

POWER EFFICIENT MICRO-CODED INSTRUCTION BASED

ARCHITECTURE FOR EXPRESS STANDARDS EXTENDED TO
USB 3.0

Submitted by:

MUHAMMAD UMER
2008-NUST-MSCSE(S)-07

 Supervised by:
Dr Nazar Abbas Saqib

Submitted to the Department of Electrical Engineering, School of Electrical

Engineering and Computer Science, National University of Sciences and Technology,
Islamabad in partial fulfillment for the requirements of a M.S. Degree in

Communication System Engineering,
 January 2011

ii

ABSTARCT

Emerging high speed communication protocols with ultra high bandwidth requirement demand

efficient system architecture design to meet their specifications. Universal Serial Bus (USB) 3.0

supporting 4.8 Gbps, PCI express providing 5Gbps and Intel’s forthcoming light peak supporting

10Gbps are some of the examples. Both streaming and non-streaming high-end digital devices

such as HD cameras, webcams and mass storage devices employing these communication

standards demand efficient system architecture that provides the required bandwidth with as little

processing overhead (interrupts) for CPU as possible. Also with the substantial enhancement in

digital systems, there is a demand of system architecture that consumes lesser power. The

importance of low power consumption is due to the ever decreasing feature size of micro-

electronic circuits, higher clock frequencies and larger die sizes; also because of the growing

number of mobile and battery-operated systems. So, the key requirement is to minimize the

interrupts, improve power consumption, reduce possible high clock speed requirements for

embedded host controller, provide flexibility and all processing should be done through the

centralized location.

Firstly, this thesis presents novel micro-coded instruction-based system architecture of USB 3.0.

The micro-coded based design implicitly performs all DMA operations with minimum hardware

resources and interrupts; consequently decreasing the architectural complexity, cost, area

deployment and dynamic power consumption. Secondly, we propose clock gating in our novel

micro-coded system architecture that decreases the dynamic power dissipation by stopping the

clock switching activity of the unused functional blocks of the whole architecture. We have

applied clock gating technique both on ASIC as well as on FPGA based technology.

Experiments shows that by apply clock gating dynamic power consumption decreases up to 12%

iii

with slight area overhead of 2% in ASIC technology; whereas in FPGA dynamic power reduced

up to 15% with an 3% increase in area deployment. Furthermore, the designed system

architecture increases flexibility as it will be easily extendible to forthcoming standards like PCI

express and fiber optic

iv

ACKNOWLEDGEMENT

All prayers and Praises to Almighty Allah; The most Beneficent and The most Merciful; Who

has always blessed me with His blessings and made my path easier to get successes in my life.

First of all, I am thankful to my beloved family especially my parents for their immense care and

love throughout my life. I am also thankful to all of my teachers since my childhood for always

providing me the best guidance that a student can get. Among all those most respectful persons

for me, I owe my deepest gratitude to my thesis advisor Dr. Nazar Abbas Saqib for his support,

guidance and help not only in my MS research but also related to other issues, I faced during the

time I worked with him on my thesis. One simply could not wish for a better or friendlier

supervisor than him.

I am also highly obliged and grateful to Mr Afzal Khan, Director Engineering, Palm Chip

and Consultant USB3.0 Project, for his unconditional and boundless support in completing my

research work. He gave me number of ideas, and helped me time to time in number of ways. I

am also grateful to my Thesis Co-advisor Dr. Rehan Hafiz for giving his precious time to me

and also assisted me in my first paper draft. I am also thankful to my thesis Committee members

Dr. Osman Hassan and Mr. Nasir Mehmood in helping me and sparing time for me

I also thank to my professional friends especially my CEFAR lab friends for always backing me

in every step. I also acknowledge the scholarship committee of National University of Sciences

and Technology (NUST) for their financial help during my MS course work. I also thankful to

Dr. Arshad Ali and Dr. Nazar Abbas Saqib for hiring me as a Professional Researcher &

Developer to financially support my M.S. thesis work.

Finally, I thank all those who helped me in my life, may Allah always blessed them with HIS

blessings.

v

TO MY LOVING FAMILY

vi

Table of Contents

CHAPTER 1 1

INTRODUCTION 1
1.1 Importance of Efficient System Architecture 1
1.2 Motivations 3
1.3 Problem Statement and Thesis Objectives 4
1.4 Thesis Contributions 4

1.4.1 Problem Breakdown 4
1.5 Thesis Organization 6

CHAPTER 2 7

BACKGROUND 7
2.1 USB 3.0 (SuperSpeed) Communication Protocol 7

2.1.1 Physical layer 9
2.1.2 Link layer 9
2.1.3 Protocol layer 9

2.2 Direct Memory Access (DMA) 10
2.2.1 DMA Transfer 12
2.2.2 Initialization Stage 13
2.2.3 Transfer Stage 13
2.2.4 Status Stage 13

2.3 Issues in DMA based System Architecture for USB 3.0 13
2.3.1 DMA Scatter Gather Operation 14

2.4 Performance Parameters of System Architecture 15
2.4.1 Dynamic Power Dissipation (P) 15
2.4.2 Toggle factor (n) 15
2.4.3 Capacitance (C) 15
2.4.4 Operating Voltage (V) 16
2.4.5 Operating frequency (f) 16

CHAPTER 3 17

LITERATURE SURVEY 17
3.1 System Architecture 17
3.2 Related Work 17

3.2.1 DMA System Architecture for DSP Applications [3] 18
3.2.2 DMA Transaction Method for PCI Express Devices [4] 18
3.2.3 DMA Cache based system architecture for I/O system buses [5] 19

3.3 Power Optimization 19
3.3.1 Enable Function Based Clock Gating [15] 21
3.3.2 RTL Clock Gating Based on ODCs [16] 21
3.3.3 Zero Skew Clock Gating [17] 21
3.3.4 RTL Clock Gating with Emphasis on Glitch Analysis and Reduction [18] 21
3.3.5 Root Clock Gating [10] 22

CHAPTER 4 23

EXPERIMENTAL SETUP 23
4.1 Selection of Tools 23
4.2 UMC 90nm ASIC Technology library 23

4.2.1 Tools for ASIC Technology 23
4.2.2 Area Deployment Estimation & Dynamic Power Estimation 24
4.2.3 Toggle factor [14] 25

vii

4.3 Xilinx Virtex -5 FPGA [9] 26
4.3.1 Tools for FPGA Technology 27
4.3.2 Methodology 27
Step 1: Before Start Power Analysis 28
Step 2: Open Xilinx Power Analyzer 28
Step 3: Open Design 29
Step 4: View Summary Report 30
Step 5: Settings 31
Step 6: Power Report by Type 31
Step 7: Add Switching Activity Information or Value Change dump file (VCD) 31

CHAPTER 5 33

EFFICIENT DESIGN OF NOVEL SYSTEM ARCHITECTURE OF USB 3.0 33
5.1 Proposed System Architecture 33
5.2 Event Manager 34

5.2.1 Instruction FIFO's 35
5.2.2 Event Manager Registers 36
5.2.3 Scheduler 37

5.3 Data Handler 38
5.3.1 RAM-CFIFO Interface 39
5.3.2 DBUFF-RAM Interface 39
5.3.3 RAM-DBUFF Interface 40
5.3.4 CFIFO-RAM Interface 40

5.4 Packet Encoder Decoder Block (PED) 40
5.5 Data Buffer 41
5.6 Link Layer FIFO 41
5.7 Power Management in System Architecture 41
5.8 Micro-Coded Instructions 44

5.8.1 Header Packet & Transaction Instruction (HDR TRANS INSTR) 44
5.8.2 Acknowledgment Instructions (ACK INSTR) 45
5.8.3 Data Handler Instructions (DH INSTR) 45
5.8.4 How the Micro-coded Instruction Works 46

5.8.4.1 Bulk-OUT-1K Transaction 46
Step1: Reading Context Parameters from System RAM 46
Step 2: Decode Context Parameters & Write DH-INSTR for data payload 47
Step 3: Write HDR TRANS INSTR 48
Step 4: Decode HDR TRANS INSTR and Transmit Data packet 48
Step 5: PED waits ACK packets and generate ACK Instruction 48
Step 6: Event Manager writes event transaction 49
5.8.4.2 Bulk-IN-1K Transaction 49
Step1: Reading Context Parameters from System RAM 49
Step 2: Decode Context Parameters & Write HDR TRANS INSTR for header Packet 50
Step 3: Decode HDR TRANS INSTR and make Header Packet 50
Step 4: PED waits ACK packets and generate ACK Instruction 50
Step 5: Event manager writes DH-INSTR for data payload: 51
Step 6: Event Manager writes event transaction 51

CHAPTER 6 52

DISCUSSION & RESULTS 52
6.1 Discussion on Performance Parameters 52
6.2 Performance Parameters Evaluation on ASIC Technology (UMC 90nm) 54
6.3 Performance Parameters Evaluation on FPGA (Xilinx Virtex-5) 56

CHAPTER 7 60

viii

CONCLUSION AND FUTURE WORK 60
7.1 Conclusion 60
7.2 Future Work 60

REFERENCES 61

ix

List of Tables

Table 1: HDR TRANS INSTR FORMAT... 44

Table 2: ACK INSTR FORMAT.. 45

Table 3: DH INSTR FORMAT ... 46

Table 4: DH INSTR PARAMETERS ... 47

Table 5: DH instruction for reading Context parameters ... 47

Table 6: DH instruction for writing data payload in Data buffer ... 47

Table 7: HDR TRANS INSTR for BULK-OUT-1K .. 48

Table 8: ACK INSTR for BULK-OUT-1K ... 49

Table 9: DH INSTR for Event transaction ... 49

Table 10: HDR TRANS INSTR for BULK-IN-1K ... 50

Table 11: ACK INSTR for BULK-IN-1K .. 51

Table 12: DH-INSTR for BULK-IN-1K .. 51

Table 13: Performance Parameters of USB 3.0 Modules .. 55

Table 14: Performance Parameters without Clock Gating on FPGA 57

Table 15: Performance Parameter with Clock Gating on FPGA ... 58

Table 16: Percentage Improvement in dynamic Power Dissipation on FPGA 58

x

List of Figures
Figure 2.1: USB 3.0 Internal Architecture ...8

Figure 2.2: Communication Flow of USB 3.0 .. 10

Figure 2.3: DMA Controller System Architecture ... 12

Figure 2.4: DMA Scatter Gather Operation ... 14

Figure 3.1: Importance of Power Dissipation ... 20

Figure 4.1: Simulation of USB 3.0 modules in ModelSim.. 24

Figure 4.2: Area Estimation on Cadence RTL Compiler ... 25

Figure 4.3: Power Estimation on Cadence RTL Compiler... 25

Figure 4.4: Toggle Coverage in ModelSim ... 26

Figure 4.5: Xilinx Virtex -5 Internal Architecture ... 27

Figure 4.6: Start XPower Analyzer .. 29

Figure 4.7: XPower Analyzer Window .. 29

Figure 4.8: Open Design Window in XPower Analyzer .. 30

Figure 5.1: High level system architecture of USB 3.0 .. 34

Figure 5.2: Micro Coded Instruction based USB 3.0 System Architecture 35

Figure 5.3: Clock Gating Pseudo-code I ... 42

Figure 5.4: Clock Gating Pseudo-code II ... 43

Figure 6.1: Power Dissipation in USB 3.0 System Architecture on ASIC 55

Figure 6.2: Graphical Description of Dynamic Power Dissipation on FPGA 59

1

CHAPTER 1

INTRODUCTION

1.1 Importance of Efficient System Architecture

Emerging communication standards support ultra high data rates: Universal Serial Bus (USB)

3.0 supporting 4.8 Gbps, PCI express providing 5Gbps and Intel's forthcoming light peak

supporting 10Gbps are some of the examples [1]. Both streaming and non-streaming high-end

digital devices such as HD cameras & webcams, mass storage devices employing these

communication standards therefore demand efficient system architecture for transfer of data to

and from the internal peripheral interfaces, or from one location in the external memory to

another or to and from system RAM to external FIFO which provides the required bandwidth

with as little processing overhead for CPU as possible. Generally Direct Memory access (DMA)

technique allows a peripheral to transmit data to or from system RAM without the intervention

of CPU [2].

In the context of USB 3.0 system architecture; if DMA is chosen as a main controller, one needs

to program the DMA registers for transactions whether these transactions are descriptor based or

without descriptor based. Also to support multiple devices and to minimize interrupts in the

whole architecture; there is a need of some sort of molded DMA architecture to handle multiple

devices through descriptors and/or buffer or using multiple channel devices that will have the

area as well as power plenty. Other option may be to use the high clock speed for the processor

to service the multiple devices using single channel and set of registers in that channel but this

option may not available in the embedded design where the CPU clock speed is generally

running at few hundred MHz. Another disadvantage of using the explicit DMA approach is that

development engineer get stuck with the notion of the interrupts and defining the DMA as

2

separate entity i.e CPU interface and its registers are located in one place, whereas the DMA and

its registers in other location. Also to support segmented memory, DMA controller also need

scatter gather operation [2].

We propose a novel micro-coded instruction based architecture. In our designed architecture, the

idea is to minimize the interrupts, get away from the possible high clock speed requirements for

embedded host controller, get away from the fixed structures, provide flexibility and all

processing should be done through the centralized location. To get away from the interrupt based

architecture, a molded DMA scheme has been proposed by defining data structure for the

transactions in the memory. This scheme reduces the clock speed as required for embedded

system and gets to minimize the area of the overall design through providing support for multiple

devices in memory data structures for the transactions. To achieve these goals, instruction based

architecture has been designed. There are generalized instructions that can decode, encode,

move, load, and store these memory data structure. Micro coded instruction based architecture

provides support up to maximum permissible devices required by USB 3.0 specification. Hence

interrupt based approach has been mitigated that reduce the overall power burden and overall

clock speed that may require for supporting multiple devices especially in embedded design.

In this paper we propose a novel micro-coded instruction based architecture. In our designed

architecture, the idea is to minimize the interrupts, get away from the possible high clock speed

requirements for embedded host controller, get away from the fixed structures, provide flexibility

and all processing should be done through the centralized location. To get away from the

interrupt based architecture, a molded DMA scheme has been proposed by defining data

structure for the transactions in the memory. This scheme reduces the clock speed as required for

embedded system and gets to minimize the area of the overall design through providing support

3

for multiple devices in memory data structures for the transactions. To achieve these goals,

instruction based architecture has been designed. There are generalized instructions that can

decode, encode, move, load, and store these memory data structure. Micro coded instruction

based architecture provides support up to maximum permissible devices required by USB 3.0

specification. Hence interrupt based approach has been mitigated that reduce the overall power

burden and overall clock speed that may require for supporting multiple devices especially in

embedded design. Also, to minimize the power consumption of the whole architecture, root

clock gating technique has been proposed. This technique shut-off the clock to the functional

blocks that are not used at some particular clock cycles.

1.2 Motivations

Most of the system architecture present in literature survey has been designed by using direct

memory access (DMA) like USB, PCI express, digital signal processing (DSP) application and

so on. Traditionally, most of the DMA based system architecture has been designed by

considering the effects of memory transaction speed, memory access latency, DMA write and

DMA read effective throughput. But there is no significant work on area and power efficiency on

DMA based system architectures. When we design any system architecture, there are some

overheads of DMA with respect to computational complexity, area deployment and power

consumption. Also the DMA based system architecture is application specific. It is not scalable

to all forthcoming express standards. Also there is a demand of power optimizes design that will

dissipate lesser power and up to some extent increases the battery life and make them portable.

To handle the above mention issues, there is a need to design power efficient system architecture

for express standard USB 3.0 that removes the discrepancies of DMA. Also the designed system

architecture will be scalable to forthcoming standards PCI express and Intel light peak.

4

1.3 Problem Statement and Thesis Objectives

The problem statement of this thesis can be stated as follows

“To design a scalable low power and area efficient system architecture for ultra speed data

transaction extended to USB 3.0”

The main objectives of this thesis are as under

 To design an effective system architecture for express standards like USB 3.0

There are also some specific objectives of this thesis that are as under

 Study of existing DMA based system architectures

 Design/propose novel system architecture

 Implementation and simulation verification of system architecture

 Measurement of Performance parameters

 Comparison with and without clock gating

1.4 Thesis Contributions

The thesis exhibits the power efficient design of novel micro-coded instruction based system

architecture extended to USB 3.0 protocol by considering the effects of area deployment and

power overheads. Furthermore this thesis also demonstrates the effect of root clock gating to

novel system architecture to make it more power efficient.

1.4.1 Problem Breakdown

We have divided the problem statement of our thesis into following discrete objectives.

 Study of existing DMA based system architectures of express standards

A number of system architectures have been designed over time to time for different express

standards like PCI express, DSP applications and Input /output system buses. In these system

architectures, efficiency of the system architecture has been shown by considering different

5

performance parameters like DMA read/write effective throughput, memory access latency,

memory transaction speed and other factors like area deployment and power consumption . Our

goal is to study all related system architectures of express standards and how efficient their

working with respect to different performance parameters is?

After a thorough and critical study of previously presented system architectures we will enlist the

discrepancies and limitations of these system architectures. This list of discrepancies will set the

goals of our research.

 Design/propose novel system architecture

Keeping in view the limitations of existing system architectures of express standards, we will

design novel system architecture to mitigate the discrepancies of previous system architectures.

First of all we will design area and power efficient micro-architecture of USB 3.0 protocol.

Based on USB 3.0 communication protocol; we will make a high level data path and control

logic of the whole system architecture.

 Implementation and simulation verification of system architecture

When micro-architecture of the whole system has been designed; we will write an RTL

description of different modules based on the micro-architecture. We will design the control and

data path logic of the whole communication protocol separately. After that we will implement

our novel system architecture on simulation software and run different USB 3.0 test cases like

bulk write transaction, bulk read transaction and so on. We will verify the data path and control

logic of the whole design. In test cases, we will check all normal and erroneous cases of the

communication protocol.

 Measurement of Performance parameters

 When the whole system architecture has been implemented successfully and it is functionally

6

verified on different simulation software; we will evaluate different performance parameters of

the whole system architecture like toggle factor, no of gate counts and dynamic power

dissipation. Based on the switching activity and number of gate counts of different modules, we

will calculate the dynamic power consumption of the individual modules as well as overall

system architecture.

 Comparison with and without clock gating

 We propose power optimization in our whole system architecture; that makes the whole system

architecture further power efficient. Root clock gating is an RTL power optimization technique

that disables the clock to functional blocks that are not used during some particular clock cycles.

We will calculate the dynamic power dissipation with and without root clock gating and provides

a comparative analysis of the system architecture with and without root clock gating.

1.5 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides the background knowledge for

Universal serial bus (USB) 3.0 communication protocol and general direct memory access

(DMA) based system architecture flow. Chapter 3 provides contemporary system architectures of

express standards; their contribution, strength and weakness. Chapter 4 provides the novel micro-

coded instruction based system architecture. Chapter 5 provides description of the tools,

software’s and methodology used in the experimentation of our novel system architecture.

Chapter 6 provides the performance results of the designed system architecture with and without

root clock gating; Chapter 7 is the final chapter of this thesis and provides conclusion and future

directions.

7

CHAPTER 2

BACKGROUND

This chapter provides the necessary background knowledge of the universal serial bus (USB) 3.0

communication protocols so that the reader can have a better understanding of the USB 3.0

architecture and key concepts. It also briefly describes how the memory data transaction takes

place between system software and input/output device using direct memory access. I also

briefly describe the issues of DMA based system architectures for express standards like USB

3.0.

2.1 USB 3.0 (SuperSpeed) Communication Protocol

USB 3.0(SuperSpeed) provides broad compatibility, affordability and plug n play behavior. USB

3.0 is similar to earlier versions of USB in that it is a cable bus supporting data exchange

between a host computer and a wide range of simultaneously accessible peripherals. The

attached peripherals share bandwidth through a host scheduled protocol. The bus allows

peripherals to be attached, configured, used and detached while the host and other peripherals are

in operation. USB 3.0 utilizes a dual bus architecture that provides backward compatibility with

USB 2.0[1].

8

Figure 2.1: USB 3.0 Internal Architecture

USB 3.0 provides data rate up to 5 Gbps which is ten times more than the previous version of

USB 2.0. There are dual simplex transmission channel present in USB 3.0; which means that

there are separate paths for transmission and reception. In USB 3.0 data transfer is manage using

endpoints. Endpoint is a uniquely addressable portion of a USB device that is either a source or

sink of information. Endpoints are characterized by the type of data transfer supported by the

protocol.

USB 3.0 is a layered communication architecture that is comprised of the following components

[1]

 USB 3.0 Interconnect: USB 3.0 interconnect is the topology in which devices are

connected to and communicate with the host.

 Devices: USB 3.0 devices are sources or sinks of information exchanges. They

implemented the required device-end, USB 3.0 communications layers to accomplish

9

information exchanges between a driver on the host and a logical function (endpoint) on

the device.

 Host: A USB 3.0 host is a source or sink of information. It implements the required host-

end, USB 3.0 communications layers to accomplish information exchanges over the bus.

It holds the USB 3.0 data activity schedule and management of the USB 3.0 bus and all

devices connected to it.

USB 3.0 Communication protocol has following communication layers [1]

1. Physical layer

2. Link layer

3. Protocol layer

2.1.1 Physical layer

 The physical layer defines the PHY portion of a port and the physical connection between a

downstream port and the upstream facing port on a device. The USB 3.0 physical connection is

comprised of two differential data pairs, one transmit path and one receive path. The nominal

signaling data rate is 5Gbps.

2.1.2 Link layer

Link layer provides device connect device removal, link power management, flow control, error

control and inserting of framing sequences (i-e packet delimiters).

2.1.3 Protocol layer

 USB 3.0 protocol layer defines “end-to-end” communication between host and device. USB 3.0

protocol provides application data information exchanges between a host and a device endpoint.

It is a host-directed protocol, which means the host determines when application data is

transferred between host and device.

10

Figure 2.2: Communication Flow of USB 3.0

USB 3.0 protocol supports four types of data transaction modes: bulk, control, isochronous and

interrupt. Bulk transfer mode is used when massive amount data is required to transmit between

host and device. Interrupt transfer mode supports when an urgent data is required to be sending

to the device through some interrupt. Isochronous transfer mode sends real time data between

host and device/peripheral. Similarly, control transfer mode allows device initialization and

configuration [1]. Endpoints transfer data in one direction so there are separate endpoints for

transmit (Tx) and receive (Rx) transfer. The only exception is “default endpoint” that provides

access to device configuration information. A maximum of 15 endpoints can be supported by

each device [1]. USB 3.0 core register block includes all registers that are used in performing

USB 3.0 functions inside the USB 3.0 core. Endpoint control register is used for endpoint

configuration. It contains the information regarding transfer direction, transfer type, endpoint

number, payload size etc [1].

2.2 Direct Memory Access (DMA)

DMA technique allows a peripheral to transmit data to or from the system RAM without the

11

CPU intervention. Many hardware systems use DMA including disk drive controllers, graphics

cards, network cards and sound cards. There is a system bus interface between DMA controller,

system CPU and system RAM that allows the data to be read or write between system RAM and

local memory of connected peripheral [2]. System bus has a master as well as slave interface.

Master Interface of system bus requests the grant of system bus. Slave interface is used to move

data payload and device descriptors through system RAM. There is also a bus arbiter that grants

the system bus to the DMA controller based on some priority for data transactions i-e device

initialization and configuration has highest priority over transaction. Similarly periodic

transactions have highest priority over non-periodic data transactions. DMA system architecture

contains the following components [2]:

 System CPU

 System RAM

 DMA Controller

 I/O System Bus

 I/O peripheral device

12

Figure 2.3: DMA Controller System Architecture

DMA registers contain control, status and transfer registers. Control registers contain the

information related to device initialization and configurations. Transfer registers enclose the

information related to particular transaction of specific device. Status registers contain the status

of the current transaction. There are multiple channels in DMA controller that allows multiple

devices/peripheral to communicate with the system software. Each channel is allocated to one

particular device. Also each DMA channel has its own set of request lines. There is channel

arbiter that selects the particular channel based on the DMA control and transfer register program

by the system CPU. Also, each channel has its own set of interrupts controller and operational

registers [2].

2.2.1 DMA Transfer

DMA transfer has three different distinct stages:

 Initialization Stage

 Transfer Stage

 Status Stage

13

2.2.2 Initialization Stage

During initialization stage, CPU programs the DMA control registers through slave interface of

system bus. The configuration of these registers indicates that there are some memory data

transactions or configuration need to be started. After that DMA controller sends DMA

REQUEST signal to the CPU through slave interface. CPU then grants the system bus to the

DMA controller and also set DMA GRANT signal. Now CPU does not communicate any more

with the peripheral and waits a transaction completion interrupt from the DMA to communicate

further with the peripheral [2].

2.2.3 Transfer Stage

In transfer stage, when the system bus is granted to DMA controller; it first programs the transfer

registers of DMA controller and also through channel arbiter, choose the particular channel to

which data is transmitted to the particular device. Then DMA controller set the BUSY signal for

the device and sends the memory data from system RAM to the local memory of I/O

device/peripheral. When the whole data is transmitted successfully to the device/peripheral,

device acknowledge through DONE signal given to the DMA controller [2].

2.2.4 Status Stage

In status stage, DMA controller sends an interrupt completion request to the CPU through IRQ

signal. Also the DMA releases the grant of system bus and waits other transactions initiated by

the CPU [2].

2.3 Issues in DMA based System Architecture for USB 3.0

Since DMA interface is used for memory data transaction in different system architectures. But

there are some overheads of DMA based system architecture for express standards like USB 3.0

some of these are as follows:

14

1. Explicit DMA registers are required for transactions

2. To handle multiple devices, there is a need of buffer or multiple DMA channels

3. High clock speed requirement to support multiple devices using single channel

4. Interrupt based system architecture in which CPU is dependent on DMA controller

5. To support segmented memory, DMA scatter gather complex operation is required

2.3.1 DMA Scatter Gather Operation

In system RAM, data transaction memory is not allocated continuously. It is segmented memory

and there is a need of some extra logic to handle all the segments sequentially. In DMA based

system architecture, DMA scatter gather complex operation is required to implement the whole

hierarchy [2].

Figure 2.4: DMA Scatter Gather Operation

In scatter gather operation, start addresses, size of each memory segment and sequence number

of all segments are required. When the first segmented is read/write successfully, we will move

to next memory segment using scatter/gather operation. So, this operation is computation

complex and has some area as well as power overhead in any system architecture.

15

2.4 Performance Parameters of System Architecture

This section explains some metrics which can be used to evaluate the performance of the

designed system architecture.

2.4.1 Dynamic Power Dissipation (P)

Dynamic power dissipation describes how much power is dissipated of a module or functional

block due to switching activity of clock signal and data signals, operating frequency, voltage and

number of gate counts. The dynamic power dissipation of any system architecture depends upon

the following equation [11].

2() * * * (2.1)P W n C V f

Where n is the toggle factor or switching activity factor, C is the capacitance or the number of

gate counts, V is the operating voltage and f is the operating frequency. The above relation

shows that if we increase either n, C or f dynamic power dissipation increases linearly. Similarly,

if we increase V, dynamic power dissipation increases exponentially [9][11].

2.4.2 Toggle factor (n)

Toggle factor is the switching activity of a module or any functional block. If the module or

functional block toggles on every clock cycle, it means toggling will be 100% of that module.

Generally, toggling of the functional block or module lies in between 40-60%. More the toggle

factor more will be the dynamic power dissipation [14].

2.4.3 Capacitance (C)

Capacitance is the number of the gate count or area deployment of any module or functional

block. It depends upon the logic, memory size and number of registers of the functional module

or block. Higher the value of C, higher will be the number of dynamic power dissipation of the

designed system architecture [14].

16

2.4.4 Operating Voltage (V)

Operating voltage is the specific voltage used in the whole designed architecture. Generally it is

application specific like FPGA board or ASIC library. Higher the operating voltage, higher will

be the dynamic power dissipation [14].

2.4.5 Operating frequency (f)

Operating frequency is the clock frequency that is used in the whole system architecture. It is

also application specific like USB 3.0 has different operating frequency, PCI needs different

operating frequency, and other express standards has its own operating frequency to meet the

design requirement. Higher clock frequencies are not desirable as they increase the dynamic

power dissipation [14].

17

CHAPTER 3

LITERATURE SURVEY

This chapter explains the state of the art designed system architectures of express standards like

PCI express, DSP processors, I/O system buses and so on. Also this chapter explains clock

gating power optimization techniques at register transfer level.

3.1 System Architecture

Nowadays, as technology advances there is demand of high data rate, lowest latency, minimizes

area deployment and efficient power consumption [4]. To fulfill these demands, there is a need

of efficient system architecture design. System architecture provides the control and data path

flow to transmit data between different peripherals or between host and any particular device.

Also to communicate with the system RAM there is a specific interface of system bus and

controller required to interact between hardware and software [5]. We will explain the whole

system architecture and its required components with details in chapter 5.

3.2 Related Work

Traditionally DMA based system architecture has been designed for different express standards.

For architectural merits, USB 3.0 is becoming more and more popular in high speed

communication [1]. However, no comprehensive work has been found on USB 3.0 system

architecture. Generally, Peripheral Component Interconnect (PCI) Express system architecture

has been designed using DMA as a main controller to access data payload from the system

memory [4]. Although USB 3.0 communication protocol to some extent is related to PCI express

communication protocol; so we may design DMA based system architecture of USB 3.0 but due

to DMA limitations it will not be efficient system architecture [1] [4]. Following are the some

state of the art system architecture that has been designed for express standards.

18

 DMA System Architecture for DSP Applications [3]:

 DMA Transaction Method for PCI Express Devices [4]:

 DMA Cache based system architecture for I/O system buses [5]

3.2.1 DMA System Architecture for DSP Applications [3]

This system architecture has been designed for DSP based applications. In this system

architecture, the whole system architecture has been divided into several modules. For different

applications, some of the modules are operational while other modules remain inactive [3]. So

modularity of the design allows all DMA operations to be added or removed very easily. This

system architecture is scalable for all DMA transactions [3].

This designed system architecture performs data transactions at much faster data rate as compare

to conventional DMA system architectures. This system architecture also maximizes the usage of

all interfaces of each peripheral [3]. There are some drawbacks of this system architecture.

Firstly, scatter gather complex operation requires for non-segmented memory. Also this system

architecture has some area as well as power overheads because of DMA controller. Secondly,

this system architecture performs plenty of memory data transactions so there is an issue of bus

contention that significantly reduces the effective bandwidth.

3.2.2 DMA Transaction Method for PCI Express Devices [4]

This system architecture has optimized PCI express transaction through improving both bus-

efficiency and DMA efficiency. This system architecture reduces the issue of bus contention that

reduces effective bandwidth of the PCI express as in DSP based system architecture [3]. In this

system architecture authors has proposed an FSM based test method to improve data transaction

speed [4].

 This system architecture has improved the DMA write and DMA read transaction speed. This

19

method is equally applicable to PXI-Express applications and so forth. This designed system

architecture has some flaws. This method is only applicable for non-segmented memory

(continuous). Scatter gather complex operation is required for non-segmented memory that

increases area and make it complex [4].

3.2.3 DMA Cache based system architecture for I/O system buses [5]

In this system architecture the authors have presented two DMA cache techniques to store I/O

data in dedicated on chip storage namely Decoupled DMA Cache (DDC), and Partition-Based

DMA Cache (PBDC). Decoupled DMA Cache (DDC) contains DMA cache as buffer to store I/O

data. Partition-Based DMA Cache (PBDC) does not contain DMA cache as buffer instead uses

dynamically processor last level cache (LLC) as DMA cache. This scheme has reduced memory

access latency up to 34.8% for DDC and 80% for PBDC. Similarly, DMA overhead reduces the

overall efficiency of system architecture [5].

3.3 Power Optimization

Promising high speed communication protocols need power efficient system architectures. The

importance of the low power has been come into sight from the last few years. If there is no

constraints on power utilization then it will increases up to 1,000’s of watts as shown in figure-1

so we have to limit this power consumption up to some extent. There are lots of applications like

cell phones; laptops, personal digital assistant (PDA) and all wireless devices need power

efficient system design. These application demands high battery life that make it reliable. Also

low power design/devices have an ability to provide lots of features to different application. High

power dissipation leads to expensive packaging and cooling systems. Furthermore high power

dissipation will minimize the product life [8].

 There are different levels of power optimization namely system level, algorithm level, register

20

transfer level, gate level and transistor level. We have employed register transfer level power

optimization technique in our novel system architecture. Register transfer level provides 20-30%

reduction in dynamic power utilization [11]. There are numerous power optimization techniques

that have been proposed in register transfer level (RTL).

 Clock gating is the most fundamental and efficient technique at RTL. It is mostly used in clock

sequential circuits [10]. There is some of the state of the art clock gating technique that has been

previously employed. These are:

 Enable Function Based Clock Gating [15]

 RTL Clock Gating Based on ODCs [16]

 Zero Skew Clock Gating [17]

 RTL Clock Gating with Emphasis on Glitch Analysis and Reduction [18]

 Root Clock Gating [10]

Figure 3.1: Importance of Power Dissipation

21

3.3.1 Enable Function Based Clock Gating [15]

This technique has provided the improved clock gating scheme as it is formulated to find the

optimal set of enable function in the shared logic cone that leads to best power reduction on flip

flops [15]. This technique added only small amount of area overhead and reduces dynamic

power significantly. Due to clock gating circuitry itself, this technique shouldn’t be applied on

small RTL circuit [15].

3.3.2 RTL Clock Gating Based on ODCs [16]

This technique provides effective clock-gating schemes by creating an activation function that

can stop the clock to set of registers for a significant fraction of cycles; when the register outputs

are unobservable [16]. This contribution provides an excellent algorithm for automatic detection

of complex idle conditions. It is also very suitable for integration into industrial design tools

[16]. ODC based approach shows a slight penalty on area and delay with respect to original

circuit [16].

3.3.3 Zero Skew Clock Gating [17]

This technique minimizes the skew (delay) in clock tree synthesis of synchronous sequential

circuits by adding redundant gates to synchronize clock [17].This novel clock tree design style to

ensure that the logic gates at the same level are in the same type and significantly reduces the

clock skew [17]. There is slight penalty of area and dynamic power consumption [17] on the

whole system design.

3.3.4 RTL Clock Gating with Emphasis on Glitch Analysis and Reduction [18]

This technique reduces glitching power consumption in RTL circuits by minimizing the

propagation of glitches through different blocks of the circuit. This technique is also used at

register transfer level (RTL) that analyzes the generation and propagation of glitches for

22

controller/data path circuits [18]. It is an automated power reduction technique of clock gating at

RT level that avoids propagation of glitches on control signals [18].

3.3.5 Root Clock Gating [10]

This technique inserts gating logic at the root of the clock to save the power consumed by the

clock network feeding these instances [10]. This is a novel solution for root gating optimization

that further reduces the clock tree power [10]. The main disadvantage of this technique is that the

fragmentation of the clock tree into several clocks gating domain makes skew balancing very

difficult [10].In this technique, possible no of candidates for root gating grows exponentially

with the no of clock gating logic in the design [10]

The main purpose to elaborate these clock gating techniques are that because we have designed

customized clock gating technique based on USB 3.0 communication protocol and the

characteristics of the designed system architecture. We will explain this customized clock gating

technique in chapter 5

23

CHAPTER 4

EXPERIMENTAL SETUP

This chapter explains how we have designed our test cases; apparatus and tools that have been

used to conduct implementation, functional verification, performance evaluation of the designed

system architecture.

4.1 Selection of Tools

For implementation and verification purpose, both ASIC and FPGA based system tools have

been used. In ASIC, we used UMC 90nm ASIC technology (FSDOA_A Core Cell) library and

for FPGA, we used Xilinx Virtex-5 board [9] [13].

4.2 UMC 90nm ASIC Technology library

The power consumption characteristic of this specific library is 4.5nW/MHz/gate [13]. This

means that if a single gate is operated on 1 MHz frequency; it will consume 4.5nW dynamic

power. Operating voltage of the whole system design in this technology library is 1Volt. Since

the USB 3.0 protocol demands 4Gbps data rate. So the operating frequency of the designed

system architecture is 250MHz (equation 1). Operating frequency depends upon the expected

throughput. Also the power consumption by using UMC 90 nm technology is:

2P(nW) = n*4.5*C*V *f (4.1)

f (Mhz) = 1/expectedthroughput (Gbps) (4.2)

Where n is the toggle factor; C is capacitance or number of gate counts, V is the operating

voltage; and f is the operating frequency.

4.2.1 Tools for ASIC Technology

Functional verification of the designed system architecture has been performed in ModelSim 6.5

SE. we have run different test cases of the USB 3.0 communication protocol in modelsim and

24

verify the data path of the whole system architecture. For area deployment estimation, we have

used Cadence Encounter RTL Compiler. Similarly for power estimation, Cadence Encounter

RTL Compiler has been used [14].

4.2.2 Area Deployment Estimation & Dynamic Power Estimation

Following steps have been performed to calculate the area deployment, number of gate counts

and dynamic power consumption of different modules of USB 3.0 on ASIC tools [14].

 Read an RTL of the specific module in Cadence RTL Compiler

 Add specific ASIC technology library (UMC 90nm)

 Synthesize the specific module

Figure 4.1: Simulation of USB 3.0 modules in ModelSim

 In area report, read the no of gate counts being used by this specific module

25

Figure 4.2: Area Estimation on Cadence RTL Compiler

 In power report, read switching power of this specific module

Figure 4.3: Power Estimation on Cadence RTL Compiler

4.2.3 Toggle factor [14]

To calculate the toggle factor of the whole system architecture or specific module of the specific

system architecture, Modelsim code coverage details has been used. Code coverage details

include toggle coverage information that tells about the switching activity of the specific module

or whole designed system architecture.

26

Figure 4.4: Toggle Coverage in ModelSim

4.3 Xilinx Virtex -5 FPGA [9]

In FPGA based implementation, we leveraged the architectural features of Virtex-5 FPGA. It has

divided the FPGA chip internally into clock zones for clock distribution. So we can cut off the

clock to whole clock region instead of a single FF. This leads to better power reduction. Clock is

controlled through Global Clock Buffers (there are 32 global clock buffers in virtex-5 FPGA) as

in figure

27

Figure 4.5: Xilinx Virtex -5 Internal Architecture

4.3.1 Tools for FPGA Technology

In FPGA, we have used ModelSim6.5 SE and Xilinx ISE 11 for functional verification of data

path of the specific functional block or module. For area estimation, Xilinx design summary

report gives information about the no of slices and no of clock buffer used. For dynamic power

estimation we have used Xilinx power analyzer.

4.3.2 Methodology

Following are the major steps that need to be performed for area and dynamic power

consumption on FPGA [9].

 Using Xilinx ISE software to perform synthesis of the functional module

 Target device selected is Virtex-5

 Simulation of the circuit is performed using ModelSim or Xilinx ISE simulator software

 Simulation step generate VCD file (Value Change Dump), also called simulation file

 Each simulation runs the circuit for a certain no. of iterations

28

 Implement the synthesize module using Xilinx ISE (Translate, Map, place and Route)

o Power analysis is done using XPA (XPower Analyzer)

o XPA takes as input the simulation file generated during simulation and the

synthesized version of the circuit

o Based on the device power characteristics and signal transitions (from simulation file)

it calculates avg. power consumed

Note: When we apply clock gating using FPGA virtex 5, then we have to enable clock gating

buffers explicitly.

Step 1: Before Start Power Analysis

 First of all, synthesize your ISE project

 Add timing constraints (.UCF file)

 Implement your ISE project. After implementation, ngd output file is built that are used

for power analysis.

Step 2: Open Xilinx Power Analyzer

Open XPA in one of these ways:

1) In ISE, in the Processes tab, double-click the XPower Analyzer process, located under

Place & Route

29

Figure 4.6: Start XPower Analyzer

When you open XPA from ISE, you are analyzing a design that has already been fully placed

and routed.

OR

1) Open XPA standalone. To do so:

 Select Start > Run.

 At the command prompt, type xpa and press Enter.

Figure 4.7: XPower Analyzer Window

Step 3: Open Design

In XPA, open the design files in this way:

30

 Select File > Open Design

 In the Open Design dialog box, select the files to use for virtex-5

usb3_em.ncd (Post-Place and Route NCD file)

usb3_em.pcf (Physical Constraints File)

usb3_em.saif (Stimulus file from Simulation)

Figure 4.8: Open Design Window in XPower Analyzer

Step 4: View Summary Report

Once XPA is completely opened and has analyzed the design using the specified input files,

these report views are displayed:

 The Summary view displays all the important voltage rail information.

 The Thermal Information view shows thermal information to be used in the device

power calculation, and allows you to set the relevant thermal setting to match your

hardware and environment

31

Step 5: Settings

 For a design in which no VCD or SAIF stimulus file is available yet, you can use the

Settings view to enter estimated activity rates for all different design elements

 Every time a setting or a value is changed or updated in XPA, you must then update the

power analysis (Tools > Update Power Analysis)

o Clocks – Shows power for each clock tree in the design.

o Signals – Shows activity rate and power for the design routing elements.

o Logic – Shows activity rate and power for the design slice elements (for example,

Look-up table (LUT), and flip-flop).

o IO – Shows activity rate and power for the different I/Os in the design.

o Dedicated blocks – Shows activity rate and power for the different blocks in the

design (for example, block RAM, DSP, Transceiver, and Processor)

Step 6: Power Report by Type

 The By Type views break down the power estimation into specific groups

In the clock view, make sure all clock frequencies have been correctly extracted from the

physical constraints file (PCF).

If the clocks in your design were properly constrained in the UCF (user constraints File)

before implementation then frequencies should be correctly extracted from the PCF

(physical constraints File) in XPA

Similarly logic, signals and I/Os tabs describe the power consumption of these resources.

Step 7: Add Switching Activity Information or Value Change dump file (VCD)

 Add SAIF information file or VCD file to analyze the actual and more accurate power

consumption of your design

32

I. Add test-bench in your design

II. Run your test-bench

III. Then add SAIF in ISIM command prompt

 saif open –scope uut –allnets

 run 10000ns

 saif close

 Or if you can add VCD in ISIM command prompt

 vcd dumpfile vvv.vcd

 vcd dumpvars –m /uut

 vcd dumpon

 run 10000ns

 vcd dumpoff

 vcd dumpflush

 Now after adding switching activity information file, you will get an accurate power

consumption of your design.

Similarly, similar sequences of steps need to be performed for other modules of USB 3.0 system

architecture i-e Data handler switch, packet encoder decoder and so on.

33

CHAPTER 5

 EFFICIENT DESIGN OF NOVEL SYSTEM ARCHITECTURE OF USB 3.0

In this chapter, first we have described our efficient designed novel system architecture, its

control and data path flow and how it works. Secondly we have explained the clock gating power

optimization technique on our novel system architecture.

5.1 Proposed System Architecture

Microcode is simply a micro-instruction that executes different parts of a more complex

instruction. Microcode instructions translate machine instructions into sequences of detailed

circuit-level operations. It helps to separate the machine instructions from the underlying

electronics so that instructions can be designed and altered more freely. It also makes it feasible

to build complex multi-step instructions while still reducing the complexity of the electronic

circuitry compared to other methods. For communication standard protocols; we propose to

break complex data transactions for example bulk transfer transaction to simpler more generic

micro-coded instructions. These smaller instructions reduces the area deployment as there is no

need of separate memory or buffer to store memory data transaction parameters instead a

centralized data buffer is used. As area requirement has been reduced; so dynamic power

dissipation is also decreases. These micro-coded instructions contain the information related to

transfer type, transfer direction, endpoint number, size of payload and addresses (source and

destination). In our USB 3.0 micro-coded system architecture, there is an additional power

manager functional block that controls the root clock of all others functional blocks. Figure-3

shows high level system architecture of USB 3.0. The system architecture discussed in this paper

is comprised of the following components: Event Manager, Data Handler (DH), Packet Encoder

Decoder (PED), Data Buffer, Advance High Performance System Bus (AHB) and Link Layer

34

FIFO.

Figure 5.1: High level system architecture of USB 3.0

5.2 Event Manager

In our proposed architecture, Event manager functional block acts as a main controller. It is

responsible for generating instructions for other functional block of the architecture depending

upon the register configurations. Advanced high performance Bus (AMBA-AHB) is selected as

the inter-connect bus. AHB offers the bandwidth that is necessary for transferring data to or from

system memory of large capacity. In order to achieve high performance, AHB bus supports burst

transfers, split transactions, pipelined operations, and data widths of 64 or 128 bits. We are not

supporting the split transactions and other features. Instead we are supporting the customize

version of the AHB bus.CPU programs the registers of event manager through system bus using

slave interface. Event manager also informs the CPU; whenever the whole transaction is

executed successfully or if any error condition occurs in running transaction. Event manager

comprised of the following major sub-blocks as shown in figure 4. These are:

35

Figure 5.2: Micro Coded Instruction based USB 3.0 System Architecture

 Instruction FIFO's, (HDR & TRANS INSTR FIFO, ACK INSTR FIFO and DH INSTR

FIFO),

 Event Manager Registers,

 Scheduler (Device initialization or configuration FSM and

Transaction FSM)

 Power Manager

5.2.1 Instruction FIFO's

Three different types of micro coded instructions are designed based on their functionality.

Data Handler Instructions (DH): DH instructions are responsible to read or write context data

36

from system RAM. These instructions consist of information required for describing the

requested memory transactions.

Header Packet & Transaction Instruction (HDR & TRANS): HDR & TRANS instructions

contain header packet & transaction related information i-e device address, endpoint number,

payload size, transfer type, direction of transfer(host to device or device to host) and so on.

These instructions are used by packet encoder decoder functional block in USB 3.0 micro

architecture.

Acknowledgment Instructions (ACK): ACK instructions contain the status of the particular

transaction to handle acknowledgement and error cases.

Separate instruction FIFOs (DH instruction FIFO, ACK instruction FIFO and HDR & TRANS

instruction FIFO) are provided in the architecture to allow pipelining.

5.2.2 Event Manager Registers

In control & event registers of event manager, there are n+1 door bell registers. Where n is the

number of devices that micro-coded instruction based architecture supports. There are two

different types of doorbell registers; host controller doorbell registers and device context doorbell

registers. Host controller doorbell registers contains the information regarding the device

initialization & configuration; whereas device context doorbell registers contains the information

related to particular endpoint of the device. System software rings the particular doorbell register

by writing specific register values. Based upon these register values, event manager initiates

particular transaction. Also there are some status registers of event manager that informs the

system CPU about the status of device initialization & configurations. Each bit in this register

corresponds to an individual status of the device i-e device attach detach, device reset, device

enabled and device power management states (idle or suspended states).

37

5.2.3 Scheduler

Control & event registers of the Event Manager are configured by CPU via AHB bus through

AHB slave interface. A scheduler, based upon the contents of the door bell registers (host

controller or device context) and priority of the individual endpoints of the device, enables

device initialization and configuration FSM or transaction FSM.

Device initialization and configuration FSM has highest priority. This module is responsible for

initialization and configuration of the device. In USB 3.0 communication protocol; event

manager waits the device attach signal of any particular device from the link layer FIFO. This

signal is set by link layer upon detection of device to the USB port. System software rings host

controller doorbell register. Scheduler gives control to device initialization or configuration

FSM. First of all, this FSM reset & enabled the device by configuring status registers. This FSM

writes event transaction in system RAM that informs the system software that device has been

reset and also enabled. Event transaction informs system CPU about the status of the running

transaction. After that this module configures the device address through control transaction.

This module after complete initialization & configuration makes device in running state. Now

device is ready to perform any particular transaction. In case of any error, device state has been

changed from running to disable state and event manager removes its priority from the

scheduling list.

Whenever device context doorbell register rings, scheduler assigns priority to the individual

endpoint of device based upon periodic or aperiodic. Periodic endpoints have highest priority and

have been allocated 80 percent of the total available bandwidth and the remaining 20 percent

bandwidth is allocated to the aperiodic endpoints. Aperidic endpoints perform bulk or control

transaction; whereas periodic endpoints perform interrupt and isochronous transactions of USB

38

3.0 protocol.

When system software rings the device context doorbell registers variably; scheduler decides

which endpoint has highest priority and gives control to transaction module to serve the

particular endpoint of the device. At any time, there are multiple doorbell registers for multiple

devices or transfer rings that cannot be supported through the set of predefine registers. Our

micro coded architecture are automatically store the un-serviced doorbell registers into the

context buffer and services (load) them accordingly based on scheduler as required. A Context

Buffer in the event manager keeps updated configurations of the entire endpoints of the attached

USB 3.0 devices. Transaction module writes the micro-coded instructions in DH INSTR FIFO to

read context data from system RAM. These parameters contain the information regarding any

particular transaction (Bulk, Interrupt, isochronous or control) data length transferred to the

device, address of the data payload to be read from the system RAM and also direction of the

particular transaction (host to device or device to host). After extracting context parameters;

event manager will start particular transaction indicated by context parameters. If the direction of

transaction is OUT (host to device);then event manager writes data handler instructions in DH

INSTR FIFO to get data packet payload from system RAM to data buffer. Concurrently, it writes

HDR & TRANS instructions in HDR \& TRANS INSTR FIFO for PED. After receiving

acknowledgement in ACK INSTR FIFO; it writes DH instruction in DH INSTR FIFO for event

transaction. Event transaction informs system CPU about the status of the current transaction.

After that scheduler decides which transaction has highest priority and serve it accordingly.

5.3 Data Handler

Data handler acts like a switch that enables when event manager write DH instructions in DH

INSTR FIFO. Data handler is responsible to load or store data payload and transaction

39

descriptors from system RAM to the Data Buffer or vice versa. In our proposed architecture, data

structure is defined in memory that contains the context parameters of all the attached USB

devices. There are some generalized instructions (DH instructions) that perform data

transactions. Data handler have AHB master and slave interface that communicates with the

system CPU and is responsible to load or store data payload or transaction descriptors from

system RAM. Data Handler has a context FIFO. Context FIFO contains the configuration

information of the specific endpoint related with the current transaction. It also specifies the

memory location of the data payload in the system RAM that need to be transmitted or received.

Data handler has four different interfaces. These are:

Data Buffer to System RAM (DBUFF-RAM) Interface

 System RAM to Data Buffer (RAM-DBUFF) Interface

 Context Buffer to System RAM (CFIFO-RAM) Interface

 System RAM to Context Buffer (RAM-CFIFO) Interface

There are some specific bits in DH instruction that informs the data handler to enable any

particular interface.

5.3.1 RAM-CFIFO Interface

This interface is used to move context parameters from system RAM to the context FIFO. Event

manager informs data handler through DH instruction to enable this particular interface. These

parameters contain the information regarding particular transaction i-e transfer type (bulk,

interrupt, isochronous or control), transfer direction (read or write), data payload size, device

address, specific endpoint of the device and so on.

5.3.2 DBUFF-RAM Interface

DBUFF-RAM Interface moves data payload from data buffer to system RAM. Event manager

40

performs read transaction after decoding context parameters coming from system RAM. Event

manager writes DH instruction in DH INSTR FIFO to move data payload from data buffer to

system RAM through data handler.

5.3.3 RAM-DBUFF Interface

During write transaction initiated by event manager, data handler load data payload from system

RAM to data buffer through this interface. The size of data payload and transfer direction is

added in DH instruction. Data handler decodes DH instruction and performs data transaction.

5.3.4 CFIFO-RAM Interface

This interface informs the CPU about the status of the particular transaction (write, read or

device configuration & initialization) through event transaction. Event manager writes event data

in context FIFO of data handler and also DH instruction in DH INSTR FIFO to execute event

transaction.

5.4 Packet Encoder Decoder Block (PED)

Packet encoder decoder functional unit executing packet by packet transaction to or from the link

layer FIFO using some specialize designed instructions driven through event manager. Packet

encoder decoder reads HDR & TRANS instructions and decodes them to execute particular

transaction. Packet encoder decoder makes header packet and data packet. Data packet contains

both data packet header and data packet payload. Data packet payload is appended with the data

packet header that comes from the data buffer. Packet encoder decoder also adds sequence

number to each data packet. The header packet and data packet is send to the link layer FIFO. On

receiving the acknowledgment packets from link layer FIFO, Packet Encoding/Decoding Module

generates the ACK instruction. This instruction informs event manager the status of the current

transaction.

41

5.5 Data Buffer

Data buffer contains data packet payload of data packet header. During write transaction, data

payload comes in data buffer through data handler RAM-DBUFF Interface. Similarly, for read

transaction data payload from device comes through PED AHB slave interface. There are

separate memory locations in data buffer for write transactions data payload and read

transactions data payload.

5.6 Link Layer FIFO

Link layer FIFO provides an interface between link layer and protocol layer of USB 3.0 system

architecture. For write transactions, packet encoder decoder functional block writes header

packet and data packet in link layer FIFO. After that Link layer FIFO sends these packets to the

link layer. When link layer sends packets to the device; it responds with acknowledgements in

form of packets. Link layer writes these ACK packets in Link layer FIFO that is read by protocol

layer. Packet encoder decoder read these packets and generates ACK instructions for event

manager. ACK packets contain status of the transmitted packet. Similarly, for read transaction,

Link layer writes header packet and data packet in link layer FIFO and protocol layer

acknowledges the transmitted packets through link layer FIFO.

5.7 Power Management in System Architecture

Clock gating is a technique in which we can cut off the clock to a sequential circuit or a part of it,

while its functionality is not required. Consequently, there is lesser clock and other signals

switching activity in the system architecture and lesser power is consumed. Power manager

functional block performs root clock gating to each of functional block of the whole system

architecture. Before applying clock gating, there is need to evaluate efficient enabling logic with

slight area overhead and complexity. Based upon the registers configuration of the event

42

manager and data path logic of the whole system architecture; Power manager enables certain

functional blocks while shut-off other functional blocks because their processing are not

required. Power manager contains an FSM based design that can control all data path logic of

other functional blocks of the whole system architecture as shown in Figure-5 and Figure-6.

Figure 5.3: Clock Gating Pseudo-code I

43

Figure 5.4: Clock Gating Pseudo-code II

Based on the event manager register configurations and scheduling; event manager enables either

device initialization and transaction module. If the host controller doorbell register rings event

manager enables device initialization and configuration module. When device context doorbell

rings; transaction module is enabled. Now transaction module enables packet encoder decoder

(PED), HDR & TRANS INSTR FIFO, DH INSTR FIFO and data handler functional block.

When HDR & TRANS INSTR is needed to be written in HDR & TRANS INSTR FIFO;

transaction module enables clock of packet encoder decoder functional block. When PED done

signal is received from PED function module; transaction module disable the clock of packet

encoder decoder functional block. Similarly, when DH INSTR is required in DH INSTR FIFO

for memory data transaction; transaction module enables clock of the data handler module. When

44

DH done is received from data handler; transaction module disables the clock signal of data

handler functional module. Also, data handler enables the data buffer clock signal; when there is

a need to store or load data in data buffer. When the whole data transaction is executed

successfully, data handler disables the data buffer. Device initialization and configuration

module employ the similar logic of as utilize by transaction module to enable or disable all the

functional blocks of the system architecture.

5.8 Micro-Coded Instructions

5.8.1 Header Packet & Transaction Instruction (HDR TRANS INSTR)

HDR & TRANS instructions contain header packet & transaction related information i-e device

address, endpoint number, payload size, transfer type, direction of transfer (host to device or

device to host) and so on. These instructions are used by packet encoder decoder functional

block in USB 3.0 micro architecture.HDR TRANS INSTR format has been shown in table 1.

opcode_tx specifies the particular instruction associated with transfer type. routing_string

specifies the exact port where device has been attached. device_address specifies the actual

address of the particular device. ep_num indicates the particular interface on a device that is

either a source or sink of information. transfer_type defines the meticulous transaction type i-e

bulk, interrupt , isochronous or control. direction bits show that either to move data from host to

device or from device to host. Sequence number shows particular sequence number of the

device_address routing_string opcode_tx

sequence_number direction transfer_type ep_num

data_payload_address data_payload_size

Reserved max_packet_size

Table 1: HDR TRANS INSTR FORMAT

45

header packet. Data_payload_size shows the size of data payload that will be appended at the

end of the data packet header. Data_payload_address contains the address of the data buffer

from where we move data to the link layer FIFO. max_packet_size defines the max packet size

of the particular header packet.

5.8.2 Acknowledgment Instructions (ACK INSTR)

ACK instructions contain the status of the particular transaction to handle acknowledgement and

error cases. ACK INSTR format has the following fields shown in table 2;

Table 2: ACK INSTR FORMAT

opcode_rx specifies the particular instruction associated with transfer type. routing_string

specifies the exact port where device has been attached. device_address specifies the actual

address of the particular device. ep_num indicates the particular interface on a device that is

either a source or sink of information. transfer_type defines the meticulous transaction type i-e

bulk, interrupt , isochronous or control. direction bits show that either to move data from host to

device or from device to host. Status bits either the running transaction is completed successfully

or not. rx_data_payload_size shows the data payload size that has been acknowledge

successfully.

5.8.3 Data Handler Instructions (DH INSTR)

DH instructions are responsible to read or write context data from system RAM. These

instructions consist of information required for describing the requested memory transactions.

DH-INSTR format has the following fields shown in table-3;

device_address routing_string opcode_rx

status direction transfer_type ep_num

reserved rx_data_payload_size

reserved

46

Burst Size indicates the number of data words (32 bit in width) that is read from system RAM.

Transfer type indicates the particular transaction type. Direction bits indicate the particular

direction of data transfer. Destination address is the address where we place the data packet

payload or context parameters coming from system RAM. Similarly, source address contains the

address of system RAM from where we get data packet payload or context parameters.

Table 3: DH INSTR FORMAT

5.8.4 How the Micro-coded Instruction Works

In our proposed system architecture, micro-coded instructions move data payload between

system RAM and link layer FIFO or vice versa.

5.8.4.1 Bulk-OUT-1K Transaction

Following sequence of steps has to be performed for bulk OUT transaction to move 1K data

payload between system RAM and link layer FIFO.

Step1: Reading Context Parameters from System RAM

When the doorbell rings from system CPU, event manager writes DH instruction in DH-INSTR-

FIFO to read context parameters from system RAM. In this step, DH instruction parameters

contain burst size “00 or 01” depending upon the corresponding no of Dwords in context

parameters. In this step, transfer type field is don’t care because transfer type will be determine

after decoding these context parameters. direction field in this step will be “10” indicating

context parameters will be move from system RAM to the context FIFO as shown in table 4.

This instruction read context parameters from system RAM as indicated by source address

burst_size transfer_type direction

Destination Address

Source Address

Reserved

47

(32’h100) and place them context FIFO so the destination address in this instruction will be

don’t care. The detail sequence of this instruction is shown in table-5

Burst Size Transfer type Direction Destination
Address

Source Address

00: 4 Dwords
01: 8 Dwords
10: 16 Dwords
11: Unspecified

00: Control
01: Isochronous
10: Interrupt
11: Bulk

00: RAM- Data Buffer
01: Data Buffer- RAM
10: RAM-Context FIFO
11: Context FIFO- RAM

-

-

Table 4: DH INSTR PARAMETERS

Table 5: DH instruction for reading Context parameters

Step 2: Decode Context Parameters & Write DH-INSTR for data payload

When the context parameters come from system RAM, event manager will decode these context

parameters. These context parameters contain data payload size, particular transaction type and

direction of that particular transaction. If it is OUT transaction (i-e Bulk OUT), event manager

writes DH instructions in DH-INSTR-FIFO to move data packet payload from system RAM to

the data buffer. In these DH instructions, burst size is “10” i-e 16 Dwords and direction is “00”

indicating data payload will be move from system RAM to the data buffer as specified by the

source and destination addresses. Data handler places the data payload as specified by the

destination address.

Table 6: DH instruction for writing data payload in Data buffer

2’b00 Don’t care(00) 2’b10

Don’t Care

32’h0100

Reserved

2’b10 2’b11 2’b00

32’h1

32’h0200

Reserved

48

Step 3: Write HDR TRANS INSTR

Concurrently, event manager writes BULK-OUT transaction in HDR TRANS INSTR FIFO for

header packet. This instruction contains four Dwords (32 bits each). These Dwords contains the

information regarding particular transaction type, endpoint number, device address and size of

data payload that will be appended after the header packet as shown in table 1. The detail bit

sequence of HDR TRANS INSTR for Bulk-OUT-1K has shown in table-7

Step 4: Decode HDR TRANS INSTR and Transmit Data packet

PED decodes HDR TRANS instruction and produce data packet header of the data packet. PED

sends data packet header to the header part of the link layer FIFO. Similarly, PED will also move

data payload of data packet from data buffer to the payload part of the link layer FIFO through

AHB slave interface.

Step 5: PED waits ACK packets and generate ACK Instruction

Now PED waits an ACK packet that comes from the link layer. After receiving an ACK packet,

PED generates an ACK instruction that will be written in ACK instruction FIFO. ACK

instruction format is shown in table 2. ACK instruction contains the status of the particular

transaction i-e success or error etc. The detail bit sequence of ACK INSTR for BULK-OUT-1K

is shown in table-8

7’h1 20’h0 5’h5

5’h0 1’h0 2’h3 5’h2

16’h1 16’h400

Reserved 16’h400

Table 7: HDR TRANS INSTR for BULK-OUT-1K

49

Table 8: ACK INSTR for BULK-OUT-1K

Step 6: Event Manager writes event transaction

Now Event manager initiates an event transaction that informs the host (CPU) the status of the

current transaction. Event manager writes event transaction parameters in context FIFO. After

that event manager writes DH-INSTR in DH-INSTR-FIFO. In this instruction, burst size is “00”

and direction is “11”that informs the data handler that event transaction parameters contains four

Dwords (32 bit each) and data payload is to be written from context FIFO to the system RAM.

The table-9 shows detail bit sequence of this DH Instruction.

Table 9: DH INSTR for Event transaction
5.8.4.2 Bulk-IN-1K Transaction

Following sequence of steps has to be performed for bulk IN transaction to move 1K data

payload between system RAM and link layer FIFO.

Step1: Reading Context Parameters from System RAM

When the doorbell rings from system CPU, event manager writes DH instruction in DH-INSTR-

FIFO to read context parameters from system RAM. In this step, DH instruction parameters

contain burst size “00 or 01” depending upon the corresponding no of Dwords in context

parameters. In this step, transfer type field is don’t care because transfer type will be determine

7’h1 20’h0 5’h1

3’h0 1’h0 2’h3 5’h2

reserved 16’h400

reserved

2’b00 Don’t care(00) 2’b11

Context FIFO(32’h0)

32’h1

Reserved

50

after decoding these context parameters. direction field in this step will be “10” indicating

context parameters will be move from system RAM to the context FIFO as shown in table 4.

This instruction read context parameters from system RAM as indicated by source address

(32’h100) and place them context FIFO so the destination address in this instruction will be

don’t care. The detail sequence of this instruction is shown in table-5

Step 2: Decode Context Parameters & Write HDR TRANS INSTR for header Packet

When the context parameters come from system RAM, event manager will decode these context

parameters. These context parameters contain data payload size, particular transaction type and

direction of that particular transaction. If it is IN transaction (i-e Bulk IN), event manager writes

HDR TRANS INSTR for PED to make header packet and send to the link layer FIFO. The detail

bit sequence is shown in table -10

Step 3: Decode HDR TRANS INSTR and make Header Packet

PED decodes HDR TRANS Instruction and make header packet and send it to the link layer

FIFO.

Step 4: PED waits ACK packets and generate ACK Instruction

Now PED waits an ACK packet that comes from the link layer. After receiving an ACK packet,

PED generates an ACK instruction that will be written in ACK instruction FIFO. ACK

instruction format is shown in table-2. ACK instruction contains the status of the particular

transaction i-e success or error etc. the detail bit sequence of this specific instruction is shown in

7’h1 20’h0 5’h8

5’h0 1’h1 2’h3 5’h4

16’h1 16’h400

Reserved 16’h400

Table 10: HDR TRANS INSTR for BULK-IN-1K

51

table-11

Table 11: ACK INSTR for BULK-IN-1K

Step 5: Event manager writes DH-INSTR for data payload:

When the ACK instruction comes from system RAM, event manager will decode instruction

parameters. Event manager checks the status of the transaction and payload size that has been

written in data buffer. Event manager writes DH-INSTR in DH instruction FIFO. In these DH

instructions, burst size is “10” i-e 16 Dwords and direction is “01” indicating data payload will

be move from data buffer to the system RAM as specified by the source and destination

addresses. The detail bit sequence of this particular instruction is shown in table-12

Table 12: DH-INSTR for BULK-IN-1K
Step 6: Event Manager writes event transaction

Now Event manager initiates an event transaction that informs the host (CPU) the status of the

current transaction. Event manager writes event transaction parameters in context FIFO. After

that event manager writes DH-INSTR in DH-INSTR-FIFO. In this instruction, burst size is “00”

and direction is “11”that informs the data handler that event transaction parameters contains four

Dwords (32 bit each) and data payload is to be written from context FIFO to the system RAM as

shown in table-4. The detail bit sequence of event transaction DH instruction is shown in table-9.

7’h1 20’h0 5’h2

3’h0 1’h0 2’h3 5’h4

reserved 16’h400

reserved

2’b10 2’b11 2’b01

32’h10

32’h0220

Reserved

52

CHAPTER 6

DISCUSSION & RESULTS

This chapter has described the performance parameters of the designed system architecture and

has explained how it performed better in terms of area deployment, power consumption,

interrupt handling, complexity, flexibility and throughput. Secondly, we have estimated some

performance parameters of the designed system architecture like area deployment, toggle factor

(switching activity), and dynamic power consumption with and without root clock gating on

ASIC technology (UMC 90nm) as well as on FPGA Xilinx Virtex-5.

6.1 Discussion on Performance Parameters

In our novel system architecture, all the configuration and data transactions has been executed by

using multiple small micro-coded instructions that removes the requirement of extra buffer or

RAM to save the transactions parameters. These small micro-coded instructions include

pipelining in the whole architecture that improves the overall efficiency of system architecture.

These micro-coded instructions require multiple clock cycles to perform particular transaction

but to limit the clock speed we increase the data bus width. Also in this whole architecture, DMA

implicit functionality such as scatter and gather, descriptor fetches are implicitly done using the

memory data structure and through the micro-coded instructions where the instructions are

executed automatically based on fetches from memory and their decoding. These tasks have been

accomplished by using event manager and data handler. Also there is no need of separate DMA

registers for memory data transactions parameters. Therefore the area has been deployed

efficiently in the whole architecture. Since area deployment has been reduced so the overall

power consumption of the whole architecture has been reduced.

Interrupt based approach has been mitigated that reduces the clock speed requirement in the

53

whole architecture. Generally interrupts halt the execution of the running transaction and

perform particular task indicated by the specific interrupt. Also to store the contents and state of

the running transaction there is a need of some local memory. To handle interrupts, there is a

particular event transaction that has been introduced. This transaction writes the status of the

current transaction in memory. System CPU reads the status of all transaction from system RAM

through polling.

The system architecture that has been designed is fully pipelined. There are different FIFO's that

are initiated in the whole system architecture that is working alone. Also the transmission and

reception data path will perform transactions concurrently and independently. If there is some

congestion or overflow occurs in any side of the data path either transmission or reception; the

other side executes transactions separately. Since the operating frequency of USB 3.0 protocol

designed architecture is 250 MHz. The data bus of whole system architecture is 32 bit wide. To

move data from system RAM to the device, AHB system bus has been used. If CPU grants AHB

system bus 60% of the time; then theoretical data rate or expected throughput of one

transmission path is 4800 Mbits/sec (250 * 0.6*32); and for two way traffic it will be much

greater than required data rate 4000Mbits/sec (4Gbps). But due to some other overheads of

erroneous transaction and non-availability of AHB system bus expected data rate will decrease

but it will still meet the data rate requirement of USB 3.0 protocol. We are working on the

assessment of actual throughput or data rate that our designed novel system architecture will

meet.

This architecture provides flexibility, robustness and centrality to the architecture because it has

been realize that usage of these micro coded instructions will be a step towards universal serial

bus controller (USC). We believe that we can come with one universal serial controller for all

54

buses such as PCI express and high performance buses due to their similarity with USB; and also

through approach of defining instructions in the memory using the data structures that will be

utilize the micro coded instructions

6.2 Performance Parameters Evaluation on ASIC Technology (UMC 90nm)

Performance of designed USB 3.0 system architecture depends upon the number of gate counts,

toggle factor and the power consumption of the whole architecture. To compute power

consumption, we use UMC 90nm ASIC technology library (FSDOA_A Core Cell).. An

implementation of the described architecture was included on Modelsim SE 6.5 of Mentor

Graphics Tools and on Cadence Encounter RTL Compiler.

We have evaluated number of gate counts of different modules of the proposed architecture and

its estimated power consumption. The toggle factor calculated from code coverage details of

Modelsim SE 6.5. The table-1 shows that on average toggle factor of the whole novel

architecture is 52.7 percent. When we apply root clock gating on our novel architecture, toggle

factor minimizes from 52.7% to 44.6%. Similarly, no of gate counts of different modules of USB

3.0 have evaluated. In table-1, results show that by applying clock gating through power

manager 3,548 gates are added. Also the dynamic power consumption by introducing root clock

gating decreases from 102.78 to 90.25. Our results in table-1 and figure -1 shows that by

applying root clock gating, power consumption reduces up to 12% with approximately 2%

increase in number of gate counts.

55

Table 13: Performance Parameters of USB 3.0 Modules

Figure 6.1: Power Dissipation in USB 3.0 System Architecture on ASIC

56

6.3 Performance Parameters Evaluation on FPGA (Xilinx Virtex-5)

To evaluate the performance parameters (dynamic power and area utilization) of USB 3.0

modules; Xilinx Virtex-5 FPGA has been used. It has divided the FPGA chip internally into

clock zones for clock distribution. Clock is controlled through Global Clock Buffers (there are

32 global clock buffers in virtex-5 FPGA).

We have tested three main modules of event manager on FPGA namely; event manager

(USB3_EM), data handler (USB3_DH) and control unit of packet encoder decoder

(USB3_PED_CU). We have run different test cases of USB 3.0 transactions i-e BULK_1K,

INTERRUPT_1K, BULK_4K and INTERRUPT_4K with and without clock gating. BULK_1K

and INTERRUPT_1K test case indicate that we have sent 1024 bytes data payload to the device

and device sends an acknowledgement of the transaction after receiving the whole data payload.

Similarly, BULK_4K test case indicates that we have sent 4096 bytes data payload to the device

without waiting an acknowledgement from the device. At the other end device has sent an

acknowledgement after receiving 1024 bytes data payload successfully. For 4096 bytes payload

it has send four acknowledgments. In INTERRUPT_4K, there is slight change of data flow. In

this test case, 1024 bytes data payload has sent from host (system side) to the device, and after

receiving an acknowledgment from the device will sent next 1024 bytes data payload and so on.

We have run these test cases for USB 3.0 modules and have estimated results in terms dynamic

power dissipation and area deployment.

57

USB 3.0 Modules Without Clock Gating

Modules Dynamic Power(mW) Number of
Occupied Slices

No of Clock
Buffer

USB3_EM Bulk_1K 41.04 866 Slices 1 BUFG

Bulk_4K 43.57 866 Slices 1 BUFG

Intrp_1K 41.04 866 Slices 1 BUFG

Intrp_4K 44.72 866 Slices 1 BUFG

USB3_DH Bulk_1K 82.25 542 Slices 1 BUFG

Bulk_4K 86.81 542 Slices 1 BUFG

Intrp_1K 82.25 542 Slices 1 BUFG

Intrp_4K 85.78 542 Slices 1 BUFG

USB3_PED_CU Bulk_1K 18.56 141 Slices 3 BUFG

Bulk_4K 20.28 141 Slices 3 BUFG

Intrp_1K 18.56 141 Slices 3 BUFG

Intrp_4K 21.84 141 Slices 3 BUFG

Table 14: Performance Parameters without Clock Gating on FPGA

USB 3.0 Modules With Clock Gating

Modules Dynamic Power(mW) Number of
Occupied Slices

No of Clock
Buffer

USB3_EM Bulk_1K 34.68 894 Slices 1 BUFG

5 BUFGCTRLs

Bulk_4K 36.91 894 Slices 1 BUFG

5 BUFGCTRLs

Intrp_1K 34.68 894 Slices 1 BUFG

5 BUFGCTRLs

Intrp_4K 37.21 894 Slices 1 BUFG

5 BUFGCTRLs

USB3_DH Bulk_1K 68.88 543 Slices 1 BUFG

3 BUFGCTRLs

58

Bulk_4K 72.12 543 Slices 1 BUFG

3 BUFGCTRLs

Intrp_1K 68.88 543 Slices 1 BUFG

3 BUFGCTRLs

Intrp_4K 71.45 543 Slices 1 BUFG

3 BUFGCTRLs

USB3_PED_CU Bulk_1K 16.31 2.62485 3 BUFG

8 BUFGCTRLs

Bulk_4K 17.36 2.6259 3 BUFG

8 BUFGCTRLs

Intrp_1K 16.31 2.62485 3 BUFG

8 BUFGCTRLs

Intrp_4K 18.87 2.62642 3 BUFG

8 BUFGCTRLs

Table 15: Performance Parameter with Clock Gating on FPGA

Modules % Improvement in dynamic

power
USB3_EM Bulk_1K 15.5%

Bulk_4K 15.28%

Intrp_1K 15.5%

Intrp_4K 16.79%

USB3_DH Bulk_1K 16.25%

Bulk_4K 16.92%

Intrp_1K 16.25%

Intrp_4K 16.63%

USB3_PED_CU Bulk_1K 12.12%

Bulk_4K 14.4%

Intrp_1K 12.12%

Intrp_4K 13.6%

Table 16: Percentage Improvement in dynamic Power Dissipation on FPGA

59

In table 3 and table 4, it has been shown that for different test cases of USB 3.0 protocol;

dynamic power consumption has been reduced significantly with slight increase in area

deployment. Table-4 shows that approximately on average 15% dynamic power has been reduce

with just 3% increase in area overhead. Similarly, the number of clock buffer increases

depending upon the clock regions that has been enabled during particular test cases with and

without clock gating.

0

10

20

30

40

50

60

70

80

90

100

USB3_EM USB3_DH USB3_PED_CU

Dy
na

m
ic

 P
ow

er
Co

ns
u,

pt
io

n
(m

W
)

USB 3.0 Modules

BULK_1K_WOC

BULK_1K_WC

BULK_4K_WOC

BULK_4K_WC

INTERRUPT_1K_WOC

INTERRUPT_1K_WC

INTERRUPT_4K_WOC

INTERRUPT_4K_WC

Figure 6.2: Graphical Description of Dynamic Power Dissipation on FPGA

60

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

We have proposed a novel power efficient, area efficient interrupt free system architecture of

USB 3.0 protocol. We have implemented and explained how to achieve better throughput by

breaking a bigger task into smaller instructions. Also we have discussed different performance

parameters of the system architecture like area, power, complexity, flexibility and throughput.

Firstly, we employed different modules of our designed architecture and got results in terms of

number of gate count, toggle factor and power consumption on ASIC technology (UMC 90nm)

with and without root clock gating. Secondly, we have evaluated results using Virtex-5 FPGA

with and without clock gating. Experiments show that on average power consumption has been

reduced up to 12% with a slight increase in area of approximately 2% in ASIC technology,

Similarly, dynamic power consumption has reduced 15% with an area deployment decreases up

to 3% in Xilinx Virtex-5 FPGA. The efficient design of micro-coded instruction based

architecture results into simpler hardware with better performance due to less CPU interrupts.

Furthermore, the generic nature of micro-coded instructions adds flexibility to adapt the design

for some other high speed standards like PCI Express and Intel light peak.

7.2 Future Work

The future work in this area could be to extend this system architecture to other high speed

express standards like PCI express and Intel light peak. Also in USB 3.0 context system

architecture, we could apply root clock gating to the link layer modules and further optimize the

power consumption. Also, we are working on other performance parameters of the designed

system architecture like effective throughput.

61

REFERENCES

[1] "Universal Serial Bus (USB) 3.0 Specifications", Hewlett Package Company, Intel

Corporation, Microsoft Corporation, NEC Corporation, ST-NXP Wireless and Texas

Instruments, version 1.0,November 2008

 [2] A.F. Harvey, "DMA Fundamentals on Various PC Platforms" National Instruments

Corporation, 1994

 [3] Comisky, D, Agarwala, S, Fuoco, C," A scalable high-performance DMA architecture for

DSP applications" International Conference on Computer Design (2000)

[4] Peng Yu, Li Bo, Liu datong,Peng Xiyuan “ A high Speed DMA Transaction Method for PCI

Express Devices" IEEE International Conference of Circuits and system on testing Diagnosis

(ICTD 2009)

[5] Dan Tang, Yungang Bao, Weiwu Hu, Mingyu Chen” DMA Cache: Using On-Chip Storage

to Architecturally Separate I/O Data from CPU Data for Improving I/O Performance” IEEE High

performance Computer Architecture (HPCA-10)

[6] Lucas Kreger-Stickles, Mark Oskin,” Microcoded Architectures for Ion-Trap Quantum

Computers” International Symposium on Computer Architecture (ISCA 2008)

[7] "AMBA Specifications", ARM limited, version 2.0, August 1999

[8] Qiang Wang, Subodh Gupta, Jason Anderson“Clock Power Reduction for Virtex-5 FPGAs”

ACM FPGA 2009

[9] www.xilinx.com/xilinx vertix-5 FPGA data sheet

[10] Qi Wang & Sumit Roy," Power Minimization by Root Clock Gating" IEEE proceedings of

the ASP\-DAC 2003

[11] Qi Wang, Sumit Roy, “RTL Power Optimization with Gate-level Accuracy". International

62

Conference on Computer Aided Design (ICCAD'03)

[12] Gareth Morris,” AMBA based DMA controller specification” version 1.0,March 2001

[13]www.faraday.com.tw/AIP/doc/90nm/SP/FSD0A_A_GENERIC_CORE_ProdBrief_v1.0.pd

[14] Modelsim SE 6.5 user Manual

[15] Juanjuan Chen, Xing Wei, Yunjian Jiang, Qiang Zhou(2009)” Improve Clock Gating

through Power-Optimal Enable Function Selection” ACM Design Automation Conference

[16] Pietro Babighian , Luca benini, and Enrico Macii (2005) “A Scalable Algorithm for RTL

Insertion of Gated Clocks Based on ODCs Computation” IEEE Transaction on Computer Aided

Design of Integrated circuits and Systems Vol. 24 No. 1

[17] Chia-Ming Chang, Shih_Hsu Huang, Yuan-Kai Ho,Jia-Zong lin, Hsin-Po Wang,Yu -Sheng

Lu (2008).”Type –Matching Clock Tree for Zero Skew Clock Gating” ACM Design Automation

Conference

[18] Anand Raghunathan, Sujit Dey and niraj K. Jha (1999). “RTL power optimization with

emphasis on glitch analysis and reduction” IEEE Transactions on Computer Aided Design of

Integrated circuits and Systems Vol. 18, No. 8

