

Quantifying the Impact of Randomness in Simulation Based Studies

 By

Sehar Iqbal

2010-NUST-MS-CCS-22

Thesis Supervisor

Dr. Abdul Ghafoor

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree

of Master of Science in Computer and Communication Security (MS CCS)

In

Department of Computing (DoC)

School of Electrical Engineering & Computer Science (SEECS)

National University of Sciences & Technology (NUST),

Islamabad, Pakistan

(2014)

Approval

This thesis has been submitted in partial fulfillment of requirements for the Master of Science in

Computer and Communication Security (MS CCS) at National University of Sciences &

Technology.

It is certified that the contents and form of the thesis entitled “Quantifying the Impact of

Randomness in Simulation Based Studies” submitted by Sehar Iqbal have been found

satisfactory for the requirement of the degree.

Advisor: Dr. Abdul Ghafoor

Signature: ________________________

Date: ________________________

Committee Member 1: Dr. Hassaan Khaliq Qureshi

Signature: ________________________

 Date: ________________________

Committee Member 2: Dr. Adnan Iqbal

Signature: ________________________

 Date: ________________________

Committee Member 3: Mr. Mohsan Jameel

Signature: ________________________

 Date: ________________________

i

Abstract

Many scientific studies in Wireless Sensor Networks rely on simulations and correctness of these

simulation results is heavily dependent on random numbers. In current situation, most of

researchers generally use random numbers generated through common random number

generating APIs of modern programming languages. This research activity describes the

comparative analysis of existing random number generators and evaluates their impact of using

different types of random numbers in a simulation based study of WSN. In this study, eight

different types of random numbers generation algorithms are considered. These random numbers

are first evaluated using standard random number testing procedures such as Run Test, Serial

Test, and Chi square Test. After that the same random numbers in a Markov chain based

probabilistic study of Wireless Sensor Networks are analyzed. Our empirical analysis reveals

that there is a correlation between strength of random numbers and accuracy of simulation.

Simulation provides correct results if the right Random Number Generator which is strong

enough respect to its random properties is chosen. It is also shown that Random Number

Generators with similar properties used in the simulation modeling produce similar results.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my knowledge it

contains no materials previously published or written by another person, nor material which to a

substantial extent has been accepted for the award of any degree or diploma at National

University of Sciences & Technology (NUST) School of Electrical Engineering & Computer

Science (SEECS) or at any other educational institute, except where due acknowledgement has

been made in the thesis. Any contribution made to the research by others, with whom I have

worked at SEECS NUST or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for

the assistance from others in the project's design and conception or in style, presentation and

linguistics which has been acknowledged.

 Author Name: Sehar Iqbal

Signature: _______________

iii

Acknowledgement

First of all I thank and praise Allah for giving me persistence to complete my Master degree and

then my parents and family, who have always motivated me to be diligent and to believe in my

abilities.

This thesis would not have been possible without a kind support of my supervisor Dr. Abdul

Ghafoor and Dr. Adnan Iqbal who has always inspired me with his dedication and enthusiasm

to work.

I would like to appreciate and thank my committee members, Dr. Hassaan Khaliq Qureshi and

Mr. Mohsan Jameel who have always given me their precious time and guided me through my

work. Their critique and constructive comments has always helped me in improving my work.

And finally, special thanks to my friends who have always provided me all kind of

encouragement throughout the span of my thesis work.

Sehar Iqbal

iv

Dedication

Dedicated

to

my loving Husband

for supporting me all the way!

v

Table of Contents

1. Introduction ... 1

1.1 Objectives ... 4

1.2 Motivation .. 5

1.3 Problem Statement ... 5

1.4 Research Methodology ... 5

1.5 Thesis Organization.. 7

2. Related Work ... 8

2.1 Improving WSN simulation and analysis accuracy using 2-Tier Channel Models 8

2.2 High Performance System for Generation and Testing of RNGs 9

2.3 Testing Random Number Generators ... 11

2.4 Handbook of Applied Cryptography .. 12

2.5 C Library for Empirical Testing of Random Number Generators 14

2.6 Statistical Testing of Random Number Generators.. 15

3. Random Number Generation ... 17

3.1 Randomness and Unpredictability ... 17

3.2 Random Number Generators (RNGs) .. 17

3.3 Pseudorandom Number Generators (PRNGs).. 18

3.4 Using Pseudorandom Number Algorithms .. 18

3.4.1 Class rand in C .. 18

3.4.2 Class srand in C++ .. 19

3.4.3 Class Rand with Current Time as Seed in Java .. 19

3.4.4 Class Rand with default seed in Java .. 20

vi

3.4.5 Class Random in C#.. 20

3.4.6 Class random in Python .. 21

3.4.7 SFMT (SIMD-oriented Fast Mersenne Twister) .. 21

3.4.8 OpenSSL RSA Big numbers ... 24

4. Randomness Testing .. 26

4.1 Testing Algorithms ... 26

4.1.1 Chi Square Test ... 27

4.1.2 Equidistribution Test ... 27

4.1.3 Serial Test ... 28

4.1.4 Permutation Test ... 29

4.1.5 Frequency Test (N Gram) ... 30

4.1.6 Frequency Test (Bi Gram) .. 31

4.1.7 Frequency Test (Tri Gram) ... 32

4.1.8 Auto correlation Test .. 32

4.1.9 Poker Test ... 33

4.1.10 Entropy Test (N Gram) ... 34

4.1.11 Entropy Test (Bi Gram) .. 35

4.1.12 Entropy Test (Tri Gram) ... 36

4.1.13 Sub sequence Test ... 36

4.1.14 Pattern Test ... 37

4.1.15 Run Test .. 37

4.2 The Interpretation of Results .. 38

4.2.1 Proportion of sequences passing a test.. 38

4.2.2 Distribution of P-Values ... 39

vii

4.3 Implementation of Tests ... 40

4.3.1 About the application .. 40

4.3.2 Interpretation of results ... 40

5. WSN Simulation .. 42

5.1 Data collection and analysis ... 42

5.2 Models simulation .. 42

5.2.1 2-Tier Memoryless Model .. 42

5.2.2 2-Tier Markov Model ... 44

5.3 R Divergence measure calculation ... 46

6. Results Evaluation ... 52

6.1 Results of Tests .. 52

6.2 2-Tier Memoryless Model .. 56

6.2.1 Frame-Error Rate .. 56

6.2.2 Bit-Error Rate.. 56

6.2.3 R Divergence Measure .. 57

6.3 2-Tier Markov Model ... 57

6.3.1 Frame-Error Rate .. 57

6.3.2 Bit-Error Rate.. 58

6.3.3 R Divergence Measure .. 58

6.4 Cumulative R Divergence Measure Results... 59

6.4.1 2-Tier Memoryless Model .. 59

6.4.2 2-Tier Markov Model ... 61

6.5 R Divergence Measure Results w.r.t RNGs ... 63

6.5.1 2-Tier Memoryless Model .. 63

viii

6.5.2 2-Tier Markov Model ... 66

6.6 Conclusion .. 70

7. Conclusion ... 59

8. References ... 72

Appendix A: Results for sample data ... 74

Appendix B: Graphical User Interface (GUI) ... 76

ix

List of Abbreviations

Abbreviation Stands for

RNG Random Number Generator

PRNG Pseudo-Random Number Generator

KL Divergence Kullback-Leibler Divergence

WSN Wireless Sensor Network

SFMT SIMD-oriented Fast Mersenne Twister

ISAAC Cipher Indirection, Shift, Accumulate, Add, and Count Cipher

BSC Binary Symmetric Channel

BER Bit Error Rate

FER Frame Error Rate

RSA Rivest, Shamir, & Adleman (public key encryption

technology)

R Divergence Resistor Average Divergence

x

List of Figures

Figure 1: Criteria to Accept or Reject the Random Sequence .. 13

Figure 2: Histogram of P-Values .. 39

Figure 3: Depiction of Final Report .. 41

Figure 4: Setup for the trace collection ... 42

Figure 5: Graph showing Failure Ratio of RNGs as per Test Results Record 54

Figure 6: Graph showing Similar and Different RNGs .. 55

Figure 7: Graph showing role of RNGs in the results of MemoryLess Model Simulation 59

Figure 8: Graph showing role of RNGs in the results of Markov Model Simulation 61

Figure 9: Graph showing similar simulation results in MemoyLess Model Error! Bookmark not

defined.

Figure 10: Graph showing similar simulation results in Markov Model 69

Figure 11: User Authentication Dialogue Box ... 77

Figure 12: Random Number Testing Main Interface .. 77

Figure 13: Random File Selection Dialogue Box ... 78

Figure 14: Random Number File content shown in first Text Area ... 78

Figure 15: Test Results shown after applying Test Algorithms ... 79

Figure 16: Test Algorithm workings with detailed results shown in Text Area 2 80

Figure 17: Status of Test Results in Pass/Fail Format .. 80

Figure 18: Using Toolbar for Opening and editing Random Sequences 81

Figure 19: Text File Editor Dialogue Box to edit Random Sequence .. 81

Figure 20: Save the random number after editing .. 82

Figure 21: File path selection to save the new random sequence ... 82

Figure 22: Available Options to change font style and text size .. 83

Figure 23: About Dialogue Box of an Application ... 83

Figure 24: WSN Simulation Application using 2-Tier Memoryless Model 84

Figure 25: FER, BER and R Divergence Measures in Result Sheet of Memoryless Model 85

Figure 26: WSN Simulation Application using 2-Tier Markov Model .. 86

Figure 27: FER, BER and R Divergence Measures in Result Sheet of Markov Model 87

xi

List of Tables

Table 1: Hypothetical Testing of Randomness ... 3

Table 2: Phases of Deductive Approach ... 6

Table 3: Passing and Failure Ratio of Tests applied to Random Files ... 54

Table 4: Average FER Comparison with 2-Tier Memoryless Model... 56

Table 5: Average BER Comparison with 2-Tier Memoryless Model .. 56

Table 6: Average R Divergence Measure with 2-Tier Memoryless Model 57

Table 7: Average FER Comparison with 2-Tier Markov Model .. 57

Table 8: Average BER Comparison with 2-Tier Markov Model ... 58

Table 9: Average R Divergence Measure with 2-Tier Markov Model ... 58

Table 10: Comparison in R Measures using Memoryless Model for given RNGs 59

Table 11: Comparison in R Measures using Markov Model for given RNGs 61

Table 12: Comparison in R Measures using Memoryless Model for combinational RNGs 64

Table 13: Comparison in R Measures using Markov Model for combinational RNGs 68

Table 14: Test results of Sample Binary File.. 74

Table 15: Test results of Sample Integer File ... 75

1

1. Introduction

Employment of Wireless Sensor Networks (WSNs) has increased in many aspects. The vast

range of its applications has motivated the researchers around the world to effort into this field.

Wireless Sensor Networks are supposed to be in tough environments mostly [1]. Furthermore

many network details in WSNs are not yet standardized. Therefore performance evaluation in the

real situation is difficult, costly and time consuming. Further repeatability is largely conceded in

real environment as many factors have an impact on the experimental results at the same time.

Consequently, simulation is essential to study WSNs in detail being the best way to test and

analyze applications and protocols.

Risk analysis is vital part for every decision making. Except having an exceptional access to

information, we can’t accurately predict the future. Simulations are a well-known tool for

decision making, performance evaluation and validation of WSN prior its deployment.

Simulations generally make use of random numbers for the purpose of evaluation. Use of

random number generator (RNG) offers the decision maker with a range of possible outcomes

which occurs for every choice of action. It helps them to evaluate the impact of risk for better

judgment and decisions. Due to the strong need of random numbers its application in simulation

tools can be found in the field of research and development, scientific computing, finance,

manufacturing, engineering, oil & gas, transportation, and the environment.

Being the fundamental building blocks for simulation, random numbers are generated in various

ways. Sometimes hardware random numbers are used, generated from physical sources such as

electronic noise etc. However, hardware random numbers have drawbacks of slow generation,

mostly not properly implemented and not repeatable as well. As a result, the majority of random

numbers used are pseudo-random generated by pseudo-random number generators. For the fast

number generation in simulation work, researchers generally use common APIs and PRNGs of

programming languages. Though other methods are also available to produce pseudo-random

numbers like OpenSSL, SIMD-oriented Fast Mersenne Twister (SFMT) and Indirection, Shift,

Accumulate, Add, and Count (ISAAC) cipher but use of PRNGs provided by programming

languages is much more in simulation applications.

Simulation of a system which is dependent on some random event needs a reliable method for

random sequence generation. A random sequence can be interpreted as the result of flipping a

Introduction

2

coin with sides labeled as “0” and “1. The fair coin is the perfect random bit generator, since the

“0” and “1” values are randomly and uniformly distributed. Obviously the use of coins is

impractical; the hypothetical output of such an idealized generator serves as the benchmark for

evaluation of RNGs. The basic criteria to analyze and judge the reliability of random number

generators is to test the statistical properties of generated random numbers. The statistical test

application is developed so that random numbers can be submitted into it to check the degree of

their randomness. It should be noted that the only conclusion we can derive from the result of

test applied to a random number is whether it passes or fails this particular test. Nothing can be

concluded for other numbers. Still it’s important to analyze the reliability level of random

number as it directly affects the simulation results and finally decision making task. Of course if

generator passes many tests, this increases our confidence level for it [2].

Large sets of random numbers are obtained from the following sources which are also variable in

their reliability level are used in simulation so that the impact of varying natured RNGS are

judged and correct evaluations are performed.

 Class rand in C

 Class srand in C++

 Class Rand with Current Time as Seed in Java

 Class Rand with default seed in Java

 Class Random in C#

 Class random in Python

 OpenSSL RSA Big numbers

 SFMT (SIMD-oriented Fast Mersenne Twister)

The numbers generated from above mentioned RNGs are input to the multiple statistical tests

and results are recorded. A statistical test algorithm checks a specific null hypothesis (Ho) is that

the number being tested is random. The alternate hypothesis (Ha) is that the number is not

random. For each test a randomness statistic S is calculated and compared with the critical value

t to determine the acceptance of null hypothesis. If S < t, then null hypothesis is rejected

otherwise null hypothesis is accepted. The table given below relates the data to the conclusion

using the test application.

Introduction

3

Table 1: Hypothetical Testing of Randomness

If data is random then the decision to reject null hypothesis is called a Type 1 error. If data is

non-random, then the decision to accept null hypothesis is called a type 2 error. The probability

of type 1 error is called a level of significance (). is the probability that sequence is not

random when it is really random. Common value of is 0.01 which is also chosen as t for our

test algorithms. The probability of type 2 error is . is the probability that sequence is random

when it is not. If P ≥ then the null hypothesis is accepted. If P < then the null hypothesis is

rejected [3].

The important issue during a simulation study is that how to check whether a simulation is

operating as intended or not? The most common technique to do this is by using a trace. The

results of the original trace are compared with the calculations made using different parameters

and synthetic traces. Use of a good RNG generates the results which are more close to real

results and at the same time pass most of the statistical tests. Using thorough results evaluation

proof of concept is justified that the results of test algorithms support the results of simulation.

Following points are considered while evaluating the results.

 To identify the properties of random number generators.

 To provide empirical support to Random Number Generators by performing statistical

tests.

 To use multiple Random Number Generators. Simulation results produced with only one

(type of) generator are not enough for overall evaluation and decision.

 To compare the results of test algorithms performed for each RNG with the simulation

using same RNG.

Use of quality random numbers in simulation is more important than any other application as it

directly impacts the decision making of system being simulated. Random numbers generated

from above mentioned RNGs are used during WSN channel modeling. Two different techniques

True Situation Accept Ho Accept Ha

Data is random (Ho is true) No Error Type 1 Error

Data is not random (Ha is true) Type 2 Error No Error

Introduction

4

of 2-Tier models based on events are designed: (1) Employ a Binary Symmetric Channel (BSC)

model at the frame-level and stimulates another BSC model at bit-level for bit-errors when a

frame is in error, (2) Determine a case that uses a Gilbert model for frame errors and a 3rd order

Markov model for bit-errors [4]. BSC, Gilbert and Markov models will be discussed in detail in

upcoming chapters.

From the data packets captured at destination points, we first obtain parameters which are

required for initial setup of the models and then later we generated synthetic traces of frame and

bit errors. Random numbers are directly involved in whole process of synthetic trace generation.

As frame and bit error rates are averaged measures that do not provide details for assessment. To

evaluate the accuracy of models, we compared source traces and synthetic traces with a

Kullback-Leibler information divergence measure [4]. The formula for KL Divergence measure

is given as follows:

KL (D1 || D2) =
x xD

xD
xD

)(
)(

log)(
2

1
1

KL (D2 || D1) =
x xD

xD
xD

)(
)(

log)(
1

2
2

Where D1, D2 represent the burst-length probability mass functions derived from source traces

and synthetic traces. As KL divergence is not symmetric and requires D1 and D2 to be continuous

with respect to each other, we used the resistor-average R divergence measure instead of KL

divergence measure.

R (D1 || D2) =
) || (KL) || (KL
) || (KL*) ||(KL

1221

1221

DDDD
DDDD

Small values of R represent more similarity between two distributions D1 and D2.

1.1 Objectives

Research on the proposed topic is fairly a new area and not much work has been done for its

improvement. The objective of research is to present a set of tests for random numbers and

determine the impact of random numbers in simulation based applications. The complete set of

Introduction

5

tests comprises of a mix of both theoretical and empirical. Objective of each test is to focus on

some important properties of random numbers. The study of randomness in the simulation

applications and to determine the impact of its quality will prove to be a good contribution in

research and will be beneficial for all those who want to work further in the same area and

domain. Wireless Sensor Network simulator has been developed and impact of numbers

generated from various RNGs has been analyzed to provide the performance evaluation of

simulation models based on random inputs.

1.2 Motivation

Unfortunately, the random number generators (RNGs) used in practice frequently fail. Since

deployed applications provide no security given bad randomness, the attacks that result from

RNG failure are spectacular. RNGs have its applications in statistical sampling, computer

simulation, cryptography, completely randomized design, and other domains where producing an

unpredictable results are required. The need for the true Random and Pseudorandom Numbers

arises majorly in cryptographic and network applications. The study of randomness being used in

various simulation applications and determining its impact proves to be a good contribution once

it is implemented correctly.

1.3 Problem Statement

All cryptographic applications rely on some degree of randomness, which if not fulfilled

properly can lead to the breach in data security. Therefore testing and analyzing the output of

random number generators is required to have a confidence in them. A comprehensive research

for evaluating randomness of RNGs in most common Programming Languages following an

implementation of simulation based studies with a use Random number generators to find the

impact of true randomness in the simulation results.

1.4 Research Methodology

A research is a systematic study of phenomenon and sources in order to establish facts and reach

at conclusions. There are two main approaches for scientific research known as deductive

research and inductive research. Deductive research approach works from the more general to

the more specific, also known as top-down approach. On contrary inductive research approach

Introduction

6

works from specific observation to broader generalizations and theories, also known as bottom-

up approach [8].

The aim of the current research activity is to describe the problem and then to draw the

conclusion by narrowing down the focus. So, I have adopted deductive approach to solve this

research problem. The deductive research approach comprises of four major methodologies i.e.

a) Theory b) Hypothesis c) Observation and d) Confirmation. First hypothesis is derived from

extensive literature review. Then the observations are made to accept or reject the hypothesis. At

the end, verification of hypothesis has been done through analysis. I have described these

different phases in the chapters mentioned in following table 1. In the first phase problem is

identified through the literature survey. In second phase, first I designed the architecture and then

implemented it. Finally in third phase I have verified the objectives using the manual analysis

methods.

Phases Research Methods Outputs Chapter(s)

1 Literature Survey Identification of problem 2

2 Design and Implementation Design and implementation 3,4,5

3 Verification Verification 6

Table 2: Phases of Deductive Approach

The step by step research methodology is given as follows:

 Obtaining a large set of random numbers through several options like C++, Java, C#,

Python, OpenSSL and SFMT

 Implementing set of statistical testing algorithms of random numbers.

 Testing the random numbers using several tests and recording results.

 Analyzing these results to judge randomness.

 Implementing several simulation studies.

 For each simulation study, performing it using all sequences generated in step 1.

 Performing vertical as well as horizontal analysis.

 Analyzing impact of perceived randomness on the simulation in detail.

Introduction

7

1.5 Thesis Organization

This thesis consists of seven chapters. Literature review is presented in Chapter 2. In Chapter 3

we focused on the generation of uniformly distributed pseudo random numbers from eight

different sources and algorithms. After that Chapter 4 discussed the strategy of testing and test

results interpretation. This Chapter also throws light on the implementation of setting up and

running the tests. Chapter 5 presents the modeling techniques used for WSN simulation. Chapter

6 describes the results of simulation and presents comparison of these results with results of

testing algorithms and finally we concluded in Chapter 7.

8

2. Related Work

This chapter presents the existing work done for Random Number Generators, their testing and

to judge the impacts of RNGs in research domain. It elaborates the efforts done by researchers to

establish the test batteries that check reliability level of RNGs. It also emphasizes on the use of

Pseudo Random Number Generators with its true implementation at the right place. How the

results of system simulation can influence the decision makers is also elaborated in this chapter.

Moreover the impact of random attributes is shown.

2.1 Improving WSN simulation and analysis accuracy using 2-Tier Channel Models

[4] This paper proposes and evaluates two classes of Wireless Sensor Network channel models

for residual MAC layer bit-errors. In the first class of channel models that is called 1-Tier

models, bit-errors are modeled as a standalone error process. Two variations of 1-Tier models are

explored: (1) Memoryless Binary Symmetric Channel (BSC) Model and (2) 3rd Order Markov

Model. In the second class of channel models that is called 2-Tier models, a higher-level (Tier 1)

frame-level model excites a lower-level (Tier 2) bit-error model.

Two variants of 2-Tier models are proposed and validated. In the first step author evaluates a 2-

Tier model that employs a BSC model at the frame-level and another BSC model for bit-errors

whenever a frame is in error. Later a 2-Tier model is proposed that takes memory into account

and uses a Gilbert model for frame errors at Tier 1 and a 3rd order Markov model for bit-errors at

Tier 2.

Results and analysis presented in paper were used to demonstrate that 2-Tier model has

significantly better results and accuracy than 1-Tier model.

In last section of the paper, it is demonstrated that a bad choice of channel modeling results in an

inaccurate simulation results that affects the decision making and other factors related to the

network. To provide the proof the concept authors simulated following three metrics:

 Recovery ratio analysis.

 Frame goodput calculation.

 Comparison of number of retransmissions per packet.

Related Work

9

Analysis:

This paper shows that WSN channels cannot be characterized using the commonly-used high-

order Markov channel model. Instead a 2-Tier model in which a high-level model excites a

lower-level model is required. The authors compared the accuracy of 1-Tier and 2-Tier channel

models using bit error traces collected from the network. In the first step they analyzed bit error

traces collected over a setup (It shall be noted that we used the same setup and source traces in

our thesis for providing proof of concept) and later the accuracy of proposed models was

validated. Results and analysis presented by Authors were used to demonstrate that 2-Tier model

has significantly better accuracy than 1-Tier model.

The paper presents two important findings (1) The role of memory in the frame and bit error

processes shall not be ignored (2) 2-Tier Channel model provides the highest accuracy.

Moreover the proof of concept was provided to show that 2-Tier Markov Model performs better

than other models compared regardless of the nature of application and protocols being

simulated.

2.2 High Performance System for Generation and Testing of RNGs

[14] This paper provides many practical applications of random numbers and gives a detailed

description regarding the role randomness plays in the cryptographic applications and protocols.

Summary of roles is given as follows:

 Cryptographic keys: These keys define the transformation of plaintext into ciphertext in

the symmetric and asymmetric ciphers both.

 Initialization vector: IV is used in the symmetric stream and block cipher to produce a

unique output. It helps in avoiding laborious work of rekeying under the case of same

encryption key even.

 Nonces: Nonce is used for mutual authentication and sharing knowledge of the secret

while hiding all other information about the secret [14].

 Cryptographic salt: It is used as an input parameter for the key derivation functions.

 Padding strings: These random strings are used to fill the last block of plaintext in

symmetric block cipher [14].

Related Work

10

Paper also highlights the process of statistical testing and provides a description of few tests.

 Frequency Test

 Linear Complexity Test

 Serial Test

 Entropy Test

 Runs Test

 Non-overlapping Template Matching Test

 Overlapping Template Matching Test

It is suggested by the author that in order to fulfill the increasing demand of large volume of

random numbers that contain properties of good randomness, RNGs with the high throughput

should be combined with the high performance test suites. By doing so the time of random

number generation task as well as applying tests will be minimized.

It is also discussed in the paper that unfortunately the most popular test suite batteries are not

implemented well as these are not focused on high performance and efficiency and they don’t

support the processing power offered by today’s multi-core high end systems. Furthermore are

very slow in processing the large volume of random numbers produced by big Random Number

Generators. Hence there is a severe need for the test suite that is highly efficient and is

compatible with the new technology for processing large numbers.

Analysis:

This paper explains the importance of random number sequences in cryptography. It presents

several approaches that are practically possible to generate good random numbers and then

testing them as these are intended for cryptographic applications. Author put special emphasis on

the importance and requirement of choosing the reliable and suitable random number generator

as security flaws in the generator can easily compromise the security of the whole system or it

can also change the simulation results effecting the decisions of decision makers.

Author suggests using Pseudo Random Number Generators rather than True Random Number

Generators as it provides better affordability, availability, statistical quality and unpredictability

in the generated numbers.

Related Work

11

Author also focuses on the significance of testing the outcome of random number generators in

order to assess the generators reliability and suitability. In the context where applying several

batteries of statistical tests on large sequences of RNGs which is mandatory for the system in

order to increase the confidence in the selected generator but at the same time this process is a

very time taking task, there is a need arises for providing highly efficient statistical tests which

are efficient in terms of performance. Author later presents an optimization method that shows

how the need for efficiently implemented batteries of statistical tests can be fulfilled by

improving the existing and well known statistical test suites to overcome their performance and

speed limitations.

2.3 Testing Random Number Generators

[12] This paper discussed a summary of the research done by Daniel Biebighauser during his six

weeks research at the Research Experiences for Undergraduates (REU) Summer 2000 program at

the University of Minnesota. The research mentored by Prof. Paul Garrett at the University of

Minnesota - Twin Cities was initially concentrating towards comparing different random number

generators and presenting the results. In the course of reviewing the results Dan became more

interested in the actual tests used to compare different random number generators.

This paper begins by introducing random numbers and random number generators, and then

explains some empirical tests (tests that are used on a sequence produced by a RNG and don't

require knowing exactly how the RNG operates) with an initial application on the chi-square and

Kolmogorov-Smirnov (KS) tests and then the theoretical spectral test later. Few other tests

compared and implemented are given following:

 Equidistribution Test

 Permutation Test

 Coupon Collector's Test

 Run Test

 Poker Test

 Gap Test

 Serial Test

Related Work

12

Analysis:

The purpose of this paper is to introduce the reader to the testing of random number generators.

The research was initially directed towards comparing random number generators. Later he

became more interested in the actual tests used to check and validate different random number

generators. He presented a summary of some of the tests used. In doing so the author also

discussed some of the definitions of randomness, different ways to generate random numbers,

and applications of these random numbers. He presented around a dozen tests, beginning with

the foundational chi-square and Kolmogorov-Smirnov tests, then a variety of empirical tests. In a

very short time span he presented a spectacular work which is a remarkable addition for the

research world. His work and strategies are adapted in my thesis.

2.4 Handbook of Applied Cryptography

[9] This paper presents few techniques to generate the random and pseudorandom bits and

integer or float numbers. Stream ciphers, including linear and nonlinear feedback shift registers

and the output feedback mode (OFB) of block ciphers are also addressed by the author. A small

section presents few tests as well which were designed to measure the quality of a generator

supposed to be a random bit generator. The author also presents a method to interpret the results

of Randomness Test. If X is a random variable with v degrees of freedom, then for selected ,

P(X >v) means the test is passed. Figure 1 presents the criteria to judge any random sequence as

Pass or Fail. In better words we can say an acceptance or rejection criteria is presented.

Related Work

13

Figure 1: Criteria to Accept or Reject the Random Sequence

Analysis:

The table given in a paper is of great importance to evaluate the results of a test. According to

author the test just helps in detecting the kind of weakness or strength hold by a sequence. It is

not possible to provide any kind of proof either mathematical or manual that generator is a true

RNG or not. Therefore it is suggested by an author to take a sample output sequence of the

generator and apply various statistical tests on that successively.

The discussions and tables provide a proof of concept that every statistical test decides whether a

random number possess the certain attribute that a true random number will be likely to exhibit.

Few parameters to judge the overall performance of a random number generator are provided

which are of special importance for cryptographic applications especially.

Related Work

14

2.5 C Library for Empirical Testing of Random Number Generators

[13] This paper presents a software library TestU01 implemented in C language. The software

library is a collection of utilities for statistical testing of random number generators (RNGs). A C

library provides general implementation of classical test algorithms for RNGs. Important thing to

notice is that the test suite for random sequences works over the interval (0, 1). Moreover later

the binary sequences were also included. Paper also presents the process of statistical tests given

below:

 Runs Test

 Serial Test

 Subsequence Test

 Entropy Test

 Gap Test

 Poker Test

Analysis:

This paper provides us with the general implementation of statistical tests (classical) for RNGs

and PRNGs, as well as other several tests which were proposed in the history. The list of tests

has been provided above as well. Some of the tools are also provided for performing the

thorough analysis of relation in between a specific test and a structure of the points set

formulated from the family of a given RNG.

For a given statistical test and a given Random Number Generator, comparison tool determines

that how large a sample size should be. It also checks the generator period length before the

generator starts to fail a test thoroughly.

A library provides various types of generators implemented in generic form, as well as many

specific generators proposed in the literature or found in widely used software. The best feature

of library is that it can be applied to all generators which were predefined in the library.

Moreover any generator that was user defined and streams of numbers manually input to the

library. Library can also take random number files as an input for processing, validating and

providing the results about a particular number file.

Related Work

15

2.6 Statistical Testing of Random Number Generators

[15] This paper provides a list of statistical test suite sources and illustrates various evaluation

methods. It also describes the NIST statistical test algorithms with its application details and

presents the guidelines for the interpretation of test results.

 Statistical Test Suite [15]

1. Frequency Test: Checks how many zeroes or ones in a sequence.

2. Cumulative Sums Test: Checks how many zeroes or ones at the beginning

of a sequence.

3. Longest Runs of ones Test: Tests the deviation of a distribution of long runs of

ones.

4. Runs Large Test: Tests the number of runs indicating that either the

oscillations in a bit stream is too fast or not.

5. Rank Test: Tests the deviation of rank distribution based on

periodicity.

6. Non-overlapping Test: Tests too many occurrences of non-periodic

templates.

7. Overlapping Test: Tests too many occurrences of m-bit runs of ones.

8. Entropy Test: Checks the non-uniform distribution of m-length

substrings.

9. Lempel-Ziv Complexity Test: Tests whether a sequence is more compressed than

a truly random or not.

10. Linear Complexity Test: Tests the deviation from a distribution of linear

complexity for substrings.

 Proportion of sequences passing a test

p ± 3√p(1-p)/n

Analysis:

This paper presents new metrics to explore the randomness of cryptographic RNGs. By doing so

it gains confidence that random number generators are acceptable from a statistical point of

Related Work

16

view. Author explains many numerical experiments conducted to judge NIST statistical tests. He

also discusses different evaluation techniques required to judge the randomness.

The problem of analyzing results deduced is also discussed and solutions are also provided.

Author puts emphasis on continuous generation of new statistical tests to gather more evidences

and confidence that RNG is of high quality in terms of randomness. The acceptable range to

validate the Random Sequence Generator is presented by the author that is also used in the

thesis.

17

3. Random Number Generation

3.1 Randomness and Unpredictability

Something that often goes ignored is the fact that all cryptographic as well as simulation

applications rely on some degree of randomness, which if not fulfilled properly can lead to

wrong decisions and even breach in data security. Therefore analyzing the output of random

number generators is required to have a confidence in the algorithm. The algorithms which are

most common in use for random number generation must have a good level of randomness and

unpredictability. There are two kinds of unpredictability required forward as well as backward.

If the seed of generator is unknown, next output number should be unpredictable even if the

previous numbers are known. This quality is called forward unpredictability [3].

It should also not be possible to determine seed of generator from the knowledge of generated

numbers in hand. This quality of random numbers is called backward compatibility. Moreover

there must not be any correlation between the seed and generated values. It means that each

value should appear to be the outcome of an in dependent random event with the probability ½.

To ensure quality of unpredictability, the care must be taken in choosing the seed of a generator.

If seed is known the random number generator is completely predictable as the generation

algorithm is most of the times available publicly. Furthermore the seed of a generator must also

be random and should not be derivable from the random number sequence that it produces [3].

3.2 Random Number Generators (RNGs)

Random Number Generator uses a non-deterministic source (ie the entropy source) with some

processing functions to produce randomness in a generator. The use of an entropy distillation

process is required to overcome any weakness that can result in the making a number to non-

random. The process might use the key strokes or mouse movements or the quantum effects in a

semiconductor etc. for adding effects of non-randomness.

Production of high quality random numbers using RNGs is a time taking task that makes such

productions undesirable when a large quantity of random numbers are required. Therefore to

produce large quantities of random numbers Pseudo Random Number Generators are preferred

over RNGs [3].

Random Number Generation

18

3.3 Pseudorandom Number Generators (PRNGs)

A PRNG uses one or more inputs (seeds) and generates multiple numbers. To get the

unpredictable sequence of numbers the seed must be random and unpredictable. Most of the

times RNGs are used to obtain the seed. The whole process to generate pseudo random numbers

is deterministic. The deterministic nature of this process leads to the term “Pseudorandom”. As

every number of pseudorandom number sequences is reproducible from its seed, only the seed

shall be made saved.

Pseudorandom numbers often appears to be more random than random numbers obtained from

physical sources if the pseudorandom sequence is properly constructed [3]. The algorithm of

PRNG produces each number from the previous number using some transformation which

appears to introduce additional randomness. Multiple transformations can eliminate

autocorrelation between input and output numbers. Thus the outputs of PRNG may have better

statistical properties and be produced faster than RNG [3].

3.4 Using Pseudorandom Number Algorithms

PRNGs are central in applications such as simulations (e.g. of physical systems like Wireless

Sensor Networks). Good statistical properties are the basic requirement for the output of a

PRNG. In this chapter, we will discuss eight different types of pseudorandom number generation

algorithms.

3.4.1 Class rand in C

The algorithm is combination of a Fibonacci sequence (with operation "subtraction plus one,

modulo one" and lags of 97 and 33) and an "arithmetic sequence" using Rand

//========== Code to produce Pseudorandom numbers using rand in C ========

 // random seeds for the test case
 ij=rand()%(31329);
 kl=rand()%(30082);

 // do the initialization
 rmarin(ij,kl);
 ranmar(temp, 100);

Random Number Generation

19

 //Print 10 million random numbers in a file
 for (j=1;j<=100;j++)
 {
 value=static_cast<int>(65536*temp[j]);
 fprintf(file, "%d ", value);
 }

3.4.2 Class srand in C++

The algorithm uses time stamp to initialize the seed and produce 10 million random numbers in a

file using srand() seed initialization method.

//========== Code to produce Pseudorandom numbers using srand in C ========

 //Get value from system clock and place in seconds variable
 time(&seconds);

 //Convert seconds to a unsigned integer and provide as seed
 srand((unsigned int) seconds);

 //Print 10 million random numbers in a file
 for (i = 0; i < 10000000; i++)
 {
 j = (int) (N*rand()/(RAND_MAX+1));
 fprintf(file,"%d",j);
 fprintf(file," ");
 }

3.4.3 Class Rand with Current Time as Seed in Java

The algorithm uses a time stamp to initialize the seed and a processing function to produce 10

million random numbers in a file.

//== Code to produce Pseudorandom numbers using timestamp and Processing function in Java ==

@Override
protected int next(int nbits)
 {
 long var = seed;
 var ^= (var << 21);
 var ^= (var >>> 35);
 var ^= (var << 4);
 seed = var;

Random Number Generation

20

 var &= ((1L << nbits) - 1);
 return (int) var;
 }

@Override
 public int nextInt()
 {
 return next(16);
 }

Random r = new Randomizer(System.currentTimeMillis());
int size = 10000000; List<Integer> rands = new ArrayList<Integer>(size);

for (int i = 0; i < size; ++i)
 {
 rands.add(r.nextInt());
 buf.append(rands.get(i));
 buf.append(" ");
 }
 byte[] contentInBytes = buf.toString().getBytes();
 fop.write(contentInBytes);

3.4.4 Class Rand with default seed in Java

The algorithm uses a default class Random to initialize the seed and write 10 million random

numbers in a file.

//========== Code to produce Pseudorandom numbers using Rand in Java ========

Random r = new Random();
for(i=0; i<10000000; i++)
 {
 x = r.nextInt(65536);
 buf.append(x);
 buf.append(" ");
 }
byte[] contentInBytes = buf.toString().getBytes();
fop.write(contentInBytes);

3.4.5 Class Random in C#

The algorithm uses a default class “Random” of C # to initialize the seed and write 10 million

random numbers in a file.

Random Number Generation

21

//======= Code to produce Pseudorandom numbers using Random class in C # ========

StringBuilder sb = new StringBuilder(10000000);
Random rand = new Random();

for (int i = 0; i < 10000000; i++)
{

sb.Append(rand.Next(0,65536));
 sb.Append(" ");
}

3.4.6 Class random in Python

The algorithm uses a class “random” of Python to initialize the seed and produce 10 million

random numbers in a file.

//======= Code to produce Pseudorandom numbers using random class in Python ========

for i in range(10000000):
 line = str(random.randint(0, 65535))
 afile.write(line)
 if i < 9999999:
 afile.write(" ")
afile.close()

3.4.7 SFMT (SIMD-oriented Fast Mersenne Twister)

SFMT is a Linear Feedbacked Shift Register generator that generates a 128-bit pseudorandom

integer at one step. Algorithm to produce pseudorandom numbers is given below:

//======= Code to produce 10 million Pseudorandom numbers ========

 final static int BLOCK_SIZE = 100000;
 final static int COUNT = 1000;

 //The SFMT generator has an internal state array of 128-bit integers
 final static int N = MEXP / 128 + 1;
 long hi = ((long) a3 << 32) | (a2 & (-1L >>> 32)),
 lo = ((long) a1 << 32) | (a0 & (-1L >>> 32)),
 outLo = lo << lShift,
 outHi = (hi << lShift) | (lo >>> (64 - lShift));
 int x0 = (int) outLo,
 x1 = (int) (outLo >>> 32),
 x2 = (int) outHi,
 x3 = (int) (outHi >>> 32);

Random Number Generation

22

 // 128-bit shift: y = c >>> SR2 * 8:
 final int rShift = SR2 * 8;
 hi = ((long) c[cI + 3] << 32) | (c[cI + 2] & (-1L >>> 32));
 lo = ((long) c[cI + 1] << 32) | (c[cI] & (-1L >>> 32));
 outHi = hi >>> rShift;
 outLo = (lo >>> rShift) | (hi << (64 - rShift));
 int y0 = (int) outLo,
 y1 = (int) (outLo >>> 32),
 y2 = (int) outHi,
 y3 = (int) (outHi >>> 32);

 // rest of forumula:
 r[rI] = a0 ^ x0 ^ ((b[bI] >>> SR1) & MSK1) ^ y0 ^ (d[dI] << SL1);
 r[rI + 1] =
 a1 ^ x1 ^ ((b[bI + 1] >>> SR1) & MSK2) ^ y1 ^ (d[dI + 1] << SL1);
 r[rI + 2] =
 a2 ^ x2 ^ ((b[bI + 2] >>> SR1) & MSK3) ^ y2 ^ (d[dI + 2] << SL1);
 r[rI + 3] =
 a3 ^ x3 ^ ((b[bI + 3] >>> SR1) & MSK4) ^ y3 ^ (d[dI + 3] << SL1);

 // Initializes the internal state array with a 32-bit seed.
 public void setIntSeed (int seed) {
 sfmt[0] = seed;
 for (int i = 1; i < N32; i++) {
 int prev = sfmt[i - 1];
 sfmt[i] = 1812433253 * (prev ^ (prev >>> 30)) + i;
 }
 periodCertification();
 idx = N32;
 }

 // main function
 public static void main(String[] args)
 {
 int[] array32 = new int[BLOCK_SIZE / 4],
 array32_2 = new int[10000],
 ini = {0x1234, 0x5678, 0x9abc, 0xdef0};

 // Create file path to save Random Numbers
 StringBuffer buf = new StringBuffer();
 GregorianCalendar gcalendar=new GregorianCalendar();
 String h=String.valueOf(gcalendar.get(Calendar.HOUR_OF_DAY));
 String m=String.valueOf(gcalendar.get(Calendar.MINUTE));
 String date=String.valueOf(gcalendar.get(Calendar.DATE));
 String mon = String.valueOf(gcalendar.get(Calendar.MONTH)+1);
 String year=String.valueOf(gcalendar.get(Calendar.YEAR));
 String hms="C:\\SFMT-Output\\SFMT_";
 hms+=year+mon+date+"_"+h+m;
 hms+=".txt";
 File file = new File(hms);
 FileOutputStream fop = new FileOutputStream(file);
 if (!file.exists())
 {
 file.createNewFile();

Random Number Generation

23

 }
 if (sfmt.minArraySize() > 10000)
 throw new IllegalStateException("Array size too small!");
 for(int j=0;j<500;j++)
 {
 long l=System.currentTimeMillis();
 int seed=(int)(long)l;
 if(seed<0)
 seed=seed*(-1);
 sfmt.setIntSeed(seed);
 sfmt.fillArray(array32,10000);
 sfmt.fillArray(array32_2,10000);
 sfmt.setIntSeed(seed);
 for (int i = 0; i < 10000; i++)
 {
 short value16bits1 =(short)(array32[i] & 0xFFFF);
 short value16bits2 =(short)(array32[i] >> 16);
 if(value16bits1<0)
 value16bits1=(short)(value16bits1*(-1));
 if(value16bits2<0)
 value16bits2=(short)(value16bits2*(-1));
 buf.append(value16bits1);
 buf.append(" ");
 buf.append(value16bits2);
 buf.append(" ");
 if (i % 5000 == 0)
 {
 fop.flush();
 }
 byte[] contentInBytes = buf.toString().getBytes();
 fop.write(contentInBytes);
 buf.setLength(0);
 int r32 = sfmt.next();
 if (r32 != array32[i])
 throw new RuntimeException(
 String.format(
 "mismatch at %d array32:%x next:%x",i,array32[i],r32));
 }
 for (int i = 0; i < 700; i++)
 {
 int r32 = sfmt.next();
 if (r32 != array32_2[i])
 throw new RuntimeException(
 String.format(
 "mismatch at %d array32_2:%x next:%x",i,array32_2[i],
 r32));
 }
 }
 fop.close();
 }

Random Number Generation

24

3.4.8 OpenSSL RSA Big numbers

The algorithm to generate pseudorandom numbers using OpenSSL big numbers and rand

function is given as follows:

//======= Code to produce 10 million Pseudorandom numbers ========

#include <openssl/bn.h>
#include <openssl/rand.h>
include <time.h>
#pragma comment(lib,"ssleay32.lib")
#pragma comment(lib,"libeay32.lib")

int _tmain()
{
 buf=spc_rand(buf,1024);*/
 int i=0,j=0,k=0;
 FILE *file;
 char *rc,*tc;
 static char name[40];
 time_t now = time(0);
 int num[10000];
 strftime(name, sizeof(name), "C:\\OpenSSL-Output\\PRNG_%Y%m%d_%H%M",
 localtime(&now));
 tc=".txt"; rc= strcat (name,tc);
 file = fopen(rc, "a+");
 unsigned char rnd1[20000];
 unsigned char rnd2[20000];
 unsigned char rnd3[20000];
 unsigned char rnd4[20000];
 RAND_pseudo_bytes(rnd1,sizeof(rnd1));
 RAND_pseudo_bytes(rnd2,sizeof(rnd2));
 RAND_pseudo_bytes(rnd3,sizeof(rnd3));
 RAND_pseudo_bytes(rnd4,sizeof(rnd4));
 for(int count=0;count<50;count++)
 {
 j=0;
 for(i=0;i<sizeof(rnd1)-1;i=i+2)
 {
 num[j]=rnd1[i]*rnd1[i+1];
 fprintf(file, "%d", num[j]);
 fprintf(file, " ");
 j++;
 }
 j=0;
 for(k=0;k<sizeof(rnd2)-1;k=k+2)
 {
 num[j]=rnd2[k]*rnd2[k+1];
 fprintf(file, "%d", num[j]);
 fprintf(file, " ");

Random Number Generation

25

 j++;
 }
 j=0;
 for(k=0;k<sizeof(rnd3)-1;k=k+2)
 {
 num[j]=rnd3[k]*rnd3[k+1];
 fprintf(file, "%d", num[j]);
 fprintf(file, " ");
 j++;
 }
 j=0;
 for(k=0;k<sizeof(rnd4)-1;k=k+2)
 {
 num[j]=rnd4[k]*rnd4[k+1];
 fprintf(file, "%d", num[j]);
 fprintf(file, " ");
 j++;
 }
 }
 fclose(file);
 printf("Done\n");
 return 0;
}

26

4. Randomness Testing

4.1 Testing Algorithms

The testing algorithms are implemented to test the randomness of sequences being produced by

random or pseudorandom number generators. These tests are able to find out different types of

non-randomness properties that could exist in a sequence. The names of tests are given below:

 Chi Square Test

 Equidistribution Test

 Entropy (N Gram) Test

 Entropy (Bi Gram) Test

 Entropy (Tri Gram) Test

 Frequency (N Gram) Test

 Frequency (Bi Gram) Test

 Frequency (Tri Gram) Test

 Runs Test

 Subsequence Test

 Permutation Test

 Poker Test

 Serial Test

 Auto Correlation Test

 Pattern Test

For each test, subsections provide a high level description and algorithm of the particular test.

The order of the application of a test to random sequence is arbitrary. Testing strategy for better

interpretation of results and user's guide for setting up and running the tests is also elaborated in

this chapter.

Randomness Testing

27

4.1.1 Chi Square Test

The chi-square test determines whether there exist a significant difference between the expected

frequencies and the observed frequencies or not. The following algorithm can be applied to the

sequence <Un> having characters as well as digits. It calculates the difference (V) between

observed frequencies (Ys) and expected frequencies (nPs) of characters or digits in the sequence.

So the formula is given as

 n

 V = ∑ (Ys-nPs)2/ nPs

 s=1

By expanding (Ys-nPs)
2 = Ys

2
- 2nPs Ys + n

2
Ps

2
. We arrived at the formula

 n

 V = ∑ (Ys
2/ Ps) / n - n

 s=1

Algo:C

C1) [initialize] set sum <- 0, set Y[s]<- 0 for 0≤ s<k , set P[s]<- n/k for 0≤ s<k

C2) [set s zero] set<- 0

C3) [record Ps ,Ys] if s≥k, go to step C6. Otherwise calculate Y[s]

C4) [record sum] set sum <- sum+ y[s]
2
/p[s]

C5) [increase s] increase s by 1 and return to step c3

C6) [calculate V] set V <- sum/n-n

4.1.2 Equidistribution Test

When the random integers are generated in [0,d-1] , we need to check whether they come from a

uniform distribution, that is, each of the d numbers have equal probability.

Randomness Testing

28

Equidistribution test is applied to check whether numbers are uniformly distributed or not. This

test is applied on the sequence <Un> given as

 <Un> = U0 , U1 , U2, Un -1

If frequency of each digit is same, it implies that numbers are uniformly distributed. For each

integer r, 0≤ r< d, count the numbers of times that r=Uj for 0 ≤ j < n.

Algo: E

E1) [Initialize] set count [r]<- 0, for 0≤ r<d , set r<- -1

E2) [set s,sum zero] set s<- 0 , set sum <-0, increase r by 1. if r≥d, go to step E6

E3) [compare values] if r=Us , increase sum by 1

E4) [increase s] increase s by 1.if s<n, go to step E3

E5) [record count] set count[r] <- sum. Go to step E2

E6) [calculate probability] set p <-n/d

E7) [compare frequencies] if count[r]=p , for 0≤ r<d. Display msg “ uniformity is achieved”.

4.1.3 Serial Test

If the random integers are generated in [0,d-1] range. In the serial test, we generate n pairs of

integers in [0,d-1]. Each of the d2 pairs must be equally likely to occur. Serial test checks the

uniformity of pair of successive numbers in an independent manner. To carry out the serial test

we count the number of times that the pair (U2j,U2j+1) = (q,r) occurs for 0≤ j<n .

These counts are made for each pair of integers 0≤ q,r <d . chi square test is applied to k= d2

categories with probability 1/d2 in each category.

Randomness Testing

29

Algo: S

S1) [initialize] set q<- -1 , set p <- n/2d2 , set k <- d2 , set y [i] <- 0 for 0≤ i<k , set i<-0

S2) [set r,sum zero] set r<-0,set count<- 0,set j<- 0,increase q by 1. if q ≥ d , go to step S7

S3) [compare pairs] if (Uj ,Uj+1) =(q,r) , increase count by 1.

S4) [increase j] increase j by 2. if j< n-1 , go to step S3

S5) [record count] set y[i] <- count. Increase i by 1.

S6) [increase r] increase r by 1. if r<d , go to step S3. Otherwise go to step S2.

S7) [apply chi square] calculate chi square coefficient.

4.1.4 Permutation Test

If total m integers are generated by RNG, these can be ranked according to their scale; the

smallest number is ranked 0, the largest is ranked m-1. So there are m! possible ways in which

the ranks can be ordered. For example, if m = 3, then the following orders are possible: (0,1,2),

(0,2,1), (1,0,2), (1,2,0), (2,1,0), (2,0,1). This test is repeated n times to check if each possible

permutation was equally probable.

Permutation test counts the number of times each ordering of elements appears. To achieve

permutation test, input sequence <U> is divided into n groups of t elements, that is

 (Ujt , Ujt+1 , Ujt+2 , Ujt+t-1) , for 0 ≤ j < n

The elements in each group may have t! possible ordering. The number of times each ordering

appears is counted and chi square test is applied with k=t! and with the probability 1/t! for each

ordering.

Algo: P

Given a sequence of elements given

 <Uj > = (U1 , U2 , U3, Ut) , for 0 ≤ j < n

Randomness Testing

30

We analyze the permutation by computing an integer f such that 0 ≤ f < t!

P1) [initialize] set k<-t! , set p<- n/t! , set number[i]<-0 , for 0≤ r<t!

 set y[i]<- 0 for 0≤ i<t!

P2) [set i zero] set i<- 0

P3) [get element ordering] get number[i]

P4) [set j zero] set j≤ 0

P5) [analyze number] if number[i]= U[j] , increase f by 1.

P6) [increase j] increase j by 1. if j<n , go to step P5.

P7) [record count] set y[i]<- f . increase i by 1. set f<-0 . If i<t! , go to step P3

P8) [apply chi square] calculate chi square coefficient.

4.1.5 Frequency Test (N Gram)

Generated random integers are in range [0,d-1] and a frequency test checks whether they come

from a uniform distribution or not, that is, each of the d numbers have equal probability.

This test is applied on the sequence <Un> given as below

 <Un> = U0 , U1 , U2, Un -1

If frequency of each digit is same, it implies that the numbers are uniformly distributed. For each

integer r , 0≤ r< d , count the numbers of times that r=Uj for 0 ≤ j < n occurs.

Algo: E

E1) [Initialize] set count [r]<- 0, for 0≤ r<d , set r<- -1

E2) [set s,sum zero] set s<- 0 , set sum <-0, increase r by 1. if r≥d, go to step E6

E3) [compare values] if r=Us , increase sum by 1

Randomness Testing

31

E4) [increase s] increase s by 1.if s<n, go to step E3

E5) [record count] set count[r] <- sum. Go to step E2

E6) [calculate probability] set p <-n/d

E7) [compare frequencies] if count[r]=p , for 0≤ r<d. Display msg “ Frequency test is passed”.

4.1.6 Frequency Test (Bi Gram)

The focus of this test is to check uniform occurrence of 2 bit possible combinations in the

sequence of U. frequency test measures how much the observed proportion of combinations

within 2 bit block match the expected proportion (¼) for following sequence.

 <Un> = U0 U1 , U2 U3 , U4U5, Un-2 Un-1

Algo: B

Input sequence is partitioned into N= [n/2] non-overlapping 2 bit blocks < Uj > , for 0≤ j<N.

B1) [initialize] set count [r] <-0 , for 0≤ r<d2 . Set r <- -1

B2) [increase r] increase r by 1. if r≥d2 , go to step B8.

B3) [get number] get number[r]

B4) [set j, sum zero] set sum<- 0, set j <- 0

B5) [compare values] if number[r] = U[j] , increase sum by 1.

B6) [increase j] increase j by 1. if j<N , go to step B5.

B7) [record count] set count [r] <- sum , go to step B2.

B8) [calculate probability] set p<- N/d2

B9) [compare proportion] if count[r]=p , for 0≤ r<d2 . Display message “uniformity is achieved

in bi gram”.

Randomness Testing

32

4.1.7 Frequency Test (Tri Gram)

The focus of this test is to check whether 3 bit possible combinations within 3 bit sequence are

uniform or not. Frequency test (tri gram) measures how much the observed proportion of 3 bit

block match the expected proportion (1/8) .

Sequence for frequency test (tri gram) is given below as

 <Un> = U0 U1 U2 , U3 U4 U5 , U6 U7 U8, Un-3 Un-2 Un-1

Algo: D

Input sequence is partitioned into N= [n/3] non overlapping 3 bit blocks <Uj> for 0≤ j<N

D1) [initialize] set count [r] <- 0 , for 0≤ r<d3 . Set r <- -1

D2) [increase r] increase r by 1. if r≥d3, go to step D8.

D3) [get number] get number[r]

D4) [set j, sum zero] set sum<- 0, set j <- 0

D5) [compare values] if number[r] = U[j] , increase sum by 1.

D6) [increase j] increase j by 1. if j<N , go to step D5.

D7) [record count] set count [r] <- sum , go to step D2.

D8) [calculate probability] set p<- N/ d3

D9) [compare proportion] if count[r]=p , for 0≤ r< d3. Display message “uniformity achieved in

tri gram”.

4.1.8 Auto correlation Test

A sequence having statistically independent digits is said to be a true random sequence. The

purpose of auto correlation test is to check correlation between adjacent digits. Passing auto

Randomness Testing

33

correlation test implies that an incoming digit cannot be predicted by analyzing prior digit of a

sequence.

Auto correlation test is applied on the sequence given below

 < Un > = U0 , U1 , U2, Un -1

The statistical formula used for auto correlation test is given below

 C = (n ∑ Ui Ui+1 - (∑ Ui)2) / (n ∑ Ui
2 - (∑ Ui)2)

C is the measure of extent to which Ui+1 depends on Ui

Algo: A

A1) [initialize] set U [i] <-0 , for 0≤ i<n-1 . Set i <- 0 , set sum1<- 0, set sum2 <- 0, set sum3<- 0

A2) [find sum1] set sum1 <- U[i]*U[i+1]+sum1

A3) [find sum2] set sum2 <- U[i]+sum2

A4) [find sum3] set sum3 <- (U[i])2+sum3

A5) [increase i] increase i by 1. if i<n, go to step A2.

A6) [calculate c] set C <- (n*sum1 - sum22) / (n*sum3 - sum22)

4.1.9 Poker Test

Poker test considers n groups of five successive integers (U5j , U5j+1 , U5j+4) for 0≤ j <n

and observe the number of distinct values in each group so we have five categories

 5 = All different

 4 = One pair

Randomness Testing

34

 3 = Two pairs, or three of a kind

 2 = Full house, or four of a kind

 1 = Five of a kind

In poker test we consider n groups of k successive numbers and count the number of k tuples

with r different values. A chi square test is then initiated using the probability

 pr = d(d-1)................(d-r+1) / dk

Algo : K

K1) [initialize] set k<- 5 . set M[r]<-0 , for 1≤ r<5 . set P[r]<- 0 for 1≤ i<5 . Set j<- -1 .set d<- k

K2) [find groups] generate n groups of k values

K3) [measure r] observe r from n groups and store in M[r]

K4) [increase j] increase j by 1. if j>k , go to step K9.

K5) [set i] set i<- 0

K6) [find product] set mul <- mul* (d-i)

K7) [increase i] increase i by 1. if i≤ j , go to step K6.

K8) [find expected values] set P[r] <- mul / d k . go to step K4

K9) [apply chi square] calculate chi square coefficient using P[r] and M[r] for 1≤ r≤ 5.

4.1.10 Entropy Test (N Gram)

The entropy and uncertainty are used interchangeably. Entropy is a simple quantitative measure

of uncertainty in the data. Entropy is basically a measure of randomness. Suppose that we have

alphabets of 28 characters: letters a to z, space and full stop. Using these alphabets, we can write

a string of length n. The possible strings are 28
n
. We then think about how many strings are

legal. The higher proportions of legal strings mean the higher entropy. A language with just

letters is much easier to predict so its entropy is low. So a language where all strings are allowed

Randomness Testing

35

has maximum entropy. It takes log2n bits to code n character alphabets. It is necessary to

measure the entropy of a random data. It is the best way to check randomness. The random

language has 4.8 value of entropy per character.

Let X be the sequence having values (X1,X2,X3,..........,Xn) with probabilities

(P1,P2,P3,..........,Pn) such that Pi≥0, for 1≤ i≤ n. The formula for entropy is

 n

H(x) = - Σ pi ln (pi)

 i=1

where Pi is the probability of symbol Xi occurring and log is of base 2.

Algo : Y

Y1) [initialize] Set M[i]<-0 and P[i]<- 0, for 1≤ i ≤ n

Y2) [find occurrence] Calculate M[i], for 1≤ i ≤ n

Y3) [set i] Set i <- 1

Y4) [calculate Pi] Set P[i]<- M[i] / n

Y5) [find sum] Set sum<- sum + (P[i]* log2 P[i])

Y6) [increase i] Increase i by 1. if i≤n , go to step Y4.

Y7) [calculate entropy] Set entropy <- sum*(-1)

4.1.11 Entropy Test (Bi Gram)

The entropy is a simple quantitative measure of uncertainty in data. Entropy Test (Bi gram) is

used to calculate entropy of possible combinations of 2 characters at one time. Everything is

same as for Entropy test (n gram). Algorithm to calculate entropy coefficient is also same as for

entropy test (n gram). There is just change in input. We input possible combinations of 2

Randomness Testing

36

characters and find their entropy. Entropy test is helpful in finding the entropy of 2 characters at

a time.

4.1.12 Entropy Test (Tri Gram)

The entropy is a simple quantitative measure of uncertainty in data. Entropy Test (Tri gram) is

used to calculate entropy of possible combinations of 3 characters at one time. Everything is

same as for Entropy test (n gram). Algorithm to calculate entropy coefficient is also same as for

entropy test (n gram). There is just change in input. We input possible combinations of 3

characters and find their entropy. Entropy test is helpful in finding the entropy of 3 characters at

a time.

4.1.13 Sub sequence Test

If a random number generator works with three random number variables X,Y,Z , it may

consistently invoke the generation of three random numbers at a time. In such applications, it is

important that subsequence consisting of every three terms must be random.

The original sequence is given below

 <Un> = U0 U1 U2 Un-1

The sequences put for sub sequence test are

U0UqU2q , U1Uq+1U2q+1 ,, Uq-1U2q-1U3q-1

In our project, we have taken q=3

Algo : Q

First of all, the limit of integers is find out and set as k. n sequences of three elements are

generated to input for subsequence test.

Randomness Testing

37

Q1) [initialize] Set i <- 0, Set sub[s]<-0, for 0≤ s ≤ n , Set s <- 0

Q2) [set j] Set j <- i+1

Q3) [set l] Set l <- j+1

Q4) [find sub sequence] Set sub[s++] = i,j,l

Q5) [increase l] Increase l by 1. if l ≤ max-1 , go to step Q4.

Q6) [increase j] Increase j by 1. if j ≤ max-2 , go to step Q3.

Q7) [increase i] Increase i by 1. if i≤ max-3 , go to step Q2.

Q8) [count sub sequence] count if sub[s] = Uq

Q9) [apply chi square] calculate chi square coefficient.

4.1.14 Pattern Test

It is the basic property of true random number generators that they produce pattern free random

numbers. Pattern helps in predicting the number. It is basic requirement that random number

should be unpredictable. If there is found any pattern in random number, it reduces the

possibility of number to be random. So Pattern test is one of the major tests to check

randomness. Pattern test is very applicable test for testing randomness.

Algo : O

O1) [find patterns] Get all possible patterns from a given number.

O2) [save file] Save all patterns in a file for help in future.

4.1.15 Run Test

In run test, a sequence is tested for “runs up” and “runs down”. It means that sub sequences

(segments that are increasing or decreasing) are determined from original sequence. As an

example consider the following sequence of 10 digits.

 25798435714

Randomness Testing

38

By putting a line in between Uj and Uj+1 whenever Uj > Uj+1

 | 2 5 7 9 | 8 | 4 | 3 5 7 | 1 4 |

which displays “runs up”. There is a run of length 4, followed by two runs of length 1, followed

by another run of length 3, followed by run of length 2. The purpose of Run test is to check

whether the number of Runs of various lengths are as per expected from the random sequence.

Steps :

 Split sequence U into sub sequences observing runs up.

 Calculate number of runs of length i.

 Repeat it n times.

 Compare these with expected distribution of run lengths.

 Apply chi square test.

4.2 The Interpretation of Results

The interpretation of results is performed in two ways.

 The analysis of proportion of sequences that passes a statistical test

 The analysis of distribution of P-values to check uniformity

4.2.1 Proportion of sequences passing a test

Given the results for a particular statistical test, the proportion of sequences that pass is

computed. For example, if 1000 sequences were tested (i-e m=1000) and 0.01 (the

significance level) and 992 sequences had P-values<0.01 then the proportion is 992/1000=0.992

The range of acceptable proportion is resolute using interval defined as p ± 3√p(1-p)/m , where

p = 1- and m is the sample size. If the proportion lies outside this interval then it is evidence

that PRNG is non-random.

Randomness Testing

39

4.2.2 Distribution of P-Values

The distribution of P-values is observed to ensure the uniformity of sequence. It is also illustrated

using a histogram given in Figure 2 where the interval between 0 and 1 is divided into 10 sub-

intervals and the P-value that falls within each sub-interval is counted.

Distribution test on the P-values is found from the statistical tests (i-e a P-value of the P-values)

is accomplished by computing following:

 n

X 2 = ∑ (Fi -s/10)2 / s/10

 i=1

where Fi is the number of P-values in sub interval i and s is the sample size. If P-value ≥ 0.01

then the PRNG is also considered to be uniformly distributed.

Figure 2: Histogram of P-Values

Randomness Testing

40

4.3 Implementation of Tests

Multiple tests are applied to random numbers in order to test the randomness of a generator in

the best manner possible. The performance of each test is evaluated by applying a Chi-Square

test. When all tests applied to a random sequence, we considered uniformity, correlation and

independence properties.

The statistical tests solve the problem of evaluating PRNGs for randomness by identifying

RPNG that produce weak or strong random numbers. They tests the level of randomness

provided as well as verifies whether the implementation of PRNG is correct or not.

4.3.1 About the application

The code has the following features that make it easy to use in day to day applications.

 Platform Independency

The source code is written in java so the test code is platform independent.

 Extensibility

New statistical tests can easily be added in the existing list.

 Portability

The source code is written in java so the code is portable.

 Versatility

The test code is useful in performing tests for RNGs and PRNGs both.

 Efficiency

Just Linear time is utilized in testing the random sequences.

4.3.2 Interpretation of results

A simple test report is generated for the interpretation of results. A file with time stamp is

generated to maintain logs whenever the statistical test is completed. The report contains the P-

values of statistical tests and Pass/Fail status of the tests.

Randomness Testing

41

Figure 3: Depiction of Final Report

42

5. WSN Simulation

5.1 Data collection and analysis

I have used the data traces collected by Dr. Adnan and Dr. Ali Khayam. They collected 24 traces

in four setups. For each setup 6 traces were collected. In every experiment one sender

transmitted data frames to base station and all other senders were inactive. Average frames per

traces were approx. 31,000. 10 frames per second were sent and each frame had 20 bytes.

Figure 4: Setup for the trace collection

5.2 Models simulation

I have developed and evaluated two models using random event to provide our proof of concept

related to simulation of Wireless Sensor Network. Memoryless as well as Markov models are

developed and investigated for the presented channels.

5.2.1 2-Tier Memoryless Model

In 2-Tier model, a higher-level (Tier 1) frame-level model excites a lower-level (Tier 2) bit-error

model. In the memoryless class, a BSC model is employed at the frame-level and another BSC

model is employed at bit-errors whenever a frame is in error. It means if the tier 1 frame error

model expects an error-free frame then there is no need to invoke the bit-error model because in

that case it is known that all the bits in the frame are error-free. Whereas if the tier 1 frame error

model expects a corrupt frame then the bit-level model at tier 2 is used to produce bits in error in

the corrupt frame.

WSN Simulation

43

For the 2-Tier memoryless model, we apply BSC models at both tiers. Thus both frame and bit-

level models are memoryless. BER and FER parameters for these models are extracted from the

source traces discussed earlier.

// Code to generate synthetic traces of Bit Errors and Frame Errors

 FileWriter ferFile = new
 FileWriter("C:\\Source\\"+fileNames[j]+"_FE_"+selectedFolder+"_Mem.txt",false);
 FileWriter berFile = new
 FileWriter("C:\\Source\\"+fileNames[j]+"_BE_"+selectedFolder+"_Mem.txt",false);
 fvalue=lstInputNumbers2.get(j); //frame error rate
 bvalue=lstInputNumbers1.get(j); //bit error rate
 tframes=0;
 tbits=0;
 l=-1;
 a=0;
 for (i=0;i<lstInputNumbers.get(j);i++) //loop will run for total frames of traces
 {
 if(l==9999999)
 {
 a++;l=0;
 }
 else l++;
 if(a>=asize)
 a=0;
 if((randInputNumbers.get(a).get(l)<=fvalue)&&(randInputNumbers.get(a).get(l)>=0.0))
 {
 tframes++;
 ferFile.append(one);
 for(k=0;k<160;k++)
 {
 if(l==9999999)
 {
 a++;l=0;
 }
 else
 l++;
 if(a>=asize)
 a=0;
 if((randInputNumbers.get(a).get(l)<=bvalue)&&(randInputNumbers.get(a).get(l)>=0.0))
 {
 tbits++;
 berFile.append(one);
 }
 else
 {
 berFile.append(zero);
 }
 }

WSN Simulation

44

 }
 else
 {
 ferFile.append(zero);
 for(k=0;k<160;k++)
 {
 berFile.append(zero);
 }
 }
 }
 ferFile.flush();
 ferFile.close();
 berFile.flush();
 berFile.close();
 ferror[j]=tframes;
 berror[j]=tbits;

5.2.2 2-Tier Markov Model

In 2-Tier model, a higher-level (Tier 1) frame-level model excites a lower-level (Tier 2) bit-error

model. A 2-Tier Markov Model is a model takes memory into account and uses a Gilbert model

for frame errors at Tier 1 and a 3rd order Markov model for bit-errors at Tier 2 [4]. The

parameters required for these models are extracted from source traces discussed in Chapter 2.

// Code to generate synthetic traces of Bit Errors and Frame Errors

 FileWriter ferFile = new
 FileWriter(fileNameFER+"_"+selectedFolder+"_Markov.txt",false);
 FileWriter berFile = new
 FileWriter(fileNameBER+"_"+selectedFolder+"_Markov.txt",false);
 char zero='0',one='1';
 for (int i=0;i<lstInputNumbers.get(fn);i++)
 {
 if(l==9999999)
 {
 a++;l=0;
 }
 else
 l++;
 if(a>=asize)
 a=0;
if((0.0<=randInputNumbers.get(a).get(l))&&(randInputNumbers.get(a).get(l)<=transitionMatrixFE
[frow][0]))
 {
 fstate=fstate.substring(0,1).concat(Integer.toString(0));
 frow=Integer.parseInt(Integer.toHexString(Integer.parseInt(fstate, 2)));
 ferFile.append(zero);

WSN Simulation

45

 for(int k=0;k<160;k++)
 {
 berFile.append(zero);
 }
 }
else if((transitionMatrixFE[frow][0]< randInputNumbers.get(a).get(l))&&(
randInputNumbers.get(a).get(l)<=1.0))
 {
 fstate=fstate.substring(0,1).concat(Integer.toString(1));
 frow=Integer.parseInt(Integer.toHexString(Integer.parseInt(fstate, 2)));
 ferFile.append(one);
 tframes++;
 for(int k=0;k<160;k++)
 {
 if(l==9999999)
 {
 a++;l=0;
 }
 else
 l++;
 if(a>=asize)
 a=0;

if((0.0<=randInputNumbers.get(a).get(l))&&(randInputNumbers.get(a).get(l)<=transitionMatrix[br
ow][0]))
 {
 bstate=bstate.substring(1,3).concat(Integer.toString(0));
 brow=Integer.parseInt(Integer.toHexString(Integer.parseInt(bstate, 2)));
 berFile.append(zero);
 }
else if((transitionMatrix[brow][0]< randInputNumbers.get(a).get(l))&&(
randInputNumbers.get(a).get(l)<=1.0))
 {
 bstate=bstate.substring(1,3).concat(Integer.toString(1));
 brow=Integer.parseInt(Integer.toHexString(Integer.parseInt(bstate, 2)));
 berFile.append(one);
 tbits++;
 }
 }
 }
 }
 ferFile.flush();
 ferFile.close();
 berFile.flush();
 berFile.close();

WSN Simulation

46

5.3 R Divergence measure calculation

For every synthetic bit error traces generated by implementing different random number

generators is saved at a path “C://Source”. R Divergence measure for source and synthetic trace

is calculated for both models to find the similarity between the error distributions.

Moreover Divergence measure is also calculated among the synthetic traces generated for each

RNG Source to find the similarity level among them. 28 combinations of synthetic trace

distributions are found for each of the 24 experiments. Resulted calculations are presented in

next chapter whereas the code to calculate the results is given below. Following code can also be

found in KlDivergence.java.

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import jxl.Workbook;
import jxl.read.biff.BiffException;
import jxl.write.Label;
import jxl.write.Number;
import jxl.write.WritableSheet;
import jxl.write.WritableWorkbook;
import jxl.write.WriteException;

public class KlDivergence
{
 public static double calculateDiv(String fileName1,String fileName2)
 {
 String testRF1=null,testRF3=null;
 double cal,klBER1=0.0,klBER2=0.0;
 double berKL;

 try
 {
 BufferedReader brb = new BufferedReader(new FileReader(fileName1+".txt"));
 StringBuilder sbb = new StringBuilder();
 String lineb = brb.readLine();
 while (lineb != null)
 {
 sbb.append(lineb);
 lineb = brb.readLine();
 }
 testRF1=sbb.toString();
 brb.close();

 }

WSN Simulation

47

 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 try
 {
 BufferedReader brb = new BufferedReader(new FileReader(fileName2+".txt"));
 StringBuilder sbb = new StringBuilder();
 String lineb = brb.readLine();
 while (lineb != null)
 {
 sbb.append(lineb);
 lineb = brb.readLine();
 }
 testRF3=sbb.toString();
 brb.close();
 }
 catch (Exception e)
 {
 System.out.println(e.toString());
 }
 int ind;
 int j,i;
 int length2=testRF1.length()*4/7;
 int length3=testRF3.length()*4/7;
 int ff1[]= new int[length2];
 double pf1[]= new double[length2];
 int ff3[]= new int[length3];
 double pf3[]= new double[length3];
 for (i=0; i<length2; i++)
 {
 ff1[i]=0;
 pf1[i]=0.0;
 }
 for (i=0; i<length3; i++)
 {
 ff3[i]=0;
 pf3[i]=0.0;
 }
 int burst;
 int maxIndex=0,maxIndex1=0,max2;
 burst=0;
 for (i=0; i<testRF1.length(); i++)
 {
 if(testRF1.charAt(i)=='1')
 {
 ind=testRF1.indexOf("0", i);
 if(ind==-1)
 {
 i=testRF1.length()-1;
 }

WSN Simulation

48

 else
 {
 ff1[ind-i]++;
 i=ind;
 }
 burst++;
 }
 }
 for (i=0; i<length2; i++)
 {
 if(ff1[i]!=0)
 {maxIndex=i;pf1[i]=(double)ff1[i]/burst;}
 }
 burst=0;
 for (i=0; i<testRF3.length(); i++)
 {
 if(testRF3.charAt(i)=='1')
 {
 ind=testRF3.indexOf("0", i);
 if(ind==-1)
 {
 i=testRF3.length()-1;
 }
 else
 {
 ff3[ind-i]++;
 i=ind;
 }
 burst++;
 }
 }

 for (i=0; i<length3; i++)
 {
 if(ff3[i]!=0)
 {maxIndex1=i;pf3[i]=(double)ff3[i]/burst;}
 }

 if(maxIndex<maxIndex1)
 max2=maxIndex;
 else
 max2=maxIndex1;

 cal=0.0;
 for (int s=0;s<max2;s++)
 {
 if((pf1[s]!=0.0)&&(pf3[s]!=0.0))
 {
 cal=pf1[s]*Math.log(pf1[s]/pf3[s]);
 klBER1+=cal;
 }

WSN Simulation

49

 }
 cal=0.0;
 for (int s=0;s<max2;s++)
 {
 if((pf1[s]!=0.0)&&(pf3[s]!=0.0))
 {
 cal=pf3[s]*Math.log(pf3[s]/pf1[s]);
 klBER2+=cal;
 }
 }
 if((klBER1==0.0)&&(klBER2==0.0))
 berKL=0.0;
 else
 berKL=(klBER1*klBER2)/(klBER1+klBER2);
 if(berKL<0)
 berKL=(-1)*berKL;
 return berKL;
 }

 public static void main(String[] args) throws BiffException, IOException
 {
 int i,m,n,k;
 double klValueMem[][]= new double[28][24];
 double klValueMark[][]= new double[28][24];
 double klDivMem[][]= new double[28][4];
 double klDivMark[][]= new double[28][4];

 String
fileNames[]={"OutRoom_1_5m","OutRoom_3_8m","OutRoom_4_7m","OutRoom_5_8m","OutRo
om_6_5m","OutRoom_7_5m","PhdLab_1_8m","PhdLab_2_7m","PhdLab_3_8m","PhdLab_4_7
m","PhdLab_5_5m","PhdLab_6_6m","Stair_1_5m","Stair_2_5m","Stair_3_5m","Stair_4_5m","St
air_6_5m","Stair_7_4m","Up_Floor_1_12m","Up_Floor_2_12m","Up_Floor_3_12m","Up_Floor_
4_12m","Up_Floor_5_12m","Up_Floor_7_12m"};
String[] file = {"Coutput","C-RNG-Output","Csoutput","Java-RNG-Output","Joutput","OpenSSL-
Output","Python-Output","SFMT-Output"};
 String path="C:\\Source\\";
 for(i=0;i<28;i++)
 {
 for(m=0;m<24;m++)
 {
 klValueMem[i][m]=0.0;
 klValueMark[i][m]=0.0;
 if(m<4)
 {
 klDivMem[i][m]=0.0;
 klDivMark[i][m]=0.0;
 }
 }
 }
 for(k=0;k<24;k++)
 {

WSN Simulation

50

 n=0;
 for(i=0;i<8;i++)
 {
 for(m=i+1;m<8;m++)
 {
klValueMem[n][k]=calculateDiv(path+fileNames[k]+"_BE_"+file[i]+"_Mem",path+fileNames[k]+"_
BE_"+file[m]+"_Mem");
klValueMark[n][k]=calculateDiv(path+fileNames[k]+"_BE_"+file[i]+"_Markov",path+fileNames[k]+
"_BE_"+file[m]+"_Markov");
 n++;
 }
 }
 }

 for(i=0;i<28;i++)
 {
 n=0;
 for(m=0;m<24;m+=6)
 {
klDivMem[i][n]=klValueMem[i][m]+klValueMem[i][m+1]+klValueMem[i][m+2]+klValueMem[i][m+3
]+klValueMem[i][m+4]+klValueMem[i][m+5];
klDivMark[i][n]=klValueMark[i][m]+klValueMark[i][m+1]+klValueMark[i][m+2]+klValueMark[i][m+3
]+klValueMark[i][m+4]+klValueMark[i][m+5];
 n++;
 }
 }
 for(i=0;i<28;i++)
 {
 for(m=0;m<4;m++)
 {
 klDivMem[i][m]=klDivMem[i][m]/6.0;
 klDivMark[i][m]=klDivMark[i][m]/6.0;
 }
 }
 try
 {
 WritableWorkbook wworkbook1;
 wworkbook1 = Workbook.createWorkbook(new File("C:\\Memoryless
Model\\klDivergenceMem.xls"));
 WritableSheet wsheet1 = wworkbook1.createSheet("Comparison", 0);
 WritableWorkbook wworkbook2;
 wworkbook2 = Workbook.createWorkbook(new File("C:\\Markov
Model\\klDivergenceMark.xls"));
 WritableSheet wsheet2 = wworkbook2.createSheet("Comparison", 0);
 Label label00 = new Label(1, 1, "Comparison of KL Measures for RNG Sources with
MemoryLess Model");
 wsheet1.addCell(label00);
 Label label0 = new Label(0, 3, "OutRoom");
 wsheet1.addCell(label0);
 Label label1 = new Label(1, 3, "PhdLab");
 wsheet1.addCell(label1);

WSN Simulation

51

 Label label2 = new Label(2, 3, "Stairs");
 wsheet1.addCell(label2);
 Label label3 = new Label(3, 3, "UpFloor");
 wsheet1.addCell(label3);
 n=0;
 for (m=4;m<32;m++)
 {
 Number number0 = new Number(0, m, klDivMem[n][0]);
 wsheet1.addCell(number0);
 Number number1 = new Number(1, m, klDivMem[n][1]);
 wsheet1.addCell(number1);
 Number number2 = new Number(2, m, klDivMem[n][2]);
 wsheet1.addCell(number2);
 Number number3 = new Number(3, m, klDivMem[n++][3]);
 wsheet1.addCell(number3);
 }
 Label label11 = new Label(7, 1, "Comparison of KL Measures for RNG Sources with
Markov Model");
 wsheet2.addCell(label11);
 Label label4 = new Label(0, 3, "OutRoom");
 wsheet2.addCell(label4);
 Label label5 = new Label(1, 3, "PhdLab");
 wsheet2.addCell(label5);
 Label label6 = new Label(2, 3, "Stairs");
 wsheet2.addCell(label6);
 Label label7 = new Label(3, 3, "UpFloor");
 wsheet2.addCell(label7);
 n=0;
 for (m=4;m<32;m++)
 {
 Number number0 = new Number(0, m, klDivMark[n][0]);
 wsheet2.addCell(number0);
 Number number1 = new Number(1, m, klDivMark[n][1]);
 wsheet2.addCell(number1);
 Number number2 = new Number(2, m, klDivMark[n][2]);
 wsheet2.addCell(number2);
 Number number3 = new Number(3, m, klDivMark[n++][3]);
 wsheet2.addCell(number3);
 }
 wworkbook1.write();wworkbook1.close();
 wworkbook2.write();wworkbook2.close();
 }
 catch(IOException ie)
 { System.out.println(ie.toString()); }
 catch(WriteException we)
 { System.out.println(we.toString()); }
 System.out.println("Done!!");
 }
}

52

6. Results Evaluation

In this chapter first we evaluate the results produced by the test application (elaborated in

Chapter 4) against output of every random number generator. These results provide the

background, properties and the level of quality of each random number files we have generated

in Chapter 3.

After that we evaluate synthetic traces of bit-errors and frame errors generated from each model

simulation. Later we calculate the R Divergence measure of each trace for both models using the

formula given in Chapter 1. Hence we get the resultant R values for each setup that is particular

to some Random Number Source for both models. For each model eight result sets were

produced from 8 RNG sources. R measures show the difference in results of real and synthetic

trace outputs. It must be noted that smaller the value of R measure, smaller the difference in

results.

Cumulative R Divergence which is calculated with two synthetic trace result sets at a time using

outputs of two RNGs is also evaluated later to know the closeness of simulation result sets

making use of two different RNGs. Purpose of R Divergence measure calculation among the

synthetic traces generated for each RNG Source is to find the similarity level among them. 28

combinations of synthetic trace distributions are found for each of the 24 experiments.

Following factors will be evaluated using the information gathered from results to prove the

impact of randomness in simulation based studies.

1. Simulation provides correct results if the right Random Number Generator is chosen.

2. Random Number Generators with similar properties when used in the simulation produce
similar results.

6.1 Results of Tests

First of all the random numbers are evaluated by the statistical tests and results in the form of

Pass/Fail are recorded for each test. Each random file saves 10 million integers produced by that

particular random generator code.

Test Application is used to compile the test results for each random file generated from available

eight Random Number Generators. Test results of all Random numbers Generators are given in a

 Simulation Results Evaluation

53

table. It is very clear with the results that each RNG lack in some random property. Few are good

in one property while others are bad in the same property. So every random number generator is

focusing on specifics of their own choice. Results generated for every statistical test is compiled

in a table presented following.

Random Number

Generators

Random Files Names Passing

Ratio

Failure

Ratio

Coutput CPP_20140126_2313

0.7 0.3 CPP_20140225_2116

CPP_20140225_2121

C-RNG-Output C_20140507_1411

0.7333 0.266667 C_20140507_1412

C_20140507_1413

Csoutput CS-20140225_2125

0.7333 0.266667 CS-20140225_2126

CS-20140225_2127

Java-RNG-Output J_201457_1344

0.8 0.2 J_2014423_1440

J_2014425_1011

Joutput Java_2014425_1133

0.8 0.2 Java_2014428_1024

Java_2014514_1836

OpenSSL PRNG_20140508_1425

0.8333 0.166667 PRNG_20140508_1457

PRNG_20140508_1458

 Simulation Results Evaluation

54

Python-Output Python_20140507_1400

0.8 0.2 Python_20140507_1402

Python_20140507_1404

SFMT-Output SFMT_201457_1418

0.9 0.1 SFMT_201457_1419

SFMT_201457_1420

Table 3: Passing and Failure Ratio of Tests applied to Random Files

Following graph is the evaluation parameter to prove the Factor 1 which states that RNG with

high failure ratio when used in simulation will provide the results that differ from the real results

in big number. Graph is presenting the failure ratio of numbers produced by RNGs mentioned in

Chapter 3. Ratio is calculated from the resultant files created during test application phase.

Figure 5: Graph showing Failure Ratio of RNGs as per Test Results Record

0

0.05

0.1

0.15

0.2

0.25

0.3

R
es

u
lt

s

Graph showing Failure Ratio of RNGs as per Test Results
Record

 Simulation Results Evaluation

55

Another graph presented below is showing similar and different Random Number Generators on

the basis of their Pass/Fail test statistics. This graph is the evaluation parameter to prove the

Factor 2 which states that similar Random Number Generators when used in simulation will

produce similar results.

Figure 6: Graph showing Similar and Different RNGs

0

1

C
o

u
tp

u
t

&
 C

-R
N

G
-O

u
tp

u
t

C
o

u
tp

u
t

&
 C

so
u

tp
u

t

C
o

u
tp

u
t

&
 J

av
a-

R
N

G
-O

u
tp

u
t

C
o

u
tp

u
t

&
 J

o
u

tp
u

t

C
o

u
tp

u
t

&
 O

p
e

n
SS

L

C
o

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t

C
o

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t

C
-R

N
G

-O
u

tp
u

t
&

 C
so

u
tp

u
t

C
-R

N
G

-O
u

tp
u

t
&

 J
av

a-
R

N
G

-O
u

tp
u

t

C
-R

N
G

-O
u

tp
u

t
&

 J
o

u
tp

u
t

C
-R

N
G

-O
u

tp
u

t
&

 O
p

en
SS

L

C
-R

N
G

-O
u

tp
u

t
&

 P
yt

h
o

n
-O

u
tp

u
t

C
-R

N
G

-O
u

tp
u

t
&

 S
FM

T-
O

u
tp

u
t

C
so

u
tp

u
t

&
 J

av
a-

R
N

G
-O

u
tp

u
t

C
so

u
tp

u
t

&
 J

o
u

tp
u

t

C
so

u
tp

u
t

&
 O

p
en

SS
L

C
so

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t

C
so

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t

Ja
va

-R
N

G
-O

u
tp

u
t

&
 J

o
u

tp
u

t

Ja
va

-R
N

G
-O

u
tp

u
t

&
 O

p
e

n
SS

L

Ja
va

-R
N

G
-O

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t

Ja
va

-R
N

G
-O

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t

Jo
u

tp
u

t
&

 O
p

en
SS

L

Jo
u

tp
u

t
&

 P
yt

h
o

n
-O

u
tp

u
t

Jo
u

tp
u

t
&

 S
FM

T-
O

u
tp

u
t

O
p

en
SS

L
&

 P
yt

h
o

n
-O

u
tp

u
t

O
p

en
SS

L
&

 S
FM

T-
O

u
tp

u
t

P
yt

h
o

n
-O

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t

R
es

u
lt

s

Graph showing Similar and Different RNGs

Coutput & C-RNG-Output

Coutput & Csoutput

Coutput & Java-RNG-Output

Coutput & Joutput

Coutput & OpenSSL

Coutput & Python-Output

Coutput & SFMT-Output

C-RNG-Output & Csoutput

C-RNG-Output & Java-RNG-Output

C-RNG-Output & Joutput

C-RNG-Output & OpenSSL

C-RNG-Output & Python-Output

C-RNG-Output & SFMT-Output

Csoutput & Java-RNG-Output

Csoutput & Joutput

Csoutput & OpenSSL

Csoutput & Python-Output

Csoutput & SFMT-Output

Java-RNG-Output & Joutput

Java-RNG-Output & OpenSSL

Java-RNG-Output & Python-Output

Java-RNG-Output & SFMT-Output

Joutput & OpenSSL

Joutput & Python-Output

Joutput & SFMT-Output

OpenSSL & Python-Output

OpenSSL & SFMT-Output

Python-Output & SFMT-Output

 Simulation Results Evaluation

56

6.2 2-Tier Memoryless Model

6.2.1 Frame-Error Rate

Table 4 shows comparison of real results and simulated results (generated using Rand PRNG in

C) of Frame Error Rate for each setup using 2-Tier Memoryless Model. It must be noted that

result is averaged over 6 traces per setup.

Setup Title Total Frames Source FER Memoryless FER

OutRoom 208426 0.01863137 0.01680303

PhdLab 205385 0.29216057 0.304433333

Stair 179132 0.150592548 0.15508186

Up_floor 119763 0.133074983 0.13650929

Table 4: Average FER Comparison with 2-Tier Memoryless Model

6.2.2 Bit-Error Rate

Table 5 presents comparison of real results and simulated results (generated using Rand PRNG

in C) of Bit Error Rate for each setup using 2-Tier Memoryless Model. Results of 24 traces are

averaged for four setups.

Setup Title Total Bits Source BER Memoryless BER

OutRoom 33348160 0.000483432 0.002400373

PhdLab 32861600 0.013385878 0.291544995

Stair 28661120 0.0054245 0.135821988

Up_floor 19162080 0.006199407 0.129482923

Table 5: Average BER Comparison with 2-Tier Memoryless Model

 Simulation Results Evaluation

57

6.2.3 R Divergence Measure

Table 6 shows average R Divergence measure for each setup with 2-Tier Memoryless Model

(generated using Rand PRNG in C) as given following:

Setup R Divergence

OutRoom 0.109410675

PhdLab 0.086685092

Stair 0.101079727

Up_floor 0.3112344

Table 6: Average R Divergence Measure with 2-Tier Memoryless Model

6.3 2-Tier Markov Model

6.3.1 Frame-Error Rate

Table 7 shows comparison in real results and simulated results (generated using Rand PRNG in

C) of Frame Error Rate for each setup using 2-Tier Markov Model. It must be noted that result is

averaged over 6 traces per setup.

Setup Title Total Frames Source FER Markov FER

OutRoom 208426 0.01863137 0.017451923

PhdLab 205385 0.29216057 0.090240717

Stair 179132 0.150592548 0.13007733

Up_floor 119763 0.133074983 0.138740097

Table 7: Average FER Comparison with 2-Tier Markov Model

 Simulation Results Evaluation

58

6.3.2 Bit-Error Rate

Table 8 presents comparison in real results and simulated results (generated using Rand PRNG in

C) of Bit Error Rate for each setup using 2-Tier Markov Model. Results of 24 traces are averaged

for four setups.

Setup Title Total Bits Source BER Markov BER

OutRoom 33348160 0.000483432 9.75167E-06

PhdLab 32861600 0.013385878 0.000289392

Stair 28661120 0.0054245 0.00062454

Up_floor 19162080 0.006199407 0.000714957

Table 8: Average BER Comparison with 2-Tier Markov Model

6.3.3 R Divergence Measure

Table 9 shows average R Divergence measure for each setup with 2-Tier Markov Model

(generated using Rand PRNG in C) as given below:

Setup R Divergence

OutRoom 0.257466

PhdLab 0.007792

Stair 0.003276

Up_floor 0.004997

Table 9: Average R Divergence Measure with 2-Tier Markov Model

 Simulation Results Evaluation

59

6.4 Cumulative R Divergence Measure Results

6.4.1 2-Tier Memoryless Model

R divergence Measure produced in the output files is combined to see the overall behavior of the

simulation results. Average R Divergence Measure using 2-Tier Memoryless model for the four

setups is given in the following table. High value of R measure shows the bad simulation results

and low values represent good simulation results.

 Coutput C-RNG-

Output

Csoutput Java-RNG-

Output

Joutput OpenSSL Python-

Output

SFMT-

Output

OutRoom 0.477235 0.258231 0.201755 0.177566 0.11223 0.146836 0.179476 0.109411

PhdLab 0.216847 0.1349 0.164416 0.113509 0.080948 0.086685 0.087948 0.056419

Stairs 0.492371 0.105607 0.128032 0.10223 0.100534 0.077867 0.10108 0.056342

Up_Floor 0.582273 0.44347 0.370484 0.346066 0.280051 0.267194 0.311234 0.118585

Table 10: Comparison in R Measures using Memoryless Model for given RNGs

Figure 7: Graph showing role of RNGs in the results of MemoryLess Model Simulation

0

0.1

0.2

0.3

0.4

0.5

0.6

OutRoom PhdLab Stairs Up_Floor

R
 D

iv
er

ge
n

ce

Graph showing role of RNGs in the results of
MemoryLess Model Simulation

Coutput

C-RNG-Output

Csoutput

Java-RNG-Output

Joutput

OpenSSL

Python-Output

SFMT-Output

 Simulation Results Evaluation

60

Analysis:

The graph of above table shows the difference in real trace results and synthetic trace results of

Memoryless model simulation. If we analyze the graph we see the RNGs in the following order

from highest value to lowest.

Out Room: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Python-Output

- > OpenSSL - > Joutput - > SFMT-Output

Phd Lab: Coutput - > Csoutput - > Java-RNG-Output s- > C-RNG-Output - > OpenSSL - >

Python-Output - > Joutput - > SFMT-Output

Stairs: Coutput - > Csoutput - > C-RNG-Output - > Java-RNG-Output - > Joutput - > Python-

Output - > OpenSSL - > SFMT-Output

Up Floor: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Python-Output

- > Joutput -> OpenSSL - > SFMT-Output

According to test results the following order of RNGs as per ratio of failure is given. Order from

highest failure ratio to lowest is identified.

RNG Results: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Joutput - >

Python-Output - > OpenSSL - > SFMT-Output

As C-RNG-Output and Csoutput are equal, we can interchange them. Similarly Java-RNG-

Output, Joutput and Python-Output are equal, we can also interchange these.

If we compare each setup one by one with the RNG results, two values of Out Room are

different in the order. In Phd Lab four values are different whereas Stairs is exactly same. Up

floor is also exactly same in order.

So overall two setups are completely reflecting the results calculated from the test application

whereas results of Out Room and PhdLab are partially same. It proves the Factor 1 that

simulation provides correct results if the right Random Number Generator is chosen and

simulation differs from real results if weak RNG is used in the simulation.

 Simulation Results Evaluation

61

6.4.2 2-Tier Markov Model

Average R Divergence Measure using 2-Tier Markov model for the four setups is given in the

following table. High value of R measure shows the bad simulation results and low values

represent good simulation results.

 Coutput C-RNG-

Output

Csoutput Java-RNG-

Output

Joutput OpenSSL Python-

Output

SFMT-

Output

OutRoom 0.047915 0.043125 0.046276 0.023656 0.018464 0.022594 0.018713 0.009659

PhdLab 0.007792 0.007892 0.00577 0.007664 0.003666 0.00539 0.005906 0.004817

Stairs 0.003276 0.003388 0.002935 0.004534 0.004198 0.004291 0.005118 0.004306

Up_Floor 0.004997 0.004683 0.008582 0.004644 0.00659 0.005428 0.009623 0.00414

Table 11: Comparison in R Measures using Markov Model for given RNGs

Figure 8: Graph showing role of RNGs in the results of Markov Model Simulation

0

0.01

0.02

0.03

0.04

0.05

OutRoom PhdLab Stairs Up_Floor

Graph showing role of RNGs in the results of Markov
Model Simulation

Coutput

C-RNG-Output

Csoutput

Java-RNG-Output

Joutput

OpenSSL

Python-Output

SFMT-Output

 Simulation Results Evaluation

62

Analysis:

Above graph is drawn from the table 11 and shows the difference in real traces and synthetic

trace results of markov model simulation. If we analyze the graph we see RNGs in the following

order from highest value to lowest.

Out Room: Coutput - > Csoutput - > C-RNG-Output - > Java-RNG-Output - > OpenSSL - >

Joutput -> Python-Output -> SFMT-Output

Phd Lab: Coutput - > C-RNG-Output - > Java-RNG-Output - > Csoutput - > Python-Output - >

OpenSSL - > SFMT-Output - > Joutput

Stairs: Coutput - > Java-RNG-Output - > Python-Output - > Joutput - > OpenSSL - > SFMT-

Output - > C-RNG-Output - > Csoutput

Up Floor: Coutput - > Csoutput - > Java-RNG-Output - > Joutput - > OpenSSL - > C-RNG-

Output - > Python-Output - > SFMT-Output

According to test results the following order of RNGs as per ratio of failure is identified. Order

from highest failure ratio to lowest is identified.

RNG Results: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Joutput - >

Python-Output - > OpenSSL - > SFMT-Output

As C-RNG-Output and Csoutput are equal, we can interchange them. Similarly Java-RNG-

Output, Joutput and Python-Output are equal, we can also interchange these.

If we compare each setup one by one with the RNG results, one value of Out Room is different

in the order. In Phd Lab two values are different. In setup of Stairs one value is out of order. One

value is out of order in Up floor.

So overall just few values are not in saline to the base order. It proves the Factor 1 that

simulation provides correct results if the right Random Number Generator is chosen and

simulation differs from real results if weak RNG is used in the simulation.

 Simulation Results Evaluation

63

6.5 R Divergence Measure Results w.r.t RNGs

6.5.1 2-Tier Memoryless Model

R Diverence measure is used to make comparisons and generate the values given in following

table. The table depicts the comparison of Random Source results in combination calculated with

2-Tier Memoryless Model.

RNG SOURCES SETUP TITLES

RNG Source 1 RNG Source 2 OutRoom PhdLab Stairs Up_floor

Coutput C-RNG-Output 0.000214334 0.000889807 0.000652314 0.324821612

Coutput Csoutput 0.00025825 0.000479126 0.001025599 0.323213666

Coutput Java-RNG-Output 0.160668197 0.162359394 0.00810264 0.543897932

Coutput Joutput 0.161222014 0.163302043 0.001056084 0.32537085

Coutput OpenSSL 0.064397595 0.118612493 0.092809878 0.321987078

Coutput Python-Output 0.162963522 0.077875547 0.003177214 0.453830562

Coutput SFMT-Output 0.922788893 0.511641194 0.782129509 0.505058339

C-RNG-Output Csoutput 5.39716E-05 0.000581962 0.023654875 0.48386394

C-RNG-Output Java-RNG-Output 0.16094804 0.16187647 0.000723321 0.482759364

C-RNG-Output Joutput 0.161053449 0.162950451 0.00062044 0.485306759

C-RNG-Output OpenSSL 0.068262819 0.122335577 0.098576828 0.480814658

C-RNG-Output Python-Output 0.162245471 0.000746184 0.000609049 0.324588326

C-RNG-Output SFMT-Output 0.963065683 0.508898778 0.900111076 0.529624362

 Simulation Results Evaluation

64

Csoutput Java-RNG-Output 0.160784442 0.161334305 0.001221993 0.323382062

Csoutput Joutput 0.160636476 0.162391982 0.001033075 0.328250173

Csoutput OpenSSL 0.068941311 0.117830306 0.096137708 0.339392389

Csoutput Python-Output 0.16190204 0.000961355 0.001078611 0.323375184

Csoutput SFMT-Output 0.984892637 0.499143528 0.81623286 0.809559662

Java-RNG-Output Joutput 0.160394418 0.162043103 0.000519161 0.34875919

Java-RNG-Output OpenSSL 0.204227397 0.267921092 0.093438814 0.315887996

Java-RNG-Output Python-Output 0.256566512 0.162121287 0.000814929 0.498924507

Java-RNG-Output SFMT-Output 0.670121624 0.233478205 0.814245795 0.520889161

Joutput OpenSSL 0.209062537 0.273010422 0.098268331 0.340861275

Joutput Python-Output 0.162162976 0.163419781 0.000638312 0.353730246

Joutput SFMT-Output 0.638385224 0.223349223 0.865583564 0.810368064

OpenSSL Python-Output 0.207990444 0.121469419 0.091653495 0.316453204

OpenSSL SFMT-Output 0.615249777 0.333590344 0.758587033 1.066351603

Python-Output SFMT-Output 0.701015915 0.519894306 0.819546709 0.510185243

Table 12: Comparison in R Measures using Memoryless Model for combinational RNGs

 Simulation Results Evaluation

65

Figure 9: Graph showing similar simulation results in MemoyLess Model

Analysis:

Above graph is drawn from the table 12 that shows the difference in traces for each and every

possible combination of RNGs. There are total 28 combinations of traces. With the thorough

analysis of graph following combinations are found to be in the same range of R values.

 Coutput & C-RNG-Output

 Coutput & Csoutput

 Coutput & OpenSSL

 C-RNG-Output & Csoutput

 C-RNG-Output & Java-RNG-Output

 C-RNG-Output & Joutput

 C-RNG-Output & OpenSSL

0

1

C
o

u
tp

u
t

&
 C

-R
N

G
-O

u
tp

u
t

C
o

u
tp

u
t

&
 C

so
u

tp
u

t
C

o
u

tp
u

t
&

 J
av

a-
R

N
G

-O
u

tp
u

t
C

o
u

tp
u

t
&

 J
o

u
tp

u
t

C
o

u
tp

u
t

&
 O

p
e

n
SS

L
C

o
u

tp
u

t
&

 P
yt

h
o

n
-O

u
tp

u
t

C
o

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t
C

-R
N

G
-O

u
tp

u
t

&
 C

so
u

tp
u

t
C

-R
N

G
-O

u
tp

u
t

&
 J

av
a-

R
N

G
-…

C
-R

N
G

-O
u

tp
u

t
&

 J
o

u
tp

u
t

C
-R

N
G

-O
u

tp
u

t
&

 O
p

en
SS

L
C

-R
N

G
-O

u
tp

u
t

&
 P

yt
h

o
n

-…
C

-R
N

G
-O

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t
C

so
u

tp
u

t
&

 J
av

a-
R

N
G

-O
u

tp
u

t
C

so
u

tp
u

t
&

 J
o

u
tp

u
t

C
so

u
tp

u
t

&
 O

p
en

SS
L

C
so

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t
C

so
u

tp
u

t
&

 S
FM

T-
O

u
tp

u
t

Ja
va

-R
N

G
-O

u
tp

u
t

&
 J

o
u

tp
u

t
Ja

va
-R

N
G

-O
u

tp
u

t
&

 O
p

en
SS

L
Ja

va
-R

N
G

-O
u

tp
u

t
&

 P
yt

h
o

n
-…

Ja
va

-R
N

G
-O

u
tp

u
t

&
 S

FM
T-

…
Jo

u
tp

u
t

&
 O

p
e

n
SS

L
Jo

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t
Jo

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t
O

p
en

SS
L

&
 P

yt
h

o
n

-O
u

tp
u

t
O

p
en

SS
L

&
 S

FM
T-

O
u

tp
u

t
P

yt
h

o
n

-O
u

tp
u

t
&

 S
FM

T-
O

u
tp

u
t

R
es

u
lt

s
Graph showing similar simulation results in MemoyLess

Model Coutput & C-RNG-Output

Coutput & Csoutput

Coutput & Java-RNG-Output

Coutput & Joutput

Coutput & OpenSSL

Coutput & Python-Output

Coutput & SFMT-Output

C-RNG-Output & Csoutput

C-RNG-Output & Java-RNG-Output

C-RNG-Output & Joutput

C-RNG-Output & OpenSSL

C-RNG-Output & Python-Output

C-RNG-Output & SFMT-Output

Csoutput & Java-RNG-Output

Csoutput & Joutput

Csoutput & OpenSSL

Csoutput & Python-Output

Csoutput & SFMT-Output

Java-RNG-Output & Joutput

Java-RNG-Output & OpenSSL

Java-RNG-Output & Python-Output

Java-RNG-Output & SFMT-Output

Joutput & OpenSSL

Joutput & Python-Output

Joutput & SFMT-Output

OpenSSL & Python-Output

OpenSSL & SFMT-Output

Python-Output & SFMT-Output

 Simulation Results Evaluation

66

 C-RNG-Output & Python-Output

 Csoutput & Java-RNG-Output

 Csoutput & Joutput

 Csoutput & OpenSSL

 Csoutput & Python-Output

 Java-RNG-Output & Joutput

 Java-RNG-Output & OpenSSL

 Java-RNG-Output & Python-Output

 Joutput & OpenSSL

 Joutput & Python-Output

 OpenSSL & Python-Output

According to test results the following RNGs are found similar as they have the same range of

failure ratio.

 Coutput & C-RNG-Output

 Coutput & Csoutput

 C-RNG-Output & Csoutput

 Java-RNG-Output & Joutput

 Java-RNG-Output & OpenSSL

 Java-RNG-Output & Python-Output

 Joutput & OpenSSL

 Joutput & Python-Output

 OpenSSL & Python-Output

Above statistics show that every combination of RNGs which has almost same random qualities

and is found similar with the results of test application when applied to simulation produces

similar simulation results which can be seen by the R measures that are small in these cases.

It proves the Factor 2 that Random Number Generators with similar properties when used in the

simulation produce the similar simulation results.

6.5.2 2-Tier Markov Model

Following table depicts the comparison of Random Source results calculated with 2-Tier Markov

Model. R Diverence measure is used for comparison purposes.

 Simulation Results Evaluation

67

RNG SOURCES SETUP TITLES

RNG Source 1 RNG Source 2 OutRoom PhdLab Stairs Up_floor

Coutput C-RNG-Output 0.192877205 0.003849958 0.001864541 0.001985602

Coutput Csoutput 0.207651921 0.003883554 0.002050279 0.001990353

Coutput Java-RNG-Output 0.201954425 0.002707976 0.001942049 0.001596568

Coutput Joutput 0.213776003 0.004014622 0.001347965 0.001730313

Coutput OpenSSL 0.222020081 0.002717561 0.001667601 0.001951581

Coutput Python-Output 0.225785854 0.006027323 0.0012275 0.005327181

Coutput SFMT-Output 0.227313988 0.006446073 0.001055714 0.005879822

C-RNG-Output Csoutput 0.001227279 0.002230322 0.002037511 0.001811511

C-RNG-Output Java-RNG-Output 0.001091014 0.001861729 0.002744856 0.002019573

C-RNG-Output Joutput 0.001230359 0.001861754 0.001616143 0.002484099

C-RNG-Output OpenSSL 0.001142739 0.001479328 0.00135325 0.019750144

C-RNG-Output Python-Output 0.001204529 0.002782835 0.004936313 0.002887387

C-RNG-Output SFMT-Output 0.000787266 0.003375483 0.001838592 0.000826109

Csoutput Java-RNG-Output 0.00170605 0.001232065 0.002660673 0.002540947

Csoutput Joutput 0.001754287 0.00222333 0.003054191 0.006460485

Csoutput OpenSSL 0.001825424 0.001298876 0.0017141 0.001088671

Csoutput Python-Output 0.001418427 0.003750892 0.002045627 0.001659767

 Simulation Results Evaluation

68

Csoutput SFMT-Output 0.001637238 0.000935544 0.002491999 0.000986975

Java-RNG-Output Joutput 0.000998722 0.002233269 0.001500976 0.001602953

Java-RNG-Output OpenSSL 0.001332982 0.003005983 0.001123086 0.002246656

Java-RNG-Output Python-Output 0.001116658 0.001769939 0.002079416 0.002353704

Java-RNG-Output SFMT-Output 0.000725602 0.000768695 0.001620858 0.01716366

Joutput OpenSSL 0.002170514 0.003264637 0.005255079 0.003373971

Joutput Python-Output 0.002647433 0.00233293 0.003330898 0.005378822

Joutput SFMT-Output 0.002745444 0.001570234 0.006188707 0.001264581

OpenSSL Python-Output 0.001560268 0.00220994 0.001241794 0.002348881

OpenSSL SFMT-Output 0.002212597 0.002333056 0.001175201 0.001363032

Python-Output SFMT-Output 0.001769881 0.003549887 0.001152062 0.006701309

Table 13: Comparison in R Measures using Markov Model for combinational RNGs

 Simulation Results Evaluation

69

Figure 10: Graph showing similar simulation results in Markov Model

Analysis:

Above graph is drawn from the table 13 and shows the difference in traces for each and every

possible combination of RNGs. There are total 28 combinations of traces. With the thorough

analysis of graph following combinations of simulation results are found to be in the same range

of R values.

 Coutput & C-RNG-Output

 Coutput & Csoutput

 Coutput & Java-RNG-Output

 C-RNG-Output & Csoutput

 C-RNG-Output & Java-RNG-Output

 C-RNG-Output & OpenSSL

 Csoutput & Java-RNG-Output

0

1

C
o

u
tp

u
t

&
 C

-R
N

G
-O

u
tp

u
t

C
o

u
tp

u
t

&
 C

so
u

tp
u

t
C

o
u

tp
u

t
&

 J
av

a-
R

N
G

-O
u

tp
u

t
C

o
u

tp
u

t
&

 J
o

u
tp

u
t

C
o

u
tp

u
t

&
 O

p
e

n
SS

L
C

o
u

tp
u

t
&

 P
yt

h
o

n
-O

u
tp

u
t

C
o

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t
C

-R
N

G
-O

u
tp

u
t

&
 C

so
u

tp
u

t
C

-R
N

G
-O

u
tp

u
t

&
 J

av
a-

R
N

G
-…

C
-R

N
G

-O
u

tp
u

t
&

 J
o

u
tp

u
t

C
-R

N
G

-O
u

tp
u

t
&

 O
p

en
SS

L
C

-R
N

G
-O

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t
C

-R
N

G
-O

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t
C

so
u

tp
u

t
&

 J
av

a-
R

N
G

-O
u

tp
u

t
C

so
u

tp
u

t
&

 J
o

u
tp

u
t

C
so

u
tp

u
t

&
 O

p
en

SS
L

C
so

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t
C

so
u

tp
u

t
&

 S
FM

T-
O

u
tp

u
t

Ja
va

-R
N

G
-O

u
tp

u
t

&
 J

o
u

tp
u

t
Ja

va
-R

N
G

-O
u

tp
u

t
&

 O
p

en
SS

L
Ja

va
-R

N
G

-O
u

tp
u

t
&

 P
yt

h
o

n
-…

Ja
va

-R
N

G
-O

u
tp

u
t

&
 S

FM
T-

…
Jo

u
tp

u
t

&
 O

p
e

n
SS

L
Jo

u
tp

u
t

&
 P

yt
h

o
n

-O
u

tp
u

t
Jo

u
tp

u
t

&
 S

FM
T-

O
u

tp
u

t
O

p
en

SS
L

&
 P

yt
h

o
n

-O
u

tp
u

t
O

p
en

SS
L

&
 S

FM
T-

O
u

tp
u

t
P

yt
h

o
n

-O
u

tp
u

t
&

 S
FM

T-
O

u
tp

u
t

R
e

su
lt

s
Graph showing similar simulation results in Markov Model

Coutput & C-RNG-Output

Coutput & Csoutput

Coutput & Java-RNG-Output

Coutput & Joutput

Coutput & OpenSSL

Coutput & Python-Output

Coutput & SFMT-Output

C-RNG-Output & Csoutput

C-RNG-Output & Java-RNG-Output

C-RNG-Output & Joutput

C-RNG-Output & OpenSSL

C-RNG-Output & Python-Output

C-RNG-Output & SFMT-Output

Csoutput & Java-RNG-Output

Csoutput & Joutput

Csoutput & OpenSSL

Csoutput & Python-Output

Csoutput & SFMT-Output

Java-RNG-Output & Joutput

Java-RNG-Output & OpenSSL

Java-RNG-Output & Python-Output

Java-RNG-Output & SFMT-Output

Joutput & OpenSSL

Joutput & Python-Output

Joutput & SFMT-Output

OpenSSL & Python-Output

OpenSSL & SFMT-Output

Python-Output & SFMT-Output

 Simulation Results Evaluation

70

 Csoutput & Joutput

 Csoutput & OpenSSL

 Java-RNG-Output & Joutput

 Java-RNG-Output & OpenSSL

 Java-RNG-Output & Python-Output

 Joutput & OpenSSL

 Joutput & Python-Output

 OpenSSL & Python-Output

According to test results the following RNGs were found similar as they have the same range of

failure ratio.

 Coutput & C-RNG-Output

 Coutput & Csoutput

 C-RNG-Output & Csoutput

 Java-RNG-Output & Joutput

 Java-RNG-Output & OpenSSL

 Java-RNG-Output & Python-Output

 Joutput & OpenSSL

 Joutput & Python-Output

 OpenSSL & Python-Output

Above statistics show that every combination of RNGs which has almost same random qualities

and is found similar with the results of test application when applied to simulation produces

similar simulation results which can be seen by the R measures that are small in these cases.

It proves the Factor 2 that Random Number Generators with similar properties when used in the

simulation produces the similar simulation results.

6.6 Conclusion

Hence we can conclude in lines that to prove the impacts of Randomness in Simulations,

following factors are evaluated against the information and results gathered.

1. Simulations provide correct results if the strong RNG with respect to randomness is the
choice.

2. Random Number Generators with similar properties when used in the simulation produce
the similar simulation results.

71

7. Conclusion

Thesis can be divided into two main sections. First of all we presented a comprehensive research

for evaluating randomness of RNGs in different Programming Languages and cryptographic

libraries using Statistical Random Test Algorithms. Later the impact of random numbers on

simulation based studies was evaluated in detail. As the use of random numbers generated

through APIs of programming languages is more than other options of number generation, the

most common PRNGs provided by C, C++, Java, C#, Python, OpenSSL, SFMT are evaluated in

two ways. The quality and reliability was first assessed using standard random number testing

procedures such as Equidistribution Test, Run Test, Serial Test, and Chi square Test. Later we

used the same random numbers in a Markov chain based probabilistic study of Wireless Sensor

Networks. For analysis purpose R Divergence measure was used. The results and analysis

reveals that choice of random numbers has direct impact over simulation based studies. Use of

strong random numbers lead to better and reliable simulations while bad RNG selection will end

in bad and unrealistic results that will be vary from real results in a big number. Another concept

which is presented in thesis is related to using a RNG same in random properties with some other

RNG. The results presented in last chapter are enough to prove that similar RNGs will have same

impacts over simulations and almost same results will be generated by applying similar RNGs.

72

8. References

[1] Havedanloo, Saeed, and Hamid Reza Karimi, “Improving the Performance Metric of

Wireless Sensor Networks with Clustering Markov Chain Model and Multilevel Fusion”,

Mathematical Problems in Engineering, 2013.

[2] P. Hellekalek, “Good random number generators are (not so) easy to find”, Mathematics

and Computers in Simulation, Volume 46, No. 5, 1998, pp. 485-505.

[3] NIST Exploratory Data Analysis:

http://www.itl.nist.gov/div898/handbook/toolaids/pff/E-Handbook.pdf

[4] Adnan Iqbal and Syed Ali Khayam, "Improving WSN Simulation and Analysis Accuracy

Using Two-Tier Channel Models," IEEE International Conference on Communications

(ICC), May 2008.

[5] U. Maurer, “A Universal Statistical Test for Random Bit Generators,” Journal of

Cryptology. Vol. 5, No. 2, 1992, pp. 89-105.

[6] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in C:

The Art of Scientific Computing, Cambridge University Press, 2nd edition, 1992.

[7] Noble, C. and Sugden, S. J., “Statistical Tests on Random Numbers I”, A consulting

report for Jupiters Network Gaming, July 1997.

[8] Inductive and Deductive research Approach:

http://www.drburney.net/INDUCTIVE%20&%20DEDUCTIVE%20RESEARCH%20AP

PROACH%2006032008.pdf

[9] A. Menezes, et al., Handbook of Applied Cryptography, CRC Press, 1997.

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

[10] W. Press, S. Teukolsky, W. Vetterling, Numerical Recipes in C : The Art of Scientific

Computing, 2nd Edition. Cambridge University Press, January 1993.

[11] Donald E.Knuth, “The Art of Computer Programming, Seminumerical Algorithms”,

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

 References

73

Volume 2, 3rd edition, 1997.

[12] Daniel P. Biebighauser, “Testing Random Number Generators”, University of Minnesota,

REU Summer 2000.

[13] Richard Simard, Pierrel’euyer, A C Library for Empirical Testing of Random Number

Generators, Universit ´e de Montr´eal, 1996.

[14] Kinga Marton, A High Performance System for Generation and Testing of Random

Number Sequences for Cryptographic Applications, Siemens PSE, 2010.

[15] Juan Soto, Statistical Testing of Random Number Generators, NIST 2010.

[16] http://www.graphpad.com/quickcalcs/randomN1.cfm

[17] http://www.random.org/integers/

[18] http://stattrek.com/Tables/Random.aspx

[19] http://www.dave-reed.com/Nifty/randSeq.html

[20] http://www.random.org/sequences/

http://www.graphpad.com/quickcalcs/randomN1.cfm
http://stattrek.com/Tables/Random.aspx
http://www.dave-reed.com/Nifty/randSeq.html

74

 Appendix A: Results for sample data

In case of binary file, Results might be given as below:

Statistical Test P-value

Run Test 0.5782

Permutation Test 0.7608

Poker Test 0.0243

Serial Test 0.1222

Chi square Test 0.0019

Equidistribution Test 0.0312

Frequency (Bi Gram) 0.0221

Frequency (Tri Gram) 0.0111

Table 14: Test results of Sample Binary File

In case of integer file, Results might be given as below:

Statistical Test P-value

Run Test 0.0626

Frequency Test (N Gram) 0.29899

Poker Test 0.0132

Appendix A: Results for sample data

75

Table 15: Test results of Sample Integer File

Serial Test 0.027826

Chi square Test 0.005442

Permutation Test 0.9999

Sub sequence Test 0.7683

Equidistribution Test 0.29899

76

 Appendix B: Graphical User Interface (GUI)

A simple graphical user interface is developed to test the statistical properties of RNGs. The

source code can be found in randomTestDemo.java. The interface consists of a single window

with four regions. The first region prompts user to get a sequence for testing randomness. For

getting a sequence to be tested, he should click the “Get File” button to get a sequence. Then he

must select one of the files containing sequences.

The second region consists of check list for the statistical tests. The user selects the set of

statistical tests to be executed. Once the user has selected the sequence to be tested, he should

click “Apply button” to invoke the statistical tests. This results in displaying the results of

selected tests. Results of applied tests are shown in text area of third region. The user can also

make and view sample file for testing purposes. Logs of Analysis report is also maintained for

analysis purposes. The fourth region of interface shows the P-values and Pass/Fail status of

selected tests. The user can later proceed to review the log files that are named according to time

in folder “Analysis Reports”.

Another GUI based simulation is provided for two tier Memoryless Model. The source code can

be found in MemorylessModel.java. The application is divided into three regions. The first

region consists of a combo box and a button. User selects the PRNG of his choice by selecting

entry from combo box. Later he should click “Execute button” to invoke the routines for

producing synthetic traces and producing results that include FER, BER and R Divergence

results. The results of real traces are presented in a second region of an application. For all 24

traces total number of frames and bits as well Frame Error Rate, Bit Error Rate calculated using a

model are shown in columns of third region.

For two tier Markov Model the application format is implemented on similar lines as for

Memoryless Model Simulation. The source code can be found in MarkovModel.java. The

backend working of application is different that is clearly affected in synthetic traces of frame

and bit errors. R Diverence values are also calculated for all 24 traces and average results for

four setups are copied to the result sheet generated. It shall be noted that for every random

number source different result sheets are generated.

 Appendix B: Graphical User Interface

77

1. Using Test Application

First of all, user enters password to go to the main screen.

Figure 11: User Authentication Dialogue Box

If the user inputs authenticated password, he sees the main screen of an application.

Figure 12: Random Number Testing Main Interface

After authentication, user must get random file to apply test on these. As the user presses “Get

File” button, the File Open Dialog Box appears so that the user can get the random file.

 Appendix B: Graphical User Interface

78

Figure 13: Random File Selection Dialogue Box

As the user selects the file, contents of file are appeared in the text box.

Figure 14: Random Number File content shown in first Text Area

 Appendix B: Graphical User Interface

79

After getting random sequence from a file, the user must select the tests from the list. He can

select one or more tests according to his will. After selection of tests, the user must press

“Apply” button to test randomness of sequence selected with specific tests.

Figure 15: Test Results shown after applying Test Algorithms

The user can get different types of sequences like binary, text, decimal and integer. He can also

select multiple tests from the list. He can select all tests by pressing button “Add All” button.

 Appendix B: Graphical User Interface

80

Figure 16: Test Algorithm workings with detailed results shown in Text Area 2

When the user applies tests on the sequence, the results of all tests appears in the result and

analysis box.

Figure 17: Status of Test Results in Pass/Fail Format

 Appendix B: Graphical User Interface

81

The user can also open and edit the random sequence. For testing purposes, they can also

generate their own sequences.

Figure 18: Using Toolbar for Opening and editing Random Sequences

When the user selects New from Menu, Text File Editor appears to accommodate user for

generating and editing random sequences.

Figure 19: Text File Editor Dialogue Box to edit Random Sequence

 Appendix B: Graphical User Interface

82

The user can also edit the random sequence and save it. He can also make and Save the

sequences at his desired location.

Figure 20: Save the random number after editing

When the user selects Save As from Menu, Save As Dialog Box appears. The user can save the

random sequence file at his desired location.

Figure 21: File path selection to save the new random sequence

The user can also change the Font Style and Size according to his will.

 Appendix B: Graphical User Interface

83

Figure 22: Available Options to change font style and text size

The user can know about details of an application if he wants.

Figure 23: About Dialogue Box of an Application

 Appendix B: Graphical User Interface

84

2. Using Memoryless Model Simulation Application

All the options for random number sources are given in combo box. User selects the Random

number source and then press “Execute” button to generate the Synthetic traces and R

Divergence calculation results.

Figure 24: WSN Simulation Application using 2-Tier Memoryless Model

 Appendix B: Graphical User Interface

85

In a result, for every selected Random Number Source the following Result sheet implementing

Memoryless model is produced that prints FER, BER and R Divergence calculations for all 24

traces.

Figure 25: FER, BER and R Divergence Measures in Result Sheet of Memoryless Model

 Appendix B: Graphical User Interface

86

3. Using Markov Model Simulation Application

The options for random number sources are presented to user in a combo box. User selects the

Random number source and then press “Execute” button to generate the Synthetic traces and R

Divergence calculation results.

Figure 26: WSN Simulation Application using 2-Tier Markov Model

For every selected Random Number Source the following Result sheet implementing Markov

model is created that prints FER, BER and R Divergence calculations for all 24 traces.

 Appendix B: Graphical User Interface

87

Figure 27: FER, BER and R Divergence Measures in Result Sheet of Markov Model

