Virtual machines image protection in
Cloud computing

Muhammad Kazim
2011-NUST-MS-CCS-23

Supervisor
Dr. Muhammad Awais Shibli
Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters in Computer and Communication Security (MS CCS)

In
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(February, 2014)

Approval

It is certified that the contents and form of the thesis entitled “Virtual ma-

chines image protection in Cloud computing” submitted by Muham-
mad Kazim have been found satisfactory for the requirement of the degree.

Advisor: Dr. Muhammad Awais Shibli
Signature:

Date:

Committee Member 1: Dr. Abdul Ghafoor

Signature:
Date:

Committee Member 2: Dr. Hamid Mukhtar

Signature:
Date:

Committee Member 3: Miss Rahat Masood

Signature:
Date:

Dedication

Dedicated

to
my loving Famaily

and Friends!

Certificate of Originality

I hereby declare that this submission titled Virtual machines image pro-
tection in Cloud computing is my own work. To the best of my knowledge
it contains no materials previously published or written by another person,
nor material which to a substantial extent has been accepted for the award
of any degree or diploma at NUST SEECS or any other education institute,
except where due acknowledgment, is made in the thesis. Any contribution
made to the research by others, with whom I have worked at NUST SEECS
or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except to the extent that assistance from others in the
project’s design and conception or in style, presentation and linguistic is
acknowledged. I also verified the originality of contents through plagiarism
software.

Author Name: Muhammad Kazim
Signature:

Acknowledgment

[am thankful to Almighty Allah for giving us the intellect and strength to
carry out this project. I will also like to thank my supervisor Dr. Awais Shibli
and my evaluation committee members Dr. Abdul Ghafoor, Dr. Hamid
Mukhtar and Ms. Rahat Masood. They have been inspiring teachers and
great motivators. They have provided me continuous assistance, inspiration
and patience. I am thankful to all members of KTH-AIS lab especially
Ayesha Kanwal and Ume Habiba for their help.

Muhammad Kazim

Table of Contents

I Toiroduch [Motivation

(1.1 Cloud Computing|
(1.2 Virtualizationlo

2 Related Workl

[2.2 Security requirements of Virtualization|
[2.2.1 Service Provider Requirements|.
[2.2.2 Hypervisor Requirements|.
[2.2.3 Virtual Machine Requirements|{.
[2.2.4 Disk Image Requirements|

2.3 _Attacks on Virtualization]

[2.3.2 Hypervisor Attacks|
2.3.3 Virtual Machine Attacks
[2.3.4 Disk Image Attacks|.
[2.4 Security solutions for Virtualization|
[2.4.1 Service Provider Security]
[2.4.2 Hypervisor Security|.
[2.4.3 Virtual Machine Security|.
[2.4.4 Disk Image Security|
[2.5 Recommendations for secure usage of Virtual Machines
2.5.1 Secure Networkl
[2.5.2 Disabling the Non-Required Features
2.5.3 Disconnect Unused Hardware Devices/
[2.5.4 Backup of Virtual Machine Images|
[2.5.5 Hardening of Virtual Machines

TABLE OF CONTENTS

vi
[2.5.6 Auditing] 20
[2.6 Industrial Surveyl L 20
[2.6.1 Storage Made Easy| 21
2.6.2 Piston Cloudl 21
2.6.3 Metacloudl oo 22
[3 Research Methodology| 24
3.1 Introductionlo 24
[3.2 Types of Research Methods| 24
[3.2.1 Descriptive and Analytical Research| 25
[3.2.2 Applied and Fundamental Researchl 25
[3.2.3 Quantitative and Qualitative Research| 25
[3.2.4 Conceptual and Empirical Research| 25
[3.2.5 Deductive and Inductive Approaches| 26
[3.3 Thesis Research Methodology| 26
[3.3.1 Research Objectives] 26
[3.3.2 Research Methodologies| 27
[3.3.3 Hypothesis|. 27
3.3.4 Observations 27
[3.3.5 Implementation and Verification of Prototype] 28
[4 Design and Implementation| 29
[4.1 Design of Framework{, 29
4.1.1 Image Encrypt Module (IEM)[. 29
4.1.2 Image Decrypt Module (IDM)| 30
4.1.3 Key Management Server (KMS)|. 30
4.1.4 Image Encryption through EVDIC| 30
4.1.5 Image Decryption through EVDIC| 31
[4.2 EVDIC in OpenStackl. 32
4.2.1 EVDIC Image Encryption in OpenStack| 33
4.2.2 EVDIC Image Decryption in OpenStack| 33
[4.3 Implementation| 34
4.3.1 Object Upload in Switt|. 35
4.3.2 Object Download in Swift| 35
4.3.3 Swift Source Codel L 35
4.3.4 Object Encryption in Switt| 36
[4.3.5 Object Decryption in Swift|. 36
[Deployment and Validation through OpenStack 38
(5.1 Deployment of OpenStackl 38

[5.2 Adding objects to OpenStack Swift| 39

vii TABLE OF CONTENTS

(5.3 Debugging Swift|. 39
[>.4 Code Validation through OpenStackl 40

6 Fvaluationl 44
[6.1 Evaluation Methodologyl 44
[6.1.1 Evaluation through NIS'T Guidelinesf 45

6.1.2 Threat Modell o000 45

[6.2 Verification through Image Exploitation Tools| 45
6.3 Performance Evaluationl 46
[7__Conclusion and Future Directions| 50
(7.1 Conclusion|. 50
7.2 Future Research Directions. 51
[7.2.1 Adding security of accounts in OpenStack Swift| 51

[7.2.2 Encrypted execution of Virtual Machines in Cloud Com- |

| puting| 52
[Appendix A Documentation on Adding Encryption to Open- |
[__Stack Swiftl 56
[A.1 Deploying OpenStackl 56
[A.1.1 Adding objects to OpenStack Swift| o7

[A.2 Debugging OpenStackl 60
[A.3 OpenStack Object Server Code Breakdown and Object En- |

| cryption| Lo 62
[A.4 Deployment| L 65
............................... 66
[A.6 Configuring Glance to store virtual machine images| 69
[A.7 Enable and Disable any service in OpenStack| 69
[A.8 Using Devstack with proxy server| 69
[A.9 Maintaining Logs tor Devstack|{. 70
[A10 Common Frrorsl 70
IA.10.1 E: Could not get lock /var/lib/dpkg/lock - open (11 |

| Resource temporarily unavailable)[. 70

|A.10.2 Invalid Nova Credentials (Unauthorized HTTP 401)[. . 70

List of Figures

(.1 _Cloud service models 3
(1.2 Top down research approach tollowed in thesis| 6
2.1 Bare metal virtualization architecturel 9
2.2 VM Escape attack| 12
[2.3 VM security by firewall, anti-virus and anti-spyware| 16
2.4 Secure VM boot protocoll o0 18
[2.5 Securing the saved VM state 18
[3.1 Thesis Research Methodology| 28
[4.1 Disk image encryption through EVDIC, 31
[4.2 Disk image decryption through EVDIC| 32
[4.3 Image encryption through EVDIC in OpenStack|{ 33
[4.4 Image decryption through EVDIC in OpenStack{. 34
[>.1 Output of the running DevStackl. 39
0.2 Status of Container named TestContainerl 40
0.3 Horizon URL and User Credentiald 41
[>.4 Image creation process in Opendtack] 42
[5.5 Successtul creation of image on OpenStackl 42
[>.6 Custom instance successtully runningf 43
[6.1 Exploring the VM image using Archive Manager|. 46
(6.2 Time taken by different images during upload to Swift| 47
[6.3 Time taken by images during download from Swift| 48
[A.1 Output of the running DevStackl. 57
[A.2 Status of Container named TestContainerl 59
(A.3 Horizon URL and User Credentialsl 66
[A.4 Image creation process in OpenStack] 67

[A.5 Successtul creation of image on OpendStackl 67

1X

LIST OF FIGURES

[A.6 Successtul creation of image on OpenStackl 68

[A.7 Custom instance successtully running|

List of Tables

P

Summary of security aspects of virtualization| 23

6.1

Attacks mitigated with the description of security mechanism| 48

(6.2

Image upload time in Swift before and after encryption| 49

6.3

Image download time in Swift before and after encryption| . . 49

Abstract

Virtualization is a primary feature of Cloud computing that enables a sin-
gle system to concurrently run multiple isolated virtual machines. A virtual
machine uses a single file called disk image to represent the hard drive of
its operating system. Although, extensive research has been carried out to
increase the security of Cloud virtualization, there are still open challenges
related to the security of disk images used by virtual machines. Virtual ma-
chine images can be compromised in many ways, for instance by unauthorized
access, zero day attacks or installation of malicious software. With the in-
creased adoption of Cloud infrastructure in information technology industry,
there is an urgent need to safeguard disk images against prospective malicious
attacks both for protecting the sensitive customer data and maintaining the
integrity of virtual machines.

The contribution of this thesis is two folds. First, we have analyzed
the security of Cloud virtualization components including service provider,
hypervisor, virtual machines and disk images from three different aspects.
These aspects include the security requirements for virtualization, possible
attacks on different components and the existing security solutions for the
protection of virtualization environment in the Cloud. Therefore, an holistic
picture of virtualization security in the Cloud is provided through structured
analysis in which security requirements, attacks and solutions correspond to
each other.

Secondly, to protect virtual machines images from: infrastructure, hy-
pervisor and storage attacks, we have proposed a security mechanism that
encrypts virtual machines images in the Cloud storage. In particular, we
have built an encryption system for disk images by using Advanced Encryp-
tion Standard AES-256. Our proposed methodology not only preserves the
integrity and confidentiality of data in stored disk images but also protects
images against attacks. The image is decrypted only when it is required by
the virtual machine. Our system is implemented and validated on OpenStack
(an open source Cloud computing platform). The performance evaluation of
our solution shows that it incurs only a minor overhead of 15 percent.

Chapter 1

Introduction and Motivation

In this chapter we provide the introduction of research work carried during
thesis. Cloud computing is introduced along with its benefits. Importance of
different service models and deployment models of Cloud is also described.
Virtualization is the basis of delivering infrastructure services in Cloud. We
discuss it detailed architecture and present our research motivation, research
contributions and problem statement in this chapter. This chapter ends with
the discussion on thesis organization.

1.1 Cloud Computing

Cloud computing is becoming popular among I'T businesses due to its agile,
flexible and cost effective services. It has transformed the way the typical IT
infrastructure was deployed by combining the technologies such as virtual-
ization, web Services, service oriented architecture and grid computing. Un-
like the traditional IT service model, businesses on Cloud can grow rapidly
without need of large capital investments for purchasing new PC, servers
and other dedicated hardware [I]. Therefore, the major advantages that
Cloud computing offers are reduced operational costs, scalability, increased
efficiency and better utilization of hardware resources.

Cloud has three service models to define the type of services it provides
to users. These models are Software as a Service (SaaS), Platform as a
Service (PaaS) and Infrastructure as a Service (IaaS). Software as a Service
(SaaS) allows users to access applications hosted by different vendors on
Cloud via internet. Platform as a Service (PaaS) enables developers to code,
test and deploy their applications on laaS. In Infrastructure as a Service
(IaaS) model, Cloud providers offer services such as computing, network,
storage and databases via internet. laaS is the base of all Cloud services

3 Introduction and Motivation

with PaaS and SaaS both built upon it [2]. The organization of different
service models is shown in figure 1.1 [3]. The main features of IaaS are
elasticity and virtualization.

L Software as a Service (Saa$)

|

Platform as a Service (Paa$)

|

L Infrastrcuture as a Service (laaS)

Figure 1.1: Cloud service models

The deployment model of Cloud can also vary depending upon the re-
quirements of provider and users. The major deployment models of Cloud
computing are Public Cloud, Private Cloud, Hybrid Cloud and Community
Cloud. In Public Cloud model the services are available to everyone on the
internet via web services. Vendors of Private Clouds manage infrastructure
for one specific company to meet their requirements. Major benefits that
Private Clouds offer are security and ease of management. Hybrid Cloud
model is the combination of two or more Cloud models by using standard-
ized technology that enables data and application sharing [4].

1.2 Virtualization

Virtualization is the primary component that makes Cloud computing spe-
cial. Virtualization enables a single system to run multiple isolated virtual
machines (VMs), operating systems or multiple instances of a single operat-
ing system (OS). It abstracts the underlying hardware to virtually provide
interfaces similar to the hardware’s physical platform. Virtualization was
reintroduced in 1997 by Bugnion E. et al. who used virtual machines to run
multiple commodity operating systems on a single PC [5]. It utilizes hard-
ware in the best possible way by maximizing the jobs, which a single CPU
can do. Organizations are using virtualization in private, public and hybrid
Clouds to gain efficiency in platform and application hosting.

Different virtualization approaches can be applied to various system layers
including hardware, desktop, operating system, software, memory, storage,
data and network [6]. Hardware virtualization is a form of virtualization that

4 Introduction and Motivation

abstracts the underlying hardware [7]. It can be categorized into full virtual-
ization, partial virtualization and para virtualization. Compared to the two
other forms of virtualizations, full virtualization involves complete abstrac-
tion of underlying hardware to provide interfaces similar to the hardwares
physical platform. Thus, it provides better operational efficiency by putting
more work load on each physical system and hence more popularly used for
servers virtualization. Full virtualization can be categorized into two forms:
i) bare metal virtualization and ii) hosted virtualization.

Hosted and bare metal virtualization are used in software based partition-
ing approaches in latest UNIX/RISC and industry-standard x86 systems. In
the hosted architecture, hypervisor lies on top of the standard operating sys-
tem. However, running hypervisor on top of the host OS increases security
risks and complexity of the system [8]. While in the bare metal approach,
hypervisor comes directly on top of the hardware which provides direct access
to the hardware resources. Bare metal approach is mostly used for server vir-
tualization in large computing systems like Cloud computing as it provides
better performance, more robustness and agility.

1.3 Research Motivation

[aaS model enables customers get the virtual machines on lease from the
Cloud providers instead of purchasing physical machines. Virtual machine
(VM) is a software container that behaves like a physical machine with its
own operating system and virtual resources including CPU, RAM and hard
disk. VMs use disk images as their hard drives, which are virtual represen-
tation of a physical drive. Virtual disk image is a single file or directory
representing the hard drive of a guest operating system (operating system
running within a virtual machine). It encapsulates all components of a guest
0OS, including the applications and virtual resources used by guest OS. The
major advantage of using disk images in a Cloud virtualization environment
is that VMs can be quickly launched and deployed across various hosts [§].

Despite all the Cloud benefits, there are still open challenges in achieving
security for Cloud virtualization. Since multiple VMs run on a single physical
machine, impact of attacks on virtualization environment can be much more
as compared to that on a single physical system. With the increase in usage
of Cloud virtualization in I'T industry, there is a need to analyze its security
in a more detailed form.

Research has been done to explore major security issues related to virtu-
alization in Cloud. The standard bodies in computing security have issued
guidelines on virtualization technologies. These guidelines cover different as-

5 Introduction and Motivation

pects of virtualization security. National Institute of Standard Technologies
(NIST) guide [8] mentions security issues and recommendations for securing
virtualization environment, whereas the Centre for Internet Security (CIS)
guide [9] focuses on virtual machines security and their secure configuration.
SANS guide sponsored by VMware [I0] provides key configuration and secu-
rity controls for VMware ESX and vSphere. Cloud Security Alliance (CSA)
guide [II] and Payment Card Industry Data Security Standard (PCI DSS)
[12] discuss security issues related to virtualization in Cloud and provide rec-
ommendations for secure virtualization environments. However, the holistic
view of virtualization security has not been presented in a composed form.
The impact of Cloud service provider on Cloud virtualization security has
also not been discussed. Furthermore, there is need to investigate existing
virtualization security solutions proposed in literature to mitigate different
attacks.

Along with other virtualization components, disk images are vulnerable
to many attacks from outsiders as well as from malicious users and adminis-
trators in Cloud. These attacks include unauthorized access to images and
installation of malicious software on them. Hence, the integrity, confidential-
ity and availability of sensitive customer data in Cloud can be compromised.
Even though security of disk images in Cloud is a major issue, only few so-
lutions have been proposed in literature for their protection against attacks.
In this thesis, we provide a scheme to protect disk images in Cloud storage
from various attacks.

1.4 Problem Statement

Virtual machine images are vulnerable to different attacks in Cloud storage.
For instance, they can be compromised by infrastructure, hypervisor and
storage attacks, resulting in the loss of data integrity and confidentiality.
Therefore, VM images must be secured in Cloud storage through best security
practices, both for protecting the sensitive customer data and maintaining
the integrity of disk images.

1.5 Research Contributions

This thesis has contributed towards Cloud security both from research as well
as practical aspects. From research point of view, two research publications
have been made. In the first publication, the security analysis of all virtual-
ization components in presented in detail. This analysis will pave a way for

6 Introduction and Motivation

researchers to investigate, develop and improve security solutions for existing
Cloud attacks. In the second publication, a security scheme is proposed for
the encryption of disk images in Cloud environment. The design can be used
to implement disk image encryption in any Cloud platform.

From the practical aspect, we have implemented the scheme of disk image
encryption in an open source Cloud computing platform named OpenStack.
OpenStack is composed of various independent modules with different func-
tionalities. The image storage component of OpenStack was explored in
detail to understand the code flow and to add encryption functionality in it.
The encrypted disk images has increased the security of disk images in Cloud.
This scheme ensure that the confidentiality of customer data in images as
well as The design of this encryption scheme in OpenStack along with pos-
sible performance concerns are also explained in a published research paper.
The top down approach followed in thesis is described in figure 1.2.

Cloud virtualization environment

Literature review of Cloud
virtualization

Security analysis of Cloud Design and development of VM
virtualization from three aspects images security scheme

Figure 1.2: Top down research approach followed in thesis

1.6 Thesis Organization

This thesis is organized in a systematic way to clearly state the research
approach and contributions made in the thesis. Chapter 2 describes the lit-
erature survey regarding Cloud virtualization security and specifically the
survey of virtualization components including hypervisor, virtual machines
and disk images. Chapter 3 describes the research methodology followed
during the thesis to achieve the solution. Different research methodologies
were combined to achieve the required results including deductive research
and conceptual research methods. In chapter 4 we describe the methodol-
ogy, design and implementation of the framework proposed during thesis.

7 Introduction and Motivation

We also discuss the components of OpenStack and the detailed architectural
extension of OpenStack storage module called Swift. In chapter 5 the results
and verification of implementation are provided. We describe the integra-
tion of our framework with OpenStack along with the complete testing and
verification of source code changes. Chapter 6 provides the evaluation of our
research work using a threat model and standard guidelines. We also discuss
the performance evaluation of our work. Chapter 7 provides the research
conclusion and possible future directions and extensions of our research.

Chapter 2

Related Work

This chapter presents the related work done in the area of Cloud virtualiza-
tion security. Cloud computing has been a focused area of research from last
decade and lot of research has been done in the area of Cloud virtualization.
In our research, we have done both literature review of related work as well
as industrial survey of related commercial solutions. We followed layered ap-
proach to review the literature of Cloud virtualization literature. The first
part of the chapter presents general requirements to protect Cloud virtual-
ization environment. The second part discusses different attack scenarios at
virtualization. To cater the attacks on virtualization environment different
security solutions proposed in literature have been presented and analyzed in
this chapter. Moreover, some general recommendations for the security of
virtualization in literature are also presented. This chapter ends with the
analysis of various commercial solutions for virtualization security.

2.1 Bare Metal Virtualization

Virtualization has different types as discussed in chapter 1. Bare metal ap-
proach is used for server virtualization in Cloud. In the bare-metal virtu-
alization architecture shown in figure 2.1, hardware refers to the physical
resources such as CPU, RAM, storage disks, physical switches, 1/O ports,
and BUS systems (PCI, LPC) etc. Hypervisor is composed of resources nec-
essary to run virtual machines including virtual machine manager (VMM),
kernel layer and the driver layer [I3]. Hypervisor hides hardware resources of
the system from the operating system running on it, manages the execution
of the guest operating systems and partitions hardware platform into mul-
tiple logical units called virtual machines (VMs). Each virtual machine has
its own operating system (called guest OS) and applications running on it.

9 Related Work

CSP (Management Layer)

Virtual Machine A Virtual Machine B

Application Application

Operating System Operating System

| Hypervisor
e

Figure 2.1: Bare metal virtualization architecture

2.2 Security requirements of Virtualization

In general, before planning and implementing security of any system it is im-
portant to understand the security requirements of that environment. This
section details the security requirements for complete virtualization environ-
ment.

2.2.1 Service Provider Requirements

A report by Alert Logic [14] shows that 50 percent of Cloud users consider
ser- vice provider security as a major threat. However, the impact of Cloud
service provider on Cloud virtualization security has also not been discussed
comprehensively in literature. To secure the virtualization hardware, (Cloud)
service provider must limit access of hardware resources to authorized person.
Similarly, proper access control should be implemented in the management
layer, so that each administrator has access only to its concerned data and
software. The service provider also needs to provide strong authentication
mechanisms to users. Furthermore, security principles for the development
of trusted computing system such as economy of mechanism, complete me-
diation, open design, principle of least privilege, psychological acceptability
must also be followed by the service provider.

2.2.2 Hypervisor Requirements

Hypervisor provides the necessary resource management functions that en-
able sharing of hardware resources between the VMs. Hypervisor must main-
tain the isolation between VMs and support multiplexing of multiple VMs
on single hardware platform [I5]. It must ensure that no application from

10 Related Work

any VM can directly take control of it as a host to modify the source code of
hypervisor and other VMs in the network. Hypervisor should also monitor
the guest OS and applications in VMs to detect any suspicious behavior [16].

Programs that control the hypervisor must be secured using similar prac-
tices used for security of programs running on servers. Similarly access to the
hyper- visor must be restricted. Other security measures to secure hypervisor
include installing updates to the hypervisor, restricting administrator access
to the hypervisors management interfaces and analyzing hypervisors logs to
see if it is functioning properly [§].

2.2.3 Virtual Machine Requirements

Limit on VM resource usage has to be assigned so that malicious VMs can
be restricted from consuming extra resources of the system [12]. Moreover,
isolation between virtual machines should be provided to ensure that they
run independently from each other. Operating system of the VM (guest OS)
must be secured by using the best practices followed for securing the OS of
physical machines. These practices include updating the OS regularly for
patches and updates, using anti-virus software, securing internet and email,
keeping back-up of files, protecting the bootable media by access control,
removing unnecessary programs and restricting remote access [17]. Using the
configuration standards and tools for securing the OS of physical machines
cant provide all security to OS of VMs, so special policies and steps must be
taken by the Cloud providers to ensure OS security [8]. Monitoring of guest
OS must be done to look for its potential compromise.

Privileged VM (Dom0) is the first domain started by XEN hypervisor
after boot. It is responsible for monitoring the communication between the
remote users and guest VMs. Dom0 is also responsible for creating and
destroying all guest VMs and providing device drivers to the guest VMs.
Dom0 should boot the guest VMs without tampering them. The state of the
VM saved as a disk file in Dom0 must remain confidential, and it must not
be tampered [1§].

2.2.4 Disk Image Requirements

Hypervisors use disk images (host les used as disk drive for guest OSs) to
present guest OSs with virtual hard drives. Guest OS images can be moved
and distributed easily, so they must be protected from unauthorized access,
tampering and storage. To securely manage the guest OS images they must
be examined and updated regularly according to the requirements. Unnec-
essary images must not be created and if any image is useless it must be

11 Related Work

removed from system [§]. Whenever VM is migrated from one physical ma-
chine to another, images on previous disks should be completely removed.
Similarly, data on old broken disks should also be removed before they are
discarded. Furthermore, backup of the virtual machines images must be
maintained.

VM checkpoint is a feature that allows the users to take snapshot of VM
image in the persistent storage. Snapshot records the state of the running
image that contains all components of the guest OS. Snapshot is generally
captured as a difference between the image and the running state. The
major function of checkpoint is to restore VM to its previous state if the VM
enters any undesired state. However, the snapshot access should be given to
authorized users and checkpoint must be used only to return VM to a stable
and non-malicious state [19].

2.3 Attacks on Virtualization

Each component of virtualization layer can act as an attack vector to launch
multiple attacks on the system. Attacks that target different components
of virtualization environment may result in security issues such as compro-
mise of complete Cloud infrastructure, stealing of customer data and system
hacking. This section discusses different attack scenarios at virtualization
environment in Cloud.

2.3.1 Service Provider Attacks

If the attacker has physical access to the Cloud hardware, he may run ma-
licious application or code in the system to damage the VMs by modifying
their source code and changing their functionality. With the help of physical
access to system, attackers can also launch cross VM side channel attacks.
These attacks include CPU cache leakage to measure the load of other virtual
web server on the network [20]. Moreover, if access control is not implemented
properly, different administrators such as network admin and virtualization
admin might access the customer data that they are not authorized to ac-
cess. These activities will result in security compromises such as loss of data
confidentiality and unauthorized traffic monitoring.

Service provider has to ensure that software deployed on Cloud are built
using proper coding practices. Flawed coding can result in web application
attacks such as SQL Injection, Cross Site Scripting, Denial of Service and
Code Execution etc. Alert Logic [I4] report shows web application attacks
to be the most common attacks on Cloud environment, impacting almost 52

12 Related Work

percent customers.

2.3.2 Hypervisor Attacks

A Cloud customer can lease a guest VM to install a malicious guest OS,
which attacks and compromises the hypervisor by changing its source code
in order to gain access to the memory contents (data and code) of VMs
present in the system [16]. With more features in hypervisor its increased
code size has resulted in design and implementation vulnerabilities. To con-
trol the complete virtualization environment malicious hypervisors such as
BLUEPILL rootkit, Vitriol and SubVir and are installed on the fly, which
give attacker the host privileges to modify and control VMs [21]. This tech-
nique used by malicious software to take complete control of the underlying
operating system by hiding itself from administrator and security software is
called hyperjacking [22].

Another attack in which program running in one VM can get root access
to the host machine is called VM Escape [8]. It is done by crashing the guest
OS to get out of it and running an arbitrary code on the host OS. Therefore,
such malicious VMs can take complete control of the host OS. Escaping the
guest OS allows the VMs to interact with the hypervisor and provides them
access to other guest OS on the system as well. Figure 2.2 shows that the
attacker from his virtual machine (VM 2) is able to escape his VM. VM 2 is
used to compromise the hypervisor which is further used to launch attacks
on other VMs (VM 1) in the system.

VM 1 VM 2 . .
Virtual Machines

Hypervisor

Hardware

Figure 2.2: VM Escape attack

Hardware devices such as hard disk, network and graphic cards have the
ability to access main memory contents without going through the CPU.
This feature is provided to facilitate the CPU so that peripherals can di-
rectly transfer data to and from memory without the involvement of the
CPU. Without Direct Memory Access CPU will remain fully occupied in any
read/write operation. Allowing the device drivers to write at an arbitrary
location in physical address space can result in many security threats. In
virtualized environment if any device driver is malicious than it can write to
Hypervisor and any other address space in order to compromise the system.

13 Related Work

2.3.3 Virtual Machine Attacks

Malicious programs in different virtual machines can achieve required access
permissions to log keystrokes and screen updates across virtual terminals [23]
that can be exploited by attackers to gain sensitive information. If isolation
is not properly implemented covert channels can be used for unauthorized
communication with other VMs in the system. General attacks on OS of
physical systems can also be targeted on guest OS of VMs to compromise
them. Java applets can be installed through internet on virtual machines
OS, which can install Trojans and malwares on VMs [24]. Attackers can
use Trojans and malwares for traffic monitoring, stealing critical data, and
tampering the functionality of VMs. Other security attacks from OS are
possible through buggy software, viruses and worms that attacker can exploit
to take control of VMs. Conficker, Zeus botnet, command and control botnet
communication activity are the examples of such attacks that result in data
destruction, information gathering and creation of backdoors for attackers.
Attacks through buggy software, viruses and worms can exploit the guest OS
in VMs. Furthermore, unpatched VM operating systems can be exploited by
zero day attacks.

Network DOS attacks can be launched on a Cloud network and one such
attack is the TCP SYN attack. TCP performs a three way handshake to
establish a connection. The resources allocated for these three way handshake
can be exploited to launch a TCP SYN flood attack. Attacker sends too many
connection requests in form of TCP SYN packers to the victim so that the
victim cannot respond to the legal requests. After allocating resources for the
incoming requests victim replies to attacker with a SYN-ACK packet. The
attacker doesnt respond to the SYN-ACK and the resources of the victim
remain occupied [25].

Attacker can lease a VM in Cloud and through malicious software he can
consume extra resources from the system. This may lead to Denial of Service
(DOS) attack as the system resources will be unavailable to legitimate users.
The privileged host virtual machine Dom0 can be compromised by attacker
to either tamper boot process of guest VMs or access all guest VMs including
their memory, disk space and network traffic. By controlling Dom0 attacker
can create too many virtual machines to consume all resources of the system
or destroy any virtual machine containing important data by launching DOS
attack at Cloud. Furthermore, the saved state of guest virtual machine as a
disk file appears in plaintext to Dom0. Attacker can compromise the integrity
and confidentiality of the saved VM state and when restored VM may not
function as desired.

14 Related Work

2.3.4 Disk Image Attacks

Unnecessary guest OS images in Cloud can result in different security issues
if the security of each image is not maintained [§]. If a malicious guest
OS image is migrated to another host, it can compromise the other system
as well. Further- more, creating too many images and keeping unnecessary
images can consume resources of the system which can be used as a potential
attack vector by attacker to compromise the system [II]. When VMs are
moved from one physical machine to other, data of VM images might still
exist on previous storage disks that attacker can access. Similarly, attackers
might also recover some data from old broken disks [8]. The security of image
backup is also an issue. By gaining access to the backup images attacker can
extract all information and data.

To create new VM image files existing VM images can be easily copied
which results in VM image sprawl problem, in which a large number of
VMs created by customers may left unnoticed. VM image sprawl results
in large management issues of VMs including includes the security patches.
Investigation of VM images on Cloud (EC2, VCL) has shown that if patches
are not applied VM images are more vulnerable to attacks, and they may
also not fulfill organizations security policy. Secondly, some VM images are
mostly offline and to patch these images they will have to be started. This
will add to the computation cost of Cloud provider [26].

Attacker can access VM checkpoint present in the disk that contain VM
physical memory contents and can expose sensitive information of VM state.
A new checkpoint can be created by attacker and loaded in system to take
VM to any state desired by attacker. If all the checkpoints in storage are
accessed, information about previous VM states can be obtained [19)].

2.4 Security solutions for Virtualization

To cater the attacks on virtualization environment different security solutions
have been proposed in literature. This section discusses those security so-
lutions for each component of virtualization architecture. By implementing
these security solutions the attacks discussed in section 3 can be mitigated
or at least the impact of those attacks on virtualization environment can be
minimized.

2.4.1 Service Provider Security

Unauthorized person should not have physical access to the virtualization
hard- ware of the system. In order to protect VMs from unauthorized access

15 Related Work

by Cloud administrators, each VM can be assigned access control that can
only be set through Hypervisor. The three core principles of access control
namely identification, authentication and authorization will restrict admin
access from unauthorized data and system components [27]. Moreover, if
any administrator is involved in security compromise, access control imple-
mented in Cloud can help identify that person. Web application attacks
can be prevented by installing an application layer firewall infront of web
facing applications and by having the customer code reviewed for common
vulnerabilities [12].

An online identity management community OpenlD has been integrated
with an open source Cloud platform OpenStack to provide identity manage-
ment in Cloud [28]. Sandra R. et al. [29] proposed an architecture using
SELinux, XEN, IPsec as tools to enforce Mandatory Access Control (MAC)
policies at VM, OS and network layers. These MAC policies control the com-
munication between VMs based on application templates that can be config-
ured by administrators dynamically. Furthermore, the security requirements
of virtualized environment differ from that of physical system, Cloud service
provider must make sure that the security tools for vulnerability assessment
also include the virtualization tools used [§].

2.4.2 Hypervisor Security

Hypersafe is a system that maintains code integrity of the Hypervisor. It ex-
tends the hypervisor implementation and prevents its code modification by
locking down the write-protected memory pages. It secures the Hypervisor
against the control hijacking attacks by protecting its code from unauthorized
access [30]. Also, in a system there are dedicated portions of memory to
which only hardware has access. These dedicated portions of memory (that
Hypervisor cant access) can be used to store information related to memory
regions of VMs. So a compromised hypervisor cannot write at the memory
locations of VMs.

Device drivers can be restricted from writing into memory resources by
using input/output memory management units (IOMMU). It is used to con-
nect a DMA capable memory bus to I/O units. When the machine starts,
hypervisor checks if IOMMU is enabled and correctly initialized. If not,
than hypervisor must stop the boot process for checking. Hypervisor may
utilize DMA remapping hardware to limit DMA from input/output device
to physical memory of Dom0 [16].

VM Escape attack can only be executed through a local physical environ-
ment. Therefore, the physical Cloud environment must be prevented from
insider attacks. The interaction between guest machines and host OS must

16 Related Work

also be properly configured [I5]. In order to stop one VM from affecting
or communicating with other VMs isolation must be properly implemented
and maintained by hypervisor. Moreover, further possible attack vectors on
hypervisors can be reduced by hardening the hypervisor [8]. These tech-
niques include separating the duties of administrative functions, restricting
the hypervisors administrator access to modify, create or delete hypervisor
logs, and monitoring the hypervisor logs regularly.

2.4.3 Virtual Machine Security

Administrator must deploy a software or application that stops VMs from
using extra resources unless authorized [31]. Moreover, a light weight process
must run on a virtual machine that collects logs from the VMs and monitors
them in real time to prevent any tampering of VMs. The guest OS and
applications running on it must be hardened by using best security practices.
These practices include installing security software such as anti-viruses, anti-
spyware, firewall, Host Intrusion Prevention System (HIPS), web application
protection, and log monitoring in guest OS as shown in figure 2.3. All the
security measures for OS in physical machines must also be applied on the OS
of VMs (guest OS). To prevent OS from java applet attacks, java installation
must be avoided until it is essentially required by any program. Furthermore,
guest OS and applications running on it must be hardened by using best
security practices [12]. These practices include installing security software
such as anti-viruses, anti-spyware to detect any suspicious activity and to
notify the user or admin about such activity.

Anti-
spyware

Firewall
VM, VMn
Internet Traffic Inbound/

Outbound taffic

Anti-virus

Figure 2.3: VM security by firewall, anti-virus and anti-spyware

To identify the faults in guest OS Dan P. et al. [32] proposed a system
called ”Vigilant”. It utilizes virtualization and machine learning methods
to monitor VMs through hypervisor without putting any monitoring agent
in VMs (out- of-band detection). Flavio L. et al. [33] proposed Advanced
Cloud Protection System (ACPS) that monitors and protects the integrity
of OS in guest VMs. The periodic monitoring of executable system files is

17 Related Work

done to check the behavior of Cloud components. It uses virtual introspec-
tion techniques to deploy guest monitoring machine in system without being
noticed by attacker on guest VM. Hence any suspicious activity on the guest
OS can be blocked. TVDc is developed by IBM to address strong isolation,
integrity and security in virtualized system [34].

sHype system, a secure hypervisor architecture for XEN, offers isolation of
VM systems with flexible security of Mandatory Access Control (MAC) [35].
MAC systems are designed to control information flow and communication
between VMs across multiple machines. To authorize the communication
between VMs on same machine, sHype adds hooks to XEN authorization
mechanism and uses Type Enforcement (TE) model. Bell-La Padula policy
restricts information flow at access class level, but implementing this model
to have network per access class is impractical. So to minimize cost some risk
must be taken by defense communities. Accepted risk may be expressed by
using Chinese wall policy model. Chinese Wall policy model allows selection
of any policy in data access, but once the policy has been selected future
choice gets limited according to the selection [36].

To provide protection from networked DOS attacks firewall proxies can
be used so that attacker request is forwarded only after client side ACK is re-
ceived. HOP count filtering achieves 90 percent detection of DOS attacks, by
inspecting packets TTL field and dropping suspected spoofed packets. How-
ever such solutions can result in excessive overhead on infrastructure as /0O
devices such as network interfaces are being used. KVM is one of the stan-
dard hypervisor-based virtualization systems. KVM supports VirtIO drivers
which are standard drivers in virtualization. KVM generates an interrupt
when a message has to be sent from host to VM or from VM to host. VirtIO
drivers can be modified to bundle together a series of packets so that when
several packets are received only a single interrupt is generated. A timer can
be used to send all packets to VM received during a specific time [25].

To protect the newly created virtual machines for users (guest VMs)
from compromised privileged virtual machine Dom0, a protocol is designed
by Jinzhu Kong [18]. Hypervisor generates a pair of secret keys, Kernel
and the initrd image are kept encrypted all the time with the secret key
Kimg. First the user attests the Cloud server through Trusted Platform
Module (TPM), if attestation succeeds then user sends a boot request to
the Dom0O which then boots the guest domain. The guest VM executes the
wrapping code and requests Hypervisor to decrypt kernel and initrd images.
Hypervisor encrypts this request with its private key and asks user for key
to decrypt kernel so that a VM can be created. The user sends private key
Kimg encrypted under the public key of Hypervisor. Hypervisor decrypts
the user message, and the private key Kimg is used to de- crypt the kernel,

18 Related Work

initrd images and to launch the guest virtual machine. In this way the newly
created VM is secured from compromised Dom0. The complete workflow is
shown in Figure 2.4. To avoid the VM storage attacks, before saving the

User DomO Hypervisor Guest VM

Nonce A, Attest

{Nonce A, PCRs} Kaik-1

I NonceB,Boot |

VM boot command

Request Kimg

{Nonce B, “boot key request”}Ka k-1

{Kimg} Knv

Get Kimg with Kn, ™ and

decrypt images

Figure 2.4: Secure VM boot protocol

state of the virtual machine in Dom0 its encryption can be done using AES-
256, where key can be any random initialization vector. The hash of the
encrypted state can be taken using MD5. When the virtual machines are to
be restored, the new hash can be taken to verify the integrity of saved virtual
machine. If the hash of the restored state and hash of the saved state match
it means that the virtual machine state is not altered [18]. Figure 2.5 shows
the secure storage of saved VM state.

Saved VM Encrypt using N Calculate R Store at
state AES 256 Hash disk

Figure 2.5: Securing the saved VM state

2.4.4 Disk Image Security

Organizations using virtualization must have a policy to manage the cre-
ation, usage, storage and deletion of images. Image files must be scanned
for the detecting viruses, worms, spyware and rootkits that hide themselves
from security software running in guest OS. J. Wei et al. [37] proposed an
image management system to efficiently manage images in Cloud and detect
security violations in images. It proposes the use of filters, virus scanners
and rootkit detectors to provide protection against potentially compromised
images. Nuwa [38] is a tool designed to apply efficient patching to VM images
in Cloud. By analyzing patches, Nuwa rewrites the patching scripts so that

19 Related Work

they can be applied offline. As a result, the installation scripts for online
patching can be applied to images when they are offline.

When VMs are to be migrated from one physical machine to another,
Cloud admin must recheck and ensure that all data is removed from previous
or bro- ken disks. To protect the backup VM images cryptographic techniques
such as encryption may be employed to encrypt all backup images. If any VM
is deleted then its backup must also be removed from system. Furthermore,
to protect VM images from storage attacks, Cloud provider must encrypt
the complete VM images when not in use [8]. Checkpoint attacks can be
prevented by encrypting the checkpoint files. An- other mechanism to provide
security to Checkpoints is SPARC. SPARC is a mechanism designed to deal
with security and privacy issues resulting from VM checkpoint. SPARC
enables users to select applications that they want to check- point so sensitive
applications and processes cant be checkpointed [19].

2.5 Recommendations for secure usage of Vir-
tual Machines

For the security of virtual machines following practices need to be adopted
by the administrators of Cloud organization.

2.5.1 Secure Network

Network security must be provided to virtual machines to protect them from
the network layer attacks. Virtual machines might have some open ports
other than ports that normally remain open, which may allow others to
connect remotely to virtual machine and change its configuration. A firewall
must be there to allow access to these open virtual machine layer service
ports [9].

2.5.2 Disabling the Non-Required Features

Using the features of screensavers, search tools, system update may create
some issues if they are run in virtual machines. The processor intensive
applications may consume the resources of system when these resources are
needed by some other virtual machine. Similarly, the operating system of
the virtual machines runs the low priority processes at same time which can
affect normal priority tasks. So the low priority tasks should be disabled and
if any task has to be run its start time must be staggered [9].

20 Related Work

2.5.3 Disconnect Unused Hardware Devices

Virtual machines can control physical devices out on host such as CD drives.
If any virtual machine has access to physical drive, than all virtual machines
requesting access to that particular drive will remain blocked. Host must be
configured to access these devices only when required [9].

2.5.4 Backup of Virtual Machine Images

Backup of the virtual machines images must be maintained. However, the
security of backup data stream and virtual machine backup image on disk
is an issue. Cryptographic techniques such as encryption may be employed
to protect the data stream. Similarly, data in transit may be protected by
securing network through techniques such as VLANs [12]. If any VM is
deleted than its backup must also be removed from system.

2.5.5 Hardening of Virtual Machines

Virtual machines must be deployed in Cloud by following the industry stan-
dards. Some recommendations for hardening virtual machines are, to put
limit on virtual machine resource usage, ensure OS of each virtual machine
is hardened, harden the Hypervisor, and harden each of VM virtual hardware
[15].

2.5.6 Auditing

Administrators can find offline VM guests by using a logging server to mon-
itor logs. VM power status, change of hardware configuration and changes
to virtual machines on host should be audited [12]. Some other recommen-
dations to secure VMs on Cloud are that in VMs mixed mode deployment
may occur, as a result VMs that have different classes of data may lie on
same physical machine. Moreover, inter VM interactions must be monitored
carefully to look for malicious behavior of VMs in case of any attack.

2.6 Industrial Survey

In this section we discuss about the industries currently working in the area of
Cloud computing and its security. These products are mostly based on open
source Cloud platforms such as OpenStack and provide additional features
such as security and control.

21 Related Work

2.6.1 Storage Made Easy

It is a commercial solution that provides many different security features in
Cloud environment. It is designed to unify the information stores securely.
Storage Made Easy (SME) can be used with different Cloud networks such as
OpenStack, Amazon S3, Azure, RackSpace, HP Storage and other Clouds.
It is available to be used as a SaaS application as well as a TaaS application.
The major features of SME include secure image storage in Cloud through
strong encryption of AES-256, Cloud data protection gateway, secure autho-
rization and storage of company data, versioning of all files, file sharing and
collaboration with other Clouds [39).

Storage Made Easy APIs are also available for developers. These API
are based on REST interface and some libraries are written in .NET. SME
can be integrated with the security standards such as OpenID and Kerberos.
Other identity features that can be integrated with SME are LDAP /Active
Directory. The user integration using SME with the OAuth server is provided
in SME documentation.

2.6.2 Piston Cloud

Pistons Enterprise Operating System offers secure Cloud services to the en-
terprises. It is powered by OpenStack and contains all its features with the
added security components. It makes use of the private infrastructure while
maintaining security and control over infrastructure. Its major benefits are
the ease of use as complete private Cloud can be built in less than an hour.
For installation a USB drive is used that contains installation software to
fully configure servers with secure Cloud stack. Pistons Enterprise Operat-
ing System is very efficient for handling big data as data is present closer to
virtual machines. Scaling the Cloud is easy as each new server is automat-
ically detected in the Null Tier Architecture. To protect the sensitive data
from single point of failures data is usually replicated [40)].

Pistons Enterprise Operating System runs on security hardened Linux
Kernel. This Linux kernel is based on HLF'S (Hardened Linux from Scratch).
This distribution follows the basic security principle of having minimum pack-
ages required to run OpenStack. Updates are usually automatic to prevent
Cloud from zero day attacks. Along with security patches, updates also in-
volve installation of new packages issued by OpenStack. To provide access
security, Piston Cloud offers Role-Based Access Control. Moreover, secure
booting is also ensured to protect system from possible attacks. Additional
features offered by Piston Cloud include an availability framework to reduce
downtime and virtual machines access through dashboard.

22 Related Work

2.6.3 Metacloud

Metacloud delivers public Cloud services based on OpenStack with the secu-
rity and privacy features. It provides a fully functional, highly available and
easy to use Cloud. It provides a complete support to monitor, troubleshoot,
upgrade, fix bugs and provide other services. Users and admins access Meta-
cloud through dashboard. Dashboard also provides information about Cloud
visibility. Metacloud OpenStack is fully compatible with OpenStack APIs
and OpenStack CLI [41].

23

Related Work

Table 2.1: Summary of security aspects of virtualization

Category

Requirements

Attacks

Solutions

Service Provider

Limit access to hardware

Malicious code execution

Develop and implement policy to
limit access to hardware

Implement access control

Stealing of customer data through
unapproved access

Implement MAC policies at VM, OS
and network layers

Provide strong authentication mechanisms to users

Unauthorized access to Cloud system
and data

OpenlID integration with OpenStack
Cloud to provide secure
authentication

Hypervisor

Maintain isolation between VMs

VM Escape attack

Properly configure the interaction
between guest machines and host VM

Hypervisor should monitor functionality of guest
VMs

Customers can lease a guest VM to
install a malicious guest OS

Encrypt the VMs to protect them
from compromised hypervisor and
VMs

Programs controlling the hypervisor must be
secured using best software security practices

Malicious hypervisors attacks
including BLUEPILL, Vitriol and
SubVir

Hypersafe is a system designed to
maintain the integrity of Hypervisor

Use techniques to harden the
hypervisor security

Virtual Machines

There must be limit on VMs resource usage

Using a malicious VM to consume
extra resources of the system,
resulting in DOS attack

Administrator must deploy a software
or application that limits VMs from
using extra resources unless
authorized

Isolation between virtual machines should be
implemented properly

Malicious programs use covert
channels to communicate with other
VMs in unauthorized way

Vigilant can monitor faults in guest
OS of VM

Update the OS regularly and use anti-virus
software, secure internet and restrict remote access

Malicious programs can monitor
traffic, steal critical data, and
tampering the functionality of VMs

Security features such as firewall,
HIPS, log monitoring must be
provided in guest OS

Guest OS must be monitored regularly for updates
and errors

Attacks through worms, viruses,
botnets can also be used to exploit the
VMs

Use anti-viruses, anti-spyware
programs in guest OS to detect any
suspicious activity

Advanced Cloud Protection System
(ACPS) can monitor and protect the
integrity of guest OS

Securely boot the guest VMs

Attacker can tamper boot process of
guest VMs

Security protocol by J. Kong can be
to ensure secure boot of guest VMs

Saved VM state must not be tampered by Dom0

Attacker can compromise the
integrity and confidentiality of the
saved state of guest virtual machine

Use encryption and hashing of VMs
state before saving VM

Guest Images

Snapshot access must be prevented from authorized
access

VM checkpoint attacks

Checkpoint attacks can be prevented
by encrypting the checkpoints or
using SPARC

Make a policy to remove unnecessary images

Security issues from unnecessary
images can compromise system

J. Wei et al. proposed an image
management system to manage
images in Cloud

Apply updates and patches to maintain images
secure

Old images are vulnerable to zero day
attacks

Nuwa is a tool designed to apply
efficient patching to VM images in
Cloud

There must be policy to remove images from old
disks after VM migration

Attackers can access and recover data
from old and broken disks

After VM migration, Cloud admin
must ensure that data is removed
from old disks

Backup of the virtual machines images must be
maintained

Unauthorized access to the backup
data can result in leakage of sensitive
information

Backup of VM images must be
encrypted. If any VM is removed
then its backup must also be removed

Chapter 3

Research Methodology

In this chapter, we discuss the research methodology adopted during our the-
sis to achieve the goals. QOur thesis had two major components. First one
was the detailed security analysis of the virtualization components to identify
possible attack vectors and other was the design and implementation of frame-
work for the protection of virtual machine images in Cloud computing. For
the completion of our research goals we adopted different research method-
ologies during our research. These methodologies include deductive approach
and conceptual research methods. We define the complete methodology for
studying theory, developing hypothesis, performing the observations and the
development of prototype based on hypothesis.

3.1 Introduction

Research is the methodological and structured search of new knowledge in
order to establish facts and solving existing problems. It involves finding the
most efficient answers to worthwhile questions. Research can be carried out
to find solutions of unsolved problems, develop theoretical knowledge on a
matter using specific facts or to improve the existing solutions to problems.
Research is done in different phases with certain objectives. Research ob-
jective is the major motivation behind the research work. During research,
different ways to reach the goals can be considered and eventually the most
efficient solution is adopted. Therefore, considering the effectiveness of solu-
tions with respect to existing solutions is an important part of research.

3.2 Types of Research Methods

The different methods adopted during research are explained below.

25 Research Methodology

3.2.1 Descriptive and Analytical Research

Descriptive research is done to describe the state of the art research related
to a specific area. It does not involve any novel contribution rather it consist
of various surveys of literature and questionnaires to find facts. Analytical
research involves the usage of critical thinking to identify facts of a particular
solution and develops ways to improve it. The whole process is done by the
evaluation of data already available to researcher [42].

3.2.2 Applied and Fundamental Research

Applied research involves study of the problems faced by business, industry,
state or clients and developing a solution for them. It aims at real world
problems to develop new products and technologies. While fundamental or
pure research involves the systematic study carried out to understand the
core concepts of a phenomena [43]. Tt involves observation of facts to de-
velop theory without the idea of future practical applications. Fundamental
research adds to the broad base of organized knowledge that can be used for
applied research.

3.2.3 Quantitative and Qualitative Research

As the name of quantitative research suggest, it relates to measuring the
quantity or number of data for mathematical analysis. Generally it is used
to develop theories for long term research. It generally works by finding the
relationship between observations of quantity and its connection with mathe-
matical expressions. Large amount of data collected by quantitative research
can also be used to make conclusions for research. Qualitative research refers
to measuring the quality to understand the motivation and reasons behind
phenomenon. To collect data for quantitative research, generally unstruc-
tured methods are used. It is usually done to identify the initial knowledge
about any area of carry out further research in it. Combination of quanti-
tative and qualitative research is used by researchers and companies to get
better understanding of results.

3.2.4 Conceptual and Empirical Research

Conceptual research is related to find the basic or generalized ideas behind
a phenomenon. It focuses only on theory to develop new concepts and re-
search directions. The conceptual research starts with theory development
and study on historical research on that phenomenon. It also involves doing

26 Research Methodology

state of the art review of the literature on specific behaviors and perform-
ing the critical analysis on research. Critical analysis includes identifying,
understanding and evaluating the research on any area to give ones own
propositions. Empirical research is completely related to the practical work
on the basis of observations and data-analysis. It can involve extensive ex-
perimentation in which a researcher must know or guess the probable results.
The purpose of experimentation is to verify the research claims [43].

3.2.5 Deductive and Inductive Approaches

Deductive method is a way of logical reasoning in research that involves
a top-down tier approach going from general to specific things. It includes
theory, hypothesis, experimental observations and validation. Therefore, it is
the more trustworthy research approach. Inductive research involves study of
experimental observations to develop general theory. It is called the bottom-
down approach. Researchers begin by studying specific observations and
measures, than specific patterns from observations are formulated, hypothesis
is developed and at the end more generic theories are made.

3.3 Thesis Research Methodology

Our research was conducted in two major phases. One was the analysis of
Cloud virtualization to gain in-depth understanding of possible security issues
related to virtualization. This led us to identify the general requirements,
possible attacks and proposed security solutions for Cloud virtualization. The
second objective was to design a protocol for the security of virtual machine
images in Cloud. We designed our protocol by proposing the encrypted
storage of virtual machine images in Cloud and implemented it. To achieve
our research goals we had to adopt more than one research methodology
described above. For instance, we used conceptual research to study the
security architecture of Cloud virtualization. Similarly, we used empirical
research to implement our solution for security in Cloud.

3.3.1 Research Objectives

The objectives with which the research is carried out are called research
objectives. We had two major objectives. These objectives were:

e Analyzing the security of Cloud virtualization.

27 Research Methodology

e Design, implement and validate a framework for the protection of vir-
tual machine images in Cloud.

3.3.2 Research Methodologies

To achieve our research objectives, deductive research method was followed.
To study and critically review the literature we followed conceptual research
approach. We started by studying the theories related to IaaS security in
Cloud, Cloud virtualization and virtual machines security. This literature
review consisted of studying the various survey papers, conference papers,
journal papers and technical papers. This research led us to the development
of hypothesis for our research. A hypothesis is a tentative assumption of
future research goals. The hypothesis is set as the basis of future research
for a phenomenon that has to be tested and verified.

3.3.3 Hypothesis
The hypothesis of our research was,

(a) Does the security solutions for Cloud virtualization satisfy all the re-
quirements to prevent it from all possible attacks?

(b) Are the current solutions for virtual machine images enough for their
security? Does the virtual machines images life cycle need modifications
or extensions?

3.3.4 Observations

After defining the hypothesis, next step was of observations. The major
observations made related to the Cloud virtualization security to support
the hypothesis were,

(a) Virtualization is a basic feature of laaS that enables a single system to
concurrently runs multiple virtual machines. Hypervisor is a component
that is largely responsible for managing virtual machines and their in-
teraction. Guest images function as the hard disks of virtual machines.
Each of these components is vulnerable to some attacks in Cloud and
security solutions to prevent them from all attacks do not exist.

(b) Virtual machine images contain all the operating system, applications
and data in a virtual machine. During storage in Cloud they can be
exploited by malicious nodes in Cloud, and external attacks that might
lead to data leakage and image tampering.

28 Research Methodology

(c) NIST guidelines on virtualization technologies have proposed usage of
cryptographic techniques to protect virtual machine images in Cloud.

(d) CSA guideline mentions attacks on the stored VM images in Cloud and
emphasizes the need of their security be encryption images all the time.

3.3.5 Implementation and Verification of Prototype

The next step was developing and verifying the prototype developed for our
research, which is the last step of deductive approach. Our design focused
on the complete life cycle and management of images in Cloud. After the
termination of VM, the image has to be stored in Cloud. Our prototype
includes the image encryption protocol that encrypts images before storage
on Cloud. The choice of cryptographic algorithms is based on the NIST
guidelines on storage technologies. When the VM is to be instantiated, our
prototype involves decryption of image. The evaluation of the system was
done by design a threat model to verify that all storage attacks on VM images
are mitigated by our prototype. The performance evaluation also reveals
a minor overhead caused due to usage of cryptographic techniques for the
security of images. The detailed research methodology adopted during thesis
is shown in figure 3.1.

Defining research Conceptual Identify research Develop
area literature review | problem Hypothesis
Evaluation and Prototype testing Prototype Frame research
confirmation € <— implementation design

Figure 3.1: Thesis Research Methodology

Chapter 4

Design and Implementation

This chapter discusses the design and methodology followed during the thesis
to achieve the solution. It first describes the details of different components
of proposed model for image security called Encrypted Virtual Disk Images in
Cloud (EVDIC) and then elaborates their functionalities. The architectural
concatenation of EVDIC s described with OpenStack. It includes the com-
plete workflow for image encryption, storage and decryption in the storage
component of OpenStack (Swift).

4.1 Design of Framework

Encrypt Disk Images in Cloud (EVDIC) is the proposed framework for ad-
dressing the security issues of stored disk images in Cloud. EVDIC workflow
is divided into two parts. One part is the image encryption through EVDIC,
before an image is stored on the disk. Other is the image decryption through
EVDIC, while retrieving a stored image from the disk to be used by a virtual
machine. The major components involved during the image encryption and
decryption are Image Encryption Module, Key Management Server and Im-
age Decryption Module. They interact with the other components of Cloud.
The major functionalities of these components are described below.

4.1.1 Image Encrypt Module (IEM)

The Image Encrypt module intercepts a request to store an image in the
disk. It interacts with the key management server to obtain an encryption
key for a user that it uses to encrypt the image. The encryption of images is
done by using AES-192 or AES-256. After doing the encryption, IEM sends
the encrypted image to the disk for storage.

30 Design and Implementation

4.1.2 Image Decrypt Module (IDM)

The major function of Image Decrypt module is to decrypt the images. It
intercepts a request to retrieve a stored disk image from the disk and interacts
with the key management server to obtain user key for decryption. After
getting the key from KMS, IDM locates the stored image on disk using
the metadata stored with image. Once the image is located, it is retrieved
and decrypted by the IDM. IDM sends the decrypted image to the related
component so that it can be used by the virtual machine.

4.1.3 Key Management Server (KMS)

KMS is responsible for management of keys used for encryption. Once the
encryption keys are derived for users, they are stored in KMS. The unique
identification of each user is maintained by a field called KeyID and it is
used to retrieve and store encryption keys for each user when required. Due
to security purposes, the KMS is placed at a separate location form the
Cloud. All communication between KMS and EVDIC components takes
place through Secure Socket Layer version 3.0 (SSLv3). SSL 3.0 provides
the security during key exchange and ensures message confidentiality and
integrity [44]. Keeping the KMS outside the Cloud will keep KMS secure even
if the complete Cloud infrastructure is compromised. On the other hand,
if keys are stored in the Cloud and Cloud infrastructure is compromised,
attacker can access the encryption keys in KMS. These encryption keys could
then be used to decrypt the encrypted images and access critical data.

4.1.4 Image Encryption through EVDIC
The workflow for image encryption through EVDIC is described below.

e When a running virtual machine is terminated by user, the virtual disk
images have to be stored somewhere in the Cloud.

e The Image Encrypt module intercepts the request to store image in
disk.

e To do the encryption, IEM interacts with the key management server
(KMS) using the key identification (KeyID) value of the user. KeyID
is a unique value to identify each user.

e The encryption key is retrieved from the KMS and send back to the
I[EM using SSL.

31 Design and Implementation

e Using the key of user, IEM encrypts the disk image through a secure
encryption algorithm such as AES-192 or AES-256.

e The encrypted image is stored on the disk. KeyID of the user will be
stored as metadata along with the stored image that will be used to
retrieve the encrypted image when required. The design of EVDIC
encryption scheme is shown in figure 4.1.

CLOUD VM termination 1. Store the image Image storage at
disk

2. Intercept request to store image

5. Image encryption by IEM Image Encryption 6. Store encrypted
using AES-256 Module (IEM) image
3. Key request using KeylD 4. Key exchange through SSL 3.0

Key Management Server
(Outside Cloud)

Figure 4.1: Disk image encryption through EVDIC

4.1.5 Image Decryption through EVDIC

The workflow for image encryption through EVDIC consists of following
steps.

e All the stored disk images are in encrypted form. Whenever a virtual
machine is to be launched in Cloud, it requests for the virtual disk
image.

e IDM intercepts the request to retrieve the disk image.

e DM identifies the KeyID of the user and communicates with the KMS
for key exchange.

e The encryption key is retrieved from the KMS and send back to the
IDM using SSL.

o After getting the encryption key, IDM locates the encrypted disk image
in disk with the help of KeyID stored as metadata with the image.

32 Design and Implementation

e The located image is than decrypted by the IDM.

e The decrypted image is returned to disk so it can be used by the virtual
machine. The design of image decryption scheme is shown in figure 4.2.

CLOUD VM Boot 1. Retrieve the image Image storage at
| -
disk
\ A
2. Intercept request to retrieve imag 7. Return Image
6. Image decryption by IDM Image Decryption 5. Locate stored
Module (IDM) Image
3. Key request using KeyID 4. Key exchange through SSL 3.0
Key Management Server
(Outside Cloud)

Figure 4.2: Disk image decryption through EVDIC

4.2 EVDIC in OpenStack

OpenStack provides a large scale open source Cloud computing platform
[45]. The major components of OpenStack are Compute, Image Service,
Identity, Dashboard, Network, Object Storage and Block Storage [46]. The
ComputeWorker (nova-compute) is the component that manages virtual ma-
chines life cycle through hypervisor API’s (XenAPI for XenServer, libvirt for
QEMU or KVM, VMwareAPI for VMware). When a virtual machine is to
be launched in OpenStack, nova- compute interacts with the Image Service
(Glance) to request a VM image through Image Application Programming
Interface (Glance API).

Glance deals with the retrieval, registering and storage of virtual machine
images. Glance API stores the images in Object Storage, Swift (if specified
by the user). Swift is a highly scalable object storage, that can store a large
amount of data through a RESTful HTTP API. Each image stored in Swift
has an image ID and a URL associated with it that is used to locate and
upload image from storage. Furthermore, all objects in Swift have their own
metadata [47].

33 Design and Implementation

4.2.1 EVDIC Image Encryption in OpenStack

As the user terminates its virtual machine, Glance API stores the image.
Glance interacts with Swift to store the image on it. Swift first determines the
partition to store image using account, container and object names. EVDIC
can be integrated with OpenStack such that after Swift Proxy server sends a
request to the Object Server to upload image through RESTful HTTP API,
control is transferred to the EVDIC Image Encryption Module (IEM). IEM
performs the image encryption in Object server, as all the write requests pass
through it. All the swift servers write data in chunks, therefore each chunk
must pass through the IEM before storage.

EVDIC uses the same procedure for encryption as mentioned above in
EVDIC image encryption scheme. The encryption key for each user is gen-
erated through PBKDF-2 and retrieved from KMS using SSL 3.0. This en-
cryption key is used to encrypt each chunk of image through AES-256. The
encrypted chunks are written in a temporary file by Swift, before storing
them in the partition on disk. Hash of the images is calculated using MD5
before their encryption and stored along with metadata. The Glance API
stores the location of stored image in glance-registry including the image 1D
and URL of image. Disk image encryption through EVDIC in OpenStack is
shown in Figure 4.3.

1. PUT Request . 2. Upload Image as Object . .
Glance q Swift Proxy P 8) Swift Object
(Request to
store image) Y,
3. Intercept image 6. Store encrypted image
store reguest

Image 3. Key Reque

K Key Management
Encryption

.Key exchang
Module (IEM) M Server

5. Encrypt Image by AES-256

Figure 4.3: Image encryption through EVDIC in OpenStack

4.2.2 EVDIC Image Decryption in OpenStack

When the virtual machine of a user is to be launched, nova- compute passes
request for accessing disk image to Glance using Image API. Glance sends
a message to Swift to download the desired image. To locate the image the
partition name is produced by Swift in a similar way to one generated during
object upload. During the image download from Object server, image is

34 Design and Implementation

passed through the image decryption module. IDM uses KeyID in metadata
of stored image to retrieve the encryption key from KMS using SSL 3.0.
IDM decrypts the image and hash of the decrypted image is taken by MD5
to compare it with the hash stored in metadata. In this way the integrity of
image is ensured. IDM sends the decrypted image to Proxy server, and Proxy
server returns image to Glance. Glance returns the image to nova-compute
using Glance API. The decrypted image can be used by the virtual machine.
The OpenStack image decryption through EVDIC is shown in the figure 4.4.

1. GET Request . 2. Download Image as Object . .
Glance q Swift Proxy 8 ! Swift Object
(Request to
access image) A
3. Intercept imag¢ 5. Download encrypted image
access request'

Image 3. Key Request

i Key Management
Decryption

.Key exchang
Module (IEM) M Server

6. Decrypt Image by AES-256

Figure 4.4: Image decryption through EVDIC in OpenStack

4.3 Implementation

Our framework has been implemented in Swift. Swift is the storage com-
ponent of OpenStack. It presents a scalable system without as single point
of failure, capable of storing large amounts of unstructured data. It uses
RESTful HTTP API. Swift usage can vary according to the needs. For ex-
ample, it can be just used to store virtual machine images or small objects
as well as a storage service for Private Clouds. Swift has large development
community and is designed to operate in failures without any downtime.
Client libraries for development in Python are available in all programming
languages including Python, Java, Ruby and C++ [47].

Objects are stored as clusters in Swift. To extend the storage capacity
of cluster, new nodes can be added without any downtime. As all the com-
munication between Swift components happens using HT'TP and all Swift
objects have a URL. A typical Swift URL is composed of base address, ac-
count, object and container. The seven major components of Swift are, i)
Proxy Servers ii) Accounts iii) Containers iv) Objects v) Rings vi) Zones vii)
Partitions.

35 Design and Implementation

Proxy servers are responsible for handling all the incoming HTTP re-
quests. After determining the storage node of object, they also handle
responses from other components. Rings are responsible for mapping the
physical location on disks. To locate the objects in Swift cluster, all the
components need to interact with Rings. Rings contain partitions and repli-
cas. The collection of all stored data is called a partition. Both the accounts
and containers are SQLite Databases. Accounts contain the lists of contain-
ers; containers have the list of objects using the database referencing lists.
Figure shows the mapping followed by accounts and containers. Object is
the actual data to be stored such as an image.

4.3.1 Object Upload in Swift

Swift uses RESTful HTTP API, therefore the major methods for managing
object are PUT, GET, POST and DELETE. HTTP PUT method is respon-
sible for updating the resource on the server. To upload an object to Swift
server, client sends a PUT request to proxy server which connects with Key-
stone (authorization component of OpenStack) to determine if the client is
authorized using clients token. After client is verified, cluster receives the
upload request and all the accounts, containers and objects servers are used
to determine the partition to store object. The object is forwarded to storage
node where the required partition lies. After the object write is successful,
HTTP 200 message is sent to the client. Object upload also requires the
containers database to be updated. This update reveals that a new object is
present in the container.

4.3.2 Object Download in Swift

‘To download an object, HTTP uses its GET method. This method is re-
sponsible for retrieving an object from server. Once a client send a GET
request to proxy server, the user authorization is verified by the Keystone
component. After user verification, partition for the object is determined
using the accounts, containers and objects server. Ring is searched to find
the required partition and the object is retrieved from that storage node. If
the object retrieval request fails through one storage node, requests are made
to the other nodes.

4.3.3 Swift Source Code

Swift is maintained and developed by one of the largest open-source teams
in the world, and is in the top 2 percent of all project teams on Ohloh. It

36 Design and Implementation

has 53,605 lines of code and is written in Python. The source code of Swift
is available at the online GitHub repositories [48]. These repositories can be
modified to download and replace custom code instead of the default ones.
To keep track of source code modifications they need to be added in version
control. This custom repository can be shared with anyone who can then
download its working copy. This working copy of code can be used with
OpenStack deployment instead of the default one.

4.3.4 Object Encryption in Swift

The code for object server of Swift is located server.py file in obj directory.
There are only two classes in server.py. DiskFile class is for file Input and
Output. The ObjectController class handles all the requests made by the
user to the Swift object storage.

The major class is the ObjectController class that has the methods of
RESTful HTTP API including PUT, POST and GET. To upload a file to
the object storage, a put request is issued and handled by PUT function of
the ObjectController class. The PUT contains the code for writing all the
object files to disk. Swift writes objects as chunks to disk instead of a single
file. Each object file is read into a number of small chunks and stored in a
temporary file which acts as a buffer. Contents from the temporary file are
then written to a permanent file when buffer size reaches a certain threshold
value (defualt is 512 MB). It is the responsibility of PUT method to read all
chunks of a single object and write them to disk.

Each of the chunks is written to a buffer, it is better to encrypt them
before they are written to it. In this way, contents are copied from the
buffer to the actual file will be encrypted such that when all chunks are
written to the actual file, the file will be encrypted. To handle encryption,
we have created a separate Encryptor.py file that handles the encryption
and returns encrypted chunks in the object server. Encryption classes use the
popular M2Crypto package of Python to perform encryption [49]. M2Crypto
is present as a as a fully supported package in the Ubuntu 10.04 and later
repositories. Writing the encrypted chunks in Swift is similar to writing the
normal chunks. The current implementation uses a constant key that is saved
in a configuration file.

4.3.5 Object Decryption in Swift

To download a file from the object storage, a RESTful HT'TP method of GET
is used. GET is implemented inside the ObjectController class of server.py
(object server). When a request is made to retrieve a file, the object server

37 Design and Implementation

returns an iterator to retrieve that file. The file location is determined using
the hashing of accounts, containers and objects. The GET method downloads
the encrypted file chunk by chunk and decrypts them using the M2Crypto
Library. The decrypted object (file) is returned to the proxy server of Swift.

Chapter 5

Deployment and Validation
through OpenStack

This chapter discusses details about the deployment of OpenStack for devel-
opment. DevStack is composed of shell scripts to make complete development
environment of OpenStack. This chapter also describes the use of DevStack
for debugging the source code of OpenStack. For debugging the source code
the Python debugger (pdb) is used. The results of adding encryption to Open-
Stack are shown along the techniques to verify the encryption of disk images
from the OpenStack dashboard.

5.1 Deployment of OpenStack

In order to perform development in OpenStack, a developers version of Open-
Stack exists that is known as DevStack. DevStack is easy to deploy and
provides a development platform for OpenStack. DevStack consists of doc-
umented shell scripts to configure complete OpenStack development envi-
ronment [50]. The recommended way to install DevStack is on Linux run-
ning on a virtual machine. Typical configuration used for installing De-
vstack is Ubuntu 12.04 LTS as host OS For deploying DevStack on your
virtual machine, git has to be installed inside the VM. After installing fit,
DevStack repo can be cloned by using the following command, ”git clone
https://github.com/openstack-dev/devstack.git”. After browsing to devs-
tack directory, create a localrc file in devstack directory. The localrc file in
DevStack contains some of the configuration primitives which can be modi-
fied as-per-need basis. Now OpenStack can be started. In devstack directory,
execute the stack.sh script and after the execution is complete, output will
be similar to one shown in Figure 5.1. Figure shows that the working deploy-

39 Deployment and Validation through OpenStack

Keystone is serving at http://172.16.25.136:5000/v2.0/
Examples on using novaclient command line is in exercise.sh
The default users are: admin and demo

The password: malik

This is your host ip: 172.16.25.136
stack.sh completed in 750 seconds.
kazim@ubuntu: /opt/stack/devstack$ |

Figure 5.1: Output of the running DevStack

ment of OpenStack is configured to run only Keystone and Swift. Keystone
is an OpenStack project that provides Identity, Token, Catalog and Policy
services for use projects in OpenStack. The Keystone Identity Service allows
clients to obtain tokens that can be used to access OpenStack cloud services
[51]. As OpenStack GUI (Horizon) it is not enabled, it cant be accessed.

5.2 Adding objects to OpenStack Swift

To add objects to Swift, go into the DevStack directory. The absolute path of
DevStack Swift is /opt/stack/devstack. The command source openrc autho-
rizes users for using OpenStack Swift and generates a token for authorization.
Without this token Swift cant be accessed. Before adding objects in Swift,
containers need to be added. Status of the new container can be seen be
giving the command Swift stat”. Containers are essentially databases that
are used to store information about objects. These are directories where files
(objects) can be stored. Figure 5.2 shows the status of new container created.

The command swift stat will now show a single container. The newly
created container can also be viewed by opening the root directory and nav-
igating to /opt/stack/data/swift/drives/sdbX/Y /sdbZ/containers/. Inside
the nested container directory, a file named as xxx.db will be present. This
is the database that holds the information about objects stored by Swift.

5.3 Debugging Swift

All of the code for OpenStack components is located in their respective di-
rectories. Repository locations are stored in stackre file in the devstack di-
rectory. The default location of the swift repo can be replaced with user
modified version of Swift. To do that navigate to Swift on github and fork
the repo. After that, copy the forked repo’s clone URL.

40 Deployment and Validation through OpenStack

azim@ubuntu: /opt/stack/devstackS swift stat TestContainer
Account: AUTH_71900f62ab4441cab52b8d550a26bof5s
Container: TestContainer
Objects: ©
Bytes: ©
Read ACL:
Write ACL:

Sync To:

Sync Key:
Accept-Ranges: bytes
X-Timestamp: 1384843605.14920
X-Trans-Id: tx2eac3c10376048498e821-00528b095f
Content-Type: text/plain; charset=utf-8
kazim@ubuntu: /opt/stack/devstacks [}

Figure 5.2: Status of Container named TestContainer

The debugging OpenStack Swift code can be started at this stage. For
debugging OpenStack code, the Python Debugger (pdb) is used. Major
features of pdb include source code listing, line stepping at source code level,
setting breakpoints and providing quick response. Pdb can be used to execute
the statement, evaluate an expression, call a function and enter post-mortem
debugging all under the debugger control. To add pdb debugger to Swift,
navigate to the obj directory, import pdb and use its debugging options.

This sets a breakpoint in the PUT function of the ObjectController class
and will hit each time a command is given to upload a file to the server.
Ensure that two terminals are running side by side. Enter screen -r in one of
the terminal (call it Termial2). Hit Ctrl + A + X where X corresponds to
the number against s-object. Now on the other terminal (Terminall), Swift
upload commands can be issued for any container.

A breakpoint will be hit onTerminal2 where code can be debugged using
normal pdb commands. In case if something goes wrong in Terminal2, Ctrl
+ C can be pressed. This will restart the object server and debugging can
be started again.

5.4 Code Validation through OpenStack

Complete OpenStack deployment through DevStack can be used accessed
through dashboard. To verify the implementation we will add new images to
verify their encrypted storage. We start by accessing OpenStack to add new
images and launch VMs. The URL on which Horizon is running after the
successful execution of DevStack can be entered to browser. Login using the

41 Deployment and Validation through OpenStack

credentials (username and password) obtained from Keystone after successful
execution of DevStack as shown in figure 5.3.

Horizon is now available at http://172.16.25.136/

Keystone is serving at http://172.16.25.136:5000/v2.0/
Examples on using novaclient command line is in exercise.sh
The default users are: admin and demo

The password: malik

This is your host ip: 172.16.25.136
stack.sh completed in 750 seconds.
kazim@ubuntu: /opt/stack/devstacks [}

Figure 5.3: Horizon URL and User Credentials

After the login, new and custom images can be added to OpenStack.
The custom bootable image for OpenStack named cirros can be downloaded
from launchpad.net. For test case, download a Qcow2 bootable image named
cirros-0.3.0-1386-disk.img [52].

After downloading the image, go to Images tab on left side of Dashboard.
Click on create image, you can browse to the qcow image and select it to
upload. The image and format can be selected. All properties during creation
of custom image named Newimage are shown in figure 5.4.

This image is present in encrypted state on the disk. The location of
image can be seen in the directory /opt/stack/data/swift/drives/sdbX/Y /s-
dbZ/Objects/. To verify that the image is encrypted, view the size of image
uploaded and the original image that was downloaded. Moreover, Md5sum
can be used to take hashes of the two files and compare them.

To launch an instance using the encrypted image, click on Instance tab on
left and then on launch instance. Select the custom image named Newimage
to be used by the instance. The instance created using the Newimage is
shown in figure 5.6.

The image on disk will be automatically decrypted when you click on
launch. The instance can be used by the user and after the instance termi-
nation; the image will be saved in encrypted form on disk. Since the image
is present is encrypted state on disk, the data on image cannot be read and
accessed unless it is decrypted. Hence, the confidentiality of image in Cloud
storage is preserved.

42 Deployment and Validation through OpenStack

Create An Image

Name

Newimage

Description

Image Source

Image Flle :]

Image File

I/home/kazim/Desktop/(irros-o.3.1 Browse...

Format

VDI =

Minimum Disk (GB)

1

Minimum Ram (MB)

64

Description:
Specify an image to upload to the Image Service.

Currently only images avallable via an HTTP URL
are supported. The image location must be
accessible to the Image Service. Compressed image
binaries are supported (.zip and .tar.gz.)

Please note: The Image Location field MUST be a
valid and direct URL to the image binary. URLs that
redirect or serve error pages will resuilt in unusable

images.

Figure 5.4: Image creation process in OpenStack

OpenStack Dashboard - Mozilla Firefox

Bimages - OpenStack Dashbo... %
& (@ 172.16.25.136

n Images

openstack Images
Image Name Type
Admin € Image
System Panel Displaying 1 tem

- | [3- Q
P

Public Protected Format Actions

Yes No RAW Edt | More ™

Figure 5.5: Successful creation of image on OpenStack

43 Deployment and Validation through OpenStack

s - OpenStack Dashboard - Mozilla Firefox
B instances - OpenStack Dash... 3% JEIEIIS

3 1ty 4) 10:45PM 2 Kazim

& | @ 172.16.25.136

n Instances

openstack Instances Q) (irmer| [Lomon metance

- @[3~ Q

Instance Image P

Power
Name Name Address Size Keypair Status Task State Uptime Actions
Project
s m1.nano | 64MB .
Newimage ~10.0.0.2 RAM|1VCPU|O - Active None Running . | CresieSnapshot | More
Disk
demo Displaying 1 em

Manage Compute

Figure 5.6: Custom instance successfully running

Chapter 6

Evaluation

This chapter provides the evaluation results of the proposed system for virtual
machine images security in Cloud storage. We describe evaluation of our so-
lution against the possible threats on virtual machine images. The security
of various system components and the core features of data security are de-
scribed. The threat model provides the attacks mitigated by various system
features. The performance analysis presents the overhead caused by adding
image encryption during upload and download in Cloud.

6.1 Evaluation Methodology

The proposed solution in thesis provides security to virtual machine images in
Cloud storage. The evaluation scheme is based on validating the effectiveness
of security features against various attacks on virtual machine images. To
prove the security of proposed system various formal verification techniques
will be used. The verification of various algorithms is shown by following
the standard guidelines for National Institute of Standards and Technology
(NIST) guidelines.

Generally, before verifying the security properties of any system it is
important to identify the security attributes. Since our scheme is based on
security of images that contain operating system, applications and data, secu-
rity features such as confidentiality and integrity of images must be ensured.
Confidentiality and integrity are the two most areas of computer security.
Confidentiality refers to keeping the information secret from anyone except
the legitimate user; while integrity refers to ensuring the originality of images
such that they are not altered by anyone except the authorized user. Along
with measuring the ability of a system to protect data originality these se-
curity attributes also provide source originality. These attributes are critical

45 FEuvaluation

for the security of our system and guarantee that the images (or files) are
trustworthy and accurate.

6.1.1 Evaluation through NIST Guidelines

NIST has published a guideline for storage encryption technologies [53]. This
guideline presents the overview of storage security. In a distributed storage
system such as Cloud that contains a large amount of data, it is imperative to
follow guidelines for data storage security. For the security of data files NIST
has provided detailed phases for storage encryption technology. These phases
include identifying needs, designing the solution, implementing and testing a
prototype, deploying the solution and managing the solution. For designing
and implementing the solution it is recommended to use the most secure
cryptographic standards for encryption i.e. Advanced Encryption Standard
(AES) with key size of 256 bits (AES-256) [54].

After identifying the security needs for our system that include preserving
the confidentiality and integrity of virtual machine images, we have used the
AES-256 encryption standard for encrypting the images in Cloud storage. To
ensure the integrity of images in Cloud storage, hashing technique of MD5
is used. Before encryption of image, its MD5 is taken and stored with the
metadata of image file. After decryption of image, its MD5 is calculated
again and compared with the MD5 of image in metadata. This ensures
that the integrity of images in Cloud storage is maintained. After deploying
our solution on image storage component (Swift) of OpenStack, we test the
prototype against various attacks on VM images.

6.1.2 Threat Model

Virtual machine images are vulnerable to many attacks in Cloud. These
attacks include alteration of images, source code modification, data leakage,
backup data exposure and tampering of saved images by hypervisor. Our
system provides security to images from all these attacks. The mitigated
attacks on disk images and the mechanism for security against these attacks
is shown in the table 6.1.

6.2 Verification through Image Exploitation
Tools

Various tools exist that can be used to explore the image files and modify
them according to the needs. These tools include ISObuster, CDmage, Dae-

46 FEuvaluation

man Tools and Archive Manager [55]. These tools provide the utility to open
any image file. If someone has unauthorized access to images, he can use
tools to explore data inside images. As a result the confidentiality of images
can be compromised. These tools also allow modifying image files which
can be used by unauthorized users to violate the integrity of images. The
figure shows the complete contents of image getting displayed with the tool
of Archive Manager without launching image. However, the content of en-
crypted images cannot be displayed by these tools. As a result, the encrypted
images are prevented from data leakage and image modification.

ubuntu-mini-remix-10.04-amd64.iso [read only]

Open ~ $f Extract

@ Location: | [/

v Size Type Date Modified
186 bytes Folder
155.1 MB Folder
13.4kB Folder
160.3 kB Folder
gl isolinux 780.2kB Folder
¥ il pool 15.6 MB Folder
il preseed 1.0kB Folder
.checksum.md5 9.8kB unknown 21 July 2010, 00:00
mdSsum.txt 10.2kB plaintextd... 21 July2010, 00:00
README.diskdefines 228 bytes unknown 29 April 2010, 00:00

Figure 6.1: Exploring the VM image using Archive Manager

6.3 Performance Evaluation

In Cloud a large number of virtual machines may be present. The number of
virtual machines can range from thousands to millions. Each virtual machine
has its own image. Image contains the operating system, all the data of vir-
tual machines and is required by VMs to successfully boot. Similarly, when
a virtual machine is terminated the image has to be stored on Cloud. Ac-
cessing the image to load a virtual machine and storing it while terminating
a virtual machine takes some processing time depending on resources and
infrastructure. Applying the cryptographic operations such as encryption
can increase the processing time for managing images to be used by virtual

47 FEuvaluation

machines. The processing time can be increased due to many factors such
as increase of image size after encryption, retrieval of encryption keys during
encryption and decryption and due to applying the encryption algorithm of
AES-256 during VM loading and termination.

We have done analysis using the standard feature of Linux used to mea-
sure time interval for execution of a successful command. The analysis in-
volves the performance overhead caused during upload of encrypted images
to Swift (OpenStack) and their download from Swift for usage by VMs. Im-
ages of different sizes will be taken into consideration. System specifications
for testing are core i3 processor with 4 GB RAM.

The table 6.2 shows the time taken by different images during upload
with encryption and without encryption. Overall analysis shows that en-
cryption results in 15.8 percent increase in time taken during image upload.
Figure 6.2 shows the graphical analysis of time taken by different images
during upload in Swift. Table 6.3 shows the download time taken by en-
crypted images and non-encrypted images. Overall analysis shows that the
time taken by encrypted images during download is 14.8 percent more than
the time taken by normal images during download. Figure 6.3 shows the
graphical analysis of time taken by different images during download from
Swift. Overall, encryption causes the overhead of 15.3 percent during image
upload and download.

25

20

15

B Normal Image

n 10
B Encrypted Image

1 2 3 4 5 6 7 8 9 10 11 12

Image Number

Figure 6.2: Time taken by different images during upload to Swift

48

FEuvaluation

25
T
i
20
m
e
15
i
B Normal Image
n 10
B Encrypted Image
5
0 -
1 2 3 4 5 6 7 8 9 10 11 12
Image Number
Figure 6.3: Time taken by images during download from Swift
Attack Status Entity Mechanism
Alteration Mitigated Disk image Encryption is used to protect the
data from alteration and
Forgery. Only authorized users have
the privilege to get the keys for
decryption.
Data Leakage Mitigated Disk image Encrypted data is unreadable to
anyone except the authorized user.
Image modification Mitigated Disk image Hashing is used to prevent any
modification of image and ensure its
integrity.
Backup data exposure Mitigated Disk image Encrypted backup data is prevented
from exposure to unauthorized users.
Hypervisor tampering the | Mitigated Disk image Hypervisor is unable to read and
saved images modify the encrypted saved images.

Table 6.1: Attacks mitigated with the description of security mechanism

49

FEuvaluation

Image

Normal Upload Time (sec)

Upload

time

encryption (sec)

after

cirros-0.3.0-x86_64-disk.img 2.324 2.674
cirros-0.3.0-x86_64-disk.img 1.486 1.567
cirros-0.3.0-i386-rootfs.img 2.191 2.387
cirros-0.3.0-i386-rootfs.img 1.612 1.754
cirros-0.3.0-i386-disk.img 1.393 1.574
cirros-0.3.0-i386-disk.img 1.402 1.665
cirros-0.3.0-arm-rootfs.img 1.64 1.591
cirros-0.3.0-arm-rootfs.img 1.54 1.487
cirros-0.3.0-x86_64-uec.tar.gz 1.934 4.11
cirros-0.3.0-x86_64-uec.tar.gz 1.627 1.942
Ubuntu-mini-remix-10.04- 16.265 19.149
amd64.iso

Ubuntu-mini-remix-10.04- 11.057 12.037
amd64.iso

Total Time 44.833 51.937

Table 6.2: Image upload time in Swift before and after encryption

Image Normal download time | Download time after
(sec) encryption (sec)
cirros-0.3.0-x86_64-disk.img 1.305 1.422
cirros-0.3.0-x86_64-disk.img 1.184 1.36
cirros-0.3.0-i386-rootfs.img 2.173 2.252
cirros-0.3.0-i386-rootfs.img 1.629 1.378
cirros-0.3.0-i386-disk.img 1.16 1.224
cirros-0.3.0-i386-disk.img 1.101 1.319
cirros-0.3.0-arm-rootfs.img 1.105 1.215
cirros-0.3.0-arm-rootfs.img 1.232 1.283
cirros-0.3.0-x86_64-uec.tar.gz 1.103 4.283
cirros-0.3.0-x86_64-uec.tar.gz 1.726 1.942
Ubuntu-mini-remix-10.04-
amd64.iso 16.827 18.185
Ubuntu-mini-remix-10.04-
amd64.iso 17.793 19.657
Total Time 48.338 55.52

Table 6.3: Image download time in Swift before and after encryption

Chapter 7

Conclusion and Future
Directions

This chapter comprises of two parts. In the first part, we present the con-
clusion derwed from our research. We describe the research goals of our
system, the results achieved during research and our major contributions.
In the next part of chapter, the future directions of our research work are
described. The future research work includes adding security framework to
protect virtual machines during execution in Cloud. We also propose security
of user accounts in Swift along with image protection as future work.

7.1 Conclusion

The research was carried out in two different phases. The first phase com-
prised of the analysis of various components of virtualization in Cloud com-
puting. This analysis resulted in identification of security issues related to the
virtual machine images. The security of Cloud cannot be maintained unless
its virtualization environment is secured. Although different virtualization
approaches exist, bare metal virtualization approach is commonly used in
large computing systems such as Cloud for server virtualization. Our research
analyses general architecture of bare metal virtualization and covers security
aspects of its different components. Cloud virtualization environment can
be compromised by different attacks at service provider, hypervisor, virtual
machines, guest operating system and disk images. We have identified at-
tack scenarios at these components, general requirements for virtualization
security and different existing security schemes that provide security to vir-
tualization environment have also been discussed. We present the holistic
picture of virtualization security in Cloud through structured analysis in

51 Conclusion and Future Directions

which security requirements, attacks and solutions correspond to each other.
In the next phase of research, the framework for protection of virtual
machine images was designed in Cloud environment. This framework con-
sisted of virtual machine images encrypted storage in Cloud. Disk images are
vulnerable to different attacks during storage such as data leakage, malware
installation on images and snapshot access in storage. Using the proposed ar-
chitecture EVDIC, integrity of disk images and confidentiality of data stored
on them can be guaranteed during storage. We describe the integration
of EVDIC with OpenStack which is open source Cloud platform. EVDIC
performs the encryption of images in Object sever of Swift (storage compo-
nent). The evaluation of the system was done using the NIST guideline on
storage technologies. The effectiveness of the system to ensure virtual ma-
chine images integrity and confidentiality was verified using different image
exploration tools. Furthermore, the performance evaluation shows that our
system results in 15.3 percent overhead on the system. This overhead results
from accessing images and applying cryptographic operations on them.

7.2 Future Research Directions

Future directions include the problems that can be solved by extending our
research work. They provide research directions to solve the related research
problems. We describe two important future research directions as further
extensions of research which are.

1. Adding security of accounts in OpenStack Swift

2. Encrypted execution of virtual machines in Cloud computing

7.2.1 Adding security of accounts in OpenStack Swift

Swift architecture as discussed in chapter 4 contains four major components.
These components are Proxy, Container, Accounts and Objects. Objects are
the real files such as VM images that are to be stored in Swift, while Accounts
and Containers are databases [56]. Containers contain the lists of Objects
in Swift and Accounts store the list of Containers. Anyone with access to
Containers or Accounts databases can access the complete list and the IDs of
objects stored in Swift even if all the objects are encrypted. Therefore, to se-
cure the list of objects we propose a security framework for Swift Account and
Container databases. The framework consists of encrypting the Account and
Container databases so that only legitimate users can access them. During
the object storage on Swift, first the Object server will encrypt the objects.

52 Conclusion and Future Directions

The next step will be to encrypt the Container and Accounts databases re-
spectively. Similarly, during object download from Swift, first the Account
database and then the Container database will be decrypted. After locating
the object from these databases the Object server will decrypt the object.

7.2.2 Encrypted execution of Virtual Machines in Cloud
Computing

7.2.2.1 Introduction

Among all the security concerns related to Cloud, Infrastrcuture as a Ser-
vice (IaaS) layer security issues are the most critical. IaaS layer contains
virtualization components such as virtual machines, hypervisor and virtual
network. Virtual machines are vulnerable to many attacks, such as attacker
accessing host disk files through his virtual machine, creating rogue virtual
machines to occupy system resources and launch a DOS attack at Cloud, and
using backdoor virtual machines to leak sensitive data. Providing security
to virtual machines is the core of secure laaS services in Cloud. However,
virtual machines security has not been addressed properly due to which vir-
tual machines and thus the complete Cloud system can be compromised by
attackers.

Virtual machine images require high integrity, and their security is foun-
dation of overall Cloud computing system security. A large number of virtual
machines may be present in a Cloud server in active or offline state. Tradi-
tional security solutions for virtual machines have significant limitations, and
cannot deal with most threats. So a pre-emptive solution is required that
can provide security to VMs and prevent them from all possible attacks.
Along with these security issues other issues related to business, economy
and research also remain. Different commercial and research solutions have
been provided to secure the virtual machines at IaaS layer but the scope
of these solutions is quite limited and they are designed to deal with some
specific threats to virtual machines. E.g. Seongwook J. et al proposed real
time log monitoring to verify the integrity of virtual machines, Mikhail I.
et al developed a system called SPARC to prevent VM Checkpoint attacks
(in which malicious nodes taking snapshots of virtual machine image states),
Trent J. et al used sHype and added hooks to XEN authorization mechanism
to prevent covert channel communication between virtual machines in same
network and so on.

The purpose of this research will to develop a system that uses crypto-
graphic techniques to encrypt Virtual Machines during execution in Cloud.
This proposed system will mitigate a large number of possible threats that

53 Conclusion and Future Directions

can be performed by compromising the Virtual Machines. Successful exe-
cution of this system will protect the source code of virtual machines from
tampering and protect data leakage from virtual machines. Moreover, all the
active and offline virtual machines will be prevented from attacks through
malicious virtual machines of attacker in Cloud, network DOS attacks, from
covert channels that are used as a backdoor to transfer data between virtual
machines, compromised Hypervisor attacks, VM Checkpoint attacks, attacks
on virtual machines during VM boot and storage. This research will provide
secure laaS layer services to Cloud users and encourage Telecom and IT in-
dustries to shift their company infrastructure to Cloud, to meet the ever
increasing needs of technology and infrastructure. The open source architec-
ture of the proposed system could be used to further extend this system.

7.2.2.2 Objectives of Research

The primary purpose of this project is to provide infrastructure level security
to Cloud environment by developing a system that provides secure execution
environment for virtual machines and protects them from tampering and
leakage of data. Each virtual machine is encrypted in the Cloud, so that no
attack can be launched on virtual machines even if the underlying hypervisor
or any virtual machine in the system is malicious.

The proposed system will provide a secure platform to virtual machines in
cloud environment. Major objectives of the proposed system are as follows.

1. Providing integrity to virtual machines in the cloud so that the source
code of VMs can be protected from tampering. Any malicious node in
Cloud system such as malicious hypervisor, virtual machine or any
attack through network may try to infect virtual machine code to
change its functionality, and compromise the integrity of virtual ma-
chine. However, the source code of encrypted virtual machine cant be
altered.

2. This system will provide confidentiality of data contained in the virtual
machines. Virtual machines may contain sensitive customer data and
files which the attacker may try to access and read. In the proposed
system, even if attacker has access to virtual machine he will not be
able to read whats stored inside the VM.

3. The execution of virtual machines will be in a secure environment where
they will be safe from all attacks. For example, there will be no covert
channels for inter VM communication, one compromised VM will not
be able to modify other VMs in system, a compromised hypervisor will

54 Conclusion and Future Directions

not be able to modify any VM, and storage of VMs in unused state will
also be secure.

4. Management of keys used for encryption will be secure and effective.
A centralized key management server will be there to deal with all
key management issues in an efficient way. This server will follow the
security standards for key management given by NIST.

7.2.2.3 Possible Issues

One of the two major components of system will be the key management
server that manages keys and policies related to encryption, other will be a
virtual machine on top of hypervisor that will export virtual machines and
encrypt them according to policy. The storage model will be flexible, that
will not only include encryption but also key management through policy.
Key policy will remove complexities of key management. The proposed sys-
tem will be deployed on open source Cloud computing platforms such as
OpenStack, which is getting increasingly adopted around the world. The
principle technical issues that must be addressed are following:

1. Virtual machines have their own operating system and behave just like
a physical machine with their own CPU, RAM and hard drive. A single
virtual machine image requires 2GB of memory to run (in OpenStack),
and in a complete Cloud system a number of virtual machines are
running that requires a lot of physical resources such as RAM, hard
disk, and CPU cycles. By encrypting the virtual machines, size of
each virtual machine will increase which will consume more resources
of the system. These all activities will result in increased performance
overhead on system. We will simulate the results of the system, and
analyze its performance.

2. In encryption one of the most important issue is the secure storage
and retrieval of keys used in encryption. Weak key management can
compromise strong encryption algorithm. Eventually the security of
data and information protected by encryption depends on the security
of keys. So the mechanism for the protection of keys must be effective
to protect all private and public keys from modification, and private
keys from disclosure. In the proposed system, there will be a dedicated
server which will ensure secure storage of keys and all issues related to
key management. This server will follow the best security practices for
key management mentioned by NIST.

55 Conclusion and Future Directions

7.2.2.4 Final Results

The following results will be obtained from this research.

1. A functional system that can be deployed on existing Cloud comput-
ing systems, to provide laaS layer security by encryption of virtual
machines. Virtual machines in Cloud are provided an environment in
which they can execute securely without their integrity and confiden-
tiality getting compromised.

2. Cloud vendors can use the proposed system to provide secure infras-
tructure layer security to the customers.

3. The proposed system will provide security services to the organizations
using Cloud by mitigating major threats to their infrastructure.

4. Virtual machines security in Cloud is a new topic of research. The open
source architecture of proposed system can be studied and extended by
researchers to add further security features for laaS layer.

Appendix A

Documentation on Adding
Encryption to OpenStack Swift

A.1 Deploying OpenStack

In order to perform development in OpenStack, they have provided a de-
velopers version of OpenStack called as DevStack. It is easy to deploy and
provides a development platform for OpenStack. DevStack is a documented
shell script to build complete OpenStack development environments and is
located at http://devstack.org/. The recommended way to install DevStack
is on Linux running on a virtual machine. Typical configuration used for
installing Devstack is as follows.

e Ubuntu 12.04 LTS as host OS
e Ubuntu 12.04 LTS as guest OS running on VMware Player

For deploying DevStack on your virtual machine, you have to make sure
that git is installed inside your VM. Install it using the following commands.

apt—-get update
apt—-get install git

Clone the DevStack repo using the following and navigate to devstack
directory.

git clone https://github.com/openstack-dev/devstack.git
cd devstack

o7 Documentation on Adding Encryption to OpenStack Swift

We are not going to execute the stack.sh script right now because we have
to modify our localrc to disable all other services except swift and keystone.
The localrc file (located in devstack) contains some of the configuration prim-
itives which can be modified as-per-need basis. At this point, create a localrc
file in devstack directory and add following lines in it.

ADMIN_PASSWORD=password
MYSQL_PASSWORD=password
RABBIT_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=tokentoken

Now add the following lines.

disable_all_ services
enable_service key mysqgl s—-proxy s—-object s—-container
s—account

We are now ready to start OpenStack. cd into the devstack directory and
execute the stack.sh script using the following command.

./stack.sh

After the execution is complete, you will see output similar to one shown
in figure A.1.

Keystone is serving at http://172.16.25.136:5000/v2.0/
Examples on using novaclient command line is in exercise.sh
The default users are: admin and demo

The password: malik

This is your host ip: 172.16.25.136
stack.sh completed in 750 seconds.
kazim@ubuntu: /opt/stack/devstack$ |

Figure A.1: Output of the running DevStack

You have a working deployment of OpenStack, configured to run only
Keystone and Swift. Hence don’t expect the OpenStack GUI (Horizon) to
work right now as it is not enabled.

A.1.1 Adding objects to OpenStack Swift

At this point, you should already be familiar with Keystone, its relation with
every other component of OpenStack and its necessity. Keystone is an Open-
Stack project that provides Identity, Token, Catalog and Policy services for

58 Documentation on Adding Encryption to OpenStack Swift

use specifically by projects in the OpenStack family. The Keystone Identity
Service allows clients to obtain tokens that can be used to access OpenStack
cloud services.

To add objects to Swift, go into the DevStack directory. The absolute
path of DevStack Swift is /opt/stack /devstack. Enter the following com-
mand in your terminal.

source openrc

This command authorizes you for using OpenStack Swift and generates
a token for you. Without it, you cannot access Swift. Now that we are
authorized, enter the following command.

swift stat
You should see something like this.

Account: AUTH_54805eb6837e40818998e59%ee6ead0c’/
Containers: O

Objects: 0

Bytes: O

Accept—Ranges: bytes

X-Timestamp: 1379268007.20819

X-Trans—-Id: tx93f58db540574b228fd87effd76c5221
Content-Type: text/plain; charset=utf-8

Now that we have got complete access to Swift, lets create containers and
objects. Enter the following command to create a container in OpenStack
Swift.

swift post TestContainer

This will create a new container called TestContainer. Status of the new
container can be seen be giving the command Swift stat TestContainer. Con-
tainers are essentially databases that are used to store information about
objects. Consider them as directories where you can store files (objects).
Figure A.2 shows the status of new container created.

Now enter swift stat. You will see that your account now contains a single
container. You can also physically see a container. Open your root directory
and navigate to /opt/stack/data/swift/drives/sdbX /Y /sdbZ/containers.

Go deep into the nested directories inside the container directory and you
will eventually find a file named as xxx.db. This is the database that will
hold information about objects stored by Swift.

If you want to know more about the container, enter swift stat TestCon-
tainer. Now lets upload a test file. Navigate to any directory containing a
desired file to be uploaded and enter the following command.

59 Documentation on Adding Encryption to OpenStack Swift

azim@ubuntu: /opt/stack/devstackS swift stat TestContainer
Account: AUTH_71900f62ab4441cab52b8d550a26bof5s
Container: TestContainer
Objects: ©
Bytes: ©
Read ACL:
Write ACL:

Sync To:

Sync Key:
Accept-Ranges: bytes
X-Timestamp: 1384843605.14920
X-Trans-Id: tx2eac3c10376048498e821-00528b095f
Content-Type: text/plain; charset=utf-8
kazim@ubuntu: /opt/stack/devstacks [}

Figure A.2: Status of Container named TestContainer

swift upload TestContainer Test_File

That was it for some of the basic operations on Swift. You can view CLI
help by issuing.

swift h

60 Documentation on Adding Encryption to OpenStack Swift

A.2 Debugging OpenStack

After DevStack is configured, navigate to opt/stack directory on your ma-
chine. All of the code for OpenStack components is located in their respective
directories. Now navigate to swift/swift directory. These directories contain
code for their respective components. For instance, account will contain code
for the account server, obj will contain the code for object server and so on.
Following are the most important directories:

account

® Common

container

e 0bj
® Droxy

We will debug the code in a bit but lets, first make some important
things clear. All the code in these directories are downloaded from online
Swift GitHub repos. You can modify these repos to download and replace
your code instead of the default ones. This is very important. As soon as
you start working on your own code, you will have to add it to some version
control to keep track of your changes. You can then share that repository
with anyone who can then download a working copy such that his OpenStack
deployment will use your code instead of the default one.

Repository locations are stored in stackrc file in the devstack directory.
Lets now replace the default location of the swift repo with your own. Go to

https://github.com/openstack/swift

and fork the repo. After that, copy the forked repo’s clone URL and
paste it in stackrc.

Deploy OpenStack by executing stack.sh script. This deployment will
now run your code (in this case Swift code. At this point, you should be
comfortable with the Python Debugger (pdb) because this is the tool we
would rely on for debugging Swift. We have to do some minor tweaks so lets
do them first.

Locate utils.py in common directory of swift and add following lines in
utils.py.

stdio_files = [sys.stdin, sys.stdout, sys.stderr]
stdio_files []

61 Documentation on Adding Encryption to OpenStack Swift

Now lets set our first breakpoint. Navigate to the obj directory and open
server.py. Navigate to the class ObjectController’s PUT function and add
the following lines:

import pdb
pdb.set_trace()

This sets a breakpoint in the PUT function of the ObjectController class
and will hit each time you try uploading a file to the server. Save the file
and exit. The next step is the actual debugging.

Ensure that you have two terminals opened side by side. Enter screen
-r in one of the terminal (call it Termial2). Hit Ctrl + A + X where X
corresponds to the number against s-object.

Now on the other terminal (Terminall), issue upload commands to a swift
container of your choice.

You will be able to hit breakpoint onTerminal2 where you can debug it
using normal pdb commands. In case if something goes wrong in Terminal2,
hit Ctrl + C, press the up arrow key and hit enter. This will restart the
object server and you are good to go again with your debugging.

62 Documentation on Adding Encryption to OpenStack Swift

A.3 OpenStack Object Server Code Break-
down and Object Encryption

OpenStack Swift API is implemented as a set of ReSTful web services. Nav-
igate to the opt/stack directory on your virtual machine. Now, navigate to
swift /swift /obj directory and open server.py in your favorite Python editor.
server.py contains most of the Swift Object Server code.

e DiskFile class for file I/O

e ObjectController class which handles all the requests made by the user
to the Swift object storage

You will find the conventional requests methods such as PUT, POST and
GET inside the ObjectController class. The point of our focus here is file
PUT so we are going to skip the breakdown of POST and GET functions.
To upload a file to the object storage, a put request is issued and handled by
PUT function of the ObjectController class.

At this point, it would be a good idea to setup breakpoints in the Object-
Controller PUT function and upload a file a file to start debugging. When
you upload a file to the object storage, it is not written in a single go. Each
file is read into a number of small chunks and are stored in a temporary file
which acts as a buffer. Contents from the temporary file are then written to
a permanent file when buffer size reaches a certain threshold value (defualt
is 512 MB). Following are some of the important lines/loops from the PUT
function.

file = DiskFile(self.devices,device,partition, account,
container,obj,self.logger,disk_chunk_size=
self.disk_chunk_size,origin_disk_chunk_size=
self.origin_disk_chunk_size)
with file.mkstemp () as fd:
for chunk in iter (lambda:
reader (self.network_chunk_size),’’):
while chunk:
written = os.write(fd, chunk)
chunk = chunk|[written:]
$# For large files sync every 512MB (by default) written
if upload_size-last_sync>=self.bytes_per_sync:
tpool.execute (fdatasync, £d)
drop_buffer_cache (fd, last_sync,

63 Documentation on Adding Encryption to OpenStack Swift

upload_size-last_sync)
last_sync = upload_size

With this basic understanding of how a call to PUT works, we will now
talk about object encryption. Since each of the chunks is written to a buffer,
it would be wise to encrypt them before they are written to it. In this way,
contents are copied from the buffer to the actual file will be encrypted such
that when all chunks are written to the actual file, the file will be encrypted.
To handle encryption, we have created a separate Encryptor.py file that will
handle the encryption and return encrypted chunks. Our Encryption classes
use the popular M2Crypto package to perform encryption. M2Crypto is
present as a as a fully supported package in the Ubuntu 10.04 and later
repositories. It can be installed using the command.

sudo apt-get install python-m2crypto

The following line in the PUT function of server.py will perform and
return an encrypted chunk.

enc = encrypted();
enc.EncryptFile (fname)

Parameter fname is the path of the file that is to be written to disk.
Writing the encrypted chunks would be similar to our previous descriptions.
Note that the current implementation uses a constant key that is saved in a
configuration file. Our implementation lacks a functional keystore. See the
following code used for encryption in the encrypted class in Encrypt.py file.

class encrypted:

def _ init_ (self):
self.key=128
self.alg='"aes_128_cbc’
self.key="123452345"
self.iv = 73141527182810345"

def set_state(self, op=ENC) :
self.cipher =M2Crypto.EVP.Cipher
(alg=self.alg, key=self.key,
iv=self.iv, op=op)

def encrypt (self,msqg) :
v = self.cipher.update (msqg)
v = v + self.cipher.final ()
return v

def EncryptFile(self,dname) :

64 Documentation on Adding Encryption to OpenStack Swift

os.chdir (dname)

for filename in os.listdir(’.’):
with open(filename) as f:
content = f.read()

f.close()

self.set_state (1)

content = self.encrypt (content)
print ’Successful Encryption’
faname = os.path.join (dname, filename)
f = open(faname, 'w’)

f.write (content)

f.close();

Decryption is analogous to our description above but will occur in the
ObjectController class. When a request is made to retrieve a file, the object
server returns an iterator to retrieve that file. It is the responsibility of that
GET function of server.py to decrypt file before returning it. Following code
in Encrypt.py performs the decryption.

def DecryptFile(self,dname,obj):
objectname = ob]
os.chdir (dname)
for filename in os.listdir(’".”):
with open(filename) as f:

content = f.read()

f.close()

self.set_state (0)

content = self.encrypt (content)

print ’Successful Decryption’

completeName = os.path.join(dname, filename)
f = open(completeName, "w’)

f.write (content)
f.close();

65 Documentation on Adding Encryption to OpenStack Swift

A.4 Deployment

For deploying the Swift encryption code in OpenStack, following steps need
to be followed.

e [t is recommend a fresh VM of Ubuntu desktop, as previously saved
changes in Devstack can get lost.

e Create a folder in /opt named stack.
e Go to /opt/stack and copy the devstack.tar folder provided with code.

e From command line, extract the devstack.tar.gz folder in /opt/stack
using the following command: tar xpvzf devstack.tar.gz devstack/

e Now extract the swift.tar.gz with encryption code, using same com-
mand in the /opt/stack folder.

e Run the Devstack script and it will download nova, keystone, glance,
horizon and others services from internet.

e Change glance/etc/glance-api.conf file to use Swift store.
e Run the script ./stack.sh.

e After successful completion of script, goto /opt/stack/data/swift/1/sdbl/
objects. Delete the existing objects here so that you can check for the
objects you add by yourself.

e From dashboard, add an .img Qcow2 bootable image. Check the image
you just uploaded from dashboard in /opt/stack/data/swift/1/sdbl/
objects. This image will be stored encrypted. This can be verified by
using image size and mdbsum as mentioned in documentation.

e Launch an instance from this image, the image will be decrypted before
use by VM and VM should be launched in ’active’ state. You should
be able to access its console.

66 Documentation on Adding Encryption to OpenStack Swift

A.5 Testing

Complete OpenStack deployment through DevStack can be used accessed
through dashboard. The URL on which Horizon is running after the suc-
cessful execution of DevStack can be entered to browser. Login using the
credentials (username and password) obtained from Keystone after success-
ful execution of DevStack as shown in figure A.3.

Horizon is now available at http://172.16.25.136/

Keystone is serving at http://172.16.25.136:5000/v2.0/
Examples on using novaclient command line is in exercise.sh
The default users are: admin and demo

The password: malik

This is your host ip: 172.16.25.136
stack.sh completed in 750 seconds.
kazim@ubuntu: /opt/stack/devstack$ |

Figure A.3: Horizon URL and User Credentials

After the login, new and custom images can be added to OpenStack. The
custom bootable image for OpenStack named cirros can be downloaded from

https://launchpad.net/cirros/+download.

For test case, we can download a Qcow2 bootable image from above link.
After downloading the image, go to Images tab on left side of Dashboard.
Click on create image, you can browse to the qcow image and select it to
upload. You can name the image and select its format. All properties during
creation of custom image named Newimage are shown in figure A.4.

This image is present in encrypted state on the disk. The location of
image can be seen in the directory /opt/stack/data/swift/drives/sdbX/Y /s-
dbZ/Objects/. To verify that the image is encrypted, we can see the size of
image uploaded and the original image that was downloaded. Moreover, we
can use Mdbsum to take hashes of the two files and compare them.

Figure A.6 shows the md5sum and size of images added in Swift with-
out encryption. Without encryption, the md5sum and size of original and
uploaded images are same.

To launch an instance using the encrypted image, click on Instance tab on
left and then on launch instance. Select the custom image named Newimage
to be used by the instance. The instance created using the Newimage is
shown in figure A.7.

67 Documentation on Adding Encryption to OpenStack Swift

Create An Image

Name

Newimage

Description

Image Source

Image Flle :]

Image Flle

I/home/kazim/Desktop/c1rros-0.3.1 Browse...

Format

VDI =

Minimum Disk (GB)

1

Minimum Ram (MB)

64

Description:
Specify an image to upload to the Image Service.

Currently only images avallable via an HTTP URL
are supported. The image location must be
accessible to the Image Service. Compressed image
binaries are supported (.zip and .tar.gz.)

Please note: The Image Location field MUST be a
valid and direct URL to the image binary. URLs that
redirect or serve error pages will result in unusable

images.

Figure A.4: Image creation process in OpenStack

Openstack Dashboard - Mozilla Firefox
Blimages - OpenStack Dashbo... 3% KL

@ @ 172.16.25.136,

n Images

openstack Images
Image Name Type
Admin Now image
System Panel Opleying 1 4o

2 1 @)

- [}~ Q

4 Create Image W Delete Images.
Public Protected Format Actions

Yes No RAW E® | More ™

Figure A.5: Successful creation of image on OpenStack

The image on disk will be automatically decrypted when you click on
launch. The instance can be used by the user and after the instance termi-
nation; the image will be saved in encrypted form on disk. Since the image

68 Documentation on Adding Encryption to OpenStack Swift

kazim@ubuntu: /opt/stack/devstack$ swift post test

kazim@ubuntu: /opt/stack/devstack$ swift upload test cirros-0.3.0-1386-disk.img

cirros-0.3.0-1386-disk.img

kazim@ubuntu: /opt/stack/devstack$ md5sum /opt/stack/devstack/cirros-0.3.0-1386-disk.img

a780d603d326da412999b6c5094d31b5 /opt/stack/devstack/cirros-0.3.0-1386-disk.img

kazim@ubuntu: /opt/stack/devstack$ md5sum /opt/stack/data/swift/1/sdbl/objects/161/ea5/50d39323b4da5637f076d544974d8ea’5/1385725959.63670.
data

a780d603d326da412999b6c5094d31b5 /opt/stack/data/swift/1/sdbl/objects/161/ea5/50d39323b4ada5637f076d544974d8eas/1385725959.63670.data
kazim@ubuntu: /opt/stack/devstack$ ls -1 /opt/stack/devstack/cirros-0.3.0-1386-disk.img

rw-rw-r-- 1 kazim kazim 9159200 Nov 8 02:00 /opt/stack/devstack/cirros-0.3.0-1386-disk.img

kazim@ubuntu: /opt/stack/devstack$ 1s -1 /opt/stack/data/swift/1/sdbi/objects/161/ea5/50d39323b4da5637f076d544974d8ea5/1385725959.63670.d

1 kazim kazim 9159200 Nov 29 03:52 /opt/stack/data/swift/1/sdbl/objects/161/ea5/50d39323b4da5637f076d544974d8ea5/1385725959.6

13

s - OpenStack Dashboart ozilla Firefox
Instances - OpenStack Dash... 3% RN

&« 172.16.25.136, 2 <R Q

n Instances

openstack Instances Q| Frer + Launchinstance

Instance Image P Power
Name Name Address Size Keypair Status Task State Uptime Actions
m1.nano | 64MB °
Newimage 10.0.0.2 RAM|1VCPU|0 Active None Running Croato Snepshot | More

Disk minutes

demo Displaying 1 tem

Figure A.7: Custom instance successfully running

is present is encrypted state on disk, the data on image cannot be read and
accessed unless it is decrypted. Hence, the confidentiality of image in Cloud
storage is preserved.

69 Documentation on Adding Encryption to OpenStack Swift

A.6 Configuring Glance to store virtual ma-
chine images

The configuration file for the Image API is /etc/glance/glance-api.conf. To
configure glance for using Swift, modify the /etc/glance/glance-api.conf file.

default_store = swift

A.7 Enable and Disable any service in Open-
Stack

The devstack directory contains a file named localrc. localre file can be used
to enable or disable or any service of OpenStack. To use Swift for develop-
ment, only Keystone and Mysql can be enabled with Swift after disabling all
other services. It can be done using the following commands.

disable_all_services
enable_service key mysqgl s—-proxy s—-object s—-account
s—container

Similarly, any other OpenStack service can be enabled by modifying lo-
calre.

A.8 Using Devstack with proxy server

For running Devstack behind the proxy server, following lines need to added
to the localrce file in /opt/stack/devstack folder. It is assumed that proxy
address is 10.1.11.11 with port 8080.

http_proxy = http://10.1.11.11:8080/
https_proxy = http://10.1.11.11:8080/
export no_proxy = "localhost,127.0.0.1"
HOST_IP=localhost

SERVICE_HOST=S$SHOST_IP
IMAGE_HOST=S$HOST_IP
IDENTITY_HOST=$SHOST_IP

70 Documentation on Adding Encryption to OpenStack Swift

A.9 DMaintaining Logs for Devstack

To maintain logs for Devstack, following line needs to be added to the lo-
calrc file in /opt/stack/devstack directory. The logs will be maintained in
/opt/stack/logs directory.

LOGFILE=S$DEST/logs/stack.sh.log

A.10 Common Errors

A.10.1 E: Could not get lock /var/lib/dpkg/lock - open
(11 Resource temporarily unavailable)

A common error encountered while running a devstack script is, E: Could
not get lock /var/lib/dpkg/lock - open (11 Resource temporarily unavailable.
To solve this issue, run the following commands in devstack directory before
rerunning script.

sudo rm /var/lib/apt/lists/lock
sudo rm /var/cache/apt/archives/lock

A.10.2 Invalid Nova Credentials (Unauthorized HTTP
401)

The admin user credentials also need to be put into /etc/nova/api-paste.ini.
The values that need to be added in .ini file are

admin_tenant_name, admin_user, and admin_password.

More details can be found here, https://ask.openstack.org/en/question/3571/
nova-client-error-unauthorized-http-401.

Bibliography

1]

“Cloud computing service models,” http://www.ibm.com/
developerworks/cloud/library /cl-cloudservicemodels /?cmp=dw&cpb=
dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011, last Accessed:
2012-10-26.

“Cloud computing architectural framework,” https://wiki.
cloudsecurityalliance.org/guidance /index.php /Cloud _Computing_
Architectural_Framework, last Accessed: 2012-10-27.

D. Orlando, “Cloud computing service models,” |http://www.
ibm.com /developerworks/cloud /library /cl-cloudservicesliaas/cl-
cloudservicesliaas-pdf.pdf, last Accessed: 2012-10-27.

“What is cloud?” http://www.ibm.com/cloud-computing/in/en/what-
is-cloud-computing.html, last Accessed: 2012-10-29.

E. Bugnion, S. Devine, K. Govil, and M. Rosenblum, “Disco: Run-
ning commodity operating systems on scalable multiprocessors,” ACM
Transactions on Computer Systems (TOCS), vol. 15, no. 4, pp. 412-447,
1997.

“Virtualization overview,” http://www.vmware.com/pdf/
virtualization.pdf], last Accessed: 2013-11-14.

“Virtual machines security guidelines,” |http://www.lasr.cs.ucla.
edu/classes/239_1.fall10/papers/CIS_VM_Benchmark v1.0.pdf, last
Accessed: 2013-09-26.

P. Hoffman, K. Scarfone, and M. Souppaya, “Guide to security for full
virtualization technologies,” National Institute of Standards and Tech-
nology (NIST), pp. 800-125, 2011.

J. Kirch. (2007) Virtual machine security guidelines version 1.0. The
Center for Internet Security. [Online]. Available: http://www.lasr.cs.
ucla.edu/classes/239_1.fall10 /papers/CIS_-VM_Benchmark_v1.0.pdf

http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/?cmp=dw&cpb=dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/?cmp=dw&cpb=dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011
http://www.ibm.com/developerworks/cloud/library/cl-cloudservicemodels/?cmp=dw&cpb=dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011
https://wiki.cloudsecurityalliance.org/guidance/index.php/Cloud_Computing_Architectural_Framework
https://wiki.cloudsecurityalliance.org/guidance/index.php/Cloud_Computing_Architectural_Framework
https://wiki.cloudsecurityalliance.org/guidance/index.php/Cloud_Computing_Architectural_Framework
http://www.ibm.com/developerworks/cloud/library/cl-cloudservices1iaas/cl-cloudservices1iaas-pdf.pdf
http://www.ibm.com/developerworks/cloud/library/cl-cloudservices1iaas/cl-cloudservices1iaas-pdf.pdf
http://www.ibm.com/developerworks/cloud/library/cl-cloudservices1iaas/cl-cloudservices1iaas-pdf.pdf
http://www.ibm.com/cloud-computing/in/en/what-is-cloud-computing.html
http://www.ibm.com/cloud-computing/in/en/what-is-cloud-computing.html
http://www.vmware.com/pdf/virtualization.pdf
http://www.vmware.com/pdf/virtualization.pdf
http://www.lasr.cs.ucla.edu/classes/239_1.fall10/papers/CIS_VM_Benchmark_v1.0.pdf
http://www.lasr.cs.ucla.edu/classes/239_1.fall10/papers/CIS_VM_Benchmark_v1.0.pdf
http://www.lasr.cs.ucla.edu/classes/239_1.fall10/papers/CIS_VM_Benchmark_v1.0.pdf
http://www.lasr.cs.ucla.edu/classes/239_1.fall10/papers/CIS_VM_Benchmark_v1.0.pdf

72

BIBLIOGRAPHY

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[20]

D. Shackleford. (2010) A guide to virtualization hardening guides.
SANS. [Online]. Available: http://www.sans.org/reading_room/
analysts_program/vmware-guide-may-2010.pdf

G. Brunette and R. Mogull, “Security guidance for critical areas of focus
in cloud computing v2.1,” Cloud Security Alliance, pp. 1-76, 2009.

V.S. L. G. P. S. S. Council, “Pci dss virtualization guidelines v2.0,” pp.
1-39, 2011.

“The virtualization practice,” http://www.virtualizationpractice.com/
threat-analysis-layers-upon-layers-8942, last Accessed: 2012-12-04.

“State of cloud security report: Targeted attacks and real world hacks,”
http://www.alertlogic.com /resources/cloud-security-report/, last Ac-
cessed: 2013-04-14.

J. Szefer, E. Keller, R. Lee, and J. Rexford, “Eliminating the hypervisor
attack surface for a more secure cloud,” in Proceedings of the 18th ACM

conference on Computer and communications security. ACM, 2011, pp.
401-412.

J. Szefer and R. Lee, “A case for hardware protection of guest vms from
compromised hypervisors in cloud computing,” in Distributed Comput-
ing Systems Workshops (ICDCSW), 2011 31st International Conference
on. IEEE, 2011, pp. 248-252.

“Best practices for computer security,” http://kb.iu.edu/data/akln.
html, last Accessed: 2012-12-13.

J. Kong, “Protecting the confidentiality of virtual machines against un-
trusted host,” in Intelligence Information Processing and Trusted Com-
puting (IPTC), 2010 International Symposium on. IEEE, 2010, pp.
364-368.

M. Gofman, R. Luo, P. Yang, and K. Gopalan, “Sparc: a security and
privacy aware virtual machinecheckpointing mechanism,” in Proceedings
of the 10th annual ACM workshop on Privacy in the electronic society.
ACM, 2011, pp. 115-124.

S. Jin, J. Ahn, S. Cha, and J. Huh, “Architectural support for se-
cure virtualization under a vulnerable hypervisor,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchi-
tecture. ACM, 2011, pp. 272-283.

http://www.sans.org/reading_room/analysts_program/vmware-guide-may-2010.pdf
http://www.sans.org/reading_room/analysts_program/vmware-guide-may-2010.pdf
http://www.virtualizationpractice.com/threat-analysis-layers-upon-layers-8942
http://www.virtualizationpractice.com/threat-analysis-layers-upon-layers-8942
http://www.alertlogic.com/resources/cloud-security-report/
http://kb.iu.edu/data/akln.html
http://kb.iu.edu/data/akln.html

73

BIBLIOGRAPHY

[21]

22]

23]

[24]

[25]

[26]

[29]

[30]

31]

A. Ibrahim, J. Hamlyn-harris, and J. Grundy, “Emerging security chal-
lenges of cloud virtual infrastructure,” 2010.

E. Ray and E. Schultz, “Virtualization security,” in Proceedings of the
oth Annual Workshop on Cyber Security and Information Intelligence
Research: Cyber Security and Information Intelligence Challenges and
Strategies. ACM, 2009, p. 42.

J. Reuben, “A survey on virtual machine security,” Helsinki University
of Technology, 2007.

“Crisis malware targets virtual machines,” http://www.zdnet.com/
crisis-malware-targets-virtual-machines-7000002986, last Accessed:
2012-12-24.

R. Shea and J. Liu, “Understanding the impact of denial of service
attacks on virtual machines,” in Proceedings of the 2012 IEEE 20th
International Workshop on Quality of Service. TIEEE Press, 2012, p. 27.

W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and V. Bala, “Al-
ways up-to-date: scalable offline patching of vin images in a compute
cloud,” in Proceedings of the 26th Annual Computer Security Applica-
tions Conference. ACM, 2010, pp. 377-386.

“Authentication and access control the corner stone of information se-
curity,” http://www.tutorialspoint.com/white-papers/40.pdf, last Ac-
cessed: 2012-12-26.

R. Khan, J. Ylitalo, and A. Ahmed, “Openid authentication as a service
in openstack,” in Information Assurance and Security (IAS), 2011 7th
International Conference on. IEEE, 2011, pp. 372-377.

S. Rueda, Y. Sreenivasan, and T. Jaeger, “Flexible security configura-
tion for virtual machines,” in Proceedings of the 2nd ACM workshop on
Computer security architectures. ACM, 2008, pp. 35—44.

Z. Wang and X. Jiang, “Hypersafe: A lightweight approach to provide
lifetime hypervisor control-flow integrity,” in Security and Privacy (SP),
2010 IEEE Symposium on. 1EEE, 2010, pp. 380-395.

D. Shackleford, Virtualization Security: Protecting Virtualized Environ-
ments. John Wiley & Sons, 2012.

 http://www.zdnet.com/crisis-malware-targets-virtual-machines-7000002986
 http://www.zdnet.com/crisis-malware-targets-virtual-machines-7000002986
http://www.tutorialspoint.com/white-papers/40.pdf

74

BIBLIOGRAPHY

[32]

33]

[34]

[41]
[42]

[43]

D. Pelleg, M. Ben-Yehuda, R. Harper, L. Spainhower, and T. Adeshiyan,
“Vigilant—out-of-band detection of failures in virtual machines,” Oper-
ating systems review, vol. 42, no. 1, p. 26, 2008.

F. Lombardi and R. Pietro, “Secure virtualization for cloud computing,”
Journal of Network and Computer Applications, vol. 34, no. 4, pp. 1113—
1122, 2011.

S. Berger, R. Caceres, D. Pendarakis, R. Sailer, E. Valdez, R. Perez,
W. Schildhauer, and D. Srinivasan, “Tvdc: managing security in the
trusted virtual datacenter,” ACM SIGOPS Operating Systems Review,
vol. 42, no. 1, pp. 40-47, 2008.

R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. Doorn, J. L. Griffin, and
S. Berger, “shype: Secure hypervisor approach to trusted virtualized
systems,” Techn. Rep. RC23511, 2005.

T. Jaeger, R. Sailer, and Y. Sreenivasan, “Managing the risk of covert
information flows in virtual machine systems,” in Proceedings of the 12th

ACM symposium on Access control models and technologies. ACM,
2007, pp. 81-90.

J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning, “Managing security
of virtual machine images in a cloud environment,” in Proceedings of the
2009 ACM workshop on Cloud computing security. ACM, 2009, pp. 91—
96.

W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and V. Bala, “Al-
ways up-to-date: scalable offline patching of vm images in a compute
cloud,” in Proceedings of the 26th Annual Computer Security Applica-
tions Conference. ACM, 2010, pp. 377-386.

“Storage made easy,” https:/ /storagemadeeasy.com /files/
07bbead85c6467c40f69120156d23524.pdf, last Accessed: 2014-02-06.

“Piston cloud computing,” http://www.pistoncloud.com, last Accessed:
2013-02-21.

“Metacloud, inc.” www.metacloud.com, last Accessed: 2013-02-21.

W. Goddard and S. Melville, Research methodology: An introduction.
Juta and Company Ltd, 2004.

W. Booth, G. Colomb, and J. Williams, The craft of research. Univer-
sity of Chicago Press, 2003.

https://storagemadeeasy.com/files/07bbead85c6467c40f69f20156d23524.pdf
https://storagemadeeasy.com/files/07bbead85c6467c40f69f20156d23524.pdf
http://www.pistoncloud.com
www.metacloud.com

5 BIBLIOGRAPHY

[44] D. Wagner and B. Schneier, “Analysis of the ssl 3.0 protocol,” in The
Second USENIX Workshop on Electronic Commerce Proceedings, 1996,
pp- 29-40.

[45] “Openstack,” http://www.openstack.org, last Accessed: 2013-06-28.

[46] “Openstack compute: Administration guide,” http://docs.openstack.
org/trunk /openstack-compute/admin /bk-compute-adminguide-
trunk.pdf], last Accessed: 2013-06-22.

[47] “Openstack swift architecture,” http://swiftstack.com/openstack-
swift /, last Accessed: 2013-08-12.

[48] “Openstack/swift github,” https://github.com/openstack/swift/, last
Accessed: 2014-01-28.

[49] “M2crypto 0.22.3 : Python package index,” https://pypi.python.org/
pypi/M2Crypto, last Accessed: 2014-01-16.

[50] “Devstack,” http://devstack.org, last Accessed: 2014-01-30.

[51] K. Jackson, OpenStack Cloud Computing Cookbook. Packt Publishing
Ltd, 2012.

[52] “Cirros project files,” https://launchpad.net/cirros/+download, last
Accessed: 2014-01-30.

[53] K. Scarfone, M. Souppaya, and M. Sexton, “Guide to storage encryption
technologies for end user devices,” NIST Special Publication, vol. 800,
p. 111, 2007.

[54] P. FIPS, “197: Advanced encryption standard (aes),” National Institute
of Standards and Technology, 2001.

[55] “Extraction of contents from image (iso) file,” http://blogs.technet.
com/b/odsupport /archive/2011/04 /19 /how-to-extract-the-contents-
from-an-iso-file-without-burning-the-iso-to-disc.aspx, last Accessed:
2014-01-16.

[56] “Swift architectural overview,” http://docs.openstack.org/developer/
swift /overview _architecture.html, last Accessed: 2014-01-26.

http://www.openstack.org
http://docs.openstack.org/trunk/openstack-compute/admin/bk-compute-adminguide-trunk.pdf
http://docs.openstack.org/trunk/openstack-compute/admin/bk-compute-adminguide-trunk.pdf
http://docs.openstack.org/trunk/openstack-compute/admin/bk-compute-adminguide-trunk.pdf
http://swiftstack.com/openstack-swift/
http://swiftstack.com/openstack-swift/
https://github.com/openstack/swift/
https://pypi.python.org/pypi/M2Crypto
https://pypi.python.org/pypi/M2Crypto
http://devstack.org
https://launchpad.net/cirros/+download
http://blogs.technet.com/b/odsupport/archive/2011/04/19/how-to-extract-the-contents-from-an-iso-file-without-burning-the-iso-to-disc.aspx
http://blogs.technet.com/b/odsupport/archive/2011/04/19/how-to-extract-the-contents-from-an-iso-file-without-burning-the-iso-to-disc.aspx
http://blogs.technet.com/b/odsupport/archive/2011/04/19/how-to-extract-the-contents-from-an-iso-file-without-burning-the-iso-to-disc.aspx
http://docs.openstack.org/developer/swift/overview_architecture.html
http://docs.openstack.org/developer/swift/overview_architecture.html

	Introduction and Motivation
	Cloud Computing
	Virtualization
	Research Motivation
	Problem Statement
	Research Contributions
	Thesis Organization

	Related Work
	Bare Metal Virtualization
	Security requirements of Virtualization
	Service Provider Requirements
	Hypervisor Requirements
	Virtual Machine Requirements
	Disk Image Requirements

	Attacks on Virtualization
	Service Provider Attacks
	Hypervisor Attacks
	Virtual Machine Attacks
	Disk Image Attacks

	Security solutions for Virtualization
	 Service Provider Security
	Hypervisor Security
	Virtual Machine Security
	Disk Image Security

	Recommendations for secure usage of Virtual Machines
	Secure Network
	Disabling the Non-Required Features
	Disconnect Unused Hardware Devices
	Backup of Virtual Machine Images
	Hardening of Virtual Machines
	Auditing

	Industrial Survey
	Storage Made Easy
	Piston Cloud
	Metacloud

	Research Methodology
	Introduction
	Types of Research Methods
	Descriptive and Analytical Research
	Applied and Fundamental Research
	Quantitative and Qualitative Research
	Conceptual and Empirical Research
	Deductive and Inductive Approaches

	Thesis Research Methodology
	Research Objectives
	Research Methodologies
	Hypothesis
	Observations
	Implementation and Verification of Prototype

	Design and Implementation
	Design of Framework
	Image Encrypt Module (IEM)
	Image Decrypt Module (IDM)
	Key Management Server (KMS)
	Image Encryption through EVDIC
	Image Decryption through EVDIC

	EVDIC in OpenStack
	EVDIC Image Encryption in OpenStack
	EVDIC Image Decryption in OpenStack

	Implementation
	Object Upload in Swift
	Object Download in Swift
	Swift Source Code
	Object Encryption in Swift
	Object Decryption in Swift

	Deployment and Validation through OpenStack
	Deployment of OpenStack
	Adding objects to OpenStack Swift
	Debugging Swift
	Code Validation through OpenStack

	Evaluation
	Evaluation Methodology
	Evaluation through NIST Guidelines
	Threat Model

	Verification through Image Exploitation Tools
	Performance Evaluation

	Conclusion and Future Directions
	Conclusion
	Future Research Directions
	Adding security of accounts in OpenStack Swift
	Encrypted execution of Virtual Machines in Cloud Computing

	Appendix Documentation on Adding Encryption to OpenStack Swift
	Deploying OpenStack
	Adding objects to OpenStack Swift

	Debugging OpenStack
	OpenStack Object Server Code Breakdown and Object Encryption
	Deployment
	Testing
	Configuring Glance to store virtual machine images
	Enable and Disable any service in OpenStack
	Using Devstack with proxy server
	Maintaining Logs for Devstack
	Common Errors
	E: Could not get lock /var/lib/dpkg/lock - open (11 Resource temporarily unavailable)
	Invalid Nova Credentials (Unauthorized HTTP 401)

