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Abstract

A virtualized data center is highly multifarious environment, shared among hundreds

of co-located tenants hosting heterogeneous applications. High degree of virtual ma-

chine consolidation leads to diverse traffic dynamics with uneven traffic demands.

Tenants’ virtual machines generate a subset of elephants or mice flows that traverse

the underlay fabric in aggregate, i.e., encapsulated in tunneling protocols such as

VXLAN, NVGRE and STT. Elephant flows are long-lived and bandwidth intensive

whereas mice flows are short-lived, latency-sensitive and highly bursty in nature.

Both types of flows require different treatment from underlay fabric but encapsula-

tion obfuscates the overlay traffic characteristics and demands. Existing approaches

employed in data centers such as ECMP are either agnostic to elephant and mice

flows or have no visibility into virtual traffic which may be used to precisely detect,

isolate and treat elephant flows differently than mice flows. If elephant flows are

not identified and addressed in aggregated virtual traffic, they may affect mice flows

generated from co-located applications, hence degrading application performance of

co-located tenants. Therefore, there is a need to manage virtual traffic along with

physical traffic in data centers. This work identifies and treats elephant flows be-

longing to different tenants on virtual network components such as virtual switches

residing in the hypervisor. Virtual switch is at the optimal location to detect and

handle elephant flows before they saturate the underlay network fabric and may be

used to ameliorate the network performance with minimal overhead both on host and

in-network. The proposed scheme has been tested against state of the art approaches

such as Hedera and ECMP and has shown improved bisection bandwidth on a 4-array

fat-tree interconnect.

iii



Certificate of Originality

I hereby declare that this submission is my own work and to the best of my knowledge

it contains no materials previously published or written by another person, nor ma-

terial which to a substantial extent has been accepted for the award of any degree or

diploma at National University of Sciences & Technology (NUST) School of Electri-

cal Engineering & Computer Science (SEECS) or at any other educational institute,

except where due acknowledgement has been made in the thesis. Any contribution

made to the research by others, with whom I have worked at NUST SEECS or else-

where, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project’s design and conception or

in style, presentation and linguistics which has been acknowledged.

Author Name: Sadia Bashir

Signature:

iv



Acknowledgment

Prima facie, I am extremely grateful to ALLAH, the ALMIGHTY, WHO gave

me good health and wellbeing that were necessary to complete this dissertation.

I place on record, my sincere gratefulness to my beloved parents and siblings

especially my brother Muhammad Bilal, for I would have never been able to com-

plete this research work without their unceasing encouragement, support and prayers.

I wish to express my sincere thanks to my research advisor Dr. Nadeem Ahmed

for his support and guidance in all of my research endeavors. I am also grateful to

my thesis Committee members Dr. Syed Ali Haider, Dr. Syed Ali Khayam

and Dr. Junaid Qadir for helping me and sparing time for me. I am extremely

thankful and indebted to Dr. Junaid Qadir for his sincere and valuable guidance

and encouragement extended to me.

I owe my deepest gratitude to Dr. Amir Shafi for providing me with the neces-

sary infrastructure for implementation and for his continuous encouragement.

I take this opportunity to express gratitude to Dr. Peter Charles Bloodsworh

and my very first mentor Mr. Shabbir Khan for their valuable guideline.

I also place on record, my sense of gratitude to one and all, who directly or

indirectly, have lent their hand in this venture.

Sadia Bashir

v



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Literature Review 5

2.1 Overview of Data Centers . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Virtualized Data Centers . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Software Defined Data Centers (SDDC) . . . . . . . . . . . . 7

2.1.3 Software Defined Networks (SDN) . . . . . . . . . . . . . . . . 7

2.2 Current Trends in Data Center Networks . . . . . . . . . . . . . . . . 9

2.2.1 Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Path Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Forwarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Oversubscription . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.5 Bisection Bandwidth . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.6 Data Center Traffic Trends and Patterns . . . . . . . . . . . . 11

2.3 The Elephant and Mice Phenomenon . . . . . . . . . . . . . . . . . . 13

2.4 Elephant Detection and Related Work . . . . . . . . . . . . . . . . . 13

2.4.1 In-Network Detection Mechanisms . . . . . . . . . . . . . . . 13

2.4.1.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.1.2 Maintain Per-flow Statistics . . . . . . . . . . . . . . 15

2.4.1.3 Network Tomography . . . . . . . . . . . . . . . . . 15

2.4.2 Host/server-based Detection Mechanisms . . . . . . . . . . . . 16

vi



2.4.2.1 Detection by Monitoring Host TCP Socket-buffer . . 16

2.4.2.2 Detection at Server . . . . . . . . . . . . . . . . . . . 16

2.4.2.3 Detection at Server using Openvswitch . . . . . . . . 16

2.5 Elephant and Mice Flow Management and Related Work . . . . . . . 19

2.5.1 Flow-based Scheduling Techniques . . . . . . . . . . . . . . . 19

2.5.2 Packet-based Scheduling Techniques . . . . . . . . . . . . . . . 20

2.5.3 Flowlet-based Scheduling Techniques . . . . . . . . . . . . . . 20

2.5.4 SDN-OpenFlow based Elephant Flow Management Techniques 24

2.5.5 Elephant Flow Management Techniques for Virtualized/ Over-

lay Environments . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Problem Formulation and Design Goals 27

3.1 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Design Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4 Methodology 31

4.1 Elephant Flow Detection . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1.1 Openvswitch Design Overview . . . . . . . . . . . . . . . . . . 31

4.1.2 Why Openvswitch . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1.3 Openvswitch-based Elephant Flow Detection: Architecture . . 33

4.1.3.1 Monitoring and Detection . . . . . . . . . . . . . . . 34

4.1.3.2 Marking . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.3.3 Notifying Userspace Openvswitch Process . . . . . . 34

4.2 Elephant Flow Handling . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Elephant Flow Handling at Openvswitch . . . . . . . . . . . . 35

4.2.2 Elephant Flow Handling at OpenFlow Controller . . . . . . . 36

4.3 Working Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5 Implementation and Results 39

5.1 Elephant Flow Detection and Handling Implementation Details . . . 39

5.2 Testbed Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

vii



5.3 Traffic Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.4 Performance Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5 Benchmarking and Result Discussion . . . . . . . . . . . . . . . . . . 43

5.5.1 Elephant Flow Detection: Testing and Evaluation . . . . . . . 43

5.5.2 Elephant Flow Scheduling: Testing and Evaluation . . . . . . 46

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion & Future Work 49

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

viii



List of Abbreviations

Abbreviations Descriptions

AAPC All-to-All Personalized Communication

CAPEX CAPital EXpenditure

ECMP Equal Cost Multi-Path

EoR End of Row

NVGRE Network Virtualization with Generic Routing Encapsulation

OPEX OPerational EXpenditure

OVS Open Virtual Switch

OVSDB OVS Database

PCI Peripheral Component Interconnect

PIF Physical Interface

PMS Pod Management Switch

SDDC Software Defined Data Centers

SDN Software Defined Network

SRIOV Single Root I/O Virtualization

STT Stateless Transport Tunneling

ToR Top of Rack

VIF Virtual Interface

VM Virtual Machine

VNI Virtual Network Identifier

VTEP Virtual Tunnel End Point

VXLAN Virtual Extensible Local Area Network

ix



List of Figures

2.1 Type 1 vs Type 2 hypervisor . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Mean VM density/server . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Software defined data center architecture . . . . . . . . . . . . . . . . 7

2.4 SDN reference model . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.5 k-array fat-tree: three-tier topology . . . . . . . . . . . . . . . . . . . 9

2.6 sFlow architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7 Comparison of standard TCP and MPTCP [2] . . . . . . . . . . . . . 21

3.1 An encapsulated aggregate flow . . . . . . . . . . . . . . . . . . . . . 28

3.2 Tunnel between two servers . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Openvswitch architecture . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2 Structure of a virtual network [35] . . . . . . . . . . . . . . . . . . . . 33

4.3 Elephant flow detection control loop . . . . . . . . . . . . . . . . . . . 33

4.4 Dividing an elephant flow into subflows at openvswitch . . . . . . . . 36

4.5 Host-based flow splitting . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1 Detection control-loop detailed architecture . . . . . . . . . . . . . . 40

5.2 Elephant flow entries in OVSDB ”elephantflow” table . . . . . . . . . 41

5.3 Testbed configuration for detection scheme . . . . . . . . . . . . . . . 44

5.4 Simulation results, duration 60s, flowlet interval 2.0 seconds - stateless 46

5.5 Simulation results, duration 70s, flowlet interval 2.0 seconds - stateless 47

5.6 Simulation results, duration 50s, flowlet interval 0.05 seconds - statefull 47

5.7 Simulation results, duration 60s, flowlet interval 2.0 seconds with back-

ground mice flows - stateless . . . . . . . . . . . . . . . . . . . . . . . 48

x



List of Tables

2.1 Comparison of Elephant Flow Detection Schemes . . . . . . . . . . . 18

2.2 Comparison of Elephant Flow Scheduling Schemes [41] . . . . . . . . 23

5.1 Elephant flow detection scheme evaluation . . . . . . . . . . . . . . . 45

xi



Chapter 1

Introduction

This chapter is organized in four sections. After general introduction, subdivision 1.1,

states motivation for carrying this research work. In section 1.2, problem statement

is stated. In Section 1.3, thesis contributions are listed. In Section 1.4, outline for

the rest of the thesis is concluded.

Modern data centers have widely adopted virtualization technology which has

greatly transformed the deployment and management of traditional networks. In

virtualized data centers, physical infrastructure is multiplexed in the form of virtual

machines to deploy a large number of customers (a.k.a., tenants) running different

services/applications. In addition, data center environments have become denser and

more heterogeneous with high level of Virtual Machine (VM) consolidation. Appli-

cation architectures are also decomposing because of the advent of REST and JSON

technologies. This decomposition is leading to more easterly or westerly deployment

of a tenants’ applications across different physical servers within the data center.

Changing application architectures have changed data center traffic dynamics as

well. According to [23] and [22], more than 80% of data center traffic is between

virtual machines (east-west) instead of between user and applications (north-south).

Moreover, high degree of VM consolidation is causing more data traffic per-physical

host [8], contributing more into virtual traffic volume. This virtual traffic is encapsu-

lated in VXLAN [28], NVGRE [19] and STT [15] tunnels by hypervisor for scalability,

performance , and broadcast/multicast isolation purposes. Therefore, east-west traf-

fic that traverses data center interconnect is typically aggregated.
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Virtual data center traffic is a mix of elephants and mice flows with varying traffic

characteristics and demands. Elephant flows are large TCP flows having large size

(from few MBs to GBs or even more) which may persist for a duration generally from

a few seconds to hours. They are not latency-sensitive and require high throughput.

Mice flows are short flows which last usually less than ten seconds and are highly

latency-sensitive and bursty in nature. The ratio of mice to elephant flows in a

data center is 80% to 20% with 20% of elephant flows carrying 80% of the bytes

and 80% of mice flows carrying 20% of rest of the bytes in the data center [6] and

[26]. Applications such as Hadoop, MapReduce, VM Migration, cloning and backup

creation for consistency purposes generate elephant flows while gaming, voice, video

and web traffic generate mice flows. Therefore, a large volume of traffic in data

centers is flow-oriented or TCP-based.

1.1 Motivation

Bandwidth achieved by east-west traffic between a tenants’ virtual machines depends

on certain factors not in tenant’s control such as random placement of tenants’ vir-

tual machines because of shared tenancy model used by various cloud providers [1],

highly dynamic network workloads, oversubscription ratios and routing mechanisms

used by underlying fabric. The applications in multi-tenant data centers rely on the

underlying shared network to transfer gigabytes to petabytes of data at high rates

but underlying Internet Protocol (IP) does not provide guaranteed services because it

is the best effort delivery protocol and applications are serviced in best effort manner

by default. Nonetheless, this default behavior is not desirable all the time because

every network application has different demand in terms of latency and throughput.

According to a latest study on virtual data centers [8], data centers have ”elephant”

virtual machines capable of generating many times more bandwidth demands as com-

pared to average virtual machines whereas high heterogeneity may lead to isolation

and/or fairness issues because of uneven demands.

Most data centers usually employ traditional techniques such as Equal Cost Multi

Path (ECMP) for routing flows because of its simplicity, fault-tolerance and support

in enterprise switches, but first, ECMP has no visibility inside aggregated virtual

2



traffic and secondly, it is unable to identify and treat mice and elephant flows differ-

ently. Thus in the same flow carrying different mice and elephant flows from different

tenants, elephant flows may saturate the network buffers consuming high through-

put disproportionately for a long period of time leaving mice flows end up waiting

in long queues behind large flows. This may add non-trivial queuing delay to mice

flows traversing the same path thus deteriorating the performance of other co-located

tenant applications. Approaches proposed previously either provide no visibility into

virtual traffic or require too much network resources to derive virtual traffic infor-

mation from physical traffic. Therefore, it has now become crucial to identify and

correlate traffic between underlays and overlays because virtual traffic volume gener-

ated from virtual machines to the underlay physical network determines application

performance in cloud data centers.

1.2 Problem Statement

The problem statement of the thesis is as below:

”To design and implement elephant flow detection and handling mechanism for

a virtualized data center network environment to ameliorate the multiple tenant’s

co-located application performance”

1.3 Thesis Contribution

Contribution of this thesis is development of mechanism which identifies and handles

elephant flows belonging to a tenant on openvswitch. Openvswitch resides in the

hypervisor in close proximity of virtual machines where it can derive information and

other traffic statistics not easily derivable by inspection network traffic alone. Ele-

phant flow identification and handling on openvswitch ensures that different network

traffic is treated according to its requirements and co-located tenant applications or

services are not affected.

1.4 Thesis Organization

The rest of the thesis is structured as follows:
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Chapter 2 discusses the state of the art related to the current research, back-

ground, and reviews the relevant literature aimed at finding elephant flow detection

and handling techniques in data center networks. Chapter 3 discusses problem for-

mulation and design goals in detail. In Chapter 4, proposed elephant detection and

handling methodology is discussed. In Chapter 5, implementation and results are

given along with detailed discussions. In Chapter 6, the conclusion and future work

is stated.
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Chapter 2

Background and Literature Review

This chapter reviews literature that has been used to formulate problem definition.

Section 2.1 gives an overview of traditional and virtualized data centers and their

benefits. In section 2.2, latest trends in virtualized data centers have been discussed

comprehensively. Section 2.3 gives a general classification of elephants and mice flows.

In section 2.4, different elephant flow detection schemes from literature have been

analyzed. Section 2.5 discusses general techniques and methodologies used to manage

elephant and mice flows in general, in SDN-controlled data centers and in virtualized

data centers. In the last section analysis of various elephant flow detection and

management techniques with respect to virtualized data center is discussed briefly.

2.1 Overview of Data Centers

2.1.1 Virtualized Data Centers

In traditional data centers, dedicated infrastructure is used to host independent ap-

plications. This model is expensive in terms of CAPEX and OPEX because of re-

source under-utilization, maintenance cost and vertical scaling to handle dynamic

workloads. Virtualization technology has been deployed in recent data centers to

efficiently utilize infrastructure and to overcome other problems in traditional data

centers. Server/machine virtualization, storage virtualization and network virtual-

ization are used to virtualize underlying compute, storage and network resources

respectively. With server virtualization, a single physical server can be emulated as

multiple servers possibly running multiple operating systems on the same hardware.

5



Figure 2.1: Type 1 vs Type 2 hypervisor

Server virtualization (also called processor virtualization) is achieved by running hy-

pervisor either directly on top of hardware (type 1 hypervisor) or atop an operating

system (type 2 hypervisor) [18] which is responsible to provide hardware abstraction

as shown in Fig. 2.1. Network virtualization is tightly coupled with machine virtual-

ization which is implemented by running virtual switches or routers in the hypervisor

[37]. Network virtualization is used to dynamically create virtual overlay networks

to manage communication between instances of a single tenant.

Leveraging large RAM capacities and high performance storage and network ar-

chitectures result in high degree of VM consolidation as shown in Fig. 2.2 which has

enabled cloud providers to service large number of multiple tenants simultaneously

by dynamically scaling resources. High level of reliability and availability is provided

in cloud data centers by efficiently managing and re-optimizing physical resources

in completely automated or semi-automated way according to dynamically changing

requirements.

Figure 2.2: Mean VM density/server
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Figure 2.3: Software defined data center architecture

2.1.2 Software Defined Data Centers (SDDC)

The most recent paradigm shift in the world of virtualization is the emergence of

Software Defined Data Centers (SDDC). A software defined data center extends vir-

tualization concepts such as abstraction, pooling, and automation to the entire data

center infrastructure by intelligently configuring and maintaining hardware through

automated software systems. This is different from traditional data centers where

hardware and devices define the infrastructure. Fig. 2.3 explains the concept of soft-

ware defined data centers.

2.1.3 Software Defined Networks (SDN)

Software Defined Networking is the recently emerged architecture purporting to pro-

vide cost-effectiveness, manageability, dynamism and adaptability in networking so-

lutions. SDN architecture decouples network control from forwarding functions en-

abling it to be programmable and abstracted from underlying network infrastructure.

The structural design of SDN comprises of application, control and data forward-

ing layers. SDN applications are contained in application layer, the centralized or

distributed control layer makes decisions and policies which regulate the network

elements while data forwarding layer employs programmable switches.

A set of Application Programming Interfaces (APIs) such as north-bound APIs

and south-bound APIs are used to support communication between applications and

control plane and between control plane and forwarding or data plane respectively

as shown in the Fig. 2.4. North-bound APIs facilitate communication between ap-

plications and other services such as routing, traffic engineering, quality of service

(QoS), security, bandwidth management, access control, and many other forms of

7



Figure 2.4: SDN reference model

the network management while south-bound APIs such as OpenFlow (OF) protocol

[32] enable communication between control layer and data forwarding layer.

The forwarding plane of a network switch is accessed through OpenFlow protocol

enabling software programs to be executed on switches and perform functionalities

like packet lookups and forwarding among network elements. The SDN/OF con-

troller globally regulates the network state by formulating network policies because

of unrestricted access it has to programmable switches and resources, in this way

all network elements can be updated timely to react to the current flow activities

through a centralized set of decisions and policies. In a simple operation for manag-

ing flows in SDNs, when a new flow arrives at switch its first packet is sent to the

controller which computes the forwarding path for new flow according to its global

view of network state. The forwarding path entries are then installed in the switches’

flow tables and subsequent flow packets are switched according to the newly installed

entries. Two modes can be used to populate flow table entries in a flow table: proac-

tive and reactive. In proactive mode, controller logic pre-populates flow table entries

while in reactive mode, a flow table entry is installed after its first packet misses the

table and is forwarded to the controller to compute forwarding action. This simplified

process of flow management gives a glimpse on the interaction among three layers of

SDN paradigm which fulfills the promise of simplicity and innovation in traditional

networks.
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Figure 2.5: k-array fat-tree: three-tier topology

2.2 Current Trends in Data Center Networks

The proliferation of new technologies, such as cloud computing and virtualization

is deriving several new trends in data centers. We explore the following trends in

context of this study.

2.2.1 Topology

Data center networks typically employ clos or multi-rooted tree topologies consisting

either of two- or three-tiers of edge/access, aggregate and core switches. Machines

are arranged in rows of racks which are interconnected with Top-of-Rack or End-of-

Row (EoR) switches. Edge switches are connected to an aggregation layer in the

middle which is further connected to the core layer of the interconnect. Edge layer

switches (ToR and EoR) are connected to storage and compute nodes directly. The

aggregation tier interconnects edge and core switches and provides services like load-

balancing on the intermediate links while core tier is the high-speed backplane. A

three-tiered fat-tree architecture is shown in Fig. 2.5.

A fat-tree network has high bisection bandwidth, redundancy and fault-tolerance

which can be built using identical commodity switches having same number of ports

in low cost. It is a switch-centric architecture and its size is the function of number

of k switch ports [41]. It can accommodate k3/4 total number of servers in k2/4 pods

with k/2 edge-to-host and edge-to-aggregate links and (k/2)2 number of core switches

where each core switch has its one port connected to each k pod. There are k.k/4

total paths available between a pair of source and destination hosts.
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2.2.2 Path Multiplicity

Multi-rooted tree topologies have multiple equal-cost paths between all sets of source

and destination pairs. Path multiplicity may be exploited either concurrently or in

backup configuration to deliver high bisection bandwidth between arbitrary hosts in

large clusters. In addition, multiple disjoint paths are statistically independent and

diverse in terms of transmission errors. For short flows, exploiting path multiplicity is

of little advantage while for large flows, it can be used to achieve better performance

and high throughput. However, only a subset of multiple paths can provide good

results as compared to utilizing all of them because it involves management cost

associated with high number of paths [38].

2.2.3 Forwarding

Data center network physical fabrics are managed by different forwarding techniques.

The most commonly deployed techniques are based on layer 2 or layer 3 forwarding.

In a L3 network, IP addresses are assigned to hosts based on their physical location

in the hierarchy while a L2 approach works by assigning MAC addresses to hosts

and performs forwarding based on flat MAC addresses. Each of these forwarding

techniques have limitations associated as described in [34]. Virtualization presents

challenges to both L2 and L3 networks in terms of virtual machine management,

scalability, domain and performance isolation so this is where an overlay network

comes in. Virtual instances in an overlay network communicate with one another

using tunneling protocols such as VXLAN which is layer 2 network instantiated and

managed by network virtualization layer. The L2 overlay network manages all unicast

and multicast communication among a tenant’s virtual instances on underlay layer 3

network.

2.2.4 Oversubscription

Oversubscription ratio is the worst-case achievable bandwidth among end-hosts over

total available bisection bandwidth of the network topology. It is used as a means

to reduce total cost of the data center network topology. Data center designs are

typically oversubscribed by a factor of 2.5:1 (400 Mbps) to 8:1 (125 Mbps). A 1:1
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oversubscription ratio indicates that full bandwidth is available for communication

among arbitrary end hosts while an oversubscription ratio of 5:1 indicates that only

20% of host bandwidth is available for communication [3]. Although, it makes a good

technical and financial sense but it has its downsides as well because multiple devices

are connected to a single switch port which may struggle for that port’s bandwidth

resulting in poor response time.

2.2.5 Bisection Bandwidth

Bisection bandwidth is a worst-case performance metric of a data center network. It is

defined as the smallest bandwidth available between two equal segments of a network.

A ”full bisection bandwidth” can support all servers communicating simultaneously

at full link speed with no over-subscription. Full bisection bandwidth between all

pairs of hosts is calculated as follows:

Aggregate bandwidth = total # of hosts * host NIC capacity

Although, a fat-tree offers full bisection bandwidth but with all-to-all communi-

cation patterns, hotspots are still possible. Personalized All-to-All communication

(AAPC) patterns are the most challenging communication patterns in HPC applica-

tions in terms of scalability and performance and fat-tree interconnection networks

are generally deployed to leverage high bisection bandwidth among communicating

hosts for this type of applications.

2.2.6 Data Center Traffic Trends and Patterns

Today’s virtualized data centers are highly multifarious environments hosting a range

of applications and services from various tenants. The set of applications include

internet messaging, gaming, web-services, computational intensive applications such

as web-content indexing, data analysis, large-scale machine leaning and scientific

computing. In addition, high performance computing applications such as Hadoop

and MapReduce are also hosted which are notorious in generating large amounts of

data requiring full bisection bandwidth.

Latest studies have shown that a significant amount of traffic in data centers is
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virtual which flows in east-west direction while a relatively small amount of traffic

flows in north-south direction. Basically, change in application architectures and the

way they are put together in virtual data centers have dramatically changed traffic

patterns. For example, MapReduce works with several clients and a server machine

which are possibly scattered across different physical hosts. It works in two phases:

Map and Reduce, in map phase, a master maps tasks to different clients in the form of

set of commands which generate little traffic while in reduce phase, a large network-

wide bandwidth is required to transfer MBs or GBs of data, generating a large amount

of east-west traffic. Similarly, a web-application has a three-tier architecture. Its first

tier is called front-tier or presentation-layer responsible for receiving requests from

users. Second layer is the layer of business logic servers upon which client requests are

load-balanced. Business logic servers maintain persistent connections to the backend

data servers which make up the third tier of web-applications. The web-applications

are engineered in such a way that more traffic is generated in east-west direction

instead of in north-south direction.

Data center applications exhibit different types of traffic patterns: 1) many-to-

one 2) one-to-many 3) one-to-one [41]. Many-to-one patterns appear in data center

when a front-end of web application breaks an HTTP request into different small

requests which are fetched to several workers generating one-to-many traffic patterns.

Workers or business logic servers process these requests and generate response back

to the front-end web servers thus in many-to-one traffic pattern.

MapReduce applications generate one-to-many traffic pattern in map phase while

many-to-one pattern in reduce phase, in this way generating all-to-all or many-to-

many traffic patterns. Virtual machine migration and email servers upon receiving

authentication request from users generate one-to-one traffic pattern. In addition to

these traffic patterns, data centers also generate control traffic. In short, many-to-one

and one-to-many are most prevalent and bandwidth intensive traffic patterns exhibit

in data centers.

Moreover, due to high degree of VM consolidation on servers, data center’s traf-

fic is highly heterogeneous and it travels in aggregate. Since different services with

different demands and different peak-loads are co-located, it smoothens overall bursit-

ness of aggregate traffic leaving it to compete for underlying network resources. This
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fact stresses the need to manage virtual traffic along with physical traffic because it

determines the performance of data center applications.

2.3 The Elephant and Mice Phenomenon

As described in chapter 1, elephant flows are large flows carrying 80% of the bytes in

data centers while mice flows are short flows carrying 20% of the bytes. A long-lived

TCP flow primarily operates in TCP congestion avoidance phase and continuously

sends bursts of packets equal to maximum window size. Short flows operate in slow

start phase for their entire life and their burst size depends on initial window size.

UDP flows also fall in the category of mice flows. Mice flows are quite high in number

and very bursty in nature and they tend to last for a few seconds or a fraction of a

second. Therefore, it is not possible to apply adaptive routing schemes to mice flows.

Various schemes have been proposed in literature to identify and treat elephant flows

which are discussed in proceeding sections.

2.4 Elephant Detection and Related Work

Two main approaches exist in the literature to identify elephant flows:

2.4.1 In-Network Detection Mechanisms

In-network elephant flow detection mechanisms collect flow stats from network ASICs

and a centralized controller uses this information to classify elephant flows for further

treatment.

2.4.1.1 Sampling

In this approach, sampling is used to collect flow stats from all interfaces of a net-

work device and collected stats are pushed in a pre-defined format to a centralized

controller running in the network. sFlow and NetFlow are industry standards which

use sampling technique.

sFlow [31] is an industry standard used to monitor flows in the network. it works

with two components: 1) sFlow agent and 2) remote sFlow collector as shown in the
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Figure 2.6: sFlow architecture

Fig. 2.6.

An sFlow agent is embedded in each network device which collects traffic statis-

tics from each sFlow-enabled device interface using sFlow sampling based on a pre-

configured sampling ratio, encapsulates collected stats into sFlow packet and if sFlow

packet buffer overflows or an sFlow packet expires, pushes sFlow packets to the col-

lector. sFlow collector is a server responsible to receive packets sent from agent and

displays traffic statistics in a report after analysis. Two sampling modes are used

by sFlow agents to collect statistics from network device: 1) Flow sampling and 2)

Counter Sampling. An agent running in flow sampling mode analyzes packet content

and forwarding rule of a flow and encapsulates this information to sFlow packet. If

an agent is configured to run in counter sampling mode, it collects traffic statistics

from an interface and CPU and memory usage on a device. It defines large flow as

a flow consuming 10% of link bandwidth and a population containing more than 104

packets as a threshold.

Most of in-network detection schemes monitor each flow that hit the data center

fabric. sFlow is an industry standard and its purpose is to monitor traffic for trou-

bleshooting and anomaly detection. It can give visibility into encapsulated traffic

at the cost of high overhead because agents running on each network device send

records/data in UDP encapsulated packets from each interface and they utilize sig-

nificant network and device resources. It may be error prone as it relies on network

administrator’s configuration. Moreover, it monitors each flow in the network and

detects heavy flows after they saturate network devices. According to [6], millions of

new flows hit edge switches every second. Therefore, monitoring each flow to detect

elephant flows is expensive and incur high monitoring overhead.
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2.4.1.2 Maintain Per-flow Statistics

In this approach, each incoming flow is monitored at the ToR switch and flow statis-

tics are pulled from these switches at a regular interval. Hedera, Helios and Network

Tomography based approaches use this scheme to detect elephant flows in the net-

work.

Hedera [4] leverages a centralized controller which pulls flow byte counts at a 5 sec-

ond interval from all ToR switches and categorizes elephant flows as flows consuming

more than 10% link bandwidth.

In Helios [17], a Pod Monitoring Switch (PMS) is used to pull statistics from

switches at regular intervals and a threshold of 15 Mb/s is used to classify flows as

elephant flows.

In DevoFlow [14], OpenFlow based switches locally classify elephant flow as a flow

that has transferred 1-10MB.

Hedera [4] and Helios [17] are relatively simple approaches as compared to sFlow

but they provide no visibility inside virtual traffic. Moreover, they cannot proactively

detect elephant flows and they have to monitor each new incoming flow irrespective

of the fact whether it is a small or a large flow. Hundreds of millions of new flows

are generated every second and monitoring this much traffic at short timescales from

a lot of switching fabric is not feasible because in software defined networks, switch

to controller channel has limited bandwidth and in case of millions of new flows,

collecting stats may saturate these channels.

2.4.1.3 Network Tomography

Network tomography is the process of studying internal characteristics of network by

deriving information from end-points.

In [25], network tomography along with SDN counters are collectively used to

detect elephant flows in the network. It selectively monitors possible elephant flows

occupying more than 10% of link capacity. It detects elephant flows by using SDN

counters and SNMP link counters in two steps: 1) It finds talky ToR pairs and 2)

Locates server-to-server elephant flows in ToR pairs using network tomography.

This work adapts relatively simple approach as compared to sampling and main-

taining per flow statistics approaches. It relies on SDN and SNMP link counters
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and narrows down the search space by focusing on possible elephant flows but as it

operates in network so does not provide visibility into virtual traffic and secondly it

uses on SDN flow counters which are not reliable to detect elephant flows because

single flows may be hiding behind wildcarded flow entries [45].

2.4.2 Host/server-based Detection Mechanisms

Host-based detection mechanisms rely on a host’s view of traffic to detect elephant

flows. Following are the main schemes in this area of study:

2.4.2.1 Detection by Monitoring Host TCP Socket-buffer

In (Mahout)[13], a shim layer is used on each host which is responsible to monitor

flows originating from the host and as soon as a TCP-socket buffer crosses a threshold

of 100KB, the shim layer sets DSCP value of the flow by setting it to 000011 to signal

the controller.

2.4.2.2 Detection at Server

In (MicroTE) [7], traffic predictability is exploited by applying a kernel patch on each

server. This kernel patch is responsible to collect flow’s information every 0.1 seconds

and sends this information to a server designated for whole rack called ”designated

server” every 1 second. The designated server after collecting data from all servers

in the rack, aggregates server-to-server data into rack-to-rack data and determines

predictable ToR pairs. In order to further reduce network overhead, this information

is compressed into ToR-to-ToR traffic and then send to the centralized controller.

2.4.2.3 Detection at Server using Openvswitch

In (EMC2) [29], a web-service is implemented for cloud data centers which leverages

openvswitch based sFlow and NetFlow functionality. It initiates two threads one for

sFlow and other for NetFlow at web-server which continues to receive and analyze

packets received from sFlow and NetFlow running at each hypervisor. It stores flow

records along with its stats and path information.

Host-based elephant detection approaches mitigate the effect of in-network mon-

itoring overhead and can signal network before elephant flows hit the network fabric
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and saturate switches but a shim layer or a kernel patch has to be installed in each

monitoring host which is not in tenant’s control. Mahout [13] and MicroTE [7] do

not provide visibility into virtual traffic but as EMC2 [29] leverages openvswitch at

the edge and relies on its sFlow and NetFlow component, it may give visibility in

virtual traffic but at the expense of network overhead.

A summary of comparison of elephant flow detection schemes is given in Table 2.1:
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Table 2.1: Comparison of Elephant Flow Detection Schemes

Elephant Flow
Detection

Pull-based/Push-
based

Require a kernel
patch

Visibility into
Virtual Traffic

Monitoring
overhead

Threshold
(Bytes)

sFlow In-network All
switches

Push-based No Yes All Flows 104 in population

Hedera In-network
ToR-switches

Pull-based No No All Flows 10%

Helios In-network
ToR-switch

N/A No No All Flows 15Mb/s

Network
Tomography

In-network
ToR-switches

Pull-based No No Selective Flows 10%

Mahout On Host Push-based Yes No Selective Flows 100KB

MicroTE On Host Push-based Yes No All Flows N/A

EMC2 On Host - OVS Push-based No Yes All Flows N/A

DevoFlow In-network All
switches

Push-based No No Selective Flows any flow
transferring

between 1-10MB



2.5 Elephant and Mice Flow Management and Re-

lated Work

As we know that data center interconnects usually employ multi-rooted tree topolo-

gies which have redundant paths between a pair of source and destination to provide

fault tolerance in case any node failure occurs and to load balance traffic across multi-

ple physical paths. Main flow scheduling schemes either work to preserve TCP flow’s

packet order by assigning each flow a specified dedicated path between a given source

and destination pairs or to split it up across multiple paths to exploit path diver-

sity. Any of these schemes can be employed in data centers to harness its advantages

for the particular type of traffic class. Different approaches have been proposed in

literature to manage flows to handle congestion or to provide high throughput.

Proceeding sections first discuss general flow scheduling schemes in data centers

and then techniques specifically used to manage elephant and mice flows. In general,

three main flow scheduling approaches are used to manage flows in a data center

network and existing elephant and mice flow management schemes fall in any one of

the three categories:

2.5.1 Flow-based Scheduling Techniques

Flow-based traffic splitting schemes rely on hash-based techniques [10] which apply

a direct hash function to the 5-tuple of L3 and L4 headers (source IP, destination IP,

source Port, destination Port and protocol) of a flow and use the resulting hash value

to select the outgoing link. These schemes are very simple to implement at a network

device because they are stateless and it is fairly easy to compute hash. They can

avoid TCP flow disruption and evenly distribute load across multiple outgoing paths.

However, in case of tree topologies, it is not desirable all the time to distribute load

evenly because of asymmetric topology architecture which make it almost impossible

to tune the load distribution resulting in poor network utilization.

ECMP [21] is a hash-based flow-splitting technique widely adopted for routing

in data centers with multi-rooted topologies because of enterprise support. In its

simplest implementation, next hop is chosen by determining CRC32 (or other) hash

modulo n number of available next hops. Performance of ECMP depends on the
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performance of hash function selected. ECMP performs static load-splitting among

flows as it does not account for flow demand or path dynamics in making allocation

decisions.

Hedera [4] and Mahout [13] use flow-based scheduling technique to handle ele-

phant flows. A centralized scheduler is used to reroute elephant flow after demand

estimation to a suitable path. All subsequent packets of the flow traverse the new

path to increase throughput.

In MicroTE [7], the centralized controller has a routing component which routes

predictable and unpredictable traffic. It takes the traffic matrix composed of ToR-to-

ToR entries and makes decisions according to available historical measurements. It

routes predictable traffic optimally while unpredictable traffic with weighted ECMP.

In weighted ECMP, each path is assigned a weight which denotes the bandwidth

consumed by predictable traffic. Weighted ECMP is used to mitigate the adverse

effects of existing ECMP based approaches.

2.5.2 Packet-based Scheduling Techniques

In packet-based splitting techniques, packets belonging to a single flow are forwarded

along different paths that are available between a given source and destination pair.

Packets belonging to a flow can be sprayed across different paths either in a random

fashion which require no flow state to be maintained by switches or in round-robin

fashion in which switches have to maintain per-flow state. These mechanisms en-

sure fair queues and load-balanced links at the cost of flow disruption. Therefore,

additional mechanisms to handle DUPACKs generated by spurious fast retransmis-

sions because of out-of-order packet arrival at the receiver. In [16], Random Early

Detection (RED) queue management scheme along with a hypervisor-based solution

to handle DUPACKs has been used. Moreover, state-keeping at network device can

guarantee in-order arrival of a flows’ packets at destination but it increases the over-

head drastically.

2.5.3 Flowlet-based Scheduling Techniques

Kandula et al. [42] proposed this scheme. In flowlet-based splitting techniques, a

single flow is subdivided into multiple short flows based on flow’s intrinsic character-
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Figure 2.7: Comparison of standard TCP and MPTCP [2]

istics such as its rate and burstiness. It works to achieve low-overhead and accuracy

of packet-based splitting and packet ordering of flow-based splitting techniques. It

divides a TCP flow into a sequence of multiple short subflows of different sizes and

packet bursts by exploiting intra-flow packet spacing. It resides on a switch/router

and split up a flow according to the varying split vector and consecutive flows can be

routed independently. Intra-flow packet spacing is the time which is larger than maxi-

mum Round Trip Time (RTT) of the set of multiple parallel paths. It is low-overhead

and robust against packet reordering.

Multipath TCP (MPTCP) [40] is an extension to TCP which is used by data

center networks to load balance traffic among all multiple paths by utilizing available

bandwidth. It works on the assumption that end hosts are multi-addressed and

splits up a single TCP flow into multiple parallel TCP subflows either by using

different ports or different IP addresses between a pair of end-hosts. Each subflow is

transmitted on a different path. Fig. 2.7 shows a comparison between standard TCP

and MPTCP. However, MPTCP has been observed to cause TCP incast for various

traffic patterns [11].

CONGA [5] breaks down a flow into flowlets based on congestion in the data center

by modifying hardware switches. Edge switches detect flowlets and the feedback

received from destination edge switch is used to estimate congestion on the path.

Based on this information, a flowlet is assigned to least congested path. CONGA aims

to reduce the Flow Completion Time (FCT) of all flows which increases throughput

as well. CONGA can also load balance overlay traffic in the data center.

TinyFlow [48] is another scheme which breaks elephant flows into multiple flowlets.

The key concept behind TinyFlow is that a large elephant flow is composed of many

short flows. In TinyFlow, each edge switch keeps track of elephant flows and breaks

it to a sequence of mice flows as soon as a flow completes the byte count of 10KB.
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The new short flow is transmitted to a different egress port. Edge switches make this

decision locally and require no global state to be maintained in the data center. This

random assignment of subflows to different paths may cause several subflows to face

more congestion or higher RTTs.

RepFlow [47] is another flow management scheme for short flows. It works by

replicating short flows based on a flow-size threshold. if flow size is smaller than

100KB, a replica TCP connection is established between a pair of sender and receiver

using different ports and identical packets are sent by both TCP connections. Because

of using different ports, ECMP hashing is likely to select two different paths for two

identical flows. This is how it reduces FCT of short flows and exploits their ephemeral

nature. The replicated flows generate negligible overhead and it does not require

modification in TCP protocol at end-hosts or in switching fabric.

A comparison of the elephant flow scheduling techniques is given in the Table 2.2:
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Table 2.2: Comparison of Elephant Flow Scheduling Schemes [41]

Objective Working
Mechanism

Load
Balancing
Method

Control Plane Reaction to
Congestion

Targeted
Traffic

Operating
Layer

Hedera High throughput Exploiting
multipath

Link utilization
based flow
re-routing,

ECMP

Centralized Relocation of
flows

Large flows L4

Mahout High throughput Exploiting
multipath

Flow re-routing,
ECMP

Centralized Relocation of
flows

Large flows L4

MicroTE Minimize
congestion

Adaptive
load-balancing

Optimization,
weighted ECMP

Centralized Proactive to
congestion

All flows L4

MPTCP Fairness, high
throughput

Load-balancing,
multipath,
cross-layer

design

ECMP,
Multipath

Distributed Relocation of
subflows

All flows L3, L4

CONGA Reducing mean
FCT for short

flows

Load-balancing,
multipath,
hardware

modification

congestion-ware
flowlet

forwarding

Distributed egress port
congestion

metric

All flows L3, L4

TinyFlow Reducing
Mean/Tail FCT
for short flows

Load-balancing,
multipath,
cross-layer

ECMP, Splitting
large flows

Distributed Break down
large flows

Large flows L3,L4

RepFlow Reducing
Mean/Tail FCT
for short flows

Exploiting
multipath

ECMP,
Replicating short

flows

Distributed N/A Short flows L5



2.5.4 SDN-OpenFlow based Elephant Flow Management Tech-

niques

Different schemes to manage elephant flows exists in SDN-controlled networks, this

section briefly discusses some proposed solutions from SDN domain which identify or

mange elephant flows by modifying control or data forwarding layer.

DevoFlow [14] is a slight modification of OpenFlow model which strives to mini-

mize control-to-switch interactions by aggressively using wildcarded rules and approx-

imate counters. It improves two frontiers of OpenFlow model, first on global control

and second on statistics gathering. It reduces switch-to-control communication by

transferring control to local switch which plays with wildcarded rules intelligently.

It extends the action part of a wildcarded entry to a clone bit, and clones existing

wildcard entry if this bit is set to true otherwise ignores it. The cloned wildcarded

rule inherits all fields of a microflow for an exact match entry. Additionally, it aug-

ments local switch with a possible set of local flow actions such as multipath and

re-routing support. It enhances statistics gathering by adding triggers, reports and

by approximate counters. Switches send a report to controller when a trigger is met

for a rule while streaming algorithms are implemented in switch ASICs which are

used to classify flows transferring more than a threshold bytes thus statistics are

selectively pushed to controller.

In [20], authors propose an event-based technique to notify controller about a

significant local event such as elephant events. It devolves the control plane hi-

erarchically into local controllers and a logically centralized root controller. Local

controllers run in close vicinity of switches. In order to detect an elephant flow, an

application runs on local controllers to detect elephant flows and notify root con-

troller about an elephant event. The root controller in turn notifies local controllers

to install flow entries to re-route elephant flows using global network state.

HybridTE [46] works in an SDN-controlled environment and handles both ele-

phant and mice flows. It relies on some already existing elephant flow detection

schemes to identify elephant flows. It uses static routing schemes to route mice flows

proactively and periodically re-routes elephant flows at the granularity of five sec-

onds on the shortest paths between a pair of ToR switches. Moreover, it takes false

positive mice and false negative elephant flows into account as well.
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Furthermore, OpenSketch [50], PayLess [12], OpenTM [44], OpenSample [43], and

FlowSense [49] are flow monitoring and management approaches specifically for SDN-

controlled data centers. [50], [12], and [44] are query-based monitoring approaches

that make use of wildcarded rules, variable frequency-based adaptive polling and

periodic polling techniques to monitor flows on switches. [49] uses a passive-push

based technique to push packetIn and flowRemoved messages for monitoring link

utilization while [43] uses sFlow and TCP sequence numbers to monitor flows and

link-level statistics to quickly detect elephant flows and to achieve low latency.

2.5.5 Elephant Flow Management Techniques for Virtual-

ized/ Overlay Environments

This section discusses a few proposed approaches to manage virtual traffic volume in

a virtualized data center.

DomainFlow [33] is a multipath flow management prototype which manages over-

lay (VXLAN) traffic in SDN-controlled data center. It modifies physical OpenFlow-

enabled switches to work with rule-based wildcarded and exact-match entries which

use VXLAN outer header’s UDP port to distribute overlay network traffic across

multiple paths using ECMP in the data center.

In [9], Khalil et al. has recently proposes a virtual fabric-based approach to man-

age virtual traffic volume in a virtualized data center. It decentralizes the main

network fabric controller to adjust resource allocation according to the virtual data

center’s respective processing needs, performance and QoS. In order to meet these

objectives, a hierarchy of controllers is developed consisting of network fabric con-

trollers, virtual fabric controllers and node controllers. Each physical node in the

network is associated with a set of node controllers that periodically pulls node re-

source utilization and performance measures information and notify global network

fabric controller about this information. Each virtual fabric has its own controller

associated with it which forwards estimated resources to global and corresponding

node controllers in order to meet demands. By leveraging a hierarchy of controllers,

vFabric achieves fairness, congestion avoidance and performance isolation among the

traffic of different virtualized data centers.
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2.6 Summary

This chapter presents background and literature survey of the thesis. It first gives a

broad view of virtualized data centers and their trends. Then it discusses elephant

flow detection methodologies previously proposed and deployed in data centers. Pro-

ceeding section comprehensively analyzes flow management techniques in general fol-

lowing a detailed list of proposed mechanisms used to manage elephant and mice

flows specifically. Last two sections of the chapter give an overview of the approaches

proposed to manage virtual traffic in SDN-controlled and virtualized data centers.
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Chapter 3

Problem Formulation and Design

Goals

This chapter presents the problem definition and design objectives in detail. Different

scenarios have been discussed to formulate problem.

3.1 Problem Definition

As already discussed, tenants have no control on how their application instances are

arranged in the data center, therefore, different instances of a tenant application are

scattered across different physical machines in the data center generating a high pro-

portion of east-west virtual traffic. The virtual traffic is encapsulated using tunneling

mechanisms, which make it to travel in aggregate, so there is possibility that the ag-

gregated flows between a given pair of physical hosts are a mix of elephants and mice

flows encapsulated in the same outer L2 and L3 headers as shown in the Fig. 3.1.

The biggest problem in virtualized environments nowadays is that east-west traffic

has to traverse shared underlay fabric and the performance of tenant’s applications

and services highly depend on the performance of underlying shared network. But

first of all, underlay fabric has no visibility into virtual traffic, secondly, static routing

or switching mechanisms such as ECMP are usually employed in the data centers.

Due to the lack of visibility, data center fabric elements can not isolate large flows from

small flows from encapsulated virtual traffic while static routing mechanisms such as

ECMP are not capable of handing elephant and mice flows differently. Consequently,
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an aggregated flow is always hashed to the same path while its constituent flows may

require different paths in order to fulfill their requirements. As we know that elephant

flows are large flows with high bandwidth requirements, therefore, they may saturate

network buffers consuming high bandwidth disproportionately for a long period of

time leaving mice flows end up waiting in long queues behind large flows. This may

add non-trivial queuing delays to mice flows traversing the same path along with

elephant flows within the same aggregate of virtual flow. Consequently, bandwidth

intensive applications getting the larger share of network resources, may affectively

degrade the performance of co-located tenant’s applications which generate latency

sensitive mice flows.

Let us suppose two physical servers hosting two different services from two dif-

ferent tenants as shown in the Fig. 3.2. Virtual machines having Virtual Network

Identifier (VNI) 0x16 belongs to a tenant generating elephant flows and it transfers

huge files from server 1 to server 2 whereas VNI 0x22 belongs to the tenant gener-

ating short mice flows consisting of UDP traffic. Virtual Tunnel End Point VTEP1

at physical server 1 encapsulates each flow destined to physical server 2 with its L2

and L3 headers while VTEP2 at physical server 2 decapsulates packets and sends

them to the corresponding virtual machines. Switches on the path switch packets

belonging to both services entirely based on their outer headers while the flow in real

have packets from both services comprising of elephants and mice flows. In this way,

UDP flows can get stuck behind large TCP flows adding more latency to UDP traffic,

thus effecting performance of co-located tenants badly.

Existing schemes work to identifying elephant flows either on physical host or

Figure 3.1: An encapsulated aggregate flow
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Figure 3.2: Tunnel between two servers

in network and handle them efficiently but none of them identifies elephant flows

in a virtual overlay network and map them to different paths when needed. Not

isolating elephants from mice flows in an aggregate of overlay traffic may degrade the

performance of co-located applications. Hence a mechanism is required which may

identify elephant flows belonging to different tenants and map them to different paths

in order to minimize bad impact they have on mice flows of other tenants.

3.2 Design Objectives

Our objective is to ”improve performance of co-located tenant applications by identi-

fying elephant flows in virtual network elements and mapping them to different paths

where required”

Previous section explains the problem definition with the help of example. It

concluded that aggregation of short and large flows from virtual overlay networks

traversing the underlay fabric may affect the performance of co-located applications.

If large flows are not identified and mapped to different paths in the physical fabric,

they may affect short flows causing long delays i.e., elephants stepping on the mice.

Two types of totally different flows with different requirements and demands should

be handled as per their requirements. Therefore, a mechanism is required which may

identify elephant flows in the virtual overlay network i.e., in the vicinity of virtual

machines generating virtual traffic and notify underlay network elements to isolate

them from mice flows. Providing isolation at the level of traffic may ultimately

improve the unpredictable or bad performance of co-located applications.
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3.3 Summary

This chapter introduces the problem of handling virtual traffic in current virtual net-

works and discusses it with the help of examples. Different scenarios are discussed

which highlight the problem in virtual networks. At the end, design objective is pre-

sented to provide better isolation among tenant applications when they communicate

which in-turn may improve performance of co-located applications. The design objec-

tive states that application performance can only be improved if and only if elephants

and mice flows from virtual traffic are identified and isolated in the underlay fabric.
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Chapter 4

Methodology

This chapter discusses the proposed methodology to identify elephant flows in virtual

overlay network and to handle them on physical underlay.

4.1 Elephant Flow Detection

We propose openvswitch-based elephant flow detection scheme for virtualized envi-

ronments where different applications or services are consolidated on a single physical

server. Opevswitch is used to monitor and detect elephant flows because it is at an

optimal location at the edge and is in close vicinity of all the virtual machines hosted

on a physical server. The proposed detection mechanism efficiently identifies elephant

flows belonging to a tunnel when they reach a specified threshold on number of bytes

in a given time. This mechanism provides visibility into virtual traffic without intro-

ducing any in-network monitoring overhead. Details about design methodology and

working mechanism have been discussed in proceeding sections.

4.1.1 Openvswitch Design Overview

The basic openvswitch architecture is shown in Fig. 4.1.

Openvswitch consists of a userspace and kernel space components. Userspace is

a slow path component which runs within the management domain of virtual hosts

while kernel space is fast path component which runs within the kernel. Open-

vswitch imports configuration, forwarding path and connectivity management inter-

faces through which it manages configuration, manipulates the forwarding state and
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Figure 4.1: Openvswitch architecture

manages local connectivity with hypervisor respectively [37].

The configuration interfaces provide connectivity to local or remote processes

which manipulate configuration of openvswitch database server. Openvswitch database

server is JSON-based configuration database server which is used for persistent con-

figuration of openvswitch daemon. A local or remote process can read/write OVSDB

configuration state as key-value pairs and can set up triggers on asynchronous events

using OVSDB protocol [36]. Furthermore, it is also responsible to provide binding

between large virtual environments and network ports.

The forwarding path manages openvswitch flow tables in kernel datapath. It im-

plements the main logic of packet lookup based on L2, L3 or L4 headers which further

decides to forward or drop the packet or to en/decapsulate the packet. Through for-

warding path interface a remote process can manipulate the forwarding table directly

by using OpenFlow protocol.

The connectivity management interfaces are used to support integration to local

virtualization environments and to manipulate virtual network topological configu-

ration.

4.1.2 Why Openvswitch

Openvswitch is virtual networking component within the hypervisor which provides

connectivity between Virtual Interfaces (VIFs) and Physical Interfaces (PIFs) as

shown in Fig. 4.2. It is tightly integrated with the hypervisor where it can infer

information through virtual machine introspection which is not easily derivable by
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Figure 4.2: Structure of a virtual network [35]

inspecting network traffic alone. It has the flow-level view of all the traffic between

VIFs and PIFs and between all VIFs on the physical server. Furthermore, it has full

control and visibility into virtual traffic which makes it the best candidate to modify

traffic behavior and/or L2/L3 packet bits either in the outer or inner headers. Atop

all, it is very close to the source of traffic which makes it the best measurement point.

4.1.3 Openvswitch-based Elephant Flow Detection: Archi-

tecture

Elephant detection process works in a control loop of four basic steps as is given in

Fig. 4.3. Different steps of this loop are discussed below.

Figure 4.3: Elephant flow detection control loop
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4.1.3.1 Monitoring and Detection

Elephant flow detection takes place at openvswitch forwarding path which runs within

the linux kernel space. This design basically extends the Mahout [13] elephant flow

detection mechanism to virtualization environments except that Mahout monitors

TCP socket buffers whereas the proposed solution monitors flow statistics at open-

vswitch datapath. Rate and time based methodology is adopted to detect elephant

flows on openvswitch datapath. Flow statistics associated with each flow entry in

the flow table are monitored and elephant flow is identified based on byte count and

time threshold. Monitoring for elephant flow detection starts as soon as the new flow

entry is installed in the flow table. Outgoing TCP flows associated with tunnels are

monitored only.

4.1.3.2 Marking

Marking of elephant flows takes place at forwarding path when a flow crosses a

specified threshold of bytes within a given time period, both outer and inner IPV4

header DSCP values are set to a specified value. Marking basically servers two

purposes: 1) outer IPV4 DSCP marking signals the controller and 2) inner DSCP

value is used to match virtual flow with its tunnel at the controller because a single

tenant may have multiple virtual machines generating elephant flows.

4.1.3.3 Notifying Userspace Openvswitch Process

After an elephant flow has been detected and marked, the openvswitch userspace

process needs to be notified. Relevant flow and tunnel information is added to the

corresponding table in OVSDB so that this information can be exported to a remote

process such as an OpenFlow controller. Userspace process is notified only once for

each detected elephant flow. Remote controller may use this information to manage

large flows efficiently and to have a better global view of large flows in the data center.

Additionally, virtual flow’s L3 or L4 header information can be used by ECMP for

hash calculation to provide better entropy in the system.

Algorithm 1 gives a detailed description of elephant detection.
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Algorithm 1 Pseudocode for openvswitch-based Elephant Flow Detection

1: When a new flow entry

2: If TCP and Tunnel

3: if packet count == 1

4: set previous time = current time of the flow

5: previous byte count = initial byte count of the flow

6: set flow marking time = 0

7: end if

8: if current time - previous time >threshold

9: if current byte count - previous byte count >threshold

10: if elephant flow marking time == 0

11: set IP header DSCP value

12: notify userspace

13: flow marking time = current time

14: end if

15: else

16: if current time - flow marking time >threshold

17: flow marking time = current time

18: set IP header DSCP value

19: end if

20: end if

21: end if

22: end if

4.2 Elephant Flow Handling

Elephant flows are handled in two steps: first at openvswitch and later at OpenFlow

controller.

4.2.1 Elephant Flow Handling at Openvswitch

Elephant flows are partially handled at openvswitch i.e., openvswitch is used to break

a large elephant flow into multiple subflows or flowlets as shown in Fig. 4.4. As

already discussed, openvswitch is at the optimal location on the edge because it has

full visibility and control into traffic that passes through it and it can easily modify

the behavior of traffic before it can hit and overwhelm the network. Large flows
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greatly differ in their rate, size, duration and burstiness [39], [51], so deriving this

information in the network to handle large flows is a hectic task for both openFlow

and non-openFlow based networks. At openvswitch, a flow is closer to its source,

so it is fairly easy to introspect its varying rate and to treat it according to some

pre-defined criteria. In order to divide a large flow into small flows at openvswitch,

a byte count threshold is specified and as soon as an elephant flow’s unstable rate

crosses the threshold, it is marked with a different DSCP value in outer IPV4 header.

The bursts of packets with different DSCP values are identified as subflows at the

ToR switch. In this way, a large flow is subdivided into many subflows sequentially

with each subflow being routed to a different path. Fig. 4.5 gives a hierarchical view

of flow splitting schemes.

4.2.2 Elephant Flow Handling at OpenFlow Controller

ToR switch redirects all detected elephant flows and subflows to controller because

a different DSCP value results in a table miss. The controller maintains a global

view of elephant flows and congestion state of the network and puts each subflow to

lightly loaded path. In this way, large flows occupy path resources for only short time

without hurting mice flows.

4.3 Working Mechanism

The proposed mechanism works by taking byte count and time threshold as an in-

put pre-configured by the administrator. When a new flow entry is installed at the

datapath, elephant flow detection control loop starts as well. If the flow achieves

the maximum rate through which it crosses the threshold specified in a given time,

it is classified as elephant flow and is further processed for marking and handling

on openvswitch and as well as on controller. Otherwise, it just leaves the control

Figure 4.4: Dividing an elephant flow into subflows at openvswitch
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Figure 4.5: Host-based flow splitting

loop and is processed by openvswitch on normal basis. A detected elephant flow is

handled partially at openvswitch and partially at the controller which simplifies the

task of managing large flows in the network. As detection is performed at open-

vswitch, a large flow is broken down into many short flows based upon its intrinsic

characteristics such as rate and burstiness. As soon as an elephant flow crosses the

specified threshold of byte count, it is split up and is marked with different DSCP

values. The different DSCP value allows ToR switches to redirect it to the controller

which further schedules subflows based on the current network situation. Further-

more, information related to all detected elephant flows on virtual networks is added

to openvswitch database so that it can be exported to any remote process. A remote

process such as openFlow controller can set up triggers on the relevant table and is

updated as soon as a new elephant flow event is triggered. The openvswitch database

flow entry contains virtual flow and its corresponding tunnel information. This infor-

mation is used by controller to efficiently handle virtual traffic and to load balance

the underlay fabric. An elephant flow entry is removed from openvswitch database

table immediately after it expires.

4.4 Summary

In this chapter, the methodology and working mechanism to handle heavy hitters

from virtual overlay networks is discussed. It first discusses openvswitch architecture

and why it is suitable for elephant flow detection and handling in current virtualized
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environments and then describes a detailed elephant flow detection control loop at

openvswitch along with algorithm used. Later it discusses how detected elephant

flows are handled partially at openvswitch and partially at the controller.
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Chapter 5

Implementation and Results

Previous chapter discusses methodology from an abstract view, this chapter presents

implementation details. Section 5.1 gives implementation details of elephant flow

detection and handling at openvswitch and controller respectively. Section 5.2 de-

scribes all hardware and software details of the testbed setup. Sections 5.3 and 5.4

discuss the traffic simulation and performance criteria. Details about benchmarking

and result discussions are discussed in section 5.5.

5.1 Elephant Flow Detection and Handling Imple-

mentation Details

Internal details of elephant flow detection control loop are represented in Fig. 5.1. In

order to implement detection scheme, openvswitch source code has been modified.

Openvswitch kernel module is modified to implement detection scheme. Each

flow entry is monitored for a threshold of 12500000 bytes (i.e., 100Megabit or 12.5

MegaByte) on a 1000 Mbps NIC for a period of 2 seconds, i.e., 10% of NIC utilization.

After an elephant flow is detected, both VXLAN and GRE modules are signaled to

mark outer IPV4 header’s DSCP bits with a specified value. The first packet of each

elephant flow is marked with DSCP value 1. This DSCP marking is performed both

on external and internal IPV4 headers with the same DSCP value. After openvswitch

VXLAN and GRE modules have been informed to mark packets of detected elephant

flows, an elephant flow push notification is sent to the userspace process. The notifi-

cation upcall sends a kernel to userspace netlink message containing modified packet,

39



Figure 5.1: Detection control-loop detailed architecture

datapath ID, flow key and upcall command ID. In userspace process, an upcall han-

dler thread listens to all incoming upcalls received from kernel module and processes

these upcalls based upon the specific command ID. After an elephant upcall is pro-

cessed, it informs OVSDB sever to add an elephant flow entry to the elephant flow

table. OVSDB schema has also been modified to add a new ”elephant flow table”

which contains a list of columns including br-name, eth dst, eth src, ip dst, ip src,

ttl, tos, tp src, tp dst, tcp flags, tun type, tun ip src, tun ip dst, tun tos, tun ttl and

tun id etc as shown in Fig. 5.2. For handling elephant flows, an elephant flow is di-

vided into flowlets by marking flow’s tunnel header with different DSCP values after

the flow crosses a specified number of bytes at openvswitch. For example, for every

detected elephant flow, first DSCP value is set to 1 which increments every time the

flow crosses a specified threshold of bytes, 12.5MB in this case. This information is

used at ToR switch by proactively installing wildcard rules to redirect packets with

different DSCP values to the controller.

Elephant flow scheduling mechanism has been implemented using PoX controller

[30] and is tested against 4-array fat-tree topology which is implemented in Mininet

[27] as shown in Fig. 2.5. The controller application detects elephant flows and route

them on different paths in two ways: first using Round Robin, a stateless method

and secondly by routing flows on the least-loaded path which is a statefull method

of routing flows. The stateless scheduling mechanism routes flows by not taking load
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on candidate paths into consideration while a stateless scheduling scheme selects a

least-loaded path to route a flow in the data center. Furthermore, elephant flows on

controller are sub-divided into short flows based on a time threshold. Each identified

elephant flow is divided into a flowlet as soon as it completes a duration of 2.0 seconds

or greater. Each flowlet is routed to a different path from a set of parallel multiple

equal cost paths.

5.2 Testbed Setup

Following components have been used to setup testbed.

Hardware: Two systems with x86-64 bit Intel(R) Core(TM)2 Duo CPU processor

with 3.0GHz capacity were used for setting up VXLAN and GRE tunnels. Further-

more, a c4.xlarge with high frequency Intel Xeon E5-2666 v3 (Haswell) with optimized

processors amazon EC2 instance was used for benchmarking of results.

Virtualization Hypervisor: Kernel based Virtual Machine (KVM) [24] module was

installed on Ubuntu 14.04 Linux Operating System with 3.13.0-24-generic kernel.

Switch: Openvswitch version 2.3.90 with 7.11.2 DB Schema version is used to im-

plement elephant flow detection, marking and handling scheme.

OpenFlow Controller: On the two hardware machines, OVS-controller is used

while OpenFlow 1.0 controller was used for scheduling elephant flows in PoX-Mininet

based data center.

Figure 5.2: Elephant flow entries in OVSDB ”elephantflow” table
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5.3 Traffic Simulation

Iperf tool has been used to generate TCP and UDP based elephant and mice flows

in the data center. Iperf provides different options to generate different flows for

example, varying time duration, varying size in KB, MB, or GB, adjustable TCP-

window size and two or three parallel flows to test performance metrics of a data

center.

TCP traffic is generated as front-end traffic following different patterns such as

stag prob, strides, random and all to all [3]. The stag prob traffic pattern is inter-

pod or intra-pod traffic pattern where a host sends a flow to another host in the

same subnet with a certain probability called ”SubnetP” and to another host in an-

other pod with probability ”PodP” while to the rest of the hosts with probability

1-SubnetP-PodP. Our testbed generates flows with 0.2, 0.3 and 0.5, 0.3 probabili-

ties. In stride traffic pattern, a host with index x sends the traffic to another host

with index(x+i)modTotal hosts. A stride traffic pattern simulates MapReduce and

Hadoop traffic patterns. In stride1, each host at index x sends traffic to the host

with index next to it such that (x+1)modTotal hosts. A 4-array fat-tree topology

can accommodate 43/4=16 hosts so (x+1)mod16. In stride2, each host with index

x sends traffic to the host at index (x+2)mod16. In stride4, host at index x sends

traffic to host with index x+4 and in stride8, each host at index x sends traffic to host

at index x+8mod16. In random traffic pattern, traffic is send to any other host with

equal probability and it simulates RPC and HTTP traffic patterns. In random traffic

pattern, a host sends traffic to any other host in the network with uniform probability

i.e., 1 and there are destination hosts which may receive 2 or 3 flows from senders,

and in randombij traffic patterns, bijection exists between senders and receivers so

that each destination host is the receiver of no more than exactly one flow. In hotspot

traffic pattern, all hosts try to send one or two randomly selected hosts in the data

center which may increase load on certain paths causing a ’hotspot’.

In our test, background UDP traffic has also been generated in a separate thread

using a random traffic pattern.
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5.4 Performance Criteria

Detection: The performance criteria for elephant flow detection mechanism is that

it identifies elephant flows belonging to different tunnels accurately without any false

positives and false negatives. A false positive is defined as a short flow identified

mistakenly as an elephant flow while a false negative is an elephant flow which has

not been identified as elephant flow.

Data Center Performance: Data center bisection bandwidth has been used as a

performance metric to evaluate data center performance because it is the worst-case

bandwidth to be measured in data centers.

5.5 Benchmarking and Result Discussion

Both elephant flow detection and scheduling schemes have been tested and evaluated

extensively by generating a range of TCP flows using iperf utility. However, detection

mechanism has been tested and evaluated separately than scheduling mechanism.

Following sections give a detailed description of testing and evaluation of the proposed

methodology.

5.5.1 Elephant Flow Detection: Testing and Evaluation

In order to test detection schemes, two physical machines are used with Ubuntu 14.04,

3.13.0-24-generic kernel, KVM and openvswitch 2.3.90 installed on them. Four vir-

tual machines are hosted on both systems. All virtual machines are configured with

different IP addresses from different virtual overlay networks. The virtual overlay

network is created and managed by openvswitch by establishing VXLAN and GRE

tunnels between them. Three GRE tunnels with 120, 121 and 122 key values and

one VXLAN tunnel with 123 VNI is established between four virtual machines. This

simulation shows a virtual network environment with four different tenants commu-

nicating over four tunnels. This test case is represented in Fig. 5.3.

Iperf utility in server mode is run on physical server 2 and in client mode on physical

server 1. Large and short flows of different sizes and rates are generated between pair

of virtual machines over same overlay. Results have been summarized in Table 5.1.
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Figure 5.3: Testbed configuration for detection scheme

Results show that elephant flows belonging to different tunnels have been identi-

fied efficiently. First of all, it differentiates among flows belonging to different tunnels,

secondly it differentiates between elephants and mice flows. Flows are identified as

elephant flows at different duration of their life time because each flow grows at a

different rate than other flows and they live for a different time duration. It is likely

that a flow acquire a sufficiently high rate within a few seconds after it starts and it

may take more time to acquire a rate to be fallen into the category of elephant flows.

All short TCP flows are not identified as elephant flows by the proposed schemes

because they were not able to acquire a sufficiently high rate to cross the threshold

specified.
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Table 5.1: Elephant flow detection scheme evaluation

Flow Size Flow Duration Bandwidth TCP Window size Detected jiffies No. of Bytes

(M/KByte) (Seconds) (M/Kbits/s) (KB) (Seconds) at detection

1 50.0 M 33.3 12.4 (M) 85.0 6 12500116

2 50.0 M 425.6 985 (K) 85.0 43 12501048

3 40.0 M 335.8 1.05 (M) 85.0 11 12500198

4 10.0 M 82.7 1.01 (M) 85.0 34 12502900

5 512 K 13.1 320 (K) 85.0 - -



Figure 5.4: Simulation results, duration 60s, flowlet interval 2.0 seconds - stateless

5.5.2 Elephant Flow Scheduling: Testing and Evaluation

The performance of controller is benchmarked against ECMP [29] controller, Hedera

[4] controller, and a non-blocking topology. All controllers were run with 4-array fat-

tree topology implemented using Mininet except non-blocking because it consists of a

single non-blocking switch. Different TCP traffic patterns are generated by running

iperf commands between different pairs of Mininet hosts.

Iperf commands were run for the duration of 30, 40, 50, 60, 70 , 80, 90 and

100 seconds and results were gathered by using linux bandwidth monitoring utility

”bwm-ng”. Virtual ethernet NICs of all mininet hosts were monitored for their

number of bytes sent i.e., tx bytes are sampled over a specified duration for all traffic

patterns using tcpbrobe and bwm-ng utilities on all controllers described above. Using

this sampled data, average bisection bandwidth for all hosts is calculated and results

are plotted. The normalized average bisection bandwidth of data center against each

controller is benchmarked on c4.xlarge amazon EC2 instance as shown in Fig. 5.4,

Fig. 5.5, Fig. 5.6, and Fig. 5.7.

Elephant flows were subdivided into flowlets using different intervals from few mil-

liseconds to few seconds i.e., from 0.05 milliseconds to 2.5 seconds and with both

stateless and statefull scheduling techniques but long intervals such as 2.0 and 1.5
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Figure 5.5: Simulation results, duration 70s, flowlet interval 2.0 seconds - stateless

Figure 5.6: Simulation results, duration 50s, flowlet interval 0.05 seconds - statefull

with stateless round robin scheduling always perform good. The benchmarking results

indicate that elephant flows with 2.0 interval flowlets using Round Robin scheduling

outperforms Hedera and ECMP for all traffic patterns.
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Figure 5.7: Simulation results, duration 60s, flowlet interval 2.0 seconds with back-
ground mice flows - stateless

5.6 Summary

In this chapter, implementation details along with testbed setup are discussed in

detail. Openvswitch, PoX and Mininet is used along with KVM based virtualiza-

tion. OVS-controller is used to manage and setup flows on physical hosts while a

PoX controller is used with Mininet 4-array fat-tree topology. Traffic is generated

with iperf and bechmarking tests are performed on fat-tree topology against ECMP,

Hedera and proposed scheduling schemes. At the end, bisection bandwidth is calcu-

lated using tcpprobe and bwm-ng utilities and results show that proposed technique

outperforms Hedera and ECMP for all traffic patterns with stateless scheduling and

a small number of flowlets.
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Chapter 6

Conclusion & Future Work

In this chapter, the conclusion with a summary of the research findings along with

future directions is presented.

6.1 Conclusion

We presented how openvswitch can be leveraged to handle important aspects related

to traffic engineering in data centers simply by using the information it maintains in

the datapath. At the edge, elephant flows generated by a tenant’s virtual machines

are detected efficiently and accurately without introducing any overhead either on

the edge or in network. Handling large flows at openvsiwtch by breaking them into

multiple short flows using DSCP values further simplifies the problem. Moreover, it

provides visibility to detected large flows by exporting their L2, L3 and L4 information

to openvswitch database. With this solution in place, a network controller is freed

from the burden of monitoring each incoming flow and then classifying it as elephant

flow after it meets a certain criteria, and can optimally schedule large flows so that

they have less impact on mice flows.

We have evaluated our detection and handling schemes by performing different

tests using different traffic patterns. Analysis revealed that elephant flows related to

different tenants are identified accurately with minimal overhead and it reports no

false positives and false negatives. By applying elephant flow detection and handling

schemes, bisection bandwidth is improved and network overhead has been reduced

greatly.
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This modified version of openvswitch can be used in virtualized data centers with

high degree of VM consolidation where bandwidth of the system is major issue. By

augmenting proposed scheme with existing routing mechanisms, it is expected to

reduce network overhead, and improve network performance greatly.

6.2 Future Work

Our proposed solution is currently tested for a small data center on Mininet, but

it can be extended to a cloud-based virtualized data center where virtual machines

are consolidated with high level and multiple physical servers are involved each with

openvswitch installed. In our proposed work, byte count and time threshold is man-

ually configured, this work can be further extended to automate the elephant flow

detection configuration process on openvswitch. Additionally, as openvswitch is very

close to the source of traffic generated by virtual machines, it can learn about what

type of applications are responsible to generate elephant or mice flows.

Moreover, openvswitch allows its datapath component to be offloaded to hardware

for efficiency purposes, there is also need to know that what is the behavior of ele-

phant detection process in hardware after datapath has been offloaded to it. Finally,

in High Performance Computing environments, there is possibility that physical ma-

chines use passthrough PCI mechanisms such as SRIOVs, using these mechanisms,

openvswitch is completely bypassed so it will not be possible to detect elephant flows

at openvswitch. Hence, a mechanism is required which could be used on host machine

to cater this type of situations.
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