

i

FPGA BASED HARDWARE FIREWALL

 By

Zaheer Ahmed Gauhar, Muaaz Bin Zahid, Jawad Riaz, M. Talha Tariq

Submitted to the Faculty of Department of Electrical Engineering,

Military College of Signals, National University of Science and Technology, Islamabad

in partial fulfillment for the requirement of a B.E Degree in

Telecom Engineering

JUNE 2016

ii

CERTIFICATE

This is to certify that this project report entitled “FPGA based Hardware Firewall” by

Zaheer Ahmed Gauhar, Muaz Bin Zahid, Jawad Riaz, M. Talha Tariq, submitted in

partial fulfillment of the requirement for the degree of BE (Electrical Telecom) in Military

College of Signals (NUST) during the academic year 2015-16, is a bona fide record of

work carried out under my guidance and supervision.

Name (Supervisor): Asst. Prof. Mian Muhammad Waseem Iqbal

Signature:

Date:

iii

ABSTRACT

The basic aim of the project is to design and implement a Hardware Firewall which would

enable user to secure a communication Network. The hardware firewall will use packet

filtering technique to examine the header of a packet to determine its source and

destination. This information will be compared to a set of predefined or user-created rules

that will determine whether the packet is to be forwarded or dropped. Packet-filtering

firewalls provide a reasonable amount of protection for a network with minimum

complications. Packet-filtering rules can be extremely intuitive and thus easy to set up.

iv

Copyright Notice:

Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given by

the author and lodged in the Library of Military College of Signals(MCS), NUST. Details

may be obtained by the Librarian. This page must form part of any such copies made.

Further copies (by any process) of copies made in accordance with such instructions may

not be made without the permission (in writing) of the author.

The ownership of any intellectual property rights which may be described in this thesis is

vested in Military College of Signals(MCS), NUST, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the Military College of Signals(MCS), NUST, which will prescribe the

terms and conditions of any such agreement. Further information on the conditions under

which disclosures and exploitation may take place is available from the Library of

Military College of Signals (MCS), NUST, Rawalpindi.

v

DEDICATION

This dissertation is gratefully dedicated to our parents and teachers. We could not have

completed our study without their love, encouragement, prayers and guidance.

vi

ACKNOWLEDGEMENTS

This project would not have been accomplished without Allah Almighty‟s will. We

humbly thank Him for His blessings and giving us the wisdom, knowledge and

understanding, without which we would not have been able to complete this thesis

research work.

Due extension of gratitude to our project supervisor, Asst. Prof. Mian M. Waseem Iqbal,

without his support and encouragement; it would not have been possible to complete this

project.

We also thank our colleagues for helping us in developing the project and appreciate the

people who have willingly helped us with their abilities.

Last but not the least; we are very thankful to our parents, who bore with us in times of

difficulty and helped us overcoming obstacles. Without their consistent support and

encouragement, we could not have accomplished our targets successfully.

vii

TABLE OF CONTENTS

1. Introduction... 1

 1.1Overview:... 1

 1.2 Problem Statement:... 1

 1.3 Approach:.. 2

 1.4 Objective:...3

2. Background Scope: .. 4

 2.1 Existing Literature: .. 4

 2.1.1 Types of Firewall..5

 2.2 Problem Formulation: ...7

3. Design.. 8

 3.1 Technical Specifications ...8

 3.2 Verilog Modules: ... 9

 3.3 Control Module:... 10

 3.4 Design Requirements:.. 11

 3.5 Design Specifications: ... 11

 3.6 Detailed design with justification... 12

 3.6.1 FPGA to Router Interface.. 12

 3.6.2 1G Ethernet MAC Interface... 13

 3.7 Memory Module ...14

 3.8 Resource Utilization: ... 18

 3.9 Frame Structure ... 19

 3.10 Packets in Wireshark and Packet Builder .. 20

4.Simulation.. 21

 4.1 Test Bench: ... 21

 4.2 Firewall Module:... 21

 4.2.1 Firewall Design Flow... 22

5. Implementation ... 23

 5.1 Physical Interface: ..23

 5.2 Embedded Ethernet MAC Wrapper: ..23

 5.3 Ethernet MAC Core: ..24

 5.3.1 Core Overview:..24

6. Results .. 26

 6.1 Simulation Results: ..26

 6.2 Implementation Results: ..28

7. Bibliography: ... 33

 7.1 List of similar projects done at MCS: ..33

 7.2 List of similar projects elsewhere: ...33

 7.3 Online help: ...34

8. Project research work: ..35

viii

LIST OF TABLES

Table 1. Resources Utilized ... 18

ix

LIST OF FIGURES:

Figure 1. Hardware firewall implementation……………………………………………2

Figure 2. Basic Firewall Functioning…………….……………………………………...5

Figure 3. Packet Filtering Firewall ……………………………………………...............6

Figure 4. Circuit Level Gateway ………………………………………………………..6

Figure 5. Application Level Gateway …………………………………………………..7

Figure 6. Virtex 5 FPGA Development Board ………………………………………….8

Figure 7. Requirements for the Design……….…….…………………………..………11

Figure 8. Block Diagram of the firewall…………………………….……………….....12

Figure 9. FPGA to Router Interface……………………………….……………............12

Figure 10 Memory Module Simulation (Match Found)………………………………...16

Figure 11 Memory Module Simulation (Match Not Found)……………………………17

Figure 12 Memory Module Simulation (Match Found)………………………………...17

Figure 13 Ethernet Frame Structure……………………………………………………..19

Figure 14 IP Packet Header…………………………………………………………......19

Figure 15 Captured packet in Wireshark………………………………………………..20

Figure 16 TCP packet in Packet B………………………………………………………20

Figure 17. Firewall Design Flow……………………………….…………22

Figure 18. Core Overview……………………………….…………….....24

Figure 19. Input Data…………………………….……………........26

Figure 20. Input Data-Deny……………………………….…………….....26

Figure 21. Input Data-2……………………………….…………….....27

Figure 22. Input Data-Allow…………………………….…………….........27

Figure 23. Ping Request to Allowed IP Address.…………………….…………….........28

Figure 24. Request and Response in Wireshark...…………………….……………........28

Figure 25. Denied IP Address...................……………………………….……………....29

Figure 26. Denied Source Address........……………………………….…………….......29

Figure 27. No Packet in Wireshark ……………………………………………………...30

x

KEY TO SYMBOL OR ABBREVIATION:

 FPGA Field Programmable Gate Array

 MAC Media Access Control

 IP Internet Protocol

 TEMAC Tri Ethernet Media Access Control

 MII Media Independent Interface

 GMII Giga bit Media Independent Interface

1

CHAPTER 1:

INTRODUCTION:

1.1 Overview:

A Hardware firewall is basically a protective barrier. A standalone hardware firewall

implementation on FPGA kit ensures secure communication. It will be inserted in

between any network system and the internet and a controlled link will be established

with a single checkpoint where security will be imposed. Security is ensured by checking

IP packets entering the user network. The hardware firewall will be packet filtering to

examine the header of a packet to determine its source and destination. This information

will be compared to a set of predefined or user-created rules that will determine whether

the packet is to be forwarded or dropped.

1.2 Problem Statement:

Internet connectivity is a necessity in modern age. Increased use of internet calls for

extreme security measures. One of them is firewall. Firewall can either be hardware or

software.

Software solutions are not that effective due to following reasons: o Slow due to

sequential execution of algorithms.

o They can be hacked easily by an attack on the computer it is running

within. To make them fool-proof, a lot of time and investment is needed.

o Cannot be customized according to the customer‟s and/or organization‟s

needs.

On the contrary, hardware firewall has many advantages which include:

1. Fast processing and filtering due to dedicated resources (Parallel

Processing)

2. Customizability

3. Single central solution

4. Easier to maintain and ideal for large organizations

2

1.3 Approach:

Any network system can be secured effectively using hardware means and the

implementation of hardware firewall on a FPGA (Field Programmable Gate Array) board

using Verilog language is one of them. By using FPGA boards, we can reconfigure digital

integrated circuit for a hardware system to filter the IP packets and thus ensuring a secure

incoming of data inside any network. FPGA boards are used as they have real-time

applications with massively high parallel data processing. With FPGA, systems can be

developed that are exactly customized for the designated task. It is relatively resistant to

any cyber-attack as the whole device is hardware based. We aim to produce the hardware

solution for any specific number of users belonging to a specific network.

The following figure sums up the whole process for filtering the data:

Figure 1. Hardware Firewall Implementation

Users of the network will be connected through Ethernet port on FPGA board. All the

ports will be configured through Xilinx Software. The network firewall will compare the

incoming IP packets (Ethernet and IP headers) to those in the list. If the IP packet is in the

allowable list, the packet is processed ahead, otherwise discarded.

The Ethernet ports of the FPGA board will be designed and configured using Xilinx

Software. In FPGA board we will define policies for every user based on its IP fields.

3

1.4 Objective:

The basic aim of the project is to

1. Design and implement a Hardware Firewall which would enable to secure

a communication Network.

2. The project will be able to expose “hostile” elements and will be able to

withstand these Intruder attacks.

3. The hardware firewall will be packet filtering to examine the header of a

packet to determine its source and destination IP address and ports.

4. The hardware built will be strong enough to support a large number of

users over a network.

5. Hardware firewall would be performing the following functions:

- Packet Filtering

- Centralized firewall solution

The main block will be built using Verilog Hardware Description Language (HDL) to

speed up the packet processing. A processor based embedded system with real-time

operating system will be designed to achieve highly customized and on-the-fly

configuration change in the firewall.

4

CHAPTER 2:

BACKGROUND SCOPE:

2.1 Existing Literature:

A computer firewall protects networked computers from intentional hostile intrusion that

could compromise confidentiality or result in data corruption or denial of service. It may

be a hardware device or a software program running on a secure host computer. In either

case, it must have at least two network interfaces, one for the network it is intended to

protect, and one for the network it is exposed to. A network firewall sits at the junction

point or gateway between the two networks, usually a private network and a public

network such as the Internet. The earliest computer firewalls were simple routers.

There are two access denial methodologies used by computer firewalls. A firewall may

allow all traffic through unless it meets certain criteria, or it may deny all traffic unless it

meets certain criteria. The type of criteria used to determine whether traffic should be

allowed through varies from one type of firewall to another. Computer Firewalls may be

concerned with the type of traffic, or with source or destination addresses and ports.

5

Figure 2. Basic Firewall Functioning

2.1.1 Types of Firewall:

Firewalls fall into four broad categories: Packet Filters, Circuit Level Gateways,

Application Level Gateways and Stateful Multilayer Inspection Firewalls.

Packet filtering firewalls work at the network layer of the OSI model, or the IP layer of

TCP/IP. They are usually part of a router. A router is a device that receives packets from

one network and forwards them to another network. In a packet filtering firewall each

packet is compared to a set of criteria before it is forwarded. Depending on the packet and

the criteria, the firewall can drop the packet, forward it or send a message to the

originator. Rules can include source and destination IP address, source and destination

port number and protocol used. The advantage of packet filtering firewalls is their low

cost and low impact on network performance. Most routers support packet filtering. Even

if other firewalls are used, implementing packet filtering at the router level affords an

initial degree of security at a low network layer. This type of firewall only works at the

network layer, however, and does not support sophisticated rule based models. Network

6

Address Translation (NAT) routers offer the advantages of packet filtering firewalls but

can also hide the IP addresses of computers behind the firewall, and offer a level of

circuit-based filtering.

Figure 3. Packet Filtering Firewall

Figure 4. Circuit Level Gateway

7

Figure 5. Application Level Gateway

2.2 Problem Formulation:

Some work has already been done for the hardware firewall‟s FPGA implementation.

Almost all of them make use of FPGAs‟ flexibility and architecture to design systems

with increased speed and optimized silicon area usage. We will be using Xilinx Virtex-6

Development to design the modules as it has 100MHz fixed oscillator and up to 400MHz

programmable clock generator. Furthermore, it has GTP transceiver, which can provide

complete 1000 Base-X implementation on-chip. It is out aim to make a device that fully

exploits the flexibility and architecture of FPGA to provide a faster and efficient solution

to secure any network from any malware.

8

CHAPTER 3:

DESIGN:

3.1 Technical Specifications:

We would be using Xilinx Virtex-5 XC5VLX110T Development kit for our project.

Figure 6. Virtex 5 FPGA Development Board

The hardware specifications of the board are:

 Device operation at less than 30W – 5V DC

 voltage-controlled oscillator (VCO) with a frequency from 600 MHz up to

1600 MHz

9

 10/100/1000 Ethernet PHY.

 Each Virtex-6 FPGA slice contains four LUTs and eight flip-flops, only

some slices can use their LUTs as distributed RAM or SRLs.

 GPIO includes 8 LEDs, 2 buttons, 2-axis navigation switch, 8 slide

switches and a 16x2 LCD

Virtex-6 devices contain up to eight embedded Ethernet MACs, two per Ethernet MAC

block. The blocks have the following characteristics:

 Designed to the IEEE 802.3-2002 specification

 RGMII/GMII Interface with SelectIO or SGMII interface when used with

RocketIO transceivers

 Half or full duplex

 Supports Jumbo frames

1000 Base-X PCS/PMA: When used with RocketIO

3.2 Verilog Modules:

In Verilog, circuit components are designed inside a module. Modules can contain both

structural and behavioral statements. Structural statements represent circuit components

like logic gates, counters, and microprocessors. Behavioral level statements are

programming statements that have no direct mapping to circuit components like loops, if-

then statements, and stimulus vectors which are used to exercise a circuit. The module is

the basic unit of hierarchy in Verilog. Modules describe:

• Boundaries (module, endmodule)

• Inputs and outputs (ports)

• Working behavior (behavioral or RTL code)

•

describe a hierarchical design (a module of modules)

10

3.3 Control Module:

The type of coding which we are using in Verilog Programming is Behavioral coding with

device XC6VLX240T having package FF1156, because behavioral Verilog code

generally looks more like a sequential computer program running from top to bottom with

an initial begin block. There are no input/output ports defined in top level behavioral

modules since the output be to simulator facilities like the console display() etc. While

the other type of coding is RTL (Register Transfer Level), in which code is defined in

terms of registers and combinational logics that sits between them and intended to be used

as input to a synthesis tool. Moreover it is a low level language having no explicit delays.

• SUB MODULE:

Sub module is a module used inside another module. When a module is used inside

another module, it is not called but instantiated.

• TEST BENCH:

A test bench supplies the signals and dumps the outputs to simulate a Verilog design or

modules. It invokes the design under test, generates the simulation input vectors, and

implements the system tasks to view/format the results of the simulation. It is never

synthesized so it can use all Verilog commands.

• TOP MODULE:

Top module is the first block of the Verilog program that will be executed at once, when

the program is executed. It will pass all the input data from Test Bench to the Write

Module. It also contains the instantiations of Write and Read modules and all the FIFOs.

It outputs the data read from FIFOs.

module top (clk, rst, sof, rx_data, eof, dout);

• WRITE MODULE:

When we start the process of packet filtering through code on Xilinx, the input packets are

first processed by Write Module which extracts destination MAC address, Source MAC

address, Source IP address, Destination IP address, Source Port number and Destination

Port number and writes them to their respective FIFOs. It maintains a counter to keep

track of the start of each address. Start of frame (SOF) and End of Frame (EOF) are used

to mark the start and end of the input frame respectively.

module SM_WR(clk, rst,sof,rx_data,

eof,we_dest_mac,we_src_mac,we_type, we_payload, we_eof) ;

11

• READ MODULE:

Once the filtering parameters have been written to the FIFOs, they are read by the Read

Module. It then outputs the information for display on the simulation screen. The output

of this module will be used to compare the filtering parameters to the pre stored rules of

firewall in order to take decisions for the forwarding or dropping of packet.

module SM_Rd(

clk,rst,eof_out,empty,rd_dest_mac,rd_src_mac,rd_type,rd_payl

oad,rd_eof) ;

 3.4 Design Requirements:

Figure 7. Requirements for the Design

3.5 Design Specifications:

We will design the Hardware Using Verilog HDL

 1G MAC Control System will be incorporated in our system

 We will create a computer network and secure all the users within the

network using single hardware firewall

 Throughput performance will be near line speed as we will be

designing 1G MAC Control

HARDWARE
INTERFACES

FPGA to PC
Interface

FPGA to
Ethernet
Interface

SOFTWARES
Required

Xilinx ISE
DESIGN SUITE

VIVALDO &
XILINX

PLANAHEAD

WIRESHARK

VERILOG HDL
CODING

Interface
Module

Control
Module

Top level
Module with
all interfaces

12

 IP and Mac Address Filtering would be done based on user

requirement and protocols being used

 Whole design will be in accordance to IEEE 802.3 Protocol

3.6 Detailed design with justification:

Figure 8. Block Diagram of the Firewall

The whole design has been divided into 2 parts:

3.6.1 FPGA to Router Interface:

A wired Ethernet connection will be established through a CAT-5 cable between the RJ-

45 connector of the FPGA and the RJ-45 connector of the router or the switch available.

Figure 9. FPGA to Router Interface

13

3.6.2 1G Ethernet MAC Interface:

Enable Ethernet PHY of FPGA to transmit & receive data to and from the external

Internet cloud. The steps involved are:

 Design of an Ethernet Core in Verilog HDL using the Xilinx Core generator and

Xilinx Platform Studio.

 Modify the core using Xilinx Platform Studio according to the needs

 Import the core as a Xilinx project in Xilinx Project Navigator and generate .bit

file

 Program the bit file on the FPGA using iMPAC software to enable the Ethernet

MAC to send and receive the IP traffic in tri mode (10/100/1000Mbps)

 1. Control Panel:

This panel basically decides whether a packet is to be forwarded to the network or

discarded based on the IP and MAC addresses stored in the RAM by the network

administrator. This panel thus controls the flow of information into the network. This

panel will contain the following modules

a) IP filter

b) MAC Filter

 2. Interface panel:

Responsible for the transfer and reception of signals to and from the physical interface.

Interfacing Panel is being designed first after which Control panel will be designed.

Below mentioned are the various Modules for the Interfacing Panel of Hardware Firewall.

14

3.7 Memory Module

In Xilinx FPGAs, a Block RAM is a dedicated two-port memory containing several

kilobits of RAM. The FPGA contains several of these blocks.

Inside of each small logic block is a configurable lookup table. It is normally used for

logic functions, but you can reconfigure it as a few bits of RAM. You can combine

several of them into a larger RAM. This is distributed RAM. Both types of RAM can be

initialized with data, or used as ROM.

Distributed RAMs are implemented within Look up Tables (LUTs.) Each Configurable

Logic Block (CLB) inside a Xilinx FPGA contains two slices and each slice contains 2

LUTs and LUTs are made of Static RAM (SRAM), which can accommodate 16 bits. So,

for small memory distributed RAMs are used while for large memory Block RAM is

used.

3.7.1 Block RAM Generator Core:

The Block Memory Generator core uses embedded Block Memory primitives in Xilinx

FPGAs to extend the functionality and capability of a single primitive to memories of

arbitrary widths and depths. Sophisticated algorithms within the Block Memory Generator

core produce optimized solutions to provide convenient access to memories for a wide

range of configurations.

3.7.2 Memory Initialization:

The memory contents are initialized using a memory coefficient (COE) file. A COE file

defines the initial contents of each individual memory locations.

We have made a block RAM using Block RAM Core Generator to store set of rules for

our Firewall, rules for destination MAC, source MAC, destination socket, source socket

are stored in each individual Block RAM core.

3.7.3 Block Ram Instantiation:

15

The following instantiation shows the instantiation of block RAM core. In this core

address is passed at addra and the data at that location is output to douta. The received

data can then be compared to the contents of the received Ethernet frame, to decide

whether to drop of forward the packet. This process is repeated until all the data values of

Block RAM are being checked.

Dest_mac_core dest_mac(

 clka(clka), // clock of port A

 wea(wea), // write enable of port A

 addra(addra), // address of port A

 dina(dina), // data in at port A

 douta(dest_mac_dout) // data out at port A

);

3.7.4 Top Module for Block RAM Simulation:

This module is used to pass the input signals from test bench to Block RAM cores. clka is

used for synchronization purposes, rst is used for asynchronous reset, wea, addra, dina are

the input signals for the Block RAM Core, dest_mac_data_out holds the output from

destination MAC Block RAM core, src_mac_data_out holds the output from source MAC

Block RAM core. Outputs from all the Block RAM cores are concatenated and checked

against the corresponding parameters of Ethernet frame, if a match is found „match‟ flag

is set high indicating that the packet should be forwarded.

module Top(clka, // clock of port A

rst, // reset

wea, // write enable port A

addra, // address of port A

dina, // data in at port A

dest_mac_data_out, // reads destination MAC addresses from block

RAM

src_mac_data_out, // reads source MAC addresses from block RAM

src_socket_data_out, // reads source IP & port addresses from block RAM

16

dest_socket_data_out, // reads destination IP & port addresses from block

RAM

match // 1 bit flag to respond when a match of rule is found

);

3.7.1 Memory Module Simulation:

Figure 10. Memory Module Simulation (Match Found)

17

Figure 11. Memory Module Simulation (Match Not Found)

Figure 12. Memory Module Simulation (Match Found)

18

3.8 Resource Utilization:

Slice Logic Utilization Used Available Utilization

No. of Slice Registers 952 69120 1%

No. used as Flip Flops 952 ---

No. of Slice LUT‟s 884 69120 1%

No. used as logics 804

No. used as Memory 70

Total Memory used (KB) 144 5328 2%

No. of TEMACs 1 2 50%

Table 1: Resources Utilized

19

 3.9 Frame Structure:

Figure 13: Ethernet Frame Structure

Figure 14: IP Packet Header

20

3.10 Packet in Wireshark and Packet Builder:

Figure 15. Captured packet in Wireshark

Figure 16. TCP packet in Packet B

21

CHAPTER 4:

SIMULATION:

4.1 Test Bench:

A test bench supplies the signals and dumps the outputs to simulate a Verilog design or

modules. It invokes the design under test, generates the simulation input vectors, and

implements the system tasks to view/format the results of the simulation. It is never

synthesized so it can use all Verilog commands.

4.2 Firewall MODULE:

module firewall (

 rx_ll_clock, // Input CLK from TRIMAC Reciever

 rx_ll_reset, // Synchronous reset signal

 rx_ll_data_in, // Input data

 rx_ll_sof_in_n, // Input start of frame

 rx_ll_eof_in_n, // Input end of frame

 rx_ll_src_rdy_in_n, // Input source ready

 rx_ll_data_out, // Modified output data

 rx_ll_sof_out_n, // Output start of frame

 rx_ll_eof_out_n, // Output end of frame

 rx_ll_src_rdy_out_n, // Output source ready

 rx_ll_dst_rdy_in_n // Input destination ready);

22

Input data is sent to 40 byte shift register as well as a state machine. Shift register holds

the input data while state machine compares it to the pre-stored MAC, IP and PORT

addresses. If the input data frame matches the pre-stored addresses, a forward flag (fwd) is

set high. After traversing through shift register, if the fwd flag is high, the data is assigned

to the rx_ll_data_out port. If a mismatch is found with any of the addresses, the fwd flag

is set low and the frame is dropped.

4.2.1 Firewall Design:

Figure 17. Firewall Design Flow

23

CHAPTER 5:

IMPLEMENTATION:

5.1 Physical Interface:

An appropriate Physical Interface is provided for each selected EMAC0/EMAC1. This

interface connects the physical interface of the Ethernet MAC block to the I/O of the

FPGA.

• For GMII/MII, this component contains Input/Output block (IOB) buffers and

IOB flipflops.

• For 1000BASE-X PCS/PMA or SGMII, this component instantiates and connects

a RocketIO GTP or GTX transceiver

a) 1000 BASE-X:

The 1000BASE-X logic can be optionally provided by the Ethernet MAC. This port is

connected to a Switch or Routing matrix, which can contain several ports.

b) GMII(Gigabit Media Independent Interface):

The Media Independent Interface (MII), defined in IEEE 802.3clause 22, is a parallel

interface that connects a 10-Mbps and/or 100-Mbps capable MAC to the physical

sublayers. The Gigabit Media Independent Interface (GMII), defined in IEEE 802.3clause

35, is an extension of the MII used to connect a 1-Gbps capable MAC to the physical

sublayers. MII can be considered a subset of GMII, and as a result, GMII/MII can carry

Ethernet traffic at 10 Mbps, 100 Mbps, and 1 Gbps.

5.2 Embedded Ethernet MAC Wrapper:

The Ethernet MAC wrapper file instantiates the full Ethernet MAC primitive. For one or

both Ethernet MACs (EMAC0/EMAC1), the following applies:

24

• All unused input ports on the primitive are tied to the appropriate logic

level; all unused output ports are left unconnected.

• The Ethernet MAC attributes are set based on options selected in the

CORE Generator software.

• Only used ports are connected to the ports of the wrapper file.

This simplified wrapper should be used as the instantiation template for the Ethernet

MAC in customer designs.

5.3 Ethernet MAC Core:

The LogiCORE IP Tri-Mode Ethernet Media Access Controller (TEMAC) solution

comprises the 10/100/1000 Mb/s Ethernet MAC, 1 Gb/s Ethernet MAC and the 10/100

Mb/s Ethernet MAC IP core. All cores support half-duplex and full-duplex operation.

5.3.1 Core Overview:

25

Figure 18. Core Overview

a) Client Interface:

The client interface is designed for maximum flexibility in matching to a client switching

logic or network processor interface. The data pathway is 8-bits wide in both the transmit

and receive directions.

b) Transmit Engine:

The transmit engine takes data from the client and converts it to GMII format. Preamble

and frame check sequence fields are added and the data is padded if necessary. The

transmit engine also provides the transmit statistics vector for each packet and transmits

the pause frames generated by the flow control module.

c) Receive Engine:

The receive engine takes the data from the GMII/MII interface and checks it for

compliance to the IEEE 802.3.Padding fields are removed and the client is presented with

the data along with a good or bad frame indicator. The receive engine also provides the

receive statistics vector for each received packet.

d) Flow Control:

The MAC can be configured to send pause frames with a programmable pause value and

to act on their reception. These two behaviors can be configured asymmetrically.

e) GMII/MII Block:

The GMII/MII interface takes the data from the transmitter and converts it to MII format

if the device is operating at speeds under 1 Gb/s. The received data is converted into

GMII format. At 1 Gb/s, the data is passed through.

26

CHAPTER 6:

RESULTS:

6.1 Simulation Results:

Data is given as input in the figure given below:

Figure 19. Input Data

Since MAC address is not matched, so the packet is not forwarded as shown:

27

Figure 20. Input Data-Deny

Second Packet is received as input in the figure given below:

Figure 21. Input Data-2

Since all addresses are matched with pre stored rules, so the packet is forwarded as

shown:

28

Figure 22. Input Data-Allow

6.2 Implementation Results:

Below is the figure when ping request to allowed IP address:

29

Figure 23. Ping Request to allowed IP

Below is the Request and Response in Wireshark:

Figure 24. Request and Response in Wireshark

IP is changed to 1.2.3.7 which is not allowed so the packet should not go through shown

in the figure below

30

Figure 25. Denied IP Address

Now we ping using 1.2.3.7 as source address

Figure 26. Denied Source Address

There is no packet displayed in wire shark, which is as expected because IP is not

allowed

31

Figure 27. No Packet in Wireshark

32

BIBLIOGRAPHY

33

CHAPTER 7:

BIBLIOGRAPHY:

7.1 List of similar projects done at MCS:

NC Yasir Ahmed, NC Essam Shahid, NC Maheen Zubair, TE-48

Hardware Firewall on FPGA (10G), 2015.

7.2 List of similar projects elsewhere:

• NETFPGA 10G APPLICATION AWARE ROUTER

BY NS Nauman Shahid, NS Asadullah, NS Noman Sharif “” DE-32 Bachelors In Computer

Engineering (Eme,Nust) (2014)

Application Aware Routing which supports the routing of packets based in their OSI 4-7

features i.e. URL and Protocol

• Designing a Hardware-Accelerated Firewall with Two 10 Gbps Ports

BY Viktor Pus,Tomas Dedek (2008)

Focused on one of these performance-demanding tasks: the packet classification.

Implement the stateless firewall because of its straightforward design and clear

requirements for its function. Stateless firewalls is a process in which every packet is

independently of the previous packets.

• DESIGN A HARDWARE NETWORK FIREWALL ON FPGA

BY Raouf Ajami, Anh Dinh University of Saskatchewan, Canada: (2011)

Built using Verilog Hardware Description Language (HDL) to speed up the packet

processing. A processor based embedded system with real- time operating system was

designed to achieve highly customized and on-the-fly configuration change in the

firewall. The whole design was implemented and evaluated on an Altera FPGA device.

 FPGA-BASED INTERNET PROTOCOL FIREWALL CHIP BY Ayman, Louis

Harik,Rony Ferzli, and Mohammad Fawaz (American University of Beirut, Lebanon)

 (2000)

Presented the design of a firewall for IP networks using a field-programmable gate array

34

(FPGA).

7.3 ONLINE HELP:

 www.xilinx.com

• http://www.digilentinc.com/Products/Detail.cfm?Prod=GENESYS

• http://www.asic-world.com/verilog/veritut.html

• www.fpga4fun.com

• http://www.xilinx.com/training/free-video-courses.htm

• http://www.ni.com/swf/presentation/us/labview/lvfpga/

• http://www.xilinx.com/csi/training/how-to-configure-an-fpga.htm

• http://www.xilinx.com/support/index.html/content/xilinx/en/supportNa

v/si licon_devices/fpga/virtex-6.html

• http://hardforum.com/showthread.php?t=1074301

• http://www.xilinx.com/ipcenter/coregen/ip_update_install_instructions.

ht m

• http://www.xilinx.com/ipcenter/coregen/ip_update_system_requireme

nts. htm

• http://www.xilinx.com/products/ipcenter/V5_Embedded_TEMAC_Wrap

p er.htm

http://www.digilentinc.com/Products/Detail.cfm?Prod=GENESYS
http://www.digilentinc.com/Products/Detail.cfm?Prod=GENESYS
http://www.asic-world.com/verilog/veritut.html
http://www.asic-world.com/verilog/veritut.html
http://www.asic-world.com/verilog/veritut.html
http://www.asic-world.com/verilog/veritut.html
http://www.fpga4fun.com/
http://www.fpga4fun.com/
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://www.xilinx.com/training/free-video-courses.htm
http://hardforum.com/showthread.php?t=1074301
http://hardforum.com/showthread.php?t=1074301
http://www.xilinx.com/ipcenter/coregen/ip_update_install_instructions.htm
http://www.xilinx.com/ipcenter/coregen/ip_update_install_instructions.htm
http://www.xilinx.com/ipcenter/coregen/ip_update_install_instructions.htm
http://www.xilinx.com/ipcenter/coregen/ip_update_install_instructions.htm
http://www.xilinx.com/ipcenter/coregen/ip_update_system_requirements.htm
http://www.xilinx.com/ipcenter/coregen/ip_update_system_requirements.htm
http://www.xilinx.com/ipcenter/coregen/ip_update_system_requirements.htm
http://www.xilinx.com/ipcenter/coregen/ip_update_system_requirements.htm
http://www.xilinx.com/products/ipcenter/V5_Embedded_TEMAC_Wrapper.htm
http://www.xilinx.com/products/ipcenter/V5_Embedded_TEMAC_Wrapper.htm
http://www.xilinx.com/products/ipcenter/V5_Embedded_TEMAC_Wrapper.htm
http://www.xilinx.com/products/ipcenter/V5_Embedded_TEMAC_Wrapper.htm

35

CHAPTER 8:

PROJECT RESEARCH WORK:

• XILINX SUPPORT DOCUMENTATION, "Virtex 5 FPGA Configuration User

Guide, UG191 (v3.11)”, October 19, 2012.

• XILINX SUPPORT DOCUMENTATION, “Virtex 5 FPGA User Guide, UG190

(v5.4)”, March 16, 2012.

• XILINX SUPPORT DOCUMENTATION, “Virtex 5 FPGA Embedded Trimode

Ethernet MAC User Guide, UG194 (v1.10)”, February 14, 2011.

• XILINX SUPPORT DOCUMENTATION, “Virtex 5 FPGA Embedded Trimode

Ethernet MAC Wrapper v1.8, GSG340”, April 19, 2010.

• XILINX SUPPORT DOCUMENTATION, “Virtex 5 FPGA Embedded Trimode

Ethernet MAC Wrapper v1.8, DS550”, April 19, 2010.

• Sheila Frankel, “Demystifying the IPSec Puzzle”, 3rd ed, Artech House, Inc, 2001.

• Behrouz A. Forouzan, “Data Communications and Networking”, 4thed, McGraw Hill,

2007.

• Steffen, “Secure Network Communication”, ZurcherHochshule Winterthur, January

14, 2002.

• IEEE TRANSACTIONS, “IPSec Implementation on Xilinx Virtex-II Pro FPGA and Its

Application”, Lu, J. ; Appl. Res. Lab., Washington Univ., USA ; Lockwood, J., April

2005

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lu,%20J..QT.&searchWithin=p_Author_Ids:37421362400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lu,%20J..QT.&searchWithin=p_Author_Ids:37421362400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lockwood,%20J..QT.&searchWithin=p_Author_Ids:37271602700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lockwood,%20J..QT.&searchWithin=p_Author_Ids:37271602700&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Lockwood,%20J..QT.&searchWithin=p_Author_Ids:37271602700&newsearch=true

