Quantifying the Impact of Randomness in Simulation Based Studies

Sehar Igbal
2010-NUST-MS-CCS-22

Thesis Supervisor

Dr. Abdul Ghafoor

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree

of Master of Science in Computer and Communication Security (MS CCS)

In

Department of Computing (DoC)

School of Electrical Engineering & Computer Science (SEECS)
National University of Sciences & Technology (NUST),
Islamabad, Pakistan
(2014)

Approval

This thesis has been submitted in partial fulfillment of requirements for the Master of Science in
Computer and Communication Security (MS CCS) at National University of Sciences &
Technology.

It is certified that the contents and form of the thesis entitled “Quantifying the Impact of
Randomness in Simulation Based Studies” submitted by Sehar Igbal have been found

satisfactory for the requirement of the degree.

Advisor: Dr. Abdul Ghafoor

Signature:

Date:

Committee Member 1: Dr. Hassaan Khalig Qureshi

Signature:

Date:

Committee Member 2: Dr. Adnan Igbal

Signature:

Date:

Committee Member 3: Mr. Mohsan Jameel

Signature:

Date:

Abstract

Many scientific studies in Wireless Sensor Networks rely on simulations and correctness of these
simulation results is heavily dependent on random numbers. In current situation, most of
researchers generally use random numbers generated through common random number
generating APIs of modern programming languages. This research activity describes the
comparative analysis of existing random number generators and evaluates their impact of using
different types of random numbers in a simulation based study of WSN. In this study, eight
different types of random numbers generation algorithms are considered. These random numbers
are first evaluated using standard random number testing procedures such as Run Test, Serial
Test, and Chi square Test. After that the same random numbers in a Markov chain based
probabilistic study of Wireless Sensor Networks are analyzed. Our empirical analysis reveals
that there is a correlation between strength of random numbers and accuracy of simulation.
Simulation provides correct results if the right Random Number Generator which is strong
enough respect to its random properties is chosen. It is also shown that Random Number

Generators with similar properties used in the simulation modeling produce similar results.

Certificate of Originality

| hereby declare that this submission is my own work and to the best of my knowledge it
contains no materials previously published or written by another person, nor material which to a
substantial extent has been accepted for the award of any degree or diploma at National
University of Sciences & Technology (NUST) School of Electrical Engineering & Computer
Science (SEECS) or at any other educational institute, except where due acknowledgement has
been made in the thesis. Any contribution made to the research by others, with whom | have
worked at SEECS NUST or elsewhere, is explicitly acknowledged in the thesis.

| also declare that the intellectual content of this thesis is the product of my own work, except for
the assistance from others in the project's design and conception or in style, presentation and

linguistics which has been acknowledged.

Author Name: Sehar Igbal

Signature:

Acknowledgement

First of all I thank and praise Allah for giving me persistence to complete my Master degree and
then my parents and family, who have always motivated me to be diligent and to believe in my
abilities.

This thesis would not have been possible without a kind support of my supervisor Dr. Abdul
Ghafoor and Dr. Adnan Igbal who has always inspired me with his dedication and enthusiasm

to work.

I would like to appreciate and thank my committee members, Dr. Hassaan Khalig Qureshi and
Mr. Mohsan Jameel who have always given me their precious time and guided me through my

work. Their critique and constructive comments has always helped me in improving my work.

And finally, special thanks to my friends who have always provided me all kind of
encouragement throughout the span of my thesis work.

Sehar Igbal

Dedication

Dedicated
to
my loving Husband

for supporting me all the way!

Table of Contents

Lo INEFOTUCTION .ttt b r et b e nn e r e 1
IO R O] o T £ LTSS 4
1.2 IMIOTIVALION ..ottt bbbttt bbb 5
1.3 Problem SAteMENT ..o s 5
1.4 Research Methodology ..o 5
1.5 TheSiS OrganizZatiOn..........cccueiueiieiieiie et ceesie et se et ae e sre et e e s teenteaneesraenneenee e 7

2. REIAIEA WOTKo bbbttt bbb 8
2.1 Improving WSN simulation and analysis accuracy using 2-Tier Channel Models 8
2.2 High Performance System for Generation and Testing of RNGSccccccveviiveiieennen, 9
2.3 Testing Random NUMDEr GENEIAtOrS.cc.eiveiiiiieiieie et 11
2.4 Handbook of Applied Cryptograpny.........cccccieiiiiiiiiiesisiseseeee e 12
2.5 C Library for Empirical Testing of Random Number Generatorsccccccevververeeenne. 14
2.6 Statistical Testing of Random Number Generators............ccccvveveeieieeieeree e 15

3. Random NUMDEr GENEIAtION.........cciiiiiiiiiieieeiie e 17
3.1 Randomness and Unpredictability ..o 17
3.2 Random Number Generators (RNGS)ccccuiiririeriiiiiene st 17
3.3 Pseudorandom Number Generators (PRNGS).........ccccveiiiieiieieiie e 18
3.4 Using Pseudorandom Number AIgorithmscccooviiiic i 18

341 ClaSS TANG TN C oottt bbb 18
3.4.2 ClasS SraNd iN CH .o b 19
3.4.3 Class Rand with Current Time as Seed inN Javaccocveriiiiiiieicies e 19
3.4.4 Class Rand with default SEed iIN JAVA.........ccccveieiiiiiiiee 20

3.45 Class RaNGOM IN CH. .ot e e e e e e e et eeeeeenaan 20

3.4.6 Class random iN PYINONccociiiiiii e 21
3.4.7 SFMT (SIMD-oriented Fast Mersenne TWISEEI)ccoovvereririeenenieseeree e sieeiens 21
3.4.8 OpenSSL RSA Big NUMDEIS. ..ot 24
4. RANAOMNESS TESHING .. cuieitiiieieeieete sttt st et e et e s e s reeaeeseesbeeaeaneesreenreanee e 26
4.1 Testing AlGOrtNMS........ooiiee e e 26
411 ChRI SQUAIE TStttk nenn e 27
4.1.2 EQUIISTIIDULION TEST......ciiiiiiiiieieriete e 27
4,13 SEIIAI TESE .ttt 28
4.1.4 PermMUEATION TEST.....oiiiieiiiiiieieiesiese ettt 29
415 Frequency TeSt (N Gram)ccc oo 30
4.1.6 Frequency TeSt (Bl Gram) ..o s 31
4.1.7 Frequency TeSt (Tri Gram)ccceiveieiieieeie ettt ste e e 32
4.1.8 AULO COMElation TESEcciiiiieiiiieiicee e 32
A.119 POKEE TESE ..ttt bbb bbbttt b bbb 33
4.1.10 ENtropy TeSt (N GramM)cceoiiieieieiesiesie e 34
4.1.11 Entropy TeSt (Bi Gram)ccccueiiiiieie sttt sttt 35
4.1.12 ENtropy TeSt (TrE Gram) ..ccoccueiie ettt sae e sre e 36
4.1.13 SUD SEOUENCE TEST....itiitiiiieiieiieiee ettt bbbttt 36
4114 PAEIN TS ..ot 37
4115 RUN TEST ..t 37
4.2 The Interpretation Of RESUILS.......cooiiiiiiiiii e 38
4.2.1 Proportion of sSequences Passing @ TEST.........cuiurirriiiere e s 38
4.2.2 DIistribution OF P-ValUEScooiiiiiiiiiiieeeee s 39

Vi

4.3 IMplementation Of TESIS.....ccviiiiice e 40

4.3.1 About the appliCatioN..........cecouiiii i s 40
4.3.2 Interpretation Of reSUIEScveiiiii s 40
5. WSN SIMUIBLION. ...ttt bbbttt sb e 42
5.1 Data collection and analySiS.........cccucveiiieriiieiiieii e 42
5.2 MO0delS SIMUIALION ..ot 42
521 2-Tier Memoryless MOcccooiiiiiiiiiiiee e 42
522 2-Tier MarkoV MOc.oooiiiiiiiiii e 44
5.3 R Divergence measure CalCUulation..............cocoiveiiiiieiicie e 46
6. RESUIES EVAIUBLION ... 52
6.1 RESUILS OF TESTS ...ttt ettt ene s 52
6.2 2-Tier Memoryless MOGEL.........c.cooiiiiiiiiie e 56
6.2.1 Frame-Error RAEc.cciiiiiiiiiiiic 56
6.2.2 BIt-EITOr RALE.......oiiiiiicic s 56
6.2.3 R DIVErgENCE MEASUIE......c.eeiiieiieite ittt sbe e ene s 57
6.3 2-Tier MarkoV MOGELcooiiiiiiiiie e 57
6.3.1 Frame-Error RAEcccoiiiiiiiiiiic e 57
6.3.2 BIt-EITOr RALE.......oiiiiieici s 58
6.3.3 R DIVErgENnCE MEASUIE......c.eoiiieiieiteiti ettt st 58
6.4 Cumulative R Divergence Measure RESUILS..........ccoeiiiiriiiniiineeeee e 59
6.4.1 2-Tier Memoryless MOdelccoooviiiiiiii e 59
6.4.2 2-Tier MarkoV MOcoviiiiiiiiiiii e 61
6.5 R Divergence Measure ReSUItS W.r.E RNGS.........cooiiiiiiiiniiicneeiee e 63
6.5.1 2-Tier Memoryless MO ..ot 63

vii

6.5.2 2-Tier Markov Model
6.6 ConcluSioN........cceovvverveiniicei
7. Conclusion.........ccceveienenciiie
8. Referencesccoceveveiinciiiiiieen

Appendix A: Results for sample data.

Appendix B: Graphical User Interface (GUI)

viii

List of Abbreviations

Abbreviation Stands for
RNG Random Number Generator
PRNG Pseudo-Random Number Generator

KL Divergence

Kullback-Leibler Divergence

WSN Wireless Sensor Network

SFMT SIMD-oriented Fast Mersenne Twister

ISAAC Cipher Indirection, Shift, Accumulate, Add, and Count Cipher
BSC Binary Symmetric Channel

BER Bit Error Rate

FER Frame Error Rate

RSA Rivest, Shamir, & Adleman (public key encryption

technology)

R Divergence

Resistor Average Divergence

List of Figures

Figure 1: Criteria to Accept or Reject the Random SEQUENCEccoveveieereere e 13
Figure 2: Histogram OF P-ValUEScccviiiiieii ittt 39
Figure 3: Depiction Of FINal REPOIT.........coiiiiie e 41
Figure 4: Setup for the trace COIECTION...........ccveiiiiiii e 42
Figure 5: Graph showing Failure Ratio of RNGs as per Test Results Recordcccccevvennens 54
Figure 6: Graph showing Similar and Different RNGSccccooeiiiiiiic i 55
Figure 7: Graph showing role of RNGs in the results of MemoryLess Model Simulation.......... 59
Figure 8: Graph showing role of RNGs in the results of Markov Model Simulation 61
Figure 9: Graph showing similar simulation results in MemoyLess Model Error! Bookmark not
defined.
Figure 10: Graph showing similar simulation results in Markov Model.............ccccccooiiiiinnnnne. 69
Figure 11: User Authentication Dialogue BOXcccoeiiriiiiiiiieiesc e 77
Figure 12: Random Number Testing Main INterface............cccocveieiiieiiiic i 77
Figure 13: Random File Selection Dialogue BOXcccccoeiieieiie i 78

Figure 14:

Random Number File content shown in first TEXt Ar€acoovvvvveeiii 78

Figure 15: Test Results shown after applying Test Algorithms ... 79
Figure 16: Test Algorithm workings with detailed results shown in Text Area 2............ccccveue.. 80
Figure 17: Status of Test Results in Pass/Fail FOrmatcccccoovveviiiiiicce e 80
Figure 18: Using Toolbar for Opening and editing Random Sequences...........cccocevereneieniennnn. 81
Figure 19: Text File Editor Dialogue Box to edit Random Sequencecccooevvienencienennen 81
Figure 20: Save the random number after editingcccceoeeiiiie i 82
Figure 21: File path selection to save the new random SEQUENCEc.ccvvevreerieiieiieerieieesieenens 82
Figure 22: Available Options to change font style and texXt SIZecccovvriiiiiicieienesc e 83
Figure 23: About Dialogue Box of an AppliCAtION..........cccciiiiiiiiieieieses e 83
Figure 24: WSN Simulation Application using 2-Tier Memoryless Model............cccococvivnnnnnne. 84
Figure 25: FER, BER and R Divergence Measures in Result Sheet of Memoryless Model......... 85
Figure 26: WSN Simulation Application using 2-Tier Markov Modelccccovvveiiiiiicinnnn, 86
Figure 27: FER, BER and R Divergence Measures in Result Sheet of Markov Model 87

List of Tables

Table 1: Hypothetical Testing 0f RaNUOMNESSccveiieiiiiieiiee e 3
Table 2: Phases of Deductive APPrOaCHccuciviii it 6
Table 3: Passing and Failure Ratio of Tests applied to Random Files ..., 54
Table 4: Average FER Comparison with 2-Tier Memoryless Model............cccoooiiiiiiiiinnnnn. 56
Table 5: Average BER Comparison with 2-Tier Memoryless Modelccccovevviieieeieennenn, 56
Table 6: Average R Divergence Measure with 2-Tier Memoryless Model............cccccccevvevieenne. 57
Table 7: Average FER Comparison with 2-Tier Markov Model.............ccocooviiininiiie, 57
Table 8: Average BER Comparison with 2-Tier Markov Modelcccooniiiiiiniii, 58
Table 9: Average R Divergence Measure with 2-Tier Markov Model.............c.ccceeviiieiicieennenn, 58
Table 10: Comparison in R Measures using Memoryless Model for given RNGs...................... 59
Table 11: Comparison in R Measures using Markov Model for given RNGSccccoocevvnienne. 61
Table 12: Comparison in R Measures using Memoryless Model for combinational RNGs......... 64
Table 13: Comparison in R Measures using Markov Model for combinational RNGs 68
Table 14: Test results of Sample Binary File..........cccooiiiiiiiiiiiccc e 74
Table 15: Test results of Sample Integer File ..o 75

Xi

1. Introduction

Employment of Wireless Sensor Networks (WSNSs) has increased in many aspects. The vast
range of its applications has motivated the researchers around the world to effort into this field.
Wireless Sensor Networks are supposed to be in tough environments mostly [1]. Furthermore
many network details in WSNSs are not yet standardized. Therefore performance evaluation in the
real situation is difficult, costly and time consuming. Further repeatability is largely conceded in
real environment as many factors have an impact on the experimental results at the same time.
Consequently, simulation is essential to study WSNSs in detail being the best way to test and
analyze applications and protocols.

Risk analysis is vital part for every decision making. Except having an exceptional access to
information, we can’t accurately predict the future. Simulations are a well-known tool for
decision making, performance evaluation and validation of WSN prior its deployment.
Simulations generally make use of random numbers for the purpose of evaluation. Use of
random number generator (RNG) offers the decision maker with a range of possible outcomes
which occurs for every choice of action. It helps them to evaluate the impact of risk for better
judgment and decisions. Due to the strong need of random numbers its application in simulation
tools can be found in the field of research and development, scientific computing, finance,

manufacturing, engineering, oil & gas, transportation, and the environment.

Being the fundamental building blocks for simulation, random numbers are generated in various
ways. Sometimes hardware random numbers are used, generated from physical sources such as
electronic noise etc. However, hardware random numbers have drawbacks of slow generation,
mostly not properly implemented and not repeatable as well. As a result, the majority of random
numbers used are pseudo-random generated by pseudo-random number generators. For the fast
number generation in simulation work, researchers generally use common APIs and PRNGs of
programming languages. Though other methods are also available to produce pseudo-random
numbers like OpenSSL, SIMD-oriented Fast Mersenne Twister (SFMT) and Indirection, Shift,
Accumulate, Add, and Count (ISAAC) cipher but use of PRNGs provided by programming

languages is much more in simulation applications.

Simulation of a system which is dependent on some random event needs a reliable method for

random sequence generation. A random sequence can be interpreted as the result of flipping a

1

Introduction

coin with sides labeled as “0” and ““1. The fair coin is the perfect random bit generator, since the
“0” and “1” values are randomly and uniformly distributed. Obviously the use of coins is
impractical; the hypothetical output of such an idealized generator serves as the benchmark for
evaluation of RNGs. The basic criteria to analyze and judge the reliability of random number
generators is to test the statistical properties of generated random numbers. The statistical test
application is developed so that random numbers can be submitted into it to check the degree of
their randomness. It should be noted that the only conclusion we can derive from the result of
test applied to a random number is whether it passes or fails this particular test. Nothing can be
concluded for other numbers. Still it’s important to analyze the reliability level of random
number as it directly affects the simulation results and finally decision making task. Of course if

generator passes many tests, this increases our confidence level for it [2].

Large sets of random numbers are obtained from the following sources which are also variable in
their reliability level are used in simulation so that the impact of varying natured RNGS are

judged and correct evaluations are performed.

e ClassrandinC

e Class srand in C++

e Class Rand with Current Time as Seed in Java
e Class Rand with default seed in Java

e Class Random in C#

e Class random in Python

e OpenSSL RSA Big numbers

e SFMT (SIMD-oriented Fast Mersenne Twister)

The numbers generated from above mentioned RNGs are input to the multiple statistical tests
and results are recorded. A statistical test algorithm checks a specific null hypothesis (Ho) is that
the number being tested is random. The alternate hypothesis (Ha) is that the number is not
random. For each test a randomness statistic S is calculated and compared with the critical value
t to determine the acceptance of null hypothesis. If S < t, then null hypothesis is rejected
otherwise null hypothesis is accepted. The table given below relates the data to the conclusion
using the test application.

Introduction

True Situation Accept Ho Accept Ha
Data is random (Ho is true) No Error Type 1 Error
Data is not random (Ha is true) | Type 2 Error No Error

Table 1: Hypothetical Testing of Randomness
If data is random then the decision to reject null hypothesis is called a Type 1 error. If data is
non-random, then the decision to accept null hypothesis is called a type 2 error. The probability
of type 1 error is called a level of significance (a). « is the probability that sequence is not
random when it is really random. Common value of «is 0.01 which is also chosen as t for our
test algorithms. The probability of type 2 error is £. 5 is the probability that sequence is random
when it is not. If P > « then the null hypothesis is accepted. If P < « then the null hypothesis is

rejected [3].

The important issue during a simulation study is that how to check whether a simulation is
operating as intended or not? The most common technique to do this is by using a trace. The
results of the original trace are compared with the calculations made using different parameters
and synthetic traces. Use of a good RNG generates the results which are more close to real
results and at the same time pass most of the statistical tests. Using thorough results evaluation
proof of concept is justified that the results of test algorithms support the results of simulation.

Following points are considered while evaluating the results.

e To identify the properties of random number generators.

e To provide empirical support to Random Number Generators by performing statistical
tests.

e To use multiple Random Number Generators. Simulation results produced with only one
(type of) generator are not enough for overall evaluation and decision.

e To compare the results of test algorithms performed for each RNG with the simulation

using same RNG.

Use of quality random numbers in simulation is more important than any other application as it
directly impacts the decision making of system being simulated. Random numbers generated

from above mentioned RNGs are used during WSN channel modeling. Two different techniques

3

Introduction

of 2-Tier models based on events are designed: (1) Employ a Binary Symmetric Channel (BSC)
model at the frame-level and stimulates another BSC model at bit-level for bit-errors when a
frame is in error, (2) Determine a case that uses a Gilbert model for frame errors and a 3rd order
Markov model for bit-errors [4]. BSC, Gilbert and Markov models will be discussed in detail in

upcoming chapters.

From the data packets captured at destination points, we first obtain parameters which are
required for initial setup of the models and then later we generated synthetic traces of frame and
bit errors. Random numbers are directly involved in whole process of synthetic trace generation.
As frame and bit error rates are averaged measures that do not provide details for assessment. To
evaluate the accuracy of models, we compared source traces and synthetic traces with a
Kullback-Leibler information divergence measure [4]. The formula for KL Divergence measure

is given as follows:

KL (D1]| Dp) = ZQ(X)IO % g
D, (%)

KL (D2|| D1) = sz(x)log%

Where D1, D> represent the burst-length probability mass functions derived from source traces
and synthetic traces. As KL divergence is not symmetric and requires D1 and D> to be continuous
with respect to each other, we used the resistor-average R divergence measure instead of KL

divergence measure.

_ KLDID)*KLD D)
R(BuIP2 = 11D]ID,)+KLD, D)

Small values of R represent more similarity between two distributions D1 and D».

1.1 Objectives

Research on the proposed topic is fairly a new area and not much work has been done for its
improvement. The objective of research is to present a set of tests for random numbers and

determine the impact of random numbers in simulation based applications. The complete set of

Introduction

tests comprises of a mix of both theoretical and empirical. Objective of each test is to focus on
some important properties of random numbers. The study of randomness in the simulation
applications and to determine the impact of its quality will prove to be a good contribution in
research and will be beneficial for all those who want to work further in the same area and
domain. Wireless Sensor Network simulator has been developed and impact of numbers
generated from various RNGs has been analyzed to provide the performance evaluation of

simulation models based on random inputs.
1.2 Motivation

Unfortunately, the random number generators (RNGs) used in practice frequently fail. Since
deployed applications provide no security given bad randomness, the attacks that result from
RNG failure are spectacular. RNGs have its applications in statistical sampling, computer
simulation, cryptography, completely randomized design, and other domains where producing an
unpredictable results are required. The need for the true Random and Pseudorandom Numbers
arises majorly in cryptographic and network applications. The study of randomness being used in
various simulation applications and determining its impact proves to be a good contribution once

it is implemented correctly.
1.3Problem Statement

All cryptographic applications rely on some degree of randomness, which if not fulfilled
properly can lead to the breach in data security. Therefore testing and analyzing the output of
random number generators is required to have a confidence in them. A comprehensive research
for evaluating randomness of RNGs in most common Programming Languages following an
implementation of simulation based studies with a use Random number generators to find the

impact of true randomness in the simulation results.
1.4 Research Methodology

A research is a systematic study of phenomenon and sources in order to establish facts and reach
at conclusions. There are two main approaches for scientific research known as deductive
research and inductive research. Deductive research approach works from the more general to

the more specific, also known as top-down approach. On contrary inductive research approach

Introduction

works from specific observation to broader generalizations and theories, also known as bottom-

up approach [8].

The aim of the current research activity is to describe the problem and then to draw the
conclusion by narrowing down the focus. So, | have adopted deductive approach to solve this
research problem. The deductive research approach comprises of four major methodologies i.e.
a) Theory b) Hypothesis c) Observation and d) Confirmation. First hypothesis is derived from
extensive literature review. Then the observations are made to accept or reject the hypothesis. At
the end, verification of hypothesis has been done through analysis. I have described these
different phases in the chapters mentioned in following table 1. In the first phase problem is
identified through the literature survey. In second phase, first I designed the architecture and then

implemented it. Finally in third phase | have verified the objectives using the manual analysis

methods.

Phases Research Methods Outputs Chapter(s)
1 Literature Survey Identification of problem 2

2 Design and Implementation Design and implementation 3,45

3 Verification Verification 6

Table 2: Phases of Deductive Approach
The step by step research methodology is given as follows:

e Obtaining a large set of random numbers through several options like C++, Java, C#,
Python, OpenSSL and SFMT

e Implementing set of statistical testing algorithms of random numbers.

e Testing the random numbers using several tests and recording results.

e Analyzing these results to judge randomness.

e Implementing several simulation studies.

e For each simulation study, performing it using all sequences generated in step 1.

e Performing vertical as well as horizontal analysis.

e Analyzing impact of perceived randomness on the simulation in detail.

Introduction

1.5 Thesis Organization

This thesis consists of seven chapters. Literature review is presented in Chapter 2. In Chapter 3
we focused on the generation of uniformly distributed pseudo random numbers from eight
different sources and algorithms. After that Chapter 4 discussed the strategy of testing and test
results interpretation. This Chapter also throws light on the implementation of setting up and
running the tests. Chapter 5 presents the modeling techniques used for WSN simulation. Chapter
6 describes the results of simulation and presents comparison of these results with results of

testing algorithms and finally we concluded in Chapter 7.

2. Related Work

This chapter presents the existing work done for Random Number Generators, their testing and
to judge the impacts of RNGs in research domain. It elaborates the efforts done by researchers to
establish the test batteries that check reliability level of RNGs. It also emphasizes on the use of
Pseudo Random Number Generators with its true implementation at the right place. How the
results of system simulation can influence the decision makers is also elaborated in this chapter.

Moreover the impact of random attributes is shown.

2.1 Improving WSN simulation and analysis accuracy using 2-Tier Channel Models

[4] This paper proposes and evaluates two classes of Wireless Sensor Network channel models
for residual MAC layer bit-errors. In the first class of channel models that is called 1-Tier
models, bit-errors are modeled as a standalone error process. Two variations of 1-Tier models are
explored: (1) Memoryless Binary Symmetric Channel (BSC) Model and (2) 3" Order Markov
Model. In the second class of channel models that is called 2-Tier models, a higher-level (Tier 1)

frame-level model excites a lower-level (Tier 2) bit-error model.

Two variants of 2-Tier models are proposed and validated. In the first step author evaluates a 2-
Tier model that employs a BSC model at the frame-level and another BSC model for bit-errors
whenever a frame is in error. Later a 2-Tier model is proposed that takes memory into account
and uses a Gilbert model for frame errors at Tier 1 and a 3" order Markov model for bit-errors at
Tier 2.

Results and analysis presented in paper were used to demonstrate that 2-Tier model has

significantly better results and accuracy than 1-Tier model.

In last section of the paper, it is demonstrated that a bad choice of channel modeling results in an
inaccurate simulation results that affects the decision making and other factors related to the
network. To provide the proof the concept authors simulated following three metrics:

e Recovery ratio analysis.
e Frame goodput calculation.

e Comparison of number of retransmissions per packet.

Related Work

Analysis:

This paper shows that WSN channels cannot be characterized using the commonly-used high-
order Markov channel model. Instead a 2-Tier model in which a high-level model excites a
lower-level model is required. The authors compared the accuracy of 1-Tier and 2-Tier channel
models using bit error traces collected from the network. In the first step they analyzed bit error
traces collected over a setup (It shall be noted that we used the same setup and source traces in
our thesis for providing proof of concept) and later the accuracy of proposed models was
validated. Results and analysis presented by Authors were used to demonstrate that 2-Tier model

has significantly better accuracy than 1-Tier model.

The paper presents two important findings (1) The role of memory in the frame and bit error
processes shall not be ignored (2) 2-Tier Channel model provides the highest accuracy.
Moreover the proof of concept was provided to show that 2-Tier Markov Model performs better
than other models compared regardless of the nature of application and protocols being

simulated.

2.2 High Performance System for Generation and Testing of RNGs

[14] This paper provides many practical applications of random numbers and gives a detailed
description regarding the role randomness plays in the cryptographic applications and protocols.

Summary of roles is given as follows:

e Cryptographic keys: These keys define the transformation of plaintext into ciphertext in
the symmetric and asymmetric ciphers both.

e Initialization vector: IV is used in the symmetric stream and block cipher to produce a
unique output. It helps in avoiding laborious work of rekeying under the case of same
encryption key even.

e Nonces: Nonce is used for mutual authentication and sharing knowledge of the secret
while hiding all other information about the secret [14].

e Cryptographic salt: It is used as an input parameter for the key derivation functions.

e Padding strings: These random strings are used to fill the last block of plaintext in

symmetric block cipher [14].

Related Work

Paper also highlights the process of statistical testing and provides a description of few tests.

e Frequency Test

e Linear Complexity Test

e Serial Test

e Entropy Test

e Runs Test

e Non-overlapping Template Matching Test
e Overlapping Template Matching Test

It is suggested by the author that in order to fulfill the increasing demand of large volume of
random numbers that contain properties of good randomness, RNGs with the high throughput
should be combined with the high performance test suites. By doing so the time of random

number generation task as well as applying tests will be minimized.

It is also discussed in the paper that unfortunately the most popular test suite batteries are not
implemented well as these are not focused on high performance and efficiency and they don’t
support the processing power offered by today’s multi-core high end systems. Furthermore are
very slow in processing the large volume of random numbers produced by big Random Number
Generators. Hence there is a severe need for the test suite that is highly efficient and is

compatible with the new technology for processing large numbers.

Analysis:

This paper explains the importance of random number sequences in cryptography. It presents
several approaches that are practically possible to generate good random numbers and then
testing them as these are intended for cryptographic applications. Author put special emphasis on
the importance and requirement of choosing the reliable and suitable random number generator
as security flaws in the generator can easily compromise the security of the whole system or it

can also change the simulation results effecting the decisions of decision makers.

Author suggests using Pseudo Random Number Generators rather than True Random Number
Generators as it provides better affordability, availability, statistical quality and unpredictability

in the generated numbers.

10

Related Work

Author also focuses on the significance of testing the outcome of random number generators in
order to assess the generators reliability and suitability. In the context where applying several
batteries of statistical tests on large sequences of RNGs which is mandatory for the system in
order to increase the confidence in the selected generator but at the same time this process is a
very time taking task, there is a need arises for providing highly efficient statistical tests which
are efficient in terms of performance. Author later presents an optimization method that shows
how the need for efficiently implemented batteries of statistical tests can be fulfilled by
improving the existing and well known statistical test suites to overcome their performance and

speed limitations.

2.3 Testing Random Number Generators

[12] This paper discussed a summary of the research done by Daniel Biebighauser during his six
weeks research at the Research Experiences for Undergraduates (REU) Summer 2000 program at
the University of Minnesota. The research mentored by Prof. Paul Garrett at the University of
Minnesota - Twin Cities was initially concentrating towards comparing different random number
generators and presenting the results. In the course of reviewing the results Dan became more

interested in the actual tests used to compare different random number generators.

This paper begins by introducing random numbers and random number generators, and then
explains some empirical tests (tests that are used on a sequence produced by a RNG and don't
require knowing exactly how the RNG operates) with an initial application on the chi-square and
Kolmogorov-Smirnov (KS) tests and then the theoretical spectral test later. Few other tests

compared and implemented are given following:

e Equidistribution Test

e Permutation Test

e Coupon Collector's Test
e Run Test

e Poker Test

e Gap Test

e Serial Test

11

Related Work

Analysis:

The purpose of this paper is to introduce the reader to the testing of random number generators.
The research was initially directed towards comparing random number generators. Later he
became more interested in the actual tests used to check and validate different random number
generators. He presented a summary of some of the tests used. In doing so the author also
discussed some of the definitions of randomness, different ways to generate random numbers,
and applications of these random numbers. He presented around a dozen tests, beginning with
the foundational chi-square and Kolmogorov-Smirnov tests, then a variety of empirical tests. In a
very short time span he presented a spectacular work which is a remarkable addition for the

research world. His work and strategies are adapted in my thesis.

2.4 Handbook of Applied Cryptography

[9] This paper presents few techniques to generate the random and pseudorandom bits and
integer or float numbers. Stream ciphers, including linear and nonlinear feedback shift registers
and the output feedback mode (OFB) of block ciphers are also addressed by the author. A small
section presents few tests as well which were designed to measure the quality of a generator
supposed to be a random bit generator. The author also presents a method to interpret the results
of Randomness Test. If X is a random variable with v degrees of freedom, then for selected «,
P(X >v) means the test is passed. Figure 1 presents the criteria to judge any random sequence as

Pass or Fail. In better words we can say an acceptance or rejection criteria is presented.

12

“©
v 0100 0.050 0025 0010 0,008 0,001
] 2. 7088 3.8415% £.0239 6.6349 7874 10,8276 |
4.60%2 5.9915% 7.3778 02103 10.5966 13.8155
62514 78147 9.3484 11,3449 128382 16.2662
) 7.7704 9.4877 11.1433 13.2767 14.8603 18.4668
s 0.2364 11.0708 12.832% 15.0863 16,7496 20,5150
o 10,6446 12.5916 14,4494 168119 18.5476 224577
7 120170 14.0671 16,0128 18.4753 202777 -4.3219
8 133616 15.5073 17.5345 20.0002 219530 26.1245
9 14.6837 16.9190 19.0228 216660 23.58%4 27.8772
10 159872 18 3070 20,4832 23,2093 25,1882 29.5883
1 17.27%0 19.6751 21.9200 24,729 26.7568 31.2641
12 18,8403 21.0261 23,3367 26,2170 28,2998 32,9005
13 198119 22,3620 24.7356 27.6882 208195 34.5282
4 -1.0641 =3.6848 26.1189 29.1412 31,3193 36,1233
I3 22,3071 249038 27.4884 30.5779 328013 37.6873
16 23.3418 26.2962 28.843%4 31.9999 342672 30254
17 24.76%0 27.5871 30,1910 33 4087 357188 40.7902
18 25,9804 28.8693 31.8264 14 8043 37,1565 423124
19 27 2036 30,1438 32,8823 36,1900 18,5823 438202
20 28.4120 314104 341606 37.5662 30,9068 153147
21 29.6151 32.6706 354789 389322 414011 46.7970
2 30.8133 330244 36.7807 40.28%4 42,7087 48.2679
23 32.0069 351728 IR.0756 41,6384 44,1813 49,7282
24 331962 364150 303641 429708 45.5585 5S1.1786
23 34.3816 37.6525 40,6465 443141 469279 52,6197
26 35.8632 38 8851 $1.9232 15.6417 §8.2800 £4.0520
27 36.7412 10,1133 43,1945 46.9629 10,6449 $5.4760
28 379159 413571 44 4608 48.2782 509034 $6.8923
N 0 NRTE 17 €& 1L TN 10 2L € 21K €¢ Int?

Figure 1: Criteria to Accept or Reject the Random Sequence

Analysis:

Related Work

The table given in a paper is of great importance to evaluate the results of a test. According to

author the test just helps in detecting the kind of weakness or strength hold by a sequence. It is

not possible to provide any kind of proof either mathematical or manual that generator is a true

RNG or not. Therefore it is suggested by an author to take a sample output sequence of the

generator and apply various statistical tests on that successively.

The discussions and tables provide a proof of concept that every statistical test decides whether a

random number possess the certain attribute that a true random number will be likely to exhibit.

Few parameters to judge the overall performance of a random number generator are provided

which are of special importance for cryptographic applications especially.

13

Related Work

2.5C Library for Empirical Testing of Random Number Generators

[13] This paper presents a software library TestUO1 implemented in C language. The software
library is a collection of utilities for statistical testing of random number generators (RNGs). A C
library provides general implementation of classical test algorithms for RNGs. Important thing to
notice is that the test suite for random sequences works over the interval (0, 1). Moreover later
the binary sequences were also included. Paper also presents the process of statistical tests given

below:

e Runs Test

e Serial Test

e Subsequence Test
e Entropy Test

o Gap Test

e Poker Test

Analysis:

This paper provides us with the general implementation of statistical tests (classical) for RNGs
and PRNGs, as well as other several tests which were proposed in the history. The list of tests
has been provided above as well. Some of the tools are also provided for performing the
thorough analysis of relation in between a specific test and a structure of the points set

formulated from the family of a given RNG.

For a given statistical test and a given Random Number Generator, comparison tool determines
that how large a sample size should be. It also checks the generator period length before the

generator starts to fail a test thoroughly.

A library provides various types of generators implemented in generic form, as well as many
specific generators proposed in the literature or found in widely used software. The best feature
of library is that it can be applied to all generators which were predefined in the library.
Moreover any generator that was user defined and streams of numbers manually input to the
library. Library can also take random number files as an input for processing, validating and

providing the results about a particular number file.

14

Related Work

2.6 Statistical Testing of Random Number Generators

[15] This paper provides a list of statistical test suite sources and illustrates various evaluation

methods. It also describes the NIST statistical test algorithms with its application details and

presents the guidelines for the interpretation of test results.

Analysis:

Statistical Test Suite [15]

1.
2.

10.

Frequency Test: Checks how many zeroes or ones in a sequence.
Cumulative Sums Test: Checks how many zeroes or ones at the beginning
of a sequence.

Longest Runs of ones Test: Tests the deviation of a distribution of long runs of
ones.

Runs Large Test: Tests the number of runs indicating that either the

oscillations in a bit stream is too fast or not.

Rank Test: Tests the deviation of rank distribution based on
periodicity.

Non-overlapping Test: Tests too many occurrences of non-periodic
templates.

Overlapping Test: Tests too many occurrences of m-bit runs of ones.
Entropy Test: Checks the non-uniform distribution of m-length
substrings.

Lempel-Ziv Complexity Test: Tests whether a sequence is more compressed than
a truly random or not.
Linear Complexity Test: Tests the deviation from a distribution of linear

complexity for substrings.

Proportion of sequences passing a test

p + 3\p(1-p)/n

This paper presents new metrics to explore the randomness of cryptographic RNGs. By doing so

it gains confidence that random number generators are acceptable from a statistical point of

15

Related Work

view. Author explains many numerical experiments conducted to judge NIST statistical tests. He

also discusses different evaluation techniques required to judge the randomness.

The problem of analyzing results deduced is also discussed and solutions are also provided.
Author puts emphasis on continuous generation of new statistical tests to gather more evidences
and confidence that RNG is of high quality in terms of randomness. The acceptable range to
validate the Random Sequence Generator is presented by the author that is also used in the

thesis.

16

3. Random Number Generation

3.1 Randomness and Unpredictability

Something that often goes ignored is the fact that all cryptographic as well as simulation
applications rely on some degree of randomness, which if not fulfilled properly can lead to
wrong decisions and even breach in data security. Therefore analyzing the output of random
number generators is required to have a confidence in the algorithm. The algorithms which are
most common in use for random number generation must have a good level of randomness and
unpredictability. There are two kinds of unpredictability required forward as well as backward.
If the seed of generator is unknown, next output number should be unpredictable even if the

previous numbers are known. This quality is called forward unpredictability [3].

It should also not be possible to determine seed of generator from the knowledge of generated
numbers in hand. This quality of random numbers is called backward compatibility. Moreover

there must not be any correlation between the seed and generated values. It means that each

value should appear to be the outcome of an in dependent random event with the probability ¥2.

To ensure quality of unpredictability, the care must be taken in choosing the seed of a generator.
If seed is known the random number generator is completely predictable as the generation
algorithm is most of the times available publicly. Furthermore the seed of a generator must also

be random and should not be derivable from the random number sequence that it produces [3].
3.2Random Number Generators (RNGs)

Random Number Generator uses a non-deterministic source (ie the entropy source) with some
processing functions to produce randomness in a generator. The use of an entropy distillation
process is required to overcome any weakness that can result in the making a number to non-
random. The process might use the key strokes or mouse movements or the quantum effects in a

semiconductor etc. for adding effects of non-randomness.

Production of high quality random numbers using RNGs is a time taking task that makes such
productions undesirable when a large quantity of random numbers are required. Therefore to
produce large quantities of random numbers Pseudo Random Number Generators are preferred
over RNGs [3].

17

Random Number Generation

3.3Pseudorandom Number Generators (PRNGS)

A PRNG uses one or more inputs (seeds) and generates multiple numbers. To get the
unpredictable sequence of numbers the seed must be random and unpredictable. Most of the
times RNGs are used to obtain the seed. The whole process to generate pseudo random numbers
is deterministic. The deterministic nature of this process leads to the term “Pseudorandom”. As
every number of pseudorandom number sequences is reproducible from its seed, only the seed
shall be made saved.

Pseudorandom numbers often appears to be more random than random numbers obtained from
physical sources if the pseudorandom sequence is properly constructed [3]. The algorithm of
PRNG produces each number from the previous number using some transformation which
appears to introduce additional randomness. Multiple transformations can eliminate
autocorrelation between input and output numbers. Thus the outputs of PRNG may have better

statistical properties and be produced faster than RNG [3].
3.4 Using Pseudorandom Number Algorithms

PRNGs are central in applications such as simulations (e.g. of physical systems like Wireless
Sensor Networks). Good statistical properties are the basic requirement for the output of a
PRNG. In this chapter, we will discuss eight different types of pseudorandom number generation
algorithms.

3.41 ClassrandinC

The algorithm is combination of a Fibonacci sequence (with operation "subtraction plus one,

modulo one" and lags of 97 and 33) and an "arithmetic sequence" using Rand

/I random seeds for the test case
ij=rand()%(31329);
kl=rand()%6(30082);

/I do the initialization

rmarin(ij,kl);
ranmar(temp, 100);

18

Random Number Generation

/[Print 10 million random numbers in a file
for (j=1;j<=100;j++)
{
value=static_cast<int>(65536*templ[j]);
fprintf(file, "%d ", value);

3.4.2 Classsrand in C++

The algorithm uses time stamp to initialize the seed and produce 10 million random numbers in a

file using srand() seed initialization method.

//Get value from system clock and place in seconds variable
time(&seconds);

//Convert seconds to a unsigned integer and provide as seed
srand((unsigned int) seconds);

/IPrint 10 million random numbers in a file
for (i = 0; i < 10000000; i++)
{
j = (int) (N*rand()/(RAND_MAX+1));
fprintf(file,"%d",));
fprintf(file," ");
}

3.4.3 Class Rand with Current Time as Seed in Java

The algorithm uses a time stamp to initialize the seed and a processing function to produce 10

million random numbers in a file.

/== Code to produce Pseudorandom numbers using timestamp and Processing function in Java ==

@Override
protected int next(int nbits)
{

long var = seed;
var = (var << 21);
var "= (var >>> 35);
var = (var << 4);
seed = var;

19

Random Number Generation

var &= ((1L << nbits) - 1);
return (int) var;

}

@Override
public int nextint()

{

return next(16);

}

Random r = new Randomizer(System.currentTimeMillis());
int size = 10000000; List<Integer> rands = new ArrayList<Integer>(size);

for (inti=0;i< size; ++i)
{

rands.add(r.nextint());
buf.append(rands.get(i));
buf.append(" ");

byte[] contentinBytes = buf.toString().getBytes();
fop.write(contentinBytes);

3.4.4 Class Rand with default seed in Java

The algorithm uses a default class Random to initialize the seed and write 10 million random

numbers in a file.

Random r = new Random();
for(i=0; i<10000000; i++)
{
X = r.nextIint(65536);
buf.append(x);
buf.append(" ");

}
byte[] contentinBytes = buf.toString().getBytes();
fop.write(contentinBytes);

3.45 Class Random in C#

The algorithm uses a default class “Random” of C # to initialize the seed and write 10 million

random numbers in a file.

20

Random Number Generation

StringBuilder sb = new StringBuilder(10000000);
Random rand = new Random();

for (inti = 0; i< 10000000; i++)

{
sb.Append(rand.Next(0,65536));
sb.Append(" ";

3.4.6 Class random in Python

The algorithm uses a class “random” of Python to initialize the seed and produce 10 million

random numbers in a file.

for i in range(10000000):
line = str(random.randint(0, 65535))
afile.write(line)
if i <9999999:
afile.write(" ")
afile.close()

3.4.7 SFMT (SIMD-oriented Fast Mersenne Twister)

SFMT is a Linear Feedbacked Shift Register generator that generates a 128-bit pseudorandom

integer at one step. Algorithm to produce pseudorandom numbers is given below:

final static int BLOCK_SIZE = 100000;
final static int COUNT = 1000;
/IThe SFMT generator has an internal state array of 128-bit integers
final static int N = MEXP / 128 + 1;
long hi = ((long) a3 << 32) | (a2 & (-1L >>> 32)),
lo = ((long) a1 << 32) | (a0 & (-1L >>> 32)),
outLo = lo << IShift,
outHi = (hi << IShift) | (lo >>> (64 - IShift));
int X0 = (int) outLo,
x1 = (int) (outLo >>> 32),
X2 = (int) outHi,
x3 = (int) (outHi >>> 32);

21

22

Random Number Generation

/[128-bit shift: y = ¢ >>> SR2 * 8:
final int rShift = SR2 * 8;
hi = ((long) c[cl + 3] << 32) | (c[cl + 2] & (-1L >>> 32));
lo = ((long) c[cl + 1] << 32) | (c[cl] & (-1L >>> 32));
outHi = hi >>> rShift;
outLo = (lo >>> rShift) | (hi << (64 - rShift));
int yO = (int) outLo,
y1 = (int) (outLo >>> 32),
y2 = (int) outHi,
y3 = (int) (outHi >>> 32);
// rest of forumula:
r[rl] = a0 ~ x0 ~ ((b[bl] >>> SR1) & MSK1) ~ y0 ~ (d[dI] << SL1);
rrl + 1] =
al~x1~ ((b[bl + 1] >>> SR1) & MSK2) Ayl ~ (d[dl + 1] << SL1);
rrl + 2] =
a2 " x2 ™ ((b[bl + 2] >>> SR1) & MSK3) A y2 ~ (d[dl + 2] << SL1);
rrl + 3] =
a3 " x3 " ((b[bl + 3] >>> SR1) & MSK4) ~ y3 ~ (d[dl + 3] << SL1);
/I Initializes the internal state array with a 32-bit seed.
public void setintSeed (int seed) {
sfmt[0] = seed;
for (inti=1;i<N32;i++){
int prev = sfmt[i - 1];
sfmt[i] = 1812433253 * (prev " (prev >>> 30)) + i;

periodCertification();
idx = N32;

}

// main function

public static void main(String[] args)

{
int[] array32 = new int[BLOCK_SIZE / 4],
array32_2 = new int[10000],
ini = {0x1234, 0x5678, 0x9abc, Oxdef0};
I Create file path to save Random Numbers
StringBuffer buf = new StringBuffer();
GregorianCalendar gcalendar=new GregorianCalendar();
String h=String.valueOf(gcalendar.get(Calendar. HOUR_OF_DAY));
String m=String.valueOf(gcalendar.get(Calendar.MINUTE));
String date=String.valueOf(gcalendar.get(Calendar.DATE));
String mon = String.valueOf(gcalendar.get(Calendar. MONTH)+1);
String year=String.valueOf(gcalendar.get(Calendar.YEAR));
String hms="C:\SFMT-Output\SFMT _";
hms+=year+mon+date+"_"+h+m;
hms+=".txt";
File file = new File(hms);
FileOutputStream fop = new FileOutputStream(file);
if (Mfile.exists())

file.createNewFile();

Random Number Generation

}
if (sfmt.minArraySize() > 10000)
throw new lllegalStateException("Array size too small!");
for(int j=0;j<500;j++)
{
long I=System.currentTimeMillis();
int seed=(int)(long)l;
if(seed<0)
seed=seed*(-1);
sfmt.setIintSeed(seed);
sfmt.fillArray(array32,10000);
sfmt.fillArray(array32_2,10000);
sfmt.setIintSeed(seed);
for (inti=0; i< 10000; i++)
{
short valuel6bits1 =(short)(array32[i] & OXFFFF);
short valuel16bits2 =(short)(array32[i] >> 16);
if(valuel6bits1<0)
valuel6bitsl=(short)(valuel6bits1*(-1));
if(valuel6bits2<0)
valuel6bits2=(short)(value16bits2*(-1));
buf.append(valuel6bitsl);
buf.append(" ");
buf.append(valuel6bits2);
buf.append(" ");
if (i % 5000 == 0)

fop.flush();
}
byte[] contentinBytes = buf.toString().getBytes();
fop.write(contentinBytes);
buf.setLength(0);
int r32 = sfmt.next();
if (r32 = array32][i])
throw new RuntimeException(
String.format(
"mismatch at %d array32:%x next:%x"i,array32[i],r32));
}
for (inti=0;i<700; i++)
{
int r32 = sfmt.next();
if (r32 = array32_2][i])
throw new RuntimeException(
String.format(
"mismatch at %d array32_2:%x next:%x",i,array32_2]i],
r32));
}
}

fop.close();

}

23

Random Number Generation

3.4.8 OpenSSL RSA Big numbers

The algorithm to generate pseudorandom numbers using OpenSSL big numbers and rand

function is given as follows:

#include <openssl/bn.h>

#include <openssl/rand.h>

include <time.h>

#pragma comment(lib,"ssleay32.lib")
#pragma comment(lib,"libeay32.lib")

int _tmain()

{
buf=spc_rand(buf,1024);*/
int i=0,j=0,k=0;
FILE *file;

char *rc,*tc;

static char name[40];

time_t now = time(0);

int num[10000];

stritime(name, sizeof(name), "C:\\OpenSSL-Output\PRNG_%Y%m%d_%H%M",

localtime(&now));

tc=".txt"; rc= strcat (name,tc);

file = fopen(rc, "a+");

unsigned char rnd1[20000];

unsigned char rnd2[20000];

unsigned char rnd3[20000];

unsigned char rnd4[20000];

RAND_pseudo_bytes(rndl,sizeof(rnd1));

RAND_pseudo_bytes(rnd2,sizeof(rnd2));

RAND_pseudo_bytes(rnd3,sizeof(rnd3));

RAND_pseudo_bytes(rnd4,sizeof(rnd4));
for(int count=0;count<50;count++)

{
=0;
for(i=0;i<sizeof(rnd1)-1;i=i+2)
{
num(jJ=rnd1[iJ*rnd1[i+1];
fprintf(file, "%d", num[j]);
fprintf(file, " ");
j+t;
}
i=0;
for(k=0;k<sizeof(rnd2)-1;k=k+2)
{

num(jl=rnd2[K]*rnd2[k+1];
fprintf(file, "%d", numlj]);
fprintf(file, " ");

24

25

j*+;

’

}
j=0;
for(k=0;k<sizeof(rnd3)-1;k=k+2)
{
num(jl=rnd3[k]*rnd3[k+1];
fprintf(file, "%d", num[j]);
fprintf(file, " ");
j+t;
}
j=0;
for(k=0;k<sizeof(rnd4)-1;k=k+2)
{
num[j]=rnd4[K]*rnd4[k+1];
fprintf(file, "%d", num[j]);
fprintf(file, " ");
j+t;
}
}

fclose(file);
printf("Done\n");
return O;

Random Number Generation

4. Randomness Testing

4.1 Testing Algorithms

The testing algorithms are implemented to test the randomness of sequences being produced by
random or pseudorandom number generators. These tests are able to find out different types of

non-randomness properties that could exist in a sequence. The names of tests are given below:
e Chi Square Test
e Equidistribution Test
e Entropy (N Gram) Test
e Entropy (Bi Gram) Test
e Entropy (Tri Gram) Test
e Frequency (N Gram) Test
e Frequency (Bi Gram) Test
e Frequency (Tri Gram) Test
e Runs Test
e Subsequence Test
e Permutation Test
e Poker Test
e Serial Test
e Auto Correlation Test
e Pattern Test

For each test, subsections provide a high level description and algorithm of the particular test.
The order of the application of a test to random sequence is arbitrary. Testing strategy for better
interpretation of results and user's guide for setting up and running the tests is also elaborated in

this chapter.

26

Randomness Testing

4.1.1 Chi Square Test

The chi-square test determines whether there exist a significant difference between the expected
frequencies and the observed frequencies or not. The following algorithm can be applied to the
sequence <Un> having characters as well as digits. It calculates the difference (V) between
observed frequencies (Ys) and expected frequencies (nPs) of characters or digits in the sequence.

So the formula is given as

n
V=73 (YsnPs)?% nPs

s=1

By expanding (Ys-nPs)?> = Ys 2. 2nPs Ys + n? Ps 2. We arrived at the formula
n
V= Y (¥&Ps)/n -n
s=1
Algo:C
C1) [initialize] set sum <- 0, set Y[s]<- 0 for 0<s<k, set P[s]<- n/k for 0< s<k
C2) [set s zero] set<- 0

C3) [record Ps ,Ys] if s>k, go to step C6. Otherwise calculate Y[s]
C4) [record sum] set sum <- sum+ y[s] 2/p[s]

C5) [increase s] increase s by 1 and return to step c3

C6) [calculate V] set V <- sum/n-n

4.1.2 Equidistribution Test

When the random integers are generated in [0,d-1] , we need to check whether they come from a

uniform distribution, that is, each of the d numbers have equal probability.

27

Randomness Testing

Equidistribution test is applied to check whether numbers are uniformly distributed or not. This

test is applied on the sequence <Un> given as

<Upn>=Uog,U1,Us........... , Una

If frequency of each digit is same, it implies that numbers are uniformly distributed. For each

integer r, 0<r< d, count the numbers of times that r=Ujfor 0 <j < n.

Algo: E

E1) [Initialize] set count [r]<- 0, for 0<r<d, set r<- -1

E2) [set s,sum zero] set s<- 0, set sum <-0, increase r by 1. if >d, go to step E6
E3) [compare values] if r=Us, increase sum by 1

E4) [increase s] increase s by 1.if s<n, go to step E3

E5) [record count] set count[r] <- sum. Go to step E2

E6) [calculate probability] set p <-n/d

E7) [compare frequencies] if count[r]=p , for 0< r<d. Display msg “ uniformity is achieved”.

4.1.3 Serial Test

If the random integers are generated in [0,d-1] range. In the serial test, we generate n pairs of
integers in [0,d-1]. Each of the d? pairs must be equally likely to occur. Serial test checks the

uniformity of pair of successive numbers in an independent manner. To carry out the serial test

we count the number of times that the pair (Uzj,U2j+1) = (q,r) occurs for 0<;<n .

These counts are made for each pair of integers 0< g,» <d . chi square test is applied to k= d?

categories with probability 1/d? in each category.

28

Randomness Testing

Algo: S
S1) [initialize] set g<- -1, set p <- n/2d?, set k <- d?, set y [i] <- 0 for 0< i<k , set i<-0

S2) [set r,sum zero] set r<-0,set count<- 0,set j<- O,increase q by 1. if q>d, go to step S7
S3) [compare pairs] if (Uj ,Uj+1) =(q,r) , increase count by 1.

S4) [increase j] increase j by 2. if j<n-1, go to step S3
S5) [record count] set y[i] <- count. Increase i by 1.
S6) [increase r] increase r by 1. if r<d , go to step S3. Otherwise go to step S2.

S7) [apply chi square] calculate chi square coefficient.

4.1.4 Permutation Test

If total m integers are generated by RNG, these can be ranked according to their scale; the
smallest number is ranked 0, the largest is ranked m-1. So there are m! possible ways in which
the ranks can be ordered. For example, if m = 3, then the following orders are possible: (0,1,2),
(0,2,1), (1,0,2), (1,2,0), (2,1,0), (2,0,1). This test is repeated n times to check if each possible

permutation was equally probable.

Permutation test counts the number of times each ordering of elements appears. To achieve

permutation test, input sequence <U> is divided into n groups of t elements, that is
(Uit, Ujt+1, Ujts2 v, , Uit), for 0<j< n

The elements in each group may have t! possible ordering. The number of times each ordering
appears is counted and chi square test is applied with k=t! and with the probability 1/t! for each

ordering.

Algo: P

Given a sequence of elements given

<Uj>=(U1,Uz2 ,Usz........... ,Ut), for 0<j<n

29

Randomness Testing

We analyze the permutation by computing an integer f such that 0 < f< t!
P1) [initialize] set k<-t! , set p<- n/t! , set number[i]<-0 , for 0< r<t!
set y[i]<- 0 for 0<i<t!
P2) [set i zero] set i<- 0
P3) [get element ordering] get number][i]
P4) [set j zero] set j< 0
P5) [analyze number] if number[i]= U[j] , increase f by 1.
P6) [increase j] increase j by 1. if j<n, go to step P5.
P7) [record count] set y[i]<- f. increase i by 1. set f<-0 . If i<t! , go to step P3

P8) [apply chi square] calculate chi square coefficient.

4.1.5 Frequency Test (N Gram)

Generated random integers are in range [0,d-1] and a frequency test checks whether they come

from a uniform distribution or not, that is, each of the d numbers have equal probability.

This test is applied on the sequence <Un> given as below

<Un>=Uo, U1, Us........... , Un

If frequency of each digit is same, it implies that the numbers are uniformly distributed. For each

integer r, 0<r<d , count the numbers of times that r=Uj for 0 <; < n occurs.

Algo: E
E1) [Initialize] set count [r]<- O, for 0<r<d, set r<- -1

E2) [set s,sum zero] set s<- 0, set sum <-0, increase r by 1. if r>d, go to step E6

E3) [compare values] if r=Us, increase sum by 1

30

Randomness Testing

E4) [increase s] increase s by 1.if s<n, go to step E3
E5) [record count] set count[r] <- sum. Go to step E2
E6) [calculate probability] set p <-n/d

E7) [compare frequencies] if count[r]=p , for 0< r<d. Display msg “ Frequency test is passed”.

4.1.6 Frequency Test (Bi Gram)

The focus of this test is to check uniform occurrence of 2 bit possible combinations in the
sequence of U. frequency test measures how much the observed proportion of combinations

within 2 bit block match the expected proportion (¥) for following sequence.

<Upn>=UoU; ,U2Us ,UsUs , Un2Unt

Algo: B

Input sequence is partitioned into N= [n/2] non-overlapping 2 bit blocks < Uj >, for 0<j<N.
B1) [initialize] set count [r] <-0, for 0<r<d? . Set r<- -1

B2) [increase 1] increase r by 1. if >d?, go to step B8.

B3) [get number] get number([r]

B4) [set j, sum zero] set sum<-0, setj<-0

B5) [compare values] if number[r] = U[j] , increase sum by 1.

B6) [increase j] increase j by 1. if j<N, go to step B5.

B7) [record count] set count [r] <- sum, go to step B2.

B8) [calculate probability] set p<- N/d?

B9) [compare proportion] if count[r]=p , for 0< r<d? . Display message “uniformity is achieved

in bi gram”.

31

Randomness Testing

4.1.7 Frequency Test (Tri Gram)

The focus of this test is to check whether 3 bit possible combinations within 3 bit sequence are
uniform or not. Frequency test (tri gram) measures how much the observed proportion of 3 bit
block match the expected proportion (1/8) .

Sequence for frequency test (tri gram) is given below as

<Upn>=UoU1U2 ,UsUsUs,UsU7Usg........... , Un3 Un2Un1

Algo: D

Input sequence is partitioned into N= [n/3] non overlapping 3 bit blocks <Uj> for 0< j<N
D1) [initialize] set count [r] <- 0, for 0<r<d®. Set r<- -1

D2) [increase r] increase r by 1. if >d°, go to step D8.

D3) [get number] get number]r]

D4) [set j, sum zero] set sum<- 0, set j <- 0

D5) [compare values] if number[r] = U[j] , increase sum by 1.

D6) [increase j] increase j by 1. if j<N, go to step D5.

D7) [record count] set count [r] <- sum, go to step D2.

D8) [calculate probability] set p<- N/ d®

DY) [compare proportion] if count[r]=p , for 0< r< d3. Display message “uniformity achieved in

tri gram”.

4.1.8 Auto correlation Test

A sequence having statistically independent digits is said to be a true random sequence. The

purpose of auto correlation test is to check correlation between adjacent digits. Passing auto

32

Randomness Testing

correlation test implies that an incoming digit cannot be predicted by analyzing prior digit of a

sequence.

Auto correlation test is applied on the sequence given below

<Un>=Up,Us,Us.......... , Una

The statistical formula used for auto correlation test is given below

C=(nYUU - CU?) (nYU?*- CU))

C is the measure of extent to which Uj+1 depends on Ui

Algo: A

Al) [initialize] set U [i] <-0, for 0<i<n-1. Seti <- 0, set sum1<- 0, set sum2 <- 0, set sum3<- 0
A2) [find sum1] set suml <- U[i]*U[i+1]+sum1l

A3) [find sum2] set sum2 <- U[i]+sum2

A4) [find sum3] set sum3 <- (U[i])2+sum3

Ab) [increase i] increase i by 1. if i<n, go to step A2.

AG) [calculate c] set C <- (n*suml - sum2?)/ (n*sum3 - sum2?)

419 Poker Test

Poker test considers n groups of five successive integers (Usj , Usj+1, ..o Usj+4) for 0<j <n

and observe the number of distinct values in each group so we have five categories
5= All different

4 = One pair

33

Randomness Testing

3 = Two pairs, or three of a kind
2 = Full house, or four of a kind
1= Five of akind

In poker test we consider n groups of k successive numbers and count the number of k tuples

with r different values. A chi square test is then initiated using the probability

Pr=d(d-1)..ccocnns (d-r+1) / d

Algo : K

K1) [initialize] set k<- 5. set M[r]<-0, for 1< r<5 . set P[r]<- O for 1<i<5 . Set j<- -1 .setd<-k
K2) [find groups] generate n groups of k values

K3) [measure r] observe r from n groups and store in M[r]

K4) [increase j] increase j by 1. if j>k , go to step K9.

K5) [seti] seti<-0

K6) [find product] set mul <- mul* (d-i)

K7) [increase i] increase i by 1. if i<, go to step K6.

K8) [find expected values] set P[r] <- mul / d¥ . go to step K4

K9) [apply chi square] calculate chi square coefficient using P[r] and M[r] for 1<r< 5.

4.1.10 Entropy Test (N Gram)

The entropy and uncertainty are used interchangeably. Entropy is a simple quantitative measure
of uncertainty in the data. Entropy is basically a measure of randomness. Suppose that we have
alphabets of 28 characters: letters a to z, space and full stop. Using these alphabets, we can write

a string of length n. The possible strings are 28". We then think about how many strings are

legal. The higher proportions of legal strings mean the higher entropy. A language with just

letters is much easier to predict so its entropy is low. So a language where all strings are allowed

34

Randomness Testing

has maximum entropy. It takes logon bits to code n character alphabets. It is necessary to
measure the entropy of a random data. It is the best way to check randomness. The random

language has 4.8 value of entropy per character.

Let X be the sequence having values (X1,X2,X3,.......... ,Xn) with probabilities

(P1,P2,P3,.......... ,Pn) such that Pi>0, for 1< i< n. The formula for entropy is

H(x)= - 2" piln (pj)
i=1

where Pj is the probability of symbol Xi occurring and log is of base 2.

Algo : Y

Y1) [initialize] Set M[i]<-0 and P[i]<- 0, for 1< i<n
Y2) [find occurrence] Calculate M[i], for 1< i<n
Y3) [seti] Seti<-1

Y4) [calculate Pj] Set P[i]<- M[i] / n

Y5) [find sum] Set sum<- sum + (P[i]* log2P[i])
Y6) [increase i] Increase i by 1. if i<n, go to step Y4.

Y7) [calculate entropy] Set entropy <- sum*(-1)

4.1.11 Entropy Test (Bi Gram)

The entropy is a simple quantitative measure of uncertainty in data. Entropy Test (Bi gram) is
used to calculate entropy of possible combinations of 2 characters at one time. Everything is
same as for Entropy test (n gram). Algorithm to calculate entropy coefficient is also same as for
entropy test (n gram). There is just change in input. We input possible combinations of 2

35

Randomness Testing

characters and find their entropy. Entropy test is helpful in finding the entropy of 2 characters at

a time.

4.1.12 Entropy Test (Tri Gram)

The entropy is a simple quantitative measure of uncertainty in data. Entropy Test (Tri gram) is
used to calculate entropy of possible combinations of 3 characters at one time. Everything is
same as for Entropy test (n gram). Algorithm to calculate entropy coefficient is also same as for
entropy test (n gram). There is just change in input. We input possible combinations of 3
characters and find their entropy. Entropy test is helpful in finding the entropy of 3 characters at

a time.

4.1.13 Sub sequence Test

If a random number generator works with three random number variables X,Y,Z , it may
consistently invoke the generation of three random numbers at a time. In such applications, it is

important that subsequence consisting of every three terms must be random.

The original sequence is given below

<Un>= UgUiUs ..o Un1

The sequences put for sub sequence test are

UOUqUZq y Uqu+1U2q+1 y seressresssnsnaeas f Uq-lUZq-lU?,q-l

In our project, we have taken gq=3

Algo : O

First of all, the limit of integers is find out and set as k. n sequences of three elements are

generated to input for subsequence test.

36

Randomness Testing

Q1) [initialize] Set i <- 0, Set sub[s]<-0, for 0<s<n, Sets <-0
Q2) [setj] Setj <- i+l

Q3) [set 1] Set | <- j+1

Q4) [find sub sequence] Set sub[s++] =1,j,1

Q5) [increase 1] Increase | by 1. if I < max-1, go to step Q4.
Q6) [increase j] Increase j by 1. if j <max-2 , go to step Q3.

Q7) [increase i] Increase i by 1. if i< max-3 , go to step Q2.
Q8) [count sub sequence] count if sub[s] = Uq

Q9) [apply chi square] calculate chi square coefficient.

4.1.14 Pattern Test

It is the basic property of true random number generators that they produce pattern free random
numbers. Pattern helps in predicting the number. It is basic requirement that random number
should be unpredictable. If there is found any pattern in random number, it reduces the
possibility of number to be random. So Pattern test is one of the major tests to check

randomness. Pattern test is very applicable test for testing randomness.
Algo : O
O1) [find patterns] Get all possible patterns from a given number.

02) [save file] Save all patterns in a file for help in future.

4.1.15 Run Test

In run test, a sequence is tested for “runs up” and “runs down”. It means that sub sequences
(segments that are increasing or decreasing) are determined from original sequence. As an

example consider the following sequence of 10 digits.

25798435714

37

Randomness Testing

By putting a line in between Uj and Uj+1 whenever Uj > Uj+1
|2579|8|4|357|14]

which displays “runs up”. There is a run of length 4, followed by two runs of length 1, followed
by another run of length 3, followed by run of length 2. The purpose of Run test is to check
whether the number of Runs of various lengths are as per expected from the random sequence.

Steps :
e Split sequence U into sub sequences observing runs up.
e Calculate number of runs of length i.
e Repeat it n times.
e Compare these with expected distribution of run lengths.

e Apply chi square test.

4.2 The Interpretation of Results
The interpretation of results is performed in two ways.
e The analysis of proportion of sequences that passes a statistical test

e The analysis of distribution of P-values to check uniformity

4.2.1 Proportion of sequences passing a test

Given the results for a particular statistical test, the proportion of sequences that pass is
computed. For example, if 1000 sequences were tested (i-e m=1000) and «a=0.01 (the

significance level) and 992 sequences had P-values<0.01 then the proportion is 992/1000=0.992

The range of acceptable proportion is resolute using interval defined as p + 3Vp(1-p)/m , where
p = 1- aoand m is the sample size. If the proportion lies outside this interval then it is evidence

that PRNG is non-random.

38

Randomness Testing

4.2.2 Distribution of P-Values

The distribution of P-values is observed to ensure the uniformity of sequence. It is also illustrated
using a histogram given in Figure 2 where the interval between 0 and 1 is divided into 10 sub-
intervals and the P-value that falls within each sub-interval is counted.

Distribution test on the P-values is found from the statistical tests (i-e a P-value of the P-values)

is accomplished by computing following:
n
X?2= > (Fi-s/10)2/s/10

i=1

where Fiis the number of P-values in sub interval i and s is the sample size. If P-value > 0.01

then the PRNG is also considered to be uniformly distributed.

8

7

[s2]

o

Frequency
=y
|
|
|
|
|

01 02 03 04 05 06 07 08 09 1
P-values

Figure 2: Histogram of P-Values

39

Randomness Testing

4.3 Implementation of Tests

Multiple tests are applied to random numbers in order to test the randomness of a generator in
the best manner possible. The performance of each test is evaluated by applying a Chi-Square
test. When all tests applied to a random sequence, we considered uniformity, correlation and

independence properties.

The statistical tests solve the problem of evaluating PRNGs for randomness by identifying
RPNG that produce weak or strong random numbers. They tests the level of randomness

provided as well as verifies whether the implementation of PRNG is correct or not.
4.3.1 About the application
The code has the following features that make it easy to use in day to day applications.
e Platform Independency
The source code is written in java so the test code is platform independent.
e Extensibility
New statistical tests can easily be added in the existing list.
e Portability
The source code is written in java so the code is portable.
e Versatility
The test code is useful in performing tests for RNGs and PRNGs both.
e Efficiency

Just Linear time is utilized in testing the random sequences.

4.3.2 Interpretation of results

A simple test report is generated for the interpretation of results. A file with time stamp is
generated to maintain logs whenever the statistical test is completed. The report contains the P-

values of statistical tests and Pass/Fail status of the tests.

40

Randomness Testing

SEIIIIAIEIT 1 (Amaults fox Buacistloal Testa/ /[I/IIILII]

ataristical Tests B-values status
0.062¢€ Fmazwz

The detailn are given kelow:

éiRun Teanss

P-Value= 0.062¢

SesR0ROr Teattee

Espeuted Proguenoy Chssrved Prequency

3200.0 0
13000.0 0
323400.0 0
76800.0 257
768000 1959703

it nomras

Figure 3: Depiction of Final Report

41

5. WSN Simulation

5.1 Data collection and analysis

| have used the data traces collected by Dr. Adnan and Dr. Ali Khayam. They collected 24 traces
in four setups. For each setup 6 traces were collected. In every experiment one sender
transmitted data frames to base station and all other senders were inactive. Average frames per

traces were approx. 31,000. 10 frames per second were sent and each frame had 20 bytes.

. Upper Floor

o

L

e

z 3°

- /s\°

- Room 3
g |- Room 2 &d

qE, G

3 \ | (
@ | Room 1 (Base station) | | |

Figure 4: Setup for the trace collection

5.2 Models simulation

| have developed and evaluated two models using random event to provide our proof of concept
related to simulation of Wireless Sensor Network. Memoryless as well as Markov models are
developed and investigated for the presented channels.

5.2.1 2-Tier Memoryless Model

In 2-Tier model, a higher-level (Tier 1) frame-level model excites a lower-level (Tier 2) bit-error
model. In the memoryless class, a BSC model is employed at the frame-level and another BSC
model is employed at bit-errors whenever a frame is in error. It means if the tier 1 frame error
model expects an error-free frame then there is no need to invoke the bit-error model because in
that case it is known that all the bits in the frame are error-free. Whereas if the tier 1 frame error
model expects a corrupt frame then the bit-level model at tier 2 is used to produce bits in error in
the corrupt frame.

42

WSN Simulation

For the 2-Tier memoryless model, we apply BSC models at both tiers. Thus both frame and bit-

level models are memoryless. BER and FER parameters for these models are extracted from the

source traces discussed earlier.

/I Code to generate synthetic traces of Bit Errors and Frame Errors

FileWriter ferFile = new
FileWriter("C:\\Source\\"+fileNamesJ[j|+"_FE_"+selectedFolder+"_ Mem.txt" false);
FileWriter berFile = new
FileWriter("C:\\Source\\"+fileNames[j]+"_BE_"+selectedFolder+"_Mem.txt" false);
fvalue=IstinputNumbers2.get(j); //frame error rate
bvalue=IstinputNumbers1.get(j); //bit error rate

tframes=0;

tbits=0;

|=-1;

a=0;

for (i=0;i<IstinputNumbers.get(j);i++) //loop will run for total frames of traces

if(I==9999999)
{
a++;1=0;
}
else [++;
if(a>=asize)
a=0;

if((randIinputNumbers.get(a).get(l)<=fvalue)&&(randIinputNumbers.get(a).get(l)>=0.0))

{

tframes++;
ferFile.append(one);
for(k=0;k<160;k++)

if(1==9999999)
{

}
else
[++;
if(a>=asize)
a=0;

a++;1=0;

if((randIinputNumbers.get(a).get(l)<=bvalue)&&(randinputNumbers.get(a).get(l)>=0.0))

{

thits++;
berFile.append(one);

}

else

{

berFile.append(zero);

}
}

43

WSN Simulation

}

else

{
ferFile.append(zero);
for(k=0;k<160;k++)
{

}
}

}

ferFile.flush();
ferFile.close();
berFile.flush();
berFile.close();
ferror[j]=tframes;
berror[j]=tbits;

berFile.append(zero);

5.2.2 2-Tier Markov Model

In 2-Tier model, a higher-level (Tier 1) frame-level model excites a lower-level (Tier 2) bit-error
model. A 2-Tier Markov Model is a model takes memory into account and uses a Gilbert model
for frame errors at Tier 1 and a 3rd order Markov model for bit-errors at Tier 2 [4]. The

parameters required for these models are extracted from source traces discussed in Chapter 2.

/I Code to generate synthetic traces of Bit Errors and Frame Errors

FileWriter ferFile = new
FileWriter(fileNameFER+"_"+selectedFolder+" Markov.txt" false);
FileWriter berFile = new
FileWriter(fileNameBER+"_"+selectedFolder+"_Markov.txt" false);
char zero='0',0ne="1";

for (int i=0;i<IstinputNumbers.get(fn);i++)

{
if(1I==9999999)
{
a++:1=0;
}
else
[++;
if(a>=asize)
a=0;
if((0.0<=randInputNumbers.get(a).get(l))&&(randInputNumbers.get(a).get(l)<=transitionMatrixFE
[fFOW][C?))

fstate=fstate.substring(0,1).concat(Integer.toString(0));
frow=Integer.parselnt(Integer.toHexString(Integer.parselnt(fstate, 2)));
ferFile.append(zero);

44

WSN Simulation

for(int k=0;k<160;k++)

berFile.append(zero);

}

}
else if((transitionMatrixFE[frow][0]< randInputNumbers.get(a).get(l))&&(

randinputNumbers.get(a).get(l)<=1.0))
{
fstate=fstate.substring(0,1).concat(Integer.toString(1));
frow=Integer.parselnt(Integer.toHexString(Integer.parselnt(fstate, 2)));
ferFile.append(one);
tframes++,
for(int k=0;k<160;k++)
{
if(1I==9999999)
{
a++;1=0;
}
else
[++;
if(a>=asize)
a=0;

if((0.0<=randInputNumbers.get(a).get(l)) &&(randInputNumbers.get(a).get(l)<=transitionMatrix[br
ow][0]))

bstate=bstate.substring(1,3).concat(Integer.toString(0));
brow=Integer.parselnt(Integer.toHexString(Integer.parselnt(bstate, 2)));
berFile.append(zero);

else if((transitionMatrix[brow][0]< randinputNumbers.get(a).get(l)) &&(
randinputNumbers.get(a).get(l)<=1.0))
{

bstate=bstate.substring(1,3).concat(Integer.toString(1));
brow=Integer.parselnt(Integer.toHexString(Integer.parselnt(bstate, 2)));
berFile.append(one);
thits++;
}
}
}

}
ferFile.flush();
ferFile.close();
berFile.flush();
berFile.close();

45

WSN Simulation

5.3R Divergence measure calculation

For every synthetic bit error traces generated by implementing different random number
generators is saved at a path “C://Source”. R Divergence measure for source and synthetic trace

is calculated for both models to find the similarity between the error distributions.

Moreover Divergence measure is also calculated among the synthetic traces generated for each
RNG Source to find the similarity level among them. 28 combinations of synthetic trace
distributions are found for each of the 24 experiments. Resulted calculations are presented in
next chapter whereas the code to calculate the results is given below. Following code can also be

found in KIDivergence.java.

import java.io.BufferedReader;
import java.io.File;

import java.io.FileReader;
import java.io.|IOException;
import jxI.Workbook;

import jxl.read.biff.BiffException;
import jxl.write.Label;

import jxl.write.Number;

import jxl.write.WritableSheet;
import jxl.write.WritableWorkbook;
import jxl.write.WriteException;

public class KIDivergence

{

public static double calculateDiv(String fileName1l,String fleName?2)
{

String testRF1=null,testRF3=null;

double cal,kiIBER1=0.0,kIBER2=0.0;

double berKL;

try
{

BufferedReader brb = new BufferedReader(new FileReader(fileNamel+".txt");
StringBuilder sbb = new StringBuilder();

String lineb = brb.readLine();

while (lineb = null)

sbb.append(lineb);

lineb = brb.readLine();
}
testRF1=sbb.toString();
brb.close();

46

WSN Simulation

catch (Exception e)

{
System.out.printin(e.toString());

try
{

BufferedReader brb = new BufferedReader(new FileReader(fileName2+".txt");
StringBuilder sbb = new StringBuilder();

String lineb = brb.readLine();

while (lineb != null)

sbb.append(lineb);
lineb = brb.readLine();
}
testRF3=sbb.toString();
brb.close();
}

catch (Exception e)
{

System.out.printin(e.toString());
}
int ind;
int j,i;
int length2=testRF1.length()*4/7;
int length3=testRF3.length()*4/7;
int ff1[]= new int[length2];
double pfl[]= new double[length2];
int ff3[]= new int[length3];
double pf3[]= new double[length3];
for (i=0; i<length2; i++)
{

ff1[i]=0;

pf1[i]=0.0;
}
for (i=0; i<length3; i++)
{

ff3[i]=0;

pf3[i]=0.0;

int burst;

int maxindex=0,maxIndex1=0,max2;
burst=0;

for (i=0; i<testRF1.length(); i++)

if(testRF1.charAt(i)=="1")

{
ind=testRF1.indexOf("0", i);
if(ind==-1)

i=testRF1.length()-1;
}

WSN Simulation

else

ffi[ind-i]++;
i=ind;
}
burst++;
}

}
for (i=0; i<length2; i++)

if(ff1[i]!=0)
{maxindex=i;pfl[i]=(double)ff1[i]/burst;}
}
burst=0;
for (i=0; i<testRF3.length(); i++)

if(testRF3.charAt(i)=="1")
{
ind=testRF3.indexOf("0", i);
if(ind==-1)
{
i=testRF3.length()-1;

}

else

ff3[ind-i]++;
i=ind;
}
burst++;
}
}

for (i=0; i<length3; i++)

if(ff3[i]'=0)
{maxindex1=i;pf3[i]=(double)ff3[i]/burst;}
}

if(maxindex<maxindexl)
max2=maxindex;

else
max2=maxindex1;

cal=0.0;
for (int s=0;s<max2;s++)

{
if((pf1[s]'=0.0)&&(pf3[s]!=0.0))

{
cal=pfl[s]*Math.log(pf1[s]/pf3[s]);
kIBER1+=cal;

}

48

WSN Simulation

}
cal=0.0;
for (int s=0;s<max2;s++)

if((pf1[s]'=0.0)&&(pf3[s]!=0.0))

{
cal=pf3[s]*Math.log(pf3[s]/pfl[s]);
kIBER2+=cal;

}

}

if(KIBER1==0.0)&&(kIBER2==0.0))
berKL=0.0;

else
berKL=(kIBER1*kIBER2)/(KIBER1+kIBER2);

if(berKL<0)
berKL=(-1)*berKL;

return berKL;

}

public static void main(String[] args) throws BiffException, IOException
{

inti,m,n,k;

double klIValueMem([][]= new double[28][24];

double kIValueMark[][]= new double[28][24];

double kIDivMem([][]= new double[28][4];

double kIDivMark[][]= new double[28][4];

String
fileNames[]={"OutRoom_1_5m","OutRoom_3_8m","OutRoom_4_7m","OutRoom_5_ 8m","OutRo
om_6_5m","OutRoom_7_5m","PhdLab_1 8m","PhdLab_2_ 7m","PhdLab_3 8m","PhdLab_4 7
m","PhdLab_5 5m","PhdLab_6_6m","Stair_1_5m","Stair_2_5m","Stair_3 5m","Stair_4_5m","St
air 6 5m","Stair_7_4m","Up_Floor_1 12m","Up_Floor_2 12m","Up_Floor_3 12m","Up_Floor_
4 12m","Up_Floor_5_12m","Up_Floor_7_12m"};

String[] file = {"Coutput”,"C-RNG-Output","Csoutput”,"Java-RNG-Output”,"Joutput”,"OpenSSL-
Output”,"Python-Output","SFMT-Output"};

String path="C:\\Source\\";

for(i=0;i<28;i++)

{

for(m=0;m<24;m++)

{
klvValueMem[i][m]=0.0;
klValueMark]i][m]=0.0;
if(m<4)
{
kiDivMem[i][m]=0.0;
kiIDivMark]i][m]=0.0;
}

}

}
for(k=0;k<24;k++)
{

49

WSN Simulation

n=0;

for(i=0;i<8;i++)

{
for(m=i+1;m<8;m++)
{

klValueMem[n][k]=calculateDiv(path+fileNames[k]+"_BE_"+file[i]+"_Mem",path+fileNames[k]+"_
BE_"+file[m]+"_Mem");
klValueMark[n][k]=calculateDiv(path+fileNames[k]+"_BE_"+file[i]+"_Markov",path+fileNames[k]+
"_BE_"+file[m]+"_Markov");
n++;
}

}
}

for(i=0;i<28;i++)

{

n=0;

for(m=0;m<24;m+=6)

{
kIDivMem([i][n]=kIValueMem([i][m]+kIValueMem([i][m+1]+klValueMem[i][m+2]+kIValueMem([i][m+3
J+klValueMem[i][m+4]+klValueMem[i][m+5];
kiDivMark]i][n]=kIValueMark][i][m]+kIValueMark][i][m+1]+klValueMark[i][m+2]+klIValueMark[i][m+3
]+klValueMark[i][m+4]+klValueMark][i][m+5];

n++;

}

}

for(i=0;i<28;i++)

{

for(m=0;m<4;m++)

{

kIDivMem[i][m]=kIDivMem([i][m]/6.0;

kiIDivMark[i][m]=kIDivMark[i][m]/6.0;

}

}

try

{
WritableWorkbook wworkbook1;

wworkbookl = Workbook.createWorkbook(new File("C:\\Memaoryless
Model\kIDivergenceMem.xIs"));

WritableSheet wsheetl = wworkbookl.createSheet("Comparison", 0);

WritableWorkbook wworkbook2;

wworkbook2 = Workbook.createWorkbook(new File("C:\\Markov
Model\kIDivergenceMark.xIs"));

WritableSheet wsheet2 = wworkbook2.createSheet("Comparison”, 0);

Label label00 = new Label(1, 1, "Comparison of KL Measures for RNG Sources with
MemoryLess Model");

wsheetl.addCell(label00);

Label label0 = new Label(0, 3, "OutRoom");

wsheetl.addCell(labelO);

Label labell = new Label(1, 3, "PhdLab");

wsheetl.addCell(labell);

50

WSN Simulation

Label label2 = new Label(2, 3, "Stairs");
wsheetl.addCell(label2);

Label label3 = new Label(3, 3, "UpFloor");
wsheetl.addCell(label3);

n=0;

for (m=4;m<32;m++)

{

Number number0 = new Number(0, m, kIDivMem[n][0]);
wsheetl.addCell(number0);

Number numberl = new Number(1, m, kIDivMem[n][1]);
wsheetl.addCell(numberl);

Number number2 = new Number(2, m, kiDivMem([n][2]);
wsheetl.addCell(number2);

Number number3 = new Number(3, m, kIDivMem[n++][3]);
wsheetl.addCell(number3);

Label labelll = new Label(7, 1, "Comparison of KL Measures for RNG Sources with

Markov Model");

51

wsheet2.addCell(labelll);

Label label4 = new Label(0O, 3, "OutRoom");
wsheet2.addCell(label4);

Label label5 = new Label(1, 3, "PhdLab");
wsheet2.addCell(label5);

Label label6 = new Label(2, 3, "Stairs");
wsheet2.addCell(label6);

Label label7 = new Label(3, 3, "UpFloor");
wsheet2.addCell(label7);

n=0;

for (m=4;m<32;m++)

{

Number number0 = new Number(0, m, kiIDivMark[n][0]);
wsheet2.addCell(number0);

Number numberl = new Number(1, m, kiDivMark[n][1]);
wsheet2.addCell(numberl);

Number number2 = new Number(2, m, kIDivMark[n][2]);
wsheet2.addCell(number2);

Number number3 = new Number(3, m, kiIDivMark[n++][3]);
wsheet2.addCell(number3);

wworkbookl.write();wworkbook1.close();
wworkbook2.write();wworkbook?2.close();

catch(IOException ie)

{ System.out.printin(ie.toString()); }
catch(WriteException we)

{ System.out.printin(we.toString()); }
System.out.printin("Done!!");

}

6. Results Evaluation

In this chapter first we evaluate the results produced by the test application (elaborated in
Chapter 4) against output of every random number generator. These results provide the
background, properties and the level of quality of each random number files we have generated
in Chapter 3.

After that we evaluate synthetic traces of bit-errors and frame errors generated from each model
simulation. Later we calculate the R Divergence measure of each trace for both models using the
formula given in Chapter 1. Hence we get the resultant R values for each setup that is particular
to some Random Number Source for both models. For each model eight result sets were
produced from 8 RNG sources. R measures show the difference in results of real and synthetic
trace outputs. It must be noted that smaller the value of R measure, smaller the difference in

results.

Cumulative R Divergence which is calculated with two synthetic trace result sets at a time using
outputs of two RNGs is also evaluated later to know the closeness of simulation result sets
making use of two different RNGs. Purpose of R Divergence measure calculation among the
synthetic traces generated for each RNG Source is to find the similarity level among them. 28
combinations of synthetic trace distributions are found for each of the 24 experiments.

Following factors will be evaluated using the information gathered from results to prove the

impact of randomness in simulation based studies.

1. Simulation provides correct results if the right Random Number Generator is chosen.

2. Random Number Generators with similar properties when used in the simulation produce
similar results.

6.1 Results of Tests

First of all the random numbers are evaluated by the statistical tests and results in the form of
Pass/Fail are recorded for each test. Each random file saves 10 million integers produced by that

particular random generator code.

Test Application is used to compile the test results for each random file generated from available

eight Random Number Generators. Test results of all Random numbers Generators are given in a

52

Simulation Results Evaluation

table. It is very clear with the results that each RNG lack in some random property. Few are good
in one property while others are bad in the same property. So every random number generator is
focusing on specifics of their own choice. Results generated for every statistical test is compiled
in a table presented following.

Random Number Random Files Names Passing | Failure
Generators Ratio Ratio

Coutput CPP_20140126_2313

CPP_20140225_2116 0.7 0.3

CPP_20140225_2121

C-RNG-Output C_20140507_1411

C_20140507_1412 0.7333 | 0.266667

C_20140507 1413

Csoutput CS-20140225_2125

CS-20140225 2126 0.7333 | 0.266667

CS-20140225_2127

Java-RNG-Output | J_201457 1344

J_2014423_1440 0.8 0.2

J_2014425_1011

Joutput Java 2014425 1133

Java_2014428 1024 0.8 0.2

Java_2014514_1836

OpenSSL PRNG_20140508_1425

PRNG_20140508_1457 | 0.8333 | 0.166667

PRNG_20140508_1458

53

Simulation Results Evaluation

Python-Output Python_20140507_1400

Python_20140507_1402 0.8 0.2

Python_20140507_1404

SFMT-Output SFMT 201457 1418

SFMT_201457_1419 0.9 0.1

SFMT 201457 1420

Table 3: Passing and Failure Ratio of Tests applied to Random Files

Following graph is the evaluation parameter to prove the Factor 1 which states that RNG with
high failure ratio when used in simulation will provide the results that differ from the real results
in big number. Graph is presenting the failure ratio of numbers produced by RNGs mentioned in

Chapter 3. Ratio is calculated from the resultant files created during test application phase.

Graph showing Failure Ratio of RNGs as per Test Results
Record
03
0.25
0.2
2
2 0.15
(]
o<
0.1
0.05 |
0
X X X X X N, X X
&Qo &Qo &Qo &Qo &Qo é{_,‘o &Qo &Qo
¢ 0,0 & 0,0 © R o,o «0
S S S
\'b

Figure 5: Graph showing Failure Ratio of RNGs as per Test Results Record

54

Simulation Results Evaluation

Another graph presented below is showing similar and different Random Number Generators on
the basis of their Pass/Fail test statistics. This graph is the evaluation parameter to prove the
Factor 2 which states that similar Random Number Generators when used in simulation will

produce similar results.

Graph showing Similar and Different RNGs

1 .f
==@— Coutput & C-RNG-Output

==@— Coutput & Csoutput
==@==Coutput & Java-RNG-Output
==@-=Coutput & Joutput

==@==Coutput & OpenSSL
==@==Coutput & Python-Output
==@==Coutput & SFMT-Output

=== C-RNG-Output & Csoutput
==@==C-RNG-Output & Java-RNG-Output
==@=C-RNG-Output & Joutput
==@=C-RNG-Output & OpenSSL
=@=C-RNG-Output & Python-Output
==@==C-RNG-Output & SFMT-Output
=@= Csoutput & Java-RNG-Output
=@ Csoutput & Joutput
==@-=Csoutput & OpenSSL

0 =@==Csoutput & Python-Output

=@ Csoutput & SFMT-Output
==@=Java-RNG-Output & Joutput
==@=Java-RNG-Output & OpenSSL
==@=Java-RNG-Output & Python-Output
==@==Java-RNG-Output & SFMT-Output
=@ Joutput & OpenSSL
=@-Joutput & Python-Output
==@==Joutput & SFMT-Output
==@==0penSSL & Python-Output
==@=OpenSSL & SFMT-Output
==@==Python-Output & SFMT-Output

Results

Coutput & Joutput
Coutput & OpenSSL
Coutput & Python-Output
Csoutput & Joutput

Csoutput & OpenSSL

Csoutput & Python-Output
Joutput & OpenSSL

Coutput & Csoutput
Joutput & Python-Output

Coutput & Java-RNG-Output
Coutput & SFMT-Output
C-RNG-Output & Csoutput

C-RNG-Output & Java-RNG-Output
Joutput & SFMT-Output

Coutput & C-RNG-Output
C-RNG-Output & Joutput
C-RNG-Output & OpenSSL
C-RNG-Output & Python-Output
Csoutput & SFMT-Output
Java-RNG-Output & Joutput
Java-RNG-Output & OpenSSL
Java-RNG-Output & Python-Output
OpenSSL & Python-Output
OpenSSL & SFMT-Output
Python-Output & SFMT-Output

Csoutput & Java-RNG-Output
Java-RNG-Output & SFMT-Output

C-RNG-Output & SFMT-Output

Figure 6: Graph showing Similar and Different RNGs

55

Simulation Results Evaluation

6.22-Tier Memoryless Model

6.2.1 Frame-Error Rate

Table 4 shows comparison of real results and simulated results (generated using Rand PRNG in
C) of Frame Error Rate for each setup using 2-Tier Memoryless Model. It must be noted that

result is averaged over 6 traces per setup.

Setup Title | Total Frames | Source FER | Memoryless FER
OutRoom 208426 0.01863137 | 0.01680303
PhdLab 205385 0.29216057 | 0.304433333
Stair 179132 0.150592548 | 0.15508186
Up_floor 119763 0.133074983 | 0.13650929

Table 4: Average FER Comparison with 2-Tier Memoryless Model

6.2.2 Bit-Error Rate

Table 5 presents comparison of real results and simulated results (generated using Rand PRNG
in C) of Bit Error Rate for each setup using 2-Tier Memoryless Model. Results of 24 traces are

averaged for four setups.

Setup Title | Total Bits Source BER | Memoryless BER

OutRoom 33348160 0.000483432 | 0.002400373

PhdLab 32861600 0.013385878 | 0.291544995
Stair 28661120 0.0054245 0.135821988
Up_floor 19162080 0.006199407 | 0.129482923

Table 5: Average BER Comparison with 2-Tier Memoryless Model

56

Simulation Results Evaluation

6.2.3 R Divergence Measure

Table 6 shows average R Divergence measure for each setup with 2-Tier Memoryless Model

(generated using Rand PRNG in C) as given following:

Setup R Divergence

OutRoom | 0.109410675

PhdLab | 0.086685092

Stair 0.101079727

Up_floor | 0.3112344

Table 6: Average R Divergence Measure with 2-Tier Memoryless Model

6.3 2-Tier Markov Model
6.3.1 Frame-Error Rate

Table 7 shows comparison in real results and simulated results (generated using Rand PRNG in
C) of Frame Error Rate for each setup using 2-Tier Markov Model. It must be noted that result is

averaged over 6 traces per setup.

Setup Title | Total Frames | Source FER | Markov FER
OutRoom 208426 0.01863137 | 0.017451923
PhdLab 205385 0.29216057 | 0.090240717
Stair 179132 0.150592548 | 0.13007733
Up_floor 119763 0.133074983 | 0.138740097

Table 7: Average FER Comparison with 2-Tier Markov Model

Simulation Results Evaluation

6.3.2 Bit-Error Rate

Table 8 presents comparison in real results and simulated results (generated using Rand PRNG in
C) of Bit Error Rate for each setup using 2-Tier Markov Model. Results of 24 traces are averaged
for four setups.

Setup Title Total Bits Source BER | Markov BER
OutRoom 33348160 0.000483432 | 9.75167E-06
PhdLab 32861600 0.013385878 | 0.000289392
Stair 28661120 0.0054245 0.00062454
Up_floor 19162080 0.006199407 | 0.000714957

Table 8: Average BER Comparison with 2-Tier Markov Model

6.3.3 R Divergence Measure

Table 9 shows average R Divergence measure for each setup with 2-Tier Markov Model

(generated using Rand PRNG in C) as given below:

Setup R Divergence

OutRoom 0.257466
PhdLab 0.007792
Stair 0.003276
Up_floor 0.004997

Table 9: Average R Divergence Measure with 2-Tier Markov Model

58

Simulation Results Evaluation

6.4 Cumulative R Divergence Measure Results

6.4.1 2-Tier Memoryless Model

R divergence Measure produced in the output files is combined to see the overall behavior of the
simulation results. Average R Divergence Measure using 2-Tier Memoryless model for the four
setups is given in the following table. High value of R measure shows the bad simulation results

and low values represent good simulation results.

Coutput | C-RNG- | Csoutput | Java-RNG- | Joutput | OpenSSL | Python- | SFMT-

Output Output Output | Output

OutRoom | 0.477235 | 0.258231 | 0.201755 | 0.177566 0.11223 | 0.146836 | 0.179476 | 0.109411
PhdLab | 0.216847 | 0.1349 0.164416 | 0.113509 0.080948 | 0.086685 | 0.087948 | 0.056419
Stairs 0.492371 | 0.105607 | 0.128032 | 0.10223 0.100534 | 0.077867 | 0.10108 | 0.056342
Up_Floor | 0.582273 | 0.44347 | 0.370484 | 0.346066 0.280051 | 0.267194 | 0.311234 | 0.118585

Table 10: Comparison in R Measures using Memoryless Model for given RNGs

Graph showing role of RNGs in the results of
MemoryLess Model Simulation

m Coutput

B C-RNG-Output

m Csoutput

R Divergence

B Java-RNG-Output

W Joutput

B OpenSSL
Python-Output
SFMT-Output

OutRoom PhdLab Stairs Up_Floor

Figure 7: Graph showing role of RNGs in the results of MemoryLess Model Simulation

59

Simulation Results Evaluation

Analysis:

The graph of above table shows the difference in real trace results and synthetic trace results of
Memoryless model simulation. If we analyze the graph we see the RNGs in the following order

from highest value to lowest.
Out Room: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Python-Output
- > OpenSSL - > Joutput - > SFMT-Output

Phd Lab: Coutput - > Csoutput - > Java-RNG-Output s- > C-RNG-Output - > OpenSSL - >
Python-Output - > Joutput - >SFMT-Output

Stairs: Coutput - > Csoutput - > C-RNG-Output - >Java-RNG-Output - > Joutput - > Python-
Output - > OpenSSL - > SFMT-Output

Up Floor: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Python-Output

- > Joutput -> OpenSSL - > SFMT-Output

According to test results the following order of RNGs as per ratio of failure is given. Order from

highest failure ratio to lowest is identified.

RNG Results: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Joutput - >
Python-Output - > OpenSSL - > SFMT-Output

As C-RNG-Output and Csoutput are equal, we can interchange them. Similarly Java-RNG-
Output, Joutput and Python-Output are equal, we can also interchange these.

If we compare each setup one by one with the RNG results, two values of Out Room are
different in the order. In Phd Lab four values are different whereas Stairs is exactly same. Up

floor is also exactly same in order.

So overall two setups are completely reflecting the results calculated from the test application
whereas results of Out Room and PhdLab are partially same. It proves the Factor 1 that
simulation provides correct results if the right Random Number Generator is chosen and

simulation differs from real results if weak RNG is used in the simulation.

60

6.4.2 2-Tier Markov Model

Simulation Results Evaluation

Average R Divergence Measure using 2-Tier Markov model for the four setups is given in the

following table. High value of R measure shows the bad simulation results and low values

represent good simulation results.

Coutput | C-RNG- | Csoutput | Java-RNG- | Joutput | OpenSSL | Python- | SFMT-

Output Output Output | Output
OutRoom | 0.047915 | 0.043125 | 0.046276 | 0.023656 0.018464 | 0.022594 | 0.018713 | 0.009659
PhdLab | 0.007792 | 0.007892 | 0.00577 | 0.007664 0.003666 | 0.00539 0.005906 | 0.004817
Stairs 0.003276 | 0.003388 | 0.002935 | 0.004534 0.004198 | 0.004291 | 0.005118 | 0.004306

Up_Floor | 0.004997 | 0.004683 | 0.008582 | 0.004644 0.00659 | 0.005428 | 0.009623 | 0.00414

Table 11: Comparison in R Measures using Markov Model for given RNGs

Graph showing role of RNGs in the results of Markov
Model Simulation

0.05

0.04

0.03

0.02

0.01

H Coutput

B C-RNG-Output

B Java-RNG-Output

m Csoutput

W Joutput

OutRoom

B OpenSSL

Python-Output

SFMT-Output

PhdLab

Stairs

Up_Floor

Figure 8: Graph showing role of RNGs in the results of Markov Model Simulation

61

Simulation Results Evaluation

Analysis:

Above graph is drawn from the table 11 and shows the difference in real traces and synthetic
trace results of markov model simulation. If we analyze the graph we see RNGs in the following

order from highest value to lowest.

Out Room: Coutput - > Csoutput - > C-RNG-Output - > Java-RNG-Output - > OpenSSL - >
Joutput -> Python-Output -> SFMT-Output

Phd Lab: Coutput - > C-RNG-Output - > Java-RNG-Output - > Csoutput - > Python-Output - >
OpenSSL - > SFMT-Output - > Joutput

Stairs: Coutput - > Java-RNG-Output - > Python-Output - > Joutput - > OpenSSL - > SFMT-
Output - > C-RNG-Output - > Csoutput

Up Floor: Coutput - > Csoutput - > Java-RNG-Output - > Joutput - > OpenSSL - > C-RNG-
Output - > Python-Output - > SFMT-Output

According to test results the following order of RNGs as per ratio of failure is identified. Order
from highest failure ratio to lowest is identified.

RNG Results: Coutput - > C-RNG-Output - > Csoutput - > Java-RNG-Output - > Joutput - >
Python-Output - > OpenSSL - > SFMT-Output

As C-RNG-Output and Csoutput are equal, we can interchange them. Similarly Java-RNG-
Output, Joutput and Python-Output are equal, we can also interchange these.

If we compare each setup one by one with the RNG results, one value of Out Room is different
in the order. In Phd Lab two values are different. In setup of Stairs one value is out of order. One

value is out of order in Up floor.

So overall just few values are not in saline to the base order. It proves the Factor 1 that
simulation provides correct results if the right Random Number Generator is chosen and

simulation differs from real results if weak RNG is used in the simulation.

62

6.5R Divergence Measure Results w.r.t RNGs

6.5.1 2-Tier Memoryless Model

Simulation Results Evaluation

R Diverence measure is used to make comparisons and generate the values given in following

table. The table depicts the comparison of Random Source results in combination calculated with

2-Tier Memoryless Model.

RNG SOURCES

SETUP TITLES

RNG Source 1 RNG Source 2 OutRoom PhdLab Stairs Up_floor
Coutput C-RNG-Output 0.000214334 | 0.000889807 | 0.000652314 | 0.324821612
Coutput Csoutput 0.00025825 | 0.000479126 | 0.001025599 | 0.323213666
Coutput Java-RNG-Output | 0.160668197 | 0.162359394 | 0.00810264 | 0.543897932
Coutput Joutput 0.161222014 | 0.163302043 | 0.001056084 | 0.32537085
Coutput OpenSSL 0.064397595 | 0.118612493 | 0.092809878 | 0.321987078
Coutput Python-Output 0.162963522 | 0.077875547 | 0.003177214 | 0.453830562
Coutput SFMT-Output 0.922788893 | 0.511641194 | 0.782129509 | 0.505058339
C-RNG-Output Csoutput 5.39716E-05 | 0.000581962 | 0.023654875 | 0.48386394
C-RNG-Output Java-RNG-Output | 0.16094804 | 0.16187647 | 0.000723321 | 0.482759364
C-RNG-Output Joutput 0.161053449 | 0.162950451 | 0.00062044 | 0.485306759
C-RNG-Output OpenSSL 0.068262819 | 0.122335577 | 0.098576828 | 0.480814658
C-RNG-Output Python-Output 0.162245471 | 0.000746184 | 0.000609049 | 0.324588326
C-RNG-Output SFMT-Output 0.963065683 | 0.508898778 | 0.900111076 | 0.529624362

63

Simulation Results Evaluation

Csoutput Java-RNG-Output | 0.160784442 | 0.161334305 | 0.001221993 | 0.323382062
Csoutput Joutput 0.160636476 | 0.162391982 | 0.001033075 | 0.328250173
Csoutput OpenSSL 0.068941311 | 0.117830306 | 0.096137708 | 0.339392389
Csoutput Python-Output 0.16190204 | 0.000961355 | 0.001078611 | 0.323375184
Csoutput SFMT-Output 0.984892637 | 0.499143528 | 0.81623286 | 0.809559662
Java-RNG-Output | Joutput 0.160394418 | 0.162043103 | 0.000519161 | 0.34875919

Java-RNG-Output | OpenSSL 0.204227397 | 0.267921092 | 0.093438814 | 0.315887996
Java-RNG-Output | Python-Output 0.256566512 | 0.162121287 | 0.000814929 | 0.498924507
Java-RNG-Output | SFMT-Output 0.670121624 | 0.233478205 | 0.814245795 | 0.520889161
Joutput OpenSSL 0.209062537 | 0.273010422 | 0.098268331 | 0.340861275
Joutput Python-Output 0.162162976 | 0.163419781 | 0.000638312 | 0.353730246
Joutput SFMT-Output 0.638385224 | 0.223349223 | 0.865583564 | 0.810368064
OpenSSL Python-Output 0.207990444 | 0.121469419 | 0.091653495 | 0.316453204
OpenSSL SFMT-Output 0.615249777 | 0.333590344 | 0.758587033 | 1.066351603
Python-Output SFMT-Output 0.701015915 | 0.519894306 | 0.819546709 | 0.510185243

Table 12: Comparison in R Measures using Memoryless Model for combinational RNGs

64

Simulation Results Evaluation

Graph showing similar simulation results in MemoyLess

Model w=@== Coutput & C-RNG-Output

=== Coutput & Csoutput

g Coutput & Java-RNG-Output
g Coutput & Joutput

==@== Coutput & OpenSSL

=g Coutput & Python-Output

et Coutput & SFMT-Output

=@ C-RNG-Output & Csoutput
w=@== C-RNG-Output & Java-RNG-Output
e=@== C-RNG-Output & Joutput

=@ C-RNG-Output & OpenSSL

==@== C-RNG-Output & Python-Output
e C-RNG-Output & SFMT-Output
=@ Csoutput & Java-RNG-Output
=@ Csoutput & Joutput

=@ Csoutput & OpenSSL

Csoutput & Python-Output

g Csoutput & SFMT-Output

=== Java-RNG-Output & Joutput
=== Java-RNG-Output & OpenSSL
==@==Java-RNG-Output & Python-Output
e Java-RNG-Output & SFMT-Output
=@ Joutput & OpenSSL

==@== Joutput & Python-Output

e JOUtpuUt & SFMT-Output

==@== OpenSSL & Python-Output
e OpenSSL & SFMT-Output

g Python-Output & SFMT-Output

Results

-
-
-

Coutput & Joutput
Coutput & OpenSSL

Coutput & Python-Output
Csoutput & Joutput

Csoutput & OpenSSL

Csoutput & Python-Output
Joutput & OpenSSL

Coutput & Csoutput
Joutput & Python-Output

Coutput & Java-RNG-Output
Joutput & SFMT-Output Q="

Coutput & SFMT-Output
C-RNG-Output & Csoutput
C-RNG-Output & Java-RNG-..
C-RNG-Output & Joutput
C-RNG-Output & OpenSSL
Csoutput & SFMT-Output @=e=—C
Java-RNG-Output & Joutput
OpenSSL & Python-Output

Java-RNG-Output & OpenSSL
Java-RNG-Output & SFMT-, Q=0

Coutput & C-RNG-Output
OpenSSL & SFMT-Output

Python-Output & SFMT-Output

C-RNG-Output & Python-..
C-RNG-Output & SFMT-Output Q==

Csoutput & Java-RNG-Output
Java-RNG-Output & Python-..

Figure 9: Graph showing similar simulation results in MemoyLess Model

Analysis:

Above graph is drawn from the table 12 that shows the difference in traces for each and every
possible combination of RNGs. There are total 28 combinations of traces. With the thorough

analysis of graph following combinations are found to be in the same range of R values.

Coutput & C-RNG-Output

Coutput & Csoutput

Coutput & OpenSSL
C-RNG-Output & Csoutput
C-RNG-Output & Java-RNG-Output
C-RNG-Output & Joutput
C-RNG-Output & OpenSSL

65

Simulation Results Evaluation

C-RNG-Output & Python-Output
Csoutput & Java-RNG-Output
Csoutput & Joutput

Csoutput & OpenSSL

Csoutput & Python-Output
Java-RNG-Output & Joutput
Java-RNG-Output & OpenSSL
Java-RNG-Output & Python-Output
Joutput & OpenSSL

Joutput & Python-Output
OpenSSL & Python-Output

According to test results the following RNGs are found similar as they have the same range of

failure ratio.

Coutput & C-RNG-Output

Coutput & Csoutput
C-RNG-Output & Csoutput
Java-RNG-Output & Joutput
Java-RNG-Output & OpenSSL
Java-RNG-Output & Python-Output
Joutput & OpenSSL

Joutput & Python-Output

OpenSSL & Python-Output

Above statistics show that every combination of RNGs which has almost same random qualities
and is found similar with the results of test application when applied to simulation produces

similar simulation results which can be seen by the R measures that are small in these cases.

It proves the Factor 2 that Random Number Generators with similar properties when used in the

simulation produce the similar simulation results.

6.5.2 2-Tier Markov Model

Following table depicts the comparison of Random Source results calculated with 2-Tier Markov

Model. R Diverence measure is used for comparison purposes.

66

Simulation Results Evaluation

RNG SOURCES

SETUP TITLES

RNG Source 1 RNG Source 2 OutRoom PhdLab Stairs Up_floor

Coutput C-RNG-Output 0.192877205 | 0.003849958 | 0.001864541 | 0.001985602
Coutput Csoutput 0.207651921 | 0.003883554 | 0.002050279 | 0.001990353
Coutput Java-RNG-Output | 0.201954425 | 0.002707976 | 0.001942049 | 0.001596568
Coutput Joutput 0.213776003 | 0.004014622 | 0.001347965 | 0.001730313
Coutput OpenSSL 0.222020081 | 0.002717561 | 0.001667601 | 0.001951581
Coutput Python-Output 0.225785854 | 0.006027323 | 0.0012275 | 0.005327181
Coutput SFMT-Output 0.227313988 | 0.006446073 | 0.001055714 | 0.005879822
C-RNG-Output Csoutput 0.001227279 | 0.002230322 | 0.002037511 | 0.001811511
C-RNG-Output Java-RNG-Output | 0.001091014 | 0.001861729 | 0.002744856 | 0.002019573
C-RNG-Output Joutput 0.001230359 | 0.001861754 | 0.001616143 | 0.002484099
C-RNG-Output OpenSSL 0.001142739 | 0.001479328 | 0.00135325 | 0.019750144
C-RNG-Output Python-Output 0.001204529 | 0.002782835 | 0.004936313 | 0.002887387
C-RNG-Output SFMT-Output 0.000787266 | 0.003375483 | 0.001838592 | 0.000826109
Csoutput Java-RNG-Output | 0.00170605 | 0.001232065 | 0.002660673 | 0.002540947
Csoutput Joutput 0.001754287 | 0.00222333 | 0.003054191 | 0.006460485
Csoutput OpenSSL 0.001825424 | 0.001298876 | 0.0017141 | 0.001088671
Csoutput Python-Output 0.001418427 | 0.003750892 | 0.002045627 | 0.001659767

67

Simulation Results Evaluation

Csoutput SFMT-Output 0.001637238 | 0.000935544 | 0.002491999 | 0.000986975
Java-RNG-Output | Joutput 0.000998722 | 0.002233269 | 0.001500976 | 0.001602953
Java-RNG-Output | OpenSSL 0.001332982 | 0.003005983 | 0.001123086 | 0.002246656
Java-RNG-Output | Python-Output 0.001116658 | 0.001769939 | 0.002079416 | 0.002353704
Java-RNG-Output | SFMT-Output 0.000725602 | 0.000768695 | 0.001620858 | 0.01716366

Joutput OpenSSL 0.002170514 | 0.003264637 | 0.005255079 | 0.003373971
Joutput Python-Output 0.002647433 | 0.00233293 | 0.003330898 | 0.005378822
Joutput SFMT-Output 0.002745444 | 0.001570234 | 0.006188707 | 0.001264581
OpenSSL Python-Output 0.001560268 | 0.00220994 | 0.001241794 | 0.002348881
OpenSSL SFMT-Output 0.002212597 | 0.002333056 | 0.001175201 | 0.001363032
Python-Output SFMT-Output 0.001769881 | 0.003549887 | 0.001152062 | 0.006701309

Table 13: Comparison in R Measures using Markov Model for combinational RNGs

68

Simulation Results Evaluation

Graph showing similar simulation results in Markov Model

=@ Coutput & C-RNG-Output
==@== Coutput & Csoutput
1 - ==@== Coutput & Java-RNG-Output
=g Coutput & Joutput
=g CoUtput & OpenSSL
=g Coutput & Python-Output
=g Coutput & SFMT-Output
e=@== C-RNG-Output & Csoutput
==@== C-RNG-Output & Java-RNG-Output
g C-RNG-Output & Joutput
=@ C-RNG-Output & OpenSSL
em=gm== C-RNG-Output & Python-Output
et C-RNG-Output & SFMT-Output
=== Csoutput & Java-RNG-Output
=== Csoutput & Joutput
@ Csoutput & OpenSSL
5 e=¢= Csoutput & Python-Output
g‘ e Csoutput & SFMT-Output
(.3 ==@==Java-RNG-Output & Joutput
E =@ Java-RNG-Output & OpenSSL
L e=@==Java-RNG-Output & Python-Output
0f ===)ava-RNG-Output & SFMT-Output
5 =@ Joutput & OpenSSL
s ==@==Joutput & Python-Output

S
Q e JOUtpUt & SFMT-Output

S e=@== OpenSSL & Python-Output
S et OpenssL & SFMT-Output

o e=gu== Python-Output & SFMT-Output

Results

%

C-RNG-Output & Java-RNG-..

)
-

Coutput & Joutput
Coutput & OpenSSL
Coutput & Python-Output
Csoutput & Joutput
Csoutput & OpenSSL

Csoutput & Python-Output
Joutput & OpenSSL

Coutput & Csoutput
Joutput & Python-Output

Coutput & Java-RNG-Output
C-RNG-Output & Joutput Q="

C-RNG-Output & OpenSSL

C-RNG-Output & Python-Output
Joutput & SFMT-Output @=ee=—"_

Coutput & SFMT-Output
OpenSSL & Python-Output

Coutput & C-RNG-Output
C-RNG-Output & Csoutput
Csoutput & SFMT-Output

C-RNG-Output & SFMT-Output
Csoutput & Java-RNG-Output
Java-RNG-Output & Joutput
Java-RNG-Output & OpenSSL
Java-RNG-Output & Python-..
Java-RNG-Output & SFMT-.s
OpenSSL & SFMT-Output

Figure 10: Graph showing similar simulation results in Markov Model

Analysis:

Above graph is drawn from the table 13 and shows the difference in traces for each and every
possible combination of RNGs. There are total 28 combinations of traces. With the thorough
analysis of graph following combinations of simulation results are found to be in the same range

of R values.

Coutput & C-RNG-Output

Coutput & Csoutput

Coutput & Java-RNG-Output
C-RNG-Output & Csoutput
C-RNG-Output & Java-RNG-Output
C-RNG-Output & OpenSSL
Csoutput & Java-RNG-Output

69

Simulation Results Evaluation

Csoutput & Joutput

Csoutput & OpenSSL
Java-RNG-Output & Joutput
Java-RNG-Output & OpenSSL
Java-RNG-Output & Python-Output
Joutput & OpenSSL

Joutput & Python-Output

OpenSSL & Python-Output

According to test results the following RNGs were found similar as they have the same range of

failure ratio.

Coutput & C-RNG-Output

Coutput & Csoutput
C-RNG-Output & Csoutput
Java-RNG-Output & Joutput
Java-RNG-Output & OpenSSL
Java-RNG-Output & Python-Output
Joutput & OpenSSL

Joutput & Python-Output

OpenSSL & Python-Output

Above statistics show that every combination of RNGs which has almost same random qualities

and is found similar with the results of test application when applied to simulation produces

similar simulation results which can be seen by the R measures that are small in these cases.

It proves the Factor 2 that Random Number Generators with similar properties when used in the

simulation produces the similar simulation results.

6.6 Conclusion

Hence we can conclude in lines that to prove the impacts of Randomness in Simulations,

following factors are evaluated against the information and results gathered.

1.

70

Simulations provide correct results if the strong RNG with respect to randomness is the
choice.

Random Number Generators with similar properties when used in the simulation produce
the similar simulation results.

7. Conclusion

Thesis can be divided into two main sections. First of all we presented a comprehensive research
for evaluating randomness of RNGs in different Programming Languages and cryptographic
libraries using Statistical Random Test Algorithms. Later the impact of random numbers on
simulation based studies was evaluated in detail. As the use of random numbers generated
through APIs of programming languages is more than other options of number generation, the
most common PRNGs provided by C, C++, Java, C#, Python, OpenSSL, SFMT are evaluated in
two ways. The quality and reliability was first assessed using standard random number testing
procedures such as Equidistribution Test, Run Test, Serial Test, and Chi square Test. Later we
used the same random numbers in a Markov chain based probabilistic study of Wireless Sensor
Networks. For analysis purpose R Divergence measure was used. The results and analysis
reveals that choice of random numbers has direct impact over simulation based studies. Use of
strong random numbers lead to better and reliable simulations while bad RNG selection will end
in bad and unrealistic results that will be vary from real results in a big number. Another concept
which is presented in thesis is related to using a RNG same in random properties with some other
RNG. The results presented in last chapter are enough to prove that similar RNGs will have same
impacts over simulations and almost same results will be generated by applying similar RNGs.

71

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

72

8. References

Havedanloo, Saeed, and Hamid Reza Karimi, “Improving the Performance Metric of
Wireless Sensor Networks with Clustering Markov Chain Model and Multilevel Fusion”,
Mathematical Problems in Engineering, 2013.

P. Hellekalek, “Good random number generators are (not so) easy to find”, Mathematics
and Computers in Simulation, Volume 46, No. 5, 1998, pp. 485-505.

NIST Exploratory Data Analysis:
http://www.itl.nist.gov/div898/handbook/toolaids/pff/E-Handbook.pdf

Adnan Igbal and Syed Ali Khayam, "Improving WSN Simulation and Analysis Accuracy
Using Two-Tier Channel Models,” IEEE International Conference on Communications
(ICC), May 2008.

U. Maurer, “A Universal Statistical Test for Random Bit Generators,” Journal of
Cryptology. Vol. 5, No. 2, 1992, pp. 89-105.

Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P., Numerical Recipes in C:
The Art of Scientific Computing, Cambridge University Press, 2nd edition, 1992.

Noble, C. and Sugden, S. J., “Statistical Tests on Random Numbers 1”, A consulting
report for Jupiters Network Gaming, July 1997.

Inductive and Deductive research Approach:

http://www.drburney.net/INDUCTIVE%20&%20DEDUCTIVE%20RESEARCH%20AP
PROACH%2006032008.pdf

A. Menezes, et al., Handbook of Applied Cryptography, CRC Press, 1997.
http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

W. Press, S. Teukolsky, W. Vetterling, Numerical Recipes in C : The Art of Scientific
Computing, 2nd Edition. Cambridge University Press, January 1993.

Donald E.Knuth, “The Art of Computer Programming, Seminumerical Algorithms”,

http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

73

References

Volume 2, 3rd edition, 1997.

Daniel P. Biebighauser, “Testing Random Number Generators”, University of Minnesota,
REU Summer 2000.

Richard Simard, Pierrel’euyer, A C Library for Empirical Testing of Random Number
Generators, Universit “e de Montr“eal, 1996.

Kinga Marton, A High Performance System for Generation and Testing of Random
Number Sequences for Cryptographic Applications, Siemens PSE, 2010.

Juan Soto, Statistical Testing of Random Number Generators, NIST 2010.

http://www.graphpad.com/quickcalcs/randomN1.cfm

http://www.random.org/integers/

http://stattrek.com/Tables/Random.aspx

http://www.dave-reed.com/Nifty/randSeq.html

http://www.random.org/sequences/

http://www.graphpad.com/quickcalcs/randomN1.cfm
http://stattrek.com/Tables/Random.aspx
http://www.dave-reed.com/Nifty/randSeq.html

Appendix A: Results for sample data

In case of binary file, Results might be given as below:

Statistical Test P-value
Run Test 0.5782
Permutation Test 0.7608
Poker Test 0.0243
Serial Test 0.1222
Chi square Test 0.0019
Equidistribution Test 0.0312
Frequency (Bi Gram) 0.0221
Frequency (Tri Gram) 0.0111

Table 14: Test results of Sample Binary File

In case of integer file, Results might be given as below:

Statistical Test P-value
Run Test 0.0626
Frequency Test (N Gram) 0.29899
Poker Test 0.0132

74

75

Appendix A: Results for sample data

Serial Test

0.027826

Chi square Test

0.005442

Permutation Test

0.9999

Sub sequence Test

0.7683

Equidistribution Test

0.29899

Table 15: Test results of Sample Integer File

Appendix B: Graphical User Interface (GUI)

A simple graphical user interface is developed to test the statistical properties of RNGs. The
source code can be found in randomTestDemo.java. The interface consists of a single window
with four regions. The first region prompts user to get a sequence for testing randomness. For
getting a sequence to be tested, he should click the “Get File” button to get a sequence. Then he

must select one of the files containing sequences.

The second region consists of check list for the statistical tests. The user selects the set of
statistical tests to be executed. Once the user has selected the sequence to be tested, he should
click “Apply button” to invoke the statistical tests. This results in displaying the results of
selected tests. Results of applied tests are shown in text area of third region. The user can also
make and view sample file for testing purposes. Logs of Analysis report is also maintained for
analysis purposes. The fourth region of interface shows the P-values and Pass/Fail status of
selected tests. The user can later proceed to review the log files that are named according to time

in folder “Analysis Reports™.

Another GUI based simulation is provided for two tier Memoryless Model. The source code can
be found in MemorylessModel.java. The application is divided into three regions. The first
region consists of a combo box and a button. User selects the PRNG of his choice by selecting
entry from combo box. Later he should click “Execute button” to invoke the routines for
producing synthetic traces and producing results that include FER, BER and R Divergence
results. The results of real traces are presented in a second region of an application. For all 24
traces total number of frames and bits as well Frame Error Rate, Bit Error Rate calculated using a

model are shown in columns of third region.

For two tier Markov Model the application format is implemented on similar lines as for
Memoryless Model Simulation. The source code can be found in MarkovModel.java. The
backend working of application is different that is clearly affected in synthetic traces of frame
and bit errors. R Diverence values are also calculated for all 24 traces and average results for
four setups are copied to the result sheet generated. It shall be noted that for every random

number source different result sheets are generated.

76

Appendix B: Graphical User Interface

1.Using Test Application

First of all, user enters password to go to the main screen.

FoX

o,

Enter the password: [esssesseses| |

Cancel

Figure 11: User Authentication Dialogue Box

If the user inputs authenticated password, he sees the main screen of an application.

Fie Formst Gol Aoply delp

=l GolFile <5 Apply Test

1. Get Random Wumbes Hie 2, Apply Randommess Test
Fom st -

Ser il Tost

Pamern Tesa

Che Sopme Tast
Pesmmstation Test
[Sals anauencw Tost
Equidistribation Test
Ao Corrolation Test
Enfropy Test (8 Gram)

3, Fmanlin of insts 4, Anobysis of testn

Erropy Test (81 Goamd d

Adhd »»

Add AN

Ratnove A

Figure 12: Random Number Testing Main Interface

After authentication, user must get random file to apply test on

these. As the user presses “Get

File” button, the File Open Dialog Box appears so that the user can get the random file.

77

Appendix B: Graphical User Interface

Open E'
Look In: | week? - E
3 AnalysisReports |j| AnalysisReport.txt D random$1.class |j| random$
] binary rj count.txt E‘] random$10.class D random$7
] images rj demao.jar E‘] random$11.class D random$7
] integer |__°*| make jar.txt E‘] random$12.class D random$7
] rational [y manifest.mft [random$13.class [} random$
O txt [} manifestmfttxt [random$14.class [) randoms:

4] Il | [»
File Name: | |
Files of Type: |All Fles |~ |

Open Cancel

Figure 13: Random File Selection Dialogue Box

As the user selects the file, contents of file are appeared in the text box.

o

File Formal Got Apply Help

1. Ge1 Randorn Mamber File

=i Got Fe <3 Apply Test
2. Apply Randoenness Test

A fenufts of tests

000149001 10010011 02104910 00010200 00000001 0OYOIOI0D 11011100 ([Run Test

| »

Gap Test [»
‘Poker Test m—
Sefial Test

Pattern Test Add AN

Chi Sauare Test —
Permutation Test

Sub sequence Test Remove
Equidistoiution Test |4 etk
Auto Correlation Test |
Ertropy Test (N Graen) Remove All
Entropy Test (45 Gram) e

i

4, Madysis of tests

Figure 14: Random Number File content shown in first Text Area

78

Appendix B: Graphical User Interface

After getting random sequence from a file, the user must select the tests from the list. He can

select one or more tests according to his will. After selection of tests, the user must press

“Apply” button to test randomness of sequence selected with specific tests.

File Format Ger Apply Help

< Getfile =3 Apply Test

1. Get Randorm Numbes File

00011007 10010011 051011 1000010100 0000000 Q0105010 14011100

<

1 Fesults of tests

2. Apply Fandomness Test

Sesial Test
Pattern Test
Ch Sausaxre Test

Feamnutation Test

Sob sequence Test
Equidistribation Test
Ao Correlaton Tost
Exitropy Test (N Gram)
Entropy Test (81 Gram))
Frequency Test (Bi Gram) |
Entropy Test (TnGram) |
Frosaancy Tost (Trl Gram) *

A Analysis of tests

- . Run Test
= Adid >> | Poket Test
! Eouadbstribution Test
Add A%
| Remove
Remove Al |

*Run Tesr~
Expoctoo Freguancy
1.06515

Ohserved Fraquency
031295 1

**Run Test™
P-Valise= 41 5947
the P-Valug
o Tese™
200325
e P-Value

|
{PVaive= 0.00839

"— nee the P-Value ==

*Equidisintugon

«= 0.001 , the Conchusion 15 sl 12 Runtestis passed

= 0001 the Conciusion Is hat Te Fokes 1251 =5 passed
e

001, the Conchusion 1= hat the Eouslistribution Test s
»

>

Figure 15: Test Results shown after applying Test Algorithms

The user can get different types of sequences like binary, text, decimal and integer. He can also

select multiple tests from the list. He can select all tests by pressing button “Add All” button.

79

When the user applies tests on the sequence, the results of all tests appears in the result and

nterface

Appendix B: Graphical User |
B Rando b
Fia Format Get Apply Help
=i Get File - =3 Apply Test
1. Get Random Number Fe 2. Apply Randoeness Test
'+ e 1219349, v 2801 20 > 2217301201 4¢ re. 1302 Gap Test Ta Fum Test ey
01 20140021231 24 2340 2801 201 21 220141 2412301201 401 8020 302493021 Poker Test =1 Aado> (Gan Test =
Serial Test Pokor Test \
Pattem Test Serial Test |
Chi Sasare Test Add Al Patlern Test
Permtation Test - e TN Square Test
'Sub sequence Test Fermutation Test
Equadstrtntion Test . R | Sud @ Tost
[Auto Cotrefation Test Equidistribation Test
‘Entropy Test N Gram) | Auto Carrelation Test
Entropy Test @1 Gram) || Remove AL Eetrome Tost (N o
Fequency Test (BiGram) » = ¢ T' ’
< 3
2. Fnssits of tests 4, Anatysis of tests
*~Run Tasr~ -~ *Run Tesr* -~
Rrws with Run Lenglhs are P-Value= 10278
M2 3 Sinca hha PVaIuE == 0001 the Conchuson 15 that Ihe Run 125115 passed
Lop . ***Gap Test™*
013.3 PValue= 1.196
123 3 Since Me P Value == 0001 _the Conglysion 15 that the Gap 1051 15 passed
124 3 "MPoker Test™*
234 3 P-Value= 15142
124 1 Since M PValue >= 0001 _the Conciuson 15 that the Poker test is passed
612 3 - e
< > >

Figure 16: Test Algorithm workings with detailed results shown in Text Area 2

analysis box.

80

1. Get Random Number Rle 2. Apply Randommess Test
English and most European languages are wiiien n the Lain or Roman al Gap Test = Poker Test
g P LE v Poker Test =1 add>> | PattemTest
Serial Test ‘Chi Squsare Test
gun ‘lesiI | . Permutation Test
i Square Test | | ‘Sub sequence Test
Permutation Test | L.
Sub T |
Equidistribution Test | Remove
Auto Correlation Test i
Entropy TestNGram) ——
Extropy Test {BiGram) ||| Remove AR
Frequency Test (Bi Gram) ~ ° |
< £
3.Resufis of tests 4. Analys?s of tests
*=Poker Test™ A *=Poker Test™ o
Lenghs of Sub-seguences are P-yalue= 2 4553
555554884855£525545554555 = Sinze the P-Ya2ue == 0001 | = Conclusion is haithe Pokertestis passed
555544555£45545455454554 I~“Pafern Test™ -
54544535£845555555445555 Gererated Randem number has pakiemns so no charce of Randomaiess
55544545555554555455545 ~Chi sguare Test™ =
Expecied Frequency Observad Frequency P-Value= 183275
02112 i} Sirce the P-Yaiue == 0001 | the Conclusion is fiai the Chisquars testis pas
03428 g ~Permuiafon Test™
25344 2 b P-Value= 03333 ¥
< > < >

Figure 17: Status of Test Results in Pass/Fail Format

The user can also open and edit the random sequence. For testing purposes, they can also

generate their own sequences.

Appendix B: Graphical User Interface

)
b
[Fin| Foemat Get Apply Holp
[}.' w3 Gol File <3 Apply Test
Opan
Exit IM‘ Numitier Fée 2. Agply Roevdominess Test
1100010014414 00004411011010011011101008000 {Gap Tes! [= 4 Fam Test
Poker Test - Add >> Gap Test
‘Serlal Test ML Poker Tost
Pattern Test Seqial Test
Chi Sauate Test Add AN Pattern Test
Parmutation Test et Sausar e Tost
Sub saquence Test Pecoutition Test
Equndisiribution Test R | Sud @ Test
iAito Correlation Test e Equidistedaation Test
Entiropy Test (N Gram) Ao Corrolation Test
Entropy Test (Bl Geam) Retmove All | Fatpoen Tast (8 Gyt |~
Frequency Test (Bi Gram) |« = ¢ | | ¥
< >
1 el of tests. 4, Analysis of tests
**Run Tear™ ~ *"Run Test™*
Eapectos Froquency PNalue= 39476
1 G509 Since the P-Vale >« 0.001 _the Conclusion Is that the Run st is passad
Onserved Fraguancy Aeaap Tesrs
0329128703118 211 P.Value=0 7808
"TGap Test™ 3 the P-Yalue =« 00017 the Conclusion is that the Gap test 45 passed
Oap langihs are oker T Y
ie0012014021100623102000001003111 0 PValue=
t1p0020010010%00031030001145300001 Since the ye »>= 0.001 the Conclusion is that the Poker test s passed
Expected Fraguancy ~ ***35eial Tast™
< > < ’

Figure 18: Using Toolbar for Opening and editing Random Sequences

When the user selects New from Menu, Text File Editor appears to accommodate user for

generating and editing random sequences.

Text File Editor
File Edit Format

Figure 19: Text File Editor Dialogue Box to edit Random Sequence

81

Appendix B: Graphical User Interface

The user can also edit the random sequence and save it. He can also make and Save the

sequences at his desired location.

Text File Editor
File | Edit Format

toot1t1otro01000171T01T11707H

Figure 20: Save the random number after editing

When the user selects Save As from Menu, Save As Dialog Box appears. The user can save the

random sequence file at his desired location.

Savein | [weekT? v O e M-

By @ AnalysisReparts random$3.class random$l s, class random.class
bﬁ =) binary random$4.class random$19. class [£] randomDema
My Recent [E)images random$s.class random$z0.class randornCerno, cl
Documents Euflinteger random$t.class random$z1.class

= () rational random$7.class random$z2. class
L]2 random$d.class random$z23, class
Dieskiop réj AnakysisReport random$9.class random$24. class
[Z] count random$10.class random$z5. class

\$

ty Documents

@

ey Computer

by Metwiork

|| 2] dema

|[E] make jar
rnanifest, rft
[%,] manifest.mft

nulinull
random$l .class

randorn$ll class
random$12.class
randorn$13 class
random$14.class
random$15.class
randomn$ 16, class

random$26, class
random$z? . class
random$z2, class
random$z9.class
random$30.class
random$3l . class

random$z2. class random$17 .class random$32. class

< ¥
File narme: | random [!tive]
Save as type: | All Files .7 [Cancel]

Figure 21: File path selection to save the new random sequence

The user can also change the Font Style and Size according to his will.

82

Gt Apply Help

Appendix B: Graphical User Interface

Fom % Cour
e Styte TR0 WM Lg

1.0/ Swe “ Monospaced |

5 GetFile < Apply Test

3 Fonults of toats

l Add ==

| Ada Al

| Femove

| RamowmAs |

Figure 22: Available Options to change font style and text size

The user can know about details of an application if he wants.

S R

File Format umiﬁu{

1. Get Random Numbes File 2. Apply Randomness Test

V1610110011990 0000C011000000%11C001000090% Run Test Al ————— RinTest =
Gap Test Add >> Gap Test i
Poker Test L™ | poker Test
Serial Test —————— Serial Test £
Pattern Test 1 Add AR Pattern Test 3
Chi Square Test |8 Chi Square Test
Permustation Test Permitation Test [
Sub sequence Test | Remove | Sub sequence Test

pdistribution Test i ibution Test

Auto Coerelation Test] Auto Corvelation Test
Entropy Test NGram) . Remove Al | Eerony Test M Graml Y.
Entropy Test (B8i Gram) ¥ . i ’

¢ &

3. Results of tests. 4. Analysis of tests

*“Rup Test™ =¥ recuenty Tesi (8t Gram) ™ -~

Expecied Frequenty — P-Yalue=0.118 I

1.0535 Since the P-Value >= 0.01 , e Conciusion is that the Frequency (B Gram) &

Observed Fraguensy I~=“criropy Test {Tn Gramj™

028213051 30%4153000601 Calcuizied Redundenty - 0.1933 %

=Gap Test™ ==Freguancy Test (Tn Gram} =

Gap lenghs ae: P-Value= 011633

140110G10060011D01020010121149G1010 Since fhe P-Value >= (.01 , :»2 Conciusion is that the Frequency {Tn Gram) b

190121020001 2010103<¢0110CG02t014110 A

Expecied Freguenty ¥ Time taken oy Tesis iz 203 ms v

< 3 B i€ >

Figure 23: About Dialogue Box of an Application

83

Appendix B: Graphical User Interface

2.Using Memoryless Model Simulation Application

All the options for random number sources are given in combo box. User selects the Random
number source and then press “Execute” button to generate the Synthetic traces and R

Divergence calculation results.

— |1

| £:] WEN Simulation using Two Tier Memoryless Model = |

Select a Random Number Generator: |Java Source 2 |w | EXECUTE

Results as per WSHN Setup
Sr. Mo Total Frames Total Bits Bit Error Rate Frame Error Rate
1. 44824 7171840 5.257E-5 0.00178476 |~ |
2. 35913 5746080 0.00104645 0.035335349
3. 32374 5179840 0.00115814 0.04726015 =
4. 32406 5184960 2 1582E-4 0.00839351
5. 36505 5840800 4 1364E-4 0.01840844 1
. 26404 4224640 1.397E-5 G.0597E-4
7. 24086 3855360 0.011436249 0.35520418
8. 40709 6513440 0.00433212 0.14129554
a. 54066 8650560 9.6248E-4 0.02813228
10. 46563 7450080 0.01577205 051708438 |

Results as per 2-Tier Memoryless Model

Sr. No Total Frames Total Bits Bit Error Rate Frame Error Rate

15. 28533 4565280 9.3532E-4 0.0140539 =
16. 11605 1856800 0.02648751 0.07246876

17. 16492 2638720 0.00883042 0.046325449

18. 51796 8287360 0.0017552 0.0216619

19, 23027 3684320 078134364 078134364

20. 8424 1347840 3.5309E-4 0.00747363 -
21. 21561 3449760 2.8466E-4 0.00714253

22, 21710 3473600 1.727E-5 9.673E-4 =
23. 22148 3543680 3612E-5 0.00171573

24 22893 3662880 0.00140136 0.02087974 = |

Figure 24: WSN Simulation Application using 2-Tier Memoryless Model

84

Appendix B: Graphical User Interface

In a result, for every selected Random Number Source the following Result sheet implementing

Memoryless model is produced that prints FER, BER and R Divergence calculations for all 24

traces.
E -5 Coutpat-Rensdts (Companbity Mode] - Micrmaoft Exzal =0 8B
_ Woe (niet Popelmost Taues Date Bevew Yiew Tes a@P=wn
o 4 G P e o VO . . - y ! Fam T B X Asstun-
Aol w A - ¥ a5 W Tew) Generst : 2 v
;n? b B 4 - - . - §- R ¥ | f-)rv)’r‘-‘v.u igv ? I;\m 5‘9:- 5;::! ;m 3 \2(-{‘ :ﬁ
- T Fornu Paicker i T A EZa ¥x ﬁunwac-mr > e '-omn'u-q- Tatsia » Sy~ v . - L Clew * Pitar = Salest =
Oabhaart . fare Argneet Nustiet e o tanng]
Mis . fe >
e A [€ L) € ¥ & M i i S L [T [B " A £ Tl
] ¢
b FER and BER as pur 2-Tiwr Mamand ess Model AVERAGE FRAME-ERROR RATE COMPARSON AVERAGE BIT-ERROR RATE COMPARSON [
b |
& Traces Frames Bts FER BER R Deergence Sstup Frames Sowce 2-Tiar MemoryLess Setup Exts Sowce 2-Tier Memaryless
& OuRosen_1_5m 44624 TITERAD D 000262 I 21E-DE 0 CutRoom 0B425 DOtEG3Y 0016803 Ousiineem J4EE0 Q0023 QORM
£ Oufioem 1 8m 3513 5746080 0234417 0005487 Q@ M0977 Prdiab 205285 0292961 @I04433 Prdiab 2861600 2013336 239545
7 OufRoom 4 Tm NI 5179820 0043563 0007672 012636 RKars 179132 01656550 ©.155082 Staws 20661120 0005226 0135822
8§ OuRotm_5_3m 32406 5134%0 00080TF D003 0170958 Upper Flose 119763 D 133075 016509 Upper Flose 19162080 9005139 0 129483
5 OuRoem 6_Sm 36505 5840200 005464 0001023 ¢.22803
10 OuRoom_7_5m 408 4220630 3 79E-05 0 0
1 Phdab 1 _Bm M056 IB55360 0371265 DIT1265 0 AVERAGE K4 MEASARE COMPARISON
12 Phdiad 2 Ten 40708 6513440 0184735 0095741 0122536
13 Phdad 3 bm G4086 HEA0T60 00Q65M 0003916 G 159633 OutRoam 0105211
W Phdah 4_Tm 46563 TAS0080 0539502 0539 0 Fhalw 0 088685
1S Phdad 5_5m 23039 4435840 DOO5TES DO0OME 0.237B31 Sta 01958
16 Fhdab b_bm 11652 163620 07361 0.73861 0 Upper Fleor 031123 r
17 Star_1_5m SO83 9133430 0000393 2 BSE96 0
18 Star 2 Sm 13872 3179520 0773584 D 7TESR4 0
19 Star 3 5m 28530 ASRAZB0 0OMALE 0008958 GM17YY
20 Stse_&_fm 11606 1856800 0866437 0024272 00207
Z1 Star 6_5m 16432 2638720 OQ04TIHZ 0005201 O1YTH
22 Sar_1 am 51196 0287350 0022431 0001815 0226008
123 Up_Fioor_1_t2m 23027 I63£320 0774526 0774629 0
M Up_Flow_2_t7m 8474 134TE40 000302 DOOSSMS 0 7SI
25 Up Floor 3 _t2m 2156% 3445760 000)752 DOOIMR 0 I
26 Up_Floor 4_t2m 21710 3473600 0001244 2 45E46 0
7 Up Floer_5_tam 22148 J543680 0001716 33EH5 0 7IEN
28 Ug_Fiow_T_tim 22653 652640 0022376 0001500 261916
2
30
))
)2 -
Nk [33
IR A b <>

Figure 25: FER, BER and R Divergence Measures in Result Sheet of Memoryless Model

85

Appendix B: Graphical User Interface

3.Using Markov Model Simulation Application

The options for random number sources are presented to user in a combo box. User selects the
Random number source and then press “Execute” button to generate the Synthetic traces and R

Divergence calculation results.

| £:| WSN Simulation using Two Tier Markov Model £= 2 |

Select a Random Number Generator: |C/C++ Source 1 |« | EXECUTE

Results as per WSHN Setup

Sr. No Total Frames Total Bits Bit Error Rate Frame Error Rate

1. 44524 7171840 5.257E-5 0.00178476 |~ |
2. 35913 5746080 0.00104645 0.03533539

3. 32374 5179840 0.00115814 0.04726015 =
4. 32406 5184960 21582E-4 0.00839351

5. 36505 5840800 4 1364E-4 0.01840344 =
B. 26404 4224640 1.397E-5 6.0597E-4

7. 24094 3855360 0.01143629 0.35520418

8. 407049 6513440 0.00433212 0.14129554

9. 54066 8650560 9.6248E-4 0.02813228

10. 46563 7450080 0.01577205 051708438 |

Results as per 2-Tier Markov Model

ar. Mo Total Frames Total Bits Bit Error Rate Frame Error Rate
1. 0] 0.0 0.0 |~ |
2. 0 0 0.0 0.0
3. 0 0 0.0 0.0 =
4, 0 0 0.0 0.0
5. 0 0 0.0 0.0 |
g. 0 0 0.0 0.0
7. 0 0 0.0 0.0
B. 0 0 0.0 0.0
8. 0] 0.0 0.0
10. 0] 0.0 0.0 |

Figure 26: WSN Simulation Application using 2-Tier Markov Model

For every selected Random Number Source the following Result sheet implementing Markov
model is created that prints FER, BER and R Divergence calculations for all 24 traces.

86

Appendix B: Graphical User Interface

310" I RO tostpin-Residts |Comgatibdy Mode] - Micrsct Excel =@ @
- Haree et P Lapeul Sormutan Data Revem Vien Taan G o o o
0e e AN Twfg @ . | Ty P [H E Astctes -
N Actal ° - AN -l ¥ 5 e Tt Genersi H ’ ! 5 ::? 2_] = ? m
“.m jruuv-m- B4 BB &.A. EEE FE a“"ﬂ'“"""' $-% 0+ WA mz:zm'ig' vu-o.q Oc:mﬁv:ul L s + ls;dn‘::::a.'
Thbaand . Fom) sagnmem ‘ 1R e . Stter Colr fanny
| a2 <& | ,) . &
Ea I '8 € | b 3 ¥ G- M i b KL SN W o [a [B
1 =
% FER and BER 35 per 2.Tier Marikor Madel AVERAGE FRAME-ERROR RATE COMPARISON AVERAGE BIT-ERROR RATE COMPARISON
& Trwces Framee Bits FER BER R Dwwrgance Setup Frames Seurce Z2-Tost Mk Setup Bas Souce 2-Tier Markov
5 OutReom_1_Sm 324 TITHM0 0 121721 0Q00ST3 0 009384 Ouinom 208426 0018831 0 121357 OutRoom 33343150 2008483 0 00563
6 CutReom_3_Bm 35913 5746050 012564 0000577 0003328 PhdLab 205385 0292161 012079 Fhvilab 32059600 0013385 D 000555
1 OutReom_4_Tm 374 5175840 0924884 0 CO0STT 0003418 Staus 179132 0150593 0 123363 Stans 28661120 0005425 0 D005
8 OutRoom_&_Bm 32405 518490 0 126057 0000581 0.013515 Upper Flaor 19763 0133075 G 12%601 Uppar Floor 19162020 £.00515% 0.000824
4 OutRoom_6_tm 3505 5840800 0.912607 0000523 0.060448
40 CutRoam_7_m 26404 A226640 0.117861 0.000584 0.078628
11 PhiLas_1_8m 24006 3836360 0121265 0000497 0083317 AVERAGE K- MEASURE COMPARISON
12 PrdLab 2 Tm 45709 6513440 0 913819 0000538 0 000653
13 Philas 3 Bm 5066 8650550 0 121204 DOODSIY 0.0012%6 OuwRoom 0018454
14 Prales 4_Tm 45563 7450080 0.930M6 00C0S07 0003021 Phdlab 0 003566
15 PraLab 5 _5m 28055 4435840 0173522 000056 0008517 Stars 0004158
16 Prdlae & 6m 11852 1E36320 0.929514 0000589 0001182 Upper Floor 0.04729 "
AT Star 1 5m 50834 81040 0.1299%2 0000L05 0 0051
18 Star 2 5m 1972 N79520 0127516 0.00063 0.0047%
19 Star 3 _5m 28533 S5A5230 0.923051 0000800 0 002632
20 Star 4 _5m 11605 1856800 0 133305 0000613 0 001286
23 Suer_6_5m 15492 2638720 01374 0000758 0.0091%0
22 St _T_am 51795 8287360 0 124513 DO00388 0002087
23 Up_Flod_1_12m 23077 3534320 0 125635 0000501 0 D006SE
24 Up_Floor_2_12m 3424 TMYB0 0 M43 0000592 0.0085%)
245 Up_Fioor 3 12m 21561 3435760 135708 0000573 0.007064
&85 Up_Floor 4_12m 2110 347H600 0125684 0000591 0 D0G1SE
(27 Up_Flosr 6120 208 3543630 0121661 000056 007709
2 Up_Floor 7_t2m 22803 3662630 0 124754 0000537 0 002275
o
3, »
31
' o
LR il T)

Figure 27: FER, BER and R Divergence Measures in Result Sheet of Markov Model

87

