
Secure Mobile Intensive Tasks

Offloading to the Cloud

By

Syed Luqman Shah

2008-NUST-MS-CCS-08

Advisor

Dr. Zahid Anwar

A thesis submitted to the faculty of Department of Computing, School of Electrical

Engineering and Computer Science, National University of Sciences and

Technology, Islamabad in partial fulfillment for the requirements of an M.S in

Computer and Communication Security

 April, 2012

ABSTRACT

Mobile devices with internet access are switching towards the Cloud for resource

intensive tasks. Cloud Computing has emerged as an attractive platform for mobile users

to offload their resource intensive computations (e.g. consider a large image that has to be

compressed and placed as wallpaper) due to limited processing and power capabilities of

mobile devices. However, individuals are still reluctant to offload their tasks to the cloud

due to a number of security concerns like loss of control and maintaining confidentiality

and privacy of data. In this thesis, we address Mobile and Cloud Computing security

concerns by encompassing Trusted Computing concepts. Trusted Computing

incorporates tamper resistant hardware commodity Trusted Platform Module (TPM) and

enables parties to verify what code is running on the remote computer through Remote

Attestation process. We propose different scenarios 1) data computation on the mobile

device 2) data computation on cloud node 3) data computation on cloud node with

encryption 4) data computation on cloud node with encryption and Remote Attestation

5) data computation on cloud node with two-way Remote Attestation and encryption,

each scenario more secure than the previous at the cost of some additional performance

overheard. Since, there is always tradeoff between security and performance thus users

can adopt any scenario matching their requirements based on threshold.

We took Android as a client of cloud services and image compression as workload to

analyze the performance of proposed scenarios. We performed image compression

experiments using both android emulator and a real phone on different image sizes. For

emulator, offloading a 244KB image to the Cloud (Scenario -2) saves 34% of mobile

device resources and reduces overall execution time to 25%. Offloading the same in

Scenario-3 and 4 caused an increase of 20% in mobile device resource utilization with

increase of 1.3 and 4.1 times respectively in overall execution time. However, offloading

large sized images like 3MB in Scenario-3, 4 and 5 saved mobile device resources up to

88% for Scenarios-3 and 4 and 76% for Scnenario-5 with reduction of 89%, 82%, 69%,

and 58% in overall execution times for Scenrios-2, 3, 4 and 5 respectively. Moreover, we

performed experiments on Android Nexus One Phone and experiments show that

offloading 2.1MB image to the Cloud (Scenario-3, Scenario-4) saves 79% of mobile

device resources.

DEDICATION

All Praise and Thanks to Almighty Allah, The Most Beneficent and the Most

Merciful, Master of The Day Of Judgment. O Allah! Guide Us With

Courage And Right Path, Path of Those to Whom You Have Bestowed Your

Blessings.

Dedicated to My Parents and Teachers

i

CERTIFICATE OF ORIGINALITY

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material

which to a substantial extent has been accepted for the award of any degree or diploma at

NUST SEECS or at any other educational institute, except where due acknowledgement

has been made in the thesis. Any contribution made to the research by others, with whom

I have worked at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work,

except for the assistance from others in the project’s design and conception or in style,

presentation and linguistics which has been acknowledged.

 Author Name: Syed Luqman Shah

Signature: _____________________

ii

ACKNOWLEDGEMENT

Firstly, I would like to thanks my advisor Dr. Zahid Anwar, Department of Computing,

NUST School of Electrical Engineering and Computer Science for his continuous

encouragement and able guidance. Without his support and guidance this thesis could’

not be completed in time.

I am grateful to Mr. Qasim Mehmood Rajpoot, Department of Computing for his selfless

and generous support in the completion of this thesis.

I am also thankful to my committee members Dr. Fouzan Mirza, Department of

Computing and Dr. Awais Shibli, Department of Computing for their able guidance and

support.

I am very thankful to my family, especially my parents for their unceasing prayers,

support and encouragement throughout my academic career.

 Syed Luqman Shah

iii

Table of Contents

Introduction ... 1

1.1 INTRODUCTION ... 1

1.2 RESEARCH METHODOLOGY ... 2

1.3 DOCUMENT ORGANIZATION .. 3

Background .. 4

2.1VIRTUALIZATION .. 4

2.2 CLOUD COMPUTING .. 4

2.2.1 Mobile Cloud Computing .. 4

2.3 TRUSTED COMPUTING ... 5

2.3.1 Trusted Computing Group (TCG) .. 5

2.3.2 Trusted Platform Module (TPM) .. 5

2.3.3 Trusted Grub .. 8

2.3.4 Integrity Measurement Architecture (IMA).. 8

2.3.5 Remote Attestation .. 9

2.3.6 Trusted Software Stack (TSS) ... 9

Literature Review... 10

3.1 INTRODUCTION ... 10

3.2 TRUSTED CLOUD COMPUTING PLATFORM (TCCP) .. 10

3.2.1 TCCP Components: ... 10

3.2.2 TCCP Protocols: .. 11

3.3 TRUSTED CLOUD COMPUTING PLATFORM WITH SEALED STORAGE ABILITY (TSSC) .. 13

3.3.1 TSSC Components ... 14

3.4 MULTI TENANCY TRUSTED COMPUTING ENVIRONMENT MODEL (MTCEM) .. 16

3.5 INTEGRITY MEASUREMENT MODEL BASED ON TRUSTED VIRTUAL PLATFORM ... 17

3.5.1 Virtual TPM .. 18

3.5.2 Integrity Model Based on Xen .. 18

3.5.3 Remote Attestation of Service Provider ... 19

3.6 INFORMATION LEAKAGE IN THIRD-PARTY COMPUTE CLOUDS .. 19

Design and Architecture ... 20

4.1 INTRODUCTION ... 20

4.2 PROPOSED SCENARIOS ... 20

iv

4.2.1 Data Computation on the Mobile Device ... 21

4.2.2 Data Computation on the Cloud Node without Encryption .. 21

4.2.3 Data Computation on the Cloud Node with Encryption ... 21

4.2.4 Data Computation on the Cloud with Node Attestation and Encryption 22

4.2.5 Data Computation on the Cloud with Two Way Attestation and Encryption 27

Implementation ... 29

5.1 INTRODUCTION ... 29

5.1.1 Configuring TPM in the Linux Kernel .. 29

5.1.2 Configuring Trusted Grub ... 30

5.1.3 Integrity Measurement Architecture.. 30

5.1.4 Interaction with TPM ... 32

5.1.5 Programing TPM Related Operations .. 32

5.2 IMAGE COMPRESSION AND ENCRYPTION PROGRAMS ... 38

5.3 INTERPOLATION AND THRESHOLD ... 43

5.3.1 Estimation of Overall Execution Time using Interpolation ... 43

5.3.2 Estimation of Execution Time on Mobile and Threshold .. 44

Results and Evaluation ... 45

6.1 RESULTS .. 45

6.1.1 Data Computation on the Mobile Device (Scenario-1) ... 45

6.1.2 Data Computation on the Cloud Node (Scenario-2) ... 45

6.1.3 Data Computation on the Cloud Node with Encryption (Scenario-3) ... 46

6.1.4 Data Computation on the Cloud Node with Encryption and Remote Attestation (Scenario-4) . 48

6.1.5 Data Computation on the Cloud with Encryption and Two-way remote Attestation (Scenario-5)

 .. 52

6.2 DISCUSSION ... 54

6.2.1 Overall Execution Time of Each Scenario ... 54

6.2.2 Mobile Device Resource Utilization .. 56

6.2.3 Comparison of Major TPM Operations .. 58

Conclusions and Future Recommendation ... 59

7.1 CONCLUSIONS .. 59

7.2 FUTURE RECOMMENDATIONS .. 60

BIBLIOGRAPHY…….……61

v

LIST OF ABBREVIATIONS

CSP Cloud Service Provider

TCG Trusted Computing Group

TPM Trusted Platform Module

AIK Attestation Identity Key

EK Endorsement Key

TK Trusted Key

TSS Trusted Software Stack

jTSS Java Trusted Software Stack

VM Virtual Machine

VMI Virtual Machine Image

TC Trusted Coordinator

TCCP Trusted Cloud Computing Platform

OS Operating System

CRTM Core Root of Trust for Measurement

vi

LIST OF TABLES

Table 5-1 Interpolation Table

Table 6-1 Execution Time of Scenario-1

Table 6-2 Overall Execution Time of Scenario-2 using Android Emulator

Table 6-3 Overall Execution Time of Scenario-3 Using Android Emulator

Table 6-4 Overall Execution Time of Scenario-3 Using Android Real Phone

Table 6-5 Operation-wise Execution Time (ms) of Remote Attestation Protocol

Table 6-6 Step-wise Execution time (ms) of Remote Attestation Protocol

Table 6-7 Overall Execution Time of Scenario-4 Using Android Emulator

Table 6-8 Overall Execution Time Scenario-4 using Android Real Phone

Table 6-9 Overall Execution Time of Scenario-5 using Android Emulator

Table 6-10 Overall Execution Times of All Scenarios using Android Emulator

Table 6-11 Overall Execution Times of All Scenarios using Android Real Phone

Table 6-12 Mobile Device Resource Utilization using Android Emulator

Table 6-13 Mobile Device Resource Utilization using Android Real Phone

vii

LIST OF FIGURES

Figure 2-1 TPM Architecture

Figure 2-2 Layers of Java Trusted Software Stack

Figure 3-2 TCCP Messages Exchange Node Registration Protocol

Figure 3-3 TCCP Messages Exchange VM Launch Protocol

Figure 3-4 TCCP Message Exchange VM Migration Protocol

Figure 3-5 TSSC Messages Exchange

Figure 3-6 An IaaS Model Example

Figure 3-7 MTCEM

Figure 3-8 Integrity Model Based on XEN

Figure 4-1 Data Computation on the Cloud Node without Encryption

Figure 4-2 Data Computation on the Cloud Node with Encryption

Figure 4-3 Data Computation with Remote Attestation and Encryption

Figure 4-4 Messages Exchanged in the Node Attestation Protocol

Figure 4-5 Messages Exchanged for Data Computation

Figure 4-6 Messages Exchanged Two-way Remote Attestation Protocol

Figure 5-1 Configuring Kernel for TPM

Figure 5-2 Steps to Build the Trusted Grub

Figure 5-3 Steps to Enable IMA in the Linux Kernel

Figure 5-4 Setting up Development Environment using jTSS

Figure 5-5 Few of Headers Required for Accessing TPM

Figure 5-6 Creating Context Object

Figure 5-7 Taking TPM Ownership

Figure 5-8 Printing Public Part of Endorsement Key

Figure 5-9 Creating Attestation Identity Key

Figure 5-10 Nonce Generation in the TPM

Figure 5-11 Performing Quote Operation

Figure 5-12 Verifying Signature on the Quote Operation

Figure 5-13 Image Compression Program for Android

viii

Figure 5-14 Image Compression Program for Cloud Node

Figure 5-15 RC4 Image Encryption Program

Figure 5-16 RC4 Image Decryption Program

Figure 5-17 Image Receiving Program

Figure 5-18 Image Sending Program

1

CHAPTER 1

Introduction

1.1 Introduction

Enterprises are rapidly transferring their businesses to the Cloud due to economic benefits

and because they do not want to maintain their own IT infrastructure. This new

technology is getting significant acceptance, both at individual and enterprise level (1).

Cloud Service Providers (CSPs) offer services at various levels of the software stack (2)

including Platform as a Service (PaaS), Software as a Service (SaaS) and Infrastructure as

a Service (IaaS). IaaS is the most popular way having many commercial providers like

Amazon (3), Flexiscale (4), GoGrid (5), IBM (6), etc. Cloud Computing enables

enterprises to go for rental IT resources such as software, development platforms, storage

and network components according to their needs. Despite of these potential advantages

still customers prefer running their businesses at their own infrastructure due to security

issues in the Cloud. Recently a survey (7), interviewed 500 executives and IT managers

in 17 countries, results have shown that executives prefer their internal infrastructure on

the Cloud due to security issues. These issues include loss of control, confidentiality and

privacy of data.

Trusted Computing Group (TCG) (8) provides a way that enables customers to verify

trustworthiness of providers’ infrastructure before sending their data to the Cloud for

computations by utilizing Trusted Platform Module (TPM) (9), a co-processor residing

on the motherboard of the computer and capable of generating and storing cryptographic

keys and functions. Trusted Computing (TC) can be combined with Cloud Computing to

provide security. Researches in this regard (10) (11) have shown that this combination

can provide a considerable level of security.

These days mobile phones are being used more than expected in the past, and have

successfully captured a major chunk of users’ attention away from desktop machines and

offer competitive internet connectivity to add to their appeal. However, the catch lies in

the constrained processing capabilities and limited battery life of these devices. Mobile

consumers are looking towards more powerful machines connected via GPRS, Wifi and

2

related networking technologies for resource-intensive tasks. The new paradigm of

Mobile Cloud Computing (12) is now being touted as the next upcoming technology

trend. Cloud Computing offers an attractive platform of choice for hosting resource-

intensive tasks on behalf of mobile devices. Resource intensive tasks can be offloaded to

the Cloud at various levels of granularity by working out a trade-off between resources

required for performing computation on device against those required for offloading tasks

to the Cloud. Like traditional clouds, Mobile Cloud Computing is also facing security

issues. Trusted Computing can work out here too.

Currently hand held devices are missing TCG’s hardware TPM. Standards for Mobile

Trusted Modules (MTM) (13) have been proposed for hardware-based attestation of

mobile devices and standardized hardware implementations are expected to be available

soon. However, equipping mobile devices with software TPM (TPM Emulator) (14) for

experimentation are good to check the feasibility of Remote Attestation between cloud

node and mobile device and other TPM functions.

Trusted Cloud Computing Platform is a pioneer platform that combined Trusted and

Cloud computing. In our research work we are using protocols presented by TCCP (10)

with slight modifications and extend their idea.

This work aims to benchmark following five scenarios.

Benchmark 1: Data computation on mobile device

Benchmark 2: Data computation on the Cloud

Benchmark 3: Data Computation on the Cloud with encryption

Benchmark 4: Data computation on the Cloud with encryption and Remote Attestation

Benchmark 5: Data Computation on the Cloud with encryption and two-way Remote

Attestation

In the above five scenarios, Android mobile device being the emerging market will be

taken as a client of the Cloud services. To achieve benchmark 5, we propose a protocol

for two-way Remote Attestation before sending data or launching VM on the Cloud.

1.2 Research Methodology

The first step involved extensive literature review. We sub-divided literature review in

two separate phases first phase to understand different background concepts and

technologies like Trusted Computing, Cloud Computing and Mobile Cloud Computing

3

and in second phase we studied different platforms and architectures to understand that

how Trusted Computing can be combined with Cloud Computing to provide security.

In the second step, we configured systems for TPM functionalities and installed different

TPM management tools. Third step includes implementation and evaluation. We used

Java, Android programing and jTSS to implement all the operations involved in different

scenarios separately. We used Java functions to implement different operations involved

in our proposed scenarios independently and then calculated the execution time of each

operation. Image compression was taken as workload and different image sizes ranging

from 244KB to 9.7MB were tested. We calculate the overall execution time of a scenario

by summing up the execution times of all operations involved in that scenario. Similarly,

we calculate the resource utilization of mobile device by summing only on-device

operations. We performed experiments using Android emulator as well as on real device

Android Nexus One phone (processor QUAL Com QSD 8250, 1 GHz, RAM 512MB).

For real android phone we did not calculate network and file read/write overheads.

Results for android emulator show, offloading 2.1 Mb image in Scenario-2 and Scenario-

3 reduces overall execution time 74% and 58% respectively with reduction of mobile

device resources utilization 79% and 64% respectively. Results on Android Nexus One

phone reveals, offloading 2.1MB image saves mobile device resources up to 79% for

Scenarios-3 and Scenario-4.

1.3 Document Organization

This thesis has been organized in chapters. Chapter 2 provides the background study,

concepts and technologies. Chapter 3 gives the literature review focusing upon how

Trusted and Cloud computing can be combined to achieve security. Different Cloud

Computing architectures that leverage Trusted Computing are presented and different

related protocols have been discussed in chapter 3. Chapter 4 provides brief description

of our proposed scenarios. Protocols used in proposed scenarios are discussed and the

proposed two-way Remote Attestation protocol is also presented with complete details in

chapter 4. Implementation details are given in chapter 5. Chapter 6 provides results and

evaluation with discussions. Chapter 7 concludes the thesis with future recommendations.

4

CHAPTER 2

Background

2.1Virtualization

Virtualization is a mechanism of dividing hardware or some subset of hardware of a

computer system among several virtual machines (VMs), which bear resemblance to the

physical system. Virtual Machine Monitor (VMM) is a layer that divides the hardware

and carries out virtualization. Xen (15) provides a virtualization layer that ensures

separation of VMs and execute instructions on their behalf. At the same time, Xen

manages a domain (Dom0), which controls the access of VMs to physical hardware, and

facilitates communication among several machines hosted on shared hardware. The

virtualized system attempts to provide virtualized network and storage devices, thus

providing an environment similar to that of real system.

2.2 Cloud Computing

Cloud Computing has gained momentous acceptance (1) in the recent years. It reduces

enterprises’ costs of maintaining their own IT infrastructure thus, making them more

competitive and more focused in their critical business operations. Companies and

individuals are rapidly offloading their tasks to the Cloud due to several advantages

provided by this new technology.

Cloud Service Providers (CSPs) are offering services at various layers of software stack

(2) including Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and

Software as a Service (SaaS). SaaS stands at the top of the stack and at the layer CSPs

rent out applications software like GoogleApps (16) to their customers. In IaaS,

customers can use the Virtual Machines (VMs) provided by CSPs or can launch their

own VMs on providers’ infrastructure and at PaaS layer CSPs offer development

platforms.

2.2.1 Mobile Cloud Computing

Mobile phone industry is one of the fastest growing industries. Recent advancements,

enhanced capabilities and rich connectivity provided by the mobile technology is

5

continuously attracting users and has already captured a major chunk of users’ attention

away from the desktop machines. Attractive features provided by the technology and its

wide spread usage, on the other hand opened new doors for application developers to

come up with innovative applications. However, the catch lies in the constrained

processing capabilities and limited battery life of these devices. This is where mobile

devices have to look towards more powerful machines for resource intensive

computations. Cloud Computing offers an attractive platform of choice for hosting

resource-intensive applications on the behalf of mobile devices. Solutions have already

been proposed for augmented execution of mobile applications on the Cloud (17). Mobile

phone users may utilize the software services hosted by the Cloud such as Google Apps

(16) or even deploy a clone of mobile phones on the Cloud such as Amazon (EC2) (3).

2.3 Trusted Computing

2.3.1 Trusted Computing Group (TCG)

Trusted Computing Group (TCG) (8) is an industry alliance composed of major IT

stakeholders like IBM, HP and Microsoft. This group works for the actual

implementation of Trusted Computing (TC) concepts and aims to provide trusted

platforms. So far, TCG has published TPM Main Specification (18) that presents

protocols and standards for attestation, secure storage and key migration.

2.3.2 Trusted Platform Module (TPM)

Major outcome of TCG is TPM (9), a hardware chip residing on the mainboard of a

computer, capable of generating and storing cryptographic keys and functions. It is a

tamper-resistant hardware having a number of keys, secure data storage and a

cryptographic engine. Figure 2-1 shows the structure of the TPM and we discuss major

components in the coming sections.

6

Volatile Memory

PCR Registers (0-23)

Attestation Identity Key

Key Slots

Key Slots

Key Slots

Non-Volatile Memory

Random Number Generator

Asymmetric Key Generator

Hash Engine

Signing and Encryption Engine

Figure 2-1 TPM Architecture

2.3.2.1 Non-Volatile Memory

TPM stores Endorsement and Storage Root Keys in its non-volatile memory and they are

preserved and stay unchanged even when the computer is switched off or there is no

power on the TPM. Endorsement Key (EK) is a unique RSA 2048-bit key pair embedded

in the TPM at the time of manufacturing. The public part of EK is used to uniquely

identify the TPM and remains the same throughout the life cycle of the TPM while

manufacturers destroy information about the private part at the time of embedding.

Storage Root Key (SRK) is also a RSA key pair and used to store other storage and

signing keys. TPM comes with only EK, and SRK is set each time a new user takes

ownership. SRK always resides in the TPM and its public part encrypts other keys. The

SRK is required to be non-migratable.

2.3.2.2 Volatile Memory

Data stored in the volatile memory of TPM is lost when computer turns off. TPM stores

PCR values and Attestation Identity Key (AIK) in its volatile memory.

7

Platform Configuration Registers (PCRs)

As per latest specifications (18), TPM comprises of 24 PCRs that store cryptographic

hashes of the software stack loaded and running on the system. These cryptographic

hashes are calculated by taking SHA-1 hash of the code, module or applications loaded

into the system memory.

Values in the PCRs are established automatically throughout the system boot process and

up above the boot process. These values get erased when the computer reboots. PCRs are

tampered resistant storage and the values can only be changed by PCR extend operation.

PCR Extend operation concatenates new value with current value of PCR, calculates

SHA1 and resulting value is stored in the respective PCR. Extend operation ensures that

the values in the PCRs cannot be manipulated and reached via any other route. Extend

operation works as follow:

New value in PCR = SHA1 (current value of PCR|| new measurement)

Attestation Identity Key (AIK)

AIK is RSA key pair and is alias of EK. It identifies a TPM instance. Both the EK and

AIK can be used to identify a TPM however; using EK would compromise the privacy of

end-user. AIK is used to sign messages during Remote Attestation process (discussed in

section 2.3.5).

2.3.2.3 Random Number Generator (RNG)

Inclusion of nonces ascertains the freshness of different messages. TPM contains a RNG

for generating nonces, symmetric keys and other random data.

2.3.2.4 Asymmetric Key Generator

TPM uses a number of asymmetric keys for cryptographic operations. Asymmetric key

generator carries out generation of these keys inside the TPM.

2.3.2.5 Hash Engine

Hash engine placed inside the TPM supports different hashing algorithms like SHA-1 and

MD5.

8

2.3.2.6 Encryption and Signing Engine

Encryption and signing are the fundamental functions of any cryptographic co-processor.

The encryption and signing engine contained by TPM performs desired encryption or

signing function.

2.3.3 Trusted Grub

Grand Unified Boot Loader (Grub) is the first program that execute when a computer

starts. Afterwards, Grub passes control to the operating system kernel and so on. Trusted

Grub (19) is the modification of standard Grub to detect and support TPM functions.

Trusted Computing is based on the principal of measuring each software and hardware

component loaded since boot of the system. In order to start measurements and to provide

trust there must be a root of trust. BIOS code of the computer being the only entity to

trust forms the Core Root of Trust for Measurement (CRTM), and then the every next

link in the chain is get measured by prior one. CRTM first calculates the BIOS, extends

values in the relevant PCR and then transfers control to the BIOS. Then BIOS measures

ROM configuration/data and extends values in TPM register. Similarly, all the

components get measured right from the BIOS to Operating System (OS) level and

measurements are recorded in the PCRs. Trusted Grub adds the measurement

capabilities and connection with TPM.

2.3.4 Integrity Measurement Architecture (IMA)

Integrity Measurement Architecture (IMA) (20) is an enhancement of Linux kernel to

measure each executable, library or kernel module loaded into the runtime of a system

before it affects the system. IMA mechanism uses Linux Security Module (LSM) to

calculate the SHA-1 of every executable mapped in the memory of the system before

execution. All contents loaded into the system since boot are measured and stored in a

kernel held Storage Measurement Log (SML). The integrity over SML is guaranteed by

extending values in tamper-resistant PCRs of TPM.

Trusted Grub provides a way to carry out measurements to OS level and then extends

these values in the PCR 0-8 of TPM. While IMA measures applications running above

the OS level and stores them in SML. SML reflects both the measurements calculated by

Trusted Grub and IMA thus extending trust level up to applications level.

9

2.3.5 Remote Attestation

TCG has provided a way to verify the integrity of a remote system by exploiting cost-

effective TPM. Configuration values since the boot of the system are measured and

stored in the TPM. TPM acts as trust anchor and proves stored values to a challenger

through Remote Attestation protocol (21). In the remote attestation process a challenger

asks the remote system (attester) to prove its integrity. Attester in response sends its PCR

values signed by TPM key. Trust up to application can be established by equipping the

system with some integrity measurement architecture like IMA.

2.3.6 Trusted Software Stack (TSS)

Trusted Software Stack (TSS), designed and standardized by TCG is a core software

component to interact with TPM. Design and standards of TSS has been published by

TCG in its 750 pages TPM Main Specification (18). TSS consists of discrete modules

having clear interfaces among them as shown in Figure 2-2.

Trusted Platform Module (TPM)

TSS Device Driver Library (TDDL)

TSS Core Service (TCS)

TSS Service Provider (TSP)

TCG Application

Figure 2-2 Layers of Java Trusted Software Stack

Java Trusted Software Stack (jTSS) (22) is implementation of TSS in java language. It is

pure java implementation unlike the TrouSers (23), which uses C language. jTSS

implements all layers of TSS including TDDL, TSP and TCS and it is passing through

experimental stages yet.

10

CHAPTER 3

Literature Review

3.1 Introduction

This chapter gives a detailed review of providing security in the Cloud computing using

Trusted Computing. We discuss different Trusted Computing protocols suitable for the

Cloud. This chapter also presents a number of suggested platforms for Cloud Computing

security.

3.2 Trusted Cloud Computing Platform (TCCP)

Verifying the authenticity of the providers’ infrastructure whether it is safe to run

customers’ virtual machine and not running any malicious software, which can tamper

with or can steal or harm customers’ data, are problems that make enterprises hesitant to

send their critical business on the cloud. In (10), authors address stated problems and

propose Trusted Cloud Computing Platform (TCCP). TCCP comprises of Trusted

Platform Module (TPM), Trusted Virtual Machine Monitor (TVMM) and a set of

protocols. TVMM ensures the confidential execution of customer VMM for IaaS

providers while set of proposed protocols enables customers to verify the integrity of the

cloud infrastructure and secures operations of VM launch and VM migration.

3.2.1 TCCP Components:

Cloud nodes that host Customer VM, Cloud Manager that manages the Cloud nodes and

Trusted Coordinator (TC) maintained by Trusted Third Party are main components of

TCCP, as shown in Figure 3-1. Cloud manager is an untrusted entity and makes different

services available to the cloud nodes.

N3

N2N1

N4CM

TC

TCCP

IaaS Perimeter

Figure 3-1 TCCP Components

11

3.2.2 TCCP Protocols:

TCCP secures different operations by introducing a set of protocols, which include Node

Registration Protocol, VM Launch Protocol and VM Migration Protocol. Next sections

discuss the proposed protocols of TCCP. These protocols utilizes TPM functionalities

thus, both the Cloud Nodes and Trusted Coordinator must have a TPM chip.

3.2.2.1 Node Registration Protocol

TC maintains a directory to manage the cloud nodes. Cloud nodes have to register

themselves with TC in compliance with Node Registration Protocol. Once a node attests

itself with TC, TC adds its key in its directory and considers it as trusted.

1. nN

2. {MLTC, nN}EKTC
p , nTC

3. {{ MLN, nTC}EKN
p , TKN

P }TKTC
 P

4. {accepted}

N TC
2

3

4

1

Figure 3-2 TCCP Messages Exchange Node Registration Protocol

Cloud node initiates registration process by sending its nonce to TC. In step 2, upon

receiving node nonce TC sends its Measurement list (MLTC) and node nonce encrypted

with private part of its Endorsement Key (EKTC
p). TC also includes its own nonce (nTC)

in step 2. Upon receiving message 2, Node verifies ML of TC and if it matches the

expected configuration, it means TC is trusted. In step 3, Node sends its Measurement list

(MLN) and nonce of TC (nTC) encrypted with private part of endorsement key (EKN
p).

Node also generates a Trusted Key and sends its public part to the TC (TKN
P). Whole

message in step 3 is again encrypted with public part of TC’s trusted key (TKTC
 P). TC

verifies the MLN and if it matches with the expected one TC adds TKN
P in its directory.

Node stores its Trusted Key in the memory, which ensures the whole registration process

to be repeated in case node reboots.

12

3.2.2.2 Virtual Machine Launch Protocol:

TCCP proposes the following protocol to secure the customers’ VM launch operation.

Proposed protocol ensures that VM is launched on a trusted node and system

administrator could not compromise integrity and confidentiality of VM initial state

during launch process. Following are the steps of VM launch protocol.

1. {VMI, #VMI }KVM , {nu, KVM }TKP
TC

2. {{{nU, KVM }TKP
TC , nN }TKp

N , N} TKP
TC

3. {nU , nN , KVM } TKP
N} TKp

TC

4. {nU , nN } KVM

CM

N TC

1
4

2

3

U

VMI

Figure 3-3 TCCP Messages Exchange VM Launch Protocol

In step 1, customer imitates VM launch operation by sending Initial state of virtual

machine (VMI) and its hash (#VMI) encrypted with a session Key (KVM) along with

KVM encrypted with public part of Trusted Key of the TC (TKP
TC) to the cloud. CM

designates a node for hosting VM. Since KVM is encrypted with, TK of TC and only TC

can decrypt the key. In step 2, node asks the TC to decrypt key. TC verifies the trust of

node by checking node’s TK in its directory. If the node is found trusted, KVM is

forwarded to that node in step 3. Finally, in step 4, node sends its identity to user.

13

3.2.2.3 VM Migration Protocol

Live migration of VM is the process of transferring the running state of a virtual machine

between two nodes on the Cloud. Normally, live migration process is carried out for load

balancing data among the cloud nodes. TCCP presents a protocol to secure this operation,

which guarantees that VM is migrated only on trusted node. This protocol also ensures

the confidentiality and integrity of virtual machine state whilst in transit on network.

Following are the messages exchanged in this protocol.

1. {{Nd, ns1 }TKp
N , Ns}TKP

TC0

2. {ns1 , TKP
Nd } TKP

Ns } TKp
TC

3. {KS, ns2 } TKp
Ns , Ns} TKP

Nd

4. {NS , nd } TKp
Nd , Nd}TKP

TC

5. {nd , TKP
Ns } TKP

Nd }TKp
TC

6. {nd } KS

7. {VMid , #VMid } KS

Nd

3

7

4 5

TC

VM

Ns

CM

6

1

2

Figure 3-4 TCCP Message Exchange VM Migration Protocol

3.3 Trusted Cloud Computing Platform with Sealed Storage Ability

(TSSC)

In the Cloud computing customers’ sensitive data is under the control of Cloud Service

Provider (CSP), which is a security threat and an obstacle for enterprises and individuals

to send their critical data on the Cloud. Trusted Computing technology enables customers

to verify the integrity of CSP platform before launching their VM through Remote

14

Attestation protocol. TCCP (10) presents a mechanism, which enable customers to attest

the providers’ platform upfront and ensures closed box execution of customers’ VM.

Since, Trusted Third Party is used for Remote Attestation in TCCP, which makes the

Cloud resources visible to the third party. Secondly, TCCP does not have a mechanism to

protect clouds’ customer data, once the cloud nodes become compromised at runtime. In

(11), authors present Trusted Cloud Computing Platform with Sealed Storage Capability

(TSSC). TSSC also leverages Trusted Computing to address the above stated problems

by introducing the following mechanism.

 Remote Attestation to attest providers’ platform without exposing Cloud

resources to third party.

 Sealed storage mechanism to ensure the privacy of customers’ data.

3.3.1 TSSC Components

TSSC consists of Remote Delegation Service (RDS), VMM monitor with Trusted Boot

ability (TVMM), Sealed Storage Module (SSM) and Remote attestation module (RAM).

Coming sections explain each of these components.

….

.

.

.
Hardware TPM

TVMM

VM1 VM2

Hardware TPM

TVMM

VM1 VM2 Node F

Node E

Node N

Remote

Attestation

Delegation

Service

Cloud

Computing

Service

Node A Node B

Attestation
C
loud S

ervices

R
equirem

ents

Hardware TPM

VM1 VM2

Remote

Attestation

Module

Sealed

Storage

Module
TVMM

Figure 3-4 TSSC Components

3.3.1.1 Remote Delegation Service (RDS)

RDS is an independent entity equipped with TPM and IMA and owned by service

provider. Customers attest Cloud back-end nodes through RDS. RDS communicates with

RAM, SSM and resource management software for Remote Attestation and monitoring

the integrity changes of nodes to establish sealed storage. Since, cloud owner maintains

15

RDS thus ensures protection of Cloud resources against the third party but on the other

hand, Cloud owner may have incentive to deceive customer. This problem can be catered

by assuming the RDS close to control and secrecy features.

3.3.1.2 Trusted Virtual Machine Monitor

Cloud back-end nodes must be equipped with a virtual machine monitor which supports

TCG-style chain of trust. Such trusted layer can prevent privileged system administrator

to inspect or tamper applications or data in customer VM.

3.3.1.3 Remote Attestation Module

Remote attestation module runs at cloud back-end node and reports integrity

measurements of node to RDS.

3.3.1.4 Sealed Storage Module (SSM)

Sealed storage is the property of TPM, which encrypts the data with key and particular

values of Platform Configuration Registers (PCR) and decryption of data can only be

done when PCR values match the one at the time of encryption.

In TSSC, SSM residing at back-end node dynamically encrypt data specified by cloud

user. RDS coordinates with SSM to achieve sealed storage.

Remote Attestation

Seal Instruction

Register

Sign

Cloud User RDS RAM SSM

Remote Attestation

VM Deployment Seal Instruction

Re-Attestation

VM Migration or

VM Updating

Figure 3-5 TSSC Messages Exchange

Authors introduced the concept of RDS, which ensures that Cloud Resources

(Measurement List) is not exposed directly to the third party. Sealed storage mechanism

16

has been introduced which protects the user data even the back-end node becomes

compromised after successful attestation. Authors implemented a prototype of the

proposed work and results have shown that Remote Attestation costs double time as

compared to un-secure cloud. For sealed storage mechanism, (encryption/decryption)

performance degradation is 15% for 4 MB file and increases with file size. Security of

Cloud Computing eventually depends upon VMM. Working on Trusted VMM is

proposed in this article.

3.4 Multi Tenancy Trusted Computing Environment Model (MTCEM)

Cloud computing is different from traditional IT service in a sense that the owner and

users of the Cloud services are separated. CSPs provide services in the form of

applications, platform or hardware and customers rent them for their businesses. This

requires a security duty separation between the customer and cloud service provider.

CSP should protect the services they provide and cannot exceed customer authorities

while customer should secure their data. Authors, in (24), propose a Multi Tenancy

Computing Environment Model (MTCEM) to address this problem. MTCEM utilizes

Remote Attestation and transitive trust features of Trusted Computing and provides a

security duty separation between cloud customer and CSP.

MTCEM provides security duty separation for IaaS model, where CSP provides space to

customers for launching their virtual instances. Figure3-6 depicts the typical IaaS model.

Hardware

Host OS

VMM

Guest OS

Application

Guest OS

Application

Guest OS

Application

Figure 3-6 An IaaS Model Example

In IaaS, whole system is clearly divided into two parts. First level starting from CRTM to

VMM level and second from the boot of guest Operating System (OS) to launched

applications in guest OS as shown in Figure 3-7.

17

Guest OS

Applications

Virtual Instance

The Third Party

Auditor
Attestation

Measurement Flow

Execution Flow

CSP

Customer

CRTM

OS Load Code

VMM

OS

 Root of Trust

Host Platform

Applications

Guest OS

Virtual Instance

Figure 3-7 MTCEM

Since, first level is under the full control of CSP thus, CSP should ensure the security of

this level. Third Party Auditor can optionally be used to attest the providers’

infrastructure up to VMM level. Ensuring the security for second level lies with cloud

customer. It must be ensured that neither other customers nor CSP have privileges to

interfere with customers launched VM and applications running in the VM.

Authors implement a prototype of proposed model and it works with less than 1%

performance degradation. MTCEM is proposed for IaaS, however, it can be extended to

other delivery models like PaaS and SaaS.

3.5 Integrity Measurement Model Based on Trusted Virtual Platform

Ensuring the secure execution environment is fundamental need for distributed

computing, so that integrity of the providers’ infrastructure should be verified before

launching services on them. In this paper (25) authors, propose a secure model, which

combines trusted computing and virtualization to provide a secure environment.

18

3.5.1 Virtual TPM

Hardware TPM and IMA measures and reports integrity values from boot time to load of

Operating System and up above to application level. Limitation of traditional TPM is that

it can only measure the integrity value of VMM but not the applications running inside a

VM. In order to measure applications running inside a VM there should be a virtual TPM

bound to each VM. In (26), vTPM has been proposed which can be ported to Xen

Hypervisor to make IMA capabilities available to each virtual instance.

3.5.2 Integrity Model Based on Xen

Authors propose integrity model based on Xen hypervisor and utilize concept of virtual

TPM to attest applications running inside the virtual machine. Management Domain

Dom0 of hypervisor makes hardware TPM functions available to virtual machine. Xen

Hypervisor/VMM consists of many Domains starting from Dom0, Dom1 and so on. Each

of these domains hosts a virtual machine instance except Dom0, which is management

Domain for other Domains.

In the proposed architecture, Dom0 has many compartments as shown in Figure 3-8.

Main compartments of Dom0 include Attestation agent (AA), Virtual Machine Controller

(VMC) and Policy Enforcer (PE). AA measures integrity of VMM core and DomU and

reports to remote service requester. VMC is responsible for launching new virtual

machine according to requirements of Service Requester (SR). Each virtual machine is

bound with a vTPM instance to make TPM functions available to VM.

19

Kernel

Space

Dom U

vTPM

Frontend

Port

Management
App

Hypervisor

HardwareTPM CPU

Service Requestor

Image Repository

Application

Authority

Service

Request
AttResAttReq IPSec

Attestation Agent

VM Controller

Policy

Enforcer

vTPM Manager

vTPM

Backend

Kernel

Space

Figure 3-8 Integrity Model Based on XEN

3.5.3 Remote Attestation of Service Provider

Proposed model enables Service Requester to verify the integrity of Service Provider’s

platform. Remote attestation protocol proposed here can be divided in two phases. In first

phase, SR verifies integrity up to VMM level of SP through traditional Remote

Attestation process of hardware TPM, then SR requests to launch a VM. After VM

launch process, the integrity of requested VM is verified through vTPM in second phase.

3.6 Information Leakage in Third-Party Compute Clouds

Cloud computing providers multiplex many customer virtual machines on shared single

medium. In the underlying article (27), authors showed that how cross-VM-channel

attacks can be launched to extract information from target machine by co-resident

machine. In this article, authors took EC2 cloud as a case study.

20

CHAPTER 4

Design and Architecture

4.1 Introduction

This chapter presents a brief description of the proposed scenarios. Proposed two-way

remote attestation protocol is also presented in this chapter.

4.2 Proposed Scenarios

Recent advancements in the mobile phone industry have significantly increased the

number of users and mobile phones are in use more than expected in the past. In fact,

users are expecting hand-held devices to perform their resource intensive computations.

However, limited processing and power capabilities of hand-held devices are major

constraints. Users can perform on-device computations to some extent but then

processing, power and memory limitations of mobile devices make them to look towards

machines that are more powerful. This is what Cloud and Mobile Cloud computing are

offering.

Mobile cloud computing provides an attractive platform of choice and can be thought as

good alternate of limited processing and power capabilities of the hand-held devices.

Despite of the advantages provided by the cloud computing still individuals are reluctant

to offload their data to the cloud due to privacy concerns. These concerns may include

confidentiality and privacy of data whilst in transit on the network between the mobile

device and the cloud platform. Encryption can be a good solution to this problem.

 Other concerns customers may have while offloading data to the cloud include the

integrity of the providers’ platform. Since, the provider’s infrastructure is untrusted for

the mobile client thus it can run malicious software that can copy or tamper with

customer data. Remote attestation provides a way to check the integrity of providers’

platform before offloading data to the cloud.

 Besides the security concerns of the users there may come situations when the cloud also

wants to verify the integrity of the customers device before granting it access to launch

VM. The solution can be two-way remote attestation.

21

 In this work, we present five different scenarios ranging from on-device computation to

offload data computation with two-way remote attestation, each scenario introducing an

increased level of security from the previous one. Following sections provide the brief

description of each scenario.

4.2.1 Data Computation on the Mobile Device

This sets the first scenario of our work. In this scenario, the mobile device performs data

computation locally (on-device). We present this scenario for comparison of offloading

data to the Cloud with local computation.

4.2.2 Data Computation on the Cloud Node without Encryption

Customer (mobile client) sends data for computation to the Cloud node without

encryption as depicted in Figure 4-1. This scenario sets the second benchmark of our

work. It is designed without any encryption or remote attestation, and will help us to

compare the results and to calculate the overhead incurred in next scenarios.

Messages Exchange:

1. Data

2. Result

2

1

NodeNode

CM

Node Node

Figure 4-1 Data Computation on the Cloud Node without Encryption

4.2.3 Data Computation on the Cloud Node with Encryption

Third scenario is designed with encryption where the customer sends encrypted data to

the cloud node for computation. The cloud node decrypts the customer’s data; performs

22

requested operation and sends back the encrypted results to the customer. Figure 4-2

illustrates the messages exchanged between the mobile phone and the cloud node.

Messages Exchange:

1. Encrypted Data

2. Encrypted Results

2

1

NodeNode

CM

Node Node

 Figure 4-2 Data Computation on the Cloud Node with Encryption

4.2.4 Data Computation on the Cloud with Node Attestation and Encryption

This scenario sets fourth benchmark of our work and introduces end-to-end encryption

with a mechanism to verify the integrity of cloud’s infrastructure. The major participating

entities in this scenario include 1) a mobile client, 2) a cloud node, which performs the

offloaded computations, and 3) a Trusted Coordinator (TC) that acts as the trusted third

party and attests the cloud nodes. TC is just like a certification authority and can easily be

maintained. Cloud node and trusted coordinator both are TPM-equipped systems and

performs remote attestation of the each other. Figure 4-3 provides an overview of third

scenario.

23

TCNodeNode

CM

Node Node

Encrypted Data

Encrypted Results

Remote

Attestation

Figure 4-3 Data Computation with Remote Attestation and Encryption

In this scenario, each cloud node must have to register itself through Remote Attestation

protocol with the Trusted Coordinator to perform computations on the behalf of the

customer. Thus, implementation of this scenario requires a) Remote Attestation of the

cloud node by the TC b) Data computation by the cloud on the behalf of the customer as

described in coming sections.

4.2.4.1 Node Attestation

Registration of each cloud node with TC is a mandatory step that is performed before the

node can be used in the cloud to perform any computations on behalf of the mobile

clients. During the registration process, each cloud node generates a RSA key pair and

stores the public part of generated RSA Key pair (TKN public) in its volatile memory. TKN

public must be known to the TC that is later used to exchange the key between the node

and the TC as explained in the coming section. Figure 4-4 shows the messages exchanged

between the nodes and the TC during the registration process.

24

Figure 4-4 Messages Exchanged in the Node Attestation Protocol

1. nNi

2. AIKTC
private {nN, PCR10}, nTC, SMLTC

3. TKTC
public {AIKN

private {nTC, PCR10},TKN
public},SMLN

4. TKN
public{Registered}

When a node wishes to register itself with the TC, 1) it generates a nonce (nN) and sends

it to the TC. Upon receiving the nonce, 2) the TC signs the nonce along with the value of

the PCR-10 register using its AIK (AIKTC private). It also sends the SMLTC and a nonce

(nTC) along with the encrypted content to the node. The node verifies the signature of the

TC using AIK of the TC (AIKTC
public) and then verifies the SML of the TC against the

signed PCR-10 value. Since the nonce generated by the node (nN) is also signed along

with the PCR-10 contents, the node can be sure that it is a fresh value reflecting the

current configuration of the TC. Afterwards, 3) the node sends the value of its PCR-10

and the nonce sent by the TC (nTC) signed by its AIK (AIKN private). It also sends the

SMLN so that the TC can verify the SMLN against PCR-10. The node also sends the

public part of its Trusted Key (TKN public) to the TC, which is stored with the TC and is

used during key exchange as explained in the next section. All the message content,

except for the SMLN, is encrypted using the TKTC public so that it is only accessible by the

TC.

Upon receiving message (3), TC decrypts the message using its TKTC
private, verifies the

signature on PCR-10 and matches the SMLN against the PCR-10. TC also compares the

4

1

NodeNode

CM

Node Node TC

2

3

25

signed nonce sent back by the node to ensure that the SMLN are current. If all is verified,

4) TC sends the registration message signed by the newly received TKN public of the

node. This signals the successful registration of the node with the TC along with the

acceptance of the node’s TKN public.

The node registration procedure is independent of the fact that the nodes host

data/applications sent by a mobile client or a computer. We used here the notion of

Trusted Clouds (10).

4.2.4.2 Data Computation

This section describes data computation on the cloud node. Both the mobile client and

cloud nodes have access to the trusted key of TC (TKTC public). The TC also has the trusted

keys of the nodes (TKN
public).

When a mobile client wishes to offload the computation of a resource-intensive task to

the cloud, 1) it encrypts the associated data using an RC4key before sending it to the

cloud. The mobile device also needs to communicate the RC4key so that the cloud node

can decrypt the data. The RC4key is encrypted using the TKTC public restricting the cloud

node to access the RC4key and hence the encrypted information, without first contacting

the TC and proving that it has already been registered. The mobile client also sends a

nonce (nU i.e. nonce generated by the user) encrypted with the RC4key to ensure the

freshness of the transaction.

Upon receiving the encrypted message, the node must have to prove to the TC that it is

trustworthy so that the TC may decrypt and send the RC4key to the node. The various

messages exchanged between communicating parties for trusted computation are shown

in Figure 4-5.

26

Figure 4-5 Messages Exchanged for Data Computation

1. RC4key {Data}, TKTC
public {nu, RC4 key}

2. TKN
private {SHA-1{TKTC

public{nU, RC4key},nN, N},TKTC
public{nU, RC4key},nN, N}

3. TKTC
private {SHA-1{nN, nU, RC4key}}, TKN

public {nN, nU, RC4key}

4. RC4key{nU, N, Result}

To gain the access of RC4key encrypted with the TKTC public, 2) the cloud node passes on

the encrypted key and nonce sent by the mobile user nU to the TC. It also sends a nonce

nN and node identity N to the TC using TKTC public. In order to demonstrate the fact that

the node is already registered with the TC, it computes the hash of the above parameters

and signs it using node’s trusted key TKN private. If the node is already registered with the

TC, TC is able to decrypt this part using TKN public of the node - provided at the time of

registration (explained in section 4.2.4.1) - decrypts the RC4key and 3) sends back to the

node the RC4key along with the nU and the nN encrypted with the TKN public of the node. In

order to ensure that the message is from the TC, TC also computes the hash of the

contents and then signs it using its TKTC private. In case the node is not already registered,

it is first required to register itself with the TC as explained in section 4.2.4.1.

Once the node receives RC4key, it decrypts the message, performs the requested

computations on behalf of the mobile client, and 4) sends back the results encrypted by

CM

TC
NodeNode

Node Node

1

2

3

4

27

the same symmetric key (RC4key). The cloud node also sends back the original nonce nU

to validate that the results are from a current computation.

4.2.5 Data Computation on the Cloud with Two Way Attestation and

Encryption

This scenario is designed with two-way remote attestation. The participating entities in

this scenario are a) Cloud node b) TPM enabled Trusted Coordinator c) TPM enabled

mobile device. We propose a protocol for two-way attestation Figure 4-6 depicts

messages flow among the participating entities.

TC attests the Cloud node as described in (section 4.2.4.1) and then Cloud node attests

the mobile device. Cloud node performs computations only after successful attestation of

mobile device.

Figure 4-6 Messages Exchanged Two-way Remote Attestation Protocol

1. nN

2. AIKTC
private {nN, PCR10}, nTC, SMLTC

3. TKTC
public {AIKN

private {nTC, PCR10},TKN
public},SMLN

4. TKN
public{Registered}

28

5. TKTC
public{nAndroid, RC4key}, AIKAndroid

public

6. TKTC
public{TKN

private{TKTC
public{nAndroid, RC4key},nN},N}

7. TKTC
private{TKN

public{nAndroid, nN,RC4key}}

8. RC4key{nAndroid, nN, TKN
Public}

9. RC4key{AIKAndroid
private{PCR, nN}, VMI, MLAndroid}

10. RC4key{Acknowledgement}

Steps 1 to 4 have been borrowed from Remote Attestation Protocol as explained in node

registration section (3.2.2.1). Upon the successful registration of node in 5) mobile device

generates a nonce nAndroid and a symmetric key RC4key (which later will be used to encrypt

data), encrypts both with the Public Part of TC’s Trusted Key (TK TC
public). Mobile Device

also includes its Public Part of Attestation Identity Key (AIKAndroid
public) and sends to the

Cloud node through CM. Upon receiving this messages Cloud node in 6) forwards a part

of message encrypted with TK TC
public, a node nonce nN signed with Private Part of its

Trusted Key (TK
N

private) to the TC. Node also sends its identity (N) and encrypts whole

message with TKTC
public to ensure confidentiality of the message. TC decrypts sent

message and sends (RC4key), nonces nAndroid and nN encrypted with Public part of Node’s

Trusted Key (TKN
public) and signed with its own Private part of TK (TKTC

private) in step 7.

Encryption with Node’s public part ensures confidentiality while encryption with its own

private part ensures integrity of message. In 8) node sends nonces along with Public Part

of its Trusted Key (TKN
public) encrypted with RC4key to mobile device (Android phone).

Upon receiving this message mobile device decrypts this messages, verifies nonce against

its sent nonce. If verified in 9) sends its PCR-10 and Node Nonce (nN) signed with

private part of its Attestation Identity Key AIK Android
private

 (TPM quote operation) along

with its Measurement List (ML) and Virtual Machine Image/Data (VMI) to the Cloud

node. Mobile device encrypts whole message (9) with RC4key. Upon receiving this

message, Cloud node verifies PCR value of mobile device against ML. If verified

launches VMI/data of mobile device on its cloud and in 10) sends back encrypted results

or not launched response in case not verified.

29

CHAPTER 5

Implementation

5.1 Introduction

This chapter provides implementation details. We used TPM enabled computers, Java

Trusted Software Stack (jTSS) and Java programing language for the operations

involving TPM and used java functions for implementing mobile device related

operations and tested both on the Android Emulator as well as on real Android device.

We took Image compression as a workload to analyze the performance. Coming sections

provide complete implementation details.

5.1.1 Configuring TPM in the Linux Kernel

Utilizing TPM capabilities requires some kernel configurations and compilation. First

step in our implementation involved making necessary configurations in the Linux kernel

and then compiling it to access TPM. We used TPM enabled computers (Core 2 Duo)

having Ubuntu 9.04 operating system and followed the below given steps to configure

and compile the Linux kernel for TPM.

Figure 5-1 Configuring Kernel for TPM

1. Downloaded the kernel source code from www.kernel.org. We have used 2.6.30.

2. Extract the source in usr/src.

3. Go to source directory and run: sudo make menuconfig

4. Select Device Drivers Option and Press Enter.

5. Select Character Device option and press ENTER.

6. In the Character Devices Menu Scroll to the Bottom and Select TPM Hardware Support . The

TPM Hardware support is by default as Module as indicated by <M>, <*> means it is part of

kernel and won’t be loaded as module, If you want to make it part of kernel then press space on

<M> to make it as <*>.

7. Inside TPM Hardware Menu Enable as Kernel part

8. Exit and save configurations.

9. Compile Kernel: sudo make

10. Compile Kernel Modules: sudo make modules

11. Install Kernel Modules sudo make modules_install

12. Compile Kernel: sudo make install

13. Create initrd image: sudo mkinitramfs -o initrd.img-2.6.30 2.6.30

14. Modify Grub Configuration File: /boot/grub/menu.lst:

15. Use update-grub to modify menu.lst file. If this command did not work manually update the

menu.lst.

30

5.1.2 Configuring Trusted Grub

Trusted Grub (19) provides TCG measurements capabilities. There must be a complaint

boot-loader to utilize the TPM functionalities Figure 5-2 illustrates the steps to build the

Trusted Grub for the TPM enabled computer.

Figure 5-2 Steps to Build the Trusted Grub

5.1.3 Integrity Measurement Architecture

IMA measures each executable loaded into the runtime of system but before it affects the

system. Measurements are being stored in the kernel held SML and integrity over the

measurements is assured by extending these values in the PCR of TPM. These

measurements provide a way for remote parties to verify what code is running on the

target computer. We used IBM IMA architecture and enabled it in the kernel and

followed the steps given in Figure 5-3 to enable a IBM IMA in Linux Kernel.

1. Download source code from

2. http://sourceforge.net/projects/trustedgrub/files/TrustedGRUB-

1.1.5/TrustedGRUB1.1.5.tar.gz/download

3. sudo tar -xzvf TrustedGRUB-1.1.5.tar.gz

4. cd TrustedGRUB-1.1.5/

5. sudo apt-get install automake

6. sudo apt-get install autoconf

7. sudo apt-get install gcc

8. /build_tgrub.sh

9. Then, before installing anything copy your actual Grub Folder and prepare a live Cd.

10. sudo mv /boot/grub /boot/grub old

11. sudo dpkg -r grub

12. cd TrustedGRUB-1.1.5/

13. sudo make install

14. sudo mkdir /boot/grubsudo cp ../default /boot/grub/

15. sudo cp stage1/stage1 /boot/grub

16. sudo cp stage2/stage2 /boot/grub

17. sudo cp /boot/grub_old/menu.lst /boot/grub

18. sudo grub (Installing New Grub)

19. root (hd0,0)

20. setup (hd0)

21. Quit

31

Figure 5-3 Steps to Enable IMA in the Linux Kernel

1. Start Compiling kernel 2.6.30

2. make menuconfig

3. Select Security Options in the menu list.

4. Press Enter and scroll to Integrity Measurement Architecture (IMA) option.

5. Press Y to make the Integrity Measurement Architecture as the part of kernel. You will see a *

after pressing Y

6. After enabling IMA the TPM is enabled automatically as part of Kernel not as module. It can

be confirmed by navigating to Device Drivers>Character Devices>TPM Hardware Support.

You will see that a * is appeared at the TPM Hardware Support Option.

7. Exit and save Changes to menuconfig and continue Kernel compilation.

8. Reboot the System with new Kernel and check if IMA is running. Use the following command:

9. dmesg | grep ima

10. Output of the above command will be like this on Ubuntu Systems if IMA is running.
[3.280110] Trying to unpack rootfs image as initramfs...

[9.568204] PM: Checking hibernation image.

[54.308667] ima_file_free: drm mm object open/free imbalance

(r:0

w:0 o:0 f:0)

[54.308682] [<c02b38d5>] ima_file_free+0x105/0x120

11. Mount securityfs:
mount -t securityfs securityfs /sys/kernel/security

12. IMA will create a new directory for calculation of SML. This directory will appear in

/sys/kernel/security/ima. IMA directory contains following files.

• ascii_runtime_measurements

• binary_runtime_measurements

• runtime_measurements_count
13. SML can be read as ASCII measurements. Use the following command to read SML list:

cat /sys/kernel/secuirty/ima/ascii_runtime_measurements

14. Output will be like this:
10 3440388c0fcda4f914f519c247e8de283413bd7f ima

68d632b50d84bcfb6f7ea6373e8654f7bd1ebb3c

boot_aggregate

10 8a11aa2017bfdf52ae1ab8cfb277fc651bc7d611 ima

e6d56d44e22b8f6b783c039d45703e8fd28cb796 /init

10 a078e19e5ea2bf75ed353fc6613f7132863618d5 ima

3d90e18f67f1c580c1212126a3c22cf07c7288dd /init

15. The first entry in the above list is PCR number here is 10. Second entry is hash (file data + file

name hint). Fourth entry is hash of file data and last one is file name hint.

32

5.1.4 Interaction with TPM

After making the necessary configurations as explained in the previous sections, we

installed TPM tools on the computer for interaction with TPM. These tools include a)

TrouSers b) TPM Manager.

a) TrouSers

TrouSers is an open source implementation of Trusted Software Stack. It was created and

released by IBM under GPL and provides a well-defined interface for application

developer to access all TPM functions. TrouSers runs as a daemon. We installed

TrouSers and used different TPM functions via command line. Following command

installs TrouSers on the PC.

Since, TrouSers runs as a daemon so it can be started or stopped any time.

b) TPM Manager

In the preliminary stages of implementation, we also installed the TPM Manager to get an

overview of TPM capabilities. TPM Manager is an open source software and provides

GUI interface to view, manage and change settings of TPM like enabling and disabling

TPM, viewing PCR values, changing ownership etc. This tools uses TrouSers daemon so,

TrouSers must be running on the system.

5.1.5 Programing TPM Related Operations

jTSS is a java-based implementation of Trusted Software Stack (TSS) including TSP and

TCS layers with clear and defined interfaces among them. The TSP siting at the top of

TSS provides an interface for java applications to use TPM functions and it interacts with

the lower layer (TCS) operations in the software stack.

sudo apt-get install tpm-tools

sudo /etc/init.d/trousers start

Few TrouSers Commands

TPM Version sudo tpm_version

Getting Public Endorsement Key sudo tpm_getpubek

Taking Ownership sudo tpm_takeownership

Viewing PCR values sudo cat /sys/class/misc/tpm0/device/pcrs

33

 For TPM related operations, we wrote separate java programs using jTSS. Figure 5-4

illustrates the steps involved in setting up initial development environment.

Figure 5-4 Setting up Development Environment using jTSS

5.1.5.1 Sample Java Programs to use TPM functionalities

jTSS can be used in two modes a) local binding b) SOAP bindings. We used the local

bindings mode of jTSS. Local Bindings requires proper rights to TPM device file

/dev/tpm0 before execution of any program.

sudo chmod 777 /dev/tpm0

TrouSers must also be stopped if running by using the following command.

sudo /etc/init.d/trousers stop

Following are few sample programs that utilize TPM functions.

a) Creating Context Object:

Interacting with TPM requires context object. First step to write a program is to create a

context object. Following program creates context object and then displays true if it is

connected. Exceptions must be caught while interacting with TPM.

Figure 5-5 Few of Headers Required for Accessing TPM

1. jTSS uses the tpm0 file located in /dev/tpm0.

2. Install Java:

a. apt-cache search jdk

b. apt-get install sun-java6-jdk sun-java6-jre

3. Install Netbeans, Eclipse or any other IDE if required.

4. Download jTSS from http://sourceforge.net/projects/trustedjava/files/

5. Unzip jTSS-0.5 folder.

6. Copy the jar libraries and ini files located in jTSS_0.5/lib to /usr/lib/jvm/java-6-sun-

1.6.0.20/jre/lib/ext/ OR set class variables for above folder.

7. In order to use full security capabilities of java add JCE Unlimited Strength Jurisdiction

Policy (JCE)Files.

8. Download JCE .

9. Unzip downloaded JCE folder.

10. Copy these files to: <java-home>/lib/security

import iaik.tc.tss.api.tspi.TcIContext;

import iaik.tc.tss.impl.java.tsp.TcTssLocalCallFactory;

import iaik.tc.tss.api.exceptions.common.TcTssException;

34

Figure 5-6 Creating Context Object

b) Taking Ownership of TPM

Context Object is further used to create Tpm Object to access TPM and for

performing operations on TPM. Following Program will set the Owner for TPM. If

ownership is already resumed by any other tool clear it from BIOS and then execute

this program.

During the process of taking ownership Owner enters the shared secret (Owner

password) and a Storage Root Key is generated at the time of taking ownership.

Figure 5-7 Taking TPM Ownership

import iaik.tc.tss.api.tspi.TcIContext;

import iaik.tc.tss.impl.java.tsp.TcTssLocalCallFactory;

import iaik.tc.tss.api.exceptions.common.TcTssException;

public class RT {

public static void main(String[] args) {

 try{

TcIContext context = new

TcTssLocalCallFactory().newContextObject();

 context.connect();

 System.out.println(context.isConnected());

 }

 catch (TcTssException e)

 {

e.printStackTrace();

 }}

}

}

import iaik.tc.tss.impl.java.tsp.TcTssLocalCallFactory;

import iaik.tc.tss.api.exceptions.common.TcTssException;

import iaik.tc.tss.api.tspi.TcITpm;

public class TakeOwn {

public static void main(String[] args) {

try{

TcIContext context = new

TcTssLocalCallFactory().newContextObject();

context.connect();

System.out.println(context.isConnected());

//Creating TPM Object
TcITpm tpm = context.getTpmObject();

//Creating SRK object because the takeOwnship method will take it as an argument.
TcIRsaKey srk =

context.createRsaKeyObject(TcTssConstants.TSS_KEY_SIZE_DEFAULT

|TcTssConstants.TSS_KEY_TYPE_STORAGE);

// Taking Ownership: In second argument Public Endorsement Key (EK) can be passed but if the his argument

//is set as null the method will query TPM for Public EK.
tpm.takeOwnership(srk, null); }

catch (TcTssException e) {

e.printStackTrace (); }}}

35

c) Printing Public Part of Endorsement Key

Figure 5-8 Printing Public Part of Endorsement Key

d) Creating Attestation Identity Key

Private Part of TPM Endorsement Key is used to sign data, which can be verified by

remote parties using Public part of EK. It is unique for each TPM chip and creates

privacy issues. Alternative to this problem is to create another key known as AIK for

signing data. Figure 5-9 illustrates the code for creating AIK.

public class ViewPEK {

public static void main(String[] args) {

try{

TcIContext context = new TcTssLocalCallFactory().newContextObject();

context.connect();

System.out.println(context.isConnected());

//Creating TPM Object
TcITpm tpm = context.getTpmObject();

//Create Key Object to store Public EK
TcIRsaKey pek =

context.createRsaKeyObject(TcTssConstants.TSS_OBJECT_TYPE_RSA

KEY);

// Get Public EK and store in Key Object.
pek = tpm.getPubEndorsementKeyOwner();

System.out.println(trkp.getPubKey().toHexString());

}

 catch (TcTssException e)

 {

 e.printStackTrace();

 }

}

}

36

Figure 5-9 Creating Attestation Identity Key

// Create Storage Root Key Object

TcIRsaKey srk =

context.createRsaKeyObject(TcTssConstants.TSS_KEY_TSP_SRK);

// create policy for Storge root key : None or Different kinds of policies can be set.

TcIPolicy srkpolicy =

context.createPolicyObject(TcTssConstants.TSS_POLICY_USAGE);

// assign policy to SRK

srkpolicy.assignToObject(srk);

// Create Attestation Identity Key Object

TcIRsaKey aik =

 context.createRsaKeyObject(TcTssConstants.TSS_KEY_SIZE_2048 |

TcTssConstants.TSS_KEY_MIGRATABLE

|TcTssConstants.TSS_KEY_TYPE_SIGNING);

//create key usage policy: This policy will ask for a set secret (here 123) when using the AIK.

TcIPolicy keyusagepolicy =

context.createPolicyObject(TcTssConstants.TSS_POLICY_USAGE);

TcBlobData keyUsageSecret = TcBlobData.newString("123");

keyUsagePolicy.setSecret(TcTssConstants.TSS_SECRET_MODE_PLAIN,

keyUsageSecret);

//create key Migration Policy: This policy will prompt for password (here 456) when migrating the

//AIK object.

TcIPolicy keymigrationpolicy=

context.createPolicyObject(TcTssConstants.TSS_POLICY_MIGRATION);

TcBlobData keyMigrationSecret = TcBlobData.newString("456");

keyMigPolicy.setSecret(TcTssConstants.TSS_SECRET_MODE_PLAIN,

keyMigrationSecret);

//Creating & Loading Key in TPM

aik.createKey(srk, null);

aik.loadKey(srk);

37

Figure 5-10 Nonce Generation in the TPM

e) TPM Quote Operation

During the remote attestation process, two entities participate a challenger and a attester.

The challenger initiates remote attestation process by sending a nonce and asks the

attester to prove his integrity. On receiving the nonce, the attester creates quote operation.

The quote is an operation/function of the TPM that takes the following arguments.

 Nonce (received form challenger)

 Value of PCR-10

 Attestation Identity Key

Attester prepares the quote object and sends it to the challenger along with its

Measurement List (SML). On receipt, challenger verifies signature on the quote operation

by using public part of attester’s AIK. After successful signature verification challenger

matches the received nonce (in the quote operation) with the sent and verifies the attester

SML against the quoted PCR-10 value. Quote operation utilizes specialized structures as

depicted in the Figure 5-11 and Figure 5-12.

Figure 5-11 Performing Quote Operation

Generating Nonce inside the TPM

TcBlobData NodeNonce = TcBlobData.newUINT32(123456);

byte[] NonceArray;

NonceArray = new byte[20];

NodeNonce = tpm.getRandom(20);

//define which pcrs to quote
TcIPcrComposite pcrs =

context.createPcrCompositeObject(TcTssConstants.TSS_PCRS_STRU

CT_INFO_SHORT);

// set PCR Index for quote operation: More than once PCR registers can be set here
pcrs.selectPcrIndexEx(10,

TcTssConstants.TSS_PCRS_DIRECTION_RELEASE);

// create TcTssValidation Object for assigning Challenger Nonce
TcTssValidation NodeNonceVal = new TcTssValidation();

// Assign Nonce to created object
NodeNonceVal.setExternalData(NodeNonceBlob);

//Do Quote
tpmquote = tpm.quote(aik, pcrs , NodeNonceVal);

System.out.println(tpmquote);

38

Output of the quote operation has three parts.

1. External Data-20bytes (Here Nonce)

2. Rgb Data – 48 bytes (20 bytes of Rgb Data contains quoted PCR value ranging

from byte 8-28.

3. Rgb Validation Data – 256 bytes (Generated by TPM)

Figure 5-12 Verifying Signature on the Quote Operation

5.2 Image Compression and Encryption Programs

The image compression (workload) programs for android and the cloud node were

written using java built-in functions. Similarly, we did coding of all operations involved

in the proposed scenarios independently and then calculated the measurement time of

each operation by using timers, repeated each experiment thrice and measured execution

times. Coming figures provide java code of Image compression and Image encryption.

// Verifying Signature:

1. Create hash object

TcIHash hobj =

context.createHashObject(TcTssConstants.TSS_HASH_SHA1);

2. Update Hash Object with Rgb Data

hobj.updateHashValue(rgbBlob);

3. Verify Signature: TcPubK is TcIRsaKey Object which holds the Public Part of Aik of

Attester.

hobj.verifySignature(rgbVBlob,TcPubK);

4. Verifying Signature: if no exception is thrown it means signature is verified.

System.out.println("Signature Verified");

rgbBlob (Rgb data read in the TcBlobData of TPM)

TcPubK (Attester’s AIK public part)

39

Figure 5-13 Image Compression Program for Android

Figure 5-14 Image Compression Program for Cloud Node

long starttime = System.currentTimeMillis();

String filepath = "/data/data/";

File imagefile = new File(filepath + "1.jpg");

FileInputStream fis;

fis = new FileInputStream(imagefile);

Bitmap bi = BitmapFactory.decodeStream(fis);

boolean imgc = false;

String extStorageDirectory =

Environment.getExternalStorageDirectory().toString();

File file = new File(extStorageDirectory+"/35Comp.jpg");

FileOutputStream outStream = new FileOutputStream(file);

imgc=bi.compress(Bitmap.CompressFormat.JPEG, 10outStream);

long endtime = System.currentTimeMillis();long executiontime=endtime-

starttime;

TextView tv1 = new TextView(this);

tv1.setText("Successful Compression" +"

 "+"Time Taken="+executiontime);

setContentView(tv1);

outStream.flush();

outStream.close();

long starttime1 = System.currentTimeMillis();

String path = "/home/luqman/Desktop/Results/TestImages/3.jpg";

BufferedImage src = ImageIO.read(new File(path));

System.out.println("whatsfsdfsdf");

Iterator<ImageWriter> i ImageIO.getImageWritersByFormatName("jpeg");

ImageWriter jpegWriter = i.next();

ImageWriteParam param = jpegWriter.getDefaultWriteParam();

param.setCompressionMode(ImageWriteParam.MODE_EXPLICIT);

param.setCompressionQuality(0.1f);

FileImageOutputStream out = new FileImageOutputStream new

File("/home/luqman/Desktop/ImgComNod/3Comp.jpg"));

jpegWriter.setOutput(out);

jpegWriter.write(null, new IIOImage(src, null, null), param);

jpegWriter.dispose();

out.close();

long stoptime = System.currentTimeMillis();

long executiontime = stoptime-starttime1;

System.out.println(executiontime);

40

Figure 5-15 RC4 Image Encryption Program

String filepath = "/data/data/";

File imagefile = new File(filepath + "20Comp.jpg");

byte[] b = new byte[(int) imagefile.length()];

FileInputStream fis;

fis = new FileInputStream(imagefile);

fis.read(b);

//Key Setup

long starttime1 = System.currentTimeMillis();

byte[] password = "password".getBytes("UTF-8")

MessageDigest digest;

digest = MessageDigest.getInstance("MD5");

byte[] hash = digest.digest(password);

long endtime1 = System.currentTimeMillis();

long executiontime1=endtime1-starttime1;

//Encryption RC4

long starttime2 = System.currentTimeMillis();

Cipher rc4Enc;

rc4Enc = Cipher.getInstance("RC4");

rc4Enc.init(Cipher.ENCRYPT_MODE, new SecretKeySpec(hash, "RC4"));

byte[] ctext = rc4Enc.doFinal(b);

long endtime2 = System.currentTimeMillis();

long executiontime2=endtime2-starttime2;

long EncTime=executiontime1+executiontime2

TextView tv1 = new TextView(this);

tv1.setText("Encryption Time” +EncTime+");

setContentView(tv1);

41

Figure 5-16 RC4 Image Decryption Program

//Key Setup

long starttime1 = System.currentTimeMillis();

byte[] password = "password".getBytes("UTF-8")

MessageDigest digest;

digest = MessageDigest.getInstance("MD5");

byte[] hash = digest.digest(password);

long endtime1 = System.currentTimeMillis();

long executiontime1=endtime1-starttime1;

long starttime3 = System.currentTimeMillis();

Cipher rc4Dec;

rc4Dec = Cipher.getInstance("RC4");

rc4Dec.init(Cipher.DECRYPT_MODE, new SecretKeySpec(hash, "RC4"));

byte[] dectext = rc4Dec.doFinal(ctext);

long endtime3 = System.currentTimeMillis();

long executiontime3=endtime3-starttime3;

long DecTime=executiontime1+executiontime3;

 TextView tv1 = new TextView(this);

 tv1.setText("Decrypition TIme "+ DecTime);

 setContentView(tv1);

42

Figure 5-17 Image Receiving Program

Figure 5-18 Image Sending Program

long st2 = System.currentTimeMillis();

java.io.InputStream is = ClientSocket.getInputStream();

DataInputStream dis = new DataInputStream(is);

int reclen = dis.readInt();

System.out.println ("Received Image Length="+reclen);

byte[] RecImg = new byte[reclen];

int i=0;

while (i<=RecImg.length-1460){

ClientSocket.getInputStream().read(RecImg, i, 1460);

i=i+1460;

}

int jj = i;

for(jj=i;jj<=RecImg.length-1;jj++)

{

ClientSocket.getInputStream().read(RecImg, jj, 1);

}

long et2 = System.currentTimeMillis();

long ex2 = et2-st2;

long st7 = System.currentTimeMillis();

java.io.OutputStream os = ClientSocket.getOutputStream();

DataOutputStream dos = new DataOutputStream(os);

dos.writeInt(b.length);

System.out.println ("Compressed Image Length="+b.length);

int ii=0;

while (ii<=b.length-1460){

ClientSocket.getOutputStream().write(b, ii, 1460);

ii=ii+1460;

}

int jc = ii;

for(jc=ii;jc<=b.length-1;jc++)

{

ClientSocket.getOutputStream().write(b, jc, 1);

}

long et7 = System.currentTimeMillis();

long ex7 = et7-st7;

long endtime = System.currentTimeMillis();

43

5.3 Interpolation and Threshold

Interpolation is used to estimate the values of f(x) in the given range of the values of x. In

this section, we present a way to estimate the execution time for any size of images for a

given scenario using Newton Forward Interpolation. Basic idea is to provide estimated

execution time of an image size provided by users for all scenarios. Based on estimated

execution times users can decide any scenario matching their requirements.

5.3.1 Estimation of Overall Execution Time using Interpolation

First step involves the construction of interpolation table. We take four image sizes

(which we have used in experimentation) 244KB, 1.1MB, 2.1 MB and 3 MB for the

construction of interpolation table as shown in Table 4-1.

IS ET(Si) First Difference Second Difference Third Difference

244 ET1:

ET(Si)244Kb

 D11: (ET(Si)1100Kb- ET(Si)244Kb)/(1100-244)

1100 ET2:

ET(Si)1100Kb

 D:21 (D12- D11)/(2100-

244)

 D12:(ET(Si)2100Kb- ET(Si)1100Kb)/(2100-1100) D31:(D22-D21)/(3000-244)

2100 ET3:

ET(Si)2100Kb

 D22: (D13- D12)/(3000-

1100)

 D13: (ET(Si)3000Kb- ET(Si)2100Kb)/(3000-2100)

3000 ET4:

ET(Si)3000Kb

Table 5-1 Interpolation Table

Where IS: Image size in KB

 ET(Si): Execution time of image in scenario-i

 ET(Si)244Kb: Execution time of 244 KB image in Scenario-i

 ET(Si)1100Kb: Execution time of 1100KB image in Scenario-i and so on

Users can estimate the overall execution time for a given size of image by substituting values in

Table 5-1 and then in equation 5-1.

ET estimated = ET1 + (IS user – 244)*D11 + (IS user – 244)* (IS user – 1100)*D21 + (IS user – 244)* (IS user –

244)* (IS user – 2100)*D31 (Equation 5-1)

Where ET estimated is estimated execution time of Image Size IS user provided by user.

44

5.3.2 Estimation of Execution Time on Mobile and Threshold

While offloading data to the cloud the execution time required to offload data has

significant importance due to constrained capabilities of hand-held devices. Offloading is

beneficial only when the execution time required to offload should not exceed from on-

device computation. Mathematically,

EToffload < ETon-device

Where EToffload is Execution Time required to offload data and ETon-device is Execution

Time required to perform on device computation. Using the Table 4-1 and Equation 4-1

users can calculate the respective execution times and then can decide which is the best

scenario for performing computation.

45

CHAPTER 6

Results and Evaluation

6.1 Results

This section provides the detailed implementation results of each scenario.

6.1.1 Data Computation on the Mobile Device (Scenario-1)

This is the first benchmark of our work. For performance analysis of this scenario, we

developed android image compression application and tested different images sizes both

on the Android Emulator and on real Android Device. We used Android Emulator and

Android Nexus One phone and recorded the execution time for each image. Each

experiment was performed thrice. Table 6-1 reveals average results of Scenario-1.

Table 6-1 Execution Time of Scenario-1

Image Size
Execution Time (ms)

On Android Emulator On Real Device

244 KB 3356 503

1.1 MB 4392 737

2.1 MB 26091 2934

3 MB 72800 Error

4.6 MB Error Error

9.7 MB Error Error

Experiments show that compressing 4.6MB image throw error and compressing 3MB

image took too much on android emulator whereas, for real android phone compressing

3MB image throw error.

6.1.2 Data Computation on the Cloud Node (Scenario-2)

In Scenario-2, mobile device offloads images for compression to the Cloud Node. Cloud

Node performs image compression on the behalf of mobile device. In this scenario,

participating entities are Cloud Node (a Dual Core Machine with Ubuntu 9.04) and a

Android device. For the performance analysis of this scenario, we developed a Java

image compression application running on the Cloud node, which performed image

46

compression for Android device. Table 6-2 describes execution time of image

compression of scenario-2.

Table 6-2 Overall Execution Time of Scenario-2 using Android Emulator

*Entries in brackets () represent the entity on which the operation was performed.

6.1.3 Data Computation on the Cloud Node with Encryption (Scenario-3)

In this scenario, mobile device offloads encrypted image to the Cloud for compression.

For implementation, we did breakdown of the operations involved in this protocol as

shown in Table 6-3 and implemented each operation independently. We took RC4

encryption algorithm and used Java libraries for implementation. We summed up the

execution times of individual operations to obtain the overall execution time of a scenario

for a given image size. Table 6-3 depicts the results of each operation and then

accumulative results using Android Emulator whereas Table 6-4 reveals results on the

real Android Phone. For Emulator, we calculated times to send/receive images to node

and read/write operation of local disk as depicted whereas, for real phone as shown is

Table 6-4 does not include send/receive and read/write operations.

Im
ag

e
S

iz
e

Execution Time (ms)

R
ea

d
in

g
 I

m
ag

e
fr

o
m

 L
o

ca
l

D
is

k

(A
n

d
ro

id
 E

m
u

la
to

r)

S
o

ck
et

 C
re

at
io

n

(A
n

d
ro

id
 E

m
u

la
to

r)

S
en

d
in

g
 I

m
ag

e
to

 N
o

d
e

(A
n

d
ro

id
 E

m
u

la
to

r)

Im
ag

e
C

o
m

p
re

ss
io

n
 o

n
 N

o
d

e

(N
o

d
e)

R
ec

ei
v

in
g

 C
o

m
p

re
ss

ed
 I

m
ag

e
fr

o
m

 N
o

d
e

(A
n

d
ro

id
 E

m
u

la
to

r)

W
ri

ti
n
g

 C
o

m
p

re
ss

ed
 I

m
ag

e
to

 L
o

ca
l

D
is

k

(A
n

d
ro

id
 E

m
u

la
to

r)

T
o

ta
l

244 KB 214 15 1522 287 443 46 2527

1.1 MB 1284 30 2060 414 236 34 4058

2.1 MB 1164 61 3859 1509 354 51 6998

3 MB 1155 17 3790 2941 560 88 8551

4.6 MB 1362 5 4254 2621 739 147 9128

9.7 MB 1433 16 4739 4544 313 86 11131

47

Table 6-3 Overall Execution Time of Scenario-3 Using Android Emulator

Im
ag

e
S

iz
e

Execution Time (ms)

R
ea

d
in

g
 I

m
ag

e
fr

o
m

 L
o

ca
l

D
is

k
 (

A
n
d
ro

id
 E

m
u

la
to

r)

E
n

cr
y

p
ti

n
g

 I
m

ag
e

(A
n
d

ro
id

 E
m

u
la

to
r)

S
o

ck
et

 C
re

at
io

n
 (

A
n
d

ro
id

 E
m

u
la

to
r)

S
en

d
in

g
 E

n
cr

y
p
te

d

Im
ag

e
to

 N
o
d

e
(A

n
d

ro
id

 E
m

u
la

to
r)

D
ec

ry
p

ti
n
g

 R
ec

ei
v
ed

 I
m

ag
e

(N
o

d
e)

C
o

m
p

re
ss

in
g

 R
ec

ei
v
ed

 I
m

ag
e

(N
o

d
e)

E
n

cr
y

p
ti

n
g

 C
o

m
p

re
ss

ed
 I

m
ag

e
(N

o
d

e)

R
ec

ei
v

in
g

 E
n

cr
y
p

te
d

 I
m

ag
e

(A
n
d

ro
id

 E
m

u
la

to
r)

D
ec

ry
p

ti
n
g

 C
o

m
p

re
ss

ed
 I

m
ag

e
(A

n
d

ro
id

 E
m

u
la

to
r)

W
ri

ti
n
g

C

o
m

p
re

ss
ed

Im

ag
e

to

L
o

ca
l

D
is

k

(A
n

d
ro

id

E
m

u
la

to
r)

T
o

ta
l

244 KB 214 1738 15 1522 48 287 37 443 181 46 4531

1.1 MB 1284 3126 30 2060 55 414 45 236 420 34 7704

2.1 MB 1164 3229 61 3859 64 1509 48 354 699 51 11038

3 MB 1155 3661 17 3790 64 2941 48 560 821 88 13145

4.6 MB 1362 5208 5 4254 80 2621 47 739 1480 147 15943

9.7 MB 1433 11838 16 4739 118 4544 55 313 2609 86 25751

*Entries in brackets () represent the entity on which the operation was performed.

Table 6-4 Overall Execution Time of Scenario-3 Using Android Real Phone

Image Size

Execution Time (ms)

RC4 Encryption on

Android Phone

(Image)

RC4 Decryption on

Cloud Node

Image

Compression

On

Cloud Node

RC4 Encryption

on

Cloud Node

RC4 Decryption

on

Android Phone

(Compressed Image)

Total

244 KB 149 48 287 37 49 570

1.1 MB 214 55 414 45 84 812

2.1 MB 434 64 1509 48 202 2257

3 MB 621 64 2941 48 376 4050

4.6 MB 835 80 2621 47 391 3974

9.7 MB 1498 118 4544 55 513 6728

48

6.1.4 Data Computation on the Cloud Node with Encryption and Remote

Attestation (Scenario-4)

Scenario-4 introduces both Remote Attestation and Encryption. Participating Entities are

Trusted Coordinator (TC), a Cloud Node and Android emulator/phone. This scenario has

two parts a) Remote Attestation between the Cloud Node and TC b) Data Computation

on the Cloud. In the coming sub-sections we describe results of remote attestation

between the Cloud Node and then provide overall execution time of Scenario-4.

6.1.4.1 Remote Attestation between the Cloud Node and the TC

We did breakdown of the Remote Attestation protocol and implemented all operations

involved in Remote Attestation independently on the TPM enabled Core to Duo PC

installed with Ubuntu 9.04. Table 6-5 provides breakdown and operation-wise execution

times while Table 6-6 provides step-wise execution time of the protocol.

Table 6-5 Operation-wise Execution Time of Remote Attestation Protocol

S.

No
Operation

Execution

Time (ms)

1 Context and TPM object creation for interaction with TPM. 170.2

2 Nonce Generation 173.5

3 Attestation Identity Key Creation (Prompts Owner Password for two time) 21951

4 Attestation Identity Key loading 2636

5 Doing Quote Operation 903

6 Signature Verification on Quote Operation 21

7 Nonce Verification Quote Operation 0

8 Measurement List (Assumed Reference PCR) comparison with Quoted Operation 71

9 Reading Measurement list from kernel files 33.6

10 Calculating Hash of Measurement list 171.9

11 Trusted Key Pair Generation Time (RSA Java Key of 2048-bit) 1144.5

12 Encryption with Trusted Key (Public Part) 448.7

13 Decryption with Trusted Key (Private Part) 35.2

49

Table 6-6 Step-wise Execution time (ms) of Remote Attestation Protocol

Step 1
1*

173.5
173.5

Step 2
4* 5* 1* 9*

3746.1
2636 903 173.5 33.6

Step 3
6* 7* 8* 4* 5* 11* 9* 12* 10*

4399.7
21 0 71 2636 903 1144.5 33.6 448.7 171.9

Step 4
6* 7* 8* 10* 13* 12*

747.8
21 0 71 171.9 35.2 448.7

Total 9067.1

Numbers with * refer to S. No of Table 5-4

Step-wise execution time of Remote Attestation Protocol is calculated by adding the

execution time of operations involved in the respective step. In the Table 6-5, we

included the execution time of the Attestation Identity Key Loading only and assume that

both the Cloud Node and the TC has already generated their AIKs, and they just load it

during Remote Attestation process. We obtain the overall execution time of remote

attestation protocol by summing the execution times of individual operations. Network

delays, latencies and file read/write overheads are not included in overall execution time.

6.1.4.2 Overall Execution Time of Scenario-4

Table 6-7 provides total execution time Scenario-4 for Android Emulator whereas Table

6-8 provides for Android real phone. We are calculating the overall execution time,

which include execution time of Remote Attestation between Cloud Node and TC. The

operations performed by each participating entity are indicated in the respective tables.

For real android phone, we are not addressing the times required to read/write and time

required to send image on the network.

50

Table 6-7 Overall Execution Time of Scenario-4 Using Android Emulator

Entries having * indicate the entities on which the given operation is performed. N&T indicates Remote Attestation between Cloud Node and TC. And Indicates

Android Emulator and Nod Indicates Cloud Node.

Total includes 19millisecond s for socket creation with every value.

 Total Execution Time of Scenario 4

Im
ag

e
S

iz
e

Execution Time (ms)

R
em

o
te

 A
tt

es
ta

ti
o

n

R
C

4
 K

ey

+

 N
o
n

ce
 E

n
cr

y
p
ti

o
n
 w

it
h

T

K
 p

u
b
li

c
T

C

R
ea

d
in

g
 I

m
ag

e
fr

o
m

 L
o

ca
l

D
is

k

Im
ag

e
E

n
cr

y
p
ti

o
n

u

si
n
g

 R
C

4

S
en

d
in

g
 I

m
ag

e
to

 N
o

d
e

S
H

A
-1

 C
al

cu
la

ti
o
n

 S
ig

n
in

g
 H

as
h

S
ig

n
at

u
re

 V
er

if
ic

at
io

n

S
H

A
-1

 V
er

if
ic

at
io

n

R
C

 K
ey

 a
n

d
 N

o
n

ce
 D

ec
ry

p
ti

o
n

E
n

cr
y

p
ti

n
g

 K
ey

S
H

A
-1

 C
al

cu
la

ti
o
n

S
ig

n
in

g
 S

H
1
 H

as
h

S
ig

n
at

u
re

 V
er

if
ic

at
io

n

S
H

A
-1

 V
er

if
ic

at
io

n

D
ec

ry
p

ti
n
g

 K
ey

 Im
ag

e
D

ec
ry

p
ti

o
n

Im
ag

e
C

o
m

p
re

ss
io

n

E
n

cr
y

p
ti

o
n

 C
o

m
p

re
ss

ed
 I

m
ag

e

R
ec

ei
v

in
g

 C
o

m
p

re
ss

ed
 I

m
ag

e

D
ec

ry
p

ti
o
n

 C
o

m
p

re
ss

ed
 I

m
ag

e

W
ri

ti
n
g

 C
o

m
p

re
ss

ed
 I

m
ag

e
to

 L
o

ca
l

D
is

k

T
o

ta
l

N&T* A* A* A* A* N* N* TC* TC* TC* TC* TC* TC* N* N* N* N* N* N* A* A* A*

244Kb 9067.1 11 214 1738 1522 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 48 287 37 443 181 46 13818

1.1 Mb 9067.1 11 1284 3126 2060 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 55 414 45 236 420 34 16976

2.1 Mb 9067.1 11 1164 3229 3859 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 64 1509 48 354 699 51 20279

3 Mb 9067.1 11 1155 3661 3790 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 64 2941 48 560 821 88 22430

4.6 Mb 9067.1 11 1362 5208 4254 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 80 2621 47 739 1480 147 25240

9.7 Mb 9067.1 11 1433 11838 4739 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 118 4544 55 313 2609 86 35037

51

Table 6-8 Overall Execution Time of Scenario-4 using Real Android Phone

Entries having * indicate the participating entities. N&T indicates Remote Attestation between Cloud Node and TC. And Indicates Android Real Phone and Nod

Indicated cloud Node. RC4 Key here is just a string and time required to encrypt can be negligible.

Total Execution Time of Scenario 4

Im
ag

e
S

iz
e

Execution Time (ms)

R
em

o
te

 a
tt

es
ta

ti
o
n

R
C

4
 K

ey

+

 N
o
n

ce
 E

n
cr

y
p
ti

o
n
 w

it
h

T

K
 p

u
b
li

c
T

C

Im
ag

e
E

n
cr

y
p
ti

o
n

R

C
4

S
H

A
-1

 C
al

cu
la

ti
o
n

 S
ig

n
in

g
 H

as
h

S
ig

n
at

u
re

 V
er

if
ic

at
io

n

S
H

A
-1

 V
er

if
ic

at
io

n

R
C

 K
ey

 a
n

d
 N

o
n

ce
 D

ec
ry

p
ti

o
n

E
n

cr
y

p
ti

n
g

 K
ey

S
H

A
-1

 C
al

cu
la

ti
o
n

S
ig

n
in

g
 S

H
1
 H

as
h

S
ig

n
at

u
re

 V
er

if
ic

at
io

n

S
H

A
-1

 V
er

if
ic

at
io

n

K
ey

 D
ec

ry
p
ti

o
n

 Im
ag

e
D

ec
ry

p
ti

o
n

Im
ag

e
C

o
m

p
re

ss
io

n

E
n

cr
y

p
ti

o
n

 C
o

m
p

re
ss

ed
 I

m
ag

e

D
ec

ry
p

ti
o
n

 C
o

m
p

re
ss

ed
 I

m
ag

e

T
o

ta
l

N&T* And* And* Nod* Nod* TC* TC* TC* TC* TC* TC* Nod* Nod* Nod* Nod* Nod* Nod* And*

244Kb 9067.1 149 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 48 287 37 49 9842

1.1 Mb 9067.1 214 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 55 414 45 84 10084

2.1 Mb 9067.1 434 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 64 1509 48 202 11529

3 Mb 9067.1 621 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 64 2941 48 376 13322

4.6 Mb 9067.1 835 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 80 2621 47 391 13246

9.7 Mb 9067.1 1498 0.6 50 0.6 0.6 46 9.33 0.6 50 0.6 0.6 46 118 4544 55 513 16000

52

6.1.5 Data Computation on the Cloud Node with Encryption and Two-way

Remote Attestation (Scenario-5)

In the Scenario-5, TC attests Cloud Node and Cloud also attests the Mobile Device. Table

6-9 reveals the breakdown and results of the operations involved in this scenario. We

performed remote attestation operations on a TPM enabled Dual Core machine running

Ubuntu 9.04. We assume that the Android emulator in this scenario is equipped with

TPM emulator. We also assume the execution time of TPM related operations on

Android Emulator to those of the TPM operations on computers. In total execution time

of this scenario, the Remote Attestation time between Cloud Node and TC is also

included. We take AIK generation time of the android device as that of Java RSA key

generation time and include the time in total execution time of this scenario.

53

Table 6-9 Overall Execution Time of Scenario-5 using Android Emulator

Entries having * represent Participating entities. N&T represents N Attestation between Cloud Node and TC, N, A and TC represent Cloud Node, Trusted

Coordinator and Android Emulator respectively. TPM Op represents TPM Operations on Android Emulator that we are assuming.

Im
ag

e
S

iz
e

(M
B

)

Execution Time (ms)

R
em

o
te

 A
tt

es
ta

ti
o

n

N
o

n
ce

 G
en

er
at

io
n

 (
 T

P
M

 O
p

)

A
IK

 G
en

er
at

io
n

(

T
P

M
 O

p
)

R
C

4
 K

ey

+

 N
o
n

ce
 E

n
cr

y
p
ti

o
n
 w

it
h

T

K
 p

u
b
li

c
T

C

R
ea

d
in

g
 I

m
ag

e
fr

o
m

 L
o

ca
l

D
is

k

Im
ag

e
E

n
cr

y
p
ti

o
n

 w
it

h
 R

C
4
 k

ey

S
en

d
in

g
 I

m
ag

e
to

 N
o

d
e

S
ig

n
in

g
 M

es
sa

g
e

w
it

h
 T

K
 p

ri
v
at

e
N

o
d
e

E
n

cr
y

p
ti

n
g

 M
es

sa
g
e

w
it

h
 T

K
 p

u
b
li

c

D
ec

ry
p

ti
o
n

 o
f

m
es

sa
g

e
se

n
t

b
y

 N
o

d
e

S
ig

n
at

u
re

 v
er

if
ic

at
io

n
 o

f
m

es
sa

g
e

se
n
t

b
y

 n
o
d

e

D
ec

ry
p

ti
o
n

 o
f

m
es

sa
g

e
(e

n
cr

y
p
te

d
 b

y
 A

n
d

)

E
n

cr
y

p
ti

n
g

 m
es

sa
g

e
fo

r
n

o
d
e

S
ig

n
in

g
 m

es
sa

g
e

fo
r

n
o
d

e

S
ig

n
at

u
re

 V
er

if
ic

at
io

n

D
ec

ry
p

ti
o
n

 o
f

m
es

sa
g

e

E
n

cr
y

p
ti

n
g

 w
it

h
 S

y
m

m
et

ri
c

k
ey

 o
f

A
n

d
ro

id

 D
ec

ry
p

ti
n
g

 m
es

sa
g
e

se
n

t
b
y

 n
o

d
e

Q
u

o
te

 O
p

er
at

io
n

 (
T

P
M

 O
p

)

V
er

if
y

in
g

 Q
u

o
te

 O
p

er
at

io
n

(T

P
M

 O
p
)

Im
ag

e
D

ec
ry

p
ti

o
n

 r
ec

ei
v
ed

 f
ro

m
 A

n
d

Im
ag

e
C

o
m

p
re

ss
io

n

C
o

m
p

re
ss

ed
 I

m
ag

e
E

n
cr

y
p

ti
o

n

R
ec

ei
v

in
g

 C
o

m
p

re
ss

ed
 I

m
ag

e

C
o

m
p

re
ss

ed
 I

m
ag

e
D

ec
ry

p
ti

o
n

W
ri

ti
n
g

 C
o

m
p

re
ss

ed
 I

m
ag

e
to

 L
o

ca
l

F
il

e

T
o

ta
l

N&T* A* A* A* A* A* A* N* N* TC* TC* TC* TC* TC* N* N* N* A* A* N* N* N* N* A* A* A*

244 K 9067.1 1.6 7162 11 214 1738 1522 404 3 168 3 156 3 387 3 175 2 4 903 92 48 287 37 443 181 46 23061

1.1 M 9067.1 1.6 7162 11 1284 3126 2060 404 3 168 3 156 3 387 3 175 2 4 903 92 55 414 45 236 420 34 26219

2.1 M 9067.1 1.6 7162 11 1164 3229 3859 404 3 168 3 156 3 387 3 175 2 4 903 92 64 1509 48 354 699 51 29522

3 M 9067.1 1.6 7162 11 1155 3661 3790 404 3 168 3 156 3 387 3 175 2 4 903 92 64 2941 48 560 821 88 31673

4.6 M 9067.1 1.6 7162 11 1362 5208 4254 404 3 168 3 156 3 387 3 175 2 4 903 92 80 2621 47 739 1480 147 34483

9 .7 M 9067.1 1.6 7162 11 1433 11838 4739 404 3 168 3 156 3 387 3 175 2 4 903 92 118 4544 55 313 2609 86 44280

54

6.2 Discussion

This section provides result comparisons of all scenarios. First perspective of comparison

is the total execution time of each scenario and other resource utilization in terms of

execution time on the mobile device for each scenario. Moreover, we analyze different

TPM operations with respect to execution time.

6.2.1 Overall Execution Time of Each Scenario

We calculated the overall execution time of each scenario by summing up the individual

operations that are performed at each participating entity. Remote Attestation times

between TC and Cloud Node (Scenarios-4 and Scenario-5) are included here. Results of

using both Android emulator and Android real phone are presented separately in Table 6-

10 and Table 6-11 respectively.

Table 6-10 Overall Execution Times of All Scenarios using Android Emulator

Image Size
Execution Time (ms)

Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5

244 KB 3356 2527 4531 13818 23061

1.1 MB 4392 4058 7704 16976 26219

2.1 MB 26091 6998 11038 20279 29522

3 MB 72800 8551 13906 22430 31673

4.6 MB Error 9128 15943 25240 34483

9 .7 MB Error 11131 25751 35037 44280

55

For android emulator, offloading 244KB image in Scenario-2 reduces overall execution

time 25% and offloading the same in Scenario-3, Scenario-4 and Scenario-5 increases

overall execution time 1.3, 4.1 and 6.8 times respectively. However, offloading 3MB

image reduces overall execution time to 89%, 82%, 69%, and 57% in Scenrios-2, 3, 4 and

5 respectively. Results show that offloading small size image like 244KB in Scenarios-

3,4 and 5 significantly increases the overall execution time as compared to local

processing but on the other hand offloading large sized images like 3MB reduces over-

all execution time in all scenarios.

Table 6-11 Overall Execution Times of All Scenarios using Android Real Phone

Image Size
Execution Time (ms)

Scenario 1 Scenario 2 Scenario 3 Scenario 4

244 KB 503 287 570 9842

1.1 MB 737 414 812 10084

2.1 MB 2934 1509 2257 11529

3 MB Error 2941 4050 13322

4.6 MB Error 2621 3974 13246

9 .7 MB Error 4544 6728 16000

For Real android phone we performed experiments for scenarios 1,2,3 and 4 and File

read/write and network times are not included.

0

10000

20000

30000

40000

50000

60000

70000

80000

244 KB 1.1 MB 2.1 MB 3 MB 4.6 MB 9 .7 MB

Ex
e

cu
ti

o
n

 T
Im

e
 (

m
s)

Image Size

Comparison of Overall Execution Times Using Android Emulator

Scenario-1

Scenaroi-2

Scenario-3

Scenaroi-4

Scenario-5

56

Using Android Nexus One Phone, offloading 2.1MB to the Cloud reduces overall

execution time to 49% and 23 % in Scenario-2 and Scenario-3 respectively, while overall

execution time increases 4 times using Scenrio-4.

6.2.2 Mobile Device Resource Utilization

Second perspective of result comparison is to analyze the resource utilization of mobile

device in terms of execution time. Table 6-12 and Table 6-13 show the execution time on

Android emulator and Android real phone respectively for each scenario. Graphical

representations are also given in the respective graphs.

Table 6-12 Mobile Device Resource Utilization using Android Emulator

Image Size
Execution Time (ms)

Scenario-1 Scenario-2 Scenario-3 Scenario-4 Scenario-5

244 KB 3356 2240 4159 4174 12226

1.1 MB 4392 3644 7190 7190 15242

2.1 MB 26091 5489 9417 9386 17438

3 MB 72800 5610 10092 10105 18157

4.6 MB Error 6507 13195 13220 21272

9 .7 MB Error 6587 21034 21048 29100

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

244 KB 1.1 MB 2.1 MB 3 MB 4.6 MB 9 .7 MB

Ex
e

cu
ti

o
n

 T
Im

e
 (

m
s)

Imag Size

Overall Execution Times using Android Real Phone

Scenario 1

Scenario 2

Scenario 3

Scenario 4

57

We measure the mobile device resource utilization with respect to execution times.

Offloading 244KB image using Android Emulator in Scenario-2 saves the mobile device

resources 34% while offloading the same (244 KB image) increases mobile device

resources utilization up to 20% in Scenario-3 and Scenario-4 and increases 73% for

Scenario-5. Since, offloading small size image like 244KB increases mobile device

resource utilization in Scenarios-3, 4 and 5 but offloading the large image 3Mb saved

mobile device resources up to 87% for Scenarios 3 and 4 and 76% for Scnenario-5.

Offloading either in Scenario-3 or in Scenario-4 does not make much difference on

mobile device resource utilization.

Table 6-13 Mobile Device Resource Utilization using Android Real Phone

Image Size
Execution Time (ms)

Scenario-1 Scenario-2 Scenario-3 Scenario-4

244 KB 503 0 198 198

1.1 MB 737 0 298 298

2.1 MB 2934 0 636 636

3 MB Error 0 997 997

4.6 MB Error 0 1226 1226

9 .7 MB Error 0 2011 2011

0

10000

20000

30000

40000

50000

60000

70000

80000

244 KB 1.1 MB 2.1 MB 3 MB 4.6 MB 9 .7
MB

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Image Size

Comparison Mobile Device Times Using Android

Emulator

Scenario-1

Scenario-2

Scenario-3

Scenario-4

Scenario-5

58

For Android Nexus One phone, offloading 2.1MB image saves mobile device resources

100% in Scenario-2(Since we are not addressing Network and Read/write times) and

79% in Scenario-3 and Scenario-4.

6.2.3 Comparison of Major TPM Operations

We have implemented major TPM operations involved in remote attestation protocol and

results show that AIK generation is the most time consuming operation. Execution time

of other operations like Context and TPM Objects creation and Nonce Generation are

quite negligible.

0

500

1000

1500

2000

2500

3000

3500

244 KB 1.1 MB 2.1 MB 3 MB 4.6 MB 9 .7 MB

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Image Size

Comparison of Mobile Device Resource Utilization using Android

Real Phone

Scenario-1

Scenario-2

Scenario-3

Scenario-4

0

5000

10000

15000

20000

25000

Context and
TPM Object

Creation

Nonce
Generation

AIK
Generation

AIK Loading Quote
Operation

Ex
e

cu
ti

o
n

 T
Im

e
(m

s)

TPM Operation

Major TPM Operations

59

CHAPTER 7

Conclusions and Future Recommendation

7.1 Conclusions

Cloud Computing has emerged as an attractive platform for mobile devices to offload

their computations to the cloud and hand-held devices with internet access are looking

towards the cloud for resource intensive tasks. However, like traditional desktop clients

mobile devices are also facing privacy, confidentiality and integrity issues while

performing computations or moving data to or from the cloud.

In this thesis, we analyze the performance of different proposed scenarios. We analyzed

two aspects of the performance with respect to execution time. The first aspect is overall

execution time of a given scenario and second the mobile device resource utilization in

terms of execution time. In the overall execution time we are taking the case where the

remote attestation time between cloud node and TC are included. This time (Remote

Attestation) may be excluded if TC has already attested the cloud node. The image size

has significant impact on the performance while offloading data. Results show that for

small size images performing on-device computation is more efficient as compared to

offloading in a secure scenario. However offloading large size images reduces the overall

execution time as compared to on-device computation.

Second aspect of our analysis is mobile device resource utilization that is of much

importance due to limited battery and power processing capabilities of hand-held devices.

In this thesis, we calculated the resource utilization of the mobile device with respect to

the execution times that a mobile device consumes for different operations involved in a

particular scenario. Time required to offload data and secure the data in terms of

encryption should be taken into account while offloading. Offloading is beneficial only

when these times should not exceed from that of on-device computation. Sending large

size encrypted images to the cloud for compression saved mobile device resource

utilization.

Moreover, we also compared different TPM operations and results show that AIK

generation is one of the most resource intensive tasks of the TPM. Summing up

60

individual operations’ time of remote attestation between the cloud node and TC

(excluding AIK generation) resulted in overall execution time of about 10 seconds.

Calculating execution times of file/read write operations and network overheads may

increase the overall execution time of remote attestation to some extent.

The proposed scenario-5 and the operations involved in two-way remote attestation were

only implemented on the android emulator. The execution times of the operations

involving mobile TPM have been assumed in our implementation due to un-availability

of TPM on the android.

For experimentation on real android phone we are not addressing the network and read

write overheads.

7.2 Future Recommendations

In this thesis, we implemented operations involved in proposed scenarios independently

and analyzed their performance. We recommend complete implementation of each

scenario with offloading of virtual machines or applications instead of data. Another

interesting area for research would be to write a light-weight Trusted Software Stack like

jTSS for android based applications to use TPM emulator functionalities or to make

changes in the existing jTSS library to make it compatible with android based

applications.

While implementing the operations of remote attestation protocol the cumulative hash of

the SML didn’t match with the quoted PCR value. This may be an implementation

problem and needs to be fixed in the future work.

61

Bibliography

1. Kelton Research. Global Survey: Has Cloud Computing Matured? Kelton Research,

2011.

2. Michael Armbrust, Armando Fox, Rean Griffih, Anthony D. Joseph, R. Katz, A .

Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. Zaharia. Above the

Clouds: A Berkeley View of Cloud Computing. California : RAD Lab, 2009.

3. Amazon. Amazon Elastic Compute Cloud . Amazaon Cloud Services. [Online] 2011.

[Cited: December 24, 2011.] http://aws.amazon.com/ec2/.

4. Flexiant Ltd. FlexiScale Public Cloud. Flexiant Ltd. [Online] 2011. [Cited: December

24, 2011.] http://www.flexiant.com/products/flexiscale/.

5. Go Grid. Cloud Hosting: How GoGrid Works? Cloud Hosting, Cloud Servers, Hybrid

Hosting from GoGrid. [Online] [Cited: December 24, 2011.]

http://www.gogrid.com/cloud-hosting/.

6. IBM. IBM Cloud Computing Overview. IBM. [Online] 2011. [Cited: December 24,

2011.] http://www.ibm.com/cloud-computing/us/en/.

7. Reporter, CircleID. Survey: Cloud Computing 'No Hype', But Fear of Security and

Control Slowing Adoption. CircleID. [Online] [Cited: December 24, 2011.]

http://www.circleid.com/posts/20090226_cloud_computing_hype_security/.

8. Trusted Computing Group. Trusted Computing Group. Trusted Computing Group.

[Online] [Cited: December 24, 2011.] http://www.trustedcomputinggroup.org/.

9. Trusted Platform Module. Trusted Computing Group. [Online] [Cited: December 24,

2011.] http://www.trustedcomputinggroup.org/developers/trusted_platform_module.

10. Towards Trusted Cloud Computing. Nuno Santos, Krishna P. Gummadi, Rodrigo

Rodrigues. San Diego : HotCloud'09, 2009. MPI-SWS, HotCloud '09.

11. Sealed Storage for Cloud Computing. Cheng, Ge and Ohoussou, Alex K. Hebei,

China : ICCDA, 2010. nternational Conference on Computer Design and Applications.

12. Clone Cloud: Elastic Execution between Mobile Device and Cloud. Chun, B.G., et

al., et al. Salzburg : EuroSys, 2011. 6th European Conference on Computer Systems

(EuroSys 2011).

62

13. Trusted Computing Group. Mobile. Trusted Computing Group. [Online] [Cited:

Decebmer 24, 2011.] http://www.trustedcomputinggroup.org/developers/mobile.

14. Strasser, Mario and Stamer, Heiko . Software-based TPM Emulator. Software-based

TPM Emulator. [Online] 2004. [Cited: December 24, 2011.] http://tpm-

emulator.berlios.de/.

15. Xen and the Art of Virtualization. Barham, Paul, et al., et al. Bolton Landing, NY

USA : SOSP '03, 2003. 19th ACM Symposium on Operating Systems Principals (SOSP

‘03).

16. Google. Google Apps for Business. Google Apps for Business. [Online] [Cited:

December 24, 2011.] http://www.google.com/apps/intl/en/business/index.html.

17. Augmented Smart Phone Applications through Clone Cloud Execution. B-G, Chun

and P, Maniatis. Monte Verità, Switzerland : HotOS'09, 2011. USENIX hot OS XII.

18. Trusted Computing Group. TPM Main Specification. Trusted Computing Group.

[Online] [Cited: December 24, 2011.]

http://www.trustedcomputinggroup.org/resources/tpm_main_specification.

19. Trusted Grub. TrouSers (The Open Source TCG Software). [Online] [Cited:

December 24, 2011.] http://trousers.sourceforge.net/grub.html.

20. Attestation based Policy Enforcement for Remote Access. Sailer, Reiner , et al., et al.

Washington, DC, USA : CCS '04 , 2004. 11th ACM Conference on Computer and

Communications Security (CCS 2004).

21. A Robust Integrity Reporting Protocol for Remote Attestation. Stumpf, Frederic , et

al., et al. Tokyo : WATC'06, 2006. Workshop on Advances in Trusted Computing

(WATC '06 Fall).

22. IAIK. Trusted Computing for the Java (tm) Platform. Trusted Computing for the Java

(tm) Platform. [Online] [Cited: December 24, 2011.]

http://trustedjava.sourceforge.net/index.php?item=jtss/about.

23. Trusted Computing Group. TrouSers (The Open source TCG Software Stack).

TrouSers. [Online] [Cited: December 24, 2011.] http://trousers.sourceforge.net/.

24. A trusted computing environment model in cloud architecture. Li, Xiao-Yong , et al.,

et al. Qingdao : Ninth International Conference on Machine Learning and Cybernetics,

2010. Ninth International Conference on Machine Learning and Cybernetics.

63

25. Integrity Measurement Model Based on Trusted Virtual Platform. Qiu, Gang , Want,

Yeulei and Zhou, Lihua . Shenzhen, China : IEEE ICGEC-2010, 2010. Fourth

International Conference on genetic and Evolutionary Computing.

26. vTPM: Virtualizing the Trusted Platform Module. Berger, S, et al., et al. Vancouver

B.C., Canada : Security 06, 15th USENIX Security Symposium, 2006. 15th Conference

on USENIX Security Symposium (USENIX).

27. Hey, You, Get off My Cloud: Exploring Information Leakage in Third-Party Compute

Clouds. Ristenpart, Thomas, et al., et al. Chicago : CCS '09, 2009. CCS’09.

