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ABSTRACT 

Cloud computing has become a powerful computing platform for web applications because 

of the ability to auto-scale based on the demand from the users. Many cloud service 

providers including Amazon, Azure etc. and software such as RightScale and Scalr provide 

auto-scaling mechanisms. The current auto-scaling mechanisms seem promising when the 

application workload follows a certain pattern, but they do not perform well when a sudden 

surge in traffic hits the web application. They lack the intelligence to learn about the web 

applications they host. The result of this is often unavailability of the application or very 

poor performance when underlying application experiences an unpredictable sudden surge. 

Most of the existing techniques of auto-scaling are based on simple user defined metrics 

and resource utilization thresholds. These approaches mainly focus on the static allocation 

and do not work well with the present dynamic natured web applications where work load 

is highly unpredictable. This research work proposes a solution for autonomous dynamic 

scaling and reconfiguring clouds when web applications suffer a sudden large and 

unpredictable swing in traffic. It makes use of the intelligence of the multi-agents to detect 

the application behavior for unusual traffic. Machine learning techniques are applied to 

accurately predict the future workload and a surge detection mechanism to look for 

potential surges. The proposed system also contains a planner agent which carefully 

computes the resource requirement to handle the incoming traffic surge. We have proposed 

the use of a resource buffer as quick solution for the sudden surges in traffic which reduces 

the VM’s churn time and makes sure timely availability of the resources when resource 

demand increases suddenly due to the surge in traffic. 
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1. Introduction 

1.1 Cloud Computing 

Large swings in the traffic of web applications are common with the increased popularity 

of internet.  Web applications experience multiple patterns of dynamic load received from 

end users. A news channel may face a large spike in viewership while covering some Royal 

event in England. Similarly consider the example of an online ticket booking Web 

applications that announces discounts during Olympics and the drastic load it will 

experience at multiple times in multiple regions. Such sudden and dynamic changes in web 

traffic are difficult to manage that is why such swings mostly result in decreased 

performance and sometimes crash of hosting servers. This demands for a hosting 

environment where the capacity of the underlying system can be changed according to the 

needs in traffic to prevent under and over utilization of resources. Cloud infrastructure 

provides such a flexible environment where capacity can be increased or decreased within 

a very short time period to handle the varying workload. Capacity can be scaled up by 

adding more servers to the underlying infrastructure when workload in increased and it can 

be scaled down by removing servers according to the decreasing workload. The users will 

pay only for the resources they use. There are a number of cloud providers that offer such 

virtualized environment to the businesses and organizations. The clients can rent resources 

to meet their application demand mostly on hourly basis. However rescaling and 

reconfiguration of the hosting platform to handle the dynamic load of web application need 

a certain level of intelligence as managing and making choices on run-time is a complex 

task.  

Cloud providers like Azure and Amazon enable system administrators to choose a wide 

range of arrangements regarding the configurations, size and location of virtual machines. 

Generally they also provide many models for rescaling based on the user demand. Their 

models are mostly based on raw measures such as CPU utilization, memory utilization, and 

number of sessions. Every web application is unique in its usage pattern and in the same 
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manner their resource requirements are also different for same parameters. Such profiling 

information can be very useful when making a decision of rescaling but current load 

balancers ignore such factors while distributing the load. Most vendors including Amazon 

look for certain parameters such as CPU utilization to cross a specified threshold point to 

upscale or down scale the infrastructure.  These parameters show very large variability and 

poor auto-correlation which makes it difficult to represent large spikes accurately. Current 

scaling mechanisms work well when the load is known in advance which mostly not the 

case is. In real-world with the increasing trend of social media and e-commerce surges can 

occur at any time without much of a prior indication. When a traffic spike happens, there 

is a delay before measures can be applied in real-time because of the startup time resources 

take to launch. Prediction of spikes can be very useful to achieve elasticity. Our research 

explores the potential for predicting spikes sufficiently in advance so that preventive 

measures can be taken before the spike occurs. Machine learning algorithms can be used 

for predicting workload. Such techniques combined with the intelligent multi-agent 

framework can be used to ensure that resources are automatically provisioned on demand, 

in an elastic manner.   

1.2  Motivation 

Now a days, the ability of internet and in particular social media is much increased to direct 

substantial traffic to web application often with a single tweet which often cases sudden 

spikes in the web application traffic without any notice or warning.   There are many 

incidents that resulted in thrashing of web applications due to sudden surges in demand. 

Animoto experienced a jump in demand from 50 to 3500 EC2 instances in April 2008. 

Amazon slowed down due to massive traffic caused by pricing error on DVD boxes of US 

series, June 6, 2008. Sale of “The Family Guy” shot up to 200,000% exhausting the 

available resources in minutes. Netflix went down on Christmas Eve 2012 due to the 

sudden increase in load. Redix, Github and some other major websites underwent same 

similar situations when went down on Oct 22, 2012. Instagram and Vine got effected on 

August 26, 2013. There is a large list of such incidents from past where web application 



3 
 

experienced the similar circumstances resulting in crashing or slowing down of servers. 

This motivated us to develop a system that can predict sudden surges in web application 

traffic far enough that counter measures can be taken as despite of the elastic nature of 

cloud, it takes 8 to 15 minutes to make new instances ready to use for load handling which 

is not favorable when surge occurs in very short time. Multi-agent systems are intelligent, 

autonomous, and flexible and have ability to communicate with one another, all these 

characteristics are requirement of a clouds system. This motivated us to use multi-agent in 

managing cloud systems.  

1.3 Problem Statement 

Cloud computing is widely used for delivering and hosting services over the internet. Auto-

scaling in cloud systems allows scaling up or scaling down of the resources according to 

the workload of the application. Many cloud service providers including Amazon, Azure 

etc. and softwares such as RightScale and Scalr provide Auto-scaling mechanisms. Most 

of the existing techniques of Auto-scaling are based on some user defined metrics and 

resource utilization thresholds. The current utilization of the resources is observed using 

monitoring tools and if the current values cross a certain threshold, then the resources like 

number of VMs, servers are added or released accordingly. Some recent techniques use 

workload trend predictions for auto scaling. These approaches mainly focus on the static 

allocation and do not work well with the present dynamic natured web applications where 

work load is highly unpredictable. This research focuses on the prediction and detection of 

sudden surges in load and automatically managing resources in an intelligent manners to 

handle that surge without compromising the performance of the application.  Problem 

statement of this research work can be summarized as  

Often events/incidents cause a sudden massive increase in web application traffic so there 

is a need of an automated system that can predict when a sudden spike in traffic is coming 

and can manage resources intelligently to handle that spike. 
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1.4 Methodology for Carrying the Research 

Research is carried out by formulizing a hypothesis and research questions. Figure one shows the 

steps that we followed to complete this research work. 

 

Figure 1 Steps to Carry Research 

 

1.4.1 Hypothesis 

After careful initial literature review we formulated the following hypothesis. 

Sudden surges in web traffic applications can be predicted using web site’s log, and 

managed intelligently using agents 

1.4.2 Research Questions 

The above hypothesis was testing by finding answers of the following research questions 

which we deduced from the literature.  

Research Question 1: What a web log can tell us about website usage behavior? 

Hypothesis

Literature 
Survey

Deployment of 
model

Evaluate model

Prove 
hypothesis 

right or wrong
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This questions is answered by examining several machine learning techniques that use web 

access log, process it and predict number of requests a website may receive in future. We 

used linear regression, multilayer perceptron and SMO regression for experimentation. 

Research Question 2: How multi-agents can help in managing resources intelligently? 

To answer this question we designed and deployed a multi-agent system on Amazon cloud 

for our application and evaluated the performance of the application when it is managed 

by multi-agents instead of manual or partially automated. 

Research Question 3: What strategies we can use to handle sudden surges in web 

application traffic? 

This question is answered by using instance buffer approach to handle sudden surges which 

require immediate up scaling of resources in order to maintain the performance. 

Experiments were carried out to evaluate the performance of this approach. 

1.5 Objectives of Research 

The overall objectives of this research work are: 

 Prediction and detection of surges in web application traffic in advance so that 

resources can  be auto scaled before the actually surge hits 

 To use multi-agents capabilities for monitoring, managing and planning to achieve 

better performance.  

 To determine best VM instances types for various applications and choosing the 

best Auto-scaling plan 

 To minimize the response time when web application experiences a sudden surge 

 Determining the parameters that can used as an indication to describe the incoming 

surge  
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 To provide the best scaling plan when a surge is known as in case of a scheduled 

event. 

1.6  Research Contribution 

This research work will provide a multi-agent system that would free the users from 

specifying metrics thresholds for management of resources according to their application 

needs. The providers will be able to monitor and check the status of various resources such 

as VMs, CPU utilization to maintain performance. It provides a comparison between 

number of requests a web application receives and resource’s utilizations metrics to 

determine which can better indicate an incoming surge. It also compares different machine 

learning techniques to predict future traffic. This will enable users to choose from multiple 

instance types to handle sudden traffic spikes and will help determining how the choice of 

instances can affect the performance of the web application at the side of end users in terms 

of response time and throughput. This study also reveals the impact of the history data to 

be used as base for forecasting the future load. The users can know how small choices like 

the type of OS or time window size for which predictions are made can make big impacts 

on performance. The last but not the least contribution of the research work is study of use 

of a buffer of instances that are just ready to deploy when a sudden surge takes place. 

1.7  Thesis Organization 

The research work is divided into five section/chapters. First chapter describes an overview 

of cloud systems, their usage, and motivation for this study, problem statement, objectives 

and contribution of this research work. Second chapters entailed an overview of the 

existing prediction and Auto-scaling techniques. Third chapter describes the details of the 

approaches and algorithms to achieve the goals of this research. Results and their relevant 

discussion are included in chapter number four. Conclusion and future work is discussed 

in final chapter of this thesis. 
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2. Literature Review 

2.1 Auto-Scaling in Clouds-State of the art 

Auto-Scaling is the ability to add and remove resources into a Cloud infrastructure based 

on actual usage without minimal or no human intervention needed. Currently Auto-scaling 

of cloud resources has become a big concern for the cloud providers as well as for clients. 

Dynamic resource provisioning is the key to the success of cloud infrastructure for web 

applications. Adding/removing resource in real time without significantly affecting the 

client application performance is challenging. Although the concept of auto-scaling is 

brilliant, current Cloud vendors are unable to perform auto-scaling operations fast enough 

to meet the actual requirement of the applications. For example Amazon Cloud [1] which 

is a one of the largest Cloud providers uses CloudWatch to initiate the auto-scaling. 

CloudWatch is a monitoring tool for AWS cloud resources. It provides resource utilization 

information such as CPU utilization, Memory usage, Network in and out, and other 

operational information [2]. When the monitored metrics reach a predefined set of 

thresholds, the auto-scaling process is triggered. Although the process seems fine but there 

is always a delay between when the extra capacity is need and the time when resources are 

actually available. This delay is caused by the launch time that EC2 instances take to start 

which is roughly 10 minutes [3]. Similarly Windows Azure Cloud platform has 

incorporated the concept of scaling using their pricing model. Users can change the amount 

of resources on the fly using their Management API of user portal directly. It requires 

customers to sit tight to observe the fluctuating demand and the capacity they can add or 

remove is not unlimited. 

Many researchers have investigated the resource allocation problem and its solutions to 

meet up the cloud user requirement.  The current state of the art work related to Auto-

scaling of cloud resources is presented in this chapter. There are two basic approaches to 

manage the incoming workload from a web application hosted on cloud servers: Resource 

management by static load balancing and dynamic resource management. 
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2.1.1 Static load balancing 

Static load balancing is distributing the workload between current working virtual 

machines to increase the performance. This is a not preemptive. The static load balancing 

algorithms need full information of the system in advance and load balancing decision does 

not depend on the current system state. The major approaches for static load balancing are 

round robin algorithms, threshold based and central manager based techniques. Many 

software and hardware solutions are available for static load balancing. Although static 

load balancing seems a fair solution for resource management but it does not go well when 

it comes to dynamic web environment where demands for resources changes very often. 

The process of adding new resources to system to meet new workload demands is not easy 

as it require manual configuration and testing which takes time. Another major drawback 

of static load balancing is that the workload cannot shifted to other virtual machines during 

execution as it is can be assigned only after the arrival of the workload. 

2.1.2 Dynamic resource allocation 

This type of load balancing overcomes the limitations imposed by static load balancing. 

The decision of load balancing is taken considering the current system state. Dynamic load 

balancing shifts load from over-utilized machine to under-utilized machine dynamically 

and addition/ removal of machines is automated. Web applications require cloud resource 

to be managed dynamically to satisfy the varying needs of the application and to minimize 

the cost. Dynamic resource allocation compliments auto scaling. The focus of our research 

is auto scaling. The emphasis of simple load balancing is to optimize the utilization of 

current resources to save energy and cost. Auto-scaling is the ability to increase or decrease 

the computational power in a cloud environment by either increasing number of instances 

or by increasing the capacity of the running instances automatically. The decision to 

increase (scale up) or decrease (scale down) is taken using user defined criteria or according 

to the behavior of web application. 
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According to [4] dynamic resource allocation strategies can be roughly categories into two 

groups based on the decision making approaches and the metrics they use. The following 

sections describe each group and related work. 

2.2 Threshold Rule Based Techniques 

In threshold rule based techniques the decision of scaling up or scaling down is taken by 

the cloud provider based on the threshold rules (e.g. [10], [11], [12], [13]). The future needs 

of the application are not considered and the decision of scaling is made using the current 

monitored values. Reactive solutions work in rule-condition- action manner. Rules are 

defined and when they met certain conditions/threshold values different actions are 

triggered. They are reactive resource allocation approaches of auto-scaling. Many known 

cloud providers use reactive auto scaling. Amazon AWS [5] uses the reactive Auto-scaling 

by providing Auto-scaling group SVG which consist of a number of instances. The cloud 

Watch monitors different parameters such as CPU, I/O and memory usage and compare it 

to the threshold values and the decision is taken accordingly Amazon also includes load 

balancing algorithms to distribute the load among instances. Many other cloud providers 

and brokers such as RightScale, AzureWatch, scalr etc. also use reactive solutions to 

achieve auto scaling [14], [15].  

In [6] Chieu et al. described architecture for dynamic scaling of web applications using the 

number of active sessions per instance as parameter. Architecture design includes a front 

end Apache HTTP load balancer, a service monitor and provisioning sub-system. The 

scaling algorithm takes the number of active sessions as input. If the number of active 

sessions is above a predefined threshold the load balancer removes idle/ under-utilized 

instances, if the number is above the threshold then new instances are added by sub-

provisioning system. Using only one feature as decision criteria can mislead and result in 

system performance degradation. Most popular performance metrics are the average CPU 

usage of the virtual machine and the response time, or the request rate. In [11] and [12]   

Dutreilh and Han et al. used the response time of as a threshold parameter. On the other 
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hand, the authors of [13] proposed their solutions using multiple performance metrics such 

as computation time, memory usage and network usage. They also used the correlation of 

these metrics as a rule. 

Meiländer et al. in [7] have purposed a resource management system targeting the real time 

online applications such as online games and used resource usage as rule. The Real-Time 

Framework (RTF) consists of three main components. A cloud controller which enables 

communication with the cloud system, in their case Amazon EC2. A distribution controller 

which implements the load balancing strategy. It monitors the load values from servers and 

chooses between different balancing actions. ROIR server controller is responsible for 

implementing load balancing actions. The three actions for managing the load are user 

migration, resource enactment and resource substitution. Their experimental results show 

a noticeable decrease in the tick duration of servers. In [8] the authors have purposed an 

approach of a general virtualization layer to provide extra capacity. The virtualized layer 

sits between the physical and the service infrastructure and gives extra capacity without 

affecting the service workload or notifying the end users. 

Threshold based solutions are very popular because of their simplicity and the fact that 

client can understand them easily. Although there are two main issues of the threshold 

based solutions. One, the choice of the accurate threshold values of metrics is very critical 

to the success of the techniques which is a very difficult task. Secondly they are reactive 

allocation techniques which means they do not incorporate the future needs of the system 

and result in time delay. The effectiveness of thresholds widely depend upon the workload 

pattern and how they tune themselves over time [9]. Threshold rule based approaches can 

be easily used to automate the auto-scaling process particularly in cases where applications 

have quite regular predictable workload pattern. However for a changing work load 

environment client must use the more powerful auto-scaling system. 

 



12 
 

2.3 Predictive resource allocation techniques 

Predictive resource allocation suggests that the future needs of the platform is predicted 

and resources are allocated beforehand. Predictive techniques are widely used in weather 

predictions, market analysis, web site traffic forecasting, economics, and finance and in 

many other fields by analysts. In literature, time series and machine learning techniques 

are most commonly used for workload and resource usage prediction. A review of the 

literature reveals that predictive measures are applied for both workload and resource usage 

such as CPU, memory and network usage. The following sections describe multiple 

approaches for both workload and resource prediction.  

2.3.1 Resource usage predictions 

Resource usage is predicted for future using time series or machine learning techniques 

and capacity is added or removed from the cloud infrastructure accordingly. Simple 

moving average is a very simple technique used for this but it produces poor results and 

therefore is mostly used for providing a comparison benchmark or smoothing the time-

series data [16], [17], [18].  Huang et al. proposed a prediction model based on exponential 

smoothing which uses both the history and current data for making predictions. They used 

CPU utilization and memory usage as resource metrics. They compared their model with 

mean and weighted moving average and results show that exponential smoothing performs 

better than the result of two simple methods [19]. The authors in [20] used several resource 

utilization features and SLA parameters as metrics to predict future usage patterns. After 

applying feature selection and then reduction, the important features selected as a criteria 

include CPU, memory and I/O utilization. Three machine learning approaches used to 

predict future usage patterns are Support vector machine, linear regression and neural 

networks. Using TPC-W benchmark datasets their results show support vector machine 

gives best result. The problem with these models is that they need sufficient training time 

to decrease prediction errors which is usually a constraint in dynamic web environment. 

Iqbal et al. [21] applied a hybrid model that uses reactive rules based on CPU utilization 
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for scaling up and for down scaling they used regression.  They calculate the number of 

resources periodically for intervals in which the response time is within a satisfactory limit. 

2.3.2 Workload predictions 

Web application traffic is the feature that changes dynamically with time over days, weeks 

and seasons. In literature web site traffic is widely used to find the behavior, pattern and 

usage of application. Application workload directly indicates the change in capacity 

requirement that is why it is a good candidate to be used as compared to resource usage 

parameters. [4] Purposed a linear regression method to forecast the number of hits that a 

web site may receive in certain time series by using current number of hits web site’s 

history log. They also used auto- correlation function to patterns and trends in web traffic. 

They have described the relationship between the numbers of web requests, cost and 

latency. The decision is scale up, down or NOP based on the predicted values. Their method 

forecasts number of hits of next few seconds which makes it ineffective as launching new 

VMs can take time. Their experimental results show good results for web applications 

where workload behavior is seasonal or follow a trend. Authors in [22] used a quadratic 

exponential smoothing model using real workload traces of World Cup 1998 and their 

results showed good results.  

 Another largely used technique for workload predictions is auto-regression.  Kupferman 

et al. used auto- regression for forecasting website traffic [23]. They investigated several 

important parameters that effect the performance of the used techniques such as size of the 

history data to be used, length of the future window for forecasting.  Autoregressive moving 

average (ARMA) is used for workload prediction in [24]. They have used Look-ahead 

optimization to determine the intervals when to add/remove instances. Cost is included as 

a key factor in provisioning decision, if the cost of adding/removing an instance is less than 

the SLA violation cost then decision is executed otherwise no change in number of 

resources. The problem with their approach is that it is not responsive to unpredicted 

incoming traffic as ARMA performs well with workloads follows regular patterns. The 

authors in [25] have proposed a block-box approach to identify the various workload 
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patterns and predict the capacity of web applications for different workload patterns. Based 

on workload predictions and Look ahead allocation model.  

2.4 Surge Detection in Web application Traffic 

In [26] they proposed an algorithm to predict web-server traffic in advance especially 

sudden spikes of traffic. Hotspot is the term used for spike or surge. Traffic is experiencing 

hotspot at time‘t’ if the volume of traffic over last ‘Wd’ time slot satisfies: 

∑ 𝑟𝑖 ≥ 𝐻 ∗ 𝑊𝑑

𝑖∈[𝑡−𝑊𝑑,𝑡]

 

Or 

When the average request rate over [t-𝑊𝑑 , 𝑡] is at least H.  𝑟𝑡 is the number of page requests 

in unit time slot.  [t-1, t] is the t-th time slot. H is hotspot level i.e. maximum capacity of 

the server. 𝑊𝑑 is the wide interval for which the load is computed to determine a hotspot. 

They used 𝑊𝑑of 3 minutes and set H to 40 for research. 

Similar to [26] was the study of Baryshnikov et al [27]. They used their spline interpolation 

to find the load predictions of resources for SAAS architecture. They implemented their 

model in C#. Net and tested it in Runaware’s cloud platform. Two separate modules one 

called trend tracker and the other load predictor. For prediction they used extrapolation 

predictor that takes two values tracked by trend tracker calculates the distance between 

them and returns the value of load at time t1 +k. They used spline interpolation for trend 

analysis but not really suitable for web server traffic prediction. They used spline filter, it 

suppresses the average variations and stores only weighted averages of subsets of dataset. 

Chandana Napagoda had demonstrated the usage of data mining techniques for website 

traffic prediction [28]. Chandana used SMO,linear regression, multilayer perceptron and 

Gaussian regression as potential techniques to predict future traffic of a website. Data set 

used is a web site views of 476 days obtained from Google analytics. Evaluation is gone 
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based on the MSE, MAE, RMSE and RMAE. The weka tool is used to generate results and 

results shows that SMO is the best mining approach to forecast web site traffic whereas 

multilayer perceptron showed worst results. In [29] they proposed dynamic window 

approach to predict traffic in cloud servers. They used previous data of specific time 

windows and the size of windows varies time to time to increase the performance of the 

prediction. They implemented multiple techniques of moving averages to predict future 

traffic and compared their results with results of predictions using statics windows sizes. 

They used drop-box data for experiments. Their results show that using     dynamic window 

sizes increases performance of prediction algorithms noticeably as compared to the static 

window sizes. 

2.5  Conclusion 

The detailed study of literature reveal that many solutions exist for workload predictions 

in web traffic for applications where behavior follows a pattern but sudden surges are not 

studied widely. Most of the present solutions are based on workload predictions or user 

defined thresholds. Machine learning techniques are popular to forecast web site traffic for 

future.  Literature review suggests that there are a number of user specified measures that 

effect the performance of underlying models. Most important of these measures is the 

selection of a set of accurate threshold measures for threshold based techniques. In case of 

prediction techniques, it is the size of the time window interval for which we need to make 

predictions and the size of history records to be used to make predictions. Research work 

is also available that examines the sudden traffic surges. Most of the work is related to 

detecting if the application is experiencing spike/surge during current time. Prediction of 

surges in future is not widely discussed. Recently multi-agents are being introduced to 

manage cloud environments. The conclusion to this study of literature is that there is a need 

to design an auto-scaling system that can cope with the varying demands of application 

traffic especially at time of sudden large surges in traffic.  
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3. Design and Architecture 

We have implemented and intelligent multi-agent framework for predicting the surge in 

the workload of web applications and reconfiguring the system hosting infrastructure to 

meet the dynamic demands of application.  The following section explain the architecture 

of multi-agent framework and overview of each single agent and its rule in the over 

framework. The algorithms used for prediction, surge detection and Auto-scaling are also 

briefly described. 

3.1 Multi-agent System Architecture 

 

Figure 2 Architecture of Multi-Agent System 

The system consists of a number of agents that have their own tasks and responsibilities 

and all agent communicate with each other for multi purposes. Instance monitoring agent 
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runs on every cloud instance and collects instances metrics like CPU utilization, memory 

utilization, number of requests, network in, network out etc. Monitoring agent sends all 

gathered data to data access agent which stores instance information into the database. Data 

access agent collects all data and information from all other agents and stores it to database. 

It also performs necessary database operations like summarization of data when required. 

All other agents communicate with data access agent when they need any data from 

database. Prediction agents plays very important role in this whole system. It collects 

current and past workload from the data access agent and predicts future workload using 

machine learning algorithms.  Surge detections agent receives current and prediction 

workload from data access agent and determines if system will experience a surge in next 

time internal based on the total capacity of the running instances and future workload.  

Auto-scaling agent gets the prediction workload of next interval and information from 

surge detection agent and plans out how many and which instances to launch to 

accommodate the upcoming surge. It is responsible for making important decisions such 

as up scaling, down scaling and chooses which instances to launch or shut down from 

available pool of instances. Auto-scaling agent is also responsible for managing the 

instance buffer. It updates buffer periodically and also when instances are launched from 

the buffer. Data integration agent collects current workload and future workload from the 

data access agent and compares both of them which helps analyzing performance of 

prediction agent. VM management agent receives the scaling plan from Auto-scaling agent 

and launches or shut downs instances. A user panel is also introduced which is used by 

clients to specify any incoming event which may result in sudden spike in application 

traffic. Clients can give numbers of instances to be launched on a specific date and time or 

they can give an approximated number of requests that application may receive. The Auto-

scaling agent makes Auto-scaling plan to handle the expected workload and VM 

management executes that plan.  Next sections of this chapter describe working of each 

agent in detail. 
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3.2 Monitoring Agent  

The job of the monitoring agent is to gathers the information about the current system state. 

A separate monitoring agent runs for every instance that is currently running. It collects 

instance data via Amazon Cloud Watch which is a tool for monitoring the state of instances. 

It collects CPU utilization, network in and out and access logs for every minute from Cloud 

Watch and sends all this information to data access agent. This data is then further used by 

prediction, surge detection and Auto-scaling agent.  

3.3 Data Access Agent  

Data access agent manages the database. It receives all the data from other agents and stores 

it to MYSQL database after processing. Any agent that wants some data for its processing 

sends a request to data access agent through jade API and it provides data after fetching 

the database. It maintains separate database tables for multiple types of information such 

as access logs, CPU utilization, future predictions, scaling plan details etc. It maintains and 

updates the database tables when new data is received. It sends request logs of previous 

time interval to prediction agent which after training forecasts number of requests for next 

time interval and sends this information back to data access agent. Data integration agent 

communicates with data access agent to get current request rate and predicted request rate 

per minute and compares both to represent current picture of the system state. 

Data access agent maintains profile for every instance type which stores the maximum 

capacity of instance in terms of maximum CPU utilization and maximum number of 

request it can process without exhausting. This information is used by Auto-scaling agent 

to make appropriate scaling plans.  

3.4 Prediction Agent 

Prediction agent predicts workload for future using the workload of past.  It gets the number 

of request received per minute for recent past from the data access agent use that data to 

train machine learning techniques and then predicts number of requests for future. 
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Statistical models such as autoregressive moving averages, autoregressive models, and 

moving averages and are used for forecasting the time series [30]. They use history data 

and work by pre-processing that data and do well in finding patterns over time. Due to the 

dynamicity of the web applications pre-processing website traffic logs can sometimes hide 

important information for example a surge may be removed as an outlier during the pre-

processing which is a useful piece information. There is a need of some prediction 

technique that will make use of the unusual information instead of omitting it. Prediction 

agent uses machine learning techniques for workload forecasting because their accuracy is 

high in the presence of outliers or missing values. Another reason for using machine 

learning algorithms is that they predict future by learning from training data and adapt to 

variability of data over time. We have used three learning algorithms Multilayer 

Perceptron, Linear Regression and Support Vector Machine as they are particularly 

suitable for numeric prediction involving times series analysis. 

1) Multilayer perceptron: This is a neural network based algorithm in which large 

numbers of units are connected to each other in a similar manner to the human brain. It can 

be trained without specifying any particular function up front [31]. 

2) Linear regression: Is a statistical method which develops   relationship between 

dependent and independent variables. Linear Regression works by building a prediction 

model/regression equation to fit the given data. This model then predicts target values for 

unknown data [32]. 

3) A Support Vector machine is a form of supervised learning. It represents the 

training data as data points in space and each data point falls into a category of examples 

separated by gap. New data points are mapped into the same space and their category is 

determined by which side of gap they fall [33]. 

Prediction agent uses data from recent past to train the machine learning algorithms. 

Training is done only using recent data instead of large data sets because over large time 

span variation in workload patterns get suppressed. We have only used data of last time 
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window. The size of the predicted time windows is also kept small to 10 minutes. 

Prediction agent adjusts the size of the training data to improve the accuracy of the 

algorithms. Predictions are made every 10 minutes to make the system more robust towards 

sudden surges. The accuracy of three techniques is compared and prediction agent 

continuous with the one whose accuracy is better among the three over time. It sends the 

predicted workload for the next time window to the data access agent. Data access agent 

stores the results in relevant table and sends them to Auto-scaling agent to make a plan to 

adjust the predicted load. 

3.5 Surge Detection Agent 

Surge detection agent analysis the current and predicted traffic received by the application 

and determines if this can be considered as a surge which is also named as Hotspot in 

literature by researchers. Surge or hotspot is the sudden increase of traffic over a short time. 

Traffic is experiencing hotspot at time‘t’ if the request rate rt over last ‘Wd’ time intervals 

satisfies: 

∑ 𝑟𝑖 ≥ 𝐻 ∗ 𝑊𝑑𝑖∈[𝑡−𝑊𝑑,𝑡]            (1) 

Where  

rt is the predicted number of  requests in a specific time period. 

H is hotspot level i.e. maximum of the platform capacity in terms of number of requests 

that it can handle and without violating SLAs. It is determined by aggregating the 

individual capacities of the current running instances and capacity of each instance type is 

calculated by profiler agent. 

𝑊𝑑 is the wide of interval for which the load is computed to determine a hotspot. We set 

future time interval to ten minutes and the time window size is set to 2. Surge detection 

agent determines whether the application will undergo a surge using algorithm 1. 
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Algorithm 1 Surge Detection Algorithm 

Input:  

Predicted request rate for time interval t 

Total capacity H of the platform  

Output:  

Status of surge- surge detected/ no surge 

Variation of Request rate from total capacity  

Start 

Var Surge 

Var Variation 

If ( RequestRate > Total capacity H of the platform) 

Surge= True 

Variation = RequetsRate – Total Capacity H 

Return Variation 

Else   

Surge= False 

Return Surge 

End if 

End 

It starts with comparing the predicted request rate for time t with the total capacity of the 

platform. If the request rate is greater than the platform can bear then surge in detected and 

surge detection agent generates an alarm and the difference between the capacity and 

request rate is determined. The surge detection then sends this difference to Auto-scaling 

agent which computes the number of instances that are need to accommodate difference. 

If no hotspot is detected then a message is also generated showing there is no incoming 

surge.  Surge detection agent also observes the nature of the surges as they differ in size 

and nature from application to application. As an example a surge on a social media web 

site caused due to some viral video usually lasts longer and a surge in traffic of a news 

channel covering some event live will last for a few hours. Two important factors that are; 

how quickly a surge comes and goes away and how much the traffic rate is increased 

compared to the average normal traffic rate, are observed. Taking into account these two 
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factors that we deduced from observing the workload patterns of the past surges we have 

categorized surges into three types. The reason for choosing these factors is that these two 

are the powerful features that differentiate between surges of different types of web 

application. 

3.5.1 Small Surge 

A small surge is the surge of web application traffic that lasts for a short duration and goes 

away as quickly as it comes. For instance a surge caused by the tweet of a celebrity or a 

post on Facebook. It caused a comparatively small but sudden increase in traffic and the 

traffic goes down quickly. 

3.5.2 Large Surge 

A large surge is the sudden massive increase in traffic of a web application. A large surge 

can be both short lived and may be long lived. For example live coverage of some hot event 

may cause a sudden massive increase in the traffic. However, traffic will come to normal 

soon after the event ends. On the other hand surge caused due to the release of a new 

product or a sudden sale will last longer. A large surge causes the traffic to increase many 

times than the normal traffic an application receives. 

3.5.3 Medium Surge 

A medium surge is characterized by an increase in traffic of an application which is gradual. 

The traffic an application receives increases gradually from normal rate to a much higher 

rate and then gradually comes back to normal. For example traffic increase on a sports 

website due to some seasonal championship. Medium surges usually lasts longer than small 

and large surges. 

3.6 Auto-scaling Agent 

Auto-scaling agent is the back bone of the entire system as it determines how to handle the 

incoming surge in workload. It receives information about the current capacity of the 

system, current request rate and predicted request rate from data access agent and uses that 
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information to determine the number of instances that are required to meet the predicted 

demand. It makes decision of which instances to launch and shut down when needed. It is 

also responsible for the maintenance of the buffer. Auto-scaling agent updates buffer 

periodically and whenever instances are launched from the buffer. Instance buffer is 

maintained to keep the system ready to handle sudden spikes of workload. Buffer contains 

multiple instance in ready state to save the time needed to boot a new instance. Size of the 

buffer is varied as the request rate varies over time.  

Figure 3 explains the working of the auto-scaling agent. It collects the predicted workload 

for the next time interval and current capacity of the system from the data access agent. It 

computes the required capacity for handling the workload and the difference between 

current and required capacity. If the required capacity is greater than the current capacity, 

auto-scaling agent computers the scaling plan to adjust the extra workload by choosing 

instances from instance buffer and sends its plan to database. Data access agent sends new 

computed plan and sends message to VM management agent to launch new instances. 

Amazon provides various types of instances with various CPU, RAM, and storage 

capacities according to their cost. Clients can choose the instances according to their 

application needs. Computing number of instances is easy when all the instances are of 

same type and capacity and have same cost but it becomes a challenging task to choose 

best instances for the current and future workload. Auto-scaling agent takes into account 

various factors while choosing new instances. Similarly down scaling plan is also 

computed considering various factors like remaining time etc. 
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Figure 3 Flow diagram of Auto-scaling agent 

 

3.6.1 Up Scaling of Resources 

Auto-scaling agent scales up the instances when current capacity is less than the required 

capacity to handle the predicted surge. It computes the difference between the current 
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capacity and required capacity and then finds the best instances to launch. Auto-scaling 

agent considers following factor while choosing new instances. 

1. CPU credit of the instance  

2. Prefers smaller instances over large ones  

3. Choose those instances that minimize the difference between demand and capacity 

For the research purpose we have used only three types of Amazon instances that are 

T2.mirco, T2.small and T2.medium. Specifications of these instances are given in table 

one. 

Table 1 T2 instance types and their specifications 

Instance Type vCPU Memory in GB Price/hour 

T2.micro 1 1 0.013$ 

T2.small 1 2 0.026$ 

T2.medium 2 4 0.052$ 

T2 instances provide a baseline level of CPU performance with the ability to burst above 

that baseline level. The baseline performance and ability to burst are governed by CPU 

credits. CPU credits can accumulate for up to 24 hours when instance is idle. When an 

instance with more CPU credit is used then the CPU performance increase. That is the 

reason auto-scaling agent prefers the instances with large CPU credits. Baseline 

performance and CPU credits earned per hour are given in table two. Consider two micro 

instances one with 30 CPU credits and the other with 60 CPU credits. The performance of 

the second one would be double as compared to the first one. Auto-scaling agent also 

prefers smaller instances over larger ones as small instances cost less and take less time to 

reconfigure.  
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Table 2 CPU Credits of T2 instances 

Instance type Initial CPU 

credit* 

CPU credits 

earned per 

hour 

Base 

performance 

(CPU 

utilization) 

Maximum 

earned CPU 

credit balance 

T2.micro 30 6 10% 144 

T2.small 30 12 20% 288 

T2.medium 60 24 40% 576 

 

3.6.2 Down Scaling of Resources 

When required capacity is less than the current capacity it means some of the instances are 

underutilized. Auto-scaling agent looks for the underutilized instances and shut downs the 

one which has less remaining time.  

Remaining Time = Current time of instance – Start time of instance  

Down scaling of instances is explained in figure 4. Auto-scaling agent does not 

immediately terminates the instance. It schedules the termination right before the start of 

the next hour. It sends the information of the underutilized instances to the data access 

agent and then instance is used for maintenance activities.  

3.6.3 Instance Buffer 

Buffer is maintained to keep up with the dynamic changes in demand. All instances in 

buffer are always in ready state. When a sudden burst is observed in workload they are 

immediately added to the load balancer to distribute the load. To keep the cost low we used 

maximum four instance as buffer. Buffer size is an important choice to make. Client can 

specify a fixed sized or variable sized buffer according to their application demands. We 

used a variable sized buffer which is updated every 20 minutes.  
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Figure 4 Flow Diagram for Down Scaling of Instances 

We have used instance buffer of variable size and auto-scaling updates buffer regularly. 

Algorithm two illustrates the process of updating the buffer. Algorithms computes the 

current number of instances and capacity of the buffer. If the size of buffer is less than 
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Minimum number of instances that buffer must contain at least then buffer is updated 

otherwise buffer is not updated and auto-scaling agent sends current buffer size to data 

access agent which updates the BufferInsatnce table in database. Maximum and minimum 

number of instances a buffer can have varies from application to application. A large 

organization may need to maintain a large number of instances to provide the best 

performance to their customers even at times of spikes according to the previous sudden 

spikes their web application faced while buffer size of an application owned by an 

individual limited by the surge size and cost of the instances.     

Algorithm 2 Buffer Update Algorithm 

Input:  

Buffer size 

Total capacity of the buffer 

Average Request Rate for last two time windows 

Output:  

List of instances present in buffer 

Start 

Var MaxBufferSize = 4 

Var MinBufferSize = 2 

If ( MinBufferSize < 2 ) 

Compute capacity required for average request rate of last two windows 

If (Required capacity > Total Capacity) 

Compute number of instances required 

Add instances to buffer while MaxBufferSize =4 

Return Instance List 

Else    

UpdatedBufferSize = Buffer Size 

Return Instance List 

End if 

End 
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3.7  Data Integration Agent 

Data integration agent collects current workload metrics monitored by monitoring agent 

and the workload predicted by the prediction agent and presents a real-time comparison of 

the two in the form of graphs. This real time picture helps to monitor the accuracy of the 

other agents. It uses JChart API to present real time graphs of request rate, CPU utilization, 

memory utilization and network in and out. It also checks the accuracy of the surge 

detection agent by examining the number true and false alarms generated. Data Integration 

agent communicates with Data access agent through jade API and all the data is encoded 

in to JSON format. It then inserts all the computed correlations values in the 

‘monitoringdatapattern’ table of MYSQL database with their timestamps which is used for 

seeing the relationships between different parameters and for the detection of hotspot. For 

accurate prediction of hotspot there are many other techniques which are implemented 

3.8  VM Management Agent  

VM Management agent is the agent responsible for executing the auto-scaling plan. It 

receives the auto-scaling plan from data access agent and reconfigures the platform by 

adding instances to it or by terminating the instances according to the demand of the 

application traffic. It uses Amazon API to launch or terminate the instances. VM 

management agent is also responsible for adding or removing instances from the buffer. It 

uses the information from the data access agent in a cyclic manner. It also sends the data 

such as ID, VM type etc. of the instances it launches are shuts down to the data access 

agent to be stored in the database.  

3.9  User Interface 

Not all the surges an application receive are unpredictable. Sometimes clients know that 

an upcoming event can lead to a potential surge for example the launch of a new product, 

sales or discount on e-commerce website. A user can plan out such events using user 

interface. There are many options available for the user to indicate the potential surge. The 

user can specify the start and end date and time during which application may experience 
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a spike. User can indicate the approximate duration and size of the surge. He/She can also 

schedule the launch of the new instances at some particular date and time. All these options 

enable user to tell the system about a surge even when the user has minimum information 

about it. User inputs are gathers by the data access agent and are stored in the database. 

Data access agent sends the used provided information to auto-scaling agent and its plans 

out the scaling accordingly. 
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4. Results and Discussion 

This chapter represents the evaluation of results of the proposed multi-agent 

system. All the experiments were carried out carefully using real time data of Wikipedia. 

The agent platform was deployed on Amazon. The results of prediction, surge detection 

and auto-scaling agent are presented and discussed in detail in different sections of this 

chapter.  

4.1 Data and Environment Setup 

The evaluation was done by deploying the media wiki application on the Amazon Cloud. 

Wikipedia access traces of January 2008 were used for experimental purpose. These traces 

are used by many researchers as they are complete and their access logs are also available. 

Wikibench tool was used to deploy Wikipedia application. One of the many reasons for 

using Wikibech is that it simulates real traffic over real application instead of using 

synthesized workload over some “toy” application. Wiki tracer was used to simulate the 

workload from January 2008 for Wikipedia. Figure 5 shows the workload generated that 

is used throughout the research for different experiments. WEKA API for java was used to 

implement machine learning algorithms. Prediction algorithms were applied to the data 

using the different options available in Weka.  The workload contains three different surge 

types at different times. Underlying database was SQL and Jade is used as agent platform. 

The application was deployed on Amazon for a short period to monitor the performance of 

the system. Only three types of Amazon instance i.e. t2.micro, t2.small and t2.medium 

were used for experimental purpose. The VM management agent used a golden image to 

launch new instances using Amazon API. 
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Figure 5 Wikipedia Workload  

4.2 Workload Predictions  

Linear Regression, Multilayer Perceptron and Support Vector Machine were used to 

predict future workloads using the past access logs. All of these are machine learning 

techniques and they use past data to learn about the future trends. Their continuous learning 

ability makes them a good candidate for the dynamic environment of web traffic where 

data show large variability over time to time.  The workload generated contained dynamic 

changes to evaluate performance of auto-scaling algorithm for different types of surges. 

We only need to make predictions for the near future therefore the size of the sample used 

was quite small because a surge often happens hastily and only lasts for few hours. In this 

case data of only last few hours will show an increase in traffic and can perhaps lead to an 

incoming surge. Use of large data sets which include data from days to weeks or months 

can misguide results. Long term usage patterns of website traffic can be identified by 

analyzing large volumes of past data. A very important factor in prediction is the time 

window size for which we want to make predictions. In our case we used two different 

window sizes to show their impact on results.  
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4.2.1 Workload Predictions for Small Sized Surge 

 The workload was generated such that it can show multiple types of surges. A small surge 

is characterized by a small sudden increase in application traffic. In case of small surge 

usually total capacity of the cloud infrastructure is relatively small limited to two to three 

number of instances. The average request rate in this case in approximately 550 requests 

per minute.  Figure 6 shows the prediction results for multiple algorithms when traffic 

experiences a small surge. Machine learning algorithms builds a model by training on past 

data, and then predict future workload using trained model. Support Vector Machine and 

Multilayer Perceptron perform almost in similar manner with a very small difference in 

their predicted number of requests. Linear regression performs slightly better than the rest 

two techniques. Initially the workload was kept smaller to demonstrate performance of 

predictions algorithms when average request rate varies from 200 to 1000 requests per 

minute. In this scenario the request rate during surge was also small and thus can easily be 

handled by adding 1 to 2 instancing. 

 

Figure 6 Comparison of Actual and Predicted number of requests by Machine Learning 

Algorithms for Small Surge 
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Algorithm’s accuracy was measured in terms of Mean Absolute Error, Root Mean Squared 

Error and Relative Absolute Error. Table 3 describes the accuracy of each technique. 

Mean Absolute Error (MAE): It shows how close the predicted values are to the actual values. It 

measures the average absolute difference between predicted and actual values. 

𝑀𝐴𝐸 =
1

𝑛
 ∑ | 𝑓𝑖 − 𝑦𝑖  |𝑛

𝑖=1      (2) 

 where  is the prediction and  the actual value.  Root Mean Squared Error (RMSE) 

computes the accuracy in the form of sample standard deviation of the differences between 

predicted values and actual values. 

𝑅𝑀𝑆𝐸 =  √
∑ ( 𝑓𝑡−𝑦)2𝑛

𝑡=1

𝑛
      (3) 

 Relative Absolute Error (RAE) measures how large the absolute error is compared with 

the predicted value. Linear regression gives better results as compared to the other two 

techniques as can be seen in table 3. Predictor agent compares accuracy measures of all 

three algorithms and chooses the one with minimum error in last time windows.  The values 

of these measures are the number of requests per minute.  

Table 3 Summary of Accuracy Measures of prediction algorithms for small surge 

 MAE RMSE RAE 

SMOreg 221 281 453 

Linear Regression 220 259 449 

Multilayer Perceptron 221 280 454 

 

Mean Absolute Error of 221 means the average difference between actual number of 

requests per minute and predicted number of requests per minute in 221 i.e. actual request 

rate is 880 requests per minute and predicted request rate is 660. All three algorithms show 

average performance in this case. The reason for this is that machine learning algorithms 
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train and learn over time so initially we observe an average but still acceptable 

performance. 

4.2.2 Workload Predictions for Large Sized Surge 

Figure 7 illustrates the predicted number of requests for a large surge.  The workload was 

increased from an average of 900 requests to 2000 requests per minute. During the large 

surge the number of resources needed also increase suddenly. The graph shows that 

machine learning techniques adapt quickly to the sudden changes in pattern. Surge was 

observed at 17: 45 when number of requests shoot quickly and machine learning algorithms 

adapt themselves quickly to this sudden change and predicted number of requests also 

increased. The predicted request rate shows the change at 17:52 minutes.  

 

 

Figure 7 Comparison of Actual and Predicted number of requests by Machine Learning 

Algorithms for Large Surge 
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Numeric summaries of results when a sudden large surge is observed is given in table 4. 

Accuracy of linear regression is better than the SMOreg and multilayer perceptron therefor 

prediction agent chooses the predictions made by linear regression to send to auto-scaling 

agent. It can be seen that the accuracy of the algorithms was improved over time as they 

learn and train themselves over time from past data.  

Table 4 Summary of Accuracy Measures of prediction algorithms for large surge 

 MAE RMSE RAE 

SMOreg 765 833 729 

Linear Regression 454 519 100 

Multilayer Perceptron 765 831 728 

 

 

4.2.2.1 Workload Predictions during a Large Surge 
 

Figure 8 represents the prediction results when application is experiencing a surge in 

traffic.  The lines for actual and predicted request rate are close to each other showing the 

overall improvement in predictions. From figure 7 and 8 it can be seen that machine 

learning algorithms learn quickly. When surge occurred initially the algorithm’s 

performance is average but it learns quickly from the most recent training data and its 

accuracy improves from average to very good. Figure 8 shows the improved performance 

of prediction algorithms within a time span of minutes. 
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Figure 8 Comparison of Actual and Predicted number of request during a surge 

 

Accuracy of linear regression, SMOreg and multilayer perceptron is given in table 5. The 

accuracy of the prediction techniques was improved as compared to the accuracy when 

application was undergoing a large change that resulted in surge. The effect that is visible 

form graphs can also be seen in table 5 numerically. The value of Mean Absolute error was 

decreased from 454 to 304 for Linear Regression and similar change can be observed for 

SMO regression and multilayer perceptron. 

 

Table 5 Summary of Accuracy Measures of prediction algorithms during surge 

 MAE RMSE RAE 

SMOreg 345 378 87 

Linear Regression 304 319 79 

Multilayer Perceptron 348 371 87 

 

4.2.3 Workload Predictions for a Medium Surge 
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After undergoing a large swing in workload, we decreased the workload to monitor the 

performance of prediction agent. The workload is later increased to observe a medium 

sized surge. The workload was initially decreased to a lower value of approximately 400 

average requests per minute and then the workload was gradually increased from 400 to 

1600 requests per minute. The results are represented in figure 9. The graph shows that 

linear regression is more robust towards changes in workload and adapts more quickly as 

compared to the SMOreg and multilayer perceptron. Numeric summary of predictions is 

given in table 6. 

 

Figure 9 Comparison of actual and predicted number of requests medium surge 

 

Table 6 Summary of Accuracy Measures of prediction algorithms for medium surge 
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predicted number of requests is relative to the average number of requests of the 

application. A web application with a small average request rate will indicate a very small 

error in terms of number of requests when accuracy of prediction technique is 95%. While 

the error value for an application where average request rate is very large, the same 

prediction technique will generate large error value because the 5% of 100 is only five but 

5% of 1000 is 50. That is why difference between actual number of requests and predicted 

requests increases as the total requests received by the application increase. However this 

difference can be overlooked for the same reason. Putting this into other words, when 

request rate is large i.e. thousands of requests within a specified time window, a difference 

of 500 is not that important but same value matters when requests is in hundreds.  

 

 

Figure 10: Total number of Requests during Time Window of Ten Minutes 

Ten minutes time window size was chosen very carefully after performing many offline 

prediction tests. The offline prediction results are included in the appendix.  Offline 
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recent past produces better results as compared to when all available data is used for 

training the machine learning algorithms. In the same manner smaller the size of the future 

time window the better the results are. But choosing too small past data set or making 

prediction for very short time periods compromises the performance of prediction 

algorithms.  

4.3 Surge Detection 

All instances being used in experiment were first profiled using profilers’ agent. The 

profiler got benchmarks/ thresholds for multiple parameters including maximum number 

of requests an instance can handle without exhausting, maximum CPU utilization, 

maximum memory Utilization etc. These parameters were gathered by making some 

assumption; lowing the   thresholds to a certain limits as for experimental purpose it is a 

really difficult task to generate such large traffic to reach these points. All the Thresholds 

are described in table 7. 

Table 7 Threshold values for Various Instance Parameters 

 T2.micro T2.small T2.medium 

Max Capacity H 247 306 464 

Max CPU utilization 43% 37% 34% 

Max memory Utilization 54% 40% 30% 

 

The predictor agent makes predictions after every ten minutes interval for next ten minutes. 

The surge detector agent gets predictions results and checks if there is an incoming surge 

in next time window of ten minutes.  It generates a tick every ten minutes Surge detector 

then analysis the predicted number of requests for next time window to see if it can lead to 

a surge and if a surge is detected if generates an alarm which then triggers scaling agent to 

calculate the number of instances to handle the predicted surge and the instances are 

launched by the planner agent before the surge actually arrives. Table 8 shows the totals 
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number of ticks generated and their status whether they were true of false alarms.  In table 

“Alarm” means the number of times a true alarm was generated i.e. detection agent 

generated an alarm that a surge in detected and there was a surge in actual. “~Alarm” 

indicates false alarms. When an alarm was generated but there was no surge. Similarly 

“Surge” indicates that a surge was detected and there was an actual surge in traffic. 

“~Surge” indicates that a surge detection agent detected a surge but there was no actual 

surge in the traffic.  

Surge detector generated a total of 14 ticks periodically in search of surges in future traffic. 

As a result seven alarms were generated by the surge detector agent and all were true 

alarms. Out of 14 ticks seven ticks didn’t detected any surge therefore no alarms were 

generated, however out of these 7 ticks there was one surge that surge detector agent could 

not identify. It didn’t generated any alarm although there was a surge in traffic.  

Table 8 Alarms generated by Surge Detector 

 Surge ~Surge 

Alarm 7 0 

~Alarm 1 6 

 

4.4 Auto-Scaling 

Auto-scaling agent gathers the data from prediction and surge detection agents and makes 

the scaling decision using that information.  Figure 11 shows the overall request rate and 

total capacity of the currently running instances. It can be seen from the graph that smaller 

surges appear at the start so capacity keeps adjusting to handle these surges. A big surge 

takes place at about 17:45 minutes and lasts for almost 24 minutes. Another quick and short 

lived spike occurs around 19:00. Scaling agent looks for appropriate scaling plan when it 

receives alarm generated by surge detector. It calculates the number of instances needed to 
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accommodate incoming surge from the available instances from the buffer. It also updates 

buffer every twenty minutes to maintain a reasonable sized buffer to use when needed. It 

prefers the instances that decrease the difference between the sum of predicted workload 

and the total capacity of the system. If more than one combination of different instance 

types is available within the buffer it favors the ones with max CPU credit. CPU credit 

becomes an important factor to increase the performance of the application when we use 

buffered instances. In buffer instances are in ready state but they do not have any actual 

CPU utilization as they are not added to load balancers so their CPU credit accumulates 

over time. The instances with greater CPU credit are added to the load balancers and 

increase performance effectively.   

 

Figure 11 Overview of total number of requests and total capacity of running instance at 

the moment  

Figure 12 shows the adaptability of the instances according to the incoming load. The lines 

for capacity and demand overlap at number of times showing that actual capacity is very 

close to the actual demand. A very visible factor between our auto-scaling technique and 
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the actual workload demand. In conventional auto-scaling techniques the application 

suffers from under performance and over utilization of resources for almost 23 minutes 

from 17: 45 to 18: 02 before new VMs are available to meet the demand. While in our auto-

scaling technique this time gap is decreased to 7 minutes because of the usage of buffer 

resources. At few times instances are underutilized as seen by graph.  These are the 

instances that were launched by the planner agent at peak times now when the load is 

decreased they are scheduled to shut down. 

 

Figure 12 Auto-scaling of Instances to Adjust predicted load  

Total number of instances that were launched by the VM management agent at different 

times during the experiment to handle the dynamic changes in workload are given in table 

10. Table shows that the number of instances currently being used vary with the changes 

in the workload. As soon as an increase in workload is predicted, new instances are made 

available to incorporate the incoming load before it actually hits the application. It 

improves the performance of the application remarkably as instances take time to launch 

which often results in poor performance or even unavailability of the application. Our 

multi-agent system keep some instances in buffer in ready state so they are made available 

as soon as the demand changes without any delay. 
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Table 9 Total number of requests and instances for each time window 

Time Windows No. of requests No. of instances 

1 2312 1 

2 4341 1 

3 5856 2 

4 8672 3 

5 8655 4 

6 18483 4 

7 24627 7 

8 22316 8 

9 13883 8 

10 8400 5 

11 4835 4 

12 6883 4 

13 13262 4 

14 9810 4 

15 3610 4 

 

4.5 Conclusion 

In this chapter we have presented the results of a series of experiments that were carried 

out to evaluate the proposed multi-agent system. The first section describes the results of 

the prediction techniques. Three machine learning algorithms Linear Regression, SMO 

Regression and Multilayer Perceptron were used for forecasting web application traffic. 

The time window used is of 10 minutes. The results show that out of three linear regression 

performs better than the rest followed by SMO regression and Multilayer Perceptron. 
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Overall performance of the machine learning algorithms can be improved by changing the 

size of the history data to be used and the future time interval for forecasting. The small 

the interval the better is the accuracy of the techniques. Also, the accuracy of the techniques 

is affected by the sudden changes in workload, when change is sudden and large the 

accuracy decreases a little bit before it improves again.  

The surge detection techniques have shown very high accuracy. If looks for the predictions 

results and total capacity of the current running instances and makes a decision if a surge 

is coming or not and results show that the techniques works very well in case of multiple 

types of surges depending upon their size. The last section represented the results of the 

auto-scaling agent. Auto-scaling agent plans out the management of the surge using 

predicted workload, current capacity of resources and surge status. The performance of the 

auto-scaling technique is compared with any traditional auto-scaling technique which 

works based on the workload prediction. The results show a very significance improve in 

performance which is due to the use of buffer instances. As soon as an increase in workload 

is predicted, new instances are made available to incorporate the incoming load before it 

actually hits the application. It improves the performance of the application remarkably as 

instances take time to launch which often results in poor performance or even unavailability 

of the application. Our multi-agent system keep some instances in buffer in ready state so 

they are made available as soon as the demand changes without any delay. 
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5. Conclusion and Future Work 

This chapter concludes the research work carried out, experimental results and the future 

directions. 

5.1 Conclusion 

Cloud computing has become a powerful computing platform for web applications because 

of the ability to auto-scale based on the demand from the users.  The current auto-scaling 

mechanisms seem promising when the application workload follows a certain pattern, but 

they do not perform well when a sudden surge in traffic hits the web application.  In order 

to address this problem we formulized a hypothesis that sudden surges in web traffic 

applications can be predicted using web site’s log, and managed intelligently using agents. 

We formulated a number of research questions described in chapter 1 to prove this 

hypothesis true. To find the answer to the first question, what a web log can tell about usage 

pattern of a web application, we used the machine learning techniques Linear Regression, 

Multilayer perceptron and SMO regression. These techniques make use of the web site log 

to predict the future traffic. Experimental results have shown that we can successfully 

predict the future workload of web application with accuracy. The second question is 

answered by implementing a multi-agent system that consists of a number of agents each 

responsible for an important task. The agents can communicate with each other making it 

easy to share information among them and it also reduced the need of human intervention 

to a minimal level as all tasks are carried by agents and they makes decisions and take 

actions autonomously. The answer to last question is found by implementing instance 

buffer to handle the sudden surges in web application traffic and evaluation of this 

approach compliments the answer. Through careful experimentation and analysis of the 

answers of all these research questions we conclude that the hypothesis is true. Sudden 

surges in web application traffic can be detected and multi-agent can be used to handle 

these surges intelligently.  We developed a multi-agent framework in JADE for auto-

scaling cloud infrastructure automatically to meet the workload requirement of applications 
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for sudden surges in workload. Three machine learning techniques were implemented for 

workload forecasting and evaluated their results for real time data in cloud environment. 

The results show that linear regression work best for prediction, followed by SMO 

regression and multilayer perceptron.  

Auto-scaling is an integral part of the system. Scaling algorithm computes the scaling plan 

for predicted workload and instances are made available before the actual arrival of the 

workload which prevents the system from slowing down due to exhausting of resources. 

In order to maintain the performance level during a sudden surge an instance buffer 

approach which contains instances in ready state is used. However there is a tradeoff 

between the cost and performance of the application during surges. If buffer size is kept 

small it reduces the overall cost of the application but decreases performances as compared 

to large buffer where enough instances are present to handle the peak load.  

5.2 Future work 

In future we will evaluate our framework with more workload patterns. We will evaluate 

our system for different types of web applications which vary in nature and the types of 

instances they need. We will explore other measures that can be useful to increase the 

performance such as reducing the bandwidth consumption by disabling dynamic content 

of the web application. We will also look into other attributes of application which can be 

used as an indicator of an incoming surge such as the link structure of the web site.  We 

are also planning to work on prediction techniques to improve the accuracy of prediction 

results. 
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