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Abstract

Boolean functions play an important role in designing any modern sym-

metric cipher. They can be utilized either as filter/combiner functions in

LFSR based stream ciphers, or as s-box component functions in block ci-

phers. In order to design strong crypto-systems, cryptographers over the

years have identified some basic cryptographic criteria for Boolean func-

tions, which are required to be fulfilled before applying them in practical

systems. These basic cryptographic criteria include balanced-ness, algebraic

degree, non-linearity, correlation immunity and algebraic immunity. There-

fore, constructing Boolean functions, along with fulfilling basic cryptographic

criteria, has become a vital task for cryptographers. Considerable work has

been achieved over the last few years for constructing Boolean functions,

mainly focused on achieving optimal algebraic immunity. However, all exist-

ing methods lacks in fulfilling all the cryptographic criteria other than alge-

braic immunity, due to some essential trade offs among various cryptographic

criteria. Mostly construction methods are iterative in nature, which require

more number of existing Boolean functions with at least optimal algebraic

immunity, as their initial functions. Moreover, only theoretical constructions

are found in literature, with very less or no implementation results.

In this thesis, we have carried out comparative analysis of four existing
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methods for constructing Boolean functions with maximum algebraic im-

munity. These methods are not only efficiently implemented to construct

Boolean functions, but are also analyzed in terms of fulfilling basic crypto-

graphic criteria. Additionally, these methods are evaluated in terms of higher

order non-linearity up to n=5 variables. We have also presented a method

to extend existing construction methods and construct 2n more number of

Boolean functions with maximum algebraic immunity by using existing single

Boolean function. We got successful results for two existing constructions,

which include construction of Boolean functions using majority functions

and construction through primitive polynomials. We have proved our results

through experiments, up to n=12 variables; however no mathematical proof

has been given and is left as future work.
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Chapter 1

Introduction and Motivation

1.1 Introduction

In todays digital world, information security has become extremely impor-

tant and an essential part in our everyday life, for example online banking,

credit cards, internet shopping, mobile phones, etc. Cryptography, which

is the field of designing strong algorithms/ciphers for information security,

is mainly divided into three broad categories; symmetric key ciphers (in-

volve block and stream ciphers), asymmetric key ciphers (involve public key

ciphers and signatures) and unkeyed ciphers (involve hash functions). Sym-

metric key ciphers, which use same key for encryption and decryption, are

further divided into stream ciphers and block ciphers.

Stream ciphers received special attention and their designs are widely

studied in last few years, due to their simple, fast and efficient design as

well as implementation in vast number of applications especially in wireless

communication. They are extremely efficient against real time applications,
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CHAPTER 1. INTRODUCTION AND MOTIVATION 2

like mobile communication, telephonic voice, Bluetooth, VoIP, etc. However,

LFSR based stream ciphers have one big disadvantage of their linearity, which

stops them to be utilized directly in any cryptosystem. The cryptographers

provide its solution by introducing nonlinear Boolean functions as combiner

or filter generator in LFSR based stream ciphers.

The main purpose of using Boolean functions in stream ciphers is to in-

troduce non-linearity in linear LFSRs, in order to avoid linear attacks against

LFSRs based crypto systems. However, the utilization of Boolean functions

is not limited to have non-linearity only; they can be affectively design/con-

struct in a way to fulfill other cryptographic properties as well. In order

to design strong crypto-systems, cryptographers over the years have identi-

fied basic cryptographic criteria for Boolean functions, which are required

to be fulfilled before applying them in practical systems. These basic cryp-

tographic criteria include balanced-ness, algebraic degree, non-linearity, cor-

relation immunity and algebraic immunity. Algebraic Immunity, which is

the most recent and discovered in last decade, is extremely important as it

characterizes resistance of a Boolean function against algebraic attacks and

fast algebraic attacks.

This thesis deals with existing methods of constructing Boolean functions

and their analysis in terms of fulfilling basic cryptographic criteria in order

to effectively utilize them in practical crypto-systems.
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1.2 Background for the Thesis

In this section, we have mentioned the motivation of this research, the prob-

lem statement and objectives of the thesis.

1.2.1 Motivation

Constructing Boolean functions, such that they fulfill all the basic crypto-

graphic criteria had become a vital task for cryptographers in the last decade,

especially after the introduction of algebraic attacks in 2003. In this regard

many construction methods have been proposed in literature, mainly focus

on achieving maximum algebraic immunity to avoid algebraic attacks. D.

K. Dalai, for the first time present the basic theory for constructing Boolean

functions with maximum algebraic theory in his world renowned paper [11].

The constructed functions are the majority functions under the class sym-

metric Boolean functions. However, the author did not get optimal values of

other cryptographic properties (like nonlinearity, correlation immunity, etc).

Moreover, his construction provides only one Boolean function for each value

of n (number of variables). In [21], E. Pasalic introduced an iterative con-

catenation method for construction of Boolean functions utilizes four initial

functions with maximum algebraic immunity and one out of them should

fulfill algebraic attack resistant property, which author defined as manda-

tory for resistant against fast algebraic attacks. The proposed infinite class

of Boolean function optimizes almost all the cryptographic criteria except

achieving very high non-linearity, also his construction required large set of

initial functions with maximum algebraic immunity, to construct Boolean
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functions with higher value of n. In [24], the author proposed two methods

to obtain maximum AI by using concatenation. The author also studies the

balancedness, algebraic immunity and nonlinearity of constructed functions,

showing that concatenation does not degrade these important cryptographic

properties. However, his construction also required large set of initial func-

tions with maximum algebraic immunity to start with. In [22], the author

proposed a new method of constructing Boolean functions using primitive

polynomials and achieved Balancedness, optimal values of algebraic immu-

nity and algebraic degree, and a very high value of non-linearity. However,

the author does not talk about correlation immunity of his constructed func-

tions and his method can construct only one Boolean function for each value

of n. In [6], Claude Carlet proposed an infinite class of constructing Boolean

functions with maximum algebraic immunity and high non-linearity checked

for small number of variables. The proposed method produces Boolean func-

tions with maximum AI and a very high value of non-linearity; however the

author has not discussed anything about their degree and correlation immu-

nity. Few other construction methods with optimal algebraic immunity are

also proposed in [16, 17, 25, 26], but somehow all these methods fail to fulfill

all the cryptographic criteria along with maximum algebraic immunity.

This brings the motivation for this research to conduct a comparative

analysis/study of few existing methods of constructing Boolean functions

with maximum algebraic immunity and evaluate them in terms of fulfill-

ing other cryptographic criteria. Additionally, in literature, only theoreti-

cal constructions are given, but their actual implementations are not found,

therefore efficient implementations of each construction method would also
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be carried out in this research. Moreover, existing construction methods are

not evaluated in terms of higher order non-linearity. Identification of any

improvement in existing methods, such that to construct more number of

Boolean functions with maximum algebraic immunity is also a main motiva-

tion of this thesis.

1.2.2 Problem Statement

As it is always desirable to construct Boolean functions such that they fulfill

all the cryptographic criteria including optimal algebraic immunity. Existing

construction methods, although construct Boolean functions with optimal

algebraic immunity, but somehow lacked in fulfilling rest of the cryptographic

criteria. Moreover, theoretical constructions of good Boolean functions are

available in literature but their actual construction or implementation is not

available. These methods are also not analyzed in terms of their higher order

non-linearity.

Additionally, mostly existing construction methods are iterative in na-

ture, i.e. utilize existing Boolean functions with maximum algebraic immu-

nity as their initial functions, therefore more number of Boolean functions

with maximum algebraic immunity are required when n > 10. However, ex-

isting methods e.g. [11,22] provide only one Boolean function for each value

of n / primitive polynomial respectively.
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1.2.3 Objectives

The aim of the research is to carryout comparative study of four existing

methods of constructing Boolean functions with optimal algebraic immunity

and to analyze them in terms of higher order non-linearity, in order to further

optimize them or to enhance these existing construction methods.

The main objectives of this research include: -

• Computing cryptographic properties efficiently which include balanced-

ness, algebraic degree, non-linearity, correlation immunity and algebraic im-

munity.

• Efficient implementation of existing construction methods, to get respec-

tive Boolean functions and to analyze them in terms of their cryptographic

properties.

• Analysis of Boolean functions construction methods in terms of Higher

Order Non-Linearity.

• Extend existing construction methods to obtain more number of Boolean

functions with maximum algebraic immunity.

1.3 Priliminaries

Hamming weight of a binary string or vector is the number of nonzero

elements present in it.

Hamming distance between two equal binary strings or vectors is the num-

ber of corresponding unequal elements present in it.

A Boolean function is called Affine function, denoted by A (n), if it has no

term of degree strictly greater than 1 in its ANF.
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An affine function in which constant term equal to zero is called Linear func-

tion and all non-constant affine functions (i.e. linear functions) are balanced.

The Support of a Boolean function, denoted by supp (f), is the set of all

input vectors for which the output of the Boolean function is 1.

In nonlinear Filter Generator, the n stages of a single, usually longer, LFSR

are filtered by a nonlinear Boolean function which produces keystream.

In nonlinear Combiner Function; the output of several LFSRs is combined

by using a nonlinear Boolean function that produces the keystream.

Symmetric Boolean functions are those which output the same values

for all the inputs of same weight. Thus in its ANF, the symmetric Boolean

functions contain all the terms of same degree monomial or no term of that

degree.

1.4 Organization of the Thesis

This thesis report is organized as follows: chapter 1 gives a brief introduction

of the thesis, its background, motivation, problem statement and objectives.

Chapter 2 provides a detailed description of Boolean functions, their desir-

able cryptographic properties and how to compute them. Chapter 3 consists

of literature review. Chapter 4 gives an efficient implementation of existing

methods for constructing Boolean functions, along with comparison matrix

at the end. Chapter 5 provides analysis of existing construction methods

in terms of higher order non-linearity. Chapter 6 includes proposed method

for extending existing construction methods to get more number of Boolean

functions with optimal AI, and finally at the end conclusion and contribu-



CHAPTER 1. INTRODUCTION AND MOTIVATION 8

tions are presented in Chapter 7.

• System Requirements: All implementations (including implemen-

tation of existing construction methods and experimental results), are per-

formed in computer, with Processor Intel(R) Core(TM) i3-2310M @ 2.10

GHz, 4 GB RAM and 64-bit Operating System. Microsoft Visual Studio

2012 has been used for implementation of algorithms and for generation of

experimental results. However, for verification of results Maple-16 (64-bit)

has been used.



Chapter 2

Overview of Boolean Functions

A Boolean function f(x1, ..., xn) of n-variables is a multivariate polynomial

over GF(2) used as a combiner or filter function in stream ciphers or as

s-box component in block ciphers. However, before utilizing them in prac-

tical crypto systems, cryptographers over the years have determined certain

cryptographic criteria for constructing cryptographic secure Boolean func-

tions. These cryptographic criteria include balancedness, algebraic degree,

non-linearity, correlation immunity and algebraic immunity.

The number of Boolean functions with respect to number of variables

rises exponentially. The total number of Boolean functions constructed for

any value of n (where n is number of variables) are equal to 22n . Therefore,

it is not possible to construct all Boolean functions for higher values of n

(i.e. if n > 6), due to computational limits. Table 2.1 shows the number of

Boolean functions up to 10 variables.

A Boolean function can be represented in any of two most commonly

forms; i.e. Algebraic Normal Form (ANF) or Truth Table (TT) Form. ANF

9
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No of Variables (n) 2n No of Boolean functions (22n)
1 2 4
2 4 16
3 8 256
4 16 65536
5 32 4294967296
6 64 18446744073709551616
7 128 3.402e+38
8 256 1.157e+77
9 512 1.340e+154
10 1024 1.797e+308

Table 2.1: Total Numbers of Boolean Functions (up to n=10)

is the representation of a Boolean function in polynomial form over GF2,

which is the natural form. Mathematically it can be represented as:

fANF (x1, x2..., xn) = a0 +
n∑

i=0

aixi+
∑

1≤i<j≤n

ai,jxixj+...+∑
1≤i1≤...≤in−1≤n

ai1,...in−1xi1 ...xin−1 + a1,...nx1 ...xn

where a0, a1, a2, a3, ..., a1,...,n are called the co-efficients of the respective mono-

mials. Boolean functions most commonly represented in TT form, which con-

tains output column values in natural order of input vectors in GF2, denoted

by TT, by carrying binary string of length 2n as shown below:

fTT = f(a0).f(a1)...f(a2n−1)

Example:-

fANF = x1 + x2 + x3 + x1x2x4 + x3x4

fTT = 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0
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2.1 Basic Cryptographic Properties of Boolean

Functions

The use of linear feedback shift register (LFSR) based stream ciphers have

one main problem of linearity. To overcome this, cryptographers use non-

linear Boolean functions as filter generators or combiner functions, due to

which the security of whole cryptosystem is mainly dependent on the cryp-

tographic characteristics of these Boolean functions. Therefore various de-

sign criteria’s have been identified over the years to construct cryptographi-

cally strong Boolean functions. These basic cryptographic criteria (or cryp-

tographic properties) required for designing/construction of these Boolean

functions are briefly explained below.

• Balanced-ness: Balanced-ness is the first and foremost requirement

that a good crypto-system should have. A Boolean function is called balanced

if it outputs equal number of zeros and ones, i.e. its hamming weight equals

2n−1. Balancedness is required to prevent the system from leaking statisti-

cal information on the plaintext, when the ciphertext is known. Moreover,

balanced-ness is mandatory to get Boolean functions (for odd n only) with

maximum AI, as shown in [10]. The total number of balanced functions, out

of total space of a Boolean function of n-variable, is

 2n

2n−1

.

• Algebraic Degree: Algebraic degree, denoted by Deg (f), of a Boolean

function is the number of variables in the highest order monomial with

nonzero coefficient in its algebraic normal form (ANF). A high algebraic

degree is required to achieve cryptographically secure Boolean functions, in
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order to prevent them from Masseys Attack, applied by using Berlekamp-

Massey algorithm, as shown in [15] . Additionally, the maximum (or opti-

mal) value of algebraic degree of an n-variable Balanced Boolean function

would be n-1, as shown in [12]

• Non-Linearity: The non-linearity, denoted by Nf , of a Boolean func-

tion is the number of bits to change in the truth-table of the function to make

it an affine function. In other words, nonlinearity is the minimum hamming

distance from the set of all n-variable affine functions, i.e. Nf = min (d (f,

g)), where g ∈ set of affine functions. A high value of non-linearity is required

to resist against affine approximation attacks and linear attacks. However,

it is known that there is an upper limit for maximum nonlinearity which is

2n−1 − 2d
n
2 e−1.

• Correlation Immunity (Resiliency): A Boolean function is said to

be correlation immune of order m, if distribution of its truth table is unaltered

while fixing any m inputs, denoted by CI (f), or in other words, the output

of Boolean function must be independent of combination of any m inputs. If

the Boolean function is correlation immune of order m and is also balanced

then it is called m-resilient. A Boolean function should have high order of

correlation immunity to resist correlation attack.

• Algebraic Immunity (AI): The algebraic immunity (AI) was first

introduced by W. Meier [19] as a measure of resistance against algebraic

attacks. Algebraic Attacks [8], exploits the structure of the underlying func-

tions to construct an over-defined system of nonlinear multivariate equations

that will allow to determine the secret key. The AI of a Boolean function f is

defined as the lowest degree of the function g for which f. g = 0, or (f+1).g
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=0; the function g for which f. g = 0 is called an annihilator of f. In other

words we can understand algebraic immunity in terms of algebraic attacks,

i.e. in algebraic attacks, instead of setting up a system of equations of degree

determined by the degree of Boolean function f, the attacker can consider a

lower degree system if there either exists a low degree function g (known as

Annihilator) such that f . g = 0 or (1 + f). g = 0. The minimum degree of

this nonzero annihilators g is called algebraic immunity (AI).

For any n-variable Boolean function, its maximum algebraic immunity

achievable is the upper bound of its number of variables divided by 2, i.e.

AI(f) =
⌈
n
2

⌉
. As shown in [8] that there is always an annihilator g exists

with degree at most
⌈
n
2

⌉
such that f.g is of degree atmost

⌈
n
2

⌉
. If the bound

is achieved, we say the Boolean function has optimal algebraic immunity.

2.2 Attacks against Boolean Functions

In case of stream ciphers, most commonly attacks are linear cryptanalysis,

differential cryptanalysis, statistical attacks, correlation attacks, distinguish-

ing attacks, etc which are all statistical in nature. However, in the last decade

algebraic attacks have been extensively used against LFSR based stream ci-

phers implemented using nonlinear Boolean functions. Algebraic attacks are

successfully applied on Toyocrypt and LILI-128 as shown in [8], due to low

algebraic immunity of their Boolean functions. Fast algebraic attacks fur-

ther reduce the complexity of algebraic attacks by reducing the degree of

equations. Due to their importance, in targeting crypto-systems based on

Boolean functions they are further explained below.
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• Algebraic Attacks (AA) Algebraic Attacks are first introduced by

Courtois and Meier [8]. It is a known plaintext attack against stream ci-

phers, where attacker has the knowledge of keystream. The main aim is to

recover the internal state bits (secret-key) of the LFSRs by considering the

whole cipher as a large system of multivariate algebraic equations. The at-

tacker constructs the system of equations by collecting a large number of bits

from keystream i.e. each new bit of the key stream provides a new equation

on initial state, then converts the attack as solving a system of polynomial

equations. It consists of two steps; finding the system of polynomial equa-

tions and solving the system of equations using any efficient method. The

complexity of the attack is mainly dependent on the degree of the algebraic

system, the efficiency of generating algebraic equations and finally to solve

these multivariate algebraic equations. Various efficient methods are used

to solve the algebraic equations like Linearization, XL, Groebner bases, etc;

however there efficient solution is available if degree of equations is low.

• Fast Algebraic Attacks (FAA) Algebraic attacks may be further

improved by exploiting linear relations among the keystream bits; this ap-

proach is called Fast Algebraic Attack, first proposed by N, Courtois in [9].

Fast algebraic attacks are much more efficient than the usual algebraic at-

tacks. In the fast algebraic attacks, the attacker tries to decrease the degree

d of the system of equations even further by searching for relations between

the initial state of the LFSR and several bits of the output function si-

multaneously. Fastest attack against Toyocrypt, LILI-128, E0 (Bluetooth),

Summation generator, Sober-t32, etc.
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2.3 Computing Cryptographic Properties

In this section, we explained the major modules/tools to compute the crypto-

graphic properties of a Boolean function. We started with Boolean function

representation in which Moebius Transform technique is used to convert a

Boolean function from truth table form into ANF form, then code for finding

balancedness and algebraic degree is explained. Walsh Transform is imple-

mented next, which is used to compute Non-Linearity and Correlation Im-

munity. Finally, we have implemented algorithm for computing Algebraic

Immunity. All the modules/tools are written in C-language, which is chosen

because of its fast processing speed in handling/computing large amount of

data.

2.3.1 Moebius Transform for ANF Representation

The Boolean functions can be represented in various forms, e.g. ANF, truth

table, etc. But for implementation point of view most desirable form for tak-

ing the Boolean function as input is truth table representation, as it contains

1 and 0s so easily usable form in machine or C-language. However, the de-

sirable form for the output is ANF, as it is more human readable than truth

table. In our research, we take the Boolean function in truth table form (as

input) however there is an option that user might put input in ANF form and

the program then converts it internally to generate its truth table and later

on utilize it to compute cryptographic properties. The output or constructed

Boolean functions are in ANF form as it is more convenient to express the

results. The conversion from truth table form to ANF form is accomplished
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by using Moebius Transform technique which is explained below:

Moebius Transform: This following program will convert truth table

of a Boolean Function into its Algebraic Normal Form (ANF) by using Moe-

bius Transform Technique. The program is tested and verified up to n =

18 variables. For example if input of a Boolean function of n = 3 variables

is given in truth table form as TT=10100110 then the Moebius Transform

output would be ANF = 1 + x1 + x3 + x2x3.

1 //∗∗∗∗∗CONVERTING TRUTH−TABLE INTO ANF (MOEBIUS TRANSFORM)

void Moebius Transform ( unsigned char ∗ t r u t h t ab l e )

3 {

unsigned i n t i =0, i 0 =0, i 1 =0, s tep=0;

5 f o r ( s tep=1; step<s ize TT ; step<<=1)

{ f o r ( i 1 =0; i1<s ize TT ; i 1+=2∗s tep )

7 { f o r ( i 0 =0; i0<s tep ; i 0++)

{

9 i=i 1+i0 ;

t r u t h t ab l e [ i+step ]ˆ= t ru th t ab l e [ i ] ;

11 } } }

}// End Moebious Trans for Function

2.3.2 Algebraic Degree and Balancedness

Computing balancedness is not too difficult, to see whether a Boolean func-

tion is balanced or not, simply calculate the weight of its truth table i.e.

count the number of 1s in the truth table and compare it with half the num-
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ber of truth table entries i.e. wt(f) = 2n−1, if the answer is ’True’ means

function is balanced otherwise Not. On the other hand, algebraic degree can

easily be computed, if we know the ANF (which can be calculated through

Moebious Transform) of the Boolean funciton. The code below calculates

the degree of a Boolean function (using ANF) and stored its value in the

variable ’degree’.

void Moebius Transform ( unsigned char ∗) ;

2 unsigned char t r u t h t ab l e [256 ]={0} ; //max=256 f o r n=8 va r i a b l e s

Moebius Transform ( t r u t h t ab l e ) ;

4 terms BF = 0 ;

degree=0;

6 f o r ( i =0; i<s ize TT ; i++)

{ i f ( t r u t h t ab l e [ i ] )

8 { not count = 0 ;

terms BF++;

10 i f ( terms BF > 1) f p r i n t f ( fwr i t e , ”+” ) ;

f o r ( j =0; j<s i z e n ; j++)

12 { // Pr in t ing ANF in an ex t e rna l f i l e

i f ( i>>j & 0x01 ) { f p r i n t f ( fwr i t e , ”x%d” , j +1) ; d++; }

14 e l s e not count++;

}

16 i f ( not count == s i z e n ) f p r i n t f ( fwr i t e , ”1” ) ;

i f (d>degree ) degree = d ; //Computing Degree o f BFn

18 d=0;

}

20 }
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2.3.3 Walsh Transform for Non-Linearity and Corre-

lation Immunity

Walsh Transform is the best tool to compute Non-linearity of a Boolean

Function. It is fast and efficient algorithm, but compute only first order

non-linearity. Moreover the maximum value of Walsh transform is further

utilized to compute Correlation Immunity of a Boolean function. The source

code of computing both non-linearity and correlation immunity of a Boolean

function is mentioned in appendix A.1.

2.3.4 Computing Algebraic Immunity

Algebraic Immunity is the most important part of this whole research and

computing AI is the most difficult task, since it requires a lot of computation

power. As during computation of algebraic immunity, it is required to solve a

matrix of size 2n×2n and then transform it into reduced echelon form, due to

which complexity and computation increases manifold with each increment

on the value of n. In literature, few methods are found in [2, 13, 14, 18]

for computing algebraic immunity, but are very complex and difficult to

implement directly from given information. Moreover online tools on Internet

are readily available for computing other cryptographic properties but no

such tools are available for computing AI directly. This is also a contribution

of this research that an efficient algorithm for computing algebraic immunity

has been written and implemented successfully for up to n=16 variables.

The algorithm, i.e. source code, of all the processing steps for computing

Algebraic Immunity of a Boolean function are mentioned in appendix A.2.
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2.4 Searching Optimal Boolean Functions by

Exhaustive Search up to n=4 variables

The next step, after writing and implementing necessary algorithms for com-

puting cryptographic properties of a Boolean function would be to start con-

structing Boolean functions. Instead of implementing existing methods of

constructing Boolean functions, we started the brute force method to imple-

ment all possible Boolean functions of n=3 and n=4 variables. The number

of Boolean functions increases exponentially very large with each increment

on the value of n i.e. 22n . Therefore, its not possible to go beyond n=4 and

constructed 255 Boolean functions for n=3 and 65535 Boolean functions for

n=4. So in this research, we have computed cryptographic properties of all

the Boolean functions of n=3 and n=4.

• Exhaustive Search for n=3 variables: For n=3 variables, there are

255 possible Boolean functions that one can construct. After construction we

have calculated all the cryptographic properties of these constructed Boolean

funcitons. The number of Boolean Functions found for optimal value of each

cryptographic property are mentioned in Table 2.2 in decending order i.e.

first we write number of functions with max AI, then Balanced functions

within these max AI functions, then max Nf and Degree funcitons within

max AI and balanced functions and so on. In the rest of the section, B means

Balanced, D is Degree, Nf is Non-Linearity, CI is Correlation Immunity and

AI is Algebraic Immunity.
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Boolean Functions Search No. of BFns Percentage (%)

Total BFns for n=3 variables 255 100 %

BFns with Max AI 190 74.5%

BFns Balanced 65 25.5%

BFns with Max Nf = 2 57 22.4%

BFns with Max Degree = 2 57 22.4%

BFns with Max CI 8 3.1%

Table 2.2: No of Boolean functions found with respect to optimal crypto-
graphic properties for n=3 variables

The maximum optimal values we found for cryptographic properties (B,

D, Nf , CI, AI) are (1, 2, 2, 2, 2) for eight Boolean functions, i.e. four Boolean

functions as mentioned in Table 2.3 and four their respective complements,

here B is Balanced, D is Degree, Nf is Non-Linearity, CI is Correlation

Immunity and AI is Algebraic Immunity.

S.No TT ANF(f) B D Nf CI AI

1 10001110 x1 + x2 + x1x2 + x1x3 + x2x3 1 2 2 2 2

2 10110010 x1 + x1x2 + x3 + x1x3 + x2x3 1 2 2 2 2

3 11010100 x2 + x1x2 + x3 + x1x3 + x2x3 1 2 2 2 2

4 11101000 x1x2 + x1x3 + x2x3 1 2 2 2 2

Table 2.3: Most optimal Boolean functions found in brute force search for
n=3 variables

• Exhaustive Search for n=4 variables: For n=4 variables, there

are 65535 possible Boolean functions that one can construct. After construc-
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tion we have calculated all the cryptographic properties of these constructed

Boolean funcitons. The number of Boolean Functions found for optimal value

of each cryptographic property are mentioned in Table 2.4 in decending order

i.e. first we write number of functions with max AI, then Balanced functions

within these max AI functions, then max Nf and Degree funcitons within

max AI and balanced functions and so on. In the last row of the table, we

have mentioned number of Boolean functions found for max correlation im-

munity which are 200, although degree is one less than optimal, i.e. degree

= 2, while other cryptographic properties are (B, D, Nf , CI, AI) = (1, 2, 4,

3, 2).

Boolean Functions Search No. of BFns Percentage (%)

Total BFns for n=4 variables 65535 100 %

BFns with Max AI 62613 95.5%

Balanced BFns 12857 19.6%

BFns with Max Nf = 4 10920 16.6%

BFns with Max Degree = 3 10080 15.4%

BFns with Max CI = 3 (D=2) 200 0.3%

Table 2.4: No of Boolean functions found with respect to optimal crypto-
graphic properties for n=4 variables

The maximum optimal values we found for cryptographic properties (B,

D, Nf , CI, AI) are (1, 3, 4, 0, 2) for 10080 Boolean functions. Moreover we

also found around 200 Boolean functions with maximum correlation immu-

nity equal to three, i.e. (B, D, Nf , CI, AI) = (1, 2, 4, 3, 2), however the
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degree is one less than optimal value, i.e. Degree = 2. This also shows that

there is a trade off between algebraic degree and correlation immunity. One

doesnot get optimal values of both of these cryptographic properties at the

same time. In Table 2.5, few examples out of these optimal Boolean funcitons

for both optimal degree and optimal correlation immunity are mentioned.

S.No Truth Table ANF(f) B D Nf CI AI

1 1001010111001010
x1 + x1x3 + x2x3 +

x4 + x1x3x4

1 3 4 0 2

2 1001010111001100
x2 + x4 + x1x4 +

x2x4 + x2x3x4

1 3 4 0 2

3 1001010111100010
x1 + x1x2 + x2x3 +

x4 + x1x2x4

1 3 4 0 2

4 1001010111110000
x3 + x4 + x1x4 +

x3x4 + x2x3x4

1 3 4 0 2

5 1111101000001010 x1 + x1x3 + x3x4 1 2 4 3 2

6 1111101001010000 x3 + x1x3 + x1x4 1 2 4 3 2

7 1111110000001100 x2 + x2x3 + x3x4 1 2 4 3 2

8 1111110000110000 x3 + x2x3 + x2x4 1 2 4 3 2

Table 2.5: Four examples of Boolean functions, each of optimal algebraic
degree (S.No 1-4) and optimal correlation immunity (S.No 5-8) found in
exhaustive search for n=4 variables



Chapter 3

Literature Review

3.1 Introduction

As discussed in previous sections, Boolean functions play an important role in

designing any modern symmetric cipher. Due to their imperative role, a large

number of methods have been published in recently past for constructing

Boolean functions with optimal algebraic immunity along with fulfilling other

cryptographic criteria. However, these methods lacks in fulfilling all the

cryptographic criteria at the same time along with getting optimal algebraic

immunity.

3.2 Existing Construction Methods

This section provides literature review of some important existing methods of

constructing Boolean functions with maximum algebraic immunity, mostly

iterative and concatenated in nature. In this research, out of these existing

23
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methods, four methods have been selected for comparative study; in which

the said methods are constructed by practically implementing them and fur-

ther analyzed each of them in detail to identify some better/improved results.

3.2.1 Method-1 : Basic Theory by D. K. Dalia

For the first time, the basic theory for constructing Boolean functions with

optimal algebraic theory was presented by D. K. Dalai in his world renowned

paper [11]. The constructed functions are the majority functions under the

class symmetric Boolean functions. These symmetric Boolean functions can

easily be transformed into non-symmetric Boolean functions, to cover the

complete class, using linear transformation (as it does not affect other prop-

erties like algebraic degree, nonlinearity, etc). The basic motivation of this

construction was a systematically study of Boolean functions that can achieve

maximum algebraic immunity, although the author did not get optimal val-

ues of few other cryptographic properties (like nonlinearity, correlation im-

munity, etc). Therefore the author discourages the use of these functions in

practical crypto systems and left it as an open problem to work further. A

detailed analysis of the said method has been carried out in this research by

practically implementing it and then computing all the major cryptographic

properties of constructed Boolean functions including algebraic immunity. It

is further referred as Construction-1 in this report.
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3.2.2 Method-2 : Iterative Concatenation Method by

E. Pasalic

In [21], E. Pasalic introduced an iterative concatenation method for construc-

tion of Boolean functions which can also protect fast algebraic attack other

than protecting classical algebraic attacks. The iterative method takes four

initial functions with optimal algebraic immunity and after concatenation

the constructed Boolean function has degree increased by 2 and algebraic

immunity increased by 1, i.e. optimal. He further showed that the functions

that resist fast algebraic attacks must have maximum algebraic immunity,

although there are some additional requirements also. His constructed func-

tions, he called them Algebraic Attack Resistant (AAR) functions are also

extremely efficient in hardware implementation and fulfill most of crypto-

graphic criteria including high non-linearity and maximum algebraic degree.

The main motivation of the author was due to the fact that for the time

being there is no method that fulfills all the cryptographic criteria includ-

ing maximum algebraic immunity. Moreover, existing methods do not resist

against fast algebraic attacks and do not have efficient hardware implemen-

tation. The proposed infinite class of Boolean function optimizes almost all

the cryptographic criteria except achieving very high non-linearity but they

do resist fast algebraic attacks with efficient hardware implementation. The

author left it as future work to find out further improvement in terms of non-

linearity of his proposed AAR functions. This method is further referred at

Construction-2 in this research, and a detailed analysis of the said method

has been carried out by practically implementing it and then computing all
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the major cryptographic properties of constructed Boolean functions includ-

ing algebraic immunity.

3.2.3 Method-3 : Boolean Functions by Concatenation

In [24], the author proposed two methods to obtain n-variable Boolean func-

tions from (n-1) variables or (n+1) variables functions, i.e. according to its

construction-1, one can obtain two even Boolean functions of (n-1) variables

with maximum Algebaric Immunity(AI) by decomposing one odd Boolean

function of n-variable which must be of maximum algebraic immunity or

in its second construction-2, one can construct an odd Boolean function

of (n+1) variables with maximum AI by concatenating two even Boolean

functions of n-variable which must be of maximum AI. Moreover, the au-

thor also studies the balancedness, algebraic immunity and nonlinearity of

constructed functions, showing that concatenation does not degrade these

important cryptographic properties. Moreover the author also suggested it

as future work to study the properties of concatenation, which can further

improve these cryptographic properties of constructed Boolean functions.

3.2.4 Method-4 : Boolean Functions using Primitive

Polynomials

In [22], the author proposed a new method of constructing Boolean func-

tions using primitive polynomials and achieved Balancedness, optimal values

of algebraic immunity and algebraic degree, and a very high value of non-

linearity. The author in fact exploits the built in properties of primitive
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polynomials, by constructing Boolean functions using the output of these

primitive polynomials. Since the output of primitive polynomial is always

Balanced, i.e. wt(f) = 2n−1 therefore one property is achieved. Next the

output of primitive polynomials is always random with a very high value of

linear complexity, this helps in achieving a very high value of non-linearity.

Similarly, the author found that this constructed Boolean functions have

maximum algebraic immunity along with optimal value of algebraic degree.

3.2.5 Other Construction Methods

As discussed in previous sections, Boolean functions play an important role

in designing any modern symmetric cipher, due to this a large number of

new attacks were also introduced in last decade. The most important and

successful attacks were Algebraic Attacks and Fast Algebraic Attacks, intro-

duced by N. Courtois in [8], [9] for LFSR based stream ciphers. In the later

half of last decade, various methods of constructing Boolean functions (to

resist these attacks) with optimal algebraic immunity have been proposed,

few of them are briefly mentioned below.

In [5], Dalai for the first time put an effort to introduce a method which

mainly focuses at algebraic immunity of constructed Boolean functions and

then look at other cryptographic properties. The proposed method is based

on iteration, in which four initial functions are concatenated as f = E ‖

F ‖ G ‖ H and at every step two variables are added and AI increased by

one. However, the author here only focus on algebraic immunity and has not
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given any values for other cryptographic properties. In [11], the same author,

i.e. Dalai presented the famous Basic Theory which is also implemented (as

Method-1) in this research and explained in much detail in this research.

In [20], the author presented construction for a class of 1-resilient functions

with optimal AI for n=even only, which is based on concatenation of two

balanced functions. For some values of n, the author claimed to achieve

optimal values of non-linearity and algebraic degree. However, the author

couldn’t provide exact values of non-linearity for his complete construction;

moreover the larger class of 1-resilient Boolean functions are constructed with

sub-optimal algebraic immunity. functions with optimal algebraic immunity

along with fulfilling other cryptographic criteria. However, these methods

lacks in fulfilling all the cryptographic criteria at the same time along with

getting optimal algebraic immunity.

In [6], Claude Carlet proposed an infinite class of constructing Boolean

functions with maximum algebraic immunity and high non-linearity checked

for small number of variables. The author also claimed that no infinite class

with optimal AI and high non-linearity has been proposed so far. The por-

posed construction is defined in Theorem-1 of [5] as suppose f be a Boolean

function on F2n whose support is {0, 1, α, ..., α2n−1−2}, then f has maximum

algebraic immunity; where, n is any integer greater than 2, i.e. n > 2 and

α is a primitive element. The values of non-linearity that author found for

n=6, 7, 8, 9, 10 and 11 using Theorem-1 are 24, 54, 112, 232, 478 and 1001

respectively. Theses values are slightly less than the optimal non-linearity

values computed using 2n−1 − 2d
n
2 e−1. To conclude, the proposed method

produces Boolean functions with optimal AI and a very high value of non-
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linearity, however the author has not discussed anything about their degree

and correlation immunity.

In [7], Su and Tang proposed two new constructions of infinite classes of

rotation symmetric Boolean functions (RSBF) with optimal algebraic immu-

nity on either odd variables or even variables. These functions have better

nonlinearity then all the existing methods of constructing RSBF, and their

algebraic degree is also high enough. The paper propose the construction

for n > 11 (odd) and n > 10 for even, assume n = 2k+1 (for odd) and n =

2k (for even) where k > 5, and give a new construction of balanced RSBF

f(x) on n variables. This new constructed function f(x) has optimal algebraic

immunity, high nonlinearity and high algebraic degree. The author also de-

rived exact values of non-linearity and algebraic degree for any value of n>10

(for even case) and n>11 (for odd). In short, this paper present two new

construction of RSBF and studies their cryptographic properties like nonlin-

earity and algebraic degree theoretically. However, the constructed functions

are not checked to be robust against fast algebraic attacks.

Few other construction methods with optimal algebraic immunity are also

proposed in [16, 17, 25, 26] , but somehow all these methods fail to fulfill all

the cryptographic criteria along with optimal algebraic immunity.



Chapter 4

Efficient Implementation of
Boolean Functions
Construction Methods

4.1 Introduction

This chapter discussed the details of implementation and results of four exist-

ing methods [11, 21, 22, 24], for constructing Boolean functions with optimal

algebraic immunity. It also present any shortcoming found in any of the

methods during implementation. At the end a comparative study carried

out, based on the results found during implementation. The study carried

out here would be very helpful in utilizing any of these construction methods

in practical crypto systems.

4.2 Implementation of Construction Methods

4.2.1 Implementation of Method-1 : Basic Theory

Method-1 includes basic theory presented by D. K. Dalai [11], to construct

Boolean functions with maximum algebraic immunity. The author in his

30
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paper proposed the basic theory as construction-1 and further presented

construction-2 and construction-3 as its applications. The constructions pre-

sented by Dalai are explained below:-

• Construction - 1: According to construction-1 of Dalai, suppose

there are three Boolean functions f , f1 and f2, then

(a) If f1 and f2 has max AI such that supp(f) ⊇ supp(f2) and supp(1 +

f) ⊇ supp(f1) thenf also has max AI.

(b) If f has max AI, fulfilling above condition then f1 and f2 also have

max AI, i.e. the opposite of part (a).

• Construction - 2: In construction-2 of Dalai, the author presented

an application of basic theory in which he constructed functions, separately

for odd and even n, with maximum algebraic immunity as mentioned below:-

(a) Suppose n is odd, then

f(x1, ..., xn) = 0 for wt(x1, ..., xn) ≤
⌊
n
2

⌋

= 1 for wt(x1, ..., xn) ≥
⌈
n
2

⌉
(b) Suppose n is even, then

f(x1, ..., xn) = 0 for wt(x1, ..., xn) < n
2

= 1 for wt(x1, ..., xn) > n
2

= b ∈ {0, 1} for wt(x1, ..., xn) = n
2
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Here for odd n, we exactly got one Boolean functions, but for even n,

we have to choose from remaining

 n

n
2

. For example: for n=4, we have

one input value for weight 0 and 4, four input values for weight 1 and 3 and

remaining 6 input values for weight 2, which can be chosen randomly, such

that to get the resulted function balanced.

• Construction – 3: The construction-3 of Dalai deals with symmetric

Boolean function only for both even and odd cases, as described below :-

f(x1, ..., xn) = 0 for wt(x1, ..., xn) ≤
⌊
n
2

⌋

= 1 for wt(x1, ..., xn) >
⌊
n
2

⌋

In this research, we have implemented Construction-3 of Dalai up to n=16

variables, for both odd and even n-variables (beyond that is out of computer

hardware limitations). All the cryptographic properties like Balancedness,

Algebraic Degree, Non-linearity, Correlation Immunity and Algebraic Immu-

nity have been calculated. Some very interested and useful results extracted

by implementing Construction-3 are mentioned below, which also answers

some open problems presented in his paper. Note all results are computed in

computer, with Processor Intel(R) Core(TM) i3-2310M @ 2.10 GHz, 4 GB

RAM and 64-bit Operating System and Microsoft Visual Studio 2012 has

been used for implementation.
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(a) In the first step, Cryptographic properties of constructed Boolean

functions have been computed as shown in Table 4.1 up to n = 16 variables.

Due to space constraint the ANF and Truth Table, which is also computed,

are not shown here.

n (var) Bal Deg(f)
Non-

Linearity
CI(f) AI(f)

CPU
Time

3 1 2 2 2 2 < 1 sec

4 0 4 5 0 2 < 1 sec

5 1 4 10 4 3 < 1 sec

6 0 4 22 0 3 < 1 sec

7 1 4 44 6 4 < 1 sec

8 0 8 93 0 4 < 1 sec

9 1 8 186 8 5 < 1 sec

10 0 8 386 0 5 < 1 sec

11 1 8 772 10 6 1.96 sec

12 0 8 1586 0 6 2.18 sec

13 1 8 3172 12 7 5.89 sec

14 0 8 6476 0 7 19.93 sec

15 1 8 12952 14 8 126.22 sec

16 0 16 26333 0 8 296.17 sec

Table 4.1: Cryptographic properties of Boolean functions (upto n=16 vari-
ables) constructed by implementing construction-3 of Method-1 [11]

(b) The author in his paper claimed that for odd n, there is only one

Symmetric Boolean function with maximum AI (computed up to n = 11)

which is constructed through his construction-3 (see Page 52, observation-1,

in [11]) and left it as open problem to prove or disprove it. In this research, we

have calculated AI along with other cryptographic properties of all symmet-

ric Boolean function of n=11 and found that there are at least two symmetric

Boolean functions with maximum AI, which disproved authors claim of hav-

ing only one Boolean function with max AI through his construction-3. The
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ANF (in Hex form) of second function found with maximum AI is mentioned

below:-

ANF(f) = 8000000000000001000000010001011700000001000101170001

01170117177F0000000100010117000101170117177F000101170117177F01171

77F177F7FFF0000000100010117000101170117177F000101170117177F01171

77F177F7FFF000101170117177F0117177F177F7FFF0117177F177F7FFF17

7F7FFF7FFFFFFF0000000100010117000101170117177F000101170117177F

0117177F177F7FFF000101170117177F0117177F177F7FFF0117177F177F7F

FF177F7FFF7FFFFFFF000101170117177F0117177F177F7FFF0117177F17

7F7FFF177F7FFF7FFFFFFF0117177F177F7FFF177F7FFF7FFFFFFF17

7F7FFF7FFFFFFF7FFFFFFFFFFFFFFE

We have computed all 64 possible symmetric Boolean functions of n=11

variables; however due to space constraint few are shown in Table 4.2. Note

in table there are total of FOUR functions found with maximum AI, i.e.

AI = 6; however two are complement of other two, so actually there are

two symmetric Boolean functions with max AI (i.e. S.No-0 constructed by

construction-3 and S.No-1 found through our implementation). This is an

important result that denied author claim of constructing symmetric Boolean

functions with maximum AI by using only construction-3 for odd n. This

work is also published in [23]
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S. No Bal Deg(f) Non-Linearity CI(f) AI(f)
0 1 8 772 10 6
1 1 10 770 10 6
2 1 10 790 10 5
3 1 4 792 10 5
4 1 10 662 10 4
. . . . . .

59 1 10 662 10 4
60 1 4 792 10 5
61 1 10 790 10 5
62 1 10 770 10 6
63 1 8 772 10 6

Table 4.2: Cryptographic properties of all symmetric Boolean functions for
n = 11 variables (shown in Bold are BFns with max AI)

(c) For n = Even, the author has not presented any concrete construction

for non-symmetric Boolean functions and presented a heuristic construction

by which one can make these function balanced by randomly selecting the

outputs of those input whose weight is equal to n/2. On the other hand sym-

metric Boolean functions computed through construction-3 of author, are not

balanced and their Correlation Immunity is Zero. In this research, we have

computed cryptographic properties of n=Even symmetric Boolean functions,

through exhaustive search, such that to get balanced and correlation immune

Boolean functions as shown in Table 4.3 up to n=14 variables.

n-var Bal Deg(f) Non-Linearity CI(f) AI(f)
4 1 2 4 2 2
6 1 4 20 4 3
8 1 4 88 6 4
10 1 8 372 8 5
12 1 8 1544 10 6
14 1 8 6344 12 7

Table 4.3: Results of heuristic construction for n=Even upto 14 variables
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4.2.2 Implementation of Method-2 : Iterative Method

In [21], E. Pasalic proposed an iterative concatenation method to construct a

function f with maximum algebraic immunity by concatenating four initial

functions, i.e. f = f1 ‖ f2 ‖ f3 ‖ f4, where each fi has maximum algebraic

immunity. The ANF of constructed function f is given below:-

f = xn+1xn+2(f1 + f2 + f3 + f4) + xn+1(f1 + f2) + xn+2(f1 + f3) + f1

The author here introduced Algebraic Attack Resistant (AAR) functions,

having certain specific properties/criteria as defined below:-

Definition-3 : Let f be a Boolean function of n - variables, then f is

called AAR function if f has maximum AI, i.e. AI(f) =
⌈
n
2

⌉
, moreover for

any non-annihilating function g of degree e, where e ∈ {1,
⌈
n
2

⌉
− 1} , we

should have deg(fg) = d, that satisfies e+d ≥ n .

(a) Constructing Algebraic Attack Resistant (AAR) Functions.

In the first part, we have calculated all the AAR functions for n=3 and n=4,

satisfying above criteria. Following are the main steps:-

(a) Search all functions of n=3 and n=4 var, with max algebraic immunity.

(b) Multiply each function f with all possible g’s of degree ranges: e ∈ [1, 1]

for n=3 and e ∈ [1, 1] for n=4

(c) Short list all those functions which satisfies the condition e+d ≥ n .

After implementing the above criteria for n=3 and n=4 variables, the re-
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sults achieved are mentioned in Table 4.4. The basic cryptographic properties

are also computed, where (B, D, Nf , CI, AI) stands for Balancedness, Alge-

braic Degree, Non-Linearity, Correlation Immunity and Algebraic Immunity

respectively.

No of var(n) AAR - Functions Total BFns (B,D,Nf ,CI,AI)
n = 3 56 255 (1,2,2,0,2)
n = 4 6048 65535 (1,3,4,0,2)

Table 4.4: Number of Algebraic Attack Resistant (AAR) functions found for
n=3 and n=4 variables along with their cryptographic properties

(b) Constructing n=6 variables Boolean functions by Concate-

nating four n=4 AAR-functions. In the second part of our implemen-

tation, we constructed Boolean functions of n=6 variables by concatenating

four n=4 AAR functions as defined in Proposition-1 below:-

Proposition-1 : Let f = f1 ‖ f2 ‖ f3 ‖ f4 be a function with n Even,

with its subfunctions having max AI, i.e. AI(fi) =
⌈
n
2

⌉
. Moreover, let

f3 = 1 + f1 and f1 is such that for any function g of degree e, where

e ∈ {1,
⌈
n
2

⌉
− 1} , we have deg(f1g) = d ≥ AI(f1), and e+d ≥ n .Then

AI(f) =
⌈
n
2

⌉
+ 1, i.e. f has max AI.

Here, the author has defined some additional criteria for f1 only other

than having maximum algebraic immunity. We have choosen n=4 (small

even) to start of with this construction. After complete search of 65536

Boolean functions (i.e. total possible functions of n=4 variables), we have

found total of 6048 functions that fulfill the condition of AAR functions writ-



CHAPTER 4.
EFFICIENT IMPLEMENTATION OF BOOLEAN
FUNCTIONS CONSTRUCTION METHODS

38

ten in Definition-3. Few of these functions found are mentioned in Table 4.5,

along with other cryptographic properties.

Although there are many possibilities to concatenate these 6048 AAR-

functions with other Boolean functions of n=4 having maximum algebraic

immunity, however we have used all these 6048 AAR-functions to construct

6048 functions of n=6 variables. Out of four initial functions of n=4 vari-

ables, f1 would be the AAR-function while f3 should be complement of f1,

i.e. f3 = 1 + f according to proposition-1. The remaining two functions, f2

and f4 would be any functions of n=4 with max AI.

S.No TruthTable ANF(f) B D Nf CI AI

1 1100011011110000
1+x2 +x3 +x1x3 +
x2x4 + x1x3x4

1 3 4 0 2

2 1010011011110000
1+x1 +x3 +x2x3 +
x1x4 + x2x3x4

1 3 4 0 2

3 101011011110000
x1 + x2x3 + x4 +
x1x4+x3x4+x2x3x4

1 3 4 0 2

4 11011011110000
x2 + x1x3 + x4 +
x2x4+x3x4+x1x3x4

1 3 4 0 2

. ... ... . . . . .

6048 0100101000011111
x1 + x1x2 + x3 +
x1x2x3 + x1x4

1 3 4 0 2

Table 4.5: Algebraic Attack Resistant (AAR) functions for n=4 variables

After successful implementation, we got all constructed Boolean functions

of n=6 variables with maximum AI. Other cryptographic properties are also

calculated, one example of n=6 variable Boolean function constructed using

Proposition-1 is mentioned below:-
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Example:-

Initial Functions :

ANF (f1) = x1 + x3 + x1x3 + x1x2x4 + x1x3x4 + x2x3x4

TT (f1) = 0101111101001000

ANF (f2) = x1 + x2 + x1x3 + x1x2x4 + x3x4 + x1x3x4

TT (f2) = 0110001101111000

ANF (f3) = 1 + x1 + x3 + x1x3 + x1x2x4 + x1x3x4 + x2x3x4

TT (f3) = 1010000010110111

ANF (f4) = 1 + x1 + x2 + x3 + x4 + x1x3 + x1x2x4 + x1x3x4

TT (f4) = 1001001101111000

where cryptographic properties of above four initial functions are (B,D,Nf ,CI,AI)

= (1,3,4,0,2), however only f1 satisfies AAR function criteria.

Next we construct f , by concatenating these four initial functions, i.e.

f = f1‖ f2‖ f3‖ f4 and then compute cryptographic properties of f , as men-

tioned below:-

ANF (f) = x1 + x3 + x1x3 + x1x2x4 + x1x3x4 + x2x3x4 + x2x5 + x3x5+

x3x4x5 + x2x3x4x5 + x6 + x3x5x6 + x4x5x6 + x3x4x5x6

TruthTable(f) = 010111110100100001100011011110001010000010110111100

1001101111000

Balancedness = Yes

Degree(f) = 4

Nonlinearity(f) = 24

Correlation Immunity(f) = 0

Algebraic Immunity (f) = 3
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(c) Constructing n=8 variables Boolean functions by Concate-

nating four n=6 AAR-functions. In the next part of our implementation,

we constructed Boolean functions of n=8 variables by concatenating four n=6

AAR functions. We take total of 6048 functions of n=6 variables with max AI

and after concatenation construct 2016 Boolean functions of n=8 variables.

All functions constructed have maximum algebraic immunity, balanced, alge-

braic degree varies from 5-7, non-linearity varies from 92-112 and correlation

immunity equal to zero.

4.2.3 Implementation of Method-3 : Concatenation

In [24], the author proposed a very simple method of concatenation through

which one can get Boolean functions with maximum AI. The author pro-

posed two construction methods, i.e. Construction-1 by which one can get

two functions with max AI by decomposing an (n+1) function with max AI

and Construction-2 by which one can get one (n+1) function by concate-

nating two functions. In this research we have implemented Construction-2,

according to which one can obtain a new n-variable Boolean funciton hn, by

concatenating two functions gn−1 and fn−1 that are of maximum AI.

Implementation-1 : (from n=3 to n=4) In the first part, we have

taken n=3 variables Boolean functions with maximum AI and are Balanced.

Then applied concatenation and construct Boolean functions of n=4 vari-

ables with maximum AI. Other cryptographic properties are also calculated

of the constructed functions, the results for few functions constructed by
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concatenation of two n=3 variables BFns are mentioned in Table 4.6.

S.No Truth Table Bal Deg Nf CI AI
1 TT=1110100011011000 1 3 4 0 2
2 TT=1011100001111000 1 3 4 0 2
3 TT=1110010011010100 1 3 4 0 2
4 TT=1011010001110100 1 3 4 0 2
5 TT=1010110001101100 1 3 4 0 2
6 TT=1001110001011100 1 3 4 0 2
7 TT=1110001011010010 1 3 4 0 2
8 TT=1011001001110010 1 3 4 0 2

Table 4.6: Cryptographic properties of Boolean functions after concatenation
from n=3 to n=4

Implementation-2 : (from n=5 to n=6)

In the second part, we have first calculated a large set of Boolean functions

of n=5 variables with maximum AI and balanced. Then we applied same

concatenation technique and construct Boolean functions of n=6 variables

with max AI. The results we obtained are mentioned in Table 4.7.

n - var
No of Const

BFns
BFns with

Max AI & Bal
CI Nf CPU Time

from n=5 1530394 1530394 0-4 2-8 -
to n=6 765197 725338 0-5 24 53.28 sec

Table 4.7: Number of constructed Boolean functions constructed after con-
catenation from n=5 to n=6 variables and their cryptographic properties

4.2.4 Implementation of Method-4 : Primitive Poly-
nomials

Lastly, we implement the construction of Boolean functions with max AI us-

ing Primitive polynomials proposed by Qichun Wang in [22]. In this paper,
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the idea used was to utilize output sequence of primitive polynomials which

already are highly nonlinear, i.e. its linear complexity is too high, moreover

output sequence has equal number of 0s and 1s i.e. balanced, so the author

used this output as truth table of a Boolean function, and calculate AI and

other properties of constructed Boolean functions. It has been found that al-

gebraic immunity found is always optimal; the function constructed is always

balanced with optimal value of algebraic degree along with a very high value

of nonlinearity. We have constructed such Boolean functions using Primi-

tive Polynomials of degree n=6 till n=15, and also computed other crypto-

graphic properties of these Boolean functions. The CPU time consumed in

constructing and computing cryptographic properties is also computed and

is mentioned with other results in Table 4.8.

var(n) Primitive Polynomial CPU Time B D Nf CI AI
6 1 + x+ x6 < 1 sec 1 5 22 0 3
7 1 + x3 + x7 < 1 sec 1 6 48 0 4
8 1 + x2 + x3 + x4 + x8 < 1 sec 1 7 104 0 4
9 1 + x4 + x9 < 1 sec 1 8 220 0 5
10 1 + x3 + x10 < 1 sec 1 9 462 0 5
11 1 + x2 + x11 < 1 sec 1 10 940 0 6
12 1 + x1 + x4 + x6 + x12 1.26 sec 1 11 1940 0 6
13 1 + x1 + x3 + x4 + x13 12.95 sec 1 12 3916 0 7
14 1 + x1 + x3 + x5 + x14 67.44 sec 1 13 7910 0 7
15 1 + x1 + x15 736.6 sec 1 14 15988 0 8

Table 4.8: Constructing Boolean functions using primitive polynomials up
to n = 12 variables

4.3 Comparison of Implemented Methods

The comparison matrix of all the four existing methods for constructing

Boolean functions with maximum algebraic immunity is given in Table 4.9.
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Note here, the Boolean functions constructed, using these four methods have

optimal values of Algebraic Immunity and Balancedness, but somehow lacks

in fulfilling other cryptographic criteria. Method-4, provides best results

among these four constructions, as it provides optimal values of algebraic

immunity, balancedness and algebraic degree and a very high value of non-

linearity (close to its optimal value), which makes it the best choice to be

utilized in practical crypto systems.

Methods /
Cryptographic

Criteria
Method-1 Method-2 Method-3 Method-4

Algebraic
Immunity (AI)

Optimal AI Optimal AI
Optimal /
suboptimal

AI
Optimal AI

Non-Linearity
(Nf)

Not very
Good

Not fully
Optimized

Considerably
High

Very High,
near

Optimal

Algebraic
Degree

High but
Not

Optimized
Optimized Optimized Optimized

Correlation
Immunity

Not
Optimized

Not
Optimized

Does not
talked

about it

Does not
talked

about it
Balancedness Yes Yes Yes Yes

Table 4.9: Comparison matrix of implementation methods with respect to
cryptographic criteria

A comparison graph is shown in Figure 4.1, which depicts nonlinearity

value with respect to n (variables) for construction Method-1 [11], Method-

4 [22] for up to n = 12 variables. Clearly shows that nonlinearities of con-

strution method-4 are much better than method-1.
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Figure 4.1: Comparison between Method-1 [11] and Method-4 [22] in terms
of Nonlinearity up to n = 12 variables



Chapter 5

Analysis of Construction
Methods in terms of Higher
Order Non-Linearity

5.1 Introduction

The higher order non-linearity is a characteristic of Boolean functions which

plays an important role with respect to the security of the crypto-systems in

which they are involved. Their cryptographic relevance has been illustrated

by several papers like [1,3,4]. However, computing the r-th order nonlinearity

is a difficult task especially when the algebraic degree of a given Boolean

function is greater than r, where r > 1 and almost no paper has given general

effective results on it, in literature. Even the second order nonlinearity is

known only for a few particular functions and for functions in small numbers

of variables. In this section, we have computed higher order non-linearity of

existing four methods up to n=5 variables, as beyond that is computationally

unfeasible.

Definition. The higher order nonlinearity of a Boolean function f is the

minimum Hamming distance between f and all n-variable Boolean functions

45
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of algebraic degree at most r, for every positive integer r 6 n, denoted by

Nfr . It is also called r-th order nonlinearity.

In [3] Claude Carlet has given the lower bound on the r-th order non-

linearity defined in Proposition-5. We have practically implemented it, and

found useful results to characterize any Boolean functions in terms of min-

imum higher order nonlinearity. The lower bound computed up to n=16

variables in mentioned in Table 5.1.

n - var AI
Nfr

(for r=1)
Nfr

(for r=2)
Nfr

(for r=3)
Nfr

(for r=4)
Nfr

(for r=5)
5 3 10 2 - - -

6 3 12 2 - - -

7 4 44 12 2 - -

8 4 58 14 2 - -

9 5 186 58 14 2 -

10 5 260 74 16 2 -

11 6 772 260 74 16 2

12 6 1124 352 92 18 2

13 7 3172 1124 352 92 18

14 7 4760 1588 464 112 20

15 8 12952 4760 1588 464 112

16 8 19898 6946 2186 598 134

Table 5.1: Lower bound on r-th order nonlinearity computed upto n=16
variables

5.2 Searching Optimal Functions up to n=4

In this section, we have computed higher order non-linearity of all the Boolean

functions of n=3 and n=4 variables. The results are shown in Table 5.2 and

Table 5.3.
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Boolean Functions
Search w.r.t Nfr

No. of BFns
Optimal

Value of Nfr
Percentage (%)

Total BFns for
n=3 variables

255 - 100 %

1st - Order Nf 112 2 44 %
2nd - Order Nf2 15 2 6%
3rd - Order Nf3 127 1 50%

Table 5.2: Number of Boolean functions found with respect to optimal value
of r-th order non-linearity for n=3 variables

Boolean Functions
Search w.r.t Nfr

No. of BFns
Optimal

Value of Nfr
Percentage (%)

Total BFns for
n=4 variables

65535 - 100 %

1st - Order Nf 896 6 1.36 %
2nd - Order Nf2 30 4 0.4%
3rd - Order Nf3 2046 2 3.12%
4th - Order Nf4 32766 1 50.00%

Table 5.3: Number of Boolean functions found with respect to optimal value
of r-th order non-linearity for n=4 variables

5.3 Computing Higher Order Non-Linearity

of Implemented Construction Methods

In this section, we have computed higher order nonlinearity (Nfr) of four

implemented construction methods up to n= 5 variables. Since in literature

there is no efficient method is available for computing higher order nonlinear-

ity, therefore we have implemented the basic method, in which the minimum

hamming distance of the Boolean function is measured, with all the func-

tions of degree up to 5. The complete source code of our implementation

is attached as appendix A.3. In the subsequent paragraphs, the results of
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computed Nfr of four implemented methods are mentioned. Note time taken

to compute higher order nonlinearity increases exponentially with each in-

crement in n (number of variables), additionally time take to computer only

2nd-order nonlinearity is slightly reduced as compared to time taken for

computing all r-th order nonlinearity (e.g. for n=5 variables, CPU time for

2nd-order is reduced to 3917 sec from 4171 sec). Therefore, computationally

its unfeasible to compute only 2nd-order nonlinearity for values of n greater

than 5.

• Higher Order Non-Linearity (Nfr) of Method-1. In this method,

Dalai [11] constructed Boolean functions with maximum AI by using major-

ity functions. The Nfr of his construction methods is computed up to n=5

variables, and is shown in Table 5.4

No of
Var

Truth Table Nf1 Nf2 Nf3 Nf4 Nf5

Processing
Time

n=3 11101000 2 0 1 - - 0.00 sec
n=3 00010111 2 0 1 - - 0.00 sec
n=4 1110100010000000 5 1 1 0 - 0.03 sec
n=4 0001011101111111 5 1 1 0 - 0.03 sec

n=5
11111110111010001110
100010000000

10 2 2 0 1 4171 sec

n=5
00000001000101110001
011101111111

10 2 2 0 1 4171 sec

Table 5.4: The r-th order non-linearity found up to n=5 variables Boolean
functions constructed using Method-1 [11]

• Higher Order Non-Linearity (Nfr) of Method-2. In this method,

Pasalic [21] constructed Boolean functions by concatenating four initial func-
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tions and after each iteration he constuct Boolean functions with AI increased

by 1, and no of variables increased by 2. The Nfr of his constructed Boolean

functions up to n=5 variables, is shown in Table 5.5. Note, since we have

implemented his construction for n=Even only so Nfr for n=4 is calculated

and shown below.

No of
Var

Truth Table Nf1 Nf2 Nf3 Nf4 Processing Time

n=4 0101111101001000 4 2 0 1 0.03 sec
n=4 0110001101111000 4 2 0 1 0.03 sec
n=4 1010000010110111 4 2 0 1 0.03 sec
n=4 1001001101111000 4 2 0 1 0.03 sec

Table 5.5: The r-th order non-linearity found for Boolean functions of n=4
variables of Construction Method-2 [21]

• Higher Order Non-Linearity (Nfr) of Method-3. In method-

3 [24], the author used the technique of concatenation, and use two initial

functions (n=Odd) to construct a function (n=Even) with maximum alge-

braic immunity. The Nfr of his constructed Boolean functions of n=4 vari-

ables, is shown in Table 5.6.

No of
Var

Truth Table Nf1 Nf2 Nf3 Nf4 Processing Time

n=4 1110100011011000 4 2 0 1 0.03 sec
n=4 1011100001111000 4 2 0 1 0.03 sec
n=4 1110010011010100 4 2 0 1 0.03 sec
n=4 1011010001110100 4 2 0 1 0.03 sec
n=4 1010110001101100 4 2 0 1 0.03 sec
n=4 1001110001011100 4 2 0 1 0.03 sec

Table 5.6: The r-th order non-linearity found for Boolean functions of n=4
variables of Construction Method-3 [24]
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• Higher Order Non-Linearity (Nfr) of Method-4. In method-

4 [24], the author used primitive polynomials to construct Boolean functions

of maximum AI and other good cryptographic properties. The Nfr of his

constructed Boolean functions up to n=5 variables, is shown in Table 5.7.

In the last row of table below, only second order nonlinearity has been cal-

culated, however processing time was not much reduced as large number of

processing is consumed in computing algebraic degree.

No of
Var

Truth Table Nf1 Nf2 Nf3 Nf4 Nf5

Processing
Time

n=3 10010011 2 0 1 - - 0.00 sec
n=3 10001110 2 0 1 - - 0.00 sec
n=4 1000100110100111 4 2 0 1 - 0.03 sec
n=4 1000011110101100 4 2 0 1 - 0.03 sec

n=5
1000010010110001111100

0110111010
10 6 2 0 1 4171 sec

n=5
1000011001000111110111

0001010110
10 6 2 0 1 4171 sec

n=5
1111101110001010110100

0011001000
12 6 0 2 1 4171 sec

n=5
1000011100110011111010

0010010101
10 6 2 0 1 4171 sec

n=5
1000011100110011111010

0010010101
10 6 - - - 3660 sec

Table 5.7: The r-th order non-linearity found up to n=5 variables Boolean
functions constructed using Method-4 [22]

5.4 Analysis of Boolean Functions Construc-

tion Methods

In light of above implementation results of existing construction methods [11,

21,22,24] with respective to their higher order non-linearities, it is concluded
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that Method-4 [22] has much better 2nd and 3rd order non-linearity for n=4

and n=5 variables, as compared to Method-1 [11]. As far as, remaining two

methods are concern (i.e. Method-2 and Method-3), they are iterative in

nature and their cryptographic properties are based on their initial functions

which are used for concatenation. We have also calculated r-th order non-

linearity of their constructed Boolean functions for n=4 variables, which have

optimal values at least for 2nd order non-linearity for both the methods

[21, 24]. A comparison graph between rth-order nonlinearity of Method-

1 [11], Method-4 [22] is shown in Figure 5.1 below, generated using MatLab

R2009b.

Figure 5.1: rth-order nonlinearity of Method-1 [11] and Method-4 [22] for n
= 5 variables



Chapter 6

Extending Existing
Construction Methods

6.1 Introduction

In this chapter, we will present a technique, which we have discovered through

experimental results, and is novel till now up to our knowledge. By using

this technique one can construct 2n more number of Boolean functions, from

existing single Boolean function with same cryptographic properties. Most

importantly, the new constructed functions have same algebraic immunity as

that of original one, i.e. maximal. We have successfully applied this technique

in two existing construction methods, i.e. Method-1 [11] and Method-4 [22].

Our main focus was to achieve maximum algebraic immunity, although our

technique does not disturb balanced-ness, non-linearity completely and alge-

braic degree up to some extent for Method-1. For construction method-4, we

got 100% successful results for n=Even, and achieved all the cryptographic

properties as that of existing single Boolean function. However, we did not

get optimal AI always in case of n=Odd for construction method-4. The

details are given in subsequent paragraphs.
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6.2 Extending Method-1 (using Majority Func-

tions)

During implementation of construction method proposed by D.K. Dalia [11],

we identified that there is only one Boolean function that can be constructed

using his proposed construction-3, for any value of n=ODD. This approach

is not too much useful, as while implementing subsequent methods, which

are mostly based on concatenation, utilize more number of existing Boolean

functions with maximum AI. Therefore, its very difficult (almost impossible)

to find a Boolean function with optimal cryptographic values (especially max-

imum algebraic immunity) when n is greater than 10, as space for number of

Boolean functions becomes 2210 .

Through experimental results, we have discovered a technique, which can

be used to construct 2n more number of Boolean functions using single ex-

isting Boolean function with maximum AI. The new constructed Boolean

functions have same cryptographic properties (AI, balanced-ness and non-

linearity) as that of existing one, except algebraic degree and correlation

immunity, which may divert slightly for few Boolean functions. This tech-

nique is novel up to our best knowledge. We have tried/applied various

different techniques, through experiments, to get more number of Boolean

functions from existing functions, however only this technique showed suc-

cessful results. In this technique, we apply cyclic shift on the truth table of

constructed majority functions, i.e. the support set of the Boolean function

is cyclic shifted by one to construct one new function. In this way by shifting

total of 2n times, we construct 2n number of Boolean functions. We have suc-
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cessfully applied this technique on both Odd and Even Majority functions,

constructed using construction-3 of Dalai [11].

For n = Odd, we have implemented up to n = 11 variables, and found all

constructed Boolean functions with same Algebraic Immunity, Non-linearity

and Balancedness as that of original function, however algebraic degree and

correlation immunity changes slightly, as shown in Table 6.1.

No of Variables No of Constructed BFns Bal Deg Nf CI AI
n = 3 23 = 8 BFns 1 2 2 0-2 2
n = 5 25 = 32 BFns 1 4 10 0-4 3
n = 7 27 = 128 BFns 1 4-6 44 0-6 4
n = 9 29 = 512 BFns 1 8 186 0-8 5
n = 11 211 = 2048 BFns 1 8-10 772 0-10 6

Table 6.1: Number of Boolean functions constructed using our proposed
extension in Method-1 [11] and their cryptographic properties for n = ODD

For n = Even, we have implemented up to n = 12 variables. Since using

construction-3 of Dalai, the output functions are not balanced and the author

has left it to us to make them balanced. We in our work have made them

balanced, making first half of total (weight = n/2) outputs equal to ONE

and rest half to ZERO, in this case we get all the cryptographic properties

exactly the same as that of original boolean function, rather in some cases

we achieve higher value of correlation immunity. The implementation results

are mentioned in Table 6.2, for up to n=12 variables. Note balancedness,

non-linearity and algebraic immunity is same for all the newly constructed

Boolean functions.
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No of Variables No of Constructed BFns Bal Deg Nf CI AI
n = 4 24 = 16 BFns 1 2 4 2-3 2
n = 6 26 = 64 BFns 1 4 20 0-5 3
n = 8 28 = 256 BFns 1 4-6 88 0-7 4
n = 10 210 = 1024 BFns 1 8 372 0-9 5
n = 12 212 = 4096 BFns 1 8-10 1544 0-11 6

Table 6.2: Number of Boolean functions constructed using our proposed
extension in Method-1 [11] and their cryptographic properties for n = EVEN

6.3 Extending Method-4 (using Primitive Poly-

nomials)

The construction method proposed by D.K.Dalai [11] is not useful for prac-

tical crypto systems, as suggested by the author; it can only be used for

theoretical study. This is because of the fact that although the author get

optimal value of algebraic immunity, however unable to get optimal values

of other cryptographic properties, especially non-linearity.

The idea of constructing Boolean functions using primitive polynomials

was presented in [22], which not only provide optimal values of algebraic

immunity, algebraic degree and balancedness but also have very high value

of non-linearity (very close to its optimal value). The problem with this

construction [22] was also same, i.e. only one Boolean function can be con-

structed using one primitive polynomial. Therefore, in this research, we also

applied our technique of cyclic shift to Method-4 [22], and construct suc-

cessfully 2n number of more Boolean functions from existing single Boolean

function. We have applied our technique for both Even and Odd n, however

got successful results for n=Enen only, as for n=Odd we did not get optimal

value of AI always. The results up to n=12 are mentioned in Table 6.3.
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No of
Var

Primitive
Polynomial

No of
Constructed

BFns
Bal Deg Nf CI AI

n=4 1 + x+ x4 24 = 16 1 3 4 0 2
n=4 1 + x3 + x4 24 = 16 1 3 4 0 2
n=6 1 + x+ x6 26 = 64 1 5 22-24 0 3
n=6 1 + x+ x4 + x5 + x6 26 = 64 1 5 20-24 0 3
n=6 1 + x5 + x6 26 = 64 1 5 22-24 0 3
n=8 1 + x+ x3 + x5 + x8 28 = 256 1 7 100-110 0 4

n=8
1 + x+ x2 + x3 +
x4 + x6 + x8

28 = 256 1 7 102-110 0 4

n=8 1+x2 +x5 +x6 +x8 28 = 256 1 7 100-110 0 4
n=10 1+x4+x5+x8+x10 210 = 1024 1 9 436-472 0 5
n=10 1+x2+x3+x8+x10 210 = 1024 1 9 448-468 0 5
n=10 1+x+x4 +x9 +x10 210 = 1024 1 9 440-468 0 5

n=12 1+x+x4 +x6 +x12 212 = 4096 1 11
1882-
1952

0 6

Table 6.3: Number of Boolean functions constructed using our proposed
extension in Method-4 [22] and their cryptographic properties up to n = 12
variables (EVEN only)

A comparison is carried out among number of Boolean functions con-

structed with each value of n (variable) for Method-1 [11], Method-4 [22]

and our proposed extension in existing methods. Note for Method-1 [11], for

each value of n, one can get only two Boolean functions, i.e. one majority

function and other its complement, while for Method-4 [22], for each value of

n, one can construct same number of Boolean functions as there are primi-

tive polynomials exists for that particular value of n, while with our proposed

extension, one can get at least 2n number of Boolean functions with maxi-

mum algebraic immunity for each value of n, as shown in Figure 6.1 below,

generated using MatLab R2009b.
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Figure 6.1: Comparison among number of Boolean functions constructed
from Method-1 [11], Method-4 [22] and our Proposed Method



Chapter 7

Conclusion and Future Work

7.1 Conclusions

In this research, a comparative study of four existing methods has been car-

ried out, in order to characterize these methods in terms of fulfilling basic

cryptographic properties. Additionally, these methods are evaluated in terms

of achieving optimal values of higher order non-linearity, for which there are

no such study carried out in literature. Although every construction method

achieved optimal value of algebraic immunity, which we verified practically,

however, the real challenge was to achieve optimal values of other crypto-

graphic criteria as well. In our detailed analysis, Method-4 is found most

suitable as it provides balanced Boolean functions with optimal value of al-

gebraic immunity, algebraic degree and a very high value of non-linearity.

However, it does not provide high value of correlation immunity, which can

be taken as a future work.

In the second part, an effective and efficient technique of constructing

2n more number of Boolean functions from a single Boolean function has

been developed. Each of the newly constructed function has been verified

58
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by practically computing their cryptographic properties and all have optimal

values of algebraic immunity, balanced-ness and algebraic degree. The value

of non-linearity achieved is same as that of original Boolean function, which

is close to optimal in case of Method-4.

7.2 Summary of Contributions

In this research, we have experimentally proved that one can construct 2n

more number of Boolean functions from single existing function. We applied

our technique, in two existing methods, i.e. Method-1 [11] and Method-4 [22],

and present our results for both even and odd cases.

The second contribution in this thesis is the comparative analysis of four

existing methods of constructing Boolean functions with optimal algebraic

immunity. These methods are not only evaluated on fulfilling basic cryp-

tographic criteria but are also analyzed in terms of their higher order non-

linearity, which has not been studied yet. The study concludes that out of

these four methods, Method-4 is best which provides optimal value of alge-

braic degree, balancedness and a very high value of non-linearity other than

achieving maximum algebraic immunity.

• Future Directions: The results we achieved for extending existing

methods are experimentally verified and no theoretical proof has been given

and is left as future work. Additionally, Boolean functions constructed using

Method-4 could be utilized in designing a strong LFSR based stream cipher.
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Appendix A

Source Codes (C-Language)

A.1 Computing Non-Linearity and Correla-

tion Immunity

//COMPUTING NON−LINEARITY FROM WALSH TRANSFORM
2 void Walsh Transform ( unsigned char ∗ t r u t h t ab l e )
{

4 unsigned char i =0, i 0 =0, i 1 =0, s tep=0, j =0;
unsigned char temp=0,max walsh value=0;

6 i n t sum=0, d i f f =0, c i temp=0;
char sequence BFn [256 ]={0} ; // Max256 f o r n=8 va r i a b l e s

8 char cor re la t ion immuni ty [256 ]={0} ;

10 //Converting TruthTable o f f i n to Sequence o f f ;
//a sequence o f f i s same as i t s TruthTable except

12 // a l l One ’ s are r ep laced by −1 and a l l Zero ’ s by +1
f o r ( i =0; i<s ize TT ; i++)

14 i f ( t r u t h t ab l e [ i ] ) sequence BFn [ i ] = −1;
e l s e sequence BFn [ i ] = 1 ;

16 f o r ( s tep=1; step<s ize TT ; step<<=1)
{

18 f o r ( i 1 =0; i1<s ize TT ; i 1+=2∗s tep )
{

20 f o r ( i 0 =0; i0<s tep ; i 0++)
{

22 i=i 1+i0 ;
sum=sequence BFn [ i ]+sequence BFn [ i+step ] ;

24 d i f f=sequence BFn [ i ]− sequence BFn [ i+step ] ;
sequence BFn [ i ]=sum ;

26 sequence BFn [ i+step ]= d i f f ;
}

28 }
}

64
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30 f o r ( i =0; i<s ize TT ; i++)
{

32 temp = abs ( sequence BFn [ i ] ) ;
i f ( temp>max walsh value ) max walsh value = temp ;

34 //COMPUTING CORRELATION IMMUNITY
ci temp = 0 ;

36 f o r ( j =0; j<s i z e n ; j++) ci temp = ( ( i>>j )&1) + ci temp ;
cor re la t ion immuni ty [ c i temp ] = temp + corre la t ion immuni ty [
c i temp ] ;

38 }
non l i n e a r i t y = ( size TT /2) − ( max walsh value /2) ;

40 f o r ( i =0; i<s i z e n ; i++)
i f ( cor re la t ion immuni ty [ i ] == 0) CI order = i ;

42 }

A.2 Computing Algebraic Immunity

unsigned char Algebraic Immunity ( unsigned char ∗ t r u t h t ab l e )
2 {

unsigned char deg ann max=0;
4 unsigned char i =0, j =0,k=0,deg=0,temp=0,sum=0;

unsigned char supp [ BF l imit ]={0} , s count =0;
6 unsigned i n t monomials [ BF l imit ]={0} ,m count=0;

unsigned i n t A[ BF l imit ] [ 1 00 ]={0} ;
8 unsigned i n t row=0, c o l =0, rank matr ix=0;

unsigned char deg mat r i x f =0, count f =0;
10 // Ca l cu l a t ing max degree o f Ann ih i l a t o r s upto which t h i s program

// w i l l run ; which i s one l e s s than optimal AI , i . e . n/2 − 1 .
12

i f ( s i z e n%2) deg ann max = s i z e n /2 ; // i f n i s ODD
14 e l s e deg ann max = ( s i z e n /2) − 1 ; // i f n i s EVEN

f o r ( count f =0; count f <2; count f++)
16 {

i f ( c ount f == 1)
18 f o r ( i =0; i<s ize TT ; i++)

t r u t h t ab l e [ i ] = (˜ t r u t h t ab l e [ i ] ) & 0x01 ;
20

// Ca l cu l a t ing Supp{ f } matrix , conta in s va lue s in which f ( x )=1
22 f o r ( i =0; i<s ize TT ; i++) i f ( t r u t h t ab l e [ i ] ) supp [ s count++] = i ;

24 // Ca l cu l a t ing AI , s t a r t i n g from deg=1 o f p o s s i b l e a nn i h i l a t o r
f o r ( deg=1;deg<=deg ann max ; deg++)

26 { // Ca lcu la te Monomials o f Degree = deg
m count=0; // Store a l l p o s s i b l e monomials o f weight = deg

28
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f o r ( i =0; i<s ize TT ; i++)
30 {

temp = i ;
32 whi le ( temp)

{ sum = sum + (temp&1) ; temp = temp>>1; }
34 i f (sum <= deg ) monomials [ m count++] = i ;

sum=0;
36 }

// Ca lcu la te A [ ] [ ] , c onta in s monomials at v e c t o r s o f Supp ( f )
38 f o r ( i =0; i<s count ; i++)

{
40 f o r ( j =0; j<m count ; j++)

{ // This i s the main part that checks a l l v a r i a b l e s o f
monomials that are equal to One in Supp ( f ) then make them
ava i l a b l e in matrix A [ ] [ ]

42 i f ( ( monomials [ j ] & supp [ i ] ) == monomials [ j ] ) A[ i ] [ j ] = 1 ;
e l s e A[ i ] [ j ] = 0 ;

44 }
}

46 f o r ( c o l =0; co l<m count ; c o l++)
{

48 f o r ( row=co l ; row<s count ; row++)
{

50 i f (A[ row ] [ c o l ] == 1) // f i nd i n g a p ivot
{

52 i f ( row == co l ) // check ing p ivot p o s i t i o n
{

54 f o r ( i=row+1; i<s count ; i++)
{

56 i f (A[ i ] [ c o l ] )
f o r ( j=co l ; j<m count ; j++)

58 A[ i ] [ j ] = A[ i ] [ j ] ˆ A[ row ] [ j ] ;
}

60 }
e l s e // r ep l a c i n g the row value 1 , with zero

62 {
f o r ( i =0; i<m count ; i++)

64 {
temp = A[ row ] [ i ] ;

66 A[ row ] [ i ] = A[ c o l ] [ i ] ;
A[ c o l ] [ i ] = temp ;

68 }
co l−−; // so that next time co l come again

70 row = co l ; // row w i l l automat i ca l l y get incremented in loop
}

72 c o l++; // column w i l l incremented here manually
}//end i f p ivot found

74 } //end f o r row
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76 k++; // i f No value ONE found at p ivot p o s i t i o n and a l l va lue s
// under i t then increment k , so that Rank = monomials−k

78 }//end f o r c o l
k−−;

80 rank matr ix = m count − k ;
i f ( c ount f == 1)

82 {
i f ( rank matr ix < m count )

84 {
i f ( d eg mat r i x f < deg )

86 {
f o r ( i =0; i<s ize TT ; i++)

88 t r u t h t ab l e [ i ] = (˜ t r u t h t ab l e [ i ] ) & 0x01 ;
re turn ( deg mat r i x f ) ;

90 }
e l s e

92 {
f o r ( i =0; i<s ize TT ; i++)

94 t r u t h t ab l e [ i ] = (˜ t r u t h t ab l e [ i ] ) & 0x01 ;
re turn ( deg ) ;

96 }
}

98 }
i f ( rank matr ix < m count )

100 {
deg mat r i x f = deg ;

102 deg = deg ann max ;
}

104 }// end f o r deg
}// end f o r count f

106 f o r ( i =0; i<s ize TT ; i++)
t r u t h t ab l e [ i ] = (˜ t r u t h t ab l e [ i ] ) & 0x01 ;

108 re turn ( deg ann max+1) ; // means Optimal AI
}//End AI Function

A.3 Computing Higher Order Non-Linearity

1 // This Program w i l l Ca l cu la t e Higher Order Non−L inea r i t y upto n
=5 va r i a b l e s

#inc lude<s t d i o . h>
3 #inc lude<s t d l i b . h>
#inc lude<con io . h>

5 #inc lude<math . h>
#inc lude<time . h>

7
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//For any n − value j u s t change here :
9 #de f i n e BF l imit 4294967295 // 65536 f o r n=4

#de f i n e n l im i t 5
11

i n t main ( void )
13 {

//∗∗∗∗∗ VARIABLES
15 FILE ∗ fw r i t e ;

char f i l e name [ 2 5 ] ;
17 unsigned i n t count BF=0;

unsigned i n t t ru th tab l e = 0x01 ;
19 unsigned i n t d=0, i =0, j =0;

unsigned i n t HD 1 = 0xFF ,HD 2 = 0xFF ,HD 3 = 0xFF ,HD 4 = 0xFF ,
HD 5 = 0xFF , Hamming Weight=0;

21 unsigned i n t degree=0;
unsigned i n t temp tt=0, xor=0;

23 unsigned i n t s i z e n =0; //No o f v a r i a b l e s
unsigned i n t s ize TT=0; //No o f e lements o f Truth Table

25 unsigned i n t s ize BF=0; //No o f BFns
unsigned i n t i 0 =0, i 1 =0, s tep=0;

27 unsigned i n t x=0,y=0;
c l o c k t begin , end ;

29 double t ime spent ;

31 begin = c lock ( ) ; // To computer Proce s s ing Time

33 p r i n t f ( ”\nThis Program w i l l Ca l cu la t e Higher Order Nf o f a BFn
o f n=5 ” ) ;

p r i n t f ( ”\n\nEnter Boolean Function in Decimal Form ( e . g .
00100000 = 32) ==> ” ) ;

35 s can f ( ”%d”,& t ru th tab l e ) ;
p r i n t f ( ”\n\n\tComputing Please Wait . . . ” ) ;

37 s i z e n = n l im i t ;

39 i f ( s i z e n > 5)
{ p r i n t f ( ”\n\n\n\ tSorry ! The Boolean Functions s e t w i l l be too

long , { 2<=n<=5 } ” ) ;
41 p r i n t f ( ”\n\n\n\n\ t \ t THE END \n\ npress any key to cont inue

. . . ” ) ;
g e t ch ( ) ; e x i t (0 ) ; }

43

s ize TT = pow(2 , s i z e n ) ; //This w i l l c a l c u l a t e no o f va lue s
o f TruthTable o f a n−va r i ab l e func t i on f , i . e . 2ˆ s i z e n

45 s ize BF = pow(2 , s ize TT ) ; //This w i l l c a l c u l a t e Total Number
o f BF o f n v a r i a b l e s i . e . 2ˆ(2ˆ s i z e n ) f o r n=3, i t i s 2ˆ2ˆ3 =
2ˆ8 = 256

47 s p r i n t f ( f i l e name , ”Nf n=%d . x l s ” , s i z e n ) ;
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fw r i t e = fopen ( f i l e name , ”w” ) ; //Writing r e s u l t s in an Excel
F i l e

49 f p r i n t f ( fwr i t e , ”BFns−TT\ t1st−Order\t2nd−Order\ t3rd−Order\ t4th−
Order\ t5th−Order\n” ) ;

51 //∗∗∗∗∗ MAIN BODY (PROCESSING)
f o r ( count BF=1;count BF<s ize BF −1; count BF++)

53 {
temp tt = count BF ;

55 xor = temp tt ˆ t ru th tab l e ;
Hamming Weight = 0 ;

57 // Counting No o f 1 ’ s a f t e r XOR i . e . Hamming Distance
f o r ( i =0; i<s ize TT ; i++) Hamming Weight = Hamming Weight +

( ( xor>>i )&1) ;
59

//Moebius Transform to compute Degree o f each BFn
61 f o r ( s tep=1; step<s ize TT ; step<<=1)

{
63 f o r ( i 1 =0; i1<s ize TT ; i 1+=2∗s tep )

{
65 f o r ( i 0 =0; i0<s tep ; i 0++)

{
67 i=i 1+i0 ;

x = ( ( temp tt>>( i+step ) )&1) ˆ ( ( temp tt>>i )&1) ;
69 y = ( temp tt>>( i+step ) ) & 0xFFFFFFFE;

y = y | x ;
71 y = y<<( i+step ) ;

temp tt = temp tt<<(32− i−s tep ) ;
73 temp tt = temp tt>>(32− i−s tep ) ;

temp tt = temp tt | y ;
75 }

}
77 }

degree=0;
79 f o r ( i =0; i<s ize TT ; i++)

{
81 i f ( ( temp tt>>i )&1)

{
83 f o r ( j =0; j<s i z e n ; j++)

{
85 i f ( i>>j & 0x01 ) d++;

}
87 i f (d>degree ) degree = d ;

d=0;
89 }

}
91

i f ( degree == 1)
93 {
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i f (Hamming Weight<HD 1) HD 1 = Hamming Weight ;
95 }

e l s e i f ( degree == 2)
97 {

i f (Hamming Weight<HD 2) HD 2 = Hamming Weight ;
99 }

e l s e i f ( degree == 3)
101 {

i f (Hamming Weight<HD 3) HD 3 = Hamming Weight ;
103 }

e l s e i f ( degree == 4)
105 {

i f (Hamming Weight<HD 4) HD 4 = Hamming Weight ;
107 }

e l s e i f ( degree == 5)
109 {

i f (Hamming Weight<HD 5) HD 5 = Hamming Weight ;
111 }

}// end count BF f o r loop
113 end = c lock ( ) ;

t ime spent = ( double ) ( end − begin ) / CLOCKS PER SEC;
115 p r i n t f ( ”\n\n\n\tTOTAL TIME TAKE : %f seconds ” , t ime spent ) ;

f p r i n t f ( fwr i t e , ”%d\ t%d\ t%d\ t%d\ t%d\ t%d\n” , t ruthtab l e , HD 1 ,HD 2
,HD 3 ,HD 4 ,HD 5) ;

117 p r i n t f ( ”\n\n The va lues o f Higher Order Nf o f a l l BFns o f n=%d
are s to r ed in <%s>” , s i z e n , f i l e name ) ;

p r i n t f ( ”\n\n\n\n\ t \ t THE END \n\ npress any key to cont inue . . .
” ) ;

119 getch ( ) ;
}

121 // ∗∗∗∗∗∗∗∗ The End Main ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗//


