
Randomness Testing of
Non-Cryptographic Hash Functions
for Real-time URL Based Internet

Filtering Applications

By

Tahir Ahmad

2011-NUST-MS-CCS-32

Supervisor

Dr. Usman Younis

Department of Electrical Engineering

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters in Computer and Communication Security (MS CCS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(October 2013)

Approval

It is certified that the contents and form of the thesis entitled “Randomness

Testing of Non-Cryptographic Hash Functions for Real-time URL

Based Internet Filtering Applications” submitted by Tahir Ahmad

have been found satisfactory for the requirement of the degree.

Advisor: Dr. Usman Younis

Signature:

Date:

Committee Member 1: Dr. Adnan Khalid Kiani

Signature:

Date:

Committee Member 2: Dr. Abdul Ghafoor

Signature:

Date:

Committee Member 3: Dr. Ali Mustafa Qamar

Signature:

Date:

i

Abstract

In this thesis, a real-time URL based filtering system capable of URL filtering

and blocking from domain level to sub folder level is proposed. It can be used

as a standalone solution and can be integrated at any network level. The

modular approach provides scalability by stacking hardware boxes to meet

the current and future bandwidth requirements. The total delay caused by

our proposed system is less then 1ms which is highly desirable for real-time

filtering systems.

The core component of real-time URL based filtering system is URL

lookup and storage engine. In this work, hash tables are used to develop the

URL lookup and storage engine. The performance of hash table is dependent

upon hash function used for implementation of hash table. To gain the space

and time advantage using Hash Tables for real-time application over other

constant space-set data structures following approaches are used: 1) The use

of hash functions for compressing variable length URL strings to fixed size

integers and dynamic allocation of memory 2) To compensate the collision

problem associated with hash functions by performing statistical analysis

and implementation of various non-cryptographic hash functions to identify

their random nature and hash table resize operation depending upon the

load factor. The performance analysis is performed mainly using statistical

ii

iii

studies on the sequences generated using five widely used non-cryptographic

hash functions: 1) CRC, 2) Adler, 3) FNV, 4) DJBX33A, and 5) Murmur.

The comparative analysis of tested non-cryptographic hash functions shows

that the Adler hash function is not suitable for hash table implementation,

whereas, the rest of non-cryptographic hash functions exhibit similar and bet-

ter randomizing features which make them an attractive choice for hash table

implementation. The results of these statistical studies have been verified by

the implementation of hash table using these non-cryptographic hash func-

tions. The implementation results show that the average number of probes

for Adler based hash table varies between 1.25 and 2.75 for different load

factors and hash table sizes; whereas, for the rest of non-cryptographic hash

functions the average number of probes in a hash table is 1, which is highly

desirable for real-time network applications. Thus proving that 1) CRC, 2)

FNV, 3) DJBX33A, and 4) Murmur non-cryptographic hash functions are

good choices for hash table based implementation for real-time storage and

lookup of uniform resource locators.

Analysis and trace-based experiments are employed to explore the prop-

erties of our proposed hash table based URL filtering System. The results

show the false positive rate of 0.0 up to 160 Mbps and increases up to 0.29 at

300 Mbps. The URL lookup rate is 100% at 160 Mbps and drops gradually

to 71% when data rate approaches 300 Mbps. The 0% packet drop ratio is

observed up to 160 Mbps and gradual increase as the data rate increases i.e.

around 30% at 300 Mbps. The URL storage rate of up to 90% at 1Mbps

and drops only 10% when data rate rises to 90Mbps. The initial loss of 10%

URLs is due to storage of URLs on secondary media for classification of sus-

iv

picious and benign URLs. The URL storage in our proposed architecture is

in passive-mode, so it doesnt affect the real-time performance of our URL

filtering system.

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational

institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked

at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product

of my own work, except for the assistance from others in the project’s de-

sign and conception or in style, presentation and linguistics which has been

acknowledged.

Author Name: Tahir Ahmad

Signature:

v

Acknowledgment

Above all, I am extremely thankful to Almighty Allah, for His countless

blessing bestowed on me throughout my life. Without His will and blessing

nothing would have been possible.

My profound gratitude to my thesis supervisor Dr. Usman Younis, for

his continuous encouragement, enlightening advice, and most willing help

extended by him throughout my research work.

I am also thankful to Dr. Abdul Ghafoor, Dr. Ali Mustafa Qamar and

Dr. Adnan Khalid Kiani for their support and time. Special thanks to ITS

Departments Mr. Ajmal Farooq (System Administrator) and Mr. Abdel Wa-

hab Khan (Network Administrator) for helping in data capturing at SEECS

edge router and providing access logs of squid proxy server of SEECS.

I also want to mention the names of my friends, Muhammad Hanif, and

Muhammad Faheem for their unconditional support. I am grateful to them.

Last, but by no mean the least, my heartfelt thanks to my wife, little Eisha

and sweet parents for their unwavering support and encouragement through-

out my Master studies.

vi

Table of Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Internet Filtering Techniques 2

1.3 Deployment Scenarios for Internet Filtering 4

1.4 Contribution of Thesis . 4

1.5 Thesis Organization . 8

2 Literature Review 9

2.1 Internet Filtering . 9

2.2 Randomness Testing of Non Cryptographic Hash Functions

(NCHF) for Hash table based implementation 12

3 Problem Statement 15

3.1 Objectives . 15

3.2 Datasets . 16

3.2.1 Dataset No. 1 . 16

3.2.2 Dataset No. 2 . 16

3.3 Testing Scenario . 18

3.4 Areas of Application . 20

vii

TABLE OF CONTENTS viii

4 Research Methodology 23

4.1 System Requirements . 25

4.1.1 Programming Language 25

4.1.2 Operation System . 26

4.1.3 Modules . 26

5 Data Structure 28

5.1 Hash Table based Data Structure 28

5.1.1 Description . 29

5.2 Operations . 32

5.2.1 URL Storage . 33

5.2.2 URL Lookup . 33

5.2.3 URL Deletion . 35

5.3 Full URL Matching (FUM) Data Structure 35

5.4 Partial URL Matching (PUM) Data Structure 36

5.4.1 URL Storage . 37

5.4.2 URL Lookup . 40

6 Randomness Testing 43

6.1 Empirical Results . 44

6.1.1 The Frequency (Monobit) Test 46

6.1.2 The Runs Test . 48

6.1.3 Test for the Longest-Run-of-Ones in a block 49

6.1.4 The Discrete Fourier Transform (Spectral) Test 51

6.1.5 The Cumulative Sums (Cusums) Test 53

6.2 Analysis of Empirical Results 55

TABLE OF CONTENTS ix

6.2.1 Proportion of passing a test based on P-value 56

6.2.2 Uniform distribution of P-values 57

6.3 Verification of Statistical Results 58

7 Results and Discussion 63

7.1 Initial Packet Processor (IPP) 64

7.2 Hash based URL storage (HUS) 66

7.3 Application level firewall . 67

7.3.1 URL Lookup Rate . 69

7.3.2 False Positive Rate . 70

8 Conclusion and Future work 74

8.1 Conclusion . 74

8.2 Future Work . 75

List of Figures

1.1 Network Architecture of Proposed System 5

3.1 Data Rate vs Time of Day . 18

3.2 Number of Packets vs Time of Day 19

3.3 Number of URLs vs Time of Day 20

3.4 Number of URL Components vs Time of Day 21

4.1 Deployment Scenario of Real-time URL filtering system 25

5.1 View of initialized Hash Table 30

5.2 Hash Table at Threshold Level 30

5.3 Hash Table after resize operation 32

5.4 Initial URL Request . 39

5.5 Same Domain with different single path addresses 39

5.6 Same Domain with different multiple path addresses 40

5.7 Different domains and multiple path addresses 40

5.8 URL request decomposition 42

6.1 Proportion of sequences passing Frequency Test 47

6.2 Histogram of P-values for Frequency Test 48

x

LIST OF FIGURES xi

6.3 Proportions of sequences passing Runs Test 49

6.4 Histogram of P-values for Runs Test 50

6.5 Proportions of sequences passing Longest Run of Ones in a

block Test . 51

6.6 Histogram of P-values for Longest-Run-of-Ones in a block Test 52

6.7 Proportion of sequences passing Discrete Fourier Transform Test 53

6.8 Histogram of P-values for Discrete Fourier Transform Test . . 54

6.9 Proportions of sequences passing Cumulative Sums Test 55

6.10 Histogram of P-values for Cumulative Sums Test 56

6.11 Standard Deviations . 58

6.12 Average Number of Probes for 0.20 Load Factor 60

6.13 Average Number of Probes for 0.40 Load Factor 61

6.14 Average Number of Probes for 0.60 Load Factor 62

7.1 Packet Drop Ratio (1pm to 7pm) 64

7.2 Packet Drop Ratio (7pm to 1am) 65

7.3 Packet Drop Ratio (1am to 7am) 65

7.4 Packet Drop Ratio (7am to 1pm) 66

7.5 URL Storage Rate (1pm to 7pm) 67

7.6 URL Storage Rate (7pm to 1am) 67

7.7 URL Storage Rate (1am to 7am) 68

7.8 URL Storage Rate (7am to 1pm) 68

7.9 URL Lookup Rate (1pm to 7pm) 69

7.10 URL Lookup Rate (7pm to 1am) 70

7.11 URL Lookup Rate (1am to 7am) 70

7.12 URL Lookup Rate (7am to 1pm) 71

LIST OF FIGURES xii

7.13 False Positive Rate (1pm to 7pm) 71

7.14 False Positive Rate (7pm to 1am) 72

7.15 False Positive Rate (1am to 7am) 72

7.16 False Positive Rate (7am to 1pm) 73

List of Tables

3.1 The collected data sets which have been provided as an input

to the hash functions. 17

3.2 Details of captured PCAP files. 22

5.1 Various Hash Table sizes. 34

6.1 Lengths of the bit sequences which have been employed in

various statistical tests. 44

6.2 Success rate of hash functions. 57

6.3 Implemented Hash Table Specifications. 59

xiii

Chapter 1

Introduction

1.1 Introduction

Today internet is the main source of information. However, all the informa-

tion is not meant for everyone and there is also a lack of information flow

regulations. This gives rise to problem like sensitive information in wrong

hands and as a consequence can mislead the user. For example, pornographic

material is harmful for kids, and information which may facilitate crimes is

dangerous. All these issues are considered in the domain of information secu-

rity for which information filtering is required, and is achieved using Internet

Filtering. The spectrum of Internet Filtering comprises of,

• Cyber Safety

• Censorship

• Malware Protection

1

CHAPTER 1. INTRODUCTION 2

In Pakistan, if some offensive material needs to be banned, there is no

centralized mechanism in place. Pakistan Telecom Authority (PTA) which

is internet governing body in Pakistan forward request to Internet Service

Providers (ISPs) as they are in compliance with regulations imposed by PTA.

The ISPs then block the requested URL/web address by manually adding

them to their block list. Each ISP has to manually undergo this blocking

process. At times they slip through the cracks, which results in under block-

ing or over blocking. There is a need to automate the URL filtering and

blocking process. ISPs in Pakistan donate money as a licensing agreement

to National Information and Communication Technology (ICT) R&D Fund.

They therefore requested ICT R&D to indigenously develop an Internet fil-

tering and blocking system. This turns as a motivation for my thesis to take

a first step towards building a real-time URL-based filtering system.

1.2 Internet Filtering Techniques

From technical perspective, the two common technique used for internet

filtering are,

• Packet level filtering

• Higher layer filtering such as URL based filtering

In packet level filtering, the filtering can be done at Network Layer by just

looking at the IP addresses or at Transport Layer by filtering the packets on

port bases. This is the most efficient level approach towards filtering but at

the cost of collateral damage. Many domains resolve to a single IP address.

CHAPTER 1. INTRODUCTION 3

Thus blocking based upon IP addresses will cause over blocking, which makes

even legitimate domains inaccessible.

The other approach towards filtering using higher protocol layers is capa-

ble of performing web content filtering. This can be done using web proxies

and deep packet level firewalls. Both schemes have similar purpose but are

different in terms of architecture. Web Proxies are ideally suited for small

network like universities and organizations. It provides anonymity to the

users sitting behind the proxy. The filtering schemes in case of web proxy

can be categorized as Index based filtering and Analytic based filtering. The

prior perform filtering based on blacklist/ whitelist basis. The later perform

filtering based upon the web content like keywords and images. This ap-

proach at times causes the problem of over blocking and under blocking due

to its inability to classify the images in context of content. The Deep packet

level firewall performs filtering directly on the data packets. The filtering can

applied on the basis of packet header termed as stateful packet inspection.

The other approach towards filtering packets in deep packet level firewall is

based upon packet payload termed as deep packet inspection (DPI). It pro-

vides finer controls and helps in detection of malwares in pages with active

contents. Attacks such as phishing and drive by download can be prevented

using DPI approach.

CHAPTER 1. INTRODUCTION 4

1.3 Deployment Scenarios for Internet Filter-

ing

Internet filtering techniques can be deployed at various levels in internet

architecture. The users of internet are normally connected to ISP, which is

connected to backbone via backbone service provider. Thus different filtering

techniques can be deployed at different levels. Following are the possible

deployment scenarios,

• Internet filtering between internet user and the ISP

• Internet filtering at the ISP level

• Internet filtering between the ISP and backbone service provider

• Internet filtering at the backbone service provider (BSP), to filter illegal

internet coming from outside world.

It is important to avoid single point of failure while deploying internet

filtering at ISP and BSP level. Most of internet traffic today is generated

dynamically by social media websites, thus making the task of content filter-

ing of both webpages and packets a challenging task. The challenges include

dealing with various distributed contents, variation in access mode like non-

HTTP such as peer to peer traffic and also to deal with encrypted traffic.

1.4 Contribution of Thesis

The practical solution towards filtering will be a hybrid scheme as shown

in Figure 1.1. In the above discussed internet filtering techniques, only IP

CHAPTER 1. INTRODUCTION 5

Figure 1.1: Network Architecture of Proposed System

.

level packet filtering has the capability to be deployed at high data link such

as BSP. The other internet filtering schemes suffer with longer latencies. In

hybrid scheme, the filtering can be performed in a two tier filtering system.

At tier 1 the filtering is based upon IP level packet filtering. Most of the

legitimate traffic is allowed to bypass the tier 2 of filtering system. Only

packets with suspicious IP addresses or port numbers are forwarded to tier 2

of the filtering system. The tier 2 of filtering system is DPI based. It makes

the filtering decision on basis of higher layer (layer 7) protocol information.

The filtering decision can be either based on header information of protocol

or on the payload of the protocol.

This work is focused on the tier 2 of internet filtering system. The decision

at this tier is made by looking at the header information of Hyper Text

Transfer Protocol (HTTP). HTTP works on top of TCP session. Once a TCP

session is established between the host and webserver, the user request i.e.

the Uniform Resource Locator (URL) of a webpage hosted on that webserver

CHAPTER 1. INTRODUCTION 6

is forward using HTTP GET request. URLs stay for a longer duration in the

system as compared to IP information, therefore, the classification based on

URLs remains valid for longer period. The core of URL filtering system is a

blacklist database containing all prohibited URLs, and a URL lookup engine.

The challenges faced are the management of blacklist database, real-time

query execution, and finally decision making to allow or deny the requested

URL.

The main challenge in designing a URL-based filtering is the character

encoding. URLs are merely character strings of variable lengths, which make

it a challenging task to store URL entries in a memory efficient way, and also

to perform the requested URL lookup in a minimal time. Hash functions

are widely use for compression and conversion of URLs to a fixed size, and

contribute towards improving memory and computing requirements.

The scope of this Research includes the study of various non-cryptographic

hash functions (NCHF). NCHF due to their computational efficiency are

widely used in many computing applications [5, 6, 14, 18, 23, 31]. These

includes hash table implementation in which NCHFs make it possible to per-

form lookup operation in O(1) time irrespective of the table size [17, 21, 15].

Additionally, the performance of a hash table depends upon the random out-

put of the hash function which is employed in its implementation. Random-

izing functions are generally good NCHFs, but not the vice versa. Therefore,

the performance of NCHFs as randomizing functions have been investigated

in this work. Exhaustive test runs, identified in National Institute of Stan-

dards and Technology (NIST) statistical suite, have been executed on five

NCHFs used in hash table implementation. Important features which deter-

CHAPTER 1. INTRODUCTION 7

mine the quality of a NCHF are collision resistance, distribution of outputs,

avalanche effects, and speed [12, 19, 14, 13, 1]. Additionally, all of these

features are data-dependent [29]. It is required of a NCHF to produce the

output which follows a uniform distribution [19, 14]. The function must

generate each possible output value with equal probability and it must be

independent of the input distribution [19].

The focus of this work is to evaluate the randomness of uniform distribu-

tion of mapping done by NCHFs for input uniform resource locators (URLs).

In our proposed hash table based approach for URL storage and Lookup, the

entries are stored as a key-value pair. We are setting URL as a key, and the

hash of a key provides the address of a slot where entries are required to be

stored. An associated problem with the hash functions is the collision which

occurs when the calculated hash of two distinct keys map to a same slot.

This is resolved by finding an alternate slot for the storage of collided entry,

called probing. The strength of our proposed URL storage and lookup lies in

the random outcome of a hash function. A suitable hash function provides

unique hashes which minimizes the probing and thus ensures O(1) average

time for URL storage and lookup.

A hash function used in real-time network applications can be categorized

as Checksum, cyclic redundancy check (CRC), and NCHF. We have analyzed

following 32-bit hash functions,

• CRC-32 hash function (CRC hash function) [10, 20, 14].

• Adler-32 hash function (Checksum hash function) [10, 22].

• DJBX33A Hash function (non-cryptographic hash function) [6].

CHAPTER 1. INTRODUCTION 8

• Fowler-Noll-Vo(FNV) hash function (non-cryptographic hash function)

[6, 4].

• and, Murmur hash function (non-cryptographic hash function) [1, 6].

1.5 Thesis Organization

The rest of the thesis is organized as follows; Chapter 2 presents the lit-

erature review and highlights the trends in approaches to design internet

filtering and blocking systems. In Chapter 3, we discuss the objectives of

this thesis along with data sets used for evaluation of system. Chapter 4

presents Research Methodology adopted in this research work and shows the

architecture and deployment scenario of our proposed real-time URL based

internet filtering system. In chapter 5, we discuss the underlying data struc-

tures of our proposed system. Chapter 6 presents the randomness testing

of non-cryptographic hash functions for real-time network applications. In

Chapter 7, we share the results and discussion of trace based experiments.

Chapter 8 concludes the thesis and gives recommendations for future work.

Chapter 2

Literature Review

2.1 Internet Filtering

The idea of internet filtering is not new but there is a clear change in trends

in the approach to achieve filtering. In mid 2000, the trend was a total

hardware based solution but as the constraints of processing and memory

are reduced the trend shifted towards software based solution, which en-

ables internet filtering systems to achieve much finer controls. The proposed

systems in 2005 are both hardware based. In [16], a fast URL lookup and

storage engine is presented for content-aware multi-gigabit switches. The

task of Uniform resource Locator (URL) lookup and storage is performed

using Content Addressable memory (CAM). It is a hardware based imple-

mentation of associative array. When a data word is provided as input, CAM

searches its memory and if entry exits in storage database, it returns the ad-

dress of that data word. The advantage of using CAM for URL lookup and

storage is the constant lookup time for each search operation. The proposed

fast scalable URL lookup mechanism that uses CAM perform lookup results

9

CHAPTER 2. LITERATURE REVIEW 10

every single clock cycle by applying pipeline technology and the system can

perform 100 million lookups per second for 100 MHz processing speed. The

system has prefix and exact matching capability. In [25], a Network processor

based gigabit multiple-service switch is proposed. URL lookup mechanism

in this multiple-service switch uses CAM. It uses IQ2000 network processor

and classiPI co-processor for URL lookup.

Since 2010, the trend in the area of internet filtering is shifted from total

hardware based solution to more software dependent platforms. Gao Fuxiang

et al. in 2010 [9] proposed a web access monitoring system. Web access

monitoring is performed on basis of URL analysis and decision making on

basis of blacklist database consisting of a list of suspicious URLs. URL lookup

operation is performed using hash functions based fast matching algorithm.

The system can perform exact URL matching but is incapable of performing

prefix matching. Zhou et al. in 2010 [30] proposed a matching algorithm,

which acts as URL lookup and storage engine. The storage efficiency is

achieved using URL compression algorithm and for URL lookup multiple

string matching based algorithm are used. The URL compression approach

helps to achieve higher compression rates than its counterparts like UBF

Guard and hash chain methods. The URL lookup and storage engine is

capable of comparing 100,000 URLs in 0.26 seconds. The drawback of this

system is the number of false positive, which occurs due to the use of CRC32

hash function in URL compression algorithms.

Thomas et al in 2011 [26] presented Monarch an email-based spam filter-

ing system. It is capable of performing real-time URL spam filtering. The

system is based on Whitelisting approach. At proxy a whitelist containing

CHAPTER 2. LITERATURE REVIEW 11

good domains is maintained. Monarch uses machine learning approach for

classification of URLs in suspicious and benign. This classification is based

upon the collected features. The system has a latency of 5ms to parse a URL.

The accuracy of the system is 90.78% with 0.87% false positives. Feng et al.

in 2011 [8] proposed a network based URL filtering system. Classification

is based upon blacklisting approach. Generally internet filtering systems are

gateway based. At higher data rates these gateway based filtering systems

become the network bottleneck. In this work, the load of gateway based URL

filtering system (GUF) is reduced by shifting control to Network based URL

filtering system (NUF). It adds an additional overhead in terms of latency

in range of 100 to 500ms. Local caching of search results is done at GUF,

to avoid the overhead of latency. Multi-level bloom filters helps in reducing

memory requirement of NUF gateway to 90.9% and providing low operation

latency at the same time.

Garnica et al. in 2012 [11] proposed an FPGA based URL legal filtering.

It is a hardware-software based solution for URL filtering at high data rates

such as backbone service providers (BSPs). It is based on two level filtering.

At level 1, an FPGA based hardware implementation is used to perform

filtering on IP packet level filtering. At level 2, a software based lookup

method is used. Other FPGA based solutions are totally hardware based

and suffers from false positives; here false positives are handled at software

level. The proposed system is capable of operating at 10 GbE and scalable up

to 100 GbE. The two tier architecture for internet filtering helps in avoiding

legitimate traffic to be tested at level 2, thus saving processing time. Only

traffic from suspicious IP addresses existing in the blacklist database are

CHAPTER 2. LITERATURE REVIEW 12

forwarded for further inspection.

Yuan et al in 2013 [28] proposed a Multi-pattern matching algorithm for

URL filtering system. The multi-pattern matching algorithm enables it to

perform as a high-speed filtering system. A data set of 10 Million URLs is

used to evaluate the performance of proposed system. The empirical results

show that the system can operate up to 100Mbps with zero false positive.

To avoid hash collisions two phase hash functions are used.

2.2 Randomness Testing of Non Cryptographic

Hash Functions (NCHF) for Hash table

based implementation

Search Table based data structures are widely used in many computing appli-

cations. They can be implemented using linear lists, binary search trees and

hash tables. Among these data structures the hash table based approach is

ideally suited for real-time network applications. Minimal effort is required

to manage them to achieve its average case performance i.e. O(1), while

linear lists have best case performance of O(n) and binary search trees have

best case performance of Olog(n). This best case performance for binary

search tree is achievable only for balance binary search tree. A lot of effort is

required to maintain a balance binary search tree. But in case of hash tables,

if a little care is taken in selection of hash function and design of hash table,

it can guarantee an average case performance of O(1).

De Oliveria et al. in 2009 [3] highlighted the use of hash tables for real-

time network applications. They first define limits of worst case scenario for

CHAPTER 2. LITERATURE REVIEW 13

hash table. Once the worst case limits are identified, they define a probability

level to mark the occurring events as irrelevant which occurs outside the

limits of worst case scenario. It is also proposed that hash collisions which

are associated with the use of hash functions can be resolved using open

addressing and chaining. The work concluded the possibility to adopt a

probabilistic approach for the worst case behavior of hash tables.

Yuan et al. in 2010 [27] proposed a hash table based approach for high-

speed URL matching. Comparative analysis between Hash tables and De-

terministic Finite Automata (DFA) techniques is performed. It is noted that

hash table consumes less memory then DFA and a significant throughput

gap is being monitored between hash table and DFA based approaches. It is

suggested that hash tables are by far superior then DFA based technique for

URL matching applications such as URL blacklisting, URL based forwarding

and URL shortening services.

Cesar Estebanez et al. in 2013 [7] presented performance of the most com-

mon non-cryptographic hash functions (NCHF). The importance of NCHF

to provide extremely efficient searching of items in unsorted sets. It is high-

lighted that quality of NCHFs is dependent upon its collision resistance,

Distribution of output, Avalanche effect and speed. The performance anal-

ysis is done for most common NCHF in literature including FNV, Murmur

and DJBX33A. In our work, we have also analyzed these NCHF for imple-

mentation of Hash tables.

Weiling Chang et al. in 2010 [2] performed randomness testing of com-

pressed data. Random number generators have great importance in many

computing applications. The randomness testing are performed using NIST

CHAPTER 2. LITERATURE REVIEW 14

statistical test-suite and DIEHARD test provided by Dr. Marsaglia. NIST

have developed 15 tests to evaluation of randomness of binary sequence gen-

erated by some random number generator. These test have been documented

in NIST special publication (SP) 800-22, ”A statistical test suite for random

and pseudo random number generators for cryptographic applications” [24].

Diehard Test Suit has 18 tests for evaluation of randomness of binary se-

quence generated by some random number generator. The problem with

Diehard test suite is lack of concrete criteria which makes it very difficult to

pass these tests. In our performance evaluation none of our hash function

passes DIEHARD test suite but we do have binary sequences passing few

test from NIST statistical test suite.

Since, hash table based data structure for real-time network applications

is a popular research area and performance of hash functions is data de-

pendent. The randomization aspect of non-cryptographic hash functions

for URL based string inputs is not studied yet; this thesis provides a com-

prehensive analysis in randomness terms of various Non-cryptographic hash

functions for URL based string inputs.

Chapter 3

Problem Statement

3.1 Objectives

The current web filtering and blocking system deployed at Internet Service

Provider (ISP) in Pakistan are incapable of dealing with millions of black-

listed URL entries. Recent complete blockage of Youtube and Facebook ser-

vices highlight the inability of internet governing body in Pakistan i.e. PTA

to deal with specific web content. There is a need of a national web filtering

and blocking system to be deployed at ISP level. This thesis presents a real-

time URL based filtering system capable of URL filtering and blocking from

domain level to sub folder level. It can be used as a standalone solution and

can be integrated at any network level. The proposed sysetem is based on a

modular approach, which provides scalability by stacking hardware boxes to

meet the current and future bandwidth requirements. The total delay caused

by our proposed system is less then 1ms which is highly desirable for real-

time filtering systems. A hash table based approach is used for efficient URL

lookup and storage to meet the needs of high data rates links. For selection

15

CHAPTER 3. PROBLEM STATEMENT 16

of hash function suitable for real-time network application, a comparative

study of various non-cryptographic hash functions is performed.

3.2 Datasets

The research is based upon a quantitative approach. Analysis and trace based

experiments are being employed to explore various non-cryptographic hash

function suitable for hash table implementation and performance evaluation

of our hash table based URL lookup and storage engine. Following datasets

are used for testing purpose,

3.2.1 Dataset No. 1

This dataset is used for selection of hash function to be used for hash table

based URL filtering and blocking system. A total of 2744529 URLs are

captured at the squid proxy server of School of Electronic Engineering and

Computer Science (SEECS), NUST, Islamabad at various times and saved

in six different files given in Table 3.1.

3.2.2 Dataset No. 2

This dataset is used for evaluation of our proposed URL Storage and lookup

engine. It comprises of 24 hours of internet traffic captured at edge router

of School of Electronic Engineering and Computer Science (SEECS), NUST,

Islamabad. A total of 288 PCAP files are captured using TCPDUMP each of

300 seconds. The already captured PCAP files are further analyzed using our

application and results are being confirmed using wireshark network packet

CHAPTER 3. PROBLEM STATEMENT 17

Table 3.1: The collected data sets which have been provided as an input to

the hash functions.

Sr. No. Dataset Name URL Entries URL Components

1 url al 929583 4

2 url al1 38115 3

3 url al2 47390 3

4 url al3 24629 3

5 url a4 9453 3

6 url al5 1695359 3

capturing tool. We then selected one PCAP file from each hour of the day,

so a total of 24 PCAP files are used evaluation purpose. Table 3.2 shows the

details of these PCAP files.

Figure 3.1 shows the variation in data rate at various times of the day.

The maximum data rate of captured pcap files is 90 Mbps and the peak hours

are 10 AM to 6 PM.

Figure 3.2 shows the number of packets for already captured pcap files.

It can be seen that the number of packets are in proportion to the variation

in data rate at various hours of the day.

Figure 3.3 shows the total number of URL request for each of PCAP file.

A total of 50165 URL requests are made. The numbers of URLs are neither

dependent on data rate nor on total number of packets.

Figure 3.4 shows the average number of URL components for the re-

quested URLs. The average URL components for these 50165 URLs are

3.654.

CHAPTER 3. PROBLEM STATEMENT 18

1:00-1:05 PM
4:00-4:05 PM

7:00-7:05 PM
10:00-10:05 PM

1:00-1:05 AM
4:00-4:05 AM

7:00-7:05 AM
10:00-10:05 AM

0

10

20

30

40

50

60

70

80

90

100

D
at

a
R

at
e

(M
bp

s)

Time of Day

 Data Rate

Figure 3.1: Data Rate vs Time of Day

.

3.3 Testing Scenario

The testing of our proposed hash table based URL filtering and blocking

system is performed in following two phases,

• Performance evaluation of various non-cryptographic hash functions to

be used in hash table based URL storage and lookup engine.

• Performance testing of URL storage and lookup engine.

In phase 1, the performance evaluation of various non-cryptographic hash

functions is done using Dataset No. 1. NIST statistical test-suite is used for

randomness testing of outputs of these NCHFs. The URLs in Table 1 are

combined together in a single URL file i.e. url list consisting of 2744529

URLs and passed to each NCHFs as shown in Table 3.

CHAPTER 3. PROBLEM STATEMENT 19

1:00-1:05 PM
4:00-4:05 PM

7:00-7:05 PM
10:00-10:05 PM

1:00-1:05 AM
4:00-4:05 AM

7:00-7:05 AM
10:00-10:05 AM

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

N
um

be
r o

f P
ac

ke
ts

Time of Day

 No. of Packets

Figure 3.2: Number of Packets vs Time of Day

.

The list of unique URLs (url list) is given as input to each hash function

and the hashed outputs are stored in ASCII format. Each output file is

further divided into fifteen sub files containing 106 bytes, in order to repeat

the statistical tests fifteen times using distinct data.

The results of the statistical test are being verified by implementation of

hash table based URL lookup and storage engine using each NCHF.

In phase 2, the performance evaluation of URL lookup and storage engine

is done using dataset No. 2. Each pcap file is replayed to Ethernet port using

TCP REPLAY at various data rates ranging from 1 Mbps to 300 Mbps and

is captured from Ethernet port using our application. Following performance

metrics are calculated,

• URL lookup rate

CHAPTER 3. PROBLEM STATEMENT 20

1:00-1:05 PM
4:00-4:05 PM

7:00-7:05 PM
10:00-10:05 PM

1:00-1:05 AM
4:00-4:05 AM

7:00-7:05 AM
10:00-10:05 AM

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
um

be
r o

f U
R

Ls

Time of Day

 No. of URLs

Figure 3.3: Number of URLs vs Time of Day

.

• URL storage rate

• Packet drop ratio

• False positive rate

3.4 Areas of Application

This research is applicable to many areas of application such as,

• Regulatory bodies like PTA in Pakistan

• Academia

• Core Networks

CHAPTER 3. PROBLEM STATEMENT 21

1:00-1:05 PM
4:00-4:05 PM

7:00-7:05 PM
10:00-10:05 PM

1:00-1:05 AM
4:00-4:05 AM

7:00-7:05 AM
10:00-10:05 AM

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

N
um

be
r o

f U
R

L
C

om
po

ne
nt

s

Time of Day

 Average URL Components

Figure 3.4: Number of URL Components vs Time of Day

.

• Distributed Networks

• Energy saving in terms of efficient bandwidth utilization

CHAPTER 3. PROBLEM STATEMENT 22

Table 3.2: Details of captured PCAP files.

PCAP Files Time of Day No. of Packets No. of URL Requests

1 1:00-1:05 PM 679627 3753

2 2:00-2:05 PM 1950814 3724

3 3:00-3:05 PM 3636460 8479

4 4:00-4:05 PM 1519061 5761

5 5:00-5:05 PM 467662 3350

6 6:00-6:05 PM 188404 835

7 7:00-7:05 PM 146584 913

8 8:00-8:05 PM 103657 707

9 9:00-9:05 PM 150705 728

10 10:00-10:05 PM 186457 1124

11 11:00-11:05 AM 163032 833

12 12:00-12:05 AM 138778 871

13 1:00-1:05 AM 190122 968

14 2:00-2:05 AM 241201 1232

15 3:00-3:05 AM 215253 826

16 4:00-4:05 AM 147450 621

17 5:00-5:05 AM 98124 594

18 6:00-6:05 AM 94795 672

19 7:00-7:05 AM 131267 537

20 8:00-8:05 AM 110739 939

21 9:00-9:05 AM 228526 830

22 10:00-10:05 AM 431454 2503

23 11:00-11:05 AM 1288929 5575

24 12:00-12:05 PM 586292 3790

Chapter 4

Research Methodology

The aim of this research is to develop a real-time URL filtering system, which

can work in parallel with existing architecture, which is based upon packet

level firewall. The system provides in depth filtering based on application

layer information. The proposed system is capable of performing URL lookup

operation with zero false positive at high data rates. The system is based

upon a modular design which makes the system scalable. The system has

capability to manage over 1 billion URLs in its blacklist database. Apart from

using the already available blacklist database maintained internationally, the

system has the capability to generate its very own blacklist database. The

system is being tested with the actual dataset and 100% success rate is

achieved for data rates up to 160 Mbps.

Figure 4.1 shows the deployment scenario of our real-time URL filtering

system. Apart from traffic routing decisions, no architectural changes are

required in the existing network. A user connects to the internet via inter-

net service provider (ISP). The network traffic from user side is gathered at

a network switch at ISP level and it passes through a packet level firewall

23

CHAPTER 4. RESEARCH METHODOLOGY 24

before connecting it to internet. Our system adds an extra level of security

to the existing network. By using the tapping port of network switch at ISP

level the traffic is forwarded to our real-time URL filtering system. This is a

passive mode operation and doesn’t affect the actual flow of internet traffic

at ISP level. At the real-time URL filtering system level, the packets are re-

ceived by the initial packet processor (IPP). The job of IPP is to perform deep

packet inspection of these packets and extracting the HTTP GET requests

i.e. uniform resource locators (URLs). These URLs along with respective

IP addresses are forwarded to Hash-based URL storage, which is based upon

full URL matching (FUM) algorithm. The job of FUM is to store the URLs

along with respective IP addressing in a memory efficient way without dupli-

cation. The list of unique URL entries along with IP addresses is forwarded

to intelligent classifier (IC). Based on the lexical and host based features

the URLs are classified into suspicious and benign URL entries. The list of

suspicious URL entries is forwarded to layer 7 firewall and the associated IP

addresses are forwarded to packet level firewall at the ISP level. Both tasks

of updating of Layer 7 firewall and packet level firewall are performed in pas-

sive mode. Only layer 7 firewall is part of active mode. When a user makes

a URL request it arrives at the network switch. The request is forwarded to

packet level firewall at the ISP level. If the IP addresses associated with that

URL entry is not blacklisted the request is forwarded to internet but if the IP

entry exist in the blacklist database the request is forwarded to second level

of filtering i.e. Layer 7 firewall. It is based on partial URL matching (PUM)

algorithm. PUM provides layer 7 firewall to perform exact URL matching

and prefix URL matching. If the URL entry exists in blacklist database of

CHAPTER 4. RESEARCH METHODOLOGY 25

layer 7 firewall the URL request marked as suspicious URL and is rejected.

If no match is found the URL request is marked as benign and forwarded to

respective web server.

Figure 4.1: Deployment Scenario of Real-time URL filtering system

.

4.1 System Requirements

4.1.1 Programming Language

The system has been developed using Python which is a widely used high level

programming language. Python version 2.7 is used in our implementation.

CHAPTER 4. RESEARCH METHODOLOGY 26

4.1.2 Operation System

The system has been developed and tested on Linux kernel version 3.2 in

Ubuntu 12.04 LTS operating system.

4.1.3 Modules

Pcapy

It is python module for interfacing with the famous packet capturing library

i.e. libpcap. It provides the capability to capture packets on the network.

Pcapy version 0.10.5 is used for this implementation.

Deep packet (dpkt)

It is a python module for packet creation and parsing. It provides the ca-

pability to perform simple packet creation and parsing of packets on the

network along with definition for TCP/IP stack. Dpkt version 1.7 is used for

this implementation.

Scapy

It is a python module for packet manipulation. It provides with capability to

forge as well as decode packets of various protocols. It can capture packets

on the network and can also retransmit the forge packets on the wire. Scapy

version 2.2.0 is used for this implementation.

Zlib

It is a python built in module for data compression. We have used the

following functions from zlib data compression module,

CHAPTER 4. RESEARCH METHODOLOGY 27

• CRC32-This function computes CRC (cyclic redundancy check) check-

sum of input data.

• Adler32-This function computes the Adler-32 checksum of input data.

Pyhash

This python module provides functions for calculation of non-cryptographic

hashes of input data. Pyhash 0.4.2 is used in our implementation. Following

two functions are used from pyhash module,

• Murmur Hash-A fast 32-bit non-cryptographic hash function.

• FNV (Fowler-Noll-Vo) Hash-A fast 32-bit non-cryptographic hash func-

tion.

Chapter 5

Data Structure

This section describes our proposed data structure for full uniform resource

locator (URL) matching (FUM) and partial uniform resource locater match-

ing (PUM). Searching a URL entry in a big collection of URLs is similar to a

search table or dictionary. The related operations of our proposed data struc-

ture are: 1) URL Insertion 2) URL Deletion and 3) URL Lookup. Following

is the discussion of our proposed data structures and related operations,

5.1 Hash Table based Data Structure

FUM and PUM are search table type data structure. A search table data

structure is like an associated array consisting of key value pairs. It can be

implemented in many different ways: 1) Linked list, 2) Binary Search Trees

and 3) Hash Tables. In this work, we have implemented search tables using

Hash Tables.

28

CHAPTER 5. DATA STRUCTURE 29

5.1.1 Description

As discussed, search table in our work are implemented using hash tables.

Hash table consists of slot and each slot has a unique index value. The key

from key value pair is a unique identity. The key is mapped to the slot by

using a hash function. Since key is a unique entry, the Hash table only store

unique entries of URLs. Thus avoiding duplications, which is much desirable

in our work.

A hash function is a basic component of hash table based implementa-

tions. Hash functions ensure the average lookup performance of O(1) but

at cost of hash collisions. A hash collision in our case happens, when two

distinct URL entries results in the same hash value. This is resolved using

open addressing, which resolves hash collisions using probing. The probing

can be performed in linear and random order. In case of linear probing the

URL entries will be clustered in the hash table thus resulting in worst case

scenario. To avoid clustering, the colliding URL entries are resolved using

random probing. The selection of alternate slot is performed in pseudo ran-

dom order. Hash collision resolution is performed in two ways: 1) Hash

value comparison and 2) Key comparison. So if even two distinct URL en-

tries results in same hash value, they can even than be identified in the hash

table.

Our hash table implementation uses dynamic allocation of memory. When

initialized only 8 slots are allotted and is resized depending upon the load

factor. The load factor is computed as,

Load factor =
Number of URL entries in Hash Table

Total size of Hash Table
(5.1)

CHAPTER 5. DATA STRUCTURE 30

This results in efficient usage of memory and making the data structure

suitable for real-time applications. To keep the resize operation memory

efficient, it follows the following conditions,

If URL entries in hash table < 50K; Then hash table size × 4

If URL entries in hash table > 50K; Then hash table size × 2

Figure 5.1: View of initialized Hash Table

.

Figure 5.2: Hash Table at Threshold Level

.

Hash table is initialized with 8 slots as shown in Figure 5.1. It has empty

CHAPTER 5. DATA STRUCTURE 31

key slot and index position are from 0 to 7. The hash table slots are provided

on first come first serve basis. The key order is quite sensitive to hash table

history. As seen in figure 5.2, the truncated bits of two keys ”abc.edu” and

”123.edu” are similar i.e. ”001”. The slot index as ”001” is allocated to

”abc.edu” as it comes first. The other key ”123.edu” with similar truncated

bits is stored at an alternate location i.e. ”111”. As seen in Figure 5.2, the

first one is marked as green, as it is stored at actual location and second one

is marked as red, because it is stored at alternate location.

The hash table is resize when it is two third filled. When the load actor

reaches 0.66 the resize operation takes place. Another URL entry in hash

table will exceed the load factor from the threshold value. This is the time

when a resize operation is required. As shown in Figure 5.3, a resize operation

as per resize rule takes place. Since the Number of URL entries in hash table

are less then 50K, the current size of hash table i.e. 8 is multiplied by 4, the

new size of hash table is 32. To address 32 slots 5 LSB bits are required.

Now the truncate operation will truncate the hash value of input URLs to 5

bits.

The collision rate after a resize operation drops dramatically. The im-

proved performance is due to addition of extra bits for slot calculation. The

extra bits add more randomness and reduce collisions. The hash table grad-

ually gets more crowded as more URL entries are added but suddenly nor-

malizes once a resize operation is performed.

CHAPTER 5. DATA STRUCTURE 32

Figure 5.3: Hash Table after resize operation

.

5.2 Operations

Our hash table based data structure used for storage and lookup of URLs

supports the following operations,

CHAPTER 5. DATA STRUCTURE 33

5.2.1 URL Storage

Hash table based storage is simply a list. Each entry in the list is combination

of Hash, Key and Value. The Hash helps in find the slot for storage of URL

entry. It is computed by taking the hash of key. A 32-bit hash function is

used for this purpose. All 32-bit entries are not used for index calculation,

only least significant bits (LSB) sufficient for addressing the current size of

hash table. The URL storage operation is performed in following steps,

Step-1: Compute the hash value, using hash function of the URL entry.

Step-2: The computed hash value is a big number; it is truncated based on

the current size of hash table. Step-3: The truncated hash value is the slot

address for storage of URL entry. If the entry is vacant the input URL entry

is stored in it. In case the slot is already occupied, a recurrence function

is used to find an alternate location. The recurrence function makes use of

unused upper bits to add more randomness. The process is repeated until

an empty slot is reached.

Table 5.1 shows the maximum storage capacity of our hash table based

implementation. A total of over 2 billion entries can be stored in this table.

The number of truncated bits for various hash table sizes is also shown in

table 5.1. The load factor for resize operation can be fixed as per storage

and efficiency needs. In our implementation the load factor is fixed as 0.666.

5.2.2 URL Lookup

URL lookup operation is actually a bit more complicated then hash, truncate

and look. It is more like, keep looking until an empty slot is reached. The

URL entry might be at the end of long list of collisions. When hash table

CHAPTER 5. DATA STRUCTURE 34

Table 5.1: Various Hash Table sizes.

Hash Table Size TruncatedBits LoadFactor(0.666)

8 3 5

32 5 21

128 7 85

512 9 341

2048 11 1365

8192 13 5461

32768 15 21843

131072 17 87373

524288 19 349490

2097152 21 1397962

8388608 23 5591846

33554432 25 22367384

134217728 27 89469537

536870912 29 357878150

2147483648 31 1431512600

experience collisions, lookups becomes expensive. All URL lookup opera-

tions are not the same. Some might finish at first slot and some loops over

several slots. Thus the individual performance of hash table may vary but

the average performance is excellent i.e. O (1).

CHAPTER 5. DATA STRUCTURE 35

5.2.3 URL Deletion

Our hash table based implementation supports URL deletion. The deleted

URL entry cant just be left empty. It might be part of some long chain of

collisions. In that case that URL entry will never be traced. To avoid such

scenario, a slot of deleted entry is marked as dummy key. It will be cleared

from the hash table once a resize of hash table is performed on reaching a

threshold value set according to the load factor.

5.3 Full URL Matching (FUM) Data Struc-

ture

This section describes the FUM data structure. It is the underlying data

structure for Hash-based URL storage (HUS). The job of HUS is to store the

URL, IP pairs extracted by the initial packet processor (IPP). The Storage is

done on secondary storage device. The URLs and IP addresses in the stored

list of URL, IP pairs is processed by intelligent classifier (IC) for classifica-

tion of URL in benign and suspicious URLs. It can perform classification

based upon lexical features of URLs and host based features of respective IP

addresses.

FUM data structure is similar to hash table based data structure dis-

cussed in previous section. Its supported algorithms are all the same. The

requested URL entry is stored as key and respective IP address as the value of

key, value pair. The storage of entries is done in URL, IP pairs on secondary

storage device. The IO operations for secondary storage are expensive in

terms of processing time. Hence making URL storage as bottleneck of our

CHAPTER 5. DATA STRUCTURE 36

proposed real-time URL based filtering system. Since HUS performs in pas-

sive mode, it doesn’t affect the inline filtering and blocking feature of our

system.

The performance of HUS can be improved by using Machine Learning

approach for classification of URLs in real-time based upon lexical and host-

based features. In that case, the storage of URL on secondary storage will not

be required and they can only be stored in temporary storage and processed.

An alternate approach can be time based storage or URLs from temporary

storage to secondary storage.

5.4 Partial URL Matching (PUM) Data Struc-

ture

This section describes the PUM data structure. It is the underlying data

structure of Application Layer Firewall. It works in active mode. URLs

associated with suspicious IP addresses are forwarded to Application level

firewall for URL based filtering. It checks for existence of request URL in

blacklist database. If the entry exists in blacklist database, the connection

is refused otherwise request is forwarded to respective web server. The main

challenges at this level are: 1) URL Storage 2) URL lookup.

Hash table based implementations are ideally suited for exact matching

like in case of full URL matching. It is complicated for prefix matching.

A hash of URL results in a big number, making it impossible to compare

individual component of URL. To achieve that, each URL is broken into

component URLs and is stored in hash table in a tree type structure. A tree

CHAPTER 5. DATA STRUCTURE 37

type data structure is build on top of hash tables.

5.4.1 URL Storage

When it comes to hash tables, we are trading space for time. But we can’t

afford space in real-time application. This issue is resolved using tree type

structure. Which is very much memory efficient. The URLs are broken in

components and decomposed into tree structure. We don’t have to bother

about creating a balance binary tree, because we are storing the tree in search

table form i.e. key, value pairs.

In case of FUM, the value slot is used for storage of respective IP address

but here it is used to build a nested hash table. The key, value pairs are

treated as pairs of parent and child node. The parent node will always be

a unique URL; the repetition can be done at child nodes. This makes it

suitable for storage of decomposed URL components. URL mainly consists

of two parts: 1) domain and 2) paths (there can be zero or more paths).

The domain will act as parent node. For each domain, we will be storing a

tree structure. This key structure will be implemented as nested hash tables.

While the domain act as parent node, the child will be the path associated

with that domain and it will be the value part of (key: value) pair.

The URL storage database has a tree type structure for every domain.

When a URL is received, it is decomposed in to URL components. The

existence of domain is checked in database. If the domain entry is not listed,

a new domain entry is made. The domain entry i.e. ”domain0” in Example

5.1 is not listed; it is added to the database. The domain entry act as a key

value and path associated with that domain, which is ”path1” is added as a

CHAPTER 5. DATA STRUCTURE 38

value entry against ”domain0”. For a URL request with same domain but

different path address, the already existed domain tree is updated for the new

path address. As shown in example 5.1, URL1 is already in database, only

the path address of URL2 is not listed. Another value entry i.e. ”path2” is

added to already listed ”domain0” key. It is also worth mentioning that a key

is a unique entry, there can be zero, single or multiple values associated with

each key. When a URL request having prefix components already existed in

database they are not duplicated only the new components are added. As

shown in Example 5.3, the first two URL components of URL1 and URL2 are

listed in database. The third URL component is added by nesting approach.

The already existed prefix path is initialized as a key, value pair and is

populated. In case of URL1, the prefix component 1 is taken as a key and the

component 3 of URL1 is added as the value entry. Same approach is followed

for URL2. Now if a URL entry arrives and its domain is not listed. A new

domain entry is added as a key entry and any path component associated with

this domain is added as value entry. As shown in Example 5.4, the domain

of URL3 is not listed, a new domain entry is added and path associated with

that domain is also added as value entry.

Example 5.1

URL= domain0/path1

(key0: value) = (domain0: path1)

Example 5.2

URL1= domain0/path1, URL2=domain0/path2

CHAPTER 5. DATA STRUCTURE 39

Figure 5.4: Initial URL Request

.

(key0:key00:value)=domain0:path1:path2

Figure 5.5: Same Domain with different single path addresses

.

Example 5.3

URL1= domain0/path1/path2, URL2=domain0/path2/path3

key0:key00,value,key01,value=domain0:path1:path2,path2,path3

Example 5.4

URL1= domain0/path1/path2, URL2=domain0/path2/path3, URL3=domain1/path1

key0:key00,value,key01,value, key1:value = domain0:path1:path2,path2,path3,

domain1:path1

CHAPTER 5. DATA STRUCTURE 40

Figure 5.6: Same Domain with different multiple path addresses

.

Figure 5.7: Different domains and multiple path addresses

.

5.4.2 URL Lookup

URL lookup operation in Application level firewall has prefix matching capa-

bility. This is achieved by using tree based approach for URL storage which

is implemented in hash tables as nested hash tables. URLs can be searched

to any number of levels. In prefix matching, if the prefix of request URL is

listed in blacklist database the URL request is dropped.

When a URL is forwarded to application level firewall for lookup, it is

first decomposed in to URL components. Depending on the number of URL

components, the request is processed by first searching for the domain in the

CHAPTER 5. DATA STRUCTURE 41

blacklist, the process continues until end of URL component is reached. The

matching process is performed in sequential order for URL components. If a

prefix match is found or all URL components are matched, the URL request

is rejected. If no match is found URL request is treated as benign URL

request.

URL request lookup are dependent on the entries in blacklist database.

As shown in Example 5.5, the received URL request is first decomposed into

URL components and the lookup operation is initialized in sequential order.

For the blacklist database 1, when the URL request is received, it decom-

poses the URL in respective components. It first look for first component

i.e. domain component in blacklist database. Since there is no entry for

this domain the URL request is marked as benign URL. In case of black-

list database 2, it has only entry for the domain, which means that all the

traffic for this domain is blocked. Since a match is found for domain part

in blacklist database with value field empty, no further lookup is required

so the URL request is blocked. In case of blacklist database 3, it has an

entry for domain part and one component of URL path. When URL lookup

operation is performed, the match is found for prefix of URL request, so the

URL request is treated as suspicious URL. In case of blacklist database 4, a

match is found for all components of URL and the URL request is treated

as suspicious URL.

Example5.5

URL request: domain/path1/path2/path3

Blacklist database 1

CHAPTER 5. DATA STRUCTURE 42

key0:key00,value,key01,value, key1:value

=domain0.com:path1:path2,path2,path3

Blacklist database 2

key0:key00,value,key01,value, key1:value

=domain0.com:path1:path2,path2,path3, domain:None

Blacklist database 3

key0:key00,value,key01,value, key1:value

=domain0.com:path1:path2,path2,path3, domain:path1

Blacklist database 4

key0:key00,value,key01,value, key1:value

=domain0.com:path1:path2,path2,path3, domain:path1:path2:path3

Figure 5.8: URL request decomposition

.

Chapter 6

Randomness Testing

A set of statistical tests are proposed by National Institute for Standards and

Technology (NIST). The NIST statistical framework is based upon the null

hypothesis H0, i.e., the sequence under test is random. On the other hand,

the alternate hypothesis Ha is that the sequence being tested is not random.

Type-I error occurs for a random data if the alternative hypothesis is true,

i.e., for a random sequence, H0 is rejected, and Ha is accepted [24].

A statistical test, which is performed in order to assess the randomness

of a hash function, results in P-values. Each P-value is a probability that

the sequence under test is more random than the sequence which would have

been generated by a prefect random number generator. A P-value of 1 means

that the sequence under test is completely random; however, a P-value of 0

means that the sequence under test is not random at all. A significance

level α is defined as the probability of concluding that a random sequence

under observation is not random, i.e., the probability of Type-I error. For

a fixed significance level, a certain percentage of P-values are expected to

indicate failure. In our case, we have fixed the significance level to 0.01,

43

CHAPTER 6. RANDOMNESS TESTING 44

which means that there is about 1% chance that the sequences under test

might fail. A sequence passes a statistical test whenever the P-value ≥ α,

and fails otherwise.

6.1 Empirical Results

The NIST suite is developed to test the randomness of a binary sequence

produced by a random number generator, which in our case is the hash func-

tion. The NIST test suite focuses on various types of non-random behaviors

that can exist in a binary sequence. The required and the used length of an

input bit sequence for each test is given in Table 6.1. In our case, each of the

five tests has been executed on one thousand distinct m-bit sequences, which

have been individually obtained from fifteen ASCII files of the size 106 bytes

containing hashed output.

Table 6.1: Lengths of the bit sequences which have been employed in various

statistical tests.
Test

No.

Name of Test Required

length of

input bit

sequences

(n) (bits)

Used

length

of input

bit se-

quences

(bits)

Recommended

sample size

(m) (bits)

Used

Sample

size

1 Frequency Test n≥100 100 m≥100 1000

2 Runs Test n≥100 100 m≥100 1000

3 Cusums Test n≥100 100 m≥100 1000

4 Longest Run Test n≥128/6272 128 m≥100 1000

5 Spectral Test n≥1000 1000 m≥100 1000

CHAPTER 6. RANDOMNESS TESTING 45

The number of samples produced by a specific hash function is termed

as the sample size. It is required to use a sample size as per NIST recom-

mendations for the evaluation based upon P-value proportions. In our case,

as shown in Table 6.1, we have used the sample size of one thousand bits,

i.e., m = 1000. If for a given test, P-value is greater than or equal to 0.01,

the test will be successful and sequence under test should be considered as

random.

In order to interpret the outcome of a statistical test, following two ap-

proaches as per NIST standard have been employed [24]:

1. Proportion of sequences passing a test

Given the statistical results of a test performed, compute the proportion

of sequences that have passed. The resultant P-value of a specific test

is compared with a statistical threshold value (T-value), defined as:

T-value = (1− α)− 3

√

α(1− α)

m
(6.1)

If P-value is greater than or equal to the threshold value, test is con-

sidered to be successful. For the significance level α = 0.01, and m

= 1000, the obtained T-value is 0.9805607. If at least 980 sequences

out of 1000 sequences pass the test, the test is considered as successful.

However, if the the test results are below the threshold levels, relative

comparison among the output of hash functions are performed.

2. Uniform distribution of P-values

The second approach proposed by NIST provides further in-depth anal-

ysis of the performed statistical tests. Uniformity of the hash functions

CHAPTER 6. RANDOMNESS TESTING 46

is ensured by a uniform distribution of P-values. This can be visually

illustrated using a histogram, in which the interval between zero and

one is divided into ten sub-intervals, and the P-values that lie within

each sub-interval are counted and displayed.

6.1.1 The Frequency (Monobit) Test

This test focuses on the frequencies of zeros and ones in the entire binary

sequence [24]. The total number of zeros and ones in a sequence must be

equally distributed for a truly random sequence is assessed as for a truly

random sequence the number of zeros and ones are approximately the same.

The P-value in this test is calculated based on the cumulative value Sn, which

is the sum of the bits in input bit sequence. It can have both positive and

negative values. A large positive value of Sn indicates more number of ones

in the input bit sequence, and a large negative value of Sn indicates more

number of zeros.

In Figure 6.1, we can see that the proportion of sequences passing fre-

quency test is almost below the threshold value T-value = 0.9805607, which

is calculated using equation 1 based upon the level of significance. This shows

that frequencies of zeros and ones in entire bit sequence under test are not

uniform. The required percentage of minimum sequences passing frequency

test is 98 %, however, the percentage of sequences passing this test has been

less than the set value.

If we look at the relative comparison of these hash functions, then, apart

from Adler hash function, rest of the hash functions have similar statistical

properties. The percentages of sequences passing the test for these hash

CHAPTER 6. RANDOMNESS TESTING 47

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

P
ro

po
rti

on
s

of
 s

eq
ue

nc
es

 p
as

si
ng

 a
 te

st

Frequency Tests

 CRC
 Adler
 DJBX33A
 FNV
 Murmur

Figure 6.1: Proportion of sequences passing Frequency Test

.

functions (CRC, DJBX33A, FNV, and Murmur) lie between 96 % and 98 %,

as shown in Figure 6.1.

Figure 6.2 shows the histogram of P-values for Frequency Test of all the

hash functions. It is evident from the histogram that distribution between

zero and one is non-uniform. In sub-interval 8, we have no frequency count

for all hash functions. The standard deviation of all the hash functions

for frequency Test is on the higher side (i.e. ranging between 43 and 46).

DJBX33A hash function has least standard deviation i.e. St. Dev = 43.271

and Adler hash function the most standard deviation i.e. St. Dev = 45.811.

CHAPTER 6. RANDOMNESS TESTING 48

CRC DJBX33A Adler FNV Murmur
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

Fr
eq

ue
nc

y
C

ou
nt

s

Probability Components of Hash Functions

 0.0-0.1
 0.1-0.2
 0.2-0.3
 0.3-0.4
 0.4-0.5
 0.5-0.6
 0.6-0.7
 0.7-0.8
 0.8-0.9
 0.9-1.0

Figure 6.2: Histogram of P-values for Frequency Test

.

6.1.2 The Runs Test

This test looks for the runs of zeros and ones of various lengths across the

random sequence [24]. The rate of oscillation between and ones and zeros is

monitored to determine the nature of randomness. The reference distribution

for this test statistic is ”chi-squared” χ2 distribution.

An input bit-stream with a high degree of oscillations results in a higher

P-value, and vice versa. It is observed in Figure 6.3 that the Adler hash

function has a slower oscillation rate, and hence, in some tests the passing

proportion lies below the threshold limit. The rest of the hash functions

(CRC, DJBX33A, FNV, and Murmur) have a fast variation between zeros

and ones, and hence, a higher P-value. The percentage of sequences passing

Runs test for these hash function lie above the threshold value.

CHAPTER 6. RANDOMNESS TESTING 49

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

P
ro

po
rti

on
s

of
 s

eq
ue

nc
es

 p
as

si
ng

 a
 te

st

Runs Test

 CRC
 Adler
 DJBX33A
 FNV
 Murmur

Figure 6.3: Proportions of sequences passing Runs Test

.

Figure 6.4 shows the histogram of P-values for Runs Test of all the hash

functions. It is evident from the histogram that distribution between zero

and one is quite uniform. The standard deviation of all the hash functions for

Runs Test ranges between 8 and 13. CRC hash function has least standard

deviation i.e. St. Dev = 8.170 and Adler hash function the most standard

deviation i.e. St. Dev = 13.428.

6.1.3 Test for the Longest-Run-of-Ones in a block

In this test, the input bit sequence is divided into M-bit blocks, and for each

block the test is executed [24]. The purpose of this test is to determine

whether the length of the longest run of ones, within the test sequence, is

consistent with the length of the longest run of ones which is expected of a

CHAPTER 6. RANDOMNESS TESTING 50

CRC DJBX33A Adler FNV Murmur
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

Fr
eq

ue
nc

y
C

ou
nt

s

Probability Components of Hash Functions

 0.0-0.1
 0.1-0.2
 0.2-0.3
 0.3-0.4
 0.4-0.5
 0.5-0.6
 0.6-0.7
 0.7-0.8
 0.8-0.9
 0.9-1.0

Figure 6.4: Histogram of P-values for Runs Test

.

random sequence.

The reference distribution in this test is chi-squared distribution. The

P-value is calculated based upon the value of χ2 (obs), which is the measure

of how well the observed longest runs length, within M-bit blocks, matches

the expected longest length. The larger value of χ2 (obs) indicates that the

tested sequence has clusters of ones, thus resulting in smaller P-value.

In Figure 6.5, we can clearly see that Adler hash function has lesser pro-

portion of sequences passing this test. This indicates that output of Adler

hash function has larger clusters of ones. The performance of other hash

functions (CRC, DJBX33A, FNV, and Murmur) is observed to be quite sim-

ilar.

Figure 6.6 shows the histogram of P-values for Longest-Run-of-Ones in

CHAPTER 6. RANDOMNESS TESTING 51

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

P
ro

po
rti

on
s

of
 s

eq
ue

nc
es

 p
as

si
ng

 a
 te

st

Longest-Run-of-Ones in a Block Tests

 CRC
 Adler
 DJBX33A
 FNV
 Murmur

Figure 6.5: Proportions of sequences passing Longest Run of Ones in a block

Test

.

a block test of all the hash functions. It is evident from the histogram

that distribution between zero and one is not quite uniform. The standard

deviation of all the hash functions for this test ranges between 24.406 and

53.935. FNV hash function has least standard deviation i.e. St. Dev =

24.406 and Adler hash function the most standard deviation i.e. St. Dev =

53.935.

6.1.4 The Discrete Fourier Transform (Spectral) Test

The purpose of this test is to detect the periodic features in a test sequence

that would indicate a deviation from the assumption of randomness [24].

The reference distribution for this test is normal distribution. The P-value

CHAPTER 6. RANDOMNESS TESTING 52

CRC DJBX33A Adler FNV Murmur
0

20

40

60

80

100

120

140

160

180

200

220

Fr
eq

ue
nc

y
C

ou
nt

s

Probability Components of Hash Functions

 0.0-0.1
 0.1-0.2
 0.2-0.3
 0.3-0.4
 0.4-0.5
 0.5-0.6
 0.6-0.7
 0.7-0.8
 0.8-0.9
 0.9-1.0

Figure 6.6: Histogram of P-values for Longest-Run-of-Ones in a block Test

.

in this test is calculated based upon the normalized difference d between the

observed and the expected number of frequency components that are beyond

95 % threshold [1].

A smaller value of normalized distribution d is desirable, which means

that there is acceptable number of peaks above the threshold value. It has

been observed that the proportion of sequences generated by Adler hash

function passing this test is lower as compared to other has function, figure

6.7. This is caused by a large number of peaks below the threshold, resulting

in a higher normalized distribution d and a smaller P-value. The rest of the

hash functions under observation (CRC, DJBX33A, FNV and Murmur) have

similar periodic features which can be seen in Figure 6.7.

Figure 6.8 shows the histogram of P-values for Discrete Fourier Trans-

CHAPTER 6. RANDOMNESS TESTING 53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

P
ro

po
rti

on
s

of
 s

eq
ue

nc
es

 p
as

si
ng

 a
 te

st

Discrete Fourier Transform Tests

 CRC
 Adler
 DJBX33A
 FNV
 Murmur

Figure 6.7: Proportion of sequences passing Discrete Fourier Transform Test

.

form Test of all the hash functions. It is evident from the histogram that

distribution between zero and one is non-uniform. In sub-interval 5, 7 and 9,

we have no frequency count for all hash functions. The standard deviation

of all the hash functions for frequency Test is on the higher side (i.e. ranging

between 76.928 and 79.133). Adler hash function has least standard devia-

tion i.e. St. Dev = 76.928 and Murmur hash function the most standard

deviation i.e. St. Dev = 79.133.

6.1.5 The Cumulative Sums (Cusums) Test

The focus of this test is to look for the large number of ones and zeros

occurring at the start and the end of an input binary sequence. Additionally,

it identifies the intermixing of zeros and ones across the entire bit sequence

CHAPTER 6. RANDOMNESS TESTING 54

CRC DJBX33A Adler FNV Murmur
0

20

40

60

80

100

120

140

160

180

200

220

240

Fr
eq

ue
nc

y
C

ou
nt

s

Probability Components of Hash Functions

 0.0-0.1
 0.1-0.2
 0.2-0.3
 0.3-0.4
 0.4-0.5
 0.5-0.6
 0.6-0.7
 0.7-0.8
 0.8-0.9
 0.9-1.0

Figure 6.8: Histogram of P-values for Discrete Fourier Transform Test

.

[24].

The reference distribution for this test is normal distribution. This test

is performed in forward (Mode 0) and backward (Mode 1) directions for the

input bit sequence, in order to determine the number of ones and zeros at

the start and the end of the input bit sequence, respectively. The smaller

values of ones and zeros are desirable, which is an indication that the ones

and zeros are distributed evenly.

It has been observed in Figure 6.9 that the proportion of sequences gen-

erated by Adler hash function have not been able to achieve the required

threshold of passing this test as compared to other hash functions, figure

5. Additionally, the rest of the hash functions (CRC, DJBX33A, FNV and

Murmur) have a similar test statistics.

CHAPTER 6. RANDOMNESS TESTING 55

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

P
ro

po
rti

on
s

of
 s

eq
ue

nc
es

 p
as

si
ng

 a
 te

st

Cumulative Sums Test

 CRC
 Adler
 DJBX33A
 FNV
 Murmur

Figure 6.9: Proportions of sequences passing Cumulative Sums Test

.

Figure 6.10 shows the histogram of P-values for Cumulative Sums Test

of all the hash functions. It is evident from the histogram that distribution

between zero and one is not quite uniform. The standard deviation of all the

hash functions for Cumulative Sums Test ranges between 30.069 and 35.751.

DJBX33A hash function has least standard deviation i.e. St. Dev = 30.069

and Adler hash function the most standard deviation i.e. St. Dev = 35.751.

6.2 Analysis of Empirical Results

The NIST test suite contains fifteen tests; however, only five tests have

been employed in our case in order to determine the randomness of non-

cryptographic hash functions. Each test calculates a P-value, and if the

CHAPTER 6. RANDOMNESS TESTING 56

CRC DJBX33A Adler FNV Murmur
0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180

Fr
eq

ue
nc

y
C

ou
nt

s

Probability Components of Hash Functions

 0.0-0.1
 0.1-0.2
 0.2-0.3
 0.3-0.4
 0.4-0.5
 0.5-0.6
 0.6-0.7
 0.7-0.8
 0.8-0.9
 0.9-1.0

Figure 6.10: Histogram of P-values for Cumulative Sums Test

.

calculated value is greater than or equal to 0.01, the test is considered suc-

cessful. This means that the input bit sequence is random.

Due to their lack of statistical properties, the rest of the tests in NIST

test suite are unable to give us the required evaluation.

6.2.1 Proportion of passing a test based on P-value

Success rate of the tests are based upon the empirical results. For each hash

function the percentage of passing a specific test is calculated as:

Success Rate =
Number of successful tests

Total number of tests
× 100 (6.2)

Table 6.2 shows the success rate of the tests performed for all hash func-

tions. Adler hash function is found to be a non-uniformly distributed hash

CHAPTER 6. RANDOMNESS TESTING 57

function, whereas for the rest of hash functions (CRC, DJBX33A, FNV and

Murmur) the outcomes are quite close and inconclusive. Further in depth

analysis is required to decide a hash function with better randomizing fea-

tures.

Table 6.2: Success rate of hash functions.
Hash Functions Frequency Test Cusums Test Runs Test Longest

Run

Test

Spectral Test Mean

Success

Rate

CRC 0.00% 40.00% 100.00% 73.33% 73.33% 57.33%

Adler 0.00% 33.33% 73.33% 0.06% 13.33% 24.01%

DJBX33A 0.00% 60.00% 100.00% 53.33% 80.00% 58.67%

FNV 0.06% 66.66% 100.00% 33.33% 80.00% 56.01%

Murmur 0.06% 53.33% 100.00% 53.33% 80.00% 57.34%

6.2.2 Uniform distribution of P-values

The standard deviation of frequency counts can be used as a metric to analyze

the distribution of P-values between zero and one. The lesser the standard

deviation, the more uniformly distributed is the output of a hash function.

Figure 6.11 shows the standard deviation of frequency counts for all the

hash functions. It is evident that outputs of Adler hash function are less

uniformly distributed and the distribution of P-values between zero and one

for rest of hash functions (CRC, DJBX33A, FNV and Murmur) are quite

similar.

CHAPTER 6. RANDOMNESS TESTING 58

Runs Frequency Longest Run Cusums Spectral
0

10

20

30

40

50

60

70

80

S
ta

nd
ar

d
D

ev
ia

tio
n

of
 F

re
qu

en
cy

 C
ou

nt
s

Statistical Tests

 CRC
 DJBX33A
 Adler
 FNV
 Murmur

Figure 6.11: Standard Deviations

.

6.3 Verification of Statistical Results

The results of statistical tests are verified by the implementation of hash

table using respective non-cryptographic hash functions. The hash table is

populated with URL entries. The number of probes for each entry in hash

table is computed. Various tests are performed for computing the average

number of probes by varying the hash table size and load factor. The load

factor is computed as:

Load factor =
Number of URL entries in Hash Table

Total size of Hash Table
(6.3)

To avoid wastage of valuable storage, the hash table is initialized with

8 slots. When the load factor reaches 0.666, it resizes. To keep the resize

CHAPTER 6. RANDOMNESS TESTING 59

operation memory efficient, it follows the following conditions:

If URL entries in hash table < 50K; Then hash table size × 4

If URL entries in hash table > 50K; Then hash table size × 2

Table 6.3: Implemented Hash Table Specifications.
HT Size TruncatedBits LoadFactor(0.2) LoadFactor(0.4) LoadFactor(0.6) LoadFactor(0.666)

8 3 2 3 5 5

32 5 6 13 19 21

128 7 26 51 77 85

512 9 102 205 307 341

2048 11 410 819 1229 1365

8192 13 1638 3277 4915 5461

32768 15 6554 13107 19661 21843

131072 17 26214 52429 78643 87373

524288 19 104858 209715 314573 349490

2097152 21 419430 838861 1258291 1397962

8388608 23 1677722 3355443 5033165 5591846

33554432 25 6710886 13421773 20132659 22367384

134217728 27 26843546 53687091 80530637 89469537

536870912 29 107374182 214748365 322122547 357878150

2147483648 31 429496730 858993459 1288490189 1431512600

URL storage in our hash table is performed by initially computing the

hash of a URL entry, the computed hash is then truncated to get the index

of a slot depending upon the current size of hash table. If the slot is vacant

the entry is stored in it, in case it is occupied, a backup recursive algorithm

is executed by utilizing the unused upper bits to find a secondary storage

location. The process repeats until a vacant slot is found. If the first slot

calculated is vacant the number of probes required to retrieve it will be 1,

whereas, the number of probes will vary depending upon the number of times

CHAPTER 6. RANDOMNESS TESTING 60

the recursive function is called.

The first column in Table 6.3 shows the size of hash table which is a

multiple of 2. The truncated bits of a 32-bits hash entry are used for indexing

purpose. The rest of the table shows the number of URL entries in hash table

depending upon the load factor.

Adler CRC DJBX33A FNV MURMUR
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
ve

ra
ge

 N
o.

 o
f P

ro
be

s

Hash Functions

 512
 2048
 8192
 32768
 131072

Figure 6.12: Average Number of Probes for 0.20 Load Factor

The performance of hash Table is dependent upon the load factor. The

greater the load factor the greater will be number of probes for each URL

entry. In Figure 6.12, where the load factor is 0.20, the average number

of probes is ∼1.15 for hash table size up to 2048 entries. As the size of

hash table increase, the performance of Adler Hash function falls and its

average number of probes reaches 2.112. The performance of the rest of hash

functions (CRC, FNV, Murmur and DJBX33A) remains unchanged.

Figure 6.13 shows the average number of probes taken by each hash func-

CHAPTER 6. RANDOMNESS TESTING 61

Adler CRC DJBX33A FNV MURMUR
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
ve

ra
ge

 N
o.

 o
f P

ro
be

s

Hash Functions

 512
 2048
 8192
 32768
 131072

Figure 6.13: Average Number of Probes for 0.40 Load Factor

tion at load factor of 0.40. It can be seen that average number of probes for

all the hash functions are around 1.25 up to hash table size of 2048 entries.

The performance for all the hash functions remains the same except Adler

Hash Function as the average number of probes rises to 2.75 with increasing

the hash table size.

Figure 6.14 shows the average number of probes taken by each hash func-

tion at the load factor of 0.60. It is observed that the variations in aver-

age number of probes for Adler hash function are quite large. The average

number of probes for the rest of hash functions (CRC, FNV, Murmur and

DJBX33A) are quite similar. The average number of probes for hash table

size 32768 is 1.5, but it gets better as the table resizes itself as the number

of truncated bits are raised from 15 to 17 which adds more randomness and

the average number of probes falls to 1.0.

CHAPTER 6. RANDOMNESS TESTING 62

Adler CRC DJBX33A FNV MURMUR
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

A
ve

ra
ge

 N
o.

 o
f P

ro
be

s

Hash Functions

 512
 2048
 8192
 32768
 131072

Figure 6.14: Average Number of Probes for 0.60 Load Factor

Chapter 7

Results and Discussion

The proposed real-time URL based filtering system in this thesis is capable of

maintaining a localize blacklist database and provides finer level of filtering

using higher layer information. Following are the four core components of

this system,

• Initial packet processor (IPP)

• Hash based URL storage (HUS)

• PIntelligent Classifier (IC)

• Application level firewall

The performance of these core components is evaluated using Dataset

2. Each captured file is replayed using TCPREPLAY application, which

transmits the already captured packets at the desired data rate on specified

Ethernet card. The real-time URL based filtering system application is run

on the same system and the application captures the replayed traffic from the

Ethernet card. Dataset 2 comprises of 24 hours of data captured at School of

63

CHAPTER 7. RESULTS AND DISCUSSION 64

Electronic Engineering and Computer Science (SEECS), NUST, Islamabad

Data Center. The results are shown in four groups, each of six hours. Fol-

lowing are the results and discussion of three of the core components, which

are explored in this work,

7.1 Initial Packet Processor (IPP)

The purpose of IPP is to capture real-time network traffic and perform deep

packet inspection to extract higher layer information i.e. URL from each

packet. The performance of IPP is evaluated in terms of packet drop ratio.

75 100 125 150 175 200 225 250 275 300 325 350
-5

0

5

10

15

20

25

30

35

40

45

50

Pa
ck

et
 D

ro
p

R
at

io

Data Rate (Mbps)

 679627 (3572 URLs)
 1950814 (3724 URLs)
 3636460 (8479 URLs)
 1519061 (5761 URLs)
 467662 (3355 URLs)
 188404 (807 URLs)

1pm to 7pm

Figure 7.1: Packet Drop Ratio (1pm to 7pm)

.

Figure 7.1-7.4 shows the packets drop ratio in terms of variation in data

rate. It can be seen that packets drop ratio is zero for data rate of 160

Mbps and less than 5% when data rate reaches 200 Mbps. The packet drop

ratio increases with further increase in data rate and is less than 30% for

data rate of 325 Mbps. The variation in packet drop ratio for data rates

CHAPTER 7. RESULTS AND DISCUSSION 65

75 100 125 150 175 200 225 250 275 300 325 350
-5

0

5

10

15

20

25

30

35

40

45

50 7pm to 1am

P
ac

ke
t D

ro
p

R
at

io

Data Rate (Mbps)

 146584 (1113 URLs)
 103657 (712 URLs)
 150705 (734 URLs)
 186457 (1123 URLs)
 163032 (838 URLs)
 138778 (871 URLs)

Figure 7.2: Packet Drop Ratio (7pm to 1am)

.

75 100 125 150 175 200 225 250 275 300 325 350

0

5

10

15

20

25

30

35

40

45

50
1am to 7am

P
ac

ke
t D

ro
p

R
at

io

Data Rate (Mbps)

 190122 (969 URLs)
 241201 (1227 URLs)
 215253 (822 URLs)
 147450 (622 URLs)
 98124 (589 URLs)
 94795 (673 URLs)

Figure 7.3: Packet Drop Ratio (1am to 7am)

.

160Mbpsisduetovariablesizesandtypesofcapturedpackets.

CHAPTER 7. RESULTS AND DISCUSSION 66

75 100 125 150 175 200 225 250 275 300 325 350
-5

0

5

10

15

20

25

30

35

40

45

50 7am to 1pm

Pa
ck

et
 D

ro
p

R
at

io

Data Rate (Mbps)

 131267 (544 URLs)
 110739 (943 URLs)
 228526 (838 URLs)
 431454 (2506 URLs)
 1288929 (5574 URLs)
 586292 (3789 URLs)

Figure 7.4: Packet Drop Ratio (7am to 1pm)

.

7.2 Hash based URL storage (HUS)

The purpose of HUS is to store URLs along with their respective IP address.

It is based upon full URL matching (FUM) algorithm as discussed in Data

Structure section. It consists of associated database of requested URL ad-

dress and respective IP address. The database is stored on secondary storage

as (URL, IP) pairs, such that to avoid duplication.

The performance of HUS is evaluated in terms of URL storage rate. The

URL, IP pairs are stored without duplication on secondary storage. Figure

7.5-7.8 shows the URL storage rate of our real-time URL based filtering

system application. It can be seen that there is an initial loss of 15 to 20%

in URL storage rate due to I/O operation with secondary storage device.

There is further drop of 10% for data rate up to 160 Mbps. URL storage

rate reduces with the increase of data rate. A drop of around 50 to 60% in

URL storage rate can be seen in Figure 7.5-7.8.

CHAPTER 7. RESULTS AND DISCUSSION 67

0 25 50 75 100 125 150 175 200 225 250 275 300 325
0

10

20

30

40

50

60

70

80

90

100

1pm to 7pm
U

R
L

S
to

ra
ge

 R
at

e

Data Rate (Mbps)

 679627 (3572 URLs)
 1950814 (3724 URLs)
 3636460 (8479 URLs)
 1519061 (5761 URLs)
 467662 (3355 URLs)
 188404 (807 URLs)

Figure 7.5: URL Storage Rate (1pm to 7pm)

.

0 25 50 75 100 125 150 175 200 225 250 275 300 325
0

10

20

30

40

50

60

70

80

90

100

7pm to 1am

U
R

L
S

to
ra

ge
 R

at
e

Data Rate (Mbps)

 146584 (1113 URLs)
 103657 (712 URLs)
 150705 (734 URLs)
 186457 (1123 URLs)
 163032 (838 URLs)
 138778 (871 URLs)

Figure 7.6: URL Storage Rate (7pm to 1am)

.

7.3 Application level firewall

The purpose of application level firewall is to filter URLs based upon a black-

list database, which is maintained by intelligent classifier (IC). The updating

CHAPTER 7. RESULTS AND DISCUSSION 68

0 25 50 75 100 125 150 175 200 225 250 275 300 325
0

10

20

30

40

50

60

70

80

90

100

1am to 7am
U

R
L

S
to

ra
ge

 R
at

e

Data Rate (Mbps)

 190122 (969 URLs)
 241201 (1227 URLs)
 215253 (822 URLs)
 147450 (622 URLs)
 98124 (589 URLs)
 94795 (673 URLs)

Figure 7.7: URL Storage Rate (1am to 7am)

.

0 25 50 75 100 125 150 175 200 225 250 275 300 325
0

10

20

30

40

50

60

70

80

90

100

U
R

L
S

to
ra

ge
 R

at
e

Data Rate (Mbps)

 131267 (544 URLs)
 110739 (943 URLs)
 228526 (838 URLs)
 431454 (2506 URLs)
 1288929 (5574 URLs)
 586292 (3789 URLs)

7am to 1pm

Figure 7.8: URL Storage Rate (7am to 1pm)

.

of blacklist database is an offline activity, whereas the requested URLs are

compared to blacklist database in active mode. The performance of applica-

tion level firewall is evaluated in terms of URL lookup rate and false positive

rate.

CHAPTER 7. RESULTS AND DISCUSSION 69

7.3.1 URL Lookup Rate

The URL lookup operation of our real-time URL based filtering system is

based upon partial URL matching (PUM) data structure. The suspicious

URL entries are decomposed in URL components, which are stored in black-

list database of Application level firewall. In a URL lookup operation, a re-

quest URL entry is compared to blacklist database. If entry exists in blacklist

database, the URL request is dropped otherwise forwarded to respective web

server.

As seen in Figure 7.9-7.12, the URL lookup rate is 100% for data rate

up to 160 Mbps. The URL lookup rate drops to 95% at data rate of 200

Mbps. The 40 Mbps increase in data rate caused 5 % loss in URL lookup

rate. There is reduction of 20 to 30% in URL lookup rate as data rates reach

325 Mbps.

75 100 125 150 175 200 225 250 275 300 325 350
50

55

60

65

70

75

80

85

90

95

100

1pm to 7pm

U
R

L
Lo

ok
up

 R
at

e

Data Rate (Mbps)

 679627 (3572 URLs)
 1950814 (3724 URLs)
 3636460 (8479 URLs)
 1519061 (5761 URLs)
 467662 (3355 URLs)
 188404 (807 URLs)

Figure 7.9: URL Lookup Rate (1pm to 7pm)

.

CHAPTER 7. RESULTS AND DISCUSSION 70

75 100 125 150 175 200 225 250 275 300 325 350
50

55

60

65

70

75

80

85

90

95

100

7pm to 1am
U

R
L

Lo
ok

up
 R

at
e

Data Rate (Mbps)

 146584 (1113 URLs)
 103657 (712 URLs)
 150705 (734 URLs)
 186457 (1123 URLs)
 163032 (838 URLs)
 138778 (871 URLs)

Figure 7.10: URL Lookup Rate (7pm to 1am)

.

75 100 125 150 175 200 225 250 275 300 325 350
50

55

60

65

70

75

80

85

90

95

100

1am to 7am

U
R

L
Lo

ok
up

 R
at

e

Data Rate (Mbps)

 190122 (969 URLs)
 241201 (1227 URLs)
 215253 (822 URLs)
 147450 (622 URLs)
 98124 (589 URLs)
 94795 (673 URLs)

Figure 7.11: URL Lookup Rate (1am to 7am)

.

7.3.2 False Positive Rate

A false positive occurs, when a suspicious URL entry is not identified cor-

rectly and processed as a benign URL entry. Normally hash based data

structure suffers from false positives due to hash collisions. This is catered in

CHAPTER 7. RESULTS AND DISCUSSION 71

75 100 125 150 175 200 225 250 275 300 325 350
50

55

60

65

70

75

80

85

90

95

100

U
R

L
Lo

ok
up

 R
at

e

Data Rate (Mbps)

 131267 (544 URLs)
 110739 (943 URLs)
 228526 (838 URLs)
 431454 (2506 URLs)
 1288929 (5574 URLs)
 586292 (3789 URLs)

7am to 1pm

Figure 7.12: URL Lookup Rate (7am to 1pm)

.

our implementation by the use of two distinct non-cryptographic hash func-

tions, one is used for slot calculation and other is used for compressing the

URL entry to fix length of 32-bits.

75 100 125 150 175 200 225 250 275 300 325 350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fa
ls

e
P

os
iti

ve
 R

at
e

Data Rate (Mbps)

 679627 (3572 URLs)
 1950814 (3724 URLs)
 3636460 (8479 URLs)
 1519061 (5761 URLs)
 467662 (3355 URLs)
 188404 (807 URLs)

1pm to 7pm

Figure 7.13: False Positive Rate (1pm to 7pm)

.

Figure 7.13-7.16 shows zero false positive at data rate up to 160 Mbps.

CHAPTER 7. RESULTS AND DISCUSSION 72

75 100 125 150 175 200 225 250 275 300 325 350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
7pm to 1am

Fa
ls

e
P

os
iti

ve
 R

at
e

Data Rate (Mbps)

 146584 (1113 URLs)
 103657 (712 URLs)
 150705 (734 URLs)
 186457 (1123 URLs)
 163032 (838 URLs)
 138778 (871 URLs)

Figure 7.14: False Positive Rate (7pm to 1am)

.

75 100 125 150 175 200 225 250 275 300 325 350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
1am to 7am

Fa
ls

e
P

os
iti

ve
 R

at
e

Data Rate (Mbps)

 190122 (969 URLs)
 241201 (1227 URLs)
 215253 (822 URLs)
 147450 (622 URLs)
 98124 (589 URLs)
 94795 (673 URLs)

Figure 7.15: False Positive Rate (1am to 7am)

.

There is increase of 0.05 in false positive rate when data rate further exceed

and reaches 200 Mbps. The false positive rate ranges from 0.18 to 0.30

for data rate up to 325 Mbps. These false positives are not due to hash

collisions but due to the packet drop ratio, which start increasing when data

CHAPTER 7. RESULTS AND DISCUSSION 73

75 100 125 150 175 200 225 250 275 300 325 350

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0 7am to 1pm

Fa
ls

e
P

os
iti

ve
 R

at
e

Data Rate (Mbps)

 131267 (544 URLs)
 110739 (943 URLs)
 228526 (838 URLs)
 431454 (2506 URLs)
 1288929 (5574 URLs)
 586292 (3789 URLs)

Figure 7.16: False Positive Rate (7am to 1pm)

.

rate exceeded 160 Mbps and kept on rising with increasing data rate.

Chapter 8

Conclusion and Future work

8.1 Conclusion

Randomness testing of non-cryptographic hash function for real-time URL

based internet filtering applications is presented. The thesis focuses on the

use of hash table for real-time internet filtering application. Hash tables

suffer from false positives because of hash collisions which are associated

with hash functions. Since the performance of hash functions is data depen-

dent so there is need to explore behavior of hash functions for URL based

string inputs. To the best of our knowledge there is no study to explore

non-cryptographic hash functions in terms of randomness for URL based

string inputs. Statistical Analysis is performed on the sequences generated

using five widely used non-cryptographic hash functions for hash table im-

plementations: 1) CRC, 2) Adler, 3) FNV, 4) DJBX33A, and 5) Murmur.

The comparative analysis of tested non-cryptographic hash functions shows

that the Adler hash function is not suitable for hash table implementation,

whereas, the rest of non-cryptographic hash functions exhibit similar and

74

CHAPTER 8. CONCLUSION AND FUTURE WORK 75

better randomizing features which make them an attractive choice for hash

table implementation. The results of these statistical studies have been veri-

fied by the implementation of hash table using these non-cryptographic hash

functions. Based on our working with non-cryptographic hash functions for

hash table implementation, we proposed a real-time URL based filtering sys-

tem. Trace based experiments are performed using 24 hours data captured

at SEECS Data Center for evaluation of this system. The results show that

the system is capable of performing URL lookup operation with zero false

positive for data rate up to 160 Mbps. False positives occurs for increase

in data rate. These false positives are not due to hash collisions but due to

increase in packet drop ratio.

8.2 Future Work

The future aim will be to explore the lexical and host-based feature of Uni-

form Resource Locators (URLs) for developing an anti-malware system using

machine learning techniques. The system will be capable of performing the

task of malware detection and protection in real-time.

Bibliography

[1] A. Appleby, “Murmurhash 2.0,” 2013. [Online]. Available:

http://code.google.com/p/smhasher/

[2] W. Chang, B. Fang, X. Yun, S. Wang, and X. Yu, “Randomness testing

of compressed data,” arXiv preprint arXiv:1001.3485, 2010.

[3] R. S. De Oliveira, C. Montez, and R. Lange, “On the use of hash tables

in real-time applications,” in Emerging Technologies & Factory Automa-

tion, 2009. ETFA 2009. IEEE Conference on. IEEE, 2009, pp. 1–8.

[4] D. Eastlake, G. Fowler, K.-P. Vo, and L. Noll, “The fnv

non-cryptographic hash algorithm,” 2012. [Online]. Available:

http://tools.ietf.org/html/draft-eastlake-fnv-03

[5] C. Estbanez, J. C. Hernndez-Castro, A. Ribagorda, and P. Isasi, Find-

ing state-of-the-art non-cryptographic hashes with genetic programming.

Springer, 2006, pp. 818–827.

[6] C. Estbanez, Y. Saez, G. Recio, and P. Isasi, “Performance of the most

common non-cryptographic hash functions,” Journal of Software: Prac-

tice and Experience (2013), 2013.

76

BIBLIOGRAPHY 77

[7] C. Estébanez, Y. Saez, G. Recio, and P. Isasi, “Performance of the

most common non-cryptographic hash functions,” Software: Practice

and Experience, 2013.

[8] Y.-H. Feng, N.-F. Huang, and C.-H. Chen, “An efficient caching mech-

anism for network-based url filtering by multi-level counting bloom fil-

ters,” in Communications (ICC), 2011 IEEE International Conference

on. IEEE, 2011, pp. 1–6.

[9] G. Fuxiang, W. Yanyan, S. Wenjun, and Y. Lan, “Design and implemen-

tation of the web access monitoring system based on url analysis,” in

Information Technology and Applications (IFITA), 2010 International

Forum on, vol. 1. IEEE, 2010, pp. 425–428.

[10] J.-l. Gailly and M. Adler, “Zlib compression library,” 2013. [Online].

Available: www.zlib.net

[11] J. J. Garnica, S. Lopez-Buedo, V. Lopez, J. Aracil, and J. M. G. Hi-

dalgo, “A fpga-based scalable architecture for url legal filtering in 100gbe

networks,” in Reconfigurable Computing and FPGAs (ReConFig), 2012

International Conference on. IEEE, 2012, pp. 1–6.

[12] M. T. Goodrich and R. Tamassia, Algorithm Design: Foundation, Anal-

ysis and Internet Examples. John Wiley & Sons, 2006.

[13] C. Henke, C. Schmoll, and T. Zseby, “Empirical evaluation of hash func-

tions for multipoint measurements,” ACM SIGCOMM Computer Com-

munication Review, vol. 38, no. 3, pp. 39–50, 2008.

BIBLIOGRAPHY 78

[14] N. Hua, E. Norige, S. Kumar, and B. Lynch, “Non-crypto hardware hash

functions for high performance networking asics,” in Proceedings of the

2011 ACM/IEEE Seventh Symposium on Architectures for Networking

and Communications Systems. IEEE Computer Society, pp. 156–166.

[15] K. Huang, G. Xie, R. Li, and S. Xiong, “Fast and deterministic hash

table lookup using discriminative bloom filters,” Journal of Network and

Computer Applications, vol. 36, no. 2, pp. 657 – 666, 2013.

[16] N.-F. Huang, R.-T. Liu, C.-H. Chen, Y.-T. Chen, and L.-W. Huang,

“A fast url lookup engine for content-aware multi-gigabit switches,” in

Advanced Information Networking and Applications, 2005. AINA 2005.

19th International Conference on, vol. 1. IEEE, 2005, pp. 641–646.

[17] B. Jenkins, “A hash function for hash table lookup,”

Dr. Dobbs Journal (1997), 1997. [Online]. Available:

http://burtleburtle.net/bob/hash/doobs.html

[18] J. Karasek, R. Burget, and O. Morsky, “Towards an automatic design

of non-cryptographic hash function,” in Telecommunications and Signal

Processing (TSP), 2011 34th International Conference on. IEEE, pp.

19–23.

[19] D. E. Knuth, “Sorting and searching (the art of computer programming

volume 3),” 1973.

[20] P. Koopman, “32-bit cyclic redundancy codes for internet applications,”

in Dependable Systems and Networks, 2002. DSN 2002. Proceedings.

International Conference on. IEEE, pp. 459–468.

BIBLIOGRAPHY 79

[21] W. D. Maurer and T. G. Lewis, “Hash table methods,” ACM Computing

Surveys (CSUR), vol. 7, no. 1, pp. 5–19, 1975.

[22] T. Maxino, “Revisiting fletcher and adler checksums,” 2006. [Online].

Available: http://repository.cmu.edu/isr/690/

[23] B. J. McKenzie, R. Harries, and T. Bell, “Selecting a hashing algorithm,”

Journal of Software: Practice and Experience, vol. 20, no. 2, pp. 209–

224, 1990.

[24] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, and E. Barker, “A statis-

tical test suite for random and pseudorandom number generators for

cryptographic applications,” DTIC Document, Tech. Rep., 2010.

[25] T.-F. Sheu, N.-F. Huang, H.-S. Wu, M.-C. Shih, and Y.-F. Huang, “On

the design of network-processor-based gigabit multiple-service switch,”

in Information Technology: Research and Education, 2005. ITRE 2005.

3rd International Conference on. IEEE, 2005, pp. 240–244.

[26] K. Thomas, C. Grier, J. Ma, V. Paxson, and D. Song, “Design and

evaluation of a real-time url spam filtering service,” in Security and

Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 447–462.

[27] H. Yuan, B. Wun, and P. Crowley, “Software-based implementations

of updateable data structures for high-speed url matching,” in Archi-

tectures for Networking and Communications Systems (ANCS), 2010

ACM/IEEE Symposium on. IEEE, 2010, pp. 1–2.

[28] Z. Yuan, B. Yang, X. Ren, and Y. Xue, “Tfd: A multi-pattern matching

algorithm for large-scale url filtering,” in Computing, Networking and

BIBLIOGRAPHY 80

Communications (ICNC), 2013 International Conference on. IEEE,

2013, pp. 359–363.

[29] J. K. M. S. U. Zaman and R. Ghosh, “A review study of

nist statistical test suite: Development of an indigenous computer

package,” CoRR, vol. abs/1208.5740, 2012. [Online]. Available:

http://arxiv.org/abs/1208.5740

[30] Z. Zhou, T. Song, and Y. Jia, “A high-performance url lookup engine

for url filtering systems,” in Communications (ICC), 2010 IEEE Inter-

national Conference on. IEEE, 2010, pp. 1–5.

[31] M. R. J. Zobel, “Performance in practice of string hashing functions,”

in Database Systems for Advanced Applications’ 97: Proceedings of the

5th International Conference on Database Systems for Advanced Appli-

cations Melbourne, Australia April 1-4, 1997, vol. 6. World Scientific

Publishing Company Incorporated, p. 215.

