

HARDWARE IMPLEMENTATION OF

FOG/HAZE REMOVAL SYSTEM

By

NC Saleha Shafique

NC Afsheen Ahmed

 CSS Ammal Abbas

A thesis submitted to the Department of Electrical Engineering, Military College of Signals,

National University of Sciences and Technology, Rawalpindi in partial fulfillment for the

requirements of a B.E Degree in Telecommunication Engineering

JUNE 2013

ABSTRACT

HARDWARE IMPLEMENTATION OF FOG/HAZE REMOVAL SYSTEM

The problem that we face when doing long distance photography or making of video is

that the light reflected from a surface is scattered in the atmosphere before it reaches the

camera and this is due to the presence of aerosols such as dust, mist and fumes which

deflect light from its original course of propagation and this effect increases

tremendously in the presence of fog or haze. Because of this, the image or video captured

appears blur, faint and it lacks visual vividness. So the main aim of this project is to

remove the effects of noise that is caused due to the presence of fog/haze from a real time

video. The algorithm for the removal of effects of fog/haze is implemented on FPGA.

The system first captures the corrupted video with fog/haze with the help of a camera,

and then passes this video from the implemented algorithm which removes the effects of

fog/haze from the video and in the end displays a clear video without the effects of

fog/haze on the VGA monitor.

DISSERTATION

No portion of the work presented in this dissertation has been submitted in support of

another award or qualification either at this institution or elsewhere.

iii

DEDICATED TO MILITARY COLLEGE OF SIGNALS

iv

ACKNOWLEGMENTS

We are grateful to Dr Adil Masood for providing us an opportunity to perform our BE

final year project in his Image processing group. As supervisor, his support and guidance

has always been a valuable asset for our project. His keen interest and discussions over

the work always provided a ray of hope in difficult times. We are really thankful for his

guidance in our project work. In the end we would like to thank Rector National

University of Sciences & Technology for funding this project. We are also grateful to the

whole staff of the Department of Electrical Engineering especially to Head of the

department for their support in many forms and enthusiasm.

v

TABLE OF CONTENTS

TABLE OF CONTENTS ... Error! Bookmark not defined.

TABLE OF FIGURES .. viii

CHAPTER 1 ...1

INTRODUCTION ...1

1.1 Background ...1

1.2 Problem Statement ...2

1.3 Objective of the project ...3

1.4 Project Contribution ..5

1.5 Thesis Organization ..5

CHAPTER 2 ...6

LITERATURE REVIEW ..6

2.1 Background knowledge ..6

2.1.1 Weather terminology...6

2.1.2 Particles in space ...6

2.1.3 Sky Illumination ...9

2.1.4 Possible solution ..10

2.2 Literature Review ...10

2.2.1 Contrast Enhancement ..11

2.2.2 Non-model-based ..12

2.2.3 Model-based ..12

2.3 Single image fog removal ...17

2.3.1 Fog model ..18

2.3.2 White Balance..19

2.3.3 Tarel et al.’s Implementation ...19

2.4 Video based fog removal ..20

2.5 FPGA (Field Programmable Gate Array) ..21

2.5.1 SPARTAN 3E XC 3S 500e ...22

CHAPTER 3 ...23

SYSTEM DESIGN ...23

vi

3.1 Project Workflow ...23

3.2 Program Planning ...24

3.3 The Hardware...25

3.3.1 The Setup...26

3.3.2 Connecting the camera ..27

3.3.3 Serial interface (RS-232) ...28

3.3.4 Interfacing the monitor ..32

3.3.5 VGA Interface ..33

3.4 The Techniques ..36

3.4.1 Median filter ..36

3.4.2 Bilateral filter ..36

3.4.3 Sobel module ...37

3.4.4 FPGA Implementation ..39

3.4.5 UCF Implementation ..42

CHAPTER 4 ...44

FUTURE ENHANCEMENTS AND CONCLUSION ..44

4.1 Conclusion ..44

4.1.1 Software ..44

4.1.2 Hardware ...45

4.1.3 Interfacing ...46

4.2 Future Enhancements ..46

vii

TABLE OF FIGURES

Figure 1.1 System Overview ..4

Figure 2.1 foggy weather ...8

Figure 2.2 Histogram equalization. (a) Original frame of low quality and histogram image

(b) the result of histogram equalization and histogram image.13

Figure 2.3 simplified principle of unsharp masking ..15

Figure 2.4 Assumption about color changes due to the color cast of surrounding photo

 ..17

Figure 3.1 Project Block Diagram ...24

Figure 3.2 FPGA (hardware used) ...25

Figure 3.3 The complete setup...27

Figure 3.4 The serial and VGA port...28

Figure 3.5 serial connector ..29

Figure 3.5 a sync transmitter ...31

Figure 3.6 a sync receiver ..32

Figure 3.7 VGA signal transmission ..33

Figure 3.8 VGA connector ..33

Figure 3.9 adding UCF in design panel ...43

viii

ABBREVIATIONS

FPGA Field Programmable Gate Array

ISE Integrated Software Environment

USB Universal Serial Bus

UCF User Constraint File

PC Personal Computer

VGA Video Graphics Array

I/O Input/Output

GP I/O General Purpose Input/Output

CLAHE Contrast Limited Adaptive Histogram Equalization

1

CHAPTER 1

INTRODUCTION

This thesis proposes the Fog/Haze removal system. The design that has been explained

incorporates a complete system that takes a video from the camera and then applies the

algorithm for removal of effects of fog/haze from the video and then after removing the

effects of fog/haze, displays a clear video on VGA (monitor).

1.1 Background

Nowadays there is an increase trend of video making and photography. Some people use

video making or photography for some kind of special purposes like security, making

advertisements, military purposes etc., whereas the other people do video making or

photography as their hobby.

Photography and video making is done in almost every season and probably everyday.

People used to make videos and take pictures on sunny, cloudy, rainy, foggy days and

nights and also in indoor and outdoor environments.

Although video making and photography is done in different kinds of environments but

people always want to get the best results. They always want to see the best quality

picture and this best quality picture includes enhanced colors, no blurriness, clearness,

sharpness and also this picture should not contain any kind of noise.

2

Systems and programs are developed to edit the pictures and videos to provide the best

quality pictures to viewers without any kind of noise but no system is yet developed that

could remove the effects of fog or haze from the pictures or videos. Different papers have

proposed different kinds of algorithms but these algorithms are not implemented

physically. And also there is a need of removing the effects of fog/haze from the real time

videos to avoid so many problems like accidents in foggy weather. So there is a need to

implement physically the proposed algorithms for real time videos too.

1.2 Problem Statement

The problem we face when doing long distance photography or making of video is that

videos coming from visible spectrum contain noise. This noise increases tremendously in

the presence of fog/haze. In almost every practical scenario the light reflected from a

surface is scattered in the atmosphere before it is received by the camera. This is because

of the presence of aerosols such as dust, mist and fumes which deflect light from its

original course of propagation. In long distance photography of foggy scenes this process

has a substantial effect on the image in which contrasts are reduced and surface colors

become faint. Such videos/images often lack visual vividness and appeal; moreover they

offer a poor visibility of the scene contents.

3

1.3 Objective of the project

The project’s objective is to implement an algorithm on a hardware that would remove

the effects of fog/haze from real time videos. We are dealing with real time videos in this

project. So we really need to have very fast processing rate and to acquire this high

processing rate, we have chosen FPGA (Field Programmable Gate Array) as our

hardware. The main components of the system are shown in the figure1.1

The detailed design of the system has been shown in this figure. It consists of three parts.

First part shows a camera which is used for acquisition of a corrupted video with

fog/haze. Second part shows the hardware which is FPGA, in the first step within the

hardware video with fog/haze effects is converted to frames, then these frames are passed

through the algorithm which will remove these effects and then convert the frames back

to the video and in the last part displays the clear video on VGA monitor.

4

Figure 1.1 System Overview

5

1.4 Project Contribution

The algorithm for the removal of effects of fog/haze from real time videos has been

implemented in a compact and efficient design. The system is able to receive a video

captured with the help of a camera as an input and then pass this video that is corrupted

with fog/haze from the hardware that will remove the effects of noise because of fog/haze

and in the end display the clear video as an output of this system on VGA (monitor).

1.5 Thesis Organization

Our thesis is organized into four chapters. The first chapter introduces the background,

motivation, research objectives, and scope of work and contribution of this project. The

second chapter describes the theory of techniques that are used to enhance the images and

to remove the effects of noise from an image to produce the best results. The third

chapter presents the research methodology, system design procedures and application

tools and the last chapter is about future enhancements and conclusion.

6

CHAPTER 2

LITERATURE REVIEW

2.1 Background knowledge

In this chapter the basic information about the project techniques to fully understand the

problem is defined.

2.1.1 Weather terminology

The presence of fog/ haze in the atmosphere can reduce visibility. This is dangerous for

all kind of traffic, whether it is on road, sea or air. This can lead to serious accidents.

Images or videos that are taken in bad or foggy weather have poor contrast and color. To

remove the effects of bad weather, the physical processes need to be understood that

cause these effects. As light propagates, its key characteristics (intensity, color,

enhancement, brightness) are altered due to atmospheric particles.

2.1.2 Particles in space

Weather conditions are affected by the sizes and types of particles involved in effecting

the atmospheric photo conditions and their concentration in atmosphere. These particles

results in a variety of weather conditions which are briefly discussed below.

7

2.1.2.1 Haze

It is constituted of aerosols which is a dispersion of small particles suspended in gas form

in the atmosphere. Haze has a number of sources which includes volcanic ashes,

combustion products, sea salt and foliage exudation. These sources produce particles

which respond quickly to changes in relative humidity and act as center of small water

droplets whenever humidity is high. Haze particles are larger than air molecules but their

size is smaller than fog droplets. Haze produces a grayish or bluish hue and tends to

effect visibility.

2.1.2.2 Fog

Fog occurs at the time when the relative humidity of an air constituent reaches to

saturation. At this time, some particles convert into water droplets by condensation.

Hence fog and many other types of haze have similar way of formation. Moreover

increase in humidity is a one of the important and sufficient reason to turn haze into fog.

This transition is slow and gradual and a state comes during this conversion which is

referred to as mist. There are different types of fog (for example advection fog, radiation

fog etc.) which differ from each other in their formation process. Fog is typically a few

hundred feet thick while haze has an altitude of several kilometers. The practical

difference between fog and haze is that fog greatly reduces the visibility.

8

Figure 2.1 foggy weather

9

2.1.2.4 Cloud

The main difference between fog and clouds is that clouds exist at higher altitudes rather

than reside at ground level. Most clouds compose of water droplets like water vapours,

fog but some are composed of long ice crystals and ice-coated dust grains. Since we

restrict ourselves at lower level vision for photography rather than high altitudes, so

clouds are of less relevance at this level.

2.1.2.5 Rain and Snow

The process of converting cloud droplets to rain is complex one. Rain causes random

temporal and spatial variations in images, and hence must be deal differently from the

static or stable weather conditions like fog, haze, etc. Snow is also handled similarly

because its flakes are rough in shape and have more complex optical properties and vary

in shape. It is set aside for now.

This project is focused on stable and steady weather conditions such as haze, fog, mist

and other aerosols (causing mist). Dynamic weather conditions such as rain, hail and

snow as well as turbulence are not handled.

2.1.3 Sky Illumination

The sky is normally overcast under misty or foggy conditions. In such cases we assume

that the irradiance is dominated by the radiance of the sky at each scene point, and it is

not significant due to other scene points.

10

2.1.4 Possible solution

 A possible solution for this reduced visibility is to have a camera to record the scene and

an algorithm to remove the effects of fog or haze in real time videos show the fog free

scene on a display screen (LCD, VGA monitor, etc). However, there are no such

algorithms that use a real time video as the input , although there are multiple methods

implemented that can remove fog from a series of images (specifically a single image).

2.2 Literature Review

Video enhancement problem can be formulated as given an input low quality video and

the output is high quality video for specific applications. Our goal is to deal with this

situation in which we think how can we make video more clearer or subjectively better.

Clear vision has become an integral part of everyday life in the areas having heavy fog.

In such areas main aim is to remove the visual appearance of video to make the view

clear for travelling and other military uses.

Different techniques are implemented which provide a better transform representation for

future automated video processing, such as analysis, segmentation, and recognition of the

consecutive images taken in video form. Moreover, it helps analyses background

information that is essential to understand the behavior of objects.

The existing techniques of video enhancement can be classified into two broad categories

i.e. Self-enhancement and frame-based fusion enhancement. Traditional methods of video

enhancement are to enhance the low quality video itself. For foggy videos, these

enhancement techniques are applied to video coming from camera and atmospheric veil

11

is extracted from the scene which results in removal of fog from videos. It doesn’t embed

any high quality background information since scene is changing continuously.

Such techniques are contrast enhancement method, HDR-based video enhancement,

wavelet-based transform video enhancement and compressed-based video enhancement.

These techniques are called self-enhancement of low-quality video.

 Self-enhancement doesn’t enough luminous of low quality video, because in the foggy

video some areas are so luminant that all the information is already lost in those regions.

No matter how much illumination enhancement we apply, it will not be able to bring

back lost information.

Frame-based fusion enhancement refers to low quality video, which fuse illumination

information in different time video. It is approached by extracting high quality

background information to embed low quality video. Various researchers are extracting

information to understand the solution of problems that are how can we combine

information from different background images in a meaningful way and how can we pick

high quality high quality background parts while retaining low quality information.

2.2.1 Contrast Enhancement

All these techniques are used for contrast enhancement of an image. Since video is a

sequence of consecutive images, contrast enhancement is done on each image(known as

frame). There are two types of contrast enhancement techniques i.e. Model-based and

Non-model-based.

12

2.2.2 Non-model-based

These techniques do contrast enhancement without knowing the cause of image

degradation. The main techniques included in non-model-based contrast enhancement are

histogram equalization, contrast limited adaptive histogram equalization retinex theory

and, unsharp masking based techniques.

2.2.3 Model-based

This technique performs contrast restoration by reversing the underlying cause. It

includes multiple image approaches, depth based approaches and single image

approaches.

Non model based techniques

2.2.3.1 Histogram equalization

Histogram equalization is one of the most commonly used methods for contrast

enhancement. It alters the spatial histogram of an image to closely match a uniform

distribution. The main objective of this technique is to achieve a uniform distributed

histogram by using the cumulative density function of the input image.

The advantages of the HE include (i) it suffers from the problem of being poorly suited

for retaining local detail due to its global treatment of the image. (ii) small-scale details

that are often associated with the small bins of the histogram are eliminated.

The disadvantage is that it is not a suitable algorithm for some applications such as

consumer electronic products, where it colors changes continuously and brightness

preservation is necessary to avoid annoying artifacts. The equalization result is usually an

13

undesired loss of visual data, of quality, and of intensity scale. Fig.2 shows the

experimental result of histogram equalization.

Figure 2.2 Histogram equalization. (a) Original frame of low quality and histogram image (b) the

result of histogram equalization and histogram image.

The histogram is divided into three regions as dark, mid and bright. In order to keep

original histogram features, the differential information is extracted from input histogram

and then desired histogram is specified based on this information and some extra

parameters are added such as gain value of the input image.

2.2.2.2 Contrast Limited Adaptive Histogram Equalization

CLAHE forms small regions of the image which are called tiles, and operates on them

instead of operating on the entire image. The 'Distribution' parameter histogram is

specified for complete image, each tile's contrast is enhanced, so that when histogram of

http://www.mathworks.com/help/images/ref/adapthisteq.html#bqkqi21

14

the output region is taken it approximately matches the Distribution parameter histogram.

The neighboring tiles are then combined using bilinear interpolation to eliminate

artificially induced boundaries. In homogeneous areas where there is not so much color

distinction, the contrast is limited to avoid amplifying any noise that might be present in

the image during taking histogram equalization.

Contrast limited adaptive histogram equalization differs from ordinary adaptive

histogram equalization in its contrast limiting. The contrast limiting procedure is applied

for each neighborhood from which a transformation function is derived. It helps to

prevent the over amplification of noise that occurs in adaptive histogram equalization.

2.2.2.3 Usharp masking

Unsharp masking is an image sharpening technique, normally available for digital image

processing. The technique uses a blurred or unsharp positive image to create a mask of

the original image. The created unsharp mask is then combined with the negative image

thus creates an image that is less blurry than the original image. The resulting image,

although clearer, may be a less accurate representation of the image’s subject. It is

generally a linear or non-linear filter that amplifies the high frequency components of the

coming images.

15

Figure 2.3 simplified principle of unsharp masking

2.2.2.4 Retinex theory

Retinex theory has been known for more than 30 years as a simple and effective model of

human vision. The name retinex comes from the contraction of two words “retina” and

“cortex” which indicates the intension to take into account the biological elements that

influence our visual perception.

16

The basic concept is to separate the components of an image i.e. illumination and

reflectance. The available luminance data in the image is the product between

illumination and reflectance. The reflectance component can be obtained by calculating

the ratio between luminance and an estimate of illumination. To estimate illumination

information, a low-pass filter is used. It includes single Gaussian estimation, multi-scale

Gaussian estimation and bilateral filter estimation. Using retinex theory has several

advantages. (i)the both images (reflectance image and illumination image) can be

obtained from a single image instead of a sequence of images, (ii)retinex method does not

require different algorithms to study vast and no training images are needed, and (iii)

there is no assumption about lighting sources and shadow.

An input color image is decomposed into intensity image I(x, y) and a color layer C(x, y).

the color layer C=(r, g, b) is given by dividing the input pixel values by the intensity I(x,

y). color space including different color planes like RGB, HSV, Y cb cr. This intensity

image I(x, y) is turned into the luminance layer L(x, y) and the reflectance layer R(x, y) by

using retinex theory.

Intensity image I(x, y) is represented by the product of the luminance L(x,y) and the

reflectance image R(x, y).

 I(x, y) = L(x, y) R(x, y) Equation 2.1

Luminance L(x, y) is assumed to be low frequency component of an image I(x, y) and

reflectance image R(x, y) is calculated as the ratio of the image I(x, y) and the luminance

L(x, y).

17

Figure 2.4 Assumption about color changes due to the color cast of surrounding photo

2.3 Single image fog removal

 For visibility enhancement in bad weather for video we start by analyzing the two

mentioned methods and the fog model. In contrast single image visibility enhancement is

more difficult than the video coming in a sequence of consecutive images. This is due to

the fact that limited information comes from an image and causes difficulty of estimating

depth with this little information. Multiple methods exist that are capable of enhancing

the visibility with the single image i.e. the work of Tarel [1].

18

The choice of methods to analyse and compare depends on how often they are cited and

their appearance in comparison with other methods. Another method for choice are the

differences between the work done for the two methods that are compared for better

results. Tan’s [2] work is more capable of improving the visibility under thick fog but can

take several minutes to compute. Tarel [1] work has more difficulties while handling

images with thicker fog but can restore an image within delay of seconds.

These methods are well suited for creating a good estimation of the atmospheric veil, but

they focus only on a single image

2.3.1 Fog model

Fog is a cloud of humidity near the surface of Earth, substance of water droplets. As light

travels through this substance a part of light is absorbed and this amount of light which is

absorbed depends on the fog substance through which the light travels and the absorption

coefficient. According to the Beer-Lambert law there is a logarithmic dependence

between the transmission of light and the product of distance and absorption coefficient,

 Equation 2.2

This fog model is the common model used when dealing with removing fog. The model

is shown in Equation 2.2. The parameter I(x) is the intensity of image that contains fog.

in Beer-Lambert law the both parameters i.e. direct attenuation and the air light are

logarithmic dependent. The direct attenuation exists out of air light color, which is the

color reflectance of the object in the image.

19

2.3.2 White Balance

The lightening conditions cause a color cast under which we take a photograph, which

depends on the temperature of color of the used light source, i.e. camera capturing video.

Low color temperature light sources cause a red/amber color cast. As the color

temperature rises to a higher color temperature, like sun, the color cast is bluish. So to

balance the white color we take a better source which comes in between the two and it

can be removed by performing white balance also known as color balance. By removing

color cast original colors of an image are restored. It can improve visibility also. But

these improvements are not so significant because the fog factor is still present. It only

helps to restore colors in a better way by using a better source. A significant part of white

balance is the air light color. To compute the air light color we have to look at two ways.

2.3.3 Tarel et al.’s Implementation

This algorithm is faster and has better results while comparing with other algorithms on

fog removal. The computational time is less than a second for a single image, the time

required is linear in the amount of pixels.

 Equation 2.3

 Equation 2.4

The fog model Tarel et al. uses is based on previous implementations to make it better.

Atmospheric veil V(x) is introduced

20

 Equation 2.5

The fog model is rewritten in equation (2.3). I(x) defines the intensity image which

contains fog and R(x) defines the restored output image. White balance is done in pre-

processing stage thus rewritten the equation to equation (2.4) which isolates output image

R(x).

2.4 Video based fog removal

The main advantage while dealing with video instead of single images is the extra

information of the surroundings that video can provide, but there also exists the first

problem that how can we extract information from video that can help improve the results

of single image methods? After exploring two different methods of Tan and Tarel to

obtain information from video we apply the found information to improve the results of

single image removal. We are using extra information, so our result should be better than

simply applying a single image fog removal method to each consecutive frame.

Extracting video information is time consuming i.e. the required computational time of

our method will be slower than a single image method.

we compare the air light of a single image enhancement method and our improved air

light to ground truths manually created with a graphics editing program.

We choose air light for comparison instead of restored images as air light is dependent

only on depth. The corrected air light is created by applying information from video and

using the intensity information from video of a single image.

21

So for a single image, the method that we create to enhance visibility in bad weather for

video is not fast and is therefore not useful in applications that require fast visibility

enhancement, e.g., road sign detection in bad weather for cars. Our method is applicable

for applications that process static material (images) from security cameras.

2.5 FPGA (Field Programmable Gate Array)

We have used FPGA as hardware for fast processing of algorithm because delay is not

acceptable in our case, as during moving on roads or when moving to have clear path

delay may cause accidents.

A field-programmable gate array (FPGA) is an integrated circuit designed to generally

use a hardware description language (HDL) similar to that used for an application-

specific integrated circuit (ASIC). FPGAs have large resources of logic gates and RAM

blocks to implement complex digital designs using these blocks and logic gates. As

FPGA designs gives very fast IOs and bidirectional data buses it becomes an important

task to verify correct timing of valid data within setup time and hold time traditionally.

FPGAs have been used for specific applications where the volume of production is small

and fast processing is required. For such low-volume applications, the companies pay for

hardware costs per unit for a programmable chip so it is more affordable than developing

resources for creating an ASIC for such application. Today, affordable cost and fast

performance dynamics of FPGA have broadened the range of its applications, hence

being useful in many companies related projects like in aerospace and defense, audio,

automotive and broadcast, electronics, medical, image processing etc.

http://en.wikipedia.org/wiki/Integrated_circuit
http://en.wikipedia.org/wiki/Hardware_description_language
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit

22

2.5.1 SPARTAN 3E XC 3S 500e

We have used SPARTAN 3E XC 3S 500E kit. The complete package of this kit is

XC3S500E FGG320-4C.

Here XC specifies that the kit is of Xilinx, 3S gives information about the family. In this

kit 3S specifies that the kit is of SPARTAN 3 family. 500E gives the number of K gates

used in FPGA kit. FGG is the pin package of the device and 320 are the number of I/Os

used in the device. The number can be increased by making use of GP I/Os. Last is – 4

specifies the speed grade of the device, specifies that the kit is 5% faster than the kit

having speed -3. C is the commercial temperature grade.

23

CHAPTER 3

SYSTEM DESIGN

3.1 Project Workflow

This chapter discuss about the method and interfaces that have been used to make this

project successful. The method includes the discussion of the project workflow, system

design procedure, techniques and tools utilized in this work. This project involved the

effort of software hardware integration system design process, which involves interface

design and software development. Hence, it calls for software system design, in which

the algorithm is designed in the software and embedded in the hardware used.

24

Figure 3.1 Project Block Diagram

3.2 Program Planning

The works continues with the literature reviews on Fast visibility restoration from a

single color or grey level and about visibility in bad weather from a single image. We

deal with the single color image because it is important to understand the fundamental

concept and operations carried out to handle a single plane of an image. To design the

whole systematic project consecutive images are handled in three planes i.e. red, green

and blue.

Several tools and techniques are understood and familiarized to deal with the consecutive

stream of images in three color plane making a smooth video. These include familiarizing

with techniques to preserve image edges, color restoration, atmospheric veil extraction,

conversion from video to frames or consecutive images and from frames to video back ,

tone mapping, median filtering. The system is running on Microsoft windows as software

is installed in the system. Matlab was understood thoroughly for video transmission to

hardware, i.e. FPGA kit through serial interfacing (RS 232).

For designing different modules of algorithm initially, we write different modules using

MODELSIM and this software was used to extract different modules.

The project workflows continue with designing and creating different modules,

integrating these modules using Xilinx ISE thus developing the complete prototype.

Finally, the VGA monitor is interfaced with the FPGA kit using VGA port for displaying

clear video coming from webcam interfaced with Microsoft windows using Matlab.

25

The code is burnt on FPGA kit using Xilinx ISE software for creating bit file of code and

ADEPT for interfacing FPGA kit with Microsoft system. The system used to get data

from the interfaced webcam, video is captured in Matlab, then sent to the FPGA board,

processing is done on the board, and then data is sent to VGA port. At the end, output is

displayed, both on VGA monitor as well as Amber LED of the FPGA board turn on

depicting successful simulation of algorithm on FPGA.

3.3 The Hardware

The hardware of the project is shown in figure 3.2. It is designed in such a way to ensure

that it is cost effective and fulfills all the requirements of the project. For this reason

webcam is used.

Figure 3.2 FPGA (hardware used)

26

3.3.1 The Setup

The requirement of the project was that image acquisition should be done in a confined

environment. The reason for this was to make sure that the physical conditions like

temperature, light ,humidity etc are least altered during the course of database

compilation as these factors greatly affect the image acquisition. This results in different

alterations to observed in the image preprocessing phase.

The setup is made of wood which includes FPGA kit enclosed in it and code burnt in the

PROM of FPGA. A camera is attached to the system and they system is connected with

the FPGA through serial port of FPGA. A monitor is interfaced with FPGA which is used

to display the enhanced video after passing through the algorithm.

The whole setup is done in such a way that it is affected minimum by different weather

conditions. For this reason FPGA is enclosed in the wooden box to avoid the effects of

fog /haze on the kit and also wood is an insulator, so it avoids heating of the hardware.

27

Figure 3.3 The complete setup

3.3.2 Connecting the camera

One of the main aims of this project was to make it cost effective. Since FPGA kit is of

high cost and the camera which are available to come up to the requirement of the project

were very costly, so a simple low cost camera, i.e. a webcam is used. The objective of

using this camera is to take video in different available sizes depending on the availability

of the display screen size and camera resolution. Since high resolution affects the frame

rate of video, for real time videos one of the two is to compromised. So to get better and

high frame rate resolution is limited.

28

Figure 3.4 The serial and VGA port

3.3.3 Serial interface (RS-232)

A serial interface is a simple and easy way to connect an FPGA to a PC. In the project, a

serial interface is created to connect an asynchronous serial link like RS-232 in an FPGA

consisting of three parts (i) Baud generator, (ii) Transmitter, and (iii) Receiver.

29

3.3.3.1 How the RS-232 serial interface works

An RS-232 interface has many characteristics including usage of a connector "DB-9",

having 9 pins, bidirectional, full-duplex communication (data can be send and receive at

same time) and communicate at a maximum speed of 10KBytes/s approx.

Figure 3.5 serial connector

3.3.3.2 DB-9 connector

It has 9 pins, but the 3 important ones are:

 Pin 2: RxD (for receiving data).

 Pin 3: TxD (for transmitting data).

 Pin 5: GND (ground pin).

We use three wires to connect these three pins for sending and receiving data.

3.3.3.3 Serial communication

Data is sent one bit at a selected chunk of time. A single wire is used for each direction.

Computer needs at least several bits of data, so the data is "serialized" before being sent.

Data is sent in chunks of 8 bits. The LSB (data bit 0) is sent first followed by the MSB

(bit 7).

30

3.3.3.4 How fast can we send data?

Baud tells about speed which specifies how many bits-per-seconds can be sent. Common

implementations of the RS-232 connector do not allow any speed to be used. Standard

speed is settled for the project having common values of 1200 bauds, 9600 bauds, 38400

bauds or 115200 bauds (usually the fastest communication speed through serial

connector).

At 115200 bauds, each bit lasts for (1/115200) = 8.7µs. When we transmit 8-bits data, it

lasts for 8 x 8.7µs = 69µs. two bits are added because each byte requires an extra start

and stop bit, so we actually need 10 x 8.7µs = 87µs, thus giving a speed of 11.5KBytes

per second which can be considered as maximum speed at this baud rate.

At 115200 bauds, some PCs with large functionality chips require a "long" stop bit (1.5

or 2 bits long) which make the maximum speed drop to around 10.5KBytes per second.

This factor adds some delay and speed of the video transmission is affected.

3.3.3.5 Baud generator

We want to use the serial link at maximum speed, i.e. 115200 bauds. slower speeds are

easy to generate. FPGAs usually run at speed well above 115200Hz . So we use a high-

speed clock and divide it down to generate a "tick" as close as possible to 115200 times a

second.

31

3.3.3.6 RS-232 transmitter

It works likes (i) The transmitter takes an 8-bit data, and serializes it (starting when the

"TxD_start" signal is asserted), (ii) The "busy" signal is asserted while a transmission

occurs. The "TxD_start" signal is ignored during that time.

The RS-232 parameters used are fixed, i.e. 8-bits data, no-parity bits, 2 stop bits etc.

Figure 3.5 a sync transmitter

3.3.3.7 RS-232 receiver

Our implementation works like (i) the module assembles data from the RxD line as it

comes. (ii) As a byte is being received, it appears on the "data" bus. Once a complete byte

has been received, "data_ready" is asserted for one complete clock.

32

"data" is valid only when "data_ready" is asserted. The rest of the time, don't use it as

new data may come that shuffles it.

Figure 3.6 a sync receiver

3.3.3.8 How to use the RS-232 transmitter and receiver

This design allows controlling of FPGA pins from our PC (through our PC's serial port).

In more details, the design (i) Creates 8 outputs on the FPGA (port named "GPout").

GPout is updated by any character that the FPGA receives. (ii) Creates 8 inputs on the

FPGA (port named "GPin"). GPin is transmitted every time the FPGA receives a

character.

The GP(general purpose) outputs can be used to control anything remotely from the PC,

might be LEDs or LCD on FPGA board.

3.3.4 Interfacing the monitor

The VGA monitor is interfaced with the VGA port of the FPGA kit. It displays the

consecutive stream of images with a specified frame rate so that images form a video.

33

Figure 3.7 VGA signal transmission

3.3.5 VGA Interface

A VGA interface has 15 pins and requires 5 pins that transmit signals to display a

picture:

 R, G and B (red, green and blue signals). Pin 1, 2 and 3.

 HS and VS (horizontal and vertical synchronization). Pin 13 and 14.

Figure 3.8 VGA connector

The transmit signals are of two types, i.e. analog and digital. The R, G and B are analog

signals, while HS and VS are digital signals.

3.3.5.1 Creating a VGA video signal from FPGA pins

To drive the VGA connector, connections are made as following:

34

 Pins 13 and 14 of the VGA connector (HS and VS) are digital signals so can be

driven directly from two FPGA pins (or through low values resistors, like 10Ω or

20Ω).

 Pins 1, 2 and 3 (R, G and B) are 75Ω analog signals with nominal values of 0.7V.

With 3.3V FPGA outputs, we use three 270Ω series resistors. The resistors form

voltage dividers by using 75Ω resistors in the monitor inputs so that 3.3V become

3.3*75/(270+75)=0.72V, pretty close to 0.7V. Driving these 3 pins with different

combinations of 0's and 1's gives us up to 8 colors.

 Pins 5, 6, 7, 8 and 10 are Ground pins.

3.3.5.2 Frequency generator

A monitor always displays a picture line-by-line starting from top-to-bottom. Each line is

drawn from left-to-right. That cannot be changed.

We start by sending short pulses on HS and VS at fixed intervals to specify the drawing

of an image on a monitor. HS makes a new line to start drawing; while VS tells that the

bottom has been reached (makes the monitor go back up to the top line).

For the standard VGA video signal (640x480 resolution), the frequencies of the pulses

should be:

Vertical Freq (VS) Horizontal Freq (HS)

60 Hz (=60 pulses per second) 31.5 kHz (=31500 pulses per second)

35

The sync generator is best rewritten to be used as a Verilog module where R, G and B

signals are generated outside. Also the X and Y counters are more useful when they start

counting from the drawing area.

36

3.4 The Techniques

The techniques which we used in our algorithm are described in detail

3.4.1 Median filter

Median Filter is a type of filter that is used for smoothening and reducing the noise from

an image while preserving strong edges. It is a simple filter that uses the median to obtain

its result. What the filter does is replacing the value of a pixel by the median of the values

of surrounding pixels up to a defined range. In the case of noise this works because the

median is unaffected by the outlying values from the noise for the time there is not too

much noise. Same procedure goes for preserving edges, however thin lines on a plain

background will not be preserved.

3.4.2 Bilateral filter

A Bilateral Filter is a filter based on Gaussian blur but preserves edges. The Gaussian

blur uses the same Gaussian kernel for every pixel of the image. The kernel is used for

averaging the pixels on weight. The Bilateral Filter changes the kernel to conserve edges.

The results of applying bilateral filter to an image of air light. The edges are preserved

by taking the change of intensity into account and penalizing large changes. The change

in intensity is taken into account because high changes in intensity are observed as edges.

By penalizing the pixels with high difference in intensity they affect the smoothing

process less leading to maintaining strong edges within an image. Intuitively this can be

seen as smoothing over pixels while excluding pixels whose intensity differs

significantly.

A Median Filter only requires a window size as input whereas a Bilateral Filter also

requires parameters for the change in intensity.

37

3.4.3 Sobel module

Edges describe boundaries of an image and are hence of fundamental importance in

image processing. Edges in images contain strong intensity contrasts as intensity changes

from one pixel to the next. Edge detection of an image preserves the important structural

properties in an image, significantly reduces the amount of data at that point and filters

out useless information. Edge detection can be performed by using different techniques.

These methods may be grouped into two categories, Laplacian and gradient. The gradient

method detects the edges by taking the first derivative of the image and look for the

maximum and minimum in that image. The Laplacian method takes second derivative of

the image and searches for zero crossings to find edges. An edge has the shape of an

increasing ramp and calculates the derivative of the image can highlight its location.

Sobel filter calculates an approximation of the image intensity gradient function. It results

in the correspondence of gradient vector at each point of the image. The operator

calculates the direction of the largest possible increase from light to dark and the rate of

change in that direction. The result therefore shows how "abruptly" or "smoothly" the

image changes at that point, and therefore how an edge is represented, as well as how that

edge is to be oriented. An edge in an image can be pointed in a variety of directions thus

using four filters to detect diagonal, horizontal and vertical edges in the image which is

blurred. The edge detection result returns the value of first derivative in the horizontal

direction (Gx) and vertical direction (Gy). From these filters and first derivative, edge

gradient and direction is determined .

The edge direction angle is rounded to one of four angles representing vertical, horizontal

and the two diagonals. Mathematically, the gradient of a two-variable function (the

38

image intensity function) is at each image point a 2D vector with the components given

by the derivatives in the horizontal and vertical directions. At each pixel, the gradient

vector points to the direction where there is the largest possible intensity increase, and the

gradient vector length corresponds to the rate of change in that direction. This shows that

the result of the Sobel operator at an image point i.e. in a region of constant image

intensity is a zero vector and at a point where an edge occurs is a vector which points

across the edge, from darker to brighter regions (intensity increasing from 0 to 1).

39

3.4.4 FPGA Implementation

Gaussian filter is used to reduce noise and minimize extra details of the image to perform

smooth edge detection with the help of 2D-convolution which is important to modern

image processing. A window of some specific size and shape is set for applying

algorithm over image. A specific counter for infinite value is used to take a consecutive

sequence of images (in the form of video).

Counter

always @ (posedge clk or negedge rst_n)

begin

if (rst_n==0)

counter1<=0;

else

 begin

counter1<=(counter1+1);

 enable=0;

 end

end

always @ (posedge clk or negedge rst_n)

begin

counter1<=0;

enable<=1;

end

always @ (posedge clk or negedge rst_n)

begin

if (counter2<2050)

 counter2<=counter2+enable;

else

begin

 counter2<=0;

 done<=1;

end

40

 Median filter is applied on each coming pixel continuously giving a median value at

each pixel. The median window is specified according to the coming stream of videos. A

counter is used which sets the window of median filter accordingly.

Calling median filter for three planes

median uutR(clk, rst_n, donei, outR);

median uutG(clk, rst_n, donei, outG);

median uutB(clk, rst_n, donei, outB);

After applying median filter to each coming pixel stream, atmospheric veil is extracted

and a grey level image is formed which is then passed to each color plane, i.e. Red, Green

and Blue. A “div” core is written in Xilinx ISE for specifying division

div_core YourInstanceName

 (// div 1

 .clk(clk),

 .dividend(outR*3), // Bus [15 : 0]

 .divisor(nbfo), // Bus [15 : 0]

 .quotient(s1)); // Bus [15 : 0]

 //.fractional(outR*3/nbfo)); // Bus [15 : 0]

the minimum value of image is taken which is then stored in each plane and color is

restored accordingly

assign nbfo = outR+outG+outB ; // divide by 3

assign R1=(s1)**balance; // div 1

assign G1=(s2)**balance; // div 2

assign B1=(s3)**balance; // div 3

assign nbfo1= (R1+G1+B1); // divide by 3

assign R2=(t1); // div 4

assign G2=(t2); // div 5

assign B2=(t3); // div 6

41

assign R3=(u1); // div 7

assign G3=(u2); // div 8

assign B3=(u3);

taking minimum value

always@(*)

begin

if (G3<B3)

begin

if (G3<R3)

min = G3;

end

else if (R3<B3)

begin

if (R3<G3)

min = R3;

end

else

min=B3;

end

assign w= min;

median uutw(clk, rst_n, donei, wm);

The image is normalized when subtraction is done from minimum value

assign temp= w[index]-wm[index];

always @ (posedge clk or negedge rst_n)

begin

if (temp[7]==1)

sw[index]=(~temp+1);

else

sw[index]=temp;

end

42

After white balancing the image is restored having clear color of each pixel and hence

fog is removed.

3.4.5 UCF Implementation

UCF file constraints are used during the implementation process f the top level module.

We can enter the timing and placement constraints in the UCF file and the addresses of

all the pins used for taking input and giving output of the FPGA kit. We have edit UCF

file in the project navigator by following :

From tool bar, select project then new source a box will appear. From the box select “

Implementation Constraints File” , add file name and UCF is appeared in the design

panel.

43

Figure 3.9 adding UCF in design panel

 Open the UCF from the design panel and write down the input, output, clock and reset

pin numbers in the UCF text plane in the following format.

NET "vga_R" LOC = "H14";

NET "vga_G" LOC = "H15";

NET "vga_B" LOC = "G15";

NET "clk" LOC = "C9";

NET "vsync" LOC = "F14";

NET "hsync" LOC = "F15";

NET "RX" LOC = "M14";

NET "rstinput" LOC = "L13";

Hence by UCF the address of input where the data is coming and the output where it has

to display is added and this approach gives an easy way to configure the output.

44

CHAPTER 4

FUTURE ENHANCEMENTS AND

CONCLUSION

4.1 Conclusion

The algorithm for the removal of effects of fog/haze is implemented on FPGA (Field

Programmable Gate Array). The algorithm is written in the language of FPGA that is

Verilog. There are basically three parts of the project

 Software

 Hardware

 Interfacing

4.1.1 Software

The software part of the project includes the programming for

 Camera interfacing

 Algorithm

 VGA interfacing

45

The camera interfacing part is done by using the serial port of the FPGA. The video from

the camera is received by the computer and then is sent to the USB port through a code in

Matlab. The USB port of the computer is connected to the serial port of FPGA, so this is

how the video is received by the FPGA. Due to all this procedure there is some delay in

reception of the corrupted video.

Then comes the algorithm part, the corrupted video that is received by FPGA, now passes

through the algorithm for the removal of effects of noise which was present in the video

because of fog and haze. The algorithm is applied on the video to remove these effects

and to give a clear video without the effects of fog/haze.

After removal of effects of fog/haze from the video, FPGA passes this clear video to its

VGA port which will display the clear video without these effects.

4.1.2 Hardware

Hardware consists of

 USB camera

 FPGA kit

 VGA monitor

USB camera is used for capturing the corrupted video with fog/haze.

The algorithm is implemented on FPGA for capturing of video, removing of effects of

fog/haze and then displaying of video.

46

VGA monitor is used to display the clear results obtained after the application of

algorithm on the video.

4.1.3 Interfacing

Camera interfacing and VGA interfacing is done with FPGA kit by writing the code in

Verilog in the software known as Xilinx ISE and in which the bit file is generated for the

code, for this interfacing. And in the end the code of algorithm and VGA and Camera

interfacing is burnt on FPGA kit using software known as ADEPT.

4.2 Future Enhancements

As the camera interfacing is done using serial port of FPGA, so there is some delay in the

fog removal process, so one of the future enhancements is that camera can be directly

interfaced with the FPGA kit so that there should be no delay in the fog removal process.

Secondly this system could be made portable so that it can be installed anywhere and

anytime including cars and other automobiles, so to avoid a number of accidents that

occur because of increased effects of fog and unclear vision.

Thirdly an amendment can be made in the algorithm so that it may be able to remove the

effects caused by snow in hilly areas and in other areas too, to get the best results of

video making and photography in almost every kind of environment.

47

 BIBLIOGRAPHY

REFERENCES

[1] N Hautire and J –P Tarel, ‘’ Fast Visibility Restoration from a Single Colour or

Gray Level Image’’ ,pp. 2201 – 2208, 12
th
 IEEE conference from Sept. 29 2009-Oct. 2

2009

[2] Robby T. Tan, “Visibility in Bad Weather from Single Image”, 2008

[3] YunboRao, Leiting Chen, “A Survey of Video Enhancement Techniques”, 2012

[4]Digital Image Processing Using MATLAB by Rafael C. Gonzalez, Richard E. Woods

and Steven L. Eddins.(chapter 3,4)

[5]H.D Cheng , X.J. ShI, ‘’A simple and effective histogram equalization approach to

image enhancement’’, pp. 158-170, volume 14, March 2004.

[6]Jing Yu, Qingmin Liao, ‘’Fast single image fog removal using edge-preserving

smoothing’’ ,pp. 1245-1248 , IEEE conference 2011

[7] FPGA Based System Design By Wayne Wolf, Prentice Hall Modern Semiconductor

Design Series

[8] Farbiz, F. Amirkabir Univ. of Technol., Tehran, ‘’ A new fuzzy logic filter for image

enhancement’’, pp. 110-119, vol. 30.

[9]Babu T Chacko, Siddharth Shelly, ‘’Real-Time Video Filtering and Overlay

Character Generation on FPGA’’, pp. 184-189, International conference on Recent

Trends in Information, Telecommunication and Computing, IEEE 2010.

[10]www.mathworks.com

[11] www.edaboard.com

[12] www.xilinx.com

[13] Programming Streaming FPGA Applications Using block Diagrams in Simulinkby

Brian C. Richards, Chen Chang, John Wawrzynek, Robert W. Brodersen.

http://www.sciencedirect.com/science/article/pii/S105120040300037X
http://www.mathworks.com/
http://www.edaboard.com/
http://www.xilinx.com/

48

APPENDIX A

Source code for median filter

module median(clk, rst_n, donei, out);

integer i, j;

input clk, rst_n;

reg [7:0] mem[0:625];

//wire a, b;

output reg donei;

output out;

reg [0:7] temp [0:8];

//wire i, j;

//wire unsigned [0:7] sum;

//wire unsigned [0:15] ans;

reg donej;

always @ (posedge clk or negedge rst_n)

begin

 if (!rst_n)

 begin

 i<=0;

 donei <=0;

 end

 else if ((i<625) && (donej))

 begin

 i=i+1;

 donei<=0;

 end

 else

 begin

 i<=0;

49

 donei=1;

 end

end

always @ (posedge clk or negedge rst_n)

begin

if (!rst_n)

begin

donej<=1;

j<=0;

end

else if (j<i)

begin

j=j+1;

donej<=0;

end

else

begin

j<=0;

donej<=1;

end

mem[i] <= mem[j];

mem[j] <= mem[i];

end

assign out =mem[312] && { 8 { donei}};

endmodule

COMPLETE CODE FOR FPGA

50

module imagefilter(rstinput,RX,clk,vga_R,vga_G,vga_B,vsync,hsync);

 input rstinput;

 input RX;

 input clk;

 output vga_R,vga_G,vga_B,vsync,hsync;

 parameter N = 100;//total pixels

 parameter n=10; //width of image

 wire rst;

 assign rst = ~rstinput ;

 //input [7:0]image[0:N-1];

 //output [10:0]fimage[0:N-1];

 //reg rst;

 reg receiveflag=0;

 wire receiveflagwire;//---mayb a wire

 always @ (*)

 receiveflag <= receiveflagwire;

 //reg receiveflag=0;

 reg [7:0]image[0:N-1];

 //reg [10:0]fimage[0:N-1];

 reg [7:0]fimage;

 integer u ;

 wire Rxd_endofpacket;//we are not using them

 wire RxD_idle;//we are not using them

 reg [14:0]i=n+1;

reg [7:0]j=0;

reg fimageflag ;

reg [14:0]countpixels=0;

reg [14:0]allreceiveflag=0;

reg allreceiveconfirmflag=0;

51

 //---

 serialreceive serial(RxD_bit,clk,receivedata, receiveflagwire);

//--------------initialise RAM to zero---------------------------

initial

begin

 //receiveflag=1;

 for (u=0; u<N; u=u+1)

 begin

 image[u]<=0;

 //fimage[u]<=0;

 end

end

//---

/*

reg [2:0]states=0;

reg [2:0]nextstate=0;

always @ (posedge clk)

begin

 case(state)

 3'b000: if (allreceiveflag == 99) state <= 3'b001 else state

<= 3'b000;

 3'b001: if (fimageflag ==1) state <= 3'b010 else

state <= 3'b001;

 3'b010: state <= 3'b000;

 default: state <= 3'b000;

 endcase

end

52

always @ (state)

begin

 case (state)

 3'b000: begin fimageflag <=0; allreceiveconfirmflag <=0; end

 3'b001: begin fimageflag <=0; allreceiveconfirmflag <=1; end

 3'b010:

end*/

//--------------------------------------receiving image----------------

reg [14:0]ur;

always @ (posedge receiveflag or negedge rst)

begin

 if (~rst)

 ur<=0;

 else

 ur <= ur +1;

end

always @ (posedge receiveflag)

begin

 image[ur]<=receivedata;

end

//---

always @ (posedge receiveflag or negedge rst)

begin

 if (~rst)

 begin

 allreceiveflag <=0;

 allreceiveconfirmflag <=0;

 end

 else

53

 begin

 if (allreceiveflag == N-1)

 begin

 allreceiveflag <=0;

 allreceiveconfirmflag <=1;

 end

 else

 begin

 allreceiveflag <= allreceiveflag + 1;

 allreceiveconfirmflag <=0;

 end

 end

end

//------------------RUN WHEN IMAGE IS RECEIVED-------------------------

always @ (posedge clk)

begin

 if (allreceiveconfirmflag & ~fimageflag & countpixels <(N-(n+n+n-

2+n-2)))

 countpixels <= countpixels + 1;

 else

 countpixels <=0;

end

//-------------------CHECK FOR COMPLETE FILTER ACTION------------------

always @ (posedge clk or negedge rst)

begin

 if (~rst)

 fimageflag <= 0;

 else

 begin

54

 if (countpixels == (N-(n+n+n-2+n-2)) | fimageflag

)////////////error here| allreceiveconfirmflag

 fimageflag <= 1;

 else

 fimageflag <= 0;

 end

end

//-------------------------BASIC COUNTER FOR HORIZONTAL PIXEL MOVEMENT-

always @ (posedge clk)

 begin

 if (allreceiveconfirmflag)

 j<=j+1;

 else

 j<=0;

 end

//---

reg TXD_start=0;

wire TXD_busy;

reg [7:0]txddata;

//

// vga module

main uut (clk,receive,vga_R, vga_G,vga_B, vsync, hsync);

always @ (posedge clk or negedge rst)

begin

 if (~rst)

 i<=(n+1);

 else

 begin

55

 if (allreceiveconfirmflag & ~fimageflag & ~TXD_busy)

 begin

 if(j == (n-3))

 begin i <= i + 3 ; end

 else

 begin i <= i + 1; end

 end

 else

 i <=i;

 end

end

//---

always @(i)//posedge clk)

begin

 if (allreceiveconfirmflag & ~fimageflag)

 fimage = (image[i-

n+1]+image[i+1]+image[i+n+1]+image[i-1]+image[i-1-n]+image[i-

1+n]+image[i+n]+image[i-n])>>3;

 else

 fimage = fimage ;

end

//-----------initialise serial transmission--------------

always @ (fimage)

begin

 txddata = fimage;

end

reg [1:0]counter_serial=0;

wire counterbit ;

56

always @ (txddata,counterbit)

begin

 if (TXD_busy == 0)

 TXD_start=1;

 else

 TXD_start=0;

end

assign counterbit = counter_serial[1];

always @ (posedge clk)

begin

 counter_serial <= counter_serial +1;

end

SERIAL

module serialreceive(RxD_bit,clk,receivedata, receiveflag);

input clk;

input RxD_bit;

output reg [7:0] receivedata=0;

output reg receiveflag=0;

// BAUD RATE FOR RECEIVIG DATA

 wire baudclk;

 parameter cck_freq = 16384;

 parameter baudrate = 151;

 //baudrate = 460800 bps

 //clock freq = 50MHz

57

 //108 cycles of crystal freq is our one cycle of serial

 //parameter valuetobeadded = 5208;

 //reg [6:0]try = 0;

 reg [14:0]baudgenerator=0;

 //reg baudclk;

 reg baudstartbit=0;

 always @(posedge clk)

 begin

 if (baudstartbit == 1)

 baudgenerator <= baudgenerator[13:0] + baudrate;

 else

 baudgenerator <=0;

 end

 assign baudclk = baudgenerator[14];

// STATEMACHINE FOR RECEIVE DATA

reg [3:0] recstate=0;

always @(posedge clk)

begin

case(recstate)

 4'b0000: if(~RxD_bit) recstate <= 4'b1000; // start bit found?

 4'b1000: if(baudclk) recstate <= 4'b1001; // bit 0

 4'b1001: if(baudclk) recstate <= 4'b1010; // bit 1

 4'b1010: if(baudclk) recstate <= 4'b1011; // bit 2

58

 4'b1011: if(baudclk) recstate <= 4'b1100; // bit 3

 4'b1100: if(baudclk) recstate <= 4'b1101; // bit 4

 4'b1101: if(baudclk) recstate <= 4'b1110; // bit 5

 4'b1110: if(baudclk) recstate <= 4'b1111; // bit 6

 4'b1111: if(baudclk) recstate <= 4'b0001; // bit 7

 4'b0001: if(baudclk) recstate <= 4'b0010;

 4'b0010: if(baudclk) recstate <= 4'b0000;// stop bit

 default: recstate <= 4'b0000;

endcase

end

//DATA RECEPTION

always @ (posedge baudclk)

begin

 case (recstate[3:0])

 4'b1000: begin receivedata <= {receivedata[7:1],RxD_bit};

receiveflag <= 0; end

 4'b1001: begin receivedata <=

{receivedata[7:2],RxD_bit,receivedata[0]};receiveflag <= 0; end

 4'b1010: begin receivedata <=

{receivedata[7:3],RxD_bit,receivedata[1:0]};receiveflag <= 0; end

 4'b1011: begin receivedata <=

{receivedata[7:4],RxD_bit,receivedata[2:0]};receiveflag <= 0; end

 4'b1100: begin receivedata <=

{receivedata[7:5],RxD_bit,receivedata[3:0]};receiveflag <= 0; end

 4'b1101: begin receivedata <=

{receivedata[7:6],RxD_bit,receivedata[4:0]};receiveflag <= 0; end

 4'b1110: begin receivedata <=

{receivedata[7],RxD_bit,receivedata[5:0]};receiveflag <= 0; end

 4'b1111: begin receivedata <=

{RxD_bit,receivedata[6:0]};receiveflag <= 0; end

 4'b0001: begin receivedata <= receivedata; receiveflag <= 1; end

 default: begin receivedata <= receivedata; receiveflag <= 0; end

 endcase

end

59

always @ (recstate[3:0])

begin

 if (recstate[3:0]== 4'b0000)

 baudstartbit <=0;

 else

 baudstartbit <=1;

end

//---

/*reg [4:0]counterforflag=0;

always @ (posedge clk)

begin

 if (receiveflag == 1)

 counterforflag <= counterforflag[3:0] + 1;

 else

 counterforflag <=0;

end

/*always @ (counterforflag)

begin

 if (counterforflag[4]==1)

 begin

 receiveflag <=0;

 end

end*/

endmodule

DISPLAY

module main(clk,receive,vga_R, vga_G,vga_B, vsync, hsync

);

60

 input [7:0] receive;

 input clk;

 reg [7:0]txddata;

 output vsync, hsync, vga_R, vga_G, vga_B;

wire inDisplayArea;

wire [9:0] CounterX;

wire [8:0] CounterY;

assign vga_R =txddata;

assign vga_G =txddata;

assign vga_B =txddata;

hvsync_generator uut(clk, vsync, hsync);

endmodule

module hvsync_generator(clk, vsync, hsync, inDisplayArea, CounterX,

CounterY);

input clk;

output vsync, hsync;

output inDisplayArea;

output [9:0] CounterX;

output [8:0] CounterY;

//

reg [9:0] CounterX;

reg [8:0] CounterY;

wire CounterXmaxed = (CounterX==10'h2FF);

always @(posedge clk)

if(CounterXmaxed)

 CounterX <= 0;

else

 CounterX <= CounterX + 1;

61

always @(posedge clk)

if(CounterXmaxed) CounterY <= CounterY + 1;

reg vga_HS, vga_VS;

always @(posedge clk)

begin

 vga_HS <= (CounterX[9:4]==6'h2D); // change this value to move

the display horizontally

 //horizontal screen positioning, reducing value shifts screen

horizontally right and vice versa

 vga_VS <= (CounterY==490); // change this value to move the

display vertically

 //vertical screen positioning, reducing this value shifts screen

vertically down and vice versa

end

reg inDisplayArea;

always @(posedge clk)

if(inDisplayArea==0)

 inDisplayArea <= (CounterXmaxed) && (CounterY<480);

else

 inDisplayArea <= !(CounterX==639);

assign hsync = ~vga_HS;

assign vsync = ~vga_VS;

endmodule

SERIAL TRANSMISSION

module ser(txddata,TxD_start,TXD_busy,clk,TXD);

 input TxD_start,clk;

 input [7:0]txddata;

 output reg TXD;

 output reg TXD_busy;

62

 wire baudclk;

 parameter cck_freq = 16384;

 parameter baudrate = 151;

 //108 cycles of crystal freq is our one cycle of serial

 //parameter valuetobeadded = 5208;

 reg [6:0]try = 0;

 reg [14:0]baudgenerator=0;

 //reg baudclk;

 always @(posedge clk)

 begin

 baudgenerator <= baudgenerator[13:0] + baudrate;

 end

 assign baudclk = baudgenerator[14];

/* wire outa;

 always @(posedge clk)

 begin

 if(try == 108)

 try <= 0;

 else

 try = try +1;

 end

 assign outa = (try == 108)?1:0;

*/

/*

63

 //end

 reg [14:0]a=0;

 always @(posedge baudclk)

 begin

 a<=a+1;

 end

 // 10 bits for the accumulator ([9:0]), and one extra bit for the

accumulator carry-out ([10])

reg [10:0] acc =0; // 11 bits total!

always @(posedge clk)

 acc <= acc[9:0] + 59; // use only 10 bits from the previous result,

but save the full 11 bits

wire BaudTick = acc[10]; // so that the 11th bit is the carry-out

*/

//state machine for serial data transfer

reg [3:0] state=0;

always @(posedge clk)

case(state)

 4'b0000: if(TxD_start) state <= 4'b0100;

 4'b0100: if(baudclk) state <= 4'b1000; // start

 4'b1000: if(baudclk) state <= 4'b1001; // bit 0

 4'b1001: if(baudclk) state <= 4'b1010; // bit 1

 4'b1010: if(baudclk) state <= 4'b1011; // bit 2

 4'b1011: if(baudclk) state <= 4'b1100; // bit 3

 4'b1100: if(baudclk) state <= 4'b1101; // bit 4

64

 4'b1101: if(baudclk) state <= 4'b1110; // bit 5

 4'b1110: if(baudclk) state <= 4'b1111; // bit 6

 4'b1111: if(baudclk) state <= 4'b0001; // bit 7

 4'b0001: if(baudclk) state <= 4'b0000; // stop1

 //4'b0010: if(baudclk) state <= 4'b0000; // stop2

 default: if(baudclk) state <= 4'b0000;

endcase

reg muxbit=0;

reg [7:0]TxD_data;

always @ (*)

 begin

 TxD_data <= txddata;

 end

 always@(*)

 begin

 if(state == 0)

 TXD_busy <= 0 ;

 else

 TXD_busy <= 1;

 end

always @(state[2:0])

case(state[2:0])

 0: muxbit <= TxD_data[0];

 1: muxbit <= TxD_data[1];

 2: muxbit <= TxD_data[2];

 3: muxbit <= TxD_data[3];

 4: muxbit <= TxD_data[4];

65

 5: muxbit <= TxD_data[5];

 6: muxbit <= TxD_data[6];

 7: muxbit <= TxD_data[7];

endcase

// combine start, data, and stop bits together

always @ (*)

 TXD = (state<4) | (state[3] & muxbit);

Endmodule

66

APPENDIX B

Matlab code for Serial Transmission to FPGA

clc

clear all

close all

imaqhwinfo('winvideo')

imaqhwinfo('winvideo',2)

vidobj=videoinput('winvideo',2,'YUY2_160x120');

set(vidobj, 'ReturnedColorSpace', 'RGB');

start(vidobj)

preview(vidobj)

while(1)

frame = getsnapshot(vidobj);

% actual_image = imread('a.jpg');

% actual_image = rgb2gray(actual_image);

%

% actual_image = imnoise(actual_image,'salt & pepper',0.02);

%actual_image = 10.*randint(10,10,[1 10]);

actual_image = uint8(frame);

m = 15

n = 15

s2= serial('COM7');

s2.baudrate = 9600;

s2.databits = 8;

s2.stopbit = 1;

s2.InputBufferSize = 10000;

fopen(s2);

for j= 1:m

 for k = 1:n

 fwrite(s2,frame(j,k))

 end

end

end

67

