of meters in the android application.

These locations are marked on a map. The meter reader goes to each location and

captures an image of customer’s meter using the android device. The captured image is

processed to extract the meter reading. This is done using OpenCV and Tesseract (Image

Processing Libraries). If the reading is recognized incorrectly, the meter reader is given

the facility to manually enter the reading. This reading is sent along with the image to

the web application server, where it is verified by the website administrator. After

verification the customer’s data is updated and his bill is generated, which is accessible

through the web interface.

4

Chapter 1

INTRODUCTION

Android based Meter Reader is a meter reading system that is designed to

automate the tasks of meter reading and billing of customers. Its main purpose is to

address and rectify the flaws of current paper-based reading system being used in

Pakistan.

This report starts by introducing the project, its scope and the problem it is trying

to address. Chapter 2 describes the Literature Review that was carried out for Design &

Planning of the project. Chapter 3 describes the development methodology and results

for Web Application, Chapter 4 for Mobile Application & Chapter 5 for Image

Processing. Chapter 6 concludes the project, by describing learning outcomes of the

project and its impact on society.

1.1 Domain Introduction

This project is related to the field of Automatic Meter Reading (AMR) in

general, and On-Site AMR in particular. AMR involves the development of

technologies to facilitate the process of reading different types of metering devices, and

generating bills for customers based on the obtained readings.

AMR systems have evolved substantially over the past couple of years. They

can be broadly divided into two categories.

On-Site AMR, which was used by earlier AMR systems. Meter reader had to

visit each meter location, and use a handheld mobile device to take meter reading either

using some automatic collection mechanism or through manual entry (Figure 1.1). Some

meters were installed with specialized transmitters that could communicate with mobile

devices to transmit the reading. These systems improved upon the old paper based

methods (Figure 1.2). They provided accurate readings and better management of data,

5

which reduced the number of billing errors. They did not significantly decrease the labor

costs, but they did decrease the amount of effort required by meter readers for the job.

Figure 1.1 On-Site AMR

Figure 1.2 Paper based meter reading

Remote AMR, is now being used in modern AMR systems. In these types of

systems, specialized meters have to be installed, which have special transmitters for

communicating wirelessly with the central server (Figure 1.3). In fact, these types of

meter are now being called Smart Meters. They can communicate usage and diagnostic

data to the central server in real time. This allows utility providers to generate highly

accurate bills without performing any kind of estimations. It also helps in producing

better usage statistics for customers and utility providers. The diagnostic data allows for

better maintenance and more timely response to any kind of problems. There are no

labor costs of meter readers in these systems. Though these type of systems provide a

6

lot of advantages, they also require quite a significant initial investment from utility

providers.

Figure 1.3 Remote AMR

Due to the advantages of AMR, a lot of countries are now deploying different

types of AMR systems at varying scales. Some countries are carrying out the

deployment slowly, region by region, while others have already implemented the system

throughout the country. The world's largest smart meter deployment was undertaken by

Enel SpA, the dominant utility in Italy with more than 30 million customers. Between

2000 and 2005 Enel deployed smart meters to its entire customer base.

1.2 Problem Background

Pakistan is a third world country. It has been facing a serious energy crisis over

the past couple of years. Moreover, consumers have been complaining against incorrect

billing since long in the country. The government is taking some measures to solve these

problems through installation of AMR systems across the country. However, this

process is slow and unorganized. There is no clue as to when it will complete.

The current meter reading practice at DISCOs (distribution companies) is paper

based. Meter reading of all the consumers is carried out on monthly basis. The meter

reader visits each consumer, reads the meter and notes down the readings in readings

book. These recorded readings are then input to the central system, so that the billing

7

process can proceed. This process is very time consuming and vulnerable to errors.

Human intervention at multiple levels within the billing process leads to manipulation

of data and results in incorrect billing. This increases the number of customer

complaints, and delay in bill collection, and often results in losses to DISCOs.

Hence a smart metering solution is the need of the hour, which would help

prevent under billing, over billing of customers. It should also make meter reading

process more efficient and provide better management of data.

1.3 Solution Methodology

This main objective of this project is to automate the process of meter reading

and billing. This helps reduce billing errors caused due to manual readings and also

guides meter readers about the locations of different customers.

The system consists of a web application and an android application. The

website administrator can add customers and meter readers to the system database using

the web application. He can assign meters from a particular location to meter readers

for reading. The meter reader receives locations of meters in the android application.

These locations are marked on a map. The meter reader goes to each location and

captures an image of customer’s meter using the android device. The captured image is

processed to extract the meter reading. This is done using OpenCV and Tesseract (Image

Processing Libraries). If the reading is recognized incorrectly, the meter reader is given

the facility to manually enter the reading. This reading is sent along with the image to

the web application server, where it is verified by the website administrator. After

verification the customer’s data is updated and his bill is generated, which is accessible

through the web interface.

8

Figure 1.4 Flow of Data in the System

9

Chapter 2

LITERATURE REVIEW

This chapter describes the literature review that was carried out before the

development of the project. It was necessary because it helped clarify the requirements

and features of the project. Moreover, it also contributed towards making the task of

development easier.

The following sections describe the existing meter reading systems in use. A

research article that was used as a guideline for this project is also described. The visits

to Meter Reading offices are described. Moreover, the important deliverables for this

project are identified in the end.

2.1 Existing Solutions

There have been reports of several Automatic Meter Reading (AMR) projects

being carried out at different areas in Pakistan. The Kamalabad Subdivision of

Islamabad Electric Supply Company, recently applied the Hand Held Unit (HHU)

devices for meter reading. The method involves a meter reader taking a meter snap after

manually entering the meter dial value. The project was carried out with the support of

USAID Power Distribution Programme. The five-year USAID Power Distribution

Programme was announced by Secretary of State Hillary Clinton in 2009 as one of the

US efforts to support government of Pakistan to reform the power sector to mitigate the

current energy crisis. [2]

The United States Agency for International Development (USAID) also

installed more than 1,000 Automatic Meter Reading (AMR) devices on 85 grid stations

of FESCO. These devices provide live load data information and perform load

management. This aims to strengthen Pakistan’s energy sector and train the staff of

government-owned power distribution companies. [1]

10

Telenor Pakistan has also made some efforts for tackling the energy crisis. It has

become the largest Automated Meter Reading (AMR) solutions provider in the country

with an on-going deployment of 17,000 smart meters in five cities of Pakistan including

Islamabad, Hyderabad, Multan, Lahore and Peshawar. This deployment will help

reduce distribution losses, electricity theft and increase labor productivity by automating

monitoring, meter reading and load management.

Despite all the efforts, a large part of the country still uses paper based meter

reading system. This is mainly because adoption of new systems is slow and

unorganized. Hence there is a strong need of an automatic meter reading system that

can be adopted quickly and easily.

2.2 Research Article

The search for a quick and easy to implement AMR solution led to the discovery

of a research article published in the International Journal of Computer Science and

Mobile Computing (IJCSMC). The article was titled Android Based Meter Reading

Using OCR. It suggested using an Android Application to take meter images and then

extracting reading from the image using OCR. These readings would then be sent out

to a web application server where customer data would be updated and bill would be

generated. This would help reduce workload of the meter reader. The process of

collecting the reading from meter, updating this reading to system and billing of

customer would be made easy and accurate. This looked a very promising AMR

solution, and it served as a guideline for this project. [6]

2.3 Visit to Meter Reading Offices

In order to identify the basic requirements of meter reading systems, a visit to

meter reading offices was arranged. This visit also helped identify the flaws in existing

systems. The main problem was with the management of data. Meter readers were

recording readings on a readings book (Figure 2.1). These readings were then compiled

and verified by commanding officers. The verified readings were sent to the data entry

department where they were entered into the system database manually (Figure 2.2).

11

Therefore, it was decided to address this problem in the project. Some mechanism had

to be devised that could automatically send and store the readings taken by the meter

readers in the central database.

Figure 2.1 Readings Book

12

Figure 2.2 Data Entry System

2.4 Deliverables

The project is composed of three modules web application, mobile application

and image processing. The deliverables for each of these modules are described below

Table 2.1: Web Application Deliverables

No. Deliverable

1 Database Design

2 Web API Design

3 Interface Design

4 Implement Web API

5 Allow admin to add customers

6 Allow admin to add meters

7 Allow admin to add readers

8 Allow admin to assign meters to readers and unassign them

13

9 Send assigned meters to mobile application

10 Receive meter readings from mobile application

11 Associate reading to relevant meter

12 Allow admin to verify readings

13 Generate bill after reading verification

14 Display meter image along with bill

15 Allow customer to view his current and past billing information

16 Allow admin to update prices for bill calculation

17 Allow admin to create new admins

18 Perform admin authentication

Table 2.2: Mobile Application Deliverables

No. Deliverable

1 Database Design

2 Interface Design

3 Receive a list of meters to read from web application

4 Keep track of the meters currently read by the meter reader

5 Display meter location in Google Map

6 Capture the image using camera and provide crop functionality

7 Integrate OCR solution

8 Perform OCR on cropped image to extract reading

9 Provide a manual entry fallback mechanism if OCR doesn’t work

10 Save the readings locally in mobile app along with reading GPS location

14

11 Allow reader to retake a saved reading

12 Send saved readings along with image to web application

13 Perform reader authentication

Table 2.3: Image Processing Deliverables

No. Deliverable

1 Create a dataset of meter images

2 Research about existing image processing libraries

3 Perform preprocessing on images

4 Test different OCR solutions and select the one with highest accuracy

5 Implement and test the OCR on preprocessed image

15

Chapter 3

WEB APPLICATION

The web application laid out the foundation for the project. This is because the

web application is responsible for the two most important tasks of the project.

Firstly, it communicates the meter information to the meter readers, without

which the meter reading process cannot proceed. Secondly, it receives the meter

readings performed by meter readers, verifies them and generates customer bills based

on these readings.

This section describes the web application development methodology and

implementation details for the project. It describes the architecture and design of the

web application. The various components of the web application. The tools,

technologies and frameworks used for the development of the web application.

3.1 Database Design

The first step in the development of web application was database design. It

helped identify the information that would be needed to implement the various features

of the application. Particular importance was given to the database design, since this

project is database centric. That is it needs to access the database for most of its

operations.

Efforts were made to keep the design as scalable as possible, since this project

is intended to be scaled to fulfil the requirements of meter reading companies, each of

which has its own diverse set of requirements. For this purpose, the most basic

operations of meter reading companies were identified, and resources were created to

fulfill the data needs of these operations.

Specific importance was given to introduce simplicity in the design of the

database. This simplicity would later prove useful when scaling the system. Only the

most relevant pieces of information was included in the database tables. Redundancy

16

was avoided as much as possible. The widely applicable principle of good software

design, low coupling and high cohesion was followed while designing the database.

This greatly simplified the operations of the system.

3.1.1 Identifying Tables

Keeping these valuable principles in mind, the main resources of the system

were identified. These resources would actually form the tables of the database. The

visits to meter reading and data entry offices helped greatly in this regard. It became

quite clear what resources make up the core of the meter reading systems. The database

design went through quite a lot of iterations that were mainly for refactoring and

optimizations. In the end following tables formed our database

 customer - stores information about customers

 meter - stores information about meters

 reader - stores information about readers

 reader_meter - stores information about meters assigned to readers

 reading - stores information about readings

 price - stores information about price of units, tax etc.

 bill - stores information about customer bills

3.1.2 Identifying Fields & Constraints

The next step was identifying the fields for tables and their constraints. This

required quite a lot of thought. In the beginning, only the most relevant fields could be

identified. It was only after the features of the system became more clear, that fields for

the tables were finalized. The following sections describe the fields for each table and

rationale behind them. Primary keys are in bold and Foreign Keys are in italic. All fields

have NOT NULL constraint unless stated otherwise. This is mainly because most of the

fields are required for correct operation.

Customer Table

 id - unique identifier of customer

17

 name - displayed on customer bill

 address - the address where bills would be posted

Meter Table

 id - unique identifier of meter

 customer_id - identifies the customer to which meter belongs

 address - the address of meter, because it can be different from customer

address. A customer can have meters registered in his name, at different

locations.

 type - the type of meter either digital or mechanical. Helpful in running

image processing algorithm customized according to type of meter.

 utility - the utility of meter either electricity or gas. Helpful in generating

bills customized according to utility of meter.

 company - the company of meter (IESCO, PEPCO) to be displayed on bill

 precision - the position of decimal point of meter readings. Helpful for

positioning decimal point in reading, if not recognized by image processing.

 lat - the latitude of meter’s GPS location. Matched with latitude of reading

to verify that meter reader actually visited the meter location to take reading.

 long - the longitude of meter’s GPS location. Matched with longitude of

reading to verify that meter reader actually visited the meter location to take

reading.

 date - the connection date of meter to be displayed on bill

 last_reading - the last reading of the meter. Helpful when calculating units

consumed for the bill. Also helps ensure that current reading is always

greater than last reading.

 last_reading_date - the last reading date of meter. Helpful in sending meters

assigned to meter readers on monthly basis.

Reader Table

18

 id - unique identifier of reader

 name - displayed when assigning meters to reader

 username - used by reader to login in android app. Helps in authentication.

 password - used by reader to login in android app. Helps in authentication.

 role - identifies the role of reader either reader or admin

Reader_Meter Table

 id - unique identifier of row

 reader_id - identifies the reader to which meter is assigned

 meter_id - identifies the meter that is assigned to reader

 start - the starting date of meter assignment. This helps keep record about

which reader the meter was assigned to in a particular period.

 end - the ending date of meter assignment (DEFAULT NULL). Its value is

set when meter assignment is revoked.

Reading Table

 id - unique identifier of reading

 meter_id - identifies the meter whose reading was taken

 reader_id - identifies the reader to who took the reading

 value - the value of the reading

 date - the date the reading was taken. This helps in setting last reading date

of meters. It is also helpful in generating monthly bills.

 lat - the latitude of reading’s GPS location. Matched with latitude of meter

to verify that meter reader actually visited the meter location to take reading.

 long - the longitude of reading’s GPS location. Matched with longitude of

meter to verify that meter reader actually visited the meter location to take

reading.

 status - the status of reading either VERIFIED or UNVERIFIED

(DEFAULT). This helps show unverified readings to admin for verification.

19

Price Table

 id - unique identifier of price

 quantity - the quantity whose price is being recorded

 date - the date the price was specified. The latest price is used when

generating current bills. The past prices remain saved for record.

Bill Table

 id - unique identifier of bill

 meter_id - the id of meter whose bill is being generated. Displayed on

customer bill.

 reading_id - the id of reading that was used to generate bill. This id is used

to retrieve the image of reading for display on customer bill.

 reading - the present reading of meter. Displayed on customer bill.

 units - the units consumed for the billing month. Displayed on customer bill.

 bill - the calculated bill for the month. Displayed on customer bill.

 date - the date the bill was generated. Used to display billing month on

customer bill.

3.1.3 Identifying Relationships (ERD Diagram)

The next step was identifying the relationships between the database tables.

These relationships have been indicated in the previous section. This section further

describes them in detail.

An ERD diagram (Figure 3.1) was drawn to clarify the relationships between

the resources of the project. The main advantage of this process was that, it helped

identify the type of relationship between the resources. It could be a one-to-one, one-to-

many or a many-to-many relationship. The type of relationship, dictated how the

operation is implemented in the web application. The restrictions that should be applied

to operation are also clarified.

20

Figure 3.1 ERD Diagram

The following relationships were identified.

 A customer has one or many meters.

 A meter must be belong to customer and it belongs to only one customer.

 A meter is assigned to zero or one reader.

 A meter has zero or many readings.

 A meter has zero or many bills.

 A reader is assigned zero or many meters.

 A reader takes zero or many readings.

 A reading must belong to a meter and it belongs to only one meter.

 A reading must belong to a reader and it belongs to only one reader.

 A reading has zero or one bill.

 A bill must belong to a meter and it belongs to only one meter.

 A bill must be based on a reading and it is based on only one reading.

This section marks the end of the Database Design. All techniques and procedures that

were used to design and develop the Database have been explained above.

21

3.2 Web API

After developing a comprehensive Database Design, the next task was designing

the Web API of the application. For this purpose main resources of the system were

identified. They were quite similar to the tables identified in the previous section. The

operations that needed to be performed on these resources were identified. The data

needs of these operations were fulfilled by exposing a Web API. The initial design of

Web API only catered for the most important operations, it went through several

iterations during the development of the web application to reach its final form. The

RESTful architecture guidelines were followed to design the Web API. The advantage

of using this architecture style was that it made the web application more scalable.

Following paragraphs explain the procedures used for designing the Web API.

3.2.1 Identifying resources

 Admin

 Customer

 Meter

 Reader

 Reader_Meter

 Reading

 Price

 Bill

3.2.2 Identifying Resource Operations

Admin

 Add admin

Customer

 Add customer

 Get customer by id

 Get all customers

22

Meter

 Add meter

 Get meter by id

 Get all meters

 Update meter

Reader

 Add reader

 Get reader by id

 Get all readers

Reader_Meter

 Add reader_meter

 Get reader_meter by reader_id

 Get all reader_meter

Reading

 Add reading

 Get readings by meter_id

 Get all readings

 Update reading

 Delete reading

Price

 Add price

 Get price by quantity_name (unit, tax etc.)

Bill

 Add bill

 Get bills by meter_id

23

3.2.3 Implementation in Node.js

As explained later in the Section 3.4, the server-side technology used for web

application implementation was Node.js. The following diagram shows the

implementation of Web API in Node.js

24

25

3.3 Interface Design

The next step that had to be performed to start the implementation of the web

application was the Interface Design. A particular focus was given to this process

because, the web application involves a lot of user interaction. The administrators need

to access the system on daily basis, they need to perform certain operations in repetition.

This ultimately requires the system to possess such properties as ease of use, simplicity.

Efforts were made to make the user experience smooth and fluid. It was intended that

the experience should be as less stressful as possible. The tasks were made as automated

as possible, to reduce user workload and interaction. The main aim was to increase the

productivity of user.

3.3.1 Choosing color scheme

The first decision that had to be made was the color scheme to be adopted. A

simple color scheme was adopted with two complementary colors. These were the color

blue and yellow.

The blue color was chosen because it possessed the following properties

 It creates a feeling of calmness, which will reduce stress on users.

 It promotes productivity, which will help increase work efficiency for users.

 It is considered a trustworthy and dependable color, hence employees will

trust the system, and would be more willing to adopt it.

The yellow color was chosen because it possessed the following properties

 It stimulates the mental process and the nervous system, which will make

tasks easier for users.

 It activates the memory, hence users would get used to the system quickly.

 It is the happiest color in the spectrum, which will make user experience

enjoyable.

The text color was mostly black, and red color text was used to indicate errors.

26

Figure 3.2 Color Scheme

3.3.2 Choosing a front-end framework

After choosing a suitable color scheme, the web app mockups had to be

developed. After making some paper based mockups of the web app, it was decided to

start developing the web interface of the most common features to speed up the

development of the application. For this purpose a front-end framework had to be

chosen.

There were several choices out there most famous of them being Twitter’s

Bootstrap and the Foundation framework. Bootstrap was the initial choice. However,

when it was decided that the Mobile App is going to be developed for Android, this

decision was changed. A new design was introduced by Google for Android OS in 2014.

It is called the Material Design. It is now being incorporated in all Google Products

across different devices. This design is equally applicable for web, tablet and mobile

applications. It gives a unique harmony to a product by introducing consistency and

familiarity to the design across different devices. [3]

Now a front-end framework for the Material Design had to be discovered. There

were several choices in this regard. A framework with wide compatibility and easy

usage had to be chosen. A thorough search was carried out on GitHub for free Material

Design frameworks. In the end we chose a framework called “Materielize”. It is quite

new, but popular. It is implemented using basic CSS and Javascript technologies, which

are quite easy to use. They can be used instantly by including the relevant files in HTML

pages. Choosing this framework also helped set the typography for our application. The

27

framework uses the Material Design typography for the text, which are a set of fonts by

the name of “Roboto”.

3.3.3 Embracing the Material Design

Since Material Design was chosen for the interface design, efforts were made to

ensure strict compliance with its main principles. For this purpose, the relevant sections

of the Material Design Specification were read thoroughly to understand the essence of

this design. The following paragraphs describes how some of the guidelines were used

while designing the web application.

Choosing Button Style

The material design suggest using Raised Buttons (Figure 3.3) when layers are

less, and it suggests using Ink Buttons (Figure 3.4) in dialogs to prevent too many layers

of dimension.

Figure 3.3 Raised Button

28

Figure 3.4 Ink Button

Use Toasts for Feedback

Material Design suggests using toasts (Figure 3.5) for lightweight feedback

about an operation. They automatically disappear after a timeout.

Figure 3.5 Toast

Use Dialogs for a Specific Task

Material Design suggest that dialogs (Figure 3.6) inform users about critical

information, require users to make decisions, or encapsulate multiple tasks within a

discrete process. The dialogs were used in the web application to allow admin to verify

a particular reading in a data table.

29

Figure 3.6 Dialog

Datatables for raw data

Material design says data tables (Figure 3.7) are used to present raw data sets,

and usually appear in desktop enterprise products. They were used to allow admin to

assign meters to readers.

Figure 3.7 Data table

30

Tabs for grouped content

Material design states that tabs (Figure 3.8) make it easy to explore and switch

between different views or functional aspects of an app or to browse categorized data

sets. They were used to display bills for different meters belonging to a customer.

Figure 3.8 Tabs

31

Use Design Patterns

Some of the design patterns mentioned in the Material Design specification were

also followed. These include Side Navigation Pattern (Figure 3.9) suitable for apps with

large number of top-level views. The Error Handling Pattern (Figure 3.10) which states

that when error occurs clearly communicate what is happening and describe how a user

can resolve it. The Search Pattern (Figure 3.11) which states that search experience can

be made significantly more gratifying by including some enhancements such as offering

auto-completed search suggestions that match actual results in your application data.

Figure 3.9 Side Navigation Pattern

32

Figure 3.10 Error Handling Pattern

Figure 3.11 Search Pattern

33

3.3.4 Challenges

This section describes some of the challenges that were encountered when

implementing the interface design in the web application.

The first challenge was adopting the “Materialize” framework to support the

color scheme of the project. Sometimes these color schemes could be easily applied for

example in case of text, buttons and navbar, only a class for the color had to be added

for applying the color. However, in other cases the internal CSS properties of

components had to be modified to adapt them to the color scheme of project. This had

to be done for input field focus lines, date picker dialog, select input options and tabs.

For this purpose a “custom.css” file was loaded after loading the materialize framework

to override the properties of some components. The chrome element inspector tool

proved useful for these scenarios. It helped change element properties in real-time and

observe the results.

Another challenge was that the framework had no support for displaying errors

in the fashion suggested by the Material Design. The only solution was to modify the

CSS classes of form validation framework to achieve this.

Similarly the jquery autocomplete plugin also had a completely different design

from the web application of the project. It was modified to replicate the design of select

fields. This again required trial and error approach using the chrome inspector tool.

3.4 Choosing Technologies

The last step before starting the implementation of the web application was

deciding which technologies to use. The previous section has already described the

front-end framework “Materialize” used for developing the Web Application.

After that a database management system had to be selected. For this purpose,

MySQL DBMS was chosen. This was because of its ease of setup, and its community

version was free. It had wide compatibility, and good user support. Moreover, it was

also selected due to past experience with this technology.

34

Now all that remained was to choose the Server-Side Technology. There were

several choices JAVA, PHP, Node.js and Python. In the end it was decided to use

Node.js for server side development. The main rationale behind using Node.js was its

asynchronous nature. It helps prevent interface blocking, and increases performance.

Moreover, past experience had proved it to be quite easy for development. Ease of

development, meant more time to focus on optimizations and refactoring. [4]

3.5 Frameworks and Node.js Modules

The web application needed to make use of frameworks to implement some of

its features. Even though one could implement them himself, but that would take time

and a lot of thinking. There are already well built and well tested frameworks for almost

about anything one requires to do in web applications. Therefore, instead of reinventing

the wheel, it was decided to put these technologies to the use. The following sections

state some of the complex operations of the web application that required the help of a

framework to implement.

3.5.1 DOM Manipulation

DOM manipulation is one of the most common tasks for any web application.

For this purpose jQuery was used. It is one of the most popular and powerful framework

out there for DOM manipulation. Moreover, it also has an extensive list of functions

that are used for Ajax Operations.

3.5.2 Form Validation

Most of the operations of the application incorporate some sort of forms. These

forms had to be validated to notify users about invalid input. For this purpose a

validation framework called “Parsley.js” was used. It was one of the most popular

Javascript based validation framework on GitHub. It uses “data-parsley-”attributes on

html elements to perform validations. For example the following code uses html5

minlength and required attributes to display errors using parsley

35

Figure 3.12 Password Validation

Custom Validators (Figure 3.13) had to be implemented for some special cases.

For example checking if reader does not exist.

Figure 3.13 Custom Validator

3.5.3 Autocomplete Input Fields

Some of the features of the web application required users to select a value from

a large list of values. For example choosing the customer to whom the meter is being

registered. This could be done using select input fields however, they would become

too large as the number of customer increased. So, a better solution had to be provided.

This lead to the inclusion of autocomplete input fields in web application. They only

displayed the values matching the user search, this greatly enhanced the user experience.

For this purpose a framework “jquery-autocompleter” was used. The reason for

this choice was its ease of use and UI customizability. The following properties have to

be defined for autocompleter

36

source: URL to the server or a local object

customLabel: The name of object's property which will be used as a label (displayed

in autocomplete dropdown)

customValue: The name of object's property which will be used as a value (displayed

in input field after a option is selected from dropdown)

The example of customer autocompleter (Figure 3.14) is shown below

Figure 3.14 Customer Autocompleter

3.5.4 Table Search and Pagination

Another complex task that had to be performed in the web application was table

search and pagination. The tables contained a lot of data so they had to be displayed

page by page, showing a specific number of rows at a time. Moreover user sometimes

had to find a specific row, hence a search facility had to be provided for. For this purpose

we had choices of two popular frameworks, DataTables.js and List.js. DataTables.js had

not much support for Material Design UI. On the other hand List.js just performed the

37

search and pagination operations, it had nothing to do with UI. That’s why it was the

better framework for our web application.

The List.js was used to paginate the meters table. It also made the columns no.

and address of meter table searchable. It required a class=“list” attribute to be defined

on <tbody> tag of the table. Moreover the id of the div that contained the search input

and the table had to be provided to List constructor for initialization. An example is

shown below

Figure 3.15 Table Search & Pagination

3.5.5 Charts for Customer Bills

The charts had to be displayed on Customer Bills to show monthly unit

consumption of customers (Figure 3.16). For this purpose there were several choices

such as Chartist.js, Morris.js, Google Charts. Again the one that was consistent with the

38

look and feel of our website was selected that is Google Charts. The Google Charts had

been recently updated to match the Material Design specifications. The DataTable for

chart had to be defined along with the properties of the chart. The rest was done

automatically by the charts plugin as shown.

Figure 3.16 Google Charts

39

3.5.6 Server Side Templating

 A server side templating engine was used for Node.js. It made the task of

building up the pages very easy and efficient. All html pages were generated with

complete data so they could be rendered instantaneously at the client side. No further

requests had to be made by the client to server for fetching data. The name of templating

engine used was Swig. It was chosen due to its easy syntax and filter support. It had

constructs for if statements and for loops. It had filters for date formats and array

manipulation. It could be used to create unique element ids. Figure 3.17 shows how

Swig was used to construct past billing info table for customer billing html page.

Figure 3.17 Table Template

40

3.5.7 Server Side Async Handling

Another complex problem was encountered when building server Web API, that

was the execution of sequential queries. The asynchronous nature of Node.js, allowed

queries to be executed in a non-sequential manner. However, sometimes the result of

one query was required to execute the next query. In these situations, queries had to be

forced to execute in sequence. For this purpose, “async” module of Node.js was used.

Its async.series() function enabled a set of callback functions to execute in sequence.

For example bill calculation, required first to fetch the latest prices and then using them

the bill was calculated, as shown below

Figure 3.18 Using Async for Bill Calculation

41

3.6 Feature Implementations

The following sections briefly describe the high level features of the web

application. Any unique features of the implementation is mentioned. The challenges

encountered and how they were resolved is explained.

3.6.1 Allow admin to add customers

Figure 3.19 Add customer

The admin enters customer name and address, and presses submit. All fields are

required. Errors shown if empty fields present. Toast for customer added shown on

success. The customer is assigned a unique ‘id’ automatically using auto-increment id

column. The implementation on server side involves a simple insert query to record

customer details in database.

42

3.6.2 Allow admin to add meters

Figure 3.20 Add meter

The admin starts entering customer name, and is presented with autocomplete

options. He chooses a customer from list. Upon choosing the address field defaults to

customer address, but it can be changed if required. Admin selects other details about

meter. The admin selects a location for meter. He enters a search query in search field.

The map is centered to search location. The admin can then drag the map to change the

location of meter. The latitude and longitudes are updated. The connection date of meter

is selected from date picker. The information is submitted. Errors are shown if any field

43

missing. All fields are required. Toast for meter added shown on success. The meter is

assigned a unique ‘id’ automatically using auto-increment id column. The

implementation on server side involves a simple insert query to record meter details in

database.

A custom parsley validator had to be implemented to check if the customer to

whom meter is being registered, exists or not. An autocomplete plugin had to be used.

The decision to use autocomplete was due to the fact that customers were far too many

to be displayed in a simple select list. An autocomplete field was the necessary for better

user experience. There were some problems with implementing the error UI for select

fields. This was resolved by changing css properties of select fields using chrome

inspector. After trial and error the relevant properties that needed to be changed were

discovered, and CSS overrides for them were included in a “custom.css” file. Similarly

the default UI for autocomplete plugin also had to be changed to match that of select

fields. This was done to ensure consistency and coherence in user interface. This was

again done by replicating properties of select fields to the properties of autocomplete

fields.

44

3.6.3 Allow admin to add readers

Figure 3.21 Add reader

The admin enters reader’s name, username, password and presses submit. All

fields are required. Errors shown if empty fields present. Toast for reader added shown

on success. The reader is assigned a unique ‘id’ automatically using auto-increment id

column. The implementation on server side involves a simple insert query to record

reader details in database.

A custom parsley validator had to be implemented to check if the username

already exists.

45

3.6.4 Allow admin to assign meters

Figure 3.22 Assign meter

46

The admin starts entering reader name, and is presented with autocomplete

options. He chooses a reader from list. He then performs a search on the table to retrieve

meters of a particular area. He assigns these meters to reader by selecting relevant

checkboxes and pressing submit. These meters now become unavailable for assignment

and there rows are removed from the table. A toast is shown, mentioning how many

meters were assigned. The implementation on server side involves a check. This check

is that when presenting the admin with meters for assignment, it only shows those

meters which are not yet assigned to any meter reader. On submit the list of assigned

meters are compiled in an array and sent to server. A simple insert query, inserts these

assignment records in the database.

List.js proved very helpful in this feature implementation. The search,

pagination and row removal were all performed using List.js. A custom validator was

implemented to check whether the reader entered exists or not. JQuery was used to set

the values of row checkboxes based on the value of main header checkbox.

47

3.6.5 Allow admin to verify readings

Figure 3.23 Verify reading

48

Figure 3.24 Verify Dialog

The admin either performs a search to find a specific reading, or he just clicks

on verify button of any listed reading. A dialog box (Figure 3.24) opens up. The admin

now starts verifying the reading. He compares the location of meter with the location of

reading to check if the reader actually visited the meter location to take the reading. He

matches the Image with the reading and changes the reading if it is incorrect. Here a

check is performed to prevent admin from entering a reading smaller than last verified

meter reading. After doing all this, the admin clicks the verify button to verify the

reading. A tick mark replaces the verify icon, and a toast is shown saying reading

verified. The admin could also have rejected the reading, this would then delete this

49

reading from record, and meter reader would have to take this reading again. In that case

the verify icon would be replaced with a cross mark and a toast is shown saying reading

rejected.

The server side implementation of this feature is quite complex. This is because

a lot of operations have to be performed when a reading is verified. These include

 Update the reading value (if changed) and update its status to verified

 Update the last reading date field in meter table to current reading date

and update the last reading field to current reading

 Retrieve the latest price of unit

 Retrieve the latest price of tax

 Use the current reading and last reading to calculate units consumed.

 Multiply units consumed with price of unit and add tax to the result

 Insert the calculated customer bill in the bills table

Figure 3.25 shows the server side code that is executed on reading verification.

This is probably the most complex piece of code written for the server side.

The operations performed on reading rejection is quite simple. Only the current

reading has to be deleted and no update has to be made to meter table because the

reading has to be taken again.

Another strange problem was encountered while implementing this feature. The

problem was that the map shown in verification dialog was not being centered to the

meter location marker. It was always being positioned at the top left corner of the map.

Every time the dialog opened, one had to drag the map to get to meter location. It was

found out that a lot of other people had also faced this problem. It occurred when the

map existed in a hidden div. The map could not calculate its dimensions and hence could

not center itself on load. The solution was kind of a workaround. A map.resize()

function had to be called whenever dialog was opened to center map correctly.

50

Figure 3.25 Reading Verification Code

51

3.6.6 Allow admin to update prices

Figure 3.26 Update price

The admin selects a quantity either price or tax, then enters the new price and

presses submit. Toast for price updated shown on success. All fields are required. Errors

are shown if empty fields present. The implementation on server side involves a simple

insert query to record new price details in database. The price is recorded along with

current date.

52

3.6.7 Allow customer to view current and past billing information

Figure 3.27 Customer’s Current Bill

The customer enters the customer id and name at the bill checker page. The bill

is shown only if both the customer id and name match a record. Bill for all the meters

registered to customer are shown. The tab interface is used to separate the bill of each

meter. A stats tab (Figure 3.28) is also shown, it contains customers past billing

information (last 12 months only). A graph of units consumed for past 12 months is also

shown. The min, max and avg units consumed is also displayed.

The image for current bills are accessed from img folder. The image exists in

the “reading_23.jpg” format, here 23 is the reading id. The bill records have a reading

id column which is used to retrieve the image.

A particular problem that was encountered while implementing this feature was

displaying the graph. The graph was being shown in a hidden tab div. This prevented

the graph from being displayed correctly, since it was unaware of its size. A workaround

was used to solve this problem. First the stats tab was shown, so graph could be loaded,

then after a small timeout (10 ms) the Meter 1 tab was selected programmatically. Since

the customer expects to see the current bill, instead of stats. This enabled the graph to

be displayed correctly.

53

Figure 3.28 Customer’s Past Bill

The server side code (Figure 3.30) was special in the sense that it used a special

function of async module called the async.map() function. The map function iterates

over an array one element at a time. It performs operations on the element. In this

scenario, a bill property is added to each meter in the meters array. This code compiled

all information about customer, his meters and the latest 13 bills of each meter (Figure

54

3.29). This information was used to render a view which was returned as HTML

response page to customer.

Figure 3.29 Customer Bill Data Structure

55

Figure 3.30 Bill Fetching Server Code

56

Chapter 4

MOBILE APPLICATION

Mobile application plays a vital role in meter reading. It provides the interface

through which meter readers interact with the system. It performs two important tasks.

Firstly, it gives the meter readers a list of all meters, which he has to read. Secondly, it

updates the web server with the reading taken by the meter reader.

This section describes the mobile application development methodology for the

project. It describes the architecture and design of the mobile application. The various

components of the mobile application. The tools, technologies and frameworks used for

the development of the mobile application.

4.1 Choosing Technology

The first step was choosing technology for the development of mobile

application. There were lot of choices that had to be made, such as Multi-platform vs.

Native Development. Android Native Development was chosen because of its

performance and support for OCR. Most of the OCR related related research is done in

C languages and it was more feasible to integrate OCR with Android in comparison to

Multi-Platform. Moreover performance gain in Android for OCR was better than Multi-

Platform.

If we compare the Android to other major mobile application platforms like iOS

or Windows Phone, Android is cheaper than iOS and it has more devices than Windows

Phone.

4.2 Interface Design

 Interface design first started with mockups. Adobe illustrator was used for

designing the mockups. Google Material Design resources were used in designing the

mockups. Material design was followed because now it is the standard for designing

android applications. It helps bring uniformity to design across different

57

platforms.Following figures show the mockups of mobile application.

4.2.1 Login Screen

Figure 4.1 Login Screen

Each meter reader provides its username and password and login into the mobile

application.

4.2.2 Home Screen

Figure 4.2 Home Screen

58

Home screen contains two tabs:

 Pending: Shows the list of pending meters that meter reader still has to

read.

 Completed: Shows the list of meters that are already read by meter

reader.

4.2.3 Meter Screen

Figure 4.3 Meter Screen

Meter screen shows the location of meter using map, its meter number, its

manufacturing company and additionally it also shows the address of location where

meter is installed.

59

4.2.4 Reading Correct Screen

Figure 4.4 Reading Correct Screen

This screen is basically showing captured image of meter. At the bottom of the

screen its showing reading of meter application has extracted from the image. On the

left of that reading there is a green tick, as in this scenario reading is correct, so meter

reader will go for the tick option.

4.2.5 Reading Incorrect Screen

Figure 4.5 Reading Incorrect Screen

60

Again this screen is basically showing captured image of meter. At the bottom

of the screen its showing reading that meter application has extracted from the image.

On the right of that reading there is a red cross, as in this scenario reading is incorrect,

so meter reader will go for the cross option.

4.2.6 Reading Correction Screen

Figure 4.6 Reading Correction Screen

This screen shows a small widget for the correction of reading while displaying

the image in background. This seemed the appropriate way to do it, reader doesn’t have

to move to other screen to see the exact reading. He can easily type the exact reading

while seeing the actual reading from the image in background.

61

4.2.7 Reading Completed Screen

Figure 4.7 Completed Screen

This screen shows the meter readings that have been completed by the meter

reader. The reader can select a reading from the list to get more information about the

reading.

4.3 Database Design

The second step in development of mobile application was database design. This

database will act as a local database for the mobile application, thus efforts were made

to keep this database as simple as possible. This database should not take much space

on the mobile, so that device may not run out of memory. This database had to store the

most critical data of the whole system. As it saves the runtime data that will be created

while taking the readings, it should be robust enough to save the critical data during an

app crash. Following the minimalistic design principles only critical data will be saved

in this database. For this purpose, the most basic operations that mobile application does

while meter reading were identified, and resources were created to fulfill the data needs

of these operations.

62

4.3.1 Identifying Tables

Keeping these valuable principles in mind, the main resources of the mobile

application were identified. These resources would actually form the tables of the

database. The database design went through quite a lot of iterations that were mainly for

refactoring and optimizations. In the end following tables formed our database

 meter - stores information about meters

 reading - stores information about readings

4.3.2 Identifying Fields & Constraints

The next step was identifying the fields for tables and their constraints. This

required quite a lot of thought. In the beginning, only the most relevant fields could be

identified. It was only after the features of the mobile application became more clear,

that fields for the tables were finalized. The following sections describe the fields for

each table and rationale behind them. Primary keys are in bold and Foreign Keys are in

italic. All fields have NOT NULL constraint unless stated otherwise. This is mainly

because most of the fields are required for correct operation.

Meter Table

 id - unique identifier of meter

 address - the address of meter, because it can be different from customer

address. A customer can have meters registered in his name, at different

locations.

 utility - the utility of meter either electricity or gas. Helpful in generating

bills customized according to utility of meter.

 company - the company of meter (IESCO, PEPCO) to be displayed on bill

 precision - the position of decimal point of meter readings. Helpful for

positioning decimal point in reading, if not recognized by image processing.

 lat - the latitude of meter’s GPS location. Matched with latitude of reading

to verify that meter reader actually visited the meter location to take reading.

63

 long - the longitude of meter’s GPS location. Matched with longitude of

reading to verify that meter reader actually visited the meter location to take

reading.

Reading Table

 id - unique identifier of reading

 lat - the latitude of meter’s GPS location. Matched with latitude of reading

to verify that meter reader actually visited the meter location to take reading.

 long - the longitude of meter’s GPS location. Matched with longitude of

reading to verify that meter reader actually visited the meter location to take

reading.

 meter_id - id of the meter whose reading is been taken. It helps to determine

which meter should be associated with this specific reading

 reader_id - id of the reader who has taken this reading. It helps to determine

which reader has taken this specific reading

 image - image of the meter. This image is a proof of the reading. Actual

reading’s value should be same as being shown in this image.

 address - the address of the location where reading was taken. It should be

equal to the address where meter was installed.

4.4 Implementing SYNC Feature

4.4.1 Introduction

SYNC Feature gets the newly assigned meters from the server and sends the data

of read meters from the application. Basically when the reader presses the SYNC button

in the application, it gets the new assigned meters to the reader by the admin and at the

same time it update the server with the meters read by the meter reader.

This feature basically evolved from just uploading the new readings feature.

Uploading the new read meters data was the common practice. Our unique feature was

to get the new data, while uploading the data to server.

64

4.4.2 Challenge

There was a challenge that was faced while implementing this feature. When the

SYNC button is pressed, two operations are performed. A GET request is sent to server

to get new meters list that is to be read by the reader. A POST request is sent to server

to upload the newly updated readings of meters.

Issue was that our get request was served before the post requests. Because

POST request had more data to send than GET request gets from the server.

As the GET requests processes before the POST request, application will get the

meters that are already read by the reader. Because POST hasn’t been processed yet,

server doesn’t have the updated data and will send the same meters whenever the GET

request come.

4.4.3 Solution

In order to solve this issue, whenever the SYNC button is pressed GET request

wont be processed before the POST. Application makes sure when the POST request is

done with uploading the new data to server; then GET request is sent to server.

4.5 Implementing Google Maps in Android Application

4.5.1 Introduction

Google Maps were used to basically help out reader to get the location where

meter is applied. Google Maps API was used to implement Google maps into the

application.

This feature not just navigates the reader to meter’s location; but also acts as a

check whether reader was actually at that location or not. Whenever reader gets to a

location to read the meter. He presses read button, at that time application records

reader’s location co-ordinates and sends them along the reading and image of the meter.

4.5.2 Challenge

Actually Google Maps API default implementation is that application

65

periodically sends a request to the Google maps server to get co-ordinates of device’s

location. This consumed a lot of battery and some extra Internet bandwidth. Battery

consumption is critical in this application, as reader has to use this phone for the whole

day. Hence getting the co-ordinates periodically, is an operation, which uses GPS

device, and it takes battery power.

4.5.3 Solution

In order to solve this issue, application was made to send to this request only

once. Whenever the reader presses the read button this request was used as it callback

function. It will get the co-ordinates only once, not periodically. While reader is taking

the reading, application will get the co-ordinates from the server and send them as a

proof. This solution actually improved the battery consumption of our mobile app.

4.6 Implementing OCR in Android Application

4.6.1 Introduction

OCR stands for optical character recognition. OCR is used to recognize

characters in an image. So in our application it was used to extract reading form the

image.

This feature was used to cut down the reader’s hassle while he takes the reading.

Application takes the image and extracts the reading out of it.

4.6.2 Challenge

OCR is a process that takes memory, processing and battery. Smartphone as

compared to a computer lacks these resources. Moreover, application should not be

taking much of these resources. Issue was to decide on which end OCR should be

implemented server end or mobile application.

Sending the image to server, using OCR to extract the reading than sending that

reading to server is a process that might save the battery life for mobile but it is making

the most critical i.e. reading process on an internet connection. If server has to process

66

the image through OCR, application will be waiting for the server to respond. There are

many issues that might halt the application, like what if Server goes down or Mobile

Application loses Internet connection.

4.6.3 Solution

In order to minimize the internet and server dependency, OCR was implemented

into the mobile application.

This solution is justified, since it takes very less of the resources. Considerable

efforts were made to optimize the OCR onto mobile application.

Tesseract was used for OCR, this engine is known for its accuracy and the way

it uses the resources. Thus implementing OCR with Tesseract improved battery

consumption of our application.

67

Chapter 5

IMAGE PROCESSING

The image processing was probably the most challenging part of this project.

This was because there was a lack of prior knowledge or experience in this field.

The main objective of this portion was to automate the process of meter reading.

It was meant to simplify the reading process for meter readers. It was there to remove

errors from the reading process.

This section describes the image processing development methodology and

implementation for the project. It describes the data set preparation for image

processing. The different types of meters in the data set. The image processing

techniques used to process the images and the rationale behind them. The tools,

technologies and frameworks used for the development of the image processing

solution. The challenges encountered while developing the image processing solution.

The integration of image processing solution in the android application.

5.1 Data Set Preparation

The first step to start the development of an image processing solution was the

preparation of a data set of meter images. Particular attention was given to collect meters

of different types. Similar meters were avoided. This was done so that a comprehensive

solution could be developed that could recognize readings form all types of meters.

It was discovered that meters were mainly of two categories, digital and

mechanical. The mechanical meters were usually old, and most of the new meters were

digital. Gas meters were of the mechanical type only, whereas Electricity meters were

of both categories. There were several meter manufacturing companies such as Syed

Bhais, PEL, KBK Electronic, Creative Electronics and MicroTech Industries. Figures

5.1 shows the different types of meters.

68

These meter images were then edited to crop out the display of meters. Since

that is what would be fed into the image processing algorithm for processing. Figure 5.2

shows the cropped set of images.

Figure 5.1 Different kinds of meter

69

Figure 5.2 Cropped Images

70

5.2 Testing Existing Solutions

The next step was searching for an existing solution that could fulfil the needs

of this project. Digital Image Processing is a pretty advanced field, and a lot of work

has already been done in this field. Therefore, instead of trying to create an Optical

Character Recognition (OCR) solution from scratch, we searched for existing

technologies and frameworks we could use to make our task easier.

5.2.1 Tesseract

The first framework to be discovered was Tesseract. It is widely regarded as the

most accurate open source framework for OCR. It is now being sponsored by Google.

The good thing about this framework is that it was recently ported to Android, and its

API can be used to perform image recognition on Android. A sample Tesseract app by

the name of “OCR Test” was available on Google Play Store. It performed real time

image processing. It was used to perform tests on dataset of meter images but the results

were not satisfactory (Figure 5.3).

Figure 5.3 Tesseract OCR Test

71

It was later found out that the reason for unsatisfactory results was due to a

limitation of Tesseract. It was originally designed to read clear connected fonts. The

font being used on Meter Displays was 7-segment LCD font. The characters of this font

were formed using 7 segments which were not connected to each other. That is why

Tesseract did not perform well.

5.2.2 OpenCV

The next framework that was found was OpenCV. It is a library of programming

functions mainly aimed at real time computer vision. It provides an extensive set of

functions for image processing. Android is also among the supported platforms of

OpenCV. Again a sample app was found on Google Play store for OpenCV OCR. The

App is called “7-segment LCD Display Reader”. It is specifically designed to read 7-

segment displays. This app is developed using OpenCV. The results of OCR for this

app were quite good (Figure 5.4). However, they still had to be improved to meet the

requirements of this project.

Figure 5.4 OpenCV OCR Test

72

5.2.3 SSOCR Tool

Since the solution designed specifically for 7-segment OCR was performing

better. Therefore another search was carried out to find open source solutions that were

specifically designed for 7-segment OCR. This led to the discovery of Seven Segment

Optical Character. It is specifically designed for recognizing text on 7-segment displays.

However, officially it supports only the GNU Linux operating systems. Some tests were

carried out on the meter images using this tool. The tool recognized very few readings

correctly (Figure 5.5). [7]

Figure 5.5 SSOCR Test

5.2.4 Test Conclusion

After carrying out the above tests, it became clear that in order to develop a

comprehensive and accurate OCR solution, a custom solution has to be implemented.

This is mainly due to the diverse requirements of the project. Since OpenCV app gave

the most accurate results among the three solutions that were tested. Hence, OpenCV

was chosen for the development of the OCR solution of this project.

73

5.3 Image Preprocessing

During the course of this project it was discovered that preprocessing the images

produced better results. This was first noticed when testing the OpenCV app. The

OpenCV app first preprocessed the image and then fed it to its recognition algorithm. A

Digital Image Processing course had to be taken to learn about various image processing

techniques. This had to be done, so that appropriate choices could be made about which

techniques to use.

 Several techniques were used to preprocess the images. They are mentioned in

the following paragraphs. Initially these image processing operations were performed

on images using Matlab. The reason for using Matlab was its wonderful documentation.

It was simple enough, so that a beginner could easily understand it. Later on, the code

for Matlab was replicated in OpenCV, because there was no support for Matlab in

Android, while OpenCV had quite good support. The experience gained from working

in Matlab, had provided enough knowledge to implement the code in OpenCV. [5]

5.3.1 Binary Thresholding

The first step in preprocessing the images was binary thresholding. This

technique was used to convert RGB images to BW images. In BW images each pixel

was either black (0) or white (1). The software used for binary thresholding was initially

an open source command line tool called ImageMagick. This was later replaced with

Matlab due the extensive set of image processing functions available in Matlab. Figure

5.6 shows the results of binary thresholding operation on images using Matlab.

74

Figure 5.6 Binary Thresholding

As evident from the above figure, the binary thresholding operation is not

performing very well on its own. It works well on some images while it is completely

useless on others. A solutions needs to be developed that works equally well for all

kinds of images.

Some other technique has to be applied to produce better results. Currently the

images are firstly being converted to grayscale using “rgb2gray” function. Then

“im2bw” function is used to convert them to binary images. The im2bw(I, level)

converts the grayscale image I to a binary image. The output image replaces all pixels

in the input image with luminance greater than level with the value 1 (white) and

replaces all other pixels with the value 0 (black). Level is specified in the range [0, 1].

5.3.2 Smoothing Filters

The next technique that was used to preprocess images was the application of

smoothing filters. These filters not only removed noise from the image, but also

significantly improved the results of binary thresholding.

75

Two kinds of filters were used for the smoothing. The first one was the averaging

filter. This filter adaptively thresholds each pixel based on the value of pixels in a

surrounding window. If the current pixel is lighter than the average, then it is made

white, otherwise it is made black. The second filter used was the median filter. For this

filter each output pixel is assigned the median value in m-by-n neighborhood around the

corresponding pixel in the input image.

Figure 5.7 Smoothing Filters

5.3.3 Removing Small Objects

Another technique that was used to improve the preprocessing of images was

the removal of small objects from images. This was mainly done to remove the decimal

points from images. The decimal points posed a problem later on in the project, when

Tesseract was used to recognize the images. They were not being recognized by

76

Tesseract, moreover sometimes they effected the recognition of digits around them.

Hence, it was required to remove them from the images. They were later on added to

the final recognition result by using the stored precisions of meters in the meters table.

The “bwareaopen” function of Matlab was used for this purpose. The

bwareaopen(bw, P) removes from a binary image all connected components (objects)

that have fewer than P pixels. The results are shown in Figure 5.8.

Figure 5.8 Removing Small Objects

5.3.4 Morphological Closing

The last technique that was applied to images was the morphological closing

operation. The main purpose of applying this technique was to close the gaps that

77

existed between the segments of the digits of 7-segment display. This had to be done,

because Tesseract was unable to recognize the disconnected font of a 7-segment display.

For this purpose the imclose operation of matlab was used. The imclose(I,SE)

performs morphological closing on the grayscale or binary image, and returns the closed

image. The SE is a structuring element used to perform the closing operation. The SE

used for meter images was a rectangular one. It was used because it matched most

closely with shape and appearance of fonts used on meter displays. The results were

quite good. The gaps between segments of digits were closed in almost all the images.

Figure 5.9 Morphological Closing

78

5.4 Tesseract OCR

The next phase in the development of image processing solution, was the

recognition of characters from images. For this purpose it was decided to use Tesseract.

Tesseract had very accurate character recognition capabilities, on top of that it had

support for Android. Therefore, it was the logical choice. However, Tesseract was

developed to recognize well connected, clear fonts on high contrast backgrounds. The

LCD displays used on meters were low contrast, and the font used was disconnected 7-

segment font. Therefore, the images had to be preprocessed so that they are suitable

enough to be recognized by Tesseract. The preprocessing techniques that were used

have already been described in the previous section. This section will now describe the

Teserract recognition procedure and results. [8]

5.4.1 Training Tesseract

The first step to start the recognition process, was the training of Tesseract. The

main aim of the training process is to improve the recognition results of Tesseract. This

procedure is used to train Tesseract to recognize fonts in a particular font. Even though

this was not necessary, but it was done so that better results could be achieved. During

training Tesseract learns the properties of the font and customizes itself to recognize the

font. A square font was used to train Tesseract. Since after closing the characters in

meter images, the 7-segment font becomes similar to a square font.

Two open source tools were used to train Tesseract to recognize square fonts.

The first one was the jTessBoxEditor (Figure 5.10). This tool prepared a .tif training

image, for tesseract to recognize. The second tool was the Seerak Tesseract Trainer

(Figure 5.11). It used the image generated by jTessBoxEditor to train Tesseract. In the

end it generated a font.traineddata file that could be used across platforms to work with

Tesseract for character recognition.

79

Figure 5.10 jTessBoxEditor

Figure 5.11 Seerak Tesseract Trainer

80

5.4.2 Recognizing Images

After training Tesseract with a square font, the next step was recognizing the

meter images using Tesseract. This task was made easier by Seerak Tesseract Trainer,

since it also provided support to run Tesseract on images using the generated dataset.

All of this could be done using the GUI interface of Seerak Tesseract Trainer. Normally

one would have to use command line to run Tesseract and perform recognition. The

results of recognition are shown in the figures below. They were quite good. Out of 13

images, 11 of them were being recognized correctly.

Figure 5.12 Recognition Result 1

81

Figure 5.12 Recognition Result 2

Figure 5.13 Recognition Result 3

82

5.5 Implementation on Android

The last step in the development of image processing solution was the

implementation and integration of the solution in Android App. A choice had to be made

about whether to implement the solution on server side or on the mobile side. It was

decided to implement the solution on the mobile side. The reason for this choice is that

it allowed the meter readers to make corrections to the reading at the spot if the image

was not recognized correctly. They could also retry taking picture from a different angle

to improve recognition. Even though, implementing the solution on Android had some

performance drawbacks, but the benefits of this approach outweigh the drawbacks, that

is why this approach was adapted.

5.5.1 OpenCV Preprocessing

The preprocessing solution was implemented in Matlab. Now this solution had

to be replicated in OpenCV, because there was no support for Matlab in Android. For

this purpose, functions similar to the ones used in the Matlab solution had to be found

out. All functions that were used in Matlab solution were also available in OpenCV,

except for one. The bwareaopen() operation that was used to remove small objects from

the binary images. A custom function called removeSmallObjects was implemented

using OpenCV to perform operations similar to the bwareaopen() function. The results

for OpenCV solution are shown in Figure 5.14. They are almost exactly similar to the

Matlab results. Figure 5.15 shows the code for OpenCV solution.

Figure 5.14 OpenCV Preprocessing

83

Figure 5.15 OpenCV Preprocessing Code

84

Here the averaging filter is applied using Improc.blur() function. The

removeSmallObjects() function finds contours having area less than or equal to supplied

size, and draws a black contour over it, to hide it.

5.5.2 Tesseract OCR on Android

The last task that needed to be done was the recognition of the preprocessed

images using Tesseract on Android. For this, Tesseract code for Android was

downloaded. This code had to be first compiled using Android NDK. The compiled

code was then included in the Android App as a module dependency. After

preprocessing the image using OpenCV, the Tesseract library was called to perform

OCR on the preprocessed image. The result of the OCR was then displayed on screen.

The code for calling Tesseract on the image is shown in Figure 5.16.

Figure 5.16 Android Tesseract Code

The init(path, “dig”) function initializes Tesseract to use “dig.traineddata” file

for recognition. The path variable specifies the location of the file. The setVariable()

85

function is used to specify the characters that should be recognized by Tesseract. A

bitmap image is provided to Tesseract for recognition using setImage() function. The

getUTF8Text() function returns the results of recognition on the image.

The results of Tesseract OCR were quite good, 12 out of 13 images were

recognized correctly. The results are shown in Figure 5.17.

86

Figure 5.17 Android Tesseract Results

87

Chapter 6

CONCLUSION

This project took a total of 5 months to complete. 1 month was spent on

requirement gathering, 2 months on Project Planning and Design and 2 months were

consumed in Project Development. The objectives of the project were achieved with

satisfactory performance. The following sections discuss the learning outcomes of the

project. The limitations of the project are described. The future work for the project is

also identified. The chapter concludes with project’s potential for commercialization

and its impact on society.

6.1 Learning Outcomes

The development of this project has made it evident that software has great

potential for making lives and work easier. The importance and advantages of good

planning in software design has been realized. Moreover new and improved skills are

acquired in the fields of image processing, web and mobile development.

6.2 Limitations

The system does have a few limitations at the moment. It is currently calculating

bills using simple way of multiplying units consumed with unit price. However, actual

bills are calculated using low tariff and high tariff values. The OCR currently works

only for digital meters. The form fields are validated using client side validation.

However, server side validation is also necessary in case JavaScript is turned off.

6.3 Future Work

The system can be improved in a number of ways. The auto display detection

can be included in the image processing solution. The image recognition for mechanical

meters can be added. The admins can be provided the ability to update customer, meter

and reader data.

88

6.4 Commercialization

This project has significant potential for commercialization. It has been made to

fulfill the most basic requirements of meter reading companies. It is built to be scalable,

so that it can be adapted to fulfill the requirements of meter reading companies. First it

can be introduced to private companies. Then once it has become robust enough it can

be introduced at the national level.

6.5 Impact on Society

The meter reading system that involved human intervention at multiple points

has now been reduced to just to two entities. The readers and the admins. The task of

verifying and compiling paper based reading and entry of readings into the system, has

been completely removed. This will definitely reduce workload and improve

performance. The system would be more reliable and there would be less errors. Less

errors would mean correct billing, which ultimately will save excessive or unrealized

energy costs. This will contribute towards solving the energy crisis of Pakistan.

89

REFRENCES

[1] Automated meter readers at 85 grids,

http://www.dawn.com/news/1126433

[2] Mariana Baabar, US helping Pakistan to address incorrect billing complaints,

http://www.thenews.com.pk/Todays-News-2-184392-US-helping-Pakistan-to-address-

incorrect-billing-complaints

[3] Material Design,

http://www.google.com/design/spec/material-design/introduction.html

[4] Node.js,

https://nodejs.org/

[5] OpenCV,

http://opencv.org/

[6] Rohit Dayama et al (2014), Android Based Meter Reading Using OCR, International

Journal of Computer Science and Mobile Computing, Vol.3 (Issue.3): 536-539

[7] Seven Segment Optical Character Recognition,

https://www.unix-ag.uni-kl.de/~auerswal/ssocr/

[8] Tesseract OCR,

https://code.google.com/p/tesseract-ocr/

http://www.dawn.com/news/1126433
http://www.thenews.com.pk/Todays-News-2-184392-US-helping-Pakistan-to-address-incorrect-billing-complaints
http://www.thenews.com.pk/Todays-News-2-184392-US-helping-Pakistan-to-address-incorrect-billing-complaints
http://www.google.com/design/spec/material-design/introduction.html
https://nodejs.org/
http://opencv.org/
https://www.unix-ag.uni-kl.de/~auerswal/ssocr/
https://code.google.com/p/tesseract-ocr/

