
A Multi-agent Persistency Framework
using Cloud-Based Agent Mirroring

By
Nauman Khalid

2011-NUST-MSCS-025

Supervisor
Dr. Peter Bloodsworth

NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Computer Science (MS CS)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(May 2015)

Approval

It is certified that the contents and form of the thesis entitled “A Multi-
agent Persistency Framework using Cloud-Based Agent Mirroring”
submitted by Nauman Khalid have been found satisfactory for the require-
ment of the degree.

Advisor: Dr. Peter Bloodsworth

Signature:
Date:

Committee Member 1: Dr. Muhammad Sohail Iqbal

Signature:
Date:

Committee Member 2: Dr. Anis ur Rahman

Signature:
Date:

Committee Member 3: Mr. Shamyl Bin Mansoor

Signature:
Date:

i

Abstract

This thesis introduces a flexible cloud-based persistency framework that can
be used in a wide range of Multi-agent systems. The recent emergence of the
Internet of Things has made it possible for us to monitor and manage our
environment like never before. Small embedded devices can run an array of
sensors and communicate with each other using mechanisms such as Blue-
tooth SMART. Alongside such hardware developments, intelligent data pro-
cessing and control software also needs to be created. Multi-agent systems
provide a well-tailored architecture for such challenges. They are however
often limited in terms of persistency and scalability. In our work we have
designed and implemented a new in memory agent persistency framework. In
order to evaluate proposed approach two prototypes have been implemented,
one using the proposed solution and the other using an established agents
persistency environment. Experimental results confirm that our framework
is more scalable than existing approaches whilst providing a similar level of
persistency.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by an-
other person, nor material which to a substantial extent has been accepted
for the award of any degree or diploma at National University of Sciences
& Technology (NUST) School of Electrical Engineering & Computer Science
(SEECS) or at any other educational institute, except where due acknowl-
edgement has been made in the thesis. Any contribution made to the research
by others, with whom I have worked at NUST SEECS or elsewhere, is ex-
plicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Nauman Khalid

Signature:

iii

Acknowledgment

Up and above everything all glory to ALMIGHTY ALLAH. The Benef-
icent, The most Merciful and Most Compassionate. It’s a great blessing from
Almighty Allah that gives me the health and strength to do this research
work.

I would like to special thank the Supervisor Dr. Peter Bloodsworth for
his guidance, useful input and availability throughout my research work. His
support and encouragement was remark able and responded to my questions
and queries so promptly. I have to appreciate his enthusiasm and instant
review of my thesis which able me to complete my research work.

I would like to express my deep gratitude to Dr. Muhammad Sohail Iqbal,
Dr. Anis ur Rahman and Mr. Shamyl Bin Mansoor for being my committee
members. I would also like to thank Dr. Kamran Munir and Dr. Nauman
Qureshi for assisting me during my time as their student.

I wish to thank my lovely parents who always stood by me in time of
need. I also appreciate their love and complete support in completing my
thesis work. I will also thanks to my brothers and sister for their ultimate
motivation and support during all this time.

It gives me immense pleasure to thank my friends M. Iqbal Aziz, Usama
Shah, Tariq Habib Afridi, Naeem Ahmad, Fahad Shah and Anayat Malik
for sharing their knowledge. Their discussion and motivations were always
useful for me. They motivated me during the tough time in thesis journey. I
would like to thank everyone who is directly or indirectly contributed in my
thesis work.

Nauman Khalid

iv

Contents

1 INTRODUCTION 1
1.1 Research Areas . 2
1.2 Research Hypothesis . 3
1.3 Proposed Approach . 5
1.4 Research Methodology . 7
1.5 Thesis Outline . 8

2 LITERATURE REVIEW 10
2.1 Introduction . 10
2.2 Multi-agent Systems . 10

2.2.1 States of Multi-agent systems 11
2.2.2 Multi-agent systems Frameworks 12

2.3 Persistence approaches and Analysis 13
2.3.1 Persistence using the Java Persistence API 14
2.3.2 Persistence using Serialization 15
2.3.3 Persistency Using Databases 16
2.3.4 JADE Persistence Services 17

2.4 Agent Mobility in JADE . 18
2.5 Conclusion . 20

3 PROPOSED APPROACH 21
3.1 Introduction . 21
3.2 Literature Review Analysis . 22
3.3 Abstract Model . 24
3.4 Conclusion . 32

4 IMPLEMENTATION 34
4.1 Introduction . 34
4.2 Related Tools and Systems . 34

4.2.1 Amazon EC2 . 35
4.2.2 Inter-platform Communication 37

v

CONTENTS vi

4.3 Implementation of Prototypes 38
4.3.1 Implementation of Proposed Approach 39
4.3.2 Implementation of JADE Persistence Framework . . . 41

4.4 Conclusion . 42

5 EVALUATION AND RESULTS 43
5.1 Introduction . 43
5.2 Experiment Setup . 44
5.3 Qualitative Results . 45

5.3.1 Proposed Approach Qualitative Results 45
5.3.2 Qualitative Results of JADE Persistence Framework . . 47

5.4 Quantitative results . 49
5.4.1 Response Time . 49
5.4.2 CPU and Memory Usage 51
5.4.3 System Launch Time 52
5.4.4 Agent Recreation Time 53

5.5 Conclusion . 54

6 CONCLUSION AND FUTURE WORK 56
6.1 Final Assessment . 56
6.2 Future work . 58
6.3 Conclusion . 58

List of Abbreviations

Abbreviations Descriptions

JADE JAVA Agent Development Framework

MAS Multi-agent Systems

JDK Java Development Kit

AMS Agent Management System

MTP Message Transport Protocol

vii

List of Figures

1.1 Research Areas . 3
1.2 Steps in research methodology 7
1.3 Thesis outlines . 8

2.1 JADE based Agent Architecture [12] 13
2.2 Serialization/ De-serialization Process of object [19] 15

3.1 inter-platform mobility of agent 27
3.2 Architecture Diagram . 30
3.3 Sequence diagram for mobility process in proposed approach . 32

4.1 T2 instances specifications [11] 36
4.2 M3 instances specifications [11] 36
4.3 C3 instances specifications [11] 37
4.4 HTTP-MTP working [12] . 38
4.5 Local Platform Input form 41
4.6 Architecture diagram of JADE persistence framework 42

5.1 Response Time . 50
5.2 Growth Rate of Response time for Proposed Approach 51
5.3 Comparison of Memory Usage 52
5.4 Comparison of Agent recreation time 54

viii

List of Tables

5.1 Specification of Local Machine 44
5.2 Specifications of Amazon Instance 45
5.3 Test Cases for proposed approach 47
5.4 Test Cases for JADE persistence Framework 48

ix

Chapter 1

INTRODUCTION

In Multi-agent systems, several software agents work individually to solve
a certain problem. Software agents are computer programs that work au-
tonomously on behalf of their user. Agent-based systems has been introduced
as new paradigm for designing and implementing software using agents that
learn from environment, interact with each other and use that knowledge
to work autonomously for their users across open and distributed environ-
ments. Multi-agent systems are useful in problem domains where compu-
tations, planning or decision support are needed autonomously without the
need for the involvement of people.

The agents in Multi-agent systems can lie on several nodes on a network
or over the internet and the move among nodes. Unlike a centralized system,
Multi-agent systems comprise a group of intelligent software agents which
are distributed across a network. Therefore a Multi-agent system does not
suffer with; resource limitations, critical failures or single point of failure,
resource allocation deadlocks or bottlenecks and improves computational ef-
ficiency, reliability, flexibility, robustness and performance efficiency of the
overall system. This composition of Multi-agent systems makes them more
vibrant and resource efficient but also increases complexity. Collaboration,
maintenance and synchronization of agents on different devices or network
are real challenges in these systems. In this modern era people are using
applications in mobiles, personal computers and other devices to manage
their lives. These applications are growing in complexity, and due to this
dependence of human beings on the internet. The internet of things (IOT)
has already produced 50 petabytes of data on the internet. According to the
worlds leading information technology research and advisory company Gart-
ner, there would be connectivity of approximately 26 billion IOT devices
with internet by 2020. The result of this is the networks become heteroge-

1

CHAPTER 1. INTRODUCTION 2

neous where different devices will be connected to the internet for different
purposes. This will lead to scalability problem and even manipulating data
among such networks will be challenging using monolithic systems.

Network capacity and data volumes are growing everyday and robust sys-
tems with self-learning capabilities having parallelism are required. In these
circumstances multi-agent systems are well suited because an agent has the
ability to perform actions on behalf of the user. And if a single agent is
mapped to a single user, this concept will result in a huge number of agents
in the system which will put significant burden on the underlying agent plat-
form. Agents will perform many tasks such as communication, migration,
cloning and execution. They are running on different devices with different
specification and configuration with respect to hardware, software and net-
work. Agents are therefore more likely to unexpectedly crash. Managing
agents which crash in the complex interrelated system is very challenging in
this at present, it puts limitations on the take up of agent-based systems.
The crash agent can be recreated, but it will be amnesic agent. It will not
start its execution from where it had crashed. It will unable to understand
the updated status of the system. For example, A agent is sorting array of
thousand integers. Considering the case in which the agent has sorted hun-
dred integers and crashed. If the new agent is created, it will start sorting the
array form start. It would not know that hundred integers has been sorted.
The detailed explanation will be given in chapter 2.

1.1 Research Areas

Multi-Agent Systems (MAS) emerged as a scientific area in artificial in-
telligence and distributed computing. These days it is popular in research
domains includes aircraft maintenance, electronic book buying coalitions,
military demining, wireless collaboration and communications, military lo-
gistics planning, supply-chain management, joint mission planning, financial
portfolio management. All listed research domains are distributed where
the agent resides on several computers and these agents communicates for
sharing information. For example supply-chain management which needs to
oversights the various entities from supplier to manufacture and manufacture
to wholesales and eventually whole sellers to retailers. In case of multi-agent
systems, the agents would intelligently work on behalf of each of them.

Agents are supposed to be on different devices and network. These agents
can crash because of changes in the environment of any device and network

CHAPTER 1. INTRODUCTION 3

Figure 1.1: Research Areas

such as network failure, system shutdown. This will increase the complexity
and make such systems more prone to failure. There is need therefore for
a framework for multi-agent systems which is able to capture and persist
agents states and recreate them when crashes occur. The proposed solution
is a cloud base approach for persisting latest states of agents within an agent
development platform. The complexity of applications has been increased
and therefore there is need of introducing frameworks using new technologies.

1.2 Research Hypothesis

Multi-agent systems are very useful and reasonably resource efficient for
developing applications in distributed environments, but complex as dis-
cussed in the previous section. The agents in these systems need to be
very stable and responsive. Crashes of agents in multi-agent system will like
result in the failure of entire system. A persistence framework is required
to recreate crashed agents with syncronized states. There are several per-
sistence frameworks have been introduced to persist agent states, but it is
felt that they need improvement given recent advances in Cloud and other
technologies. This thesis proposes a cloud based framework to address this
persistence problem. The basic approach is based on a communicative sys-
tem in which a group of mirror agents reside in the cloud and agents share
their internal states with them. When an agent or several agents fail their
mirror agents will recreate them whilst persisting and recreating their inter-

CHAPTER 1. INTRODUCTION 4

nal state information.

The hypothesis of this thesis is

It is possible to build a widely applicable persistence framework for
Multi-agent systems that saves the internal states of agents and can recreate

them if they die.

Previously proposed persistence frameworks have not become popular be-
cause of some drawbacks. These are mainly due to changes in technologies
and networks. The technologies and networks are more advance and pow-
erful. Also the nature of software applications is changed and they become
more complex. Thus, there is need to put forward new approaches for per-
sisting agents’ states and recreating them when crash. In order to support
the hypothesis some research questions are summarized below.

Question no 1

Which agent states exist and how can they be classified for Multi-agent sys-
tems?

An agent has several states having different representation. States actually
make agents able to work intelligently and function in the external environ-
ment. There is a need to understand the semantics of these agent states and
classify them.

Question no 2

How can we propose a flexible persistence framework for capturing and per-
sisting states of agent at the application level?

Agent states are actually information that it holds which can be collected
at application level. This information can be stored using any persistence
approach. The flexible persistence framework can posibily offer.

Question no 3

What should be the behavior of multi-agent systems when several agents or
several clonel agents die in system or agent states change frequently?

The persistence approach is proposed to increase the stability and depend-

CHAPTER 1. INTRODUCTION 5

ability of Multi-agent systems. This can be achieved when system is capable
of recreating crashed agent with synchronized states. This question can an-
swer in chapter five.

Question no 4

What would be the performance and scalability of the proposed approach?

The proposed approach require more memory resources rather than compu-
tational resources, therefore it would has possibly good performance. Also
proposed approach is communication oriented which theoretically proves that
it would considerably scalable.

1.3 Proposed Approach

In Multi-agent systems, agents take tasks and execute them intelligently.
These agents can be on same or different locations. This makes applica-
tion boundary of Multi-agent systems based software larger involving more
networks, devices and computers. This distributed nature of such systems
increases the performance but in mean time there are more chances of los-
ing agents which can eventually cause system failure. The approach should
able to recreate agents with synchronized states that crash while executing
their tasks. In order to recreate an agent with synchronized state there is
need to persist agent states. These states of agents may change frequently
or after long time. The frequent chaning of agent states makes it really chal-
lenging to persist them. The previously proposed approaches and traditional
way of persisting data are unable to handle it. In this thesis a new flexible
persistence approach is proposed to improve stability of multi-agent systems.

States of agent can be captured at the system level or at application level.
Unfortunately, there is no Java virtual machine based agent framework that
provides a state capturing feature at the system level. The state of agent
can be captured on application level and several methods have been pro-
posed. The previous techniques used for persisting agent states are not very
beneficial and are discussed in chapter two in greater detail. Among several
persistency approaches, one of them is storing and updating agent states in
database. This allows system to recreate agent with same state if it dies.
Using a database limit the scalability of Multi-agent systems and writing
and reading from database reduces the performance and can cause serious
limitation to scalability. Database systems are complex, difficult and time-

CHAPTER 1. INTRODUCTION 6

consuming to design. As database systems are usually centralized damage
to or the crashing of database may impact entire system. They are slow and
can crash in many scenarios. Such as when there are huge numbers of agents
with frequently changing their states. Similarly other pervious systems also
have such problems.

Somehow when crashes occur and certain agents die, system can recre-
ate them but they would be possibly suffered with amnesia. The recovered
agents would unable to know their position in overall system which can cause
unexpected system results and performance. These agents can contribute in
system when their states would synchronize with the states they had when
crash occurred. Also the recovered agents need to know about the changes
occur in overall system during their absence. Actually when these agents
get crash, other agents in the system continue their execution. These tasks
sometimes make changes in the environment of system. Therefore a persis-
tency framework is required for synchronizing these states.

In this thesis a cloud based solution is proposed for capturing and restor-
ing the agent states. Agent states will be stored in memory which will ob-
viously give faster access to data. The in-memory read write operations are
time effective but memory is volatile. States will be lost when agent crashes
or system shutdown. Therefore an agent will share its states with another
agent which will be called clone agent. The clone is a replica of the agent
who keeps changing states of the respective agent. Clone agent can reside
anywhere on same machine, cloud or other machine in same or different net-
work. The agent will share its state via communication. The communication
is faster relatively other options for persisting data because networks are fast
and fairly reliable nowadays .

The agent or its clone can crash and proposed approach will able to get
them back with latest states. Considering a case agent crashes, it will be
recreated using states saved by clone agent. Similarly if clone agent dies,
it will be recreated using states of its respective genuine agent. Communi-
cation protocol will use to share agent states between agent and its clone.
This communication will be humanitarian where they will share information
with each other as human do. This communication and in-memory persist-
ing of agent states will significantly improve the performance of persistence
approach. The in-depth discussion on architecture of proposed approach will
be presented in chapter three.

CHAPTER 1. INTRODUCTION 7

1.4 Research Methodology

The research began with a literature review which helped to scope and
to concretely identify the problem. It was apparent that current persistence
frameworks for maintaining and synchronizing agent states have a number
of limitations. Existing approaches that were proposed for making the in-
ternal states of agents persistent were analysed. The detailed discussion on
previous approaches and their shortcoming is provided in chapter two. The
internal structure of agent is complex because of its multi-threaded nature,
communication and learning capabilities and independent execution. There
is a possibility that agents states changes frequently, also sometime does not
change often. Therefore states of the agent cannot persist using conventional
approaches. The steps involve in research methodology is shown in figure 1.2

Figure 1.2: Steps in research methodology

After the study of shortcoming of previous persistence framework and
their internal complexity, a new cloud based approach is designed to improve
previous approaches. In order to evaluate this approach, it is compared with
one of most recognized previous persistence frameworks. There were two pro-
totypes developed, one used the old JADE persistence framework and second
is implemented using the newly proposed approach. We chose the auction
system because it is complex, real-time, agents comprehensively communi-
cate for effective bidding, Also the number of agents can be increased to
evaluate them in term of scalability. In the evaluation phase a number of

CHAPTER 1. INTRODUCTION 8

metrics were used which included the response time of system, memory usage,
recreation time and the expandability of the system. These are compared as
the number of agents in the system increases.

1.5 Thesis Outline

Chapter two contains detail literature review providing background for
hypothesis and it revealed the importance of research problem. The research
problem is explained with precisely discussing proposed solution for best un-
derstanding of problem. The critical analysis of older approaches proposed
for similar research problem through published facts, summary and compar-
ison. The literature review showed that proposed work has not been done
before and there is significant scope for research in this area.

Figure 1.3: Thesis outlines

Chapter three considers the design and architecture of proposed system.

CHAPTER 1. INTRODUCTION 9

There are two prototypes designed and implemented, one with older approach
and other with proposed approach. The prototypes are actually auction sys-
tems in which older and proposed approaches are used to save internal states
of agents. The chapter briefly present the criteria of selecting older approach
and why auction is selected for developing prototypes. The finalized archi-
tectures for evaluation are concluding in this section.

Chapter four includes a consideration of the tools and systems which can
be used for the implementation of the architecture proposed in chapter three.
The implementation of each module of proposed architecture elaborated. It
is ensured to explain with evidence that implementation of prototypes are
according to the proposed architectures.

Chapter five presents the evaluation of both prototypes and their com-
parison. In order to better understand the results the experimental setup is
elaborated. The test cases of qualitative tests are drawn and each test metric
used to evaluate prototypes and their results are explained comprehensively.
There is conclusion including the depth analysis of results.

Chapter six presents the future work directions. There are various possi-
ble research problems that can be carryout on basis of this thesis. It includes
exciting applications that can used proposed persistency framework. The
conclusion is also listed in end of this chapter.

Chapter 2

LITERATURE REVIEW

2.1 Introduction

Chapter two presents an in-depth literature review for the research prob-
lem and related approaches that are being used for addressing it currently.
The literature review considers previously proposed approaches and their
weaknesses which provide an indication of the scope for research in this area.
Test applications have also been developed to study certain previous ap-
proaches and analyse their shortcomings and performance. After this com-
prehensive study of previous approaches, a solution is proposed to overcome
the weaknesses of current approaches. The chapter also has detail of rela-
tive frameworks and techniques are also discussed for better understanding
of their drawbacks.

2.2 Multi-agent Systems

The usage of multi-agent systems for solving complex problems is increas-
ing at a faster rate than ever before. This increase in their use demands more
comprehensive and concrete development support for developers. Introduc-
ing new add-on, libraries, frameworks and approaches can be of significant
help for developers to develop scalable and stable multi-agent systems. Multi-
agent systems are complex comparative to other development approaches be-
cause of their internal multi-threaded nature, communication requirements
complex behaviours, internal logics and distributed platforms.

An agent in a Multi-agent system is a thread and big systems include
huge number of agents. Multi-threaded architectures are considered to be
highly complex. Multi-agent systems have agents which can be on single

10

CHAPTER 2. LITERATURE REVIEW 11

machine or spread across network on several hosts. These distributed agents
some time work collectively to perform certain task where they need strong
coordination. This coordination can be achieved by using effective commu-
nication. In this scenario agents need to keep record of other platforms and
agents working with them. This makes their internal state more complicated.
More-over these agents can crash due to any disturbance in network host or
channel, they will lose all their information. So far there is no trustworthy
approach to recover crashed agent with all its information. Such crashes can
degrade the overall performance of system and eventually result in crash of
complete system.

2.2.1 States of Multi-agent systems

Multi-agent system could have many agents and these agents will prob-
ably have certain states. Such states can be captured either in system level
or application level. The capturing of state at the system level will result in
a very generic and concrete solution but it is really tough and it would need
some comprehensive coding in the Java virtual machine (in case of JADE)
or agent development framework. Another way of capturing and persisting
agent states is at the application level where the states of system are cap-
tured at run-time. Multi-agent systems have agents which collaboratively
work to complete certain tasks which mean they share their some states with
other agent in multi-agent system; this sharing creates collaboration between
agent which can be said multi-agent environment. This sharing requires the
classification of states with respect to responsibilities of agent.

Bracciali et al proposed a model to classify states of agents of multi-agent
systems. The model obtains the all possible states in multi-agent systems
and broadly categorizes them in two sets, Environmental states and Agent
states. Environmental states are states of agents which are shared with
other agent in multi-agent systems while states of agents are specifically
belong to that agent itself only. The model for modelling the agent state
should be generic so in this paper agent is consider as black box which means
states are model regardless of working of agent. The actions of agents are
being observed to capture states and these actions also change the states of
agent. These actions of certain agents are observed by other agents who in
response take a specific course of action. Each agent maintains its mental
state containing its beliefs, desires and what it intends to do. Further in the
proposed model there are fully transparent Multi-agent system and partially
transparent multi-agent systems. In transparent Multi-agent systems each
agent knows the mental state of all other agents in system while in partial

CHAPTER 2. LITERATURE REVIEW 12

Multi-agent systems each agent has certain limited visibility of mental state
of other agent[10]. The work is significantly useful for classifying agent states.
Although this process is very complicated, this increases the complexity of
Multi-agent systems. Using this approach in ads on or frameworks will result
in increasing complexity of systems. Similar approach with some modification
can work notable well.

2.2.2 Multi-agent systems Frameworks

There are many agent development frameworks which are available for
constructing Multi-agent systems. Popular agent development frameworks
include AAA(Agent Anytime Anywhere), ABLE (Agent Building and Learn-
ing Environment), Cougaar [33], JADE [12], WADE [31], Sim-Agent[32]and
many more. These frameworks provide an environment for developing Multi-
agent systems, some of them are domain specific and some are generic. The
problem is being discuss in here is integral part of all domains that are sup-
posed to solve using Multi-agent systems. In broader scenario, focus is on
distributed development where agents are on several devices having differ-
ent states. Such systems require interpretability and platform independence.
These agents supposed to communicate and move across different platforms.
Considering these requirements, JADE is very preferable solution

JADE (Java Agent Development Framework) is a software framework
which provides a very convenient means of developing multi-agent systems.
It is implemented in JAVA following FIPA specifications which make it more
standardized and several tools that provide debugging and deployment phase
support. The multi-agent systems are supposed to be distributed across
machines on different operating systems and hardware architectures. Re-
mote GUI facilitates for configuring and managing agent platform across
distributed machines even on runtime by stopping and creating agents, mov-
ing agents among platform, inspecting agent communication and analysing
overall placement of agents (agents in each container). [12]

JADE is platform centric middleware that allows agents to share their
services and resources on runtime. JADE platform also provide distributed
environment with many run time containers. Each container can has several
agents and each environment has one or more container. These containers
provides run time environment to agents and developer can organize agents
on bases of their behaviours and states among these containers. For exam-
ple; Java Virtual Machine hosts several containers and agents are distributed
among container according to application logic. The Main Container always

CHAPTER 2. LITERATURE REVIEW 13

launches before any other container in platform because it has FIPA services
agents and all other containers register with main container. Main container
gathers and manages the information of all other containers with in platform
either they are running locally or remotely. [6][7][12]

JADE offers messaging based flexible and efficient communication ar-
chitecture and manages queue of incoming ACL messages for each agent.
Agent can access these ACL messages using different modes include block-
ing, polling, non-blocking and pattern matching based. It is based on FIPA
communication model and all its components are integrated in JADE such
as protocols, envelope, ACL, content languages, encoding schemes.The agent
can communicate to agents in same container or in other container or even in
other platform using these FIPA specifications however the underline process
of JADE communication in different cases are shown in figure below

Figure 2.1: JADE based Agent Architecture [12]

2.3 Persistence approaches and Analysis

There are several approaches for addressing the persistency problem but
persisting agents states are more complex. The states of an agent can change

CHAPTER 2. LITERATURE REVIEW 14

frequently and even in parallel under some conditions. Each agent or group
of agents may have different states, hence managing this data (corresponding
to the various agent states) is challenging. Approaches which are currently
being used in order to address this problem include: Java Persistence API,
Serialization mechanism, DBMS and JADE Persistence Services. These per-
sistence frameworks are discussed in detail below along with their shortcom-
ings. In chapter three the details proposed approach is explored which will
overcome most of these issues.

2.3.1 Persistence using the Java Persistence API

The Java persistence API is a framework for developing business logic
of enterprise application that edges the speed, security, and reliability of
server-side technology [12]. It makes it easier for developers to manage re-
lational data than ever before. The large number of supporting libraries in
JPA enables them to develop applications in less time and with a signifi-
cantly reduced effort. Although the Java persistency framework provides a
structural way for persisting data in a relational database it is not necessarily
always that scalable. When it comes to the management of frequent chaning
agent states and if there are many agents operating in a system then this can
become a serious issue with this approach.

Caire et al developed agent based mobile application for hybrid net-
works which are combination of several networks including GPRS, UMTS
and WLan. They implemented an application in J2ME and used JADE as
the agent development framework. They intensively checked scalability and
stability of the application. They deployed application on network of wire-
less devices. In order to check scalability, interoperability and fault tolerance,
the information in MTP table, Container tables and Global Agent Descrip-
tor Table are evaluated. In terms of persistency they preferred the Hibernate
framework [16] which provides object relational mapping (ORM). Hibernate
has been proven to be able to successfully provide flexible and stable persis-
tency because of its having support for the object query language. [9]

The Java persistency framework did improve the flexibility and stability
of an agent-based system. Its scalability however was not satisfactory for
agents who frequently change their state and thereby send huge numbers
of requests to the persistency framework. Hibernate has the capability to
perform secure and structural transactions but its performance degrades as
the burden on it increases. It was added as add-on in the JADE platform
for providing application level persistency but the developers have described

CHAPTER 2. LITERATURE REVIEW 15

that there is still need to improve this add-on for highly scalable agent based
systems.[19] Simply efficient persistency mechanism is required.

2.3.2 Persistence using Serialization

Serialization is a mechanism for representing an object in the form of
bytes which contain information about the object and the type of data that
is stored. In serializing the object is cast to stream of bytes which can be
read and write on any storage such as a disk, file, memory or database as
shown in figure 2.2. In de-serializing, the byte stream is received as byte
stream from where it was saved after serializing. This byte stream is cast
as a respective object. As a serialized object is a byte stream this makes
it independent from the underlying Java virtual machine. Therefore we can
say that object serialized on one virtual machine can be de-serialized from
any other machine which is helpful for exchanging data in distributed envi-
ronments.

Figure 2.2: Serialization/ De-serialization Process of object [19]

Wong et al introduced a middleware application between the network and
devices connected to the network called Concordia. This application was
complete framework for developing and administrating mobile agent based
application for accessing information from all device connected to network ei-
ther they are wired or wireless. The framework allows agent administration,
communication, migration among devices connected to network and persis-
tency. The persistency framework in Concordia was able system to recover
the agent and its states when it died. It uses Java object serialization for

CHAPTER 2. LITERATURE REVIEW 16

preserving the states of agent. The object having states of agent is serialized
to preserve the agent and recover agent when it dies by de-serialized the ob-
ject having its states.[20]

There are benefits and limitations to using any approach. Similarly serial-
ization is good for preserving states for short durations and exchanging small
data in distributed application among different modules. It is not used as
complete persistence framework because preserving complex data is not pos-
sible. In serialization each object is preserved as single entity which does not
have relationships with other serialized objects. In Java not all the objects
are serializable, it should implement the serialized interface to be serialized.
Also the reading and writing serialized object will result in a significant time
overhead for frequently updating states. Due to above discussed reasons the
use of serialization is not reliable for persisting updating states or saving
states for the long term.

2.3.3 Persistency Using Databases

Databases are another way of persisting information. This is being used in
different persisting approaches for Multi-agent systems. Relational databases
save data in form on row and column in table. The data in tables are store in
relations which actually create link between tables. A table is identified by
field which is shared with other table to create relation this key is known as
primary key. These relations help to retrieve recodes that are saved in more
than one table. These relational databases are very popular because there
are several database management systems that are available to interact with
the data.

Databases can be used to store and persist agent states. States can be
stored in a database which then allows them to be fetched, updated and
deleted. Databases provide a very structural way for these operations. In
the recent past, much work has be carried out on relational database man-
agement systems by extended them towards handling less structured data.
The purpose of databases is to provide storage and increase in number of
request to database consequences in slower database response.

DBMS are used in many enterprise business applications because they
offer powerful information management tools. But for complex data, design-
ing a database is not an easy task because it stores data in tabular form and
single record could be in more than on table. Implementing relations among
tables, primary keys, unique constrains, cascading are necessary for perfor-

CHAPTER 2. LITERATURE REVIEW 17

mances and consistency of database. Similarly Normalization of database
is also a non-trivial process. It is hard for an inexperienced programmer to
design database by implementing all these concepts.

Along with design complexities databases are also slow and their purpose
is to store information. They receive the requests, process them and gener-
ate results accordingly. Results are sent to the requesting applications. This
process of request handling to result generation takes time depending upon
the structure and amount of data. In case of a database which has a complex
schema most of the response time is taken by fetching data from many ta-
bles. Often increase in number of requests results in increase in the database
response time. On receiving significant requests, it reduces response time
and crashes especially in bulk operations.

If we consider the use of databases for persistency in a MAS there is a
significant level of complexity. Each agent has its own internal state which
may or may not different from the other agents in the environment. In a
database schema these states will be attributes of table and agent states pos-
sibly change on changing the responsibilities of agent. Such responsibilities
will increase or decrease numbers of states which will eventually change the
schema of database which results in broken keys and records. This will actu-
ally increase the complexity for database because this cannot achieve using
simple design. This complexity will increase with the passage of time and
consequences in crashes and instability. Hence this change in responsibilities
results in change of attributes of table, such updating attributes inconsis-
tence the database and generates errors.

Another reason for not selecting databases as a persistency mechanism for
multi-agent systems is their response times. Databases are used for storing
data and their performance is hardware depended. Consider the case of a
Multi-agent system which could have several thousands of agents distributed
across a network. The agents in multi-agent system in some cases frequently
change its states results in a massive amount of requests to the database. This
response time of database can increase by enhancing hardware resources but
it will be very costly.

2.3.4 JADE Persistence Services

JADE persistency services (JPS) has core module for providing persis-
tency services known as JADE object manager. It is responsible for managing
and persisting Java object using object oriented JADE database. It has full

CHAPTER 2. LITERATURE REVIEW 18

object oriented database management system (OODBMS) with full transac-
tion control, multi-user object access, concurrency control with object-level
locking, publish-and-subscribe events, and automatic object caching across
distributed application servers. Java application can use all the features of
JADE object manager using JAVA API.

The JPS divided persistency features into two broader classes. One deals
with system level features such as whole containers and persistently storing
agents, which has not been implemented thus far. The other deals with ap-
plication level features related to the persistent storage of entities specific to
applications. [2]. Neither the Java virtual machine nor any agent develop-
ment framework offer a persistency framework for persisting agent states at
the system level. Several application level persistency framework has been
introduced using traditional persistency approaches, one of them is JADE
persistency services.

The JPS are available as add-on of JADE which is not complete so it
is not feasible for using in large applications. It does not support system
level persistence yet, it is an add-on which eventually saves agent states in
Database using an object relational model.[12] So far it does not support
system level persistence and also application level persistency is not fully
implemented and need some concrete implementation of some modules. It
does not provide sufficient support so as to be used in enterprise multi-
agent systems. The feedback of persistence services are not satisfactory and
review of different forum showed that using persistency services is not a
better choice.

2.4 Agent Mobility in JADE

Agents are capable of moving or copying themselves (Cloning) from one
network host to any other network host. JADE also supports some degree
of agent mobility using single method such as domove() or doclone(). The
JADE migration or cloning of an agent is very simple but so far it only al-
lows intra platform migration. In intra-platform migration agents can move
among containers of a single JADE platform. This is a significant limitation
because containers could be located on different physical machines across
network. There is no proper library for migrating agents from one platform
to another platform in JADE.

An agent has code and states where code is actually behaviour of agent

CHAPTER 2. LITERATURE REVIEW 19

and states are information of agent. These states shows current internal
state of agent and it uses these states for decision making. Secure migration
of agents is more challenging with code and states information. Migrating
agents with code and states information could result in more content on
a channel which will eventually result in latency and delay. The proposed
approach for migrating agents from one platform to other is very effective
because it is communication based and agents are good in learning from en-
vironment via communication. Also FIPA specification contains interaction
protocols, content language representation, blocking and unblocking commu-
nication support which improves the communication capabilities of agents.

E.Cortese et al have carried work on the scalability and performance of
the underlying message transport system of JADE. They designed JADE
Message Architecture having multiple platforms and tested this design with
a range of different scenarios. They tested communication performance be-
tween agents in the same container, agents in different containers but the
same platform and agents on different platforms. They started with single
sender and receiver and calculate the scalability of platform by increasing
the sender and receiver parties. They observe the change in round trip time
to draw their conclusions. The results state that the degradation of commu-
nication performance of design in inters and intra platform communication
on increasing number of agents is negligible. Even use of IIOP and MTP
protocols for communication among agents on different platform does not
suffer in terms of performance. [7] The proposed approach in this thesis is
communication oriented and could generate significant load on the commu-
nication aspects of the underlying multi-agent platform. The experiments
that were carried out in this paper show JADE to be a scalable and efficient
in communication performance for multi-agent systems with large numbers
of agents. This is major reason for using JADE among many other reasons.

Ametller et al have presented a design and implementation which is ca-
pable of allowing agent migration over FIPA ACL messages. They proposed
a model in which migration is directed by an agent but supervised by Agent
Management System (AMS). Each platform has an AMS and they talk to
each other for decision making for transferring agent or not. Agent that ini-
tiates migration should send request to other platform for migration along
with the necessary information. The remote agent management system may
reject the request or agree depending upon the capacity of its platform. The
agent request can be refused when it does not meet to minimum requirements
that platform specified for executing it. In case both platforms are agreed
to migrate agent then code and data of agent is sent to remote AMS for

CHAPTER 2. LITERATURE REVIEW 20

execution. [6] This approach engages AMS for transferring which degrade
the performance of entire system. The other tasks of AMS are also disturbed
which actually makes this techniques not suitable for transferring agents. The
approach proposed in this thesis for transferring agent is somehow different
which is explained in chapter three.

2.5 Conclusion

A Multi-agent system is a way of developing more complex and dis-
tributed systems. A multi-agent system has agents who work on behalf of
human on basis of information it gets from its surroundings. Also agents
reside on different physical locations with different hardware software and
network configuration. This increases the possibility of agents crashing and
losing all its states information. This states information can help to recover
agents that crash during execution with latest states. There is need of mech-
anism that can persist the latest states of agents and can recreate crashed
agent using states information.

The analysis of previous approaches shows that there is significant space
for research in this area. The previous approaches for solving this problem are
not effective as discuss in previous section with analysis so there is demand of
new approach. The changes of states of agents may be very frequent or may
not change for ages depending on task of agents. Also dumb storage such
as database is not good solution for agent based systems. The agents learn
from environments like human being, it can negotiate and communicate so
using dumb storage for saving its states would not suitable. Also variations
in states of agents make it different from saving agent states information than
other such information. In contrast of these issues there should responsive
and collaboration approach where agents actively share their states.

This thesis intends to put forward an information sharing approach that
can be implemented on any Multi-agent system. JADE is well known frame-
work for developing distributed agent based system and it not domain specific
as well. Many other Agent development frameworks are available but they
are domain specific. The proposed approach is developed intended to be
an applicable in wild range of Multi-agent systems. JADE follows FIPA
specifications which make easy to understand the working of JADE and also
FIPA gives very proficient control on communications. The proposed solu-
tion is cloud base where states of agent would save on cloud. JADE platform
support all required support for running JADE containers on cloud.

Chapter 3

PROPOSED APPROACH

3.1 Introduction

The literature review in chapter two includes a study of previous ap-
proaches for persisting the agent states and recovering it when crash occur.
It has been concluded that relatively few approaches that are being used at
present. These approaches are not really stable and robust enough to use for
enterprise applications. Some are conventional techniques for persisting data.
The agent oriented framework that is introduced in this thesis is specifically
for multi-agent systems which need to persist agent states. The architecture
of the proposed approach is very comprehensive having several agents. The
overall of working of approach is divided among these agents and they are
classified with respect to these tasks.

In this chapter, the model of proposed approach is presented in details.
This model is designed after study of shortcomings in previous approaches
and try to introduce new improved approach. The chapter starts with anal-
ysis of literature review including list of constrains on developing persistence
framework for persisting agent states in multi-agent systems. The next sec-
tion is abstract model containing details of agents that work in proposed
approach. After abstract model detailed architecture and its working is
discusses. Chapter ends with discussion having answer to some research
question related with model. Conclusion includes the overall behaviour and
utilitarian aspects of proposed approach in multi-agent systems.

21

CHAPTER 3. PROPOSED APPROACH 22

3.2 Literature Review Analysis

The literature review conducted in Chapter two and analysis of research
questions revealed some important evidence to propose persistency frame-
work for Multi-agent systems. They are discussed in end to interlink them
with proposed approach. This section presents reasons for introducing this
approach and elaborates key outcomes of literature review.

There is no complete framework is available yet that provides applica-
tion level or system level persistence of agent states. Different persistence
techniques are being used to save agent states. These techniques are not par-
ticularly for storing agent states and may therefore reduce the performance
of multi-agent systems. JADE is java based agent development framework
which introduced an ad on for persisting agent states known as JADE per-
sistence services. Detailed study of this ad-on showed that it is not fully
functioning and need concrete development of some modules.

Agents are composed of two entities code and states. Agents can be recre-
ated with code and states. The code is uniform for similar set of agent while
state may differ. The agent from synchronized state can be created in case
its code and synchronized states are available. So only synchronized states
are required to create agent and start its execution from the point where it
died. The persistence framework for multi-agent systems only needs to store
agent states to recreate them. Agents are intelligent and consistently learn
from its environment. They are responsive so their internal state extensively
depends upon their responsibilities and environment. The agent can change
its state frequently or update them rarely. In this scenario traditional per-
sistence technique fails as discussed in chapter two.

Multi-agent systems are collection of agents who collaborate to solve dis-
tributed problem. The complex problem is decomposed in set of small tasks
which are further allocated to agents to solve. Each agent accomplishes its
task and result of all agent are put together to get cumulative result. This all
process is very communicative and agent has collaborative behaviour. Agent
is multi-agent systems work similar to human beings and they are respon-
sive. On these grounds they must have some humanitarian framework where
persistence unit (who stores information) should also response similar like
agents.

The multi-agent systems has autonomous agents, each agent has its states
that are reflecting overall context of system. Suppose an agent is recovered

CHAPTER 3. PROPOSED APPROACH 23

with its states, but there are also some information it possibly needs from
the environment. This information will be states of some other agents in
the system. For example an agent is bidding for a book, it bids 40USD and
crashes. The other agent will keep bidding, let another agent bids 60USD.
When the crashed agent recovers with all its states back and starts bidding
again. It may has all other information but it would probably not know the
amount of latest bid for the book that is 60USD. Because this bid was made
in the absence of the crashed agent. The crashed agent could become active
part of Multi-agent systems if it get back its synchronized states along with
concern information from environment. This requirement can answer the
research question RQ-1.

Q1. Which agent states exist and how can they be classified for Multi-
agent systems?

The states in multi-agent systems are classified in environmental states
and local states. The environmental state information of MAS is accessible by
all other agents of system while local states are internal states of agent. These
internal states may or may not visible to other agents in system depending
upon requirements of system. The environmental states will be maintained
separately and other agents in multi-agent systems would keep synchronizing
them. When any agent dies, it gets back latest environmental states sent to it
when it is recreated, as other agents are supposed to synchronize these states.

In large multi-agent systems there are enormous agents and each agent has
its several states. The states of agents have to associate with respective agent,
this can easily map in Relational Database management system (RDMS). But
RDMS is not dependable solution; chapter two contains complete discussion
on limitation of using RDMS and other previous approaches for persisting
agents information. This thesis proposes a humanitarian approach where
agents communicate to maintain synchronized states. The agent actually
the clone of original agent saves data in memory. The communication and
mobility of agents are real challenges because huge number of agent will
create massive communication messages. These messages will put burden on
underlying Multi-agent development framework. The intent of developing
prototype is to provide such framework where communication and mobility
would abstract. The end developer should not need to access underlying
working details of framework regarding communication and mobility. The
detail discussion on proposed approach is listed in next section.

CHAPTER 3. PROPOSED APPROACH 24

3.3 Abstract Model

Agents in Multi-agent systems may distribute across networks to per-
form different tasks. In such distributed environment agent can crash which
will eventually affect overall performance of multi-agent systems. This thesis
proposed the approach for recreating agents that crashes during performing
their tasks. This approach acquires certain set of agents for stable and robust
working and without decreasing performance. This section contains brief lit-
erature to describe the model of approach and running. The start of this
section includes the overview of proposed approached which would continue
with discussion of each set of agents on second half. The next section is
describing architecture and complete working of approach.

The architecture of proposed approach included many agents. These
agents and their states are classified in different groups. The agents are clas-
sified with respect to their responsibilities in multi-agent systems. The states
of these agents are grouped in contrast of their scope. Scope is visibility of
an agent states to other agent in multi-agent systems. Several agents work
together to run complete architecture of proposed approach. These agents
are discussed below including their responsibility and location in architecture
of proposed approach. The next section contains their working and how all
of them collaborate to run the system. In proposed multi-agent architecture
these agents are named as; working agents, clone agents, Local monitoring
agents and Remote monitoring agents

Working agents in multi-agent systems have certain responsibilities that
contribute in accomplishing overall objective of system. These are autonomous
agents that perform their tasks independently and share their information
with other agent using communication. These tasks are divided among agents
depending upon requirements of system. Each agent in system may have dif-
ferent task or set of agents is assigned single task, so multi-agent systems has
agents with different internal states. In this thesis these agents are putted
in one category although they have different internals. Because approach is
proposed to restore these agents when they die so these are most crucial part
of multi-agent systems.

The clone agents are mirror agents of their respective worker agents. Each
worker agent has its clone which keeps internal states of respective agent. A
worker agent could possibility of having one clone agent. Clone agent does
not have its own internal states; it keeps synchronized states of its working
agent. The worker agent and its clone agent could be in same platform or in

CHAPTER 3. PROPOSED APPROACH 25

different platform. In proposed approach we resided clone agents in different
platform so that each platform can send and receive request of other platform
such as client server architecture. This will help to analyse performance of
communication between clone agent and its worker agent. The in-depth sce-
nario of their communication and re-creation of these agents including clone
and worker agent is discussed later in this section.

Local monitoring agent controls and supervise platform having worker
agents. These agents may be one or more than one, depending on number
of working agent in platform. These agents are responsible for creating died
agents and managing working agents and allow agents to communicate with
agent in other platform. When agent died local monitoring agent is respon-
sible to create agent with synchronized states. The synchronized states are
provided by respective clone agent of died agent. These agents also man-
age the environmental states of multi-agent systems and other information
including memory, CPU utilization, and platform information. Platform in-
formation includes different addresses of platform, number of container and
agents in these containers.

Remote monitoring Agent resides on platform having clone agents. These
agents creates clone on request of worker agent. Remote Monitoring agent
may be one or more than one depending on scalability of multi-agent sys-
tems. Like local monitoring agent it collects information from its platform
and share with other platform. The agents involved in working of this ap-
proach are discussed so far. The internal of agent consists of code and states.
The states of these agents change due to change in environment as agents
learn from its environment. The other possibility of change in agent states
is due to task performed by agent. In contrast of these reasons in our pro-
posed approach the states of multi-agent systems are broadly classify into
two types. These states are divided with respect to their visibility in multi-
agent systems. The types of states are Environmental states and Local states.

Environment states include information which is visible to all other agent
in multi-agent systems. It is responsibility of local monitoring agents to man-
age and monitors these states and recreates them if they are lost. All agents
in multi-agent can change the information of these states to keep them syn-
chronize. These states persists addresses of monitoring agent, application
oriented states and monitoring information. The addresses of monitoring
agent are stored to allow worker agent to request them for creating clone or
recreating clone. Application oriented states have information which is being
retrieved and updated by several agents. The updated status of MAS can be

CHAPTER 3. PROPOSED APPROACH 26

fetched using these environmental states and they are saved using blackboard
and other data structures.

The other types of agent states in multi-agent systems are local states.
These states of agent are only visible by agent itself. These states are pri-
vate and are not being shared with any other agent in Multi-agent systems.
These states represent the internal state of agent including information such
as agent name, its container and platform information, agent identification
addresses and application oriented states. These states are used to re-create
died agent with synchronized internal states and environmental states are
fetched later form local monitoring agent. Both environmental and local
states are compulsory to recover died agent with its synchronized internal
states and able it to opt in updating environment.

Just logical divisions of states of multi-agent systems are not enough to
manage such unstructured data. States of agent is associated with respec-
tive agent or monitoring agents in case of environmental states using object
encapsulation. These states are encapsulated in object which is serialize-
able having methods to access and manage the states. The ACL message
only allow serialized object as content to transfer it between agents. Serial-
ized object which contains either environmental or local state can be sent to
any other agent in ACL message. Object having environmental states infor-
mation will associate with monitoring agents and these agents will allow all
other agents to get and change values of these states. On the other hand local
states will not share with even monitoring agent. These states will associate
with agent and other group who would have responsibility to manage them.
Working agent will share these states to its clone agent which will use them
to recreate agent when it dies. Considering the case where clone dies; the
clone will be recreated using synchronized states of respective working agent.

The proposed approach has two platforms and agent in them frequently
exchanges messages. Agents are transfer when agent or clone died. Con-
sidering inter-platform migration the agent development frameworks does
not allow agents such migration. Inter-platform means migration between
two separate and independent multi-agent systems. Similarly in JADE, two
multi-agent systems running different JADE platform cannot transfer agents
among them. These platforms are possibly on; same network, different net-
work or over internet. The proposed approach is supposed to be efficient
for transferring agents among platform in either of listed case. Chapter two
includes previously proposed process of agents which is fallow here as well
but with some alterations. The detail insight of agent mobility is important

CHAPTER 3. PROPOSED APPROACH 27

for understanding working of proposed approach.

Agent Mobility technique being used in this thesis does not transfer agent
with code and states. The agents are even not transported through any com-
munication channel. The literature review in chapter two proved that the
agent can be recreated with code and state. The code is behavior of agent
which does not change while states change. States are information of agent
which can be share with agents in same or different platform using commu-
nication protocol. An agent in each platform supervises the mobility which
has code of all type of agent running in platform. When a platform wants
to transfer agent it sends synchronized states and type of agent (which is
being transferred) to other platform as communication message. The other
platform would create agent with synchronized state provided using code of
given agent type in message.

This technique is used in proposed approach in this thesis where there are
two platform connected over internet. Both platforms have monitoring agents
that initiate agents transfer between platforms as shown in figure seven. Let
supposed agent of platform A is being transferred to platform B. The agent
ask monitoring agent for AID of monitoring agent in platform B. The agent
will send request containing its states to platform B. The monitoring agent
in platform A would create agent with state provided in message. The newly
created agent in platform B is supposed to retain accomplishing task from
same point where it left in previous platform.

Figure 3.1: inter-platform mobility of agent

CHAPTER 3. PROPOSED APPROACH 28

The challenge discussed in previous sections in mobility is changing states
of agents and burden of request on agent development framework. The States
of agent could frequently changes or may not change for ages depending
upon domain and type of application. In chapter two we discuss on chal-
lenges using previously proposed approach for saving frequently updating
states of agent. Old approaches does not handle this problem such as saving
states in database slower response time and eventually crashes when agent
sent sufficient updating requests. In proposed approach agent communicates
with each other using ACL message which fallows FIPA specification. ACL
messages do not put burden in underlying framework and they are good
in communicating among agent on same platform or on different platforms .
Also now a day networks are very faster so communication is not challenging.

The approach proposed in this thesis, each agent has its clone which
can reside in same container, different containers or in different platforms.
The recommended way of implementing this approach is to place agents and
their clones on different platforms. And these platforms should be on differ-
ent machines or networks; this will increase the robustness and stability of
Multi-agent systems. The complete discussion on this scenario is discussed
later in this chapter. So far we are considering two platforms one is local plat-
form having agents named working agent and other is remote platform having
clones of working agents named clone agents. These platforms could be on
single machine or distributed over the network. The monitoring agents are
responsible for managing overall platform including agent migration, agent or
clone creation. These local and remote platforms are managed by local and
remote monitoring agents respectively. These states of affairs will increases
intra-platform agent mobility as well. JADE does not allow intra-platform
migration or transfer of agent but agent will be transferred using approach
discuss in chapter two.

The proposed approach has two JADE platforms; one platform is running
on the local machine and other is running on cloud. These both platforms
have monitoring agents which can be one or can scale up to depending on
size of platform. The local monitoring agents maintain all the environmental
states of local platform and make them available for all local agents. Along
with these, local monitoring agents also allow local and remote platforms
to communicate. Similarly the clones of agent which are running on cloud
platform are maintained by Remote monitoring agents. They create clone
of each agent in local platform on request of agent on local platform and
synchronized the communication among agent and clone. It also fetches in-
formation of cloud usage such as instances currently running and number of

CHAPTER 3. PROPOSED APPROACH 29

agent in these instances and memory which is also shared local monitoring
agent. This information helps local monitoring agent in managing the over-
all behavior of persistency system. The architecture of proposed approach is
shown in figure 3.2.

CHAPTER 3. PROPOSED APPROACH 30

Figure 3.2: Architecture Diagram

CHAPTER 3. PROPOSED APPROACH 31

Initially local and remote monitoring agent runs JADE platform on local
machine and cloud independently and sharing their AIDs with each other.
AID uniquely identifies the agent with in multi-agent systems; it also con-
tains agent name and addresses. Both monitoring agents obtain each other
AID and save it as environmental states. Any agent in local platform can
communicate with remote monitoring agent after getting its AID from envi-
ronmental states. Remote platform contains clones of working agents in local
platform. These clones are actually mirrors of their respective working agent.
Similarly these clones can communicate with local monitoring agent using its
AID saved in their environmental states. The communication is carried out
using ACL messages, these messages can have string value or serialized ob-
ject as content, also ACL message has flag which tells the purpose of message
called performativity. Platform uses String value to request other platform
for any process while serialized object is used for sharing environmental and
local states. Both platforms are fully adjacent now.

The working agent gets remote monitoring agent AID from its environ-
mental states and send him ACL message. The ACL message contains seri-
alized object of local states of respective agent and flag is set to create clone
agent. Remote monitoring agent just parse the received message, read the
reason of sending message which is obviously for creating clone agent. It
creates clone agent and provides initial state from content of ACL message.
Since clone and genuine agent has synchronized states and clone agent send
message to genuine agent eventually both agents and its clone has AIDs of
each. This is completely humanitarian way of exchanging information and
now both agents begin direct communication and original agent keep send-
ing stream of synchronized states to its clone. In this way all the working
agents in local platform request for their clones to remote monitoring agent
on remote platform on cloud, it creates clone which further synchronize with
its working agent. The complete process is described in sequence figure 3.3.

The agent and its clone can crash unexpectedly; fortunately proposed
approach is capable of re-creating any of them. In case clone crashes, the
genuine agent will send request with synchronized states to recreate clone.
The synchronized states would be serialized object containing local states of
genuine agent. Remote monitoring agent will create clone and facilitate to
synchronize communication with genuine agent. Similarly when clone agent
discovers that its genuine agent is lost. It sends request including its internal
states to local monitoring agent for creating new agent. The internal states of
clone is obviously the synchronized states of genuine agent. Local monitoring
agent creates agent with synchronized states provided by its clone agent.

CHAPTER 3. PROPOSED APPROACH 32

Figure 3.3: Sequence diagram for mobility process in proposed approach

Newly created agent get AID of its clone from synchronized states and send
alive message. The agent gets necessary environmental states and ready to
contribute in multi-agent systems. Hence this approach can re-create crash
agents and its clone with synchronized states when any of them crashes.

3.4 Conclusion

Analysis of literature review help in extracting major problem in pre-
vious approaches that are being used to solve this problem. Unfortunately
these approaches were not suitable for our problem. In multi-agent systems,
agents produce and use information. Some information need to share with
other agent in multi-agent and some information should be private to re-
spective agent. In simple word there is need to classify the states of agents
in multi-agent systems. Hence in proposed approach states are divided in
local states (private to agent) and environmental states (share with all agent

CHAPTER 3. PROPOSED APPROACH 33

in MAS).Other challenging matter was to save data, in older way of storing
data such as databases, serialization, Jade persistency framework are not
able to store data which changes such frequently as states of agent changes.
In order to cope this issue, proposed approach create clone agent who con-
sistently communicate with genuine agent to share latest states. Clone agent
is reflection of original agent but it saves the internal states of agent which
are later use to recreate agent when it crashes.

The approach put forward in this thesis is based on communication of
agents because communication especially text based messages does not pro-
duce load on system. There are two platforms, one is running on local ma-
chine while second is running on cloud. Agents reside on local platform and
their clones are on remote platform, we call them clone agents. Both agent
and its clone communicate with each other to maintain latest states of agent.
The states of agent are enclosed in serialized object. The states among clone
and agent are shared via ACL message having object which contains states.
When any one dies either agent or its clone, it sends ACL message to concern
monitoring agent to create agent or clone agent with latest states. Concern
monitoring agent is further responsible for creating agent and initiate com-
munication among agent and its clone. Even if the several agent and clones
dies at same time the system will probably recreate them and start function-
ing properly. In next chapter these prototypes will be test and evaluated.
The research questions will answer on basis of obtained results and compare
outcomes with hypothesis.

Chapter 4

IMPLEMENTATION

4.1 Introduction

This chapter presents the implementation of the proposed approach for
persisting agent states. It covers the detailed implementation of each mod-
ule and resources that are used to develop the prototypes. There were two
prototypes which were developed in this thesis; first was developed using the
proposed approach whilst the other was developed using existing state of art
technique. There are several techniques which were previously used to per-
sist agent states. In this thesis a Database is used because it is most popular
technique among all other techniques for persisting agent states. Although,
this technique has some drawbacks but so far it is considered to be a reliable.
Both prototypes are evaluated in chapter 5 and their results will be compared
for conclusion.

This chapter begins with an introduction to the functionality of proposed
approach. The tools and techniques were used in development of prototypes
are discussed the next section. The concrete implementation and working
of prototype for proposed approach is considered first which is followed by
the implementation details of database technique. The chapter conclude by
presenting the overall challenges which were faced when implementing these
prototypes.

4.2 Related Tools and Systems

The prototypes were implemented using diffident technologies. These
prototypes could be implemented on single machine, over network and over
internet as well. The scenario is selected after a detailed study of the design

34

CHAPTER 4. IMPLEMENTATION 35

patterns used to develop Multi-agent systems. The detailed architecture is
presented in chapter 3. The tools and systems used for implementation are
below.

4.2.1 Amazon EC2

Amazon Elastic Cloud EC2 is an Amazon cloud service which has been
providing IT infrastructure over the internet since 2006. Amazon offers global
compute, storage, database, analytics, application, and deployment services
to organizations which are trusted by hundreds of enterprise companies and
start-ups. These services can significantly improve the organization progress
and also reducing IT infrastructure cost. Organizations do not need to deploy
and maintain their own IT infrastructure because service providers include
Amazon offers robust and stable infrastructure in very reasonable price. The
companies start preferring using computing services over the internet to re-
duce their workload of managing human resources, workload for deploying
and maintaining computers and networks and cost of hardware.[11]

Amazon web service EC2 able use to access instance using web interface.
A web interface allows the user to obtain and configure instances. An In-
stance is a virtual machine created by the web service which can boot an
Amazon machine image (AMI). This contains a pre-configured image of the
virtual machine that is used to create virtual machines. The user has com-
plete control of the virtual machine and it allows them to access computing
resources across Amazons availability zone network. Amazon EC2 is scalable
which means instances can be scale up and down with respect to computing
requirements. On an increase in computing load, EC2 allows users to launch
new instances and similarly close instances on reducing load. These elastic
scaling results in efficient use of resources and makes economical for user to
pay only for only computing they used. Amazon EC2 offer different types of
instance which are discussed below

T2 is general purpose instance with baseline level of CPU performance
but it can rise above baseline depending upon the CPU credits. T2 instances
are Burst able Performance Instances which means instance would not have
consistence CPU performance. The performance is governed by credits and
credits of instances increase when they are idle and consumed when they are
using CPU. These instances has Intel Xeon Processors operating at 2.5GHz
and could rise to 3.3Ghz with memory, and network resources. The different
type of T2 instances and their specification are listed below in table 4.2

CHAPTER 4. IMPLEMENTATION 36

Figure 4.1: T2 instances specifications [11]

M3 is another general purpose instances empowered with Intel Xeon E5-
2670 v2 (Ivy Bridge) Processors which have consistant CPU performance. It
has SSD storage for faster performance of I/O devices. It is therefore appro-
priate choice for many medium scale applications. The figure 4.2 shows the
detail specification of M3 instances.

Figure 4.2: M3 instances specifications [11]

C3 instances are compute optimized and allow users to access high
performance CPU performance. Figure 4.3 shows the specifications of differ-
ent type of C3 instances

CHAPTER 4. IMPLEMENTATION 37

Figure 4.3: C3 instances specifications [11]

I2 is storage optimized family of instances whose storage capabilities with
high speed read and write operation and high IOPS. The I2.x large instance
has the lowest storage capability among the instances of this family i.e 30.5
GB and I2.8x large has maximum storage of 244GB.

4.2.2 Inter-platform Communication

Two JADE platforms were used in the proposed approach and the agents
in these platforms cannot communicate with each other. The approach used
for inter-platform communication is MTP. It is message transfer protocol in
JADE for communication between agents in different JADE platform. The
marshalling, un-marshalling and transmiting of ACL message in this protocol
is according to FIPA specifications. JADE 3.2 and above versions support
HTTP and IIOP message transfer protocols. However in prototype imple-
mented using proposed approach HTTP-MTP was used. HTTP-MTP is
installed in main container by default. The explicit installation is required
to use it in peripheral containers. The working of MTP is shown in figure 4.4.

CHAPTER 4. IMPLEMENTATION 38

Figure 4.4: HTTP-MTP working [12]

4.3 Implementation of Prototypes

Chapter three of this thesis contains the architecture of the proposed
approach along with some concrete details. Similarly it is possible to de-
velop multi-agent systems using a database oriented persistency framework.
Two Agent-based systems were designed and developed in order to evaluate
the proposed approach. The developed systems simulated an auction sys-
tem with each having the same functionalities. One system used previously
proposed approach and other is developed using proposed approach. Both
prototypes were developed using same resources, technologies and function-
ality for unbiased evaluation. Using different hardware for each prototype
will not give fair results for comparison, because prototype running on bet-
ter hardware will definitely have good results. Therefore agent development
platform used for both systems was JADE and deployed on Amazon EC2
and Local Machine.

CHAPTER 4. IMPLEMENTATION 39

These prototypes simulated auction system because it is real time. The
working agents were customized bidders who bid like humans. A bidding al-
gorithm was designed and implemented in order to make an agent sufficient
intelligent so that it can bid. Algorithm abled agents to collect information
from environment and analysed it to make an appropriate bid, therefore the
agents needed strong communication. Frequently changing agent states were
real challenge to persist and they cannot be saved using previously proposed
approaches. The working agents which were customized bidders in system
were frequently changing their internal states.

From previous discussion we can conclude that the proposed approach
is feasible for persisting agents states and recreates them when they die in
multi-agent systems. This approach can be implemented using available
tools and techniques. The prototype is implemented using two platforms
which are recommended way of using proposed approach. In the prototype,
one platform was deployed on Amazon EC2 whilst second platform was was
deployed on local computer. The platform which was running in local com-
puter contains working agent who actually bidders. The clones were resided
on platform running on cloud. The agents in both platforms communicated
with each other using the internet.

The second prototype was developed using JADE Persistency Framework
which uses database to save agent states. In this prototype, a database which
was a persistency unit and it was placed on Amazon EC2 instance. However
the Multi-agent system simulated auction was deployed on local machine. Its
been make sure to send necessary requests to database for fair evaluation.
The architecture of this prototype will discuss later in this chapter for more
understanding.

4.3.1 Implementation of Proposed Approach

As auction system was simulated, therefore all the possible states could
involve in auction system were gathered. These states were classified in en-
vironmental and local states as discussed in chapter three. For example an
agent name, agent AID, agent amount (Total amount agent has to make
bid) were Local states of an agent whilst the states such as; highest bid
so far ,agent addresses who made last bid, Addresses of remote monitoring
agents were the environmental states. The local and environmental states
were encapsulated in two objects. The object contains environmental states
were accessible to all other agents in system. Each working agent maintained
its local states which were not assessable to any other agent.

CHAPTER 4. IMPLEMENTATION 40

JADE framework was used to develop the prototype having two JADE
platforms. A platform deployed on local machine was called the local plat-
form while a platform which was deployed on Amazon Ec2 instance was
called Remote Monitoring platform. Each platform had only monitoring
agent known as local monitoring agent and remote monitoring agent. The
working agents were placed in local platform and clone agents were on remote
platform. These two platforms were running independent of each other and
they communicated using ACL messages. Each working agent in system cre-
ated and maintained its Local states object however the monitoring agents
were managing environmental states.

The local and remote platforms started independent of each other but
the local monitoring agent took name and MTP URL of Remote monitoring
agent using input form as shown in figure 4.5. MTP URL was used to access
remote platform and agent name helped to deliver a message to particu-
lar agent. This information was saved in environmental states object so that
working agent can access it. The working agents got remote monitoring agent
address from environmental states of local monitoring agent and send ACL
message to create its clone. It created clone and provided AID of original
agent which is actually working agent who requested for clone. Then clone
agent knew about its original agent so that it sent an acknowledgement ACL
message to an original agent. The original agent got source AID of clone
from ACL message to get AID of its clone. Here both agent and its clone
had AIDs of each other. Then after each making bid, working agent sent its
latest local states to its clone agent. This way clones stored the local states
of their respective working agents.

Considering when working agent dies, the agent will generate ACL mes-
sage for its clone agent. The message will notify clone agent that working
agent has been dead. The clone agent will send message to local monitoring
agent for creating new agent. This message would have synchronized local
state of dead working agent. The local monitoring agent would create new
working agent with synchronized states. Similarly if clone dies, it would send
ACL message to its working agent. The working agent would have to send
request to remote monitoring agent for creating its new clone with most re-
cent states.

CHAPTER 4. IMPLEMENTATION 41

Figure 4.5: Local Platform Input form

4.3.2 Implementation of JADE Persistence Framework

This prototype is also simulating auction system such as prototype im-
plemented for proposed approach. This prototype had one Jade platform
which was deployed on local machine. The database is deployed on Amazon
EC2 micro instance. The working agents running on local machine would
perform the database operations. All the conditions and resources were kept
identical in both prototype which consequence in fair results.

The platform ran on local machine has monitoring agent known as Main
agent. This agent kept track of all working agent and environmental states.
It manages the auction system by maintain data structure. It had list of all
working agent and notify agents to bid in queue. The working agents register
themselves with main agent by sending their states. The system is capable
of persisting states of agent and recreating agent when dies. Whenever any
agent would die, main agent will fetch it states from database and recreate it
with synchronized states. The detailed flow of prototype is shown in figure
4.6.

CHAPTER 4. IMPLEMENTATION 42

Figure 4.6: Architecture diagram of JADE persistence framework

4.4 Conclusion

This chapter considered the implementation of the two prototypes. The
first prototypes was implemented using proposed approach while second is
developed with JADE persistence framework. These both prototypes simu-
late auction system, they will be evaluated and their results compared. The
prototypes were implemented using same technologies, bidding algorithm for
fair evaluation. The basic functionalities of prototypes were tested such as
persisting agent stats and recreation of agent. The prototypes passed the
initial testing and detailed performance evaluation is discussed in chapter
five.

Chapter 5

EVALUATION AND
RESULTS

5.1 Introduction

In order to evaluate the performance of the proposed approach, it was
necessary to compare it with previous approaches to persistency. There are
several persistence frameworks for multi-agent systems. Each framework has
different advantages and limitations. The Jade persistence framework was
selected for comparison after analysing popular frameworks. This framework
was found to be the latest approach and considered to be the most stable and
efficient. Also it is available as plugin in JADE platform with good support
which made implementation less challenging.

The purpose of evaluation is to gather evidence which then allows assess-
ing hypothesis of the thesis. The results should validate the performance of
proposed approach. Most of research questions are answered in this chapter
on basis of results. The conclusion of this chapter will provide analysis and
reasoning on results. The research question will be answered in the context
of the results and their analysis. The evaluation and answer of research ques-
tions will lead to either proving the hypothesis true or false.

There were two prototypes developed for comparing performance analysis
according to certain parameters which are discuss later in this chapter. These
prototypes were implemented with same functionality and techniques to en-
sure a fair comparison. The complete implementation of both prototypes
was discussed in chapter four. These prototypes are evaluated using differ-
ent matrices such as memory usage, CPU usage, response time and Agent

43

CHAPTER 5. EVALUATION AND RESULTS 44

recreation time. This chapter is organized as follows; section 5.1 presents a
roadmap for the evaluation process. The section 5.2 briefly discusses experi-
ments perform to get results. The section 5.3 and 5.4 presents the qualitative
and quantitative results of both prototypes respectively.

5.2 Experiment Setup

The thesis includes the comparative study of two prototypes simulating
auction system. The detailed discussion on reasons for selecting an auction
system for implementation is discussed in chapter four. The prototypes were
deployed on resources having the same specifications, implemented using
same frameworks and techniques to ensure fair results. The auction modules
of prototypes were deployed on local machine whilst persisting modules were
placed on an Amazon EC2 micro instance. The persisting module in pro-
posed technique was a Multi-agent system. This system was developed using
the JADE framework. On the other hand the SQL database was used to save
agents state in system was developed with the JADE persistency framework.

Before quantitative evaluation, the prototypes were deployed and tested
qualitatively. This testing included the functionality testing of different mod-
ules and features by running several test cases. The test cases performed for
functionality test are listed in later in this chapter. This testing ensured
that prototypes were ready for evaluation process. In order to evaluate the
performance of the prototype certain parameters have been identified. These
parameters include memory usage, CPU usage and response time of the sys-
tem. The analysis and discussion on these parameters are added later in this
chapter. The detailed hardware specifications are listed below.

The local machine used for deploying and evaluating prototypes was HP
630 laptop. The technical specification of laptop is listed in table below.

Processor Intel Core i5-2430M
RAM 2GB DDR3
Operating System Window 8, 32bit

Table 5.1: Specification of Local Machine

CHAPTER 5. EVALUATION AND RESULTS 45

The persistence units of both prototypes were deployed on T2 micro
instance. This is a general purpose instance, which is suitable for workloads
such as web server or IDE. The specifications of the T2 micro instance, are
listed in the table below

Processor Intel Xeon Processors
Processor speed 2.5GHz to 3.3 GHz
CPU Credit/ hour 6

RAM 1 GB
Operating System Linux
Storage EBS

Table 5.2: Specifications of Amazon Instance

T2 instances are Burstable Performance Instances. The can burst their
CPU performance above the base line performance depending on CPU cred-
its. The CPU credits govern the performance burst. Instances earn CPU
credit when they are idle and consume them when they are active. A full
core performance of CPU is given for one minute on charging single CPU
credit.

5.3 Qualitative Results

Qualitative results mainly concern with functionality and quality of the
prototypes. This testing was performed to test working of core modules of
both persistency framework. Although the prototypes are simulating auc-
tion system but using different approaches. It was important to make sure
that key features of prototypes were working. This was initially useful to
analyse if these prototypes were suitable for evaluation process. The qualita-
tive results were gotten to ensure that both prototypes are performing same
functionalities. The prototypes can fairly compare if and only if they are
doing same functionalities. The list of key functionalities and their testing
results of proposed approach and JADE persistence framework are presented
in next two sub section respectively.

5.3.1 Proposed Approach Qualitative Results

There were several features of prototypes and most of them are similar.
Because auction in both prototypes implemented using same logic but steps

CHAPTER 5. EVALUATION AND RESULTS 46

involved in persistency frameworks were different. To ensure the fair results,
it was essential that the prototypes were working and there would no failure
on increasing number of agents. The purpose of prototype developing us-
ing proposed approach is to store agent states and recreate them when they
crash with latest states. The testing of key functions of proposed approach
in prototype is listed in table below.

Functionality Expected Re-
sults

Results Remark

Launching Both
platform and sync
monitoring agents

Both platform
monitoring agents
should have AIDs
of each other.

The platforms
had AIDs of
each other.

PASS

Adding bidders on
user input

The system
should simu-
late with given
number of bidder.

The proto-
typed added
agents ac-
cording to
user input
and simulated
them.

PASS

Inter-Platform
Communication
of working Agents

Agents on any
platform should
able to send or
received ACL
message from
agent on other
platform.

The ACL
messages
were being
received and
send.

PASS

Clone Creation Agent should be
created in remote
platform.

The clone
was created
with pro-
vided states
of agent
on remote
platform

PASS

Working Agents
states synchro-
nization with its
clone agent.

The clone agent
should acquire
the synchronized
states of working
agent.

The working
agent sent its
synchronized
states when
state changes

PASS

CHAPTER 5. EVALUATION AND RESULTS 47

Working Agents
recreation with
synchronized
states when single
or several agents
crash

The agent should
recreate with syn-
chronized states.

The proto-
type recreated
several cashed
agents.

PASS

Clone agents
recreation when
single or several
clone agents crash

The agent should
recreate and re-
quest for synchro-
nized states.

The proto-
type recreated
several cashed
agents.

PASS

Recreating moni-
toring agents

The monitoring
agent should be
recreated by pro-
totype and start
surveillance of
other agents.

The proto-
type recreated
monitoring
agent which
start moni-
toring from
synchronized
states.

PASS

Table 5.3: Test Cases for proposed approach

Each test case is executed several times for accuracy. In case of any
unexpected results or failure in any test case, it was debugged and removed
particular reason of this failure was identified and removed.

5.3.2 Qualitative Results of JADE Persistence Frame-
work

The qualitative results of prototype which is developed using Jade persis-
tence framework are presented in this section. The core objectives of both
prototypes are similar but uses different approaches which consequences in
different test cases. The number of test cases could be different for each pro-
totype, because procedure of persisting agent states and recreating crashed
agent are different. The table below evaluates the key functionality of this
prototype.

The proposed approach has eight test cases and JADE persistence frame-
work has five test cases because proposed approach involved more steps in
persisting and recreating processes.

CHAPTER 5. EVALUATION AND RESULTS 48

Functionality Expected Re-
sults

Results Remark

Launching
JADE platform
with working
agents locally.

The JADE plat-
form will run lo-
cally and create
working agents.

The JADE
container
launched
successfully.

PASS

Adding bidders
on user input

The system
should simu-
late with given
number of bidder.

The proto-
typed added
agents ac-
cording to
user input
and simulated
them.

PASS

Communication
with MainAgent

MainAgent should
have AIDs of all
other agent and
it should able to
send them ACL
message.

MainAgent
had AIDs of
all agents and
could sent
message to
other agents.

PASS

Agents con-
nectivity with
Database

The database
should contain
the states of all
agents.

The database
had states
of all agents
in JADE
platform.

PASS

Working Agents
recreation with
synchronized
states when
single or several
agents crash

The agent should
recreate with syn-
chronized states.

The proto-
type recreated
several cashed
agents.

PASS

Table 5.4: Test Cases for JADE persistence Framework

CHAPTER 5. EVALUATION AND RESULTS 49

5.4 Quantitative results

The quantitative evaluations of both prototypes considers their perfor-
mance. The detailed quantitative evaluation could abled us to answer the
research questions. First result metrics were created for evaluation of both
prototypes. An experimental setup was made for each metric. The analysis
of these results would help to understand the usability of reliability of ap-
proach for Multi-agent systems.

The quantities results need to be very clear and comprehensive. Both
prototypes were evaluated using same result metrics. Result matrices were
created on the analysis of metrics used to evaluate similar approaches. The
results were collected using these result matrices and performing experiment
discussed in section two of this chapter. The results were fetched by gradually
increasing the number of agents in systems. The result matrices used for
evaluating prototypes are listed below.

5.4.1 Response Time

The response time of systems includes the time period, an agent took
to; register itself with monitoring agent, persisting its state and take part
in auction system. Considering the proposed approach, the response time of
agent will include; agent registration with monitoring agent, requesting re-
mote platform for its clone and working agent synchronization with its clone
agent. Similarly response time in prototype with Jade persistence framework
is time it took to register with main agent, store its states in Database and
ready to take part in auction system.

On comparing both prototypes the system developed using JADE per-
sistence framework had a lower response time as shown in graph below in
figure 5.1. The reason of this big difference was agent communication. In the
proposed approach the agents share their states with clone agent via commu-
nication and networks which are usually faster. On the other hand Databases
are slower in reading and writing which consequences in slower response time.
The numbers of agents were gradually increased in the prototype. The sys-
tem powered by the JADE persistence framework put a significant delay and
increase the response time. In contrast the system using proposed approach
slightly increased the overall response time. The working agents were directly
communicating with its clone on cloud using ACL messages containing seri-
alized states object. This communication reduced the response time where
each transaction in database has a slower response time in the reading and

CHAPTER 5. EVALUATION AND RESULTS 50

writing process..

Figure 5.1: Response Time

The response time of the proposed approach remains below 0.6 second
for a thousand users. In contrast the response time of the JADE persistence
framework increased to forty five seconds. The growth rate of response time
of the proposed approach is shown in figure 5.2 to clearly show the patterns
in response time. The increase in response time is linear but remain a very
slight increase. This slight increase in response time shoes the improvement
in the performance of the proposed approach. The approach is therefore be
considered as a good choice for a systems where agents’ states frequently
change.

CHAPTER 5. EVALUATION AND RESULTS 51

Figure 5.2: Growth Rate of Response time for Proposed Approach

5.4.2 CPU and Memory Usage

The overall CPU and memory analysis showed that proposed approach
considerably efficient in CPU performance. Their usage patterns are used
to compare the performance analysis of both prototypes. Their analysis will
help to understand the performance of both prototypes. The prototype is
only considered to be useful when it can execute and deploy on reasonable
computational resources. Should prototypes demand for more computational
and hardware resources, this would reduce the utilitarian aspects of the sys-
tem. The new persistence approach should be resource effective as well. The
Multi-agent systems can vary in number of agents; they can contain few
agents or one enormous. The Multi-agent systems containing fewer agents
would prefer to use less hardware resources. Similarly multi-agent systems
having enormous number of agents need resource effective approach to run
smoothly.

As far as memory is concern the prototype with proposed approaches
use more memory than database driven framework as shown in figure 5.3.

CHAPTER 5. EVALUATION AND RESULTS 52

This usage of memory is because clone of local monitoring agents resides on
the local machine. The number of agent increases as monitoring agents are
not exists in database driven approach. The working agent in local machine
consumes memory because they hold some additional information such as
Local and monitoring agents AIDs, remote platform information. Although
the proposed approach consumes more memory than the JADE persistence
framework, this is not really that limiting in terms of scalability. Also it
consumes memory to provide additional information and more stability. The
systems especially cloud instances often have large amounts of memory avail-
able. In contrast memory usage is small even thousand agents are running.
These thousand agents consumes 32MB of memory which is not such high.
These day smart devices and hand held devices have memory in Giga bytes.

Figure 5.3: Comparison of Memory Usage

5.4.3 System Launch Time

The launch time of systems is duration system took to start actual auc-
tion. At this state both systems had complete their initial setup. The JADE

CHAPTER 5. EVALUATION AND RESULTS 53

persistence framework setup included database initialization, starting main
agent and working agents registration. The average launch time of JADE
persistence framework was four minutes. On the increasing number of agents,
the system crashes quickly because of database response times. The response
time graph in figure 5.1 clearly shows that on increasing the number of agents,
decreases the response time.

The launch time of prototype uses proposed approach contains time it
takes to synchronizes both local and remote JADE platforms. The synchro-
nization includes; launching of both platforms, creating working agents and
their clones, synchronizing working agents with their clones. The launch
time of this system was two and half minutes for every test case. This launch
time however can be reduced by increasing number of monitoring agents.
This confirms that the proposed approach is able to manage internal state
of agents when they die. Also this time is sufficiently less than JADE per-
sistence framework.

5.4.4 Agent Recreation Time

Agent recreation time is one of the most vital features of prototype. The
agents can crash while performing their tasks. Both prototypes are able
to recover them with synchronized states. It is important to analyses the
performance of both systems. To compare the agent recreation time of the
prototypes, agents were crashed during their execution. Different numbers
of agents were killed to analyse the performance of prototypes and net effect
on the end results. For example the bidder wins the auction should remain
same either agents were killed or not. The killed agents should recreate with
synchronized states so that it can adjust in environment.

The time both prototypes took to recreate crashed agent is agent recre-
ation time. The recreation time comparison is show in graph in figure 5.4.
The graph shows proposed approach is much quicker in recreating a crashed
agent. It is very important to recreate crashed agents quickly because any
delay in recreating agent could cause instability in the system. Considering
agents crash that change local states frequently, delay in recreating these
agents result in loss of significant information. This information includes
local states which should recover as soon as possible. The result showed
proposed system is quick in recreating crash agents. The reason is proposed
approach is basically communication oriented. The networks are very fast
which improved the performance of system.

CHAPTER 5. EVALUATION AND RESULTS 54

Figure 5.4: Comparison of Agent recreation time

5.5 Conclusion

The overall performance of the proposed approach outperformed the pre-
vious persistence frameworks. Meanwhile approach gives in memory solution,
someone may consider it less robust or reliable than the database driven per-
sistence frameworks. The database holds the structural data where agent
states update frequently and agent can change its internal structure. The
scalability, runtime error handling and delays were challenges in recent ap-
proaches. These challenges make in-memory cloud based approach for persis-
tence more appealing. Also using cloud enhances the scalability capabilities
of proposed approach.

The results showed that the proposed approach improved the CPU uti-
lization, Agent recreation time, response time and system launch time. The
recreation time, response time and launch time in any experimental setup
slightly differs because communication is faster than requesting database.

CHAPTER 5. EVALUATION AND RESULTS 55

These results are significantly improved and quite efficiently working for thou-
sands agents. On other hand old approach for persisting agent states crashes
while simulating auction for thousand agents. This improvement in persist-
ing agent states will significantly enhance the performance of Multi- agent
systems.

The memory usage in proposed system is increased because proposed
approach put forward in-memory solution. The states are saved in memory
as encapsulated object. The size of this object can vary but these memory
usages will not much high. The current technologies have memory in tetra
bytes especially in case of cloud. Also small devices and smart phones have
memory in Gigabytes. Certainly this memory use of proposed approach is
quite reliable and does not put much burden on the hardware. The detailed
conclusion and answer to research questions are stated in chapter six.

Chapter 6

CONCLUSION AND
FUTURE WORK

The research in thesis presents a new type of persistency framework for
Multi-agent systems. The proposed approach provides in-memory storage of
internal states of agents. These states are stored in mirror agent which resides
in cloud. The internal states of agent are being synchronized with mirror
agent by communication between them. Should an agent or its clone crash,
the remaining agent is responsible for re-creating the crashed one. Section 6.1
presents the final assessment and research questions are answered in order
to answer research hypothesis. Section 6.2 includes future work which is
followed by section 6.3 which presents conclusion of this research.

6.1 Final Assessment

In first chapter, the research questions were state which were constrains
on the performance and implementation of the approach. They have been
evaluated from the result driven from chapter five. These research questions
have to discuss to clearly understand the performance and the scalability of
the approach. The reply to research question Q-2 that is

How can we propose a flexible persistence framework for capturing and per-
sisting states of agent at the application level?

The evaluation results showed that a widely applicable persistence frame-
work can be developed for capturing and persisting states of agent on appli-
cation level. The proposed approach has no concern with task or execution of
agent. It saves and keeps synchronized states of agents without knowing the

56

CHAPTER 6. CONCLUSION AND FUTURE WORK 57

semantics. The behaviour of agent and its responsibilities does not demand
any change persistence framework. This means proposed approach is generic
and can use in multi-agent systems belong to any domain.

Discussion on Research Question RQ-3

What should be the behaviour of multi-agent systems when several agents or
severa clonel agents die in system or agent states change frequently?

In proposed approach whenever an agent dies, it sends a request to the
remote monitoring agent to create new agent with synchronized states. In
chapter 2 there is complete discussion, how previously proposed approaches
recreate agents and their efficiency and accuracy. If one agent or several
agents die it would not make any difference because clone will take their
place and will send request to Local remote agent to produce new agent.
The re-created agent would have synchronized local states which clone had
provided and environmental states which would get from Local monitoring
agent. Similarly in case several or more than half of clones crash, their re-
spective agent will send request to remote monitoring agent to create clone
and agent will also provide synchronized states for creating their clone with
latest states. The scenario is discussed in section 5.4 where more than half of
agents were killed to test the performance of prototype for agent recreation.
The results showed that agents were recreated in very small friction of time
with their synchronized states.

The proposed approach is communicative and networks these days are
very fast. These agents can share states with their respective clones in fric-
tion of second. Also the ACL message has very reasonable size and creates
less traffic load. Considering the case clone agent dies, the clone agent will
get new synchronized state from its working agent. The complete procedure
is presented in chapter three.

Discussion on Research Question RQ-4

What would be performance and scalability of the proposed approach?

The proposed approach was tested using a thousand agents. The results
discussion in previous sections clearly showed that approach is satisfactory
in term of performance. In order to check scalability proposed approach
is tested for thousand agents for analysing performance matrix. The large
multi-agent systems usually have less than hundred agents. Therefore this

CHAPTER 6. CONCLUSION AND FUTURE WORK 58

approach is useful for persisting agent states and recover crashed agents. The
results and answer to research questions demonstrate that the hypotheses is
true. The qualitative results showed that the agents states in Multi-agent
systems can be saved using proposed approach. The agent crashed while
execution can be recreated. Similarly the quantitated results strengthen the
validity of hypothesis. These results proved proposed approach quite better
than previous approaches.

6.2 Future work

The Multi-agent systems that are using previously proposed persistency
frameworks which make them slower. The comparative results showed that
approach proposed in this thesis is considerably good in performance. There
should be some method to equip such Multi-agent systems (using old per-
sistency frameworks) with proposed approach. This transformation process
should not slow the performance of systems. It should work independently
and parallel so that they should no hurdle for system to perform its regular
tasks.

Currently Multi-agent systems mostly contain less than a hundred agents.
The use of smart devices are increasing by peoples to manage their daily
routines and solving their problems. Agents can do this management tasks
in behalf of humans. In this context each user can map with personalized
agent. In this scenario, there will be immense number of agents who will
put significantly high burden on agent framework. So far this evaluation is
enough but there would need to evaluate for such numbers of agents. There
is also possibility that there would need to perform some improvements too.

6.3 Conclusion

The use of the internet of things is widely increasing which demands for
new paradigm of developing application and managing them. These devices
can huge in a number and distributed over the networks for solving any
problem. The Multi-agent systems can be one of possible option to handle
such problems. Putting agents in IOT results in massive number of agents
because of increase in use of embedded and wearable devices. Consider each
devices as a customised agent, each devices will has different hardware spec-
ification and configuration which will increase the probability of an agent
to crash. Therefore a persistency framework was introduces to improve the

CHAPTER 6. CONCLUSION AND FUTURE WORK 59

performance and the reliability of the Multi-agent systems.

The architecture of persistency framework proposed in this thesis is pre-
sented in chapter three. In order to evaluate the framework a prototype
was implemented using proposed approach which was compared with JADE
persistency services. The comparison results are formulated and presented
in chapter five. The discussion on these results and assessment showed per-
formance benefits of proposed approach. In final assessment section, the
research questions were answered. They were consider to be constrains on
proposed approach. These answers proved research hypothesis true. These
results showed that proposed approach scale Multi-agents systems better as
compare to JADE persistency services.

Bibliography

[1] Quan Liu, Lu Gao, Ping Lou, Resource Management Based on Multi-
Agent Technology for Cloud Manufacturing, School of Information En-
gineering, Wuhan University of Technology, Wuhan, China.

[2] Ralph Deters, Scalability And Multi-Agent Systems, University of
Saskatchewan.

[3] Rocco Aversa, Beniamino Di Martino, Massimiliano Rak, Salvatore
Venticinque, Cloud Agency: A Mobile Agent Based Cloud System,
Department of Information Engineering Second University of Naples
Aversa (CE), Italy.

[4] Octavio Gutierrez-Garcia and Kwang-Mong Sim, Self-Organizing
Agents for Service Composition in Cloud Computing , 2nd IEEE In-
ternational Conference on Cloud Computing Technology and Science.

[5] Giovanni Rimassa, Runtime Support for Distributed Multi-Agent Sys-
tems, Ph. D. Thesis, University of Parma, January 2003.

[6] Joan Ametller, Sergi Robles, and Joan Borrell, Agent Migration over
FIPA ACL Messages , Computer Science Dept. Universitat Autnoma
de Barcelona.

[7] E.Cortese, F.Quarta and G.Vitaglione, Scalability and Performance of
JADE Message Transport System, Centro Direzionale isola F7

[8] Chih-Tien Fan, Wei-Jen Wang and Yue-Shan Chang, Agent-based Ser-
vice Migration Framework in Hybrid Cloud , 2011 IEEE International
Conference on High Performance Computing and Communications

[9] Giovanni Caire, Giovanni Rimassa and Fabio Bellifemine JADE: a ver-
satile run-time for distributed applications on mobile terminals and
networks , 2004 IEEE International Conference on Systems, Man and
Cybernetics

60

BIBLIOGRAPHY 61

[10] Bracciali, Giancarlo Fortino , Francesco Rango, An application-level
technique based on recursive hierarchical state machines for agent exe-
cution state capture, DEIS University of Calabria, Via P. Bucci cubo
41c, 87036 Rende (CS), Italy

[11] http://aws.amazon.com/ec2/

[12] http://jade.tilab.com/

[21] Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A.: Intelligent
Workload Factoring for a Hybrid Cloud Computing Model In California
: International Workshop on Cloud Services, Los Angeles, July, 2009.

[14] G. Fortino, A. Garro, S. Mascillaro, W. Russo, Using event-driven
lightweight DSC-based agents for MAS modeling, International Journal
on Agent Oriented Software Engineering 4 (2) (2010).

[15] M. Berger, S. Rusitschka, M. Schlichte, D. Toropw, M. Watzke. Porting
Agents to Small Mobile Devices In Workshop on Ubiquitous Agents on
Embedded, Wearable and Mobile Devices, AAMAS 2002, July 15-16,
2002, Bologna, Italy.

[16] The Hibernate Project Home Page. Available at
http://www.hibernate.org.

[17] Gutierrez-Garcia, J.O., Sim, K.M , Self-Organizing Agents for Service
Composition in Cloud Computing. In USA: 2nd IEEE International
Conference on Cloud Computing Technology and Science, 2010.

[22] Ramaswamy, A., Balasubramanian, A., VijayKumar, A Mobile Agent
Based Approach of Ensuring Trustworthiness in the Cloud. In Chen-
nai: IEEE-International Conference on Recent Trends in Information
Technology, 2011 June 3-5 pp. 678-682.

[19] http://www.codingeek.com/

[20] David Wong; Noemi Pacictek, Ton Walsh, Joe DiCelie, Mike Yotmg,
Concordia: An infrastructure for Collaborating Mobile Agents ,Bill
Peet Mitsubishi Eleclric ITAHorizon Systems1432 Main Street Wala-
ham, MA02154, USA

[21] Zhang, H., Jiang, G., Yoshihira, K., Chen, H., Saxena, A Intelligent
Workload Factoring for a Hybrid Cloud Computing Model., In Califor-
nia : International Workshop on Cloud Services, Los Angeles, July,
2009.

BIBLIOGRAPHY 62

[22] Ramaswamy, A., Balasubramanian, A., VijayKumar, A Mobile Agent
Based Approach of Ensuring Trustworthiness in the Cloud.. In Chen-
nai: IEEE-International Conference on Recent Trends in Information
Technology, 2011 June 3-5 pp. 678-682.

[23] Bellifemine, Fabio Luigi, Giovanni Caire, and Dominic Greenwood,
Developing multi-agent systems with JADE., Vol. 7. John Wiley And
Sons, 2007.

[24] Kumar, Sanjeev, Philip R. Cohen, and Hector J. Levesque. The adap-
tive agent architecture: Achieving fault-tolerance using persistent bro-
ker teams. MultiAgent Systems, 2000. Proceedings. Fourth Interna-
tional Conference on. IEEE, 2000.

[25] Song, Cheng, et al. Optimal control for multi-agent persistent monitor-
ing. Automatica 50.6 (2014): 1663-1668.

[26] Chowdhury, Nilanjan Roy, and Srikant Sukumar. Persistence based
analysis of consensus protocols for dynamic graph networks. arXiv
preprint arXiv:1404.1168 (2014).

[27] Lunze, J.,Lunze, J., Allgwer, F., Brger, M., Demir, O., Helmke, U., von
Heusinger, A. And Schuh,Multi-agent Systems: Control Theory of Dig-
itally Networked Dynamic Systems. Springer International Publishing,
2014. 263-324.

[28] Akhtar, Nadeem, Aisha Shafique Ghori, and Nadeem Salamat. Re-
quirement analysis, Architectural design and Formal verification of a
multi-agent based University Information Management System. arXiv
preprint arXiv:1501.01273 (2015).

[29] Sturm, Arnon, and Onn Shehory. The Evolution of MAS Tools. Agent-
Oriented Software Engineering. Springer Berlin Heidelberg, 2014.

[30] Kabysh, Anton, and Vladimir Golovko. General model for organizing
interactions in multi-agent systems. International Journal of Comput-
ing 11.3 (2014): 224-233.

[31] Caire, Giovanni, Danilo Gotta, and Massimo Banzi. WADE: a soft-
ware platform to develop mission critical applications exploiting agents
and workflows. Proceedings of the 7th international joint conference on
Autonomous agents and multiagent systems: industrial track. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems,
2008.

BIBLIOGRAPHY 63

[32] Lees, Michael, et al. Simulating Agent-Based Systems with HLA The
Case of SIM AGENT-Part II (03E-SIW-076). Proceedings of the 2003
European Simulation Interoperability Workshop. Stockholm, Sweden.
2003.

[33] Helsinger, Aaron, Michael Thome, and Todd Wright. ”Cougaar: a scal-
able, distributed multi-agent architecture.” Systems, Man and Cyber-
netics, 2004 IEEE International Conference on. Vol. 2. IEEE, 2004.

