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Abstract

The big challenge in an online transaction is the distribution of secret keys in
a secure way as it is the core feature of any security system. With advance-
ment in technology and recent security threats there is a need to develop a
secure and long term solution for key sharing. Currently, concept of pairing
in cryptography is emerging to share the key between the users. Pairing
over elliptic curves proves much resilient against most of the attacks. It is
efficiently computed in a single round compared to two round Diffie-Hellman
key exchange protocol. Eta-T is the most efficient and widely used pair-
ing algorithm based on elliptic curves. In this thesis, our work is based on
hardware accelerator for Pairing by using FPGAs platform. We align parts
of pairing algorithm to be executed in parallel saving number of clock cy-
cles. We work on efficient computation of finite field arithmetic operators like
multiplication to achieve reduced critical paths. We implement Karatsuba
multiplier for multiplying two operands in parallel and then its reduction in
the same clock cycle. We implement Adder, Multiplier and Cube over F97

3 .
Our implementation calculates Eta-T pairing in just 36.4 µS by consuming
3597 clock cycles which proves to be 25% less in number of clock cycles than
contemporary implementations in FPGAs. We provide a fair comparison of
our results with state of the art implementations at the end.
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Chapter 1

Introduction

In 1976, Diffie and Hellman[1] revolutionized the world with the latest key
sharing algorithm which is known as Diffie Hellman key exchange method.
This is the first time in which public and private key was used to share the
key between the users. The complexity of this algorithm lies in the Diffie
Hellman problem. Despite this algorithm a well known algorithm RSA[2]
exist in which public and private key pair is used and the complexity of this
algorithm lies in factoring large prime number which is a difficult problem.

Elliptic curves was first introduced in cryptography by Koblitz [3] and Miller
[4] in 1987. They introduced the associated group to solve the discrete loga-
rithmic problem. The group used to solve the problem of discrete logarithmic
is multiplicative groups and even there is no any single algorithm to solve the
discrete logarithmic problem by polynomials. Up till now, all the algorithms
to solve the discrete logarithmic problem are exponential. This is very hard
on the elliptic curves even if we take the key length very small and check the
complexity with other systems. Comparing the complexity of elliptic curve
cryptosystems with the other systems like RSA or any other, elliptic curve
cryptosystems are much better than the other systems in terms of security.

The tool used to prove the properties of the elliptic curves are the Weil
[11] and Tate [12] pairing. But first time breakthrough came when in 1993,
Menezes, Okamoto and Vanstone (MOV) showed that to convert the discrete
logarithmic to discrete logarithmic problem by using Weil [11] pairing in some
other extension field which is derived from the original base field. But later
on, Frey and Ruck [5] had done the same problem to convert it to discrete
logarithmic problem by using the Tate [12] pairing.

In 2000, Sakai et al.[6] and Joux [7] proposed two independent cryptosystems
by using pairing over elliptic curves. Diffie Hellman key exchange protocol
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CHAPTER 1. INTRODUCTION 2

was used to share the key between two users but Joux [7] proposed an idea
to share the key between three users instead of two and Sakai et al. [6]
proposed the use of pairing in identity based cryptosystems. The notation
used to identify the identity based cryptosystems was give by Shamir [8]
in 1984. It consists of public and private key cryptosystems. Public key is
bounded with the entity and the person having the private key corresponding
to Public key can only decrypt the message.

In 2001, Boneh and Franklin [9] and Cocks [10] proposed two algorithms
separately for encryption based upon identity. In both the algorithms, one
is based upon Weil [11] pairing and the other is on quadratic properties.
Therefore, pairing is getting more attraction and it becomes the most popular
area for key sharing. Once pairing based cryptosystems had developed and
now the direction of research turned around to optimize the pairing based
cryptosystems as well as key sharing protocol by using the elliptic curves.

1.1 Elliptic Curves

1.1.1 General Equation

The general equation for the elliptic curve is given as

y2 + axy + by = x3 + cx2 + dx+ e (1.1)

This equation shows that a,b,c,d and e are the coefficients and are the real
numbers as well as x,y are also the chosen from the real numbers. If we
define K be the field and these values from the field K . Where (x, y) be the
real numbers and are the solutions of the above elliptic curves and x,y ∈ K2.
There is also a point at Θ. The coordinates of the point can be written as
(0,1,0) which is in the projective coordinates. But for simplicity we can say
that the coordinates of the point which has its x component zero and the y
component is 1 are the point at Θ.

1.1.2 Weierstrass Equation

Equation 1.1 is the general form of the elliptic curves which can be reduced
to the Weierstrass equation and can be written as,

y2 = x3 + ax+ b (1.2)
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The degree of polynomial in equation 1.2 is 3, which is the highest power
of the any variable and a,b are the values which we have to choose for the
elliptic curve which decides the characteristics of the curve.

y =
√
x3 + ax+ b (1.3)

Equation 1.3 shows that the curve is symmetric about y=0 for the given
values of a and b. The main task is to choose the appropriate values of a and
b such that there is no singular points on the curve. Singular point is that
the curve does not intersect at any point if we extend it to Θ. This is only
possible if this mathematical equation holds true,

4a3 + 27b2 6= 0 (1.4)

Let us suppose that if we take a=1 and b=0 in equation 1.2 the the equation
becomes,

y2 = x3 + x (1.5)

The points which satisfy the above equation are the points on the elliptic
curve. The only condition to find the points on the curve is that the discrim-
inant should not be zero. As b is zero in our case so the value of discriminant
is (4).(1)3 = 4 6= 0. As we are working in characteristics three so we can
choose the value of a and b between 0, 1 and 2. Equation 1.2 is derived from
the general equation as discussed in the equation 1.1

1.2 Groups

Set of points on an elliptic curve not intersecting each other hold some of the
properties which leads us to some conclusion and the properties which the
points on curve hold are listed as.

• Suppose P ∈ E(K)and P+ Θ=P and Θ+P=P . So we can say Θ is an
additive identity which does not effect on the point P . If P=Θ then
-P=Θ.
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• If p(x, y) and -P = (x, y) which is equal to -P = (x,−y), If we add
P+(-P )=Θ. Then we can say that -P is the inverse of P and Θ is the
identity which is obtained after adding a point to its additive inverse.

• If P (x1, y1) and Q(x2, y2) where x1 6= x2 i.e. P and Q are different
points on the elliptic curve and the addition of these points P+Q=-R
results in -R which is the negative of the sum of the two points. In
other words -R is the reflection of R and R is the point of intersection
joining the line P and Q with E. Addition law is described in figure
1.1.

• If P (x1, y1) and we have to add P+P=-R, this is called the point
doubling and -R is the negative of the sum of the two points. In other
words -R is the reflection of R in the x-axis and R is the point of
intersection joining the line P and P with E.

1.3 Order of E(Fq)

1.3.1 Hasse Theorem

It is possible to generate points on an elliptic curves starting from the first
point because by adding points the result lies on the curve until we reach the
point Θ which is known as the point at infinity and this point is considered
as identity point. Total number of points lying on the curve is called the
order of the curve. First roughly approach to count the number of points on
the curve is less than 2q + 1. If we substitute the value of x in the equation
1.3 then we have two values of y, one is positive and the other is negative.
So 2q points are obtained and one point lies at infinity is also included in
these points then the total points are 2q + 1 which is not the exact measure
of the number of points lying on the curve. The exact formula to find the
number of points on the elliptic curve is given by Hasse [17] and the points
lies between this limit.

q + 1 + 2
√
q ≤ |E(Fq)| ≤ q + 1 + 2

√
q (1.6)

The proof of this formula to find the limit of the number of points can be
found [15][16] here.
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1.3.2 Determining the Order

For some of the curves to find the order is very simple. If we can write
t=|E(Fq)|-q-1 and t≡ 0 (mod p) then |E(Fq)| ≡ 0(mod p). The converse
is also true, so the order of the curve is found very easily by using schoof’s
algorithm if we can write it as t= |E(Fq)|-q-1. Further we use Chinese Re-
mainder theorem for further calculation of t. In our scenario we have to find
the order of Eq=Epk. So the order of Ep can be calculated very easily by
using the Schoof’s algorithm if p is small i.e. p= 2 or p= 3. Furthermore,
the calculation of Epk is calculated by using the following theorem, where k
is any positive integer.

Theorem 1:

Suppose, |E(Fq)| = p+1-t and α, β be the roots of a trinomial given as
T 2 − xT + P . Therefore we can write it as,

T 2 − xT + P = (T − α)(T − β)forallk ≥ 1 (1.7)

Then we have,

|E(Fq)| = p+ 1 + αk + βk (1.8)

For proof of this theorem we refer to the following paper[18][19].

1.4 Order of Point

Order of point is different from order of curve. Total number of points lying
on the curve and the point at infinity is called the order of the curve but
order of point is somewhat related to scalar multiplication. Suppose we have
a scalar quantity n and a point P lying on the curve having coordinates
P (x, y). To get the order of the point we have to add the point P with itself
to n times so that we get the result nP=Θ. The n is called the order of the
point.

1.4.1 Torsion Points

Once we have calculated the order of curve, next task is to find the order of
the point as we already discussed above. Suppose we have a scalar quantity
m and a point P lying on the curve having coordinates P (x, y). To get the
order of the point we have to add the point P with itself to m times so that
we get the result mP=Θ. Points have both finite and infinite order. The
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points which have infinite order are of no use. We only focus on the points
which have the finite order. The points which have finite order i.e. the points
which reach to mP=Θ. Then m is called the torsion of the point. All the
points on the curve has not the same order. The points having same order
are grouped in the same group which is also called the torsion group. If a
curve is defined over the finite field Fq then all the points are the torsion
points and the value of torsion is different because all the points do not have
the same order and the order of the point divides the order of the curve.

Definition 1:

Suppose r is any positive integer then, E[r]=E∈ (Fq)|rP= Θ

Then r is called the torsion of the curve. There is a set of the points which
are algebraically closed is called the algebraic closure. In this set all the
points are not of the order r. If a point P is of order n then i.e. nP=Θ then
n is called the smallest integer which satisfies the condition nP=Θ and the
point P does not belong to the set which have the order n i.e. E[n] but also
a member of E[r] because we know that n divides r. We suppose that if k is
any positive integer and then knP=Θ means that the torsion group not only
contains the points which have order n but it consists of the points which
has the order multiple of n.

1.4.2 Supersingular Curve

E is said to be supersingular if it has not a single point of order p, where P
is the characteristics of the curve E[p]={Θ}

• If r is the power of P then E[r]={Θ} because E is supersingular or
E[r] is isomorphic Zr

• If r is co prime to p then E[r] is isomorphic i.e. Er ×Er. This simply
means that E[r] has r2 elements but not a single element has of the
order r2.

As p and r are coprime and these groups of points are of great interest
to calculate the pairing for key sharing and the identity point Θ is of
order 1.
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1.4.3 MOV degree

We now introducing a new term MOV related to r which is very useful for
the security parameter.

Definition 2:

We suppose that E is an elliptic curve and r is any positive integer then we
can say that E[r]= E(Fk

q)[r] where k is a small integer then k is called the
MOV degree or the embedding degree. In other words k is the smallest exten-
sion of the field which have all the points of the order r. Sometimes it is also
called security parameter. MOV stands for Menezes Okmoto Vanstone[24].
Finding the MOV degree is not an easy task. To achieve this task we have
to understand the following theorem.

Theorem 2:

Let, E is an elliptic curve and r is any positive integer such that r divides
|E(Fq)| but it does not divide q − 1. Then we can say that E(Fq) contains
r2 points of order r if and only if qk − 1 is divided by r. If our hypothesis
verifies that r divides the order of the curve and it does not divide the q− 1
then we can say that it is the smallest positive integer that divides qk − 1.

Theorem 3:

Let, E is a Supersingular elliptic curve and r is a prime divisor of |E(Fq)|
then the embedding degree is less than or equal to 6.

Supersingular curves are of great interest and it has very small MOV [24]
degree i.e. it has all the points which have E[r]. Once we found that the
embedding degree is less than or equal to 6 then it is very easy to find the
points of E[r] and we have to work maximum in the field F6.

1.4.4 Point Addition and Point Doubling

Point addition is the main operation on elliptic curves. Suppose P1 and P2

be the two points on the curve and O be the additive identity. Identity is
the term which is added to any point and there is no effect on the result.
So if we add it to point P1 i.e. P1+O=P1 and P2+O=P2 (i.e. no effect on
the point). If we add P1 with P2 which intersect at -P3. After taking the
negative of the point -P3 which is P4 and our desired result of the addition
of the points P1 and P2. This can be shown in the fig. 1.1.

The coordinates of points are given as, P1(x1, y1), P2(x2, y2) and the coordi-
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Figure 1.1: Point Addition

nates of point P4(x4, y4) can be found by this formula. First we find the slop
of the points as,

∆ = (y2 − y1/x2 − x1) (1.9)

and the coordinates of the point p4 is calculated as,

x4 = ∆2 − x1 − x2 (1.10)

y4 = −y1 +∆(x1 − x4) (1.11)

This is the formula if both the points are different. If the points are same
then the formula for addition is different and is calculated as,

x4 = (3x2
1 + a/2y1)− 2x1 (1.12)

y4 = (3x2
1 + a/2y1)(x1 − x4)− y1 (1.13)

1.4.5 Scalar Multiplication

Scalar multiplication is most likely as that of point addition. Suppose n is
any scalar number and we have to multiply it with a point P (x1, x2). In
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elliptic curves simple multiplication is not possible and we have to add this
point n times to get the result nP .

nP = 1 + 2 + .... + n
︸ ︷︷ ︸

P (1.14)

To achieve the result of scalar multiplication we have to start adding the
point P with itself until we reach our desired value which is nP . For scalar
multiplication we need point addition and point doubling which we have
already discussed in the section of point addition. For simplicity we use
double and add algorithm [14] so that we need to do less computation rather
than the simple point addition formula.

In this research we focus on Eta-T pairing algorithm and before Eta-T [13]
pairing many research publications and books were on Weil [11] and Tate
[12] pairing. These pairings can be calculated by using elliptic curves and
bilinearity property. So there is a need to be a protocol that lies in the
middle of it and further form this we can calculate the Tate [12] and Weil
[11] pairing very efficiently. So the answer of this question is Eta-T pairing.
The algorithm to calculate the Eta-T pairing [13] is already give in some of
the research papers and literature survey.

The purpose of this research is to optimize the Eta-T pairing [13] so that
we can achieve much improvement in the calculation time of Tate [12] and
Weil[11] pairing. Before our contribution a lot of modification to this has
happened but still there are some weaknesses which still required further
improvement. In this research we contribute to the Eta-T pairing[13] algo-
rithm by changing at the implementation level. The algorithm which, I have
implemented calculates pairing by serial computation and it consumes a lot
of clock cycles. To optimize this algorithm we have to go through a lot of
study in which firstly we studied elliptic curves and their properties how it
behaves when it is used in pairing and what is the complexity of the pairing
algorithm when elliptic curves are used. Then we have studied what are the
points on the curve and Torsion points and how it behaves when it is used in
pairing. Then we came to know how points can be represented in the form of
divisors and functions which is the further requirement of the Tate pairing.
On elliptic curves scalar multiplication is not simple but it is the addition
of points to calculate the multiplication which is the main strength of this
pairing algorithm. By getting all this information we have to check the com-
plexity of this algorithm which we came to know that discrete logarithmic
problem is very hard on the elliptic curves which makes it less vulnerable to
the attacks. In the end we have a comparison between the one round key
exchange protocol and two round key exchange protocol. Diffie Hellman [1]
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is two round key exchange protocol which is used to share the key between
the three users in two rounds. In first round partial key is shared between
the users and in the second round full key is shared between the users so that
they agreed upon a shared key which is further used to encrypt the messages.

Compared with two rounds key exchange protocol pairing is introduced to
share the key between the users in a single round. In one round key exchange
users broadcast their message to other users. Each user get the response
from the other two users and calculate the pairing of two values which he
got and take the power with his private key value. The result obtained
is the shared key between the users. This step is performed by each user
and all three users have the same value and this is performed in a single
round. Therefore, we proffered one round key sharing protocol rather than
two round key sharing protocol which is Diffie Hellman [1] key exchange
protocol. Getting advantages of one round key exchange protocol and further
optimization to this protocol leads to overall optimization of security system.

1.5 Motivation

Security is the key feature of any security system and very less work has been
done on this field so far, especially in countries like Pakistan. Now a days
online key sharing is a big problem. If key is compromised then the whole
system is compromised and no value of the security system. Finally, we also
want to shift key sharing protocol from two rounds to a single round protocol
by using pairing so that key is more secure and efficiently computed. Two
round key sharing protocol provides less security as compared to one round
protocol which uses pairing over elliptic curves.

1.6 Problem Statement

“Working on pairing algorithm for low hardware area and high speed to ease
the key sharing protocol for advanced security application”

1.7 Thesis Contribution

Before our research pairing is calculated in multiple research publications.
Among those we have implemented three to four algorithms. We critically
analyze those algorithms and found that algorithms uses cube roots, more
number of iterations, more hardware area, large number of clock cycles and
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serial computation in the extension field. Based on this weakness in the key
sharing protocol we have implemented an algorithm which uses less number
of iteration and no cube root but it uses serial computation in the extension
field and we have calculated it in parallel. After successful implementation
and comparison with previous results shows that we saved 25% less clock
cycles which results in the overall optimization of key sharing protocol as
well as further calculation Tate pairing.

1.8 Thesis Organization

The organization of thesis is as in first chapter we discussed introduction in
which motivation, problem statement and thesis contribution is described. In
chapter 2 literature survey is described in which we have critically analyzed
the pairing algorithm. In chapter 3 hardware implementation is discussed in
detail and in chapter 4 results and comparison is discussed and in chapter 5
conclusion and in the last appendix.



Chapter 2

Literature Survey

2.1 Bilinear Pairing

As we have discussed all the details about elliptic curves and all its related
contents which is useful for further use. Now we move towards our main
task which is known as bilinear pairing. In this section we will also discuss
rational function and divisor.

2.1.1 Rational function

This is very technical topic and in mathematics rational functions are those
in which we can write in the form of p/q.

Theorem 4:

Suppose that E(K) is an elliptic curve with equation f(x, y)=0. Then it can
be proved that a polynomial with the zero function on the curve E(K) if
and only if it is a multiple of f . There is an equivalence relationship and we
can say that E[K]= K[x, y]/< f >, then we can say that E[K] is rational
function of E.

Theorem 5:

Suppose E is an elliptic curve and f is any rational function. Then there
is zeros and poles on the function and furthermore, the number of zeros are
equal to the number of poles. If the number of poles as well as number of
zeros is zero then it is called the constant function. The function we will use
has as many zeros as that of number of poles. But classical function over real
field is not possible and rational function over the elliptic curves are defined

12



CHAPTER 2. LITERATURE SURVEY 13

over algebraically closed field E(K̄) with which a point at infinity is included
Θ which is the identity point.

2.1.2 Divisor

Divisor is the last tool which we have to understand further to go to the
final pairing. First we give the formal definition then we go for example to
describe it. Let E be an elliptic curve which is defined over a field K̄i.e.E
(K̄). For point P ∈ E(K̄) we describe the symbol for divisor [p].

Definition 2:

The divisor D on E is the linear combinations of the points as given below,

D =
∑

i

ajp[j], withaj ∈ Z (2.1)

The group of divisors is denoted by DivE and the symbol for the divisor is
[p]. Now we discuss the two main functions in the Divisor.

Degree of the divisor is from the function we can write it as.
∑

j

ajp[j] =
∑

j

aj (2.2)

The sum of the points is described as,
∑

j

ajp[j] =
∑

j

ajp[j] (2.3)

Subgroup of divisor zero is of much interest for pairing.

2.1.3 Pairing

We have discussed all the tools needed to describe pairing. We now move
towards that how pairings are constructed and which properties are they
hold. We suppose that G and G′ are the two additive groups and H is
another group which is multiplicatively defined. Additive group is defined
by the sign “+” and the multiplicative group denoted by “.” We denote the
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pairing by ê Such that G × G′ → H . The most important property in
calculating pairing is bilinearity property which is defined as:

∀S1, S2 ∈ G and U1, U2 ∈ G′, ê(S1 + S2, U1) = ê(S1, U1). ê(S2, U1) (2.4)

ê(S1, U1 + U2) = ê(S1, U1). ê(S1, U2) (2.5)

In modern cryptography we use pairing on two groups e.g G and H and the
pairing is defined between these two groups and it can be written as
G ×G → H .

Suppose X, Y, Z ∈ G then,

ê(X + Y , Z) = ê(X,Z). ê(Y, Z) (2.6)

ê(X, Y + Z) = ê(X, Y ). ê(X,Z) (2.7)

Now the second property by using the straight algebra and the bilinearity
property we can say that if a, b are the positive integers and P is any point
which is P ∈ G as,

ê(aP, bP ) = ê(abP, P ) = ê(P, abP ) = ê(P, P )ab (2.8)

The last property we discussed is very useful for the calculation of identity
based protocols. Now we have discussed all the information and the pair-
ing, further task is to construct Eta-T pairing which is also useful for the
calculation of Tate pairing.

2.2 Miller’s Algorithm

The concept of pairing is first time given by Miller[20]. We suppose that P
∈E (Fq)[l] and Q ∈E(Fqk)[l] and the reduced Tate[12] pairing equation is
given by

el(P,Q) = fl,p(Dq)
((qk−1)/l) (2.9)

Where fl,p is a rational function defined over the elliptic curve E and its
divisor is written as l(P )−l(Θ) andDq is a divisor equivalent to (Q)−(Θ) and
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the last part consists of (qk −1/l) is called the final exponentiation. Tate[12]
pairing satisfies the property of non degeneracy and bilinearity which are
given as.

• Bilinearity: Suppose a is an integer, then

(aP,Q) = ê(P, aQ) = ê(P,Q)a (2.10)

• Non Degeneracy : if there exists el(P,Q) = 1 for all Q∈ E(qk)[l]
then there should be P=Θ

The above discussed properties and algorithm formula is for the reduced
Tate pairing[12]which was first discussed by Miller[20] in the form of Weil
pairing[20]. Then this algorithm goes through a lot of modifications[21][22]
[23]to achieve significantly better results. Furthermore, Barreto et al.[21] ex-
ploited the distortion map to enhance the Miller’s algorithm[20]. Final com-
parison between the modified Tate pairing [12] and Eta-T pairing is given as.

(ηT (P,Q)W )3T 2 = ê(P,Q)Z (2.11)

2.3 FPGA and ASIC implementations of the

Eta-T pairing in characteristic three

First paper added in this research which is closely related to the our work
is “FPGA and ASIC implementations of the ηT pairing in characteristic
three”. In this paper two processors were used to calculate the reduced ηT
[13] pairing. First processor is used to calculate the pairing of two points and
second processor is used for the final exponential of the pairing value. In this
paper they used the ηT pairing [13] approach to calculate the modified Tate
pairing [12] and save iterations from 3m to just m. By using this approach
both Miller and final exponential algorithms are modified.

In this paper algorithm used to calculate the ηT [13] pairing did not require
any cube root and need only two points P and Q in the base field and it
returns the ηT pairing of these points. Furthermore, it uses Fermat’s little
theorem to calculate the final exponential of this reduced ηT pairing value.
In final exponential algorithm this uses P Q in the extension field F6m

3 and
cube operator is required just for cubing.

Algorithm used to calculate the multiplication in the field Fm
3 and F6m

3 is
Most Significant Element(MSE) [25] first. This algorithm is already discussed
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above. The remaining operator used in this paper are same as we have used
in our research which is cubing operator and lastly it calculates the final
exponential so it also uses the inversion over the base field. They also used
sharing of memory up to three multipliers so that accessing to the memory
is minimized.

2.4 An Algorithm for the Eta-T pairing in

Characteristics Three and its Hardware

implementation

The second paper which is the most relevant to our implementation is “An
Algorithm for the Eta-T pairing in Characteristics Three and its Hardware
implementation” [13]. Two algorithms were given in this paper, first one
uses the cube root and the second one is cube root free. In this paper author
proposed the modified ηT pairing and the used the multiplier in the base
field Fm

3 and multiplication algorithm is (MSE)[13] which is further used to
calculate the multiplication in the field F6m

3 .

As in this paper they used the serial multiplication over the extension field
F6m
3 and they saved the multipliers which also result in large number of clock

cycles as well as large calculation time. We exploited this vulnerability in
our research and we use Karatsuba multiplier and we calculate all this com-
putation in parallel, which result in we save upto 25% clock cycles and the
calculation time. The down side of this parallelism is that we use large num-
ber of multipliers and area as compared to the original algorithm proposed
by the author.

2.5 Multiplication over Fm
p on FPGA

This paper is kind of survey, in this they proposed the modified ηT pairing [30]
and it explore the trade off between resources and calculation time by using
large values of P , m and f(x). Plus point of this modified pairing algorithm
is that no restriction on the elliptic curve and we can use any value of P and
m. Weak point of this paper is that it uses very complex state machine and
it uses more registers. For calculation of the final ηT pairing algorithm in
this paper they proposed no modification to the final exponential algorithm.

Last paper most relevant to this research is “Fast Architectures for the ηT
Pairing over Small-Characteristic Supersingular Elliptic Curves” [31] and
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they used the parallel multiplier over the field in characteristics two and three.
They used parallel pipeline Karatsuba multiplier for calculating Millers al-
gorithm [20] and used sparse multiplication to calculate the multiplication
over F6m

3 . The main task in this multiplier is to keep busy during the whole
multiplication.

2.6 Research Methodology

Now, come to the main point how we go and prove our research. There
are two types to prove your research one is called inductive research and
the other is deductive. Deductive research is called top-down approach and
inductive research is called bottom-up approach. In our research we have in
our mind to calculate the ηT pairing which is the top of our research and we
used different modules to prove our result, which are working at the bottom
of the pairing.

In the first phase we did the literature survey about this field. This is very
important to get information about this field and without this we will not
know about the problem in this area. Once we have realized the problem in
this domain which helps us to compile the problem statement as discussed
in the chapter Introduction.

In second phase of the research is to implement the existing algorithm used for
pairing. Only one algorithm cannot tell us to optimize it so that we have to
implement two to three algorithms. Once we have chosen the algorithm which
needed less clock cycles, we need to optimize that one. For optimization
we use karatsuba multiplier which parallel compute the multiplication and
second we compute parallel computation in the extension field F6m

3 which is
very useful for reducing the number of clock cycles which is discussed in the
chapter Hardware Implementation.

Last phase of the research is to take results of our implemented protocol and
compare it with the previous results. If these results are significantly better
than previous results then this are called good research otherwise we have to
change our approach and go back to the implementation phase to reconsider
our implementation.



Chapter 3

Hardware Implementation

3.1 Addition and Subtraction over Fm
3

The addition and subtraction operation are very simple and just a look up
table. As we are working in Galois field Fm

p . So P in our case is 3 and m is 97.
The values which comes in the prime field p are (0, 1, 2) which is represented
by two bits in binary. Increasing the field from 2 to 3 the number of bits
used are increased to double e.g in base 2 there comes only two values (0,
1) but in base field 3 it comes (0, 1, 2). In base 2 only one bit is needed to
represent the field members. So by increasing the field the complexity also
increases and it brute force or any other attack is much difficult. So there
should be one lower bit and one higher bit. The lower bit is represented by
aiL and the higher bit is represented by aiH . The bits obtained from this is
calculated as: the lower bit is aiL= aimod2 and the higher bit is calculated
as aiH= ai/2.

When we achieve the binary bits then further it is a very simple operation.
This is just a look up table to calculate the output. First we make it for just
two binary bits which represents adder from F1

3 which is further extended to
F97
3 . So for m = 97, the binary bits are equal to 194 bits. The input of the

Adder and Subtractor module is 194 bits and the output is also of 194 bits.
If we have to calculate the addition of three inputs then we have to calculate
the sum or subtraction of two values and store result in wire connection if
intermediate value is not needed for further use.

If we need this intermediate value then we have to store this value in a register
so that we can further use it. All this was done on Virtex-II pro-100 and
the complete specification is xc2vp100-6ff1696. The number of 4 input LUTs
used for the base adder are 2 and the total number of slices used for adder

18
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F1
3 is only one.

3.2 Multiplication over Fm
3

The algorithm used for multiplication is a bit complex rather than the al-
gorithm used in addition and subtraction. For multiplication we use the
algorithm Most Significant Element (MSE) first as described in the paper by
parhi and song [25] which multiplies the two polynomials a(x) and b(x) and
stores result say c(x). As we know this is finite field multiplication so the
result is also a polynomial which is also a member of this field. When we say
a finite field then there is an irreducible polynomial of the given field. We
say to the irreducible polynomial f(x). Now we can write the equation as,

c(x) = a(x)b(x) mod f(x) (3.1)

In this research we did experiments taking from D = 1 to D = 16, where
D is the number of coefficients processed per cycle by the multiplier. This
multiplication algorithm completes in two steps. In first step we have to add
up all the D partial products which are obtained by multiplying with the
polynomial powers as described in the algorithm 1. This addition requires a
polynomial of degree (m+D − 2). We say to that polynomial t(x) and t(x)
can be written as,

t(x) = a3i+2 x2b(x) mod f(x) + a3i+1xb(x) mod f(x) + a3ib(x) (3.2)

In our case m = 97 so total number of cycles needed to complete this mul-
tiplication process are cycles = [m/D]. For simplicity we take D = 3 and
the equation 3.2 is also written for D = 3. Therefore the number of cycles
needed for the whole multiplication is 32 as shown in figure 3.1 . Now a(x)
and b(x) are the two polynomials and the degree of each polynomial is 96.
The maximum power that can be on any coefficient is 96. At first cycle we
calculate the product as p(x)= a96b(x). p(x) is the final value which we will
achieve after 32 clock cycles.

Now we will discuss the entire process which is used to calculate the equation
t(x). In the above equation i ranges from 32 down to 1, but for i = 32 the
above equation is calculated which is a simple multiplication and there is
no addition in that equation in first clock cycle. Now, form i = 31 to 1
the equation 3.2 is calculated as, for second clock cycle the coefficient of
(3i+ 2) is multiplied by x2. After multiplying x2 it is multiplied by b(x).
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Figure 3.1: No. of cycles for Fm
3

After these multiplications the result is greater than our field so it is reduced
by the irreducible polynomial f(x) so that result lies within the field. After
reduction the result is stored in the temporary register for the further use.

As we are using D = 3, so there should be three partial products. First
partial product is calculated in the above paragraph and now for the second
partial product the coefficient of (3i+ 1) is multiplied by x. After multiplying
x it is multiplied by b(x). After these multiplications the result is greater
than our finite field. So to get the result into our defined finite field, divide
the result by the irreducible polynomial and now the result is within the field.
This result is stored in the register for further use which we will need to sum
all the three partial products. To get the final partial product, we multiplied
the coefficient of (3i) is multiplied by b(x), this result is already within the
field and we do not need any division to get the result back into the field.

Now we have all the three partial products which we have stored in the
registers. We have to add these three partial product and the result is stored
to the polynomial t(x), which we have used for the summation of partial
products. Now we come to the update mechanism at every clock cycle. The
equation for this update mechanism and complete multiplication for the two
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polynomials a(x) and b(x) is given as,

p(x) = p(x)x3 mod f(x)+a3i+2x
2b(x)mod f(x)+a3i+1xb(x)mod f(x)+a3ib(x)

(3.3)

p(x) = p(x)x3 mod f(x) + t(x) (3.4)

In equation 3.4 the whole equation consists of two parts. First part is the
equation with polynomial p(x). First time this polynomial is calculated at
first clock in which coefficient a96 is multiplied by the polynomial b(x) and
stored in the p(x). This is just for the first clock cycle and for the second
clock cycle the existing p(x) is multiplied by the x3. By multiplying p(x)
with x3 the result is greater than the finite field in which we are working. To
get the result back into the finite field we divide the result by the irreducible
polynomial of finite field and the result is stored into the register. Now we
have both the results e.g p(x) and the t(x) add both these results to get the
final p(x) value which is the net result after one clock cycle excluding first
clock cycle.

This process continues for 32 clock cycles and after 32 clock cycles we get the
final product value of two polynomials a(x) and b(x). The special thing about
this multiplication algorithm is that we do not need any reduction algorithm
to reduce the final product. Basically we are multiplying and reducing the
polynomials of partial products at each step or at each clock cycle. The
advantage of this algorithm is that we have not a final product which is long
polynomial. And one thing about partial products these are calculated in
parallel to avoid the additional clock cycles. As we have all the equations
for D = 3 so that we can easily understand the mechanism of multiplication
and reduction. According to our synthesis and place and route results the
number of slices used by the multiplier given D = 3 and D = 4 are 1131 and
1350 respectively.

Now we will discuss the detail about the multiplication algorithm how it
works. For simplicity we wrote the algorithm for D = 3. The reason behind
to choose this D is that we can easily explain it and the equation are small.
The multiplier takes 32 clock cycles. At first clock cycle i.e. for i = 32, we
calculate p(x) by multiplying a96 with B(x). For first cycle t(x) is zero and
no contribution to the p(x). For i form 31 down to zero t(x)is calculated
by multiplying the specific coefficients with x2, x and then multiplied with
the input polynomial b(x). If the answer is greater than the irreducible
polynomial then it is reduced to within the finite field. At step 5 p(x) is
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updated as written in the algorithm, i.e. multiplying p(x) by x3 and reduced
to finite field and then add up to the polynomial t(x). After completing all
these cycles, last value of p(x) is the final product value by multiplying a(x)
and b(x)and reduction.

3.3 Multiplication over F2m
3

Before going to the multiplication between the two members of F6m
3 , we need

another tower field extension which is known as a field F2m
3 . The theory

about this field is already given above; here we discuss the implementation
of this field and the mechanism which we followed to get the result. We
suppose that A and Bare the inputs of this module and C is the output. As
the field is F2m

3 , So there are two values of each input variable i.e. A consists
of two parts. To understand this logic we can write A and B as A = a1+a2σ
and B = b1 + b2σ, where a1, a2, b1 and b1 are the members of the base field
Fm
3 .

Multiplication between the elements of field F2m
3 needed 32 clock cycles be-

cause there is no restriction on our design e.g we cannot use multipliers more
than this. Therefore, we have used three multipliers which computes multi-
plication in parallel. These multiplication are within the field F97

3 . We also
need five (Adders/Subtractor) in which three are adders and the two sub-
tractor are used. As all the processes are running in parallel so we do not
have face any latency in terms of clock cycles. The number of cycles needed
to perform multiplication in field are F2m

3 are equal to the number of cycles
needed to perform multiplication in the field Fm

3 . The slices used by this
module to multiply the two elements lying in the field F2m

3 are 3840.

3.4 Addition and Subtraction over F2m
3

The addition and subtraction over the field F2m
3 are very simple operations.

Here we consider that A and B are the inputs of this module and C is the
output. As the field is F2m

3 , So there are two values of each input variable i.e.
A consists of two parts. To understand this logic we can write A and B as
A = a1 + a2σ and B = b1 + b2σ, where a1, a2, b1 and b2 are the members of
the base field Fm

3 . And the output C is also consists of two parts and we can
write it as C = c1 + c2σ. Therefore the addition in the field F2m

3 is simply
written as c1=a1 + b1 and c2=a2 + b2. One thing to remember is that while
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adding in the field F2m
3 is that a1, a2, b1, b2, c1 and c2 are in the field Fm

3 .

The subtraction operation is also very simple and almost same as that of
addition. For subtraction we consider another variables X and Y are the
inputs of this module and Z is the output. As the field is F2m

3 , So there are
two values of each input variable i.e. X consists of two parts. To understand
this logic we can write X and Y as X = x1 + x2σ, Y = y1 + y2σ, where
x1, x2, y1 and y2 are the members of the base field Fm

3 . And the output Z
also consists of two parts. We can write it as Z = z1 + z2σ. Therefore the
subtraction in the field F2m

3 is simply written as z1=x1− y1 and z2 = y2− y2.
One thing to remember is that while adding in the field F2m

3 is that x1, x2,
y1, y2, z1 and z2 are in the field Fm

3 .

3.5 Multiplication over F6m
3

Now we come to the main module which is the multiplication of of two input
variables which lies in the field F6m

3 and we say to the variables as R0 and
R1. Field F6m

3 is nothing but a simple extension of the base field Fm
3 . To

construct the field F6m
3 is very simple. We just need the basis vectors to

construct the extension field. We discuss here a brief introduction here just
to recall it and the complete study about the extension field is given in the
literature survey as discussed above.

Taking advantage of Karatsuba Ofman algorithm [26] which provides the net
result by calculating the constant coefficients of the input variables R0 and
R1 in parallel. As we have no restrictions on the area in terms of slices or
we have no restriction to use the number of multipliers exceeding the limit.
For complete multiplication in the field F6m

3 we have used 40 adders which
are used to calculate the addition in the field Fm

3 and 18 subtractor which
subtracts the input variables in the base field Fm

3 and all the operation take
place are in the base field Fm

3 .

Now, come to the number of multipliers used in the multiplication of the
field F6m

3 . We have used total 18 multipliers. We used 6 times the multiplier
in the field F2m

3 in which we have used 3 multipliers in one multiplication
module. So by using six times we totally used 18 multipliers in the base field
Fm
3 . As we totally focused on reducing the number of clock cycles for this

multiplication. Therefore we used maximum number of adder, subtractor
and multipliers which result in the minimum number of clock cycles. The
number of cycles used for the multiplication in the field F6m

3 is exactly the
same as that of cycles used in by the multiplier in the field Fm

3 as shown in
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figure 3.2 as cycles are 32. The number of cycles can be calculated as [m/D]
where D is the number of coefficients processed per cycle by the multiplier.

Figure 3.2: No. of cycles for F6m
3

Suppose,

A = a0 + a1σ + a2ρ+ a3ρσ + a4ρ
2 + a5σρ

2 (3.5)

B = b0 + b1σ + b2ρ+ b3ρσ + b4ρ
2 + b5σρ

2 (3.6)

These are the two variables of the finite field F6m
3 where a0, a1, a2, a3, a4, a5

and b0, b1, b2, b3, b4, b5 are the vectors which lies on the field Fm
3 and 1, σ,

ρ, σρ, ρ2, σρ2 are the basis vectors corresponding to the vectors a0, a1, a2,
a3, a4, a5 respectively. Now come to the point how multiplication take place,
first multiply a0, a1 with b0, b1 and we store the result at temporary place
called temp1 and temp2 and at second a2, a3 with b2, b3 and a4, a5 with b4,
b5and store at some place temp3, temp4, temp5 and temp6 respectively. All
three multiplication are calculated in parallel and being two values a0, a1,
b0, b1 of A and B this makes it to the field F2m

3 . So the result is also in two
vectors form.

Now we have to add the a5, a6 with a3, a4. This becomes the input of the
addition module in the field F2m

3 and the output is also of two vectors. These
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results are stored in temporary storage place so that we can use it for further
calculation. The storage values are called aux11 and aux12. This addition
operation also applies for the second variable of field F2m

3 B. Add the b5, b6
with b3, b4. This becomes the input of the addition module in the field F2m

3

and the output is also of two vectors. The results are stored in aux21 and
aux22. Now, by using the stored values we multiply aux11, aux12 with aux21,
aux22. These values becomes the input of the multiplication module in the
field F2m

3 and calculates the answer lying in this field which also consists of
two vectors. These results are stored to the temp0rary values called temp7
and temp8. All the storage values are declared as wires.

Before coming to final result vectors, the results already calculated and stored
at temporary storage are uses for the calculation of the vectors of final result
after multiplication in the field F6m

3 . First we discuss how the first two vectors
are calculated corresponding to the basis vectors 1 and σ. Add the temp3,
temp4 with temp5, temp6. This becomes the input of the addition module in
the field F2m

3 and the output is also of two vectors. These results are stored
in temporary storage place so that we can use it for further calculation of
final vectors of the product. The result is stored to aux31 and aux32. Then
add the temp7, temp8 with temp1, temp2 . This becomes the input of
the addition module in the field F2m

3 and the output is also of two vectors.
These results are stored in aux41 and aux42. After calculating this, vectors
corresponding to the basis vectors 1 and σ are calculated as, subtract aux31,
aux32 from aux41, aux42. These are the inputs of the subtraction module in
the field F2m

3 . So the answer is also in the two vectors form which are stored
to the output called as prod1 and prod2. Prod1 is the vector corresponding
to the basis vector 1 and prod2 is the vector corresponding to the basis vector
σ.

Now we discuss how to calculate the components or vectors corresponding
to the basis vectors ρ and σρ. Add the vectors a1, a2 with a3, a4 and store
the results to the auxb1 and auxb2 and also add the vectors b1, b2 with b3,
b4 and store the results to the auxb3 and auxb4. These are the inputs and
outputs to the two independent modules for addition. Because we did not
compromise on a single clock cycle and the entire processing takes place are
parallel. The saved results in the temporary values at auxb1 and auxb2 and
auxb3 and auxb4 are the inputs to the inputs of the multiplication module in
the field F2m

3 and after multiplication the result is stored in arbitrary values
named as temp9 and temp10.

This multiplication is calculated in just 32 clock cycles which is exactly the
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same as in the field of Fm
3 , because all the multiplication in the field F2m

3

takes place parallel. The addition module used in calculation of third and
fourth coefficient are just the look up tables and need no clock cycle and
the addition module outputs are straight forward input to the multiplica-
tion module and are just the wire connections. Now to calculate the final
coefficients corresponding to the basis vectors ρ and σρ requires some extra
addition and subtractions which are calculated as, add temp9, temp10 with
the temp7 and temp8 and we get the result and stored in aux51 and aux52.

Furthermore, this aux51, aux52 are added to the temp3 and temp4 and store
results in the arbitrary value called aux61 and aux62. Up to this step all the
necessary calculation has been calculated by using addition, subtraction and
the multiplication modules. To achieve the vector corresponding to the basis
vector ρ and σρ is calculate by subtracting the temp1, temp2 from aux61
and aux62 and store result in the out named as prod3 and prod4. Prod3 is
the vector corresponding to the base ρ and prod4 corresponding to the base
vector σρ

Last two vectors corresponding to the basis vectors ρ2, σρ2 are calculate as,
add the vectors a1, a2 with a5, a6 and store the results to the aux71 and
aux72 and also add the vectors b1,b2 with b5, b6 and store the results to the
aux81 and aux82. These are the inputs and outputs to the two independent
modules for addition. Because we did not compromise on a single clock
cycle and the entire processing takes place are parallel. The saved results
in the temporary values at aux71 and aux72 and aux81 and aux82 are the
inputs to the inputs of the multiplication module in the field F2m

3 and after
multiplication the result is stored in arbitrary values named as aux91 and
aux92. This multiplication is calculated in just 32 clock cycles which is
exactly the same as in the field of Fm

3 , because all the multiplication in the
field F2m

3 takes place parallel.

The addition module used in calculation of fifth and sixth coefficient are
just the look up tables and need no clock cycle and the addition module
outputs are straight forward input to the multiplication module and are just
the wire connections. Now to calculate the final coefficients corresponding to
the basis vectors ρ2 and σρ2 requires some extra addition and subtractions
which are calculated as, add aux91, aux92 with the temp3 and temp4 and
we get the result and stored in aux101 and aux102. Upto this step all the
necessary calculation has been calculated by using addition, subtraction and
the multiplication modules. To achieve the vector corresponding to the basis
vector ρ2 and σρ2 is calculate by subtracting the aux101, aux102 from temp1,
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temp2 and store result in the output port named as prod5 and prod6. Prod5
is the vector corresponding to the base ρ2 and prod6 corresponding to the
base vector σρ2

3.6 Cubing over Fm
3

Cubing is a very simple arithmetic operation which is just like that of the
addition and subtraction modules as discussed in the previous topics. Sup-
pose a(x) and b(x) be the two polynomials which lies in the field F3m and
we have to compute the cube of a(x), we can write it as,

b(x) = a(x)3 =
m−1∑

i=0

aix
3i mod f(x) (3.7)

Where f(x) is the irreducible polynomial of degree m which is 97 in our case
which is f(x) = x97 + x12 + 2 and i is simple counter which varies from zero
to m− 1. As the equation is very simple and can be solved very easily. We
wrote a simple Matlab code for the calculation of the coefficients. Formula
for the coefficient calculation over the field Fm

3 is given as,

b0 = a93 + a89 + a0, b1 = a65 − a61,
b2 = a33, b3 = a94 + a90 + a1,

.

.

.
b96 = a32.

After getting all the equations cubing is as simple as addition or subtraction,
just the addition of two or three polynomials. The addition of two polyno-
mials is very simple and we just need on adder circuit for the calculation of
one coefficient but for the addition of the polynomials we have to add the
two polynomials and store it in arbitrary value and then add this result to
the third polynomial to get the final answer of specific coefficient. The most
complex operation above all the operations is the addition of three compo-
nents or coefficients which we handle by adding two elements and storing
it to somewhere and then add the third element to get the final coefficient
value.
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3.7 Cubing over F6m
3

As the field F6m
3 is simply the extension of the field Fm

3 . So cubing over
the field F6m

3 is simply replaced by six cubing and addition over the field
Fm
3 and two negations over the field Fm

3 . The calculation takes place as
first we take the cube of all the vectors corresponding to the basis vectors
e.g a1, a2, a3, a4, a5, a6 and store the result in the temporary values called
temp1, temp2, temp3, temp4, temp5 and temp6. Pre-calculation is complete
and now move towards the final answer of the cube in the field F6m

3 which
is attained after some additions, subtractions and negations. First we add
temp1 with temp2 and store the result in the arbitrary place sum1 and
then add sum1 with the temp5 and get the answer of the first coefficient
corresponding to the basis vector 1.

For second vector calculation, add temp2 with temp4 and store the result
in the arbitrary place sum2 and then add sum2 with the temp6 and store
the result in the arbitrary place sum3. After this the result of sum3 is
multiplied with 2 to get the negative of this answer and then we get the
answer of the second coefficient corresponding to the basis vector σ. Third
vector corresponding to the basis vector ρ is very simple and we just need to
subtract the value stored in the temp5 from the value stored in temp3 and
we get our final answer corresponding to the basis vector ρ. Fourth vector
corresponding to the basis vector σρ is also very simple and we just need to
subtract the value stored in the temp4 from the value stored in temp6 and
we get our final answer corresponding to the basis vector σρ.

One thing to remember is that all the calculations taken place are in the
base field Fm

3 and the field F6m
3 is just the extension of the base field which is

attained after some operations with the basis vectors of the field. The fifth
vector corresponding to the basis vector ρ2 is pretty simple and we have to
just assign the value to this basis vector and we do not need any addition,
subtraction and multiplication. For last vector we need a single multiplier
which multiplied the value stored in temp6 variable with 2 just to get the
negative of this vector and assign it to the vector corresponding to the basis
vector σρ2. From hardware prospective all the temporary values which we
have used are the simple wire connections and the cube in the field F6m

3 is as
simple as in the base field Fm

3 . Because it just need a simple look up table
to find the cube in the extension of the base field.
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3.8 Final Eta-T pairing

We have described all the modules and its hardware implementations needed
to calculate the final Eta-T pairing. We take the algorithm as described in
the [11]. We have not changed its round or any other calculation but we
have contributed at its implementation level by calculating Eta-T pairing
in parallel rather than serial as described in the paper by Buchat [11].The
algorithm which we have implemented is given as:

Pairing Algorithm

Figure 3.3: Eta-T Pairing Algorithm

After discussing the algorithm which is implemented we move towards the
diagram in which we can show that how two input points enter into the
modules and and after several round of calculation it returns the final value
of pairing between the two points and output comes after specific rounds.
The diagram of the overall pairing system is given as in figure 3.4
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Figure 3.4: Complete Eta-T pairing System



Chapter 4

Results and Comparison

4.1 Efficient implementation results on Virtex-

IV

All the proposed architecture and its implementation are done on project
Navigator 14.2 Xilinx family which is Virtex-IV xc4vlx200-11ff1513 device.
For simulation we use its ISim from where we see how much clock cycles it
will take to calculate the final Eta-T pairing. Our main purpose to implement
this pairing algorithm is to reduce the maximum number of clock cycles as
we can. Therefore, we utilize maximum parallelization of the modules to
reduce the number of clock cycles. Number of clock cycles depend upon D
(No. of coefficients processed per cycle by the multiplier) and also the area
occupied by the pairing algorithm. As we only focus on the number of cycles
and we do not bother about the area. In the table 4.1 we gave the details
about the number of clock cycles, area in terms of slices and the total time
required by the pairing module to calculate the complete pairing.

In the above table 4.1 D represents the number of coefficients per second
by the multiplier. We started D from 1 to 16 and get the results. Top
to bottom D increases up to 16 and the curve remains the same for every
which is elliptic curve. The curve we use in this case is y2= x3 − x+ 1 and
we choose b = 1 and a = −1. In the third column of FPGA we use the
device Virtex-IV for every D. As the value of D increases downwards the
number of cycles decreases. For D= 3 the number of cycles used are 3597
and decreasing downward with the increase of D. Area at the top is less and
started increasing as we increase the value of D. For D = 3 the slices used
for the computation of whole pairing are 32223 and is gradually increasing

31
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Table 4.1: Efficient implementation Virtex-IV results

D Curve FPGA Clock
cycles

Clock
Frequency

Area Calculation
Time

1 Elliptic Virtex-IV 9613 146.4 24465 65.70
2 Elliptic Virtex-IV 5005 124 28562 40.36
3 Elliptic Virtex-IV 3597 114.65 32668 31.37
4 Elliptic Virtex-IV 2773 104.94 37168 26.42
5 Elliptic Virtex-IV 2287 92.45 38509 24.73
6 Elliptic Virtex-IV 1997 92.62 45450 21.55
7 Elliptic Virtex-IV 1705 83.83 46622 20.32
8 Elliptic Virtex-IV 1609 78.36 50791 20.53
9 Elliptic Virtex-IV 1415 73.88 54978 19.15
10 Elliptic Virtex-IV 1317 69.58 59166 18.92
11 Elliptic Virtex-IV 1219 66.81 63134 18.24
12 Elliptic Virtex-IV 1219 64.66 67662 18.85
13 Elliptic Virtex-IV 1121 61.74 70343 18.15
14 Elliptic Virtex-IV 1023 59.89 71232 17.08
15 Elliptic Virtex-IV 1023 56.7 74489 18.04
16 Elliptic Virtex-IV 1023 52.42 77465 19.51

downward.

Now, move towards the last column which is the calculation time for the
Eta-T pairing. Calculation time is highest for D = 1 and it start decreasing
with the increase in the D. When D reaches at 11 time decreases and from
D = 11 to D = 12 time increases due to the decrease in the clock frequency
but the number of cycles remains the same as that of when D = 11. So this
causes the Time to increase. From D = 12 to D = 14 calculation time again
starts decreasing. At D = 14 we get the minimum time to calculate the
Eta-T pairing. After D = 14 it starts increasing and there is slight decrease
in the time when at specific value of D at which there is decrease in the clock
cycle and the clock frequency. Because after D = 14 the there is a very less
effect on the clock cycles and the clock frequency is decreasing gradually. At
D = 14 the calculation time is minimum as shown in the graph 4.1. So for
safe value of D we have to choose D = 14 or less than 14.
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Figure 4.1: Calculation Time Graph in Virtex-IV

4.2 Efficient implementation results on Virtex-

II

All the proposed architecture and its implementation are done on a Xilinx
family which is Virtex-II device. Our main purpose to implement this pair-
ing algorithm is to reduce the maximum number of clock cycles as we can.
Therefore, we utilize maximum parallelization of the modules to reduce the
number of clock cycles. Number of clock cycles depend upon D (No. of
coefficients processed per cycle by the multiplier) and also the area occupied
by the pairing algorithm. As we only focus on the number of cycles and we
do not bother about the area. In the table we gave the details about the
number of clock cycles, area in terms of slices and the total time required by
the pairing module to calculate the complete pairing.

In the above table, D represents the number of coefficients per second by the
multiplier. We started D from 1 to 16 and get the results. Top to bottom D
increases up to 16 and the curve remains the same for every which is elliptic
curve. The curve we use in this case is y2 = x3−x+1 and we choose b = 1 and
a = −1. In the third column of FPGA we use the device Virtex-II for every
D. As the value of D increases downwards the number of cycles decreases.
For D = 3 the number of cycles used are 3597 and decreasing downward
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Table 4.2: Efficient implementation Virtex-II results

D Curve FPGA Clock
cycles

Clock
Frequency

Area Calculation
Time

1 Elliptic Virtex-II 9613 130.1 25476 73.88
2 Elliptic Virtex-II 5005 108.4 29683 46.17
3 Elliptic Virtex-II 3597 98.79 33465 36.41
4 Elliptic Virtex-II 2773 87.34 38675 31.74
5 Elliptic Virtex-II 2287 76.12 38981 30.04
6 Elliptic Virtex-II 1997 76.32 46121 26.16
7 Elliptic Virtex-II 1705 67.21 46622 25.36
8 Elliptic Virtex-II 1609 63.61 51734 25.29
9 Elliptic Virtex-II 1415 58.4 55342 24.22
10 Elliptic Virtex-II 1317 54.72 60645 24.06
11 Elliptic Virtex-II 1219 51.8 64535 23.53
12 Elliptic Virtex-II 1219 47.46 68612 25.68
13 Elliptic Virtex-II 1121 44.34 71002 25.28
14 Elliptic Virtex-II 1023 42.56 73087 24.03
15 Elliptic Virtex-II 1023 39.61 76462 25.82
16 Elliptic Virtex-II 1023 35.32 79822 28.96

with the increase of D. Area at the top is less and started increasing as we
increase the value of D. For D = 3 the slices used for the computation of
whole pairing are 32223 and is gradually increasing downward.

Now, move towards the last column which is the calculation time for the
Eta-T pairing. Calculation time is highest for D = 1 and it start decreasing
with the increase in the D. When D reaches at 11 time decreases and from
D = 11 to D = 12 time increases due to the decrease in the clock frequency
but the number of cycles remains the same as that of when D = 11. So this
causes the Time to increase. From D = 12 to D = 14 calculation time again
starts decreasing. At D = 14 we get the minimum time to calculate the Eta-
T pairing. After D = 14 it starts increasing as shown in the graph4.2 and
there is slight decrease in the time when at specific value of D at which there
is decrease in the clock cycle and the clock frequency. Because after D = 14
the there is a very less effect on the clock cycles and the clock frequency is
decreasing gradually. So for safe value of D we have to choose D = 14 or
less than 14.
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Figure 4.2: Calculation Time Graph in Virtex-II

4.3 Comparison

To the best of our knowledge, the fastest calculation time of Eta-T pairing
is 34µs. by Shy, Kown and Gaj [27]. The field used was F239

2 and the curve
is elliptic and the device used is Xilinx Virtex-II pro100 as well as total
multipliers used in this pairing module are six. They achieved the maximum
clock frequency 84MHz and the total area occupied by this is 25287 slices.
Ronan et al.[11] calculate the Eta-T pairing and the calculation time of Eta-T
pairing is 749µs. He used the field F103

2 and the curve used is the hyper elliptic
curve. They used the Xilinx device Virtex-II pro125 and the total multipliers
used in this pairing module are twelve. They achieved the maximum clock
frequency 32.3MHz and the total area occupied by this is 43986 slices.

Grabber and Page [28] also proposed an algorithm which is the modified form
of Duursma Lee algorithm. They used multiplication over the field F6m

3 and
used Karatsuba Ofman algorithm to take the advantage of the parallelism
but the main flaw in this implementation is they did not take the advantage
of constant coefficient in R1 and they used 18 multipliers. The total cost
of this algorithm is, they used 18 multipliers, 6 cubing modules over the
field Fm

3 . In this algorithm some extra circuits were also used to perform
the addition, subtraction and the negation. This makes it extra heavy and
the author also claims that it used almost 100% of the resources. He used
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the field F97
3 and the curve used is the elliptic. They used the Xilinx device

Virtex-II pro125 and the total multipliers used in this pairing module are
18. They achieved the maximum clock frequency 15MHz and the total area
occupied by this is 55616 slices. Time needed to compute the Eta-T pairing
is 859µs which is very large time for pairing calculation. This is because the
very low clock frequency and the clock cycles used to calculate the pairing
is also very large which 12866 cycles are. In this paper they calculate the
final exponentiation which also uses half of the resources to calculate it. If
we suppose that half of the resources are used for final exponential then the
remaining time for the pairing calculation is also very high.

Grabber and Page [28] calculate the Eta-T pairing and the calculation time
of Eta-T pairing is 399.4µs. In this paper, field used is F97

3 and the curve is
elliptic. They used the Xilinx device Virtex-II pro-IV and the total multiplier
used in this pairing module is 1. They achieved the maximum clock frequency
150MHz and the total area occupied by this is 4481 slices. In this paper
they did not calculate the final exponentiation which almost uses half of the
resources to calculate it. If we suppose that half of the resources are used for
final exponential then the time for the complete pairing becomes very high.
Jean Luc Buchat [13] also proposed a new algorithm which calculates the Eta-
T pairing in just 33µs. They used Altera device for the calculation of the
pairing and the device is Cyclone-IIEP2C35. We just give the specification
of the pairing module but we did not include it into our comparison table
due to difference of device. They used the field F97

3 and the curve used is
the Elliptic. The total multipliers used in this pairing module are 9. They
achieved the maximum clock frequency 149MHz and the total area occupied
by this is 4849 LE’s.

Now, we come to our implementation, we discuss our implementation both on
Virtex-IV and Virtex-II as given in the above tables. We found most of the
implementation in Virtex-II. Therefore, we compare our Virtex-II results with
the other implementations which were given on Xilinx family Virtex-II. In the
table all the results are given by using the D= 3 and we also give our results
which are obtained by using the specific value of D which is equal to 3. The
number of cycles used to calculate the pairing are 3597 and the slices needed
for this module are 32212 and the curve used is the same as that of used
by beuchat [13] algorithm which is on super singular elliptic curve over the
field F97

3 . We mainly focus to reduce the number of clock cycles. We use the
minimum number of clock cycles among all the algorithms proposed in other
papers by different authors. Therefore, we achieved maximum parallelization
which can achieved and we do not care much about the use of area. So, there
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may be a bit more utilization of over resources. The calculation time is also
very low for our implementation and is 36µs for D= 3 and 32 µs for D= 4.
The frequency achieved by our algorithm is 98 MHz forD= 3 and 84 MHz for
D= 4. As we achieved maximum parallelization so we use more multipliers
as compared to the other algorithms given in the comparison table.

Table 4.3: Comparison between previous FPGA Implementations

Ronan
[11]

Grabber
[28]

Kerins
[29]

Buchat
[13]

Our Results

Algorithm ηT Duursma Duursma ηT ηT
Finite
Field

F103
2 F97

3 F97
3 F97

3 F97
3

Curve Elliptic Elliptic Elliptic Elliptic Elliptic
FPGA Virtex-II Virtex-II Virtex-II Cyclone-II Virtex-II

Multipliers 12 1 18 9 18
Area 43986 4481 55616 14895 33465
Clock
Cycles

- - 12866 4849 3597

Clock
Frequency

32.3 MHz 150 MHz 15 MHz 149 MHz 98.79MHz

Calculation
time

749µs 399.4µs 850µs 33µs 36µs

Final
exponential

Yes No Yes No No



Chapter 5

Conclusion and Future Work

5.1 Conclusion

Online key sharing is big problem in the current security systems. If key
is compromised during its computation then whole of the transactions are
compromised. Pairing solved this problem to share the key between three
users. We have proposed modified Eta-T pairing algorithm which did not
require any cube root over the field F97

3 . Furthermore, we use Karatsuba
multiplier which computes multiplication in the given field as well as the ex-
tension of the base field in same number of cycles as we used in the multiplier
F97
3 . Cube operator is just the look up tables and calculation is very simple

as that of adder and subtractor. Finally, we compute Eta-T pairing in just
3597 clock cycles for D equal to three which is the minimum number of clock
cycles for this value of D. We also extend our work and calculate pairing by
increasing the value of D up to 16 and explore D at which calculation time
starts increasing. Up to 14 the calculation time decreases gradually because
by increasing D there is large effect on the clock cycles. After D = 14 there
is less effect on the number of clock cycles but frequency decreases gradually.
Therefore, calculation time starts increasing after D = 14. All these results
are implemented and verified on Virtex-II and Virtex-IV. In our implemen-
tation we also use maximum parallelization to reduce the maximum number
of clock cycles and we use only 3597 clock cycles for D = 3 to calculate the
Eta-T pairing which is 25% less than the algorithm proposed which we have
implemented.

38
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5.2 Future Work

The work presented can be extended to many research problems. The prob-
lems which will come in future are listed as,

• The area used in this protocol is higher because we parallelized it max-
imum to achieve result in minimum number of clock cycles.

• Change the elliptic curve with another and compared the result which
may useful be get better results.
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Appendix A

Appendix

A.1 Eta T Pairing

A.1.1 Addition over Fm

3

//////////sum3to1/////////////

module sum_3_1(x,y,sum );

input [1:0] x,y;

output [1:0] sum;

assign sum[0]=((x[0] & ~x[1] & ~y[0] & ~y[1] ) || ( ~x[0] & ~x[1]

&y[0] & ~y[1] ) ||(~x[0] &x[1] &~y[0] &y[1]) );

assign sum[1]=((~x[0] & x[1] & ~y[0] & ~y[1] ) || ( x[0] & ~x[1]

&y[0] & ~y[1] ) ||(~x[0] &~x[1] &~y[0] &y[1]) );

endmodule

//////////sum3to2/////////////

module sum_3_2(a,b,sum);

input [3:0]a,b;

output [3:0] sum;

sum_3_1 x1 (a[1:0],b[1:0],sum[1:0]);

sum_3_1 x2(a[3:2],b[3:2],sum[3:2]);

endmodule

//////////sum3to4/////////////

module sum_3_4(a,b,sum);

input [7:0]a,b;

output [7:0] sum;

sum_3_2 x3 (a[3:0],b[3:0],sum[3:0]);

sum_3_2 x4 (a[7:4],b[7:4],sum[7:4]);
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endmodule

//////////sum3to8/////////////

module sum_3_8(a,b,sum);

input [15:0]a,b;

output [15:0] sum;

sum_3_4 x5 (a[7:0],b[7:0],sum[7:0]);

sum_3_4 x6 (a[15:8],b[15:8],sum[15:8]);

endmodule

//////////sum3to16/////////////

module sum_3_16(a,b,sum);

input [31:0]a,b;

output [31:0] sum;

sum_3_8 x7 (a[15:0],b[15:0],sum[15:0]);

sum_3_8 x8 (a[31:16],b[31:16],sum[31:16]);

endmodule

//////////sum3to32/////////////

module sum_3_32(a,b,sum);

input [63:0]a,b;

output [63:0] sum;

sum_3_16 x9 (a[31:0],b[31:0],sum[31:0]);

sum_3_16 x10 (a[63:32],b[63:32],sum[63:32]);

endmodule

//////////sum3to64/////////////

module sum_3_64(a,b,sum);

input [127:0]a,b;

output [127:0] sum;

sum_3_32 x11 (a[63:0],b[63:0],sum[63:0]);

sum_3_32 x12 (a[127:64],b[127:64],sum[127:64]);

endmodule

//////////sum3to97/////////////

module sum_3_97(a,b,sum);

input [193:0]a,b;

output [193:0] sum;

sum_3_64 x13 (a[127:0],b[127:0],sum[127:0]);

sum_3_32 x14(a[191:128],b[191:128],sum[191:128]);

sum_3_1 x15(a[193:192],b[193:192],sum[193:192]);
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endmodule

A.1.2 Multiplication over Fm

3

//////////product3to1/////////////

module prod_3_1(a,b,prod);

input [1:0]a,b;

output [1:0] prod;

assign prod[0]=((a[0] & ~a[1] & b[0] & ~b[1] ) || ( ~a[0] & a[1]

&~b[0] & b[1] ) );

assign prod[1]=((a[0] & ~a[1] & ~b[0] & b[1] ) || ( ~a[0] & a[1]

& b[0] & ~b[1] ) );

endmodule

//////////product3to97/////////////

module Prod_3_97(a,b,prod );

input [193:0]a;

input [1:0]b;

output [193:0] prod;

prod_3_1 a1(a[1:0],b,prod[1:0]);

prod_3_1 a2(a[3:2],b,prod[3:2]);

prod_3_1 a3(a[5:4],b,prod[5:4]);

prod_3_1 a4(a[7:6],b,prod[7:6]);

prod_3_1 a5(a[9:8],b,prod[9:8]);

prod_3_1 a6(a[11:10],b,prod[11:10]);

prod_3_1 a7(a[13:12],b,prod[13:12]);

prod_3_1 a8(a[15:14],b,prod[15:14]);

prod_3_1 a9(a[17:16],b,prod[17:16]);

prod_3_1 a10(a[19:18],b,prod[19:18]);

prod_3_1 a11(a[21:20],b,prod[21:20]);

prod_3_1 a12(a[23:22],b,prod[23:22]);

prod_3_1 a13(a[25:24],b,prod[25:24]);

prod_3_1 a14(a[27:26],b,prod[27:26]);

prod_3_1 a15(a[29:28],b,prod[29:28]);

prod_3_1 a16(a[31:30],b,prod[31:30]);

prod_3_1 a17(a[33:32],b,prod[33:32]);

prod_3_1 a18(a[35:34],b,prod[35:34]);

prod_3_1 a19(a[37:36],b,prod[37:36]);

prod_3_1 a20(a[39:38],b,prod[39:38]);
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prod_3_1 a21(a[41:40],b,prod[41:40]);

prod_3_1 a22(a[43:42],b,prod[43:42]);

prod_3_1 a23(a[45:44],b,prod[45:44]);

prod_3_1 a24(a[47:46],b,prod[47:46]);

prod_3_1 a25(a[49:48],b,prod[49:48]);

prod_3_1 a26(a[51:50],b,prod[51:50]);

prod_3_1 a27(a[53:52],b,prod[53:52]);

prod_3_1 a28(a[55:54],b,prod[55:54]);

prod_3_1 a29(a[57:56],b,prod[57:56]);

prod_3_1 a30(a[59:58],b,prod[59:58]);

prod_3_1 a31(a[61:60],b,prod[61:60]);

prod_3_1 a32(a[63:62],b,prod[63:62]);

prod_3_1 a33(a[65:64],b,prod[65:64]);

prod_3_1 a34(a[67:66],b,prod[67:66]);

prod_3_1 a35(a[69:68],b,prod[69:68]);

prod_3_1 a36(a[71:70],b,prod[71:70]);

prod_3_1 a37(a[73:72],b,prod[73:72]);

prod_3_1 a38(a[75:74],b,prod[75:74]);

prod_3_1 a39(a[77:76],b,prod[77:76]);

prod_3_1 a40(a[79:78],b,prod[79:78]);

prod_3_1 a41(a[81:80],b,prod[81:80]);

prod_3_1 a42(a[83:82],b,prod[83:82]);

prod_3_1 a43(a[85:84],b,prod[85:84]);

prod_3_1 a44(a[87:86],b,prod[87:86]);

prod_3_1 a45(a[89:88],b,prod[89:88]);

prod_3_1 a46(a[91:90],b,prod[91:90]);

prod_3_1 a47(a[93:92],b,prod[93:92]);

prod_3_1 a48(a[95:94],b,prod[95:94]);

prod_3_1 a49(a[97:96],b,prod[97:96]);

prod_3_1 a50(a[99:98],b,prod[99:98]);

prod_3_1 a51(a[101:100],b,prod[101:100]);

prod_3_1 a52(a[103:102],b,prod[103:102]);

prod_3_1 a53(a[105:104],b,prod[105:104]);

prod_3_1 a54(a[107:106],b,prod[107:106]);

prod_3_1 a55(a[109:108],b,prod[109:108]);

prod_3_1 a56(a[111:110],b,prod[111:110]);

prod_3_1 a57(a[113:112],b,prod[113:112]);

prod_3_1 a58(a[115:114],b,prod[115:114]);

prod_3_1 a59(a[117:116],b,prod[117:116]);

prod_3_1 a60(a[119:118],b,prod[119:118]);

prod_3_1 a61(a[121:120],b,prod[121:120]);
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prod_3_1 a62(a[123:122],b,prod[123:122]);

prod_3_1 a63(a[125:124],b,prod[125:124]);

prod_3_1 a64(a[127:126],b,prod[127:126]);

prod_3_1 a65(a[129:128],b,prod[129:128]);

prod_3_1 a66(a[131:130],b,prod[131:130]);

prod_3_1 a67(a[133:132],b,prod[133:132]);

prod_3_1 a68(a[135:134],b,prod[135:134]);

prod_3_1 a69(a[137:136],b,prod[137:136]);

prod_3_1 a70(a[139:138],b,prod[139:138]);

prod_3_1 a71(a[141:140],b,prod[141:140]);

prod_3_1 a72(a[143:142],b,prod[143:142]);

prod_3_1 a73(a[145:144],b,prod[145:144]);

prod_3_1 a74(a[147:146],b,prod[147:146]);

prod_3_1 a75(a[149:148],b,prod[149:148]);

prod_3_1 a76(a[151:150],b,prod[151:150]);

prod_3_1 a77(a[153:152],b,prod[153:152]);

prod_3_1 a78(a[155:154],b,prod[155:154]);

prod_3_1 a79(a[157:156],b,prod[157:156]);

prod_3_1 a80(a[159:158],b,prod[159:158]);

prod_3_1 a81(a[161:160],b,prod[161:160]);

prod_3_1 a82(a[163:162],b,prod[163:162]);

prod_3_1 a83(a[165:164],b,prod[165:164]);

prod_3_1 a84(a[167:166],b,prod[167:166]);

prod_3_1 a85(a[169:168],b,prod[169:168]);

prod_3_1 a86(a[171:170],b,prod[171:170]);

prod_3_1 a87(a[173:172],b,prod[173:172]);

prod_3_1 a88(a[175:174],b,prod[175:174]);

prod_3_1 a89(a[177:176],b,prod[177:176]);

prod_3_1 a90(a[179:178],b,prod[179:178]);

prod_3_1 a91(a[181:180],b,prod[181:180]);

prod_3_1 a92(a[183:182],b,prod[183:182]);

prod_3_1 a93(a[185:184],b,prod[185:184]);

prod_3_1 a94(a[187:186],b,prod[187:186]);

prod_3_1 a95(a[189:188],b,prod[189:188]);

prod_3_1 a96(a[191:190],b,prod[191:190]);

prod_3_1 a97(a[193:192],b,prod[193:192]);

endmodule

//////////product3to97 with shift x/////////////

module prod_x_3_97(a,b,prod );

input [193:0]a;
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input [1:0]b;

output [193:0]prod;

wire[195:0] shift_reg;

wire [193:0] prod1;

//wire [1:0]red1;

assign shift_reg =prod1<<2;

assign prod[23:2]=shift_reg[23:2];

assign prod[193:26]=shift_reg[193:26];

Prod_3_97 a11(a,b,prod1);

sum_3_1 a1(shift_reg[1:0],shift_reg[195:194],prod[1:0]);

diff_3_1 a24(shift_reg[25:24],shift_reg[195:194],prod[25:24]);

endmodule

//////////product3to97 with shift x^2/////////////

module prod_x2_3_97(a,b,prod );

input [193:0]a;

input [1:0]b;

output [193:0]prod;

wire [193:0] prod1;

wire [197:0] shift_reg;

//wire [3:0] red1;

assign shift_reg=prod1<<4;

assign prod[23:4]=shift_reg[23:4];

assign prod[193:28]=shift_reg[193:28];

Prod_3_97 a11(a,b,prod1);

//prod_3_1 z1(2’b10,shift_reg[195:194],red1[1:0]);

//diff_3_1 a1(shift_reg[1:0],red1[1:0],prod[1:0]);

//prod_3_1 z3(2’b10,shift_reg[197:196],red1[3:2]);

//diff_3_1 a3(shift_reg[3:2],red1[3:2],prod[3:2]);

sum_3_1 a1(shift_reg[1:0],shift_reg[195:194],prod[1:0]);

sum_3_1 a2(shift_reg[3:2],shift_reg[197:196],prod[3:2]);

diff_3_1 a24(shift_reg[25:24],shift_reg[195:194],prod[25:24]);

diff_3_1 a27(shift_reg[27:26],shift_reg[197:196],prod[27:26]);

//prod_x_3_97 a2(prod1,2’b01,irr_poly,clk,prod);

endmodule

//////////product3to97 with shift x^3/////////////

module prod_x3shift_3_97(a,prod );

input [193:0]a;

output [193:0]prod;

wire [199:0] shift_reg;
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wire [5:0] red1;

assign shift_reg=a<<6;

assign prod[23:6]=shift_reg[23:6];

assign prod[193:30]=shift_reg[193:30];

prod_3_1 z1(2’b10,shift_reg[195:194],red1[1:0]);

diff_3_1 a1(shift_reg[1:0],red1[1:0],prod[1:0]);

prod_3_1 z3(2’b10,shift_reg[197:196],red1[3:2]);

diff_3_1 a3(shift_reg[3:2],red1[3:2],prod[3:2]);

prod_3_1 z5(2’b10,shift_reg[199:198],red1[5:4]);

diff_3_1 a5(shift_reg[5:4],red1[5:4],prod[5:4]);

diff_3_1 a24(shift_reg[25:24],shift_reg[195:194],prod[25:24]);

diff_3_1 a27(shift_reg[27:26],shift_reg[197:196],prod[27:26]);

diff_3_1 a30(shift_reg[29:28],shift_reg[199:198],prod[29:28]);

//prod_x2_3_97 a1(a,b,irr_poly,clk,prod1);

//prod_x_3_97 a2(prod1,2’b01,irr_poly,clk,prod);

endmodule

//////////Final multiplication code which calculate

multiplication in 33 clock cycles/////////////

module fin_mul_red_3_97(a,b,clk,reset,prod );

input [193:0]a;

input [193:0]b;

input clk,reset;

output [193:0]prod;

reg en=1,en2=1;

reg [5:0]i;

reg [191:0]shift_reg;

reg [193:0] px;

wire [193:0]prod1,prod2,prod3,prod4,prod5;

wire [193:0] sum1,sum2;

wire [5:0]bb;

assign bb=shift_reg[191:186];

//reg [5:0] count1;

Prod_3_97 a1(a,b[193:192],prod5[193:0]);

Prod_3_97 a11(a,bb[1:0],prod1);

prod_x_3_97 a2(a,bb[3:2],prod2 );

prod_x2_3_97 a3(a,bb[5:4],prod3 );

prod_x3shift_3_97 a4(px,prod4 );

sum_3_97 a5(prod1,prod2,sum1);

sum_3_97 a6(sum1,prod3,sum2);

sum_3_97 a7(sum2,prod4,prod);
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always@ (clk)//( clk )//or reset) //clk & en1

begin

if(reset)

begin

i<=6’d32;

en<=1’b1;

shift_reg<=192’h0;

px<=194’b0;

//count1<=6’d0;

en2<=1’b1;

end

else

begin

if( en2==1’b1)

begin

//count1<=count1+1’b1;

if( en==1’b1)

begin

px<=prod5;

en<=1’b0;

shift_reg<=b[191:0];

end

else

begin

if(i>1)

begin

shift_reg<=shift_reg<<6;

px<=prod;

i<=i-1;

end

else

begin

en2<=1’d0;

i<=6’d0;

end

end

end

else

en2<=en2;



APPENDIX A. APPENDIX 52

end

end

endmodule

A.1.3 Multiplication over F6m

3

/////////////////sum3to2m///////////

module sum_3_2m(a1,a2,b1,b2,sum1,sum2);

input [193:0] a1,a2,b1,b2;

output [193:0] sum1,sum2;

sum_3_97 c1(a1,b1,sum1);

sum_3_97 c2(a2,b2,sum2);

endmodule

/////////////////sum3to2m///////////

module diff_3_2m(a1,a2,b1,b2,diff1,diff2);

input [193:0] a1,a2,b1,b2;

output [193:0] diff1,diff2;

diff_3_97 c1(a1,b1,diff1);

diff_3_97 c2(a2,b2,diff2);

endmodule

/////////////////mul3to2m///////////

module mul_3_2m(a1,a2,b1,b2,clk,reset,prod1,prod2);

input [193:0] a1,a2,b1,b2;

input clk,reset;

output [193:0] prod1,prod2;

wire [193:0] temp1,temp2,temp3,sum1,sum2,sum3;

reg [5:0] count=0;

fin_mul_red_3_97 c1(a1,b1,clk,reset,temp1 );

fin_mul_red_3_97 c2(a2,b2,clk,reset,temp2 );

sum_3_97 c3(a1,a2,sum1);

sum_3_97 c4(b1,b2,sum2);

fin_mul_red_3_97 c25(sum1,sum2,clk,reset,temp3 );

diff_3_97 c6(temp1,temp2,prod1);

sum_3_97 c7(temp1,temp2,sum3);

diff_3_97 c8(temp3,sum3,prod2);

always @( clk or reset) //clk &

if(reset)

count<=0;

else
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begin

count<=count+1;

if(count==7)

count<=0;

end

endmodule

/////////////////mul3to6m///////////

module mul_3_6m(a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,clk,reset,

prod1,prod2,prod3,prod4,prod5,prod6 );

input [193:0] a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6;

input clk,reset;

output [193:0] prod1,prod2,prod3,prod4,prod5,prod6;

wire [193:0] temp1,temp2,temp3,temp4,temp5,temp6,temp7,

temp8,temp9,temp10;

wire [193:0] aux11,aux12,aux21,aux22,aux31,aux32,auxb1,auxb2,aux41,

auxb3,auxb4,aux42,aux51,aux52,aux61,aux62,aux71,aux72,aux81,aux82,

aux91,aux92,aux101,aux102;

reg [7:0] count=0;

mul_3_2m k1(a1,a2,b1,b2,clk,reset,temp1,temp2);

mul_3_2m k2(a3,a4,b3,b4,clk,reset,temp3,temp4);

mul_3_2m k3(a5,a6,b5,b6,clk,reset,temp5,temp6);

sum_3_2m k4(a5,a6,a3,a4,aux11,aux12);

sum_3_2m k5(b5,b6,b3,b4,aux21,aux22);

mul_3_2m k6(aux11,aux12,aux21,aux22,clk,reset,temp7,temp8);

///////////////first 2 components///////////

sum_3_2m k7(temp3,temp4,temp5,temp6,aux31,aux32);

sum_3_2m k8(temp7,temp8,temp1,temp2,aux41,aux42);

diff_3_2m k9(aux41,aux42,aux31,aux32,prod1,prod2);

/////////////3rd and 4th component///////////////

mul_3_2m k31(auxb1,auxb2,auxb3,auxb4,clk,reset,temp9,temp10);

sum_3_2m k41(a1,a2,a3,a4,auxb1,auxb2);

sum_3_2m k42(b1,b2,b3,b4,auxb3,auxb4);

sum_3_2m k10(temp9,temp10,temp7,temp8,aux51,aux52);

sum_3_2m k11(aux51,aux52,temp3,temp4,aux61,aux62);

diff_3_2m k12(aux61,aux62,temp1,temp2,prod3,prod4);

//////////////last 2 cofficients/////////////

mul_3_2m k21(aux71,aux72,aux81,aux82,clk,reset,aux91,aux92);

sum_3_2m k22(a1,a2,a5,a6,aux71,aux72);

sum_3_2m k23(b1,b2,b5,b6,aux81,aux82);
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sum_3_2m k16(aux91,aux92,temp3,temp4,aux101,aux102);

diff_3_2m k17(aux101,aux102,temp1,temp2,prod5,prod6);

always@( clk or reset)

if(reset)

count<=0;

else

begin

count<=count+1;

if(count==7)

count<=0;

end

endmodule

A.1.4 Cube over Fm

3

module cube_3_m(a,clk,out1 );

input [193:0] a;

input clk;

output reg[193:0]out1;

wire [193:0] out;

wire [63:0] temp1;

assign out[5:4]=a[67:66];

assign out[11:10]=a[69:68];

assign out[17:16]=a[71:70];

assign out[23:22]=a[73:72];

assign out[73:72]=a[25:24];

assign out[79:78]=a[27:26];

assign out[85:84]=a[29:28];

assign out[91:90]=a[31:30];

assign out[97:96]=a[33:32];

assign out[103:102]=a[35:34];

assign out[109:108]=a[37:36];

assign out[115:114]=a[39:38];

assign out[121:120]=a[41:40];

assign out[127:126]=a[43:42];

assign out[133:132]=a[45:44];

assign out[139:138]=a[47:46];

assign out[145:144]=a[49:48];

assign out[151:150]=a[51:50];

assign out[157:156]=a[53:52];

assign out[163:162]=a[55:54];
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assign out[169:168]=a[57:56];

assign out[175:174]=a[59:58];

assign out[181:180]=a[61:60];

assign out[187:186]=a[63:62];

assign out[193:192]=a[65:64];

sum_3_1 a1(a[1:0],a[179:178],temp1[1:0]);

sum_3_1 a2(a[187:186],temp1[1:0],out[1:0]);

diff_3_1 a3(a[131:130],a[123:122],out[3:2]);

sum_3_1 a4(a[3:2],a[181:180],temp1[3:2]);

sum_3_1 a5(a[189:188],temp1[3:2],out[7:6]);

diff_3_1 a6(a[133:132],a[125:124],out[9:8]);

sum_3_1 a7(a[5:4],a[183:182],temp1[5:4]);

sum_3_1 a8(a[191:190],temp1[5:4],out[13:12]);

diff_3_1 a9(a[135:134],a[127:126],out[15:14]);

sum_3_1 a10(a[7:6],a[185:184],temp1[7:6]);

sum_3_1 a11(a[193:192],temp1[7:6],out[19:18]);

diff_3_1 a12(a[137:136],a[129:128],out[21:20]);

diff_3_1 a13(a[9:8],a[179:178],out[25:24]);

sum_3_1 a14(a[123:122],a[171:170],temp1[9:8]);

sum_3_1 a15(a[139:138],temp1[9:8],out[27:26]);

diff_3_1 a16(a[75:74],a[67:66],out[29:28]);

diff_3_1 a17(a[11:10],a[181:180],out[31:30]);

sum_3_1 a18(a[125:124],a[133:132],temp1[11:10]);

sum_3_1 a19(a[141:140],temp1[11:10],out[33:32]);

diff_3_1 a20(a[77:76],a[69:68],out[35:34]);

diff_3_1 a21(a[13:12],a[183:182],out[37:36]);

sum_3_1 a22(a[127:126],a[135:134],temp1[13:12]);

sum_3_1 a23(a[143:142],temp1[13:12],out[39:38]);

diff_3_1 a24(a[79:78],a[71:70],out[41:40]);

diff_3_1 a25(a[15:14],a[185:184],out[43:42]);

sum_3_1 a26(a[129:128],a[137:136],temp1[15:14]);

sum_3_1 a27(a[145:144],temp1[15:14],out[45:44]);

diff_3_1 a28(a[81:80],a[73:72],out[47:46]);

diff_3_1 a29(a[17:16],a[187:186],out[49:48]);

sum_3_1 a30(a[131:130],a[139:138],temp1[17:16]);

sum_3_1 a31(a[147:146],temp1[17:16],out[51:50]);

diff_3_1 a32(a[83:82],a[75:74],out[53:52]);

diff_3_1 a33(a[19:18],a[189:188],out[55:54]);

sum_3_1 a34(a[133:132],a[141:140],temp1[19:18]);

sum_3_1 a35(a[149:148],temp1[19:18],out[57:56]);

diff_3_1 a36(a[85:84],a[77:76],out[59:58]);
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diff_3_1 a37(a[21:20],a[191:190],out[61:60]);

sum_3_1 a38(a[135:134],a[143:142],temp1[21:20]);

sum_3_1 a39(a[151:150],temp1[21:20],out[63:62]);

diff_3_1 a40(a[87:86],a[79:78],out[65:64]);

diff_3_1 a41(a[23:22],a[193:192],out[67:66]);

sum_3_1 a42(a[137:136],a[145:144],temp1[23:22]);

sum_3_1 a43(a[153:152],temp1[23:22],out[69:68]);

diff_3_1 a44(a[89:88],a[81:80],out[71:70]);

sum_3_1 a45(a[139:138],a[147:146],temp1[25:24]);

sum_3_1 a46(a[155:154],temp1[25:24],out[75:74]);

diff_3_1 a47(a[91:90],a[83:82],out[77:76]);

sum_3_1 a48(a[141:140],a[149:148],temp1[27:26]);

sum_3_1 a49(a[157:156],temp1[27:26],out[81:80]);

diff_3_1 a50(a[93:92],a[85:84],out[83:82]);

sum_3_1 a51(a[143:142],a[151:150],temp1[29:28]);

sum_3_1 a52(a[159:158],temp1[29:28],out[87:86]);

diff_3_1 a53(a[95:94],a[87:86],out[89:88]);

sum_3_1 a54(a[145:144],a[153:152],temp1[31:30]);

sum_3_1 a55(a[161:160],temp1[31:30],out[93:92]);

diff_3_1 a56(a[97:96],a[89:88],out[95:94]);

sum_3_1 a57(a[147:146],a[155:154],temp1[33:32]);

sum_3_1 a58(a[163:162],temp1[33:32],out[99:98]);

diff_3_1 a59(a[99:98],a[91:90],out[101:100]);

sum_3_1 a60(a[149:148],a[157:156],temp1[35:34]);

sum_3_1 a61(a[165:164],temp1[35:34],out[105:104]);

diff_3_1 a62(a[101:100],a[93:92],out[107:106]);

sum_3_1 a63(a[151:150],a[159:158],temp1[37:36]);

sum_3_1 a64(a[167:166],temp1[37:36],out[111:110]);

diff_3_1 a65(a[103:102],a[95:94],out[113:112]);

sum_3_1 a66(a[153:152],a[161:160],temp1[39:38]);

sum_3_1 a67(a[169:168],temp1[39:38],out[117:116]);

diff_3_1 a68(a[105:104],a[97:96],out[119:118]);

sum_3_1 a69(a[155:154],a[163:162],temp1[41:40]);

sum_3_1 a70(a[171:170],temp1[41:40],out[123:122]);

diff_3_1 a71(a[107:106],a[99:98],out[125:124]);

sum_3_1 a72(a[157:156],a[165:164],temp1[43:42]);

sum_3_1 a73(a[173:172],temp1[43:42],out[129:128]);

diff_3_1 a74(a[109:108],a[101:100],out[131:130]);

sum_3_1 a75(a[159:158],a[167:166],temp1[45:44]);

sum_3_1 a76(a[175:174],temp1[45:44],out[135:134]);

diff_3_1 a77(a[111:110],a[103:102],out[137:136]);
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sum_3_1 a78(a[161:160],a[169:168],temp1[47:46]);

sum_3_1 a79(a[177:176],temp1[47:46],out[141:140]);

diff_3_1 a80(a[113:112],a[105:104],out[143:142]);

sum_3_1 a81(a[163:162],a[171:170],temp1[49:48]);

sum_3_1 a82(a[179:178],temp1[49:48],out[147:146]);

diff_3_1 a83(a[115:114],a[107:106],out[149:148]);

sum_3_1 a84(a[165:164],a[173:172],temp1[51:50]);

sum_3_1 a85(a[181:180],temp1[51:50],out[153:152]);

diff_3_1 a86(a[117:116],a[109:108],out[155:154]);

sum_3_1 a87(a[167:166],a[175:174],temp1[53:52]);

sum_3_1 a88(a[183:182],temp1[53:52],out[159:158]);

diff_3_1 a89(a[119:118],a[111:110],out[161:160]);

sum_3_1 a90(a[169:168],a[177:176],temp1[55:54]);

sum_3_1 a91(a[185:184],temp1[55:54],out[165:164]);

diff_3_1 a92(a[121:120],a[113:112],out[167:166]);

sum_3_1 a93(a[171:170],a[179:178],temp1[57:56]);

sum_3_1 a94(a[187:186],temp1[57:56],out[171:170]);

diff_3_1 a95(a[123:122],a[115:114],out[173:172]);

sum_3_1 a96(a[173:172],a[181:180],temp1[59:58]);

sum_3_1 a97(a[189:188],temp1[59:58],out[177:176]);

diff_3_1 a98(a[125:124],a[117:116],out[179:178]);

sum_3_1 a99(a[175:174],a[183:182],temp1[61:60]);

sum_3_1 a100(a[191:190],temp1[61:60],out[183:182]);

diff_3_1 a101(a[127:126],a[119:118],out[185:184]);

sum_3_1 a102(a[177:176],a[185:184],temp1[63:62]);

sum_3_1 a103(a[193:192],temp1[63:62],out[189:188]);

diff_3_1 a104(a[129:128],a[121:120],out[191:190]);

always@(clk)

//begin

//if (reset)

//begin

//out1<=0;

//end

//else

out1<=out;

//end

endmodule

A.1.5 Cube over F6m

3

module cube_3_6m(a1,a2,a3,a4,a5,a6,clk,cubee1,cubee2,cubee3,
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cubee4,cubee5,cubee6 );

input [193:0] a1,a2,a3,a4,a5,a6;

input clk;

output reg [193:0] cubee1,cubee2,cubee3,cubee4,cubee5,cubee6;

wire [193:0] temp1,temp2,temp3,temp4,temp5,temp6,cube1,cube2,

cube3,cube4,cube5,cube6;

wire [193:0] sum1,sum2,sum3;

cube_3_m b1(a1,clk,temp1 );

cube_3_m b2(a2,clk,temp2 );

cube_3_m b3(a3,clk,temp3 );

cube_3_m b4(a4,clk,temp4 );

cube_3_m b5(a5,clk,temp5 );

cube_3_m b6(a6,clk,temp6 );

/////////////cube1//////////

sum_3_97 b7(temp1,temp3,sum1);

sum_3_97 b8(sum1,temp5,cube1);

///////////cube2//////////

sum_3_97 b9(temp2,temp4,sum2);

sum_3_97 b10(sum2,temp6,sum3);

Prod_3_97 b11(sum3,2’b10,cube2 );

////////////cube3///////////

diff_3_97 b12(temp3,temp5,cube3);

/////////cube4/////////////////

diff_3_97 b13(temp6,temp4,cube4);

/////////////cube5///////////////

assign cube5=temp5;

///////////////cube6///////////

Prod_3_97 b14(temp6,2’b10,cube6 );

always@(posedge clk )

begin

cubee1<=cube1;cubee2<=cube2;cubee3<=cube3;

cubee4<=cube4;cubee5<=cube5;cubee6<=cube6;

end

endmodule

A.1.6 Final Pairing Top module

module pairing(px1,py1,qx1,qy1,reset,load,clk,pairing );

input [193:0]px1,py1,qx1,qy1;
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input clk,reset,load;

output reg [193:0] pairing;

reg [9:0] count1,count2,count3,count4;

reg[19:0]count6=0;

reg [193:0]tem1=0,tem2=0,temmp1=0;

reg [193:0] init,ak1,ak2,ak3,ak4,ak5,ak6,ak7;

reg [5:0]state,loop;

reg [1:0] c,d,g;

wire [193:0] out1,sum1,prod1,prod2,prod3;

reg reset3,en1,en2,en11,en12,en5,reset4,en3;

reg [1163:0]R0=0,R1=0;

reg [193:0] a1=0,a2=0,a3=0,a4=0,a5=0,a6=0,b1=0,b2=0,b3=0,b4=0,b5=0,

b6=0,ad1=0,ad2=0,ad3=0,ad4=0,ad5=0,ad6=0;

wire[193:0] prodd1,prodd2,prodd3,prodd4,prodd5,prodd6,cube1,cube2,

cube3,cube4,cube5,cube6;

//reg [193:0] fin1=0,fin2=0,fin3=0,fin4=0,fin5=0,fin6;

reg [193:0] pow9qx,pow9qy,midpy,midqy=0,midqx=0;

wire [1:0] diff;

reg [193:0]px,py,qx,qy;

///////////////modules called///////////

cube_3_6m asd(ad1,ad2,ad3,ad4,ad5,ad6,clk,cube1,cube2,cube3,cube4,

cube5,cube6 );

Prod_3_97 m1(init,c,out1);

sum_3_97 m2(ak1,ak2,sum1);

fin_mul_red_3_97 ab7(ak3,ak4,clk,reset3,prod1 );

fin_mul_red_3_97 ab8(ak5,ak6,clk,reset3,prod2 );

cube_3_m m3(ak7,clk,prod3 );

diff_3_1 m6(g,2’d1,diff);

mul_3_6m aa7(a1,a2,a3,a4,a5,a6,b1,b2,b3,b4,b5,b6,clk,reset4,prodd1,

prodd2,prodd3,prodd4,prodd5,prodd6 );

always@(clk & en3)

begin

count6<=count6+1;

end

always@(clk or reset)

begin

if(reset)

begin

// count<=0;

count1<=0;count2<=0;count3<=0; count4<=0;

// count5<=0;



APPENDIX A. APPENDIX 60

//count6=0;

// state<=8;

d<=0;reset3<=0;reset4<=0;

// reset5<=1;

en1<=1;en2<=1;en3<=1;

// en4<=1;

en5<=1;en11<=1;en12<=1;

// reset1<=1;

loop<=0; R0<=0;R1<=0; pow9qx<=0;pow9qy<=0; midqx<=0;midqy<=0;

midpy<=0;a1<=0; a2<=0; a3<=0;a4<=0;a5<=0; a6<=0; b1<=0; b2<=0;

b3<=0; b4<=0; b5<=0;b6<=0;ad1<=0; ad2<=0;ad3<=0; ad4<=0; ad5<=0;

ad6<=0; a2<=0; a3<=0; a4<=0; a5<=0; a6<=0; b1<=0; b2<=0; b3<=0;

b4<=0; b5<=0; b6<=0; ad1<=0; ad2<=0; ad3<=0; ad4<=0; ad5<=0;

ad6<=0;px<=0; py<=py1; qx<=qx1;qy<=qy1; state<=0;

end

else

begin

if(load)

begin

px<=px1;

py<=py1;

qx<=qx1;

qy<=qy1;

state<=0;

end

else

case(state)

6’d0:

begin

init<=py;

c<=2’d2;

ak1<=px;

ak2<=qx;

state<=6’d1;

d<=1;
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reset3<=1;

end

6’d1:

begin

temmp1<=out1;

c<=2’d2;

ak1<=sum1;

ak2<=d;

state<=6’d2;

end

6’d2:

begin

ak3<=out1;

ak4<=sum1;

reset3<=0;

state<=6’d3;

R0<=0;

end

6’d3:

begin

count1<=count1+1;

if(count1==34) //change

begin

tem1<=prod1;

count1<=0;

state<=6’d4;

end

end

6’d4:

begin

count1<=count1+1;

if(count1==0)

begin

init<=prod1;

c<=2;

end

else if(count1==1)

begin

R0[193:0]<=out1;

R0[387:194]<=qy;

R0[581:388]<=temmp1;
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R0[775:582]<=194’d0;

R0[969:776]<=194’d0;

R0[1163:970]<=194’d0;

count1<=0;

state<=6’d5;

// reset1<=1;

end

else

count1<=0;

end

6’d5:

begin

if(loop<48)

begin

count4<=count4+1;

case(count4)

10’d0:

if(en1)

begin

ak1<=px;

ak2<=qx;

// ak7<=qx;

// ak8<=qy;

// reset1<=0;

end

else

begin

ak1<=px;

ak2<=pow9qx;

// ak7<=pow9qx;

// ak8<=pow9qy;

// reset1<=0;

end

10’d1:

begin

ak1<=sum1;

ak2<=d;

reset3<=1;

R1<=0;

tem1<=0;

en1<=0;
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end

10’d2:

if(en2)

begin

tem1<=sum1;

ak3<=sum1;

ak4<=sum1;

reset3<=0;

ak5<=temmp1;

ak6<=qy;

end

else

begin

tem1<=sum1;

ak3<=sum1;

ak4<=sum1;

reset3<=0;

ak5<=midpy;

ak6<=pow9qy;

end

10’d3:

begin

init<=tem1; ///r0

c<=2’d2;

end

10’d4:

begin

tem2<=out1;////2ro

en2<=0;

end

10’d5:

begin

if(en11)

ak7<=qx;

else

ak7<=pow9qx;

end

10’d6:

midqx<=prod3;

10’d7:

ak7<=midqx;
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10’d8:

pow9qx<=prod3;

//10’d31:

// begin

// midqx<=prod3;

// midqy<=prod4;

// end

//10’d32:

// reset1<=1;

//10’d33:

// begin

// reset1<=0;

// ak7<=midqx;

// ak8<=midqy;

// end

10’d35: //mul cycles +3

begin

init<=prod1; ///2r02

c<=2’d2;

//reset1<=1;

//tem3<=prod3;

end

10’d36:

begin

R1[193:0]<=out1;

R1[387:194]<=prod2;

R1[581:388]<=tem2;

R1[775:582]<=194’d0;

R1[969:776]<=194’d2;

R1[1163:970]<=194’d0;

en2<=0;

en1<=0;

count4<=0;

state<=6;

reset4<=1;

en11<=0;

end

default:

en2<=en2;
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endcase

end

else

begin

en3<=0;

pairing<= R0[193:0];

end

end

6’d6:

begin

count2<=count2+1;

case(count2)

10’d0:

begin

a1<=R0[193:0];

a2<=R0[387:194];

a3<=R0[581:388];

a4<=R0[775:582];

a5<=R0[969:776];

a6<=R0[1163:970];

b1<=R1[193:0];

b2<=R1[387:194];

b3<=R1[581:388];

b4<=R1[775:582];

b5<=R1[969:776];

b6<=R1[1163:970];

reset4<=0;

end

10’d1:

begin

if(en12)

ak7<=qy;

else

ak7<=pow9qy;

end

10’d2:

midqy<=prod3;

10’d3:

ak7<=midqy;

10’d4:

pow9qy<=prod3;
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10’d5:

begin

if(en5)

begin

init<=temmp1;

c<=2;

end

else

begin

init<=midpy;

c<=2’d2;

end

end

10’d6:

midpy<=out1;

10’d7:

begin

g<=d;

end

10’d8:

d<=diff;

10’d34: //cycles +1

begin

state<=7;

count2<=0;

// reset5=1;

en5<=0;

en12<=0;

end

default:

en2<=en2;

endcase

end

6’d7:

begin

count3<=count3+1;

case(count3)

10’d0:

begin

ad1<=prodd1;

ad2<=prodd2;
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ad3<=prodd3;

ad4<=prodd4;

ad5<=prodd5;

ad6<=prodd6;

// reset5=0;

R0<=0;

end

10’d1:

begin

R0[193:0]<=cube1;

R0[387:194]<=cube2;

R0[581:388]<=cube3;

R0[775:582]<=cube4;

R0[969:776]<=cube5;

R0[1163:970]<=cube6;

////////////////////

state<=5;

count3<=0;

count2<=0;

count4<=0;

en5<=0;

// en4<=0;

en1<=0;

en11<=0;

en12<=0;

en2<=0;

// reset1<=1;

loop<=loop+1;

//en3<=0;

end

endcase

end

default:

state<=66;

endcase

end

end

endmodule
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