

DESIGN AND DEVELOPMENT OF WIRELESS

FINGERPRINT RECOGNITION BASED

ATTENDANCE SYSTEM

By

NC Adil Khan

Capt Atif Naveed

PC Masood Ahmed

 Submitted to the Department of Electrical Engineering, Military College of Signals

National University of Sciences and Technology, Rawalpindi in partial fulfillment for

the requirements of a B.E Degree in Telecomm Engineering

2

ABSTRACT

The aim of project is to introducing the use of biometric base technologies in

automating the attendance system for the students in different institutions. The goal of

the project can be subdivided into smaller targets like fingerprint capture, fingerprint

image processing, template generation and wireless transfer of data in a client server

base environment. For each sub-task, various methods from literature are analyzed.

From the study of the entire process, an integrated approach is proposed.

Use of biometrics based technologies is efficient personal identifiers as they make use

of characteristics that are unique in each person. Among these technologies,

Fingerprint recognition is universally applied. It extracts minutia- based features from

images scanned by fingerprint scanners made by the different ridges and valleys on

the finger-tips. The student attendance system can be very useful in an institute like

Military College of Signals since it aims at eliminating all the drawbacks of

attendance system.

3

Dedicated to

Almighty Allah,

Faculty for their help

And Our Parents for their support and prayers

4

ACKNOWLEDGMENTS

We express our profound gratitude and indebtedness to Lec Ayesha Naureen

Department of Information Security, Military College of Signals for introducing the

present topic and for their inspiring intellectual guidance, constructive criticism and

valuable suggestions throughout the project work.

We are also thankful to all faculty members of Electrical Engineering Department,

Military College of Signals specially Dr Adil Masood and Miss Aimon Aakif

Department of Electrical Engineering for motivating us in improving the algorithms.

Finally we would like to thank our parents for their support and prayers for us to

complete this project.

Capt Atif Naveed

NC Adil Khan

PC Masood Ahmed

5

Table of Contents
Chapter 1 .. 1

Introduction .. 1

1.1 Problem Statement ... 2

1.2 Motivation and Challenges .. 2

1.3 Using Biometrics ... 2

Chapter 2 .. 4

Literature Review... 4

2.1 Fingerprint Module .. 4

2.1.1 What is Fingerprint? ... 4

2.1.2 Why use Fingerprints? ... 5

2.1.3 Fingerprint Recognition ... 5

2.1.4 Approach to Fingerprint Recognition ... 6

2.1.5 Using fingerprint Recognition System for Attendance Management 7

2.2 Wireless Transmission Module .. 7

2.2.1 Original System Structure ... 7

2.2.2 Transmitter .. 7

2.2.3 Receiver .. 8

2.2.4 Problems with Original Design ... 9

2.2.5 Proposed Design ... 9

Chapter 3 .. 10

Fingerprint Image Processing .. 10

3.1 Pre-Processing.. 10

3.1.1 Image Enhancement .. 10

3.1.1.1 Histogram Equalization ... 10

3.1.2 Image Binarization .. 11

3.1.3 Image Segmentation .. 12

3.1.3.1 Block Direction Estimation .. 12

3.1.3.2 ROI Extraction by Morphological Methods .. 13

3.2 Minutia Extraction ... 14

3.2.1 Ridge Thinning ... 14

3.2.2 Minutia Marking ... 15

3.3 Post-Processing .. 15

3.3.1 False Minutia Removal ... 15

3.3.2 Unification of Terminations and Bifurcations .. 16

Chapter 4 .. 17

6

System Design ... 17

4.1 Overall System Design Block Diagram ... 17

4.2 Module Design .. 18

4.2.1 Fingerprint Capture Module (FCM) ... 18

4.2.2 Client Application Module ... 19

4.2.2 Wireless Communication Module (WCM) .. 20

4.2.4 Server Application Module ... 20

4.2.5 GSM Module .. 21

4.3 Algorithm Design .. 22

Chapter 5 .. 23

Data Transfer and Application Development .. 23

5.1 Wireless Data Transfer .. 23

5.1.1 Enroll Data .. 23

5.1.2 Daily Attendance Data .. 23

5.2 Application Development .. 23

5.2.1 Client PC .. 24

5.2.2 Server PC .. 26

5.2.3 GSM Module .. 27

5.2.4 Database .. 28

Chapter 6 .. 30

Experimental Setup and Testing .. 30

6.1 Physical Layout .. 30

6.2 Fingerprint Template Generation ... 30

6.2.1 Fingerprint Enrollment .. 30

6.2.2 Fingerprint Verification .. 31

6.2.3 Fingerprint Template .. 32

6.3 Client-Server Communication ... 33

6.4 Attendance management at Server ... 34

6.4.1 Enrollment in Database ... 34

6.4.2 Verification SMS using GSM Module .. 35

Chapter 7 .. 36

7.1 Conclusion ... 36

7.2 Outcomes of this Project .. 36

7.3 Future Work ... 37

Appendix ... 38

Fingerprint Scanner Code .. 38

7

Client- Server Communication .. 45

Client Code .. 45

Server Code .. 46

GSM Module Code .. 49

Database Code ... 58

References ... 67

8

S.No Figure No Title Page No
1 Figure 2.1 Ridge ending and Bifurcation 4

2 Figure 2.2 Verification Vs Identification 6

3 Figure 2.3 Transmitter Block Diagram 8

4 Figure 2.4 Receiver Block Diagram 8

5 Figure 2.5 Proposed System Block Diagram 9

6 Figure 3.1 Fingerprint with Original Histogram 11

7 Figure 3.2 After Histogram Equalization 11

8 Figure 3.3 Original Image 11

9 Figure 3.4 Enhanced Image 11

10 Figure 3.5 Effect of Binarization 11

11 Figure 3.6 Effect of Block Direction Estimation 13

12 Figure 3.7 Before CLOSE Operation 13

13 Figure 3.8 After CLOSE Operation 13

14 Figure 3.9 After operation OPEN 14

15 Figure 3.10 ROI + Bound 14

16 Figure 3.11 False Minutia Structures 15

17 Figure 4.1 Various Modules in the System Design 17

18 Figure 4.2 A Fingerprint Sensor 18

19 Figure 4.3 Client Application 19

20 Figure 4.4 Wireless Module 20

21 Figure 4.5 Server Application 21

22 Figure 5.1 Fingerprint Acquisition Application 24

23 Figure 5.2 Adil Fingerprint 25

24 Figure 5.3 Masood Fingerprint 25

25 Figure 5.4 Client Application 26

26 Figure 5.5 Server Application 27

27 Figure 5.6 GSM Application 28

28 Figure 5.7 Database Application 29

29 Figure 6.1 Physical Layout 30

30 Figure 6.2 Fingerprint Enrollment 31

31 Figure 6.3 Successful Fingerprint Enrollment 31

32 Figure 6.4 Successful Verification of Fingerprint 32

33 Figure 6.4 Unsuccessful Verification of Fingerprint 32

34 Figure 6.5 Template Generation 33

35 Figure 6.6 Client Application 33

36 Figure 6.7 Successful Transmission by Client 34

37 Figure 6.7 Successful Reception by Server 34

9

Chapter 1

Introduction

10

1.1 Problem Statement

Designing a student attendance management system based on fingerprint recognition

and faster way of identification that manages records for attendance in institutes and

other organizations.

1.2 Motivation and Challenges

Every organization whether it be an educational institution or business organization, it

has to maintain a proper record of attendance of students or employees for effective

functioning of organization. Designing a better attendance management system for

students so that records are maintained with ease and accuracy was an important key

behind motivating this project. This would improve accuracy of attendance records

because it will remove all the hassles of roll calling and will save valuable time of the

students as well as teachers. Image processing and fingerprint recognition are very

advanced today in terms of technology. It was our responsibility to improve

fingerprint identification system.

1.3 Using Biometrics

11

The transfer of the fingerprint from the device to the server can be carried out

wirelessly using certain wireless adapters which can together form a wireless network

in a short range and carry out the verification process. The communication channel

needs to be secured and should be kept free from interference as far as possible. For

further security of the entire system and to detect illegal activities, a security camera

can be installed to keep track of the enrollments made in the classroom. Biometric

Identification Systems are widely used for unique identification of humans mainly for

verification and identification. Biometrics is used as a form of identity access

management and access control. So use of biometrics in student attendance

management system is a secure approach. There are many types of biometric systems

like fingerprint recognition, face recognition, voice recognition, iris recognition, palm

recognition etc. In this project we used fingerprint recognition system.

12

Chapter 2
Literature Review

2.1 Fingerprint Module

In this section we will focus on the characteristics and benefits of using the

fingerprints for our purpose of making an attendance system which can be deployed

in institutions and organization for maintaining the record of attendance.

2.2 .1 What is Fingerprint?

A fingerprint is the pattern of ridges and valleys on the surface of a fingertip. The

endpoints and crossing points of ridges are called minutiae. It is a widely accepted

assumption that the minutiae pattern of each finger is unique and does not change

during one's life. Ridge endings are the points where the ridge curve terminates and

bifurcations are where a ridge splits from a single path to two paths at a Y-junction.

Figure 2.1 illustrates an example of a ridge ending and a bifurcation. In this example

the black pixels correspond to the ridges, and the white pixels correspond to the

valleys.

Figure 2.1: Ridge ending and Bifurcation

When human fingerprint experts determine if two fingerprints are from the same

finger, the matching degree between two minutiae pattern is one of the most important

factors. Thanks to the similarity to the way of human fingerprint experts and

compactness of templates, the minutiae-based matching method is the most widely

studied matching method.

13

2.1.2 Why use Fingerprints?

Fingerprints are considered to be the best and fastest method for biometric

identification. They are secure to use, unique for every person and do not change in

one's lifetime. Besides these, implementation of fingerprint recognition system is

cheap, easy and accurate up to satisfactory level.

Fingerprint recognition has been widely used in both forensic and civilian

applications. Compared with other biometrics features, fingerprint-based biometrics is

the most proven technique and has the largest market shares. Not only it is faster than

other techniques but also the energy consumption by such systems is too less.

2.1.3 Fingerprint Recognition

Once the fingerprint is captured, the next step is the recognition procedure. The

recognition procedure can divided into

a. Fingerprint identification

b. Fingerprint verification

Fingerprint identification mean user’s identity is based on his fingerprints. The

fingerprints image is stored without any information about the identity of the person.

After that it is matched across a numerous fingerprints in data base. The identity of

user is only retrieved when a match is found in the database. So, this is a case of one-

to-n matching where one capture is compared to several others. This is widely used

for criminal cases.

Fingerprint verification is different from identification as the person’s identity is

stored along with the fingerprint in a database. On enrolling the fingerprint, the

captured image will retrieve back the identity of the person. This is however a one-to-

one matching. This is used in offices like confirmation office, passport offices etc.

where the identity of a person has to be checked with the one provided at a previous

stage.

14

Figure 2.2: Verification Vs Identification

In the following pages, an approach to fingerprint recognition has been discussed.

2.1.4 Approach to Fingerprint Recognition

15

2.1.5 Using fingerprint Recognition System for Attendance

Management

Managing attendance records of students of an institute is a tedious task. It consumes

time and paper both. To make all the attendance related work automatic and on-line,

we have designed an attendance management system which could be implemented in

any institution or organization. It uses a fingerprint identification system developed in

this project.

This fingerprint identification system uses existing as well as new techniques in

fingerprint recognition and matching. A new one to many matching algorithm for

large databases has been introduced in this identification system.

2.2 Wireless Transmission Module

It is the Wi-Fi module which used for the transmission of data between Client and

Server. The client and server should both at the same network.

2.2.1 Original System Structure

The system hardware includes Fingerprint sensor, PIC Microcontroller, ZigBee

module, Wireless transmission GSM module.

a. Fingerprint acquisition module is used to realize fingerprint collecting

and pre-processing.

b. ZigBee module is used to send the finger print image to computer.

c. Attendance management workstation is used to realize fingerprint

extraction and matching in order to realize attendance function.

d. GSM module connecting to GSM network and it is use for enquire

purpose.

2.2.2 Transmitter

This block consists of a finger print module that captures the data which is a person’s

fingerprint. The sensor forms the core part of the fingerprint module. This in turn is

connected to a PIC16F877A microcontroller using RS232. The microcontroller stores

16

the captured data and this will send through the ZigBee transmitter module for further

processing of data.

Figure 2.3: Transmitter Block Diagram

2.2.3 Receiver

The captured data is received by the ZigBee receiver module and is forwarded to

PIC16F877A microcontroller. The database of the person’s that has been stored in

microcontroller is compared with the receive data. The microcontroller then sends the

data to PC through MAX232. The data is sent to PC for a specified time interval. The

PC thus sends the information to the GSM further it is sent to mobile through message

on enquire.

Figure 2.4: Receiver Block Diagram

Finger Print
Module

PIC16F877A MAX-232
ZigBee

Transceiver

ZigBee
Transceiver PIC16F877A MAX-232 Server

GSM
Module

17

2.2.4 Problems with Original Design

a. We would have to transmit each finger print image to data base i.e. more

transmissions were required with this design.

b. Image compression technique was to be used to compress the image to

reasonable size so that it can be transmitted through ZigBee.

c. More interfacing work load than the original task to accomplish.

d. Expensive design

e. Time inefficient.

2.2.5 Proposed Design

After study of several research papers we came to the conclusion that we should use

the existing WLAN which is already deployed in the institution to make the system

cost efficient and easy to integrate with the existing environment.

Figure 2.5: Proposed System Block Diagram

The complete system will be discussed in detail in the coming chapters.

Finger Print
Module

Client PC Server PC

18

Chapter 3
Fingerprint Image Processing

Finger print image processing can be divide into three steps .Pre-Processing, Minutia

extraction, Post-Processing. These three steps are discussed here in detail.

3.1 Pre-Processing

The pre-processing can be sub divided into image enhancement, image binerization

and image segmentation.

3.1.1 Image Enhancement

Image enhancement is important to clarify the image for further procedure. The

fingerprint images obtained from sensor is not very good quality. Hence,

enhancement methods are used for making the contrast between ridges and furrows

higher and it is also important for maintaining continuity among the false broken

points of ridges, which make ensure a higher accuracy for recognition of fingerprint.

Generally two types of procedures are adopted for image enhancement:

i. Histogram Equalization ii. Fourier Transform.

3.1.1.1 Histogram Equalization
Histogram equalization is responsible for expanding the pixel distribution of an image

in order to increase perceptional improvement. The pictorial description is given

below. The fingerprint initially has a bimodal type histogram as shown in Figure 3.1.

After histogram equalization is carried out, the image occupies the entire range from

zero to 255, enhancing the visualization effect in the process.

Figure 3.1: Fingerprint with Original Histogram Figure 3.2: After Histogram Equalization

19

 Figure 3.3: Original Image Figure 3.4: Enhanced Image

3.1.2 Image Binarization

Figure 3.5: Effect of Binarization

 Binarized Image Gray image

3.1.3 Image Segmentation

For a fingerprint image, only a certain portion is important which can provide the

required information and can be useful for further processing. This portion is called

ROI.

20

This process of segmentation is carried out in two steps. The first step is block

direction estimation and the next ROI extraction by morphological methods. The

details of the two steps are as follows

3.1.3.1 Block Direction Estimation

Figure 3.6: Effect of Block Direction Estimation

Direction Map (Right)

21

3.1.3.2 ROI Extraction by Morphological Methods

Morphological operations divide into two operations “OPEN” and “CLOSE” . The

OPEN operation (Figure 3.1.3.3) has capability to inflict enhancement of an image

and removal of peaks caused by noise while the CLOSE operation (Figure3.1.3.2) is

effective in shrinking images so as to remove small cavities.

 Figure 3.7: Before CLOSE Operation Figure 3.8: After CLOSE Operation

 Figure 3.9: After operation OPEN Figure 3.10: ROI + Bound

22

The bound is the remnant of the closed area out of the opened area. Then the

algorithm remove those extreme left, right, upper and bottom blocks out of the

calculated area so that we get the bounded region only containing the bound and inner

area.

3.2 Minutia Extraction
The minutia extraction process divides into ridge thinning and minutia marking

3.2.1 Ridge Thinning

In ridge thinning process we get rid of repetitive pixels of ridges until the ridges are

just one pixel wide. An iterative thinning algorithm is used. In every scan of the full

image, the algorithm count repetitive pixels in each small image window. Finally all

those marked pixels are removed after several scans. It can extract thinned ridges

directly from gray-level fingerprint images. The method traces the ridges with highest

gray intensity value..

3.2.2 Minutia Marking

3.3 Post-Processing

Post processing is the final step in this fine tune the image by processes like removing

false minutia and unifying terminations and bifurcations.

23

3.3.1 False Minutia Removal

The preprocessing & minutia-extraction stage does not yield the final processed

fingerprint image. False minutia such as false ridge breaks because of lack of ink and

also ridge cross-connections from ink spill are still present. Also the earlier steps in

processing themselves allow some errors. False minutiae can significantly affect

accuracy of matching. So mechanisms to remove them are important.

False minutia can be of different types as follows

Figure 3.11 False Minutia Structures

24

4. If two endings are located in a ridge with width less than D, the two are removed

(m7).

3.3.2 Unification of Terminations and Bifurcations

Unification representation is used to avoid interference because of different data

acquisition system conditions such as impression pressure. This representation is

adopted for both termination and bifurcation. Hence, each individual minutia is

characterized by the following parameters:

1) x-coordinate

2) y-coordinate

3) Orientation

25

Chapter 4

System Design

Fingerprint attendance system can be divided into four different modules. They are:-

1. Fingerprint Capture Module

2. Wireless Module

3. PC based Server-Client Software Management Module

4. GSM Module

The module-wise approach to the design of the system helps in better understanding

of the individual function levels.

4.1 Overall System Design Block Diagram

Figure. 4.1: Block Diagram showing the various Modules in the System Design

Finger Print
Scanner

Client App

Server App Server

Attendance
Management

Software

GSM Module

26

4.2 Module Design

System modular approach helps in simplifying the design problem. The three

modules, i.e. Fingerprint Capture Module, Client Application and Wireless Module

form the Client Hardware Modules and Server Application and GSM Module form

part of the Server Modules. The modules and their roles are explained below:-

4.2.1 Fingerprint Capture Module (FCM)

The fingerprint capture module is a fingerprint sensor device. It is an electronic device

that captures scan of the fingerprint pattern. Then a number of algorithms are applied

to the scan to convert it into a biometric template. Generally optical sensors are used

because of their ability to produce a clear image, even though other sensors are still in

use such as ultrasonic and capacitive sensors.

Figure 4.2: A Fingerprint Sensor

Characteristics of Fingerprint Scanner

Table 4.1: Characteristics of Fingerprint Scanner

Features Values

Supply Voltage 12-15 VDC

Operating Current 120mA max

Peak Current 150mA max

Interface Protocol Standard Serial Interface(TTL)

Window Area 14mm x 18mm

Fingerprint Resolution 500dpi

27

4.2.2 Client Application Module

The Client Application is developed for the transmission of Fingerprint template

generated by the fingerprint scanner. The main features of the application are:-

1. It is programmed in C# and runs in classrooms or other desired places.

2. Client App asks for IP address of the server and port number on which App is

running.

3. It also asks for the fingerprint template of the student taken using fingerprint

scanner, to be transmitted to server for attendance management.

GUI of Client Application

Figure 4.3: Client Application

28

4.2.2 Wireless Communication Module (WCM)

To access the server wirelessly, client server app is designed to run on local network

in this case WLAN network. In order to make our system cost effective we are using

WLAN network (Wi-Fi) which is already established in most of the organizations and

institutions.

Figure 4.4: Wireless Module

Both the Client and the server are connected to the same network and client

application is running on the client side which will be used to transfer the fingerprint

template generated by the fingerprint scanner to the server for attendance

management.

4.2.4 Server Application Module

The Server Application Module is developed for the reception of fingerprint templates

being transmitted by the Client System using WLAN. The key features of Server

Application are:-

1. It is programmed in C# and runs on Server containing fingerprint database.

2. Server App requires port number on which application is running.

3. It receives the finger template sent using Wi-Fi network form Client

Application running in classroom.

29

GUI of Server Application

Figure 4.5: Server Application

4.2.5 GSM Module

GSM Module is interfaced with the server to send the verification SMS to the students

so that they should also be intimated once there attendance has been marked and it is

also useful in the cases where due to some reason their attendance cannot be marked

at the first attempt. Key features of GSM Module are:-

1. SIM 900D GSM module is used to send verification message to user.

2. This module is interfaced with Server containing fingerprint database.

3. When fingerprint template is matched with the database entry, it pop ups for

verification application to send message to user.

4. GUI has been developed for user interface which is further linked to the

database.

30

4.3 Algorithm Design

Software is responsible for the implementing the following functions:-

• Fingerprint Capture

• Fingerprint Image Processing

• Wireless Data Transfer

• Updating the database and attendance sheets

• Maintenance of GUI to Student Attendance System

31

Chapter 5

Data Transfer and Application Development

In this chapter we will discuss the transfer of data from client to server in a wireless

environment and applications developed for data transmission in a client-server

environment.

5.1 Wireless Data Transfer

After the fingerprint image has been processed, the data is to be transferred to the

central server through a wireless channel. The data packet is to be coded into an

encrypted form due to the sensitive nature of the information it carries. The data

communicated to the server is broadly classified into two types:

a. Enroll Data

b. Daily Attendance Data

5.1.1 Enroll Data

This data is initially obtained when adding the new students to the institute database.

Along with Personal Identification Numbers (PIN), student-specific data such as

degree program, date of birth (DOB), student picture & signature, the database is

provided with a biometric template consisting of a processed image of the fingerprint.

5.1.2 Daily Attendance Data

Once all the students are enrolled into the institute’s Student Attendance System, the

daily work of each Client is to accumulate the attendance data for each student of a

particular classroom and transmit the data to the Central Server System (CSS).

5.2 Application Development

The actual testing for the design of the wireless fingerprint based student attendance

system was carried out in Communications Lab. Department of Electrical

32

Engineering. The experimental setup consists of both software based platform and

hardware module in an integrated development environment. The various components

of the testing environment are:-

a. Client PC

b. Server PC

c. Wireless Access Point

d. GSM Module

e. Visual Studio 2012

5.2.1 Client PC

If we talk about any institution now a days each and every classroom has a PC

installed in it for delivering the lectures to the students. We made use of same PC for

our project as to make it more cost efficient and to merge it with the existing setup.

The only requirement we are having is of wireless connectivity for that purpose we

can use any of the Wi-Fi device which is compatible with the PCs installed at the

class rooms. For our experimental purpose we have used the wireless access point

manufactured by TP-Link.

The Client PC has the fingerprint scanner connected to it through USB interface

which will be used to get the fingerprint of the student or employee of the

organization. Results generated by the fingerprint scanner during the experiments are

as follows:-

Figure 5.1: Fingerprint Acquisition Application

33

Fingerprint acquisition application has been developed which is used to generate the

fingerprint template which will be further used for attendance management purpose.

In this GUI we have four options:-

a. Fingerprint Enrollment

b. Fingerprint Verification

c. Save Fingerprint Template

d. Read Fingerprint Template

Figure 5.2: Adil Fingerprint Figure 5.3: Masood Fingerprint

 Second thing is the client file sharing application installed and running on it. The

Client Application has following requirements:-

a. IP address of the Server

b. Port Number of Server

c. Fingerprint template generated by fingerprint scanner

The running Client Application is shown in Figure 5.1 which is connected to the

server through Port No 4000.

34

Figure 5.4: Client Application

The first field is of IP address of the Server whom the client wants to communicate

using WLAN. The second field is of Port Number of the server on which the server is

listening. The third field is of the location of the template file which needs to be

transmitted to the server.

5.2.2 Server PC

Server is the central controller which is managing the attendance record of the student

or employees in case of an organization. Server file sharing application needs to be

installed on the server and GSM module is also connected to the server. The server is

also connected to the client PC through Wi-Fi.

The Server PC has the server file sharing application installed and running on it. The

Server Application has the requirement of Port Number of Server.

It automatically stores the fingerprint template received from the client to one of the

directory which was predefined during programming of the application. This template

is then linked to the database for attendance management purpose.

The running Server Application is shown in Figure 5.2 which is connected to the

server through Port No 4000.

35

Figure 5.5: Server Application

The only thing required by the user in this application is the port number on which the

client is communicating to the server, once we enter the port number it will start

listening to the client continuously until the application is closed.

5.2.3 GSM Module

The GSM module is interfaced to the server PC for sending the verification SMS to

the student in case of institution or employee in case of an organization. The GSM

module is connected to the Server through serial interface and the application has

been developed to send an verification SMS to the users, the application is further

linked to the data base of the institution or organization, once the fingerprint template

will be received the SMS application will automatically be called do that the

verification SMS can be sent to the user.

36

Figure 5.6: GSM Application

The application requires the destination number on which we want to send the

verification SMS, these numbers will be stored in the database during the enrolment

purposes and will be used for the purpose of sending the verification SMS to the user

once his/her attendance will be marked. The message field will contain the Text

which we want to send in the verification message.

5.2.4 Database

The database management is done on the server. The database is made in such a way

that it can enroll the new students or employees and later on it can be used to maintain

their attendance as well. The key features of database are

a. Database on Server contains student’s data and their fingerprints templates.

b. Software in C# which match receiving fingerprint with existing one and mark

attendance.

c. Graphical User

d. Interface (GUI) has developed to register fingerprint template and matching

details.

37

Figure 5.7: Database Application

This GUI is used first to enroll the student with following details:-

a. First Name

b. Last Name

c. Phone No

d. File Name (Name of Fingerprint template)

Upload option is use to save the details of the student in the database from where it

can be accessed at later stage for attendance management purposes.

For verification and attendance marking purpose the lower fields are used which

include:-

a. File Name to be matched

b. File to compare with

“File name to be matched in database” is the template of the user which was uploaded

during enrollment process and “File to compare with” is the new fingerprint template

received during attendance marking process. Once both the files match the attendance

of the particular student/employee will be marked.

38

Chapter 6

Experimental Setup and Testing

6.1 Physical Layout

The actual testing of the system was carried out in the Communication Lab of

Electrical Engineering Department. The Figure 6.1 shows the physical layout of the

project. Due to compact space the Client PC (Laptop) and the Server PC (Desktop)

both are placed side by side but both are connected through WLAN. Access Point of

TP-Link is used for wireless communication.

Figure 6.1: Physical Layout

6.2 Fingerprint Template Generation

In this section we will discuss the generation of the fingerprint template and its

transmission to the server.

6.2.1 Fingerprint Enrollment

Once the user is getting himself/herself enrolled for the first time the scanner will

require the fingerprint four times to properly extract the features of the individual so

that the chances of false detection can be reduced. The application developed for the

39

fingerprint scanner has four Tabs which can be used for various purposes, the first one

is of “Fingerprint Enrollment”. The user will press his/her finger four times against

the scanner to get his fingerprint enrolled. The Figure 6.2 shows the enrollment

process of the user.

Figure 6.2: Fingerprint Enrollment

Once the user will press the finger against the scanner four times properly and scanner

was able to get the fingerprint it will give the message for successful capturing of the

fingerprint. Figure 6.3 shows the successful capturing of the image for enrollment

purpose.

Figure 6.3: Successful Fingerprint Enrollment

6.2.2 Fingerprint Verification

Now at this stage we are ready to verify the finger print so as to check the accuracy of

the scanner working, the option has been given in the application to get the fingerprint

verified at this stage as well. Figure 6.4 shows the successful verification of the

fingerprint. It is also worth mentioning that the scanner is able to verify the image

even if the finger is placed 180 degree inverted on the scanner for verification.

40

Figure 6.4: Successful Verification of Fingerprint

Figure 6.5 shows the unsuccessful verification of the fingerprint it happens if we place

any other finger other than which is enrolled even if we place the thumb or same

finger of the other hand it will be unsuccessful.

Figure 6.4: Unsuccessful Verification of Fingerprint

6.2.3 Fingerprint Template

Once the fingerprint is verified its template can be generated using the same

application so that it can be enrolled in the database which will be further used for

attendance management purpose. Figure 6.5 shows the GUI which can be used for

template generation purpose, once we will click on the “Save Fingerprint Template” it

will ask for the location where we want to save the template and will generate and

save the template of the finger print at that particular location.

41

Figure 6.5: Template Generation

6.3 Client-Server Communication

Once the fingerprint template is generated it is ready to be transmitted to the server for

enrollment in the database. Client and Server are communicated wirelessly through WLAN

environment. A Client application is installed and running on the client PC where it has the IP

address of the server and the port number on which the client want to transmit the fingerprint

template. The last field is of the location of the fingerprint template which needs to be

transmitted. Figure 6.6 shows the running client application ready for the transmission of

fingerprint template.

Figure 6.6: Client Application

42

Once we will press the send button the template will be transmitted to the server

through WLAN. Figure 6.7 shows the successful transmission of the fingerprint

template.

Figure 6.7: Successful Transmission by Client

6.4 Attendance Management at Server

Once the template is received by the server the rest of the task is of server to use the

finger print for enrollment or for attendance management purpose as required by the

system. Server has to perform several tasks like enrollment, attendance management

and sending verification SMS to the user on attendance marking.

6.4.1 Enrollment in Database

Once the fingerprint template is successfully received by the server it will make an

entry against that particular user in the database for the first time later on once the

same template will be received by the server it will check through the entries and

mark the attendance of that particular user. Figure 6.8 shows the successful reception

of the fingerprint template by the server.

Figure 6.7: Successful Reception by Server

43

6.4.2 Verification SMS using GSM Module

Once the match will be found against the fingerprint template in the existing database

the attendance of that particular user will be marked and database is linked to the

SMS application which will use the GSM module to send the verification SMS to the

user . The message is predefined which will be sent to the mobile number entered in

the database during enrollment process.

44

Chapter 7
7.1 Conclusion

This project mainly comprised of development of attendance management system and

fingerprint identification system. Attendance management is very helpful in saving

valuable time of students and teachers, paper and generating report at required time.

This project presented a framework using which attendance management can be made

automated and on-line. A general implementable approach to attendance management

was proposed using WLAN. Further, an idea for using portable devices along with

wireless LAN or mobile 3G network was suggested. Fingerprint Identification System

used for student identification is faster in implementation than any other fingerprint

identification systems. For fingerprint recognition, prevalent enhancement techniques

like Gabor filters, minutiae extraction using Crossing Number concept followed by

spurious and boundary minutiae removal, fingerprint classification, reference point

detection, etc. are employed.

7.2 Outcomes of this Project

1. A Scientific approach was developed during project work.

2. Skills and self-confidence in coding and working with softwares like C# and Visual

Studio were developed.

3. An applicable attendance management system was designed for educational

institutions and other organizations. Ideas were presented for making whole system

online using WLAN technology.

4. An improved and faster fingerprint identification system was developed for student

identification purpose.

5. The future expectations from this project is to actually implement such system for

one or more classes if sufficient funds are provided to us.

6. Our fingerprint identification system can be used in implementation in Military

College of Signals.

45

7.3 Future Work

46

Appendix

Most of the coding for the software development is done in C sharp. Coding is done

for the following modules:-

1. Fingerprint Scanner Module

2. Client- Server Communication Module

3. GSM Module

4. Database Development

The code for each of the module will be explained in detail in subsequent topics.

Fingerprint Scanner Code

The code is written in C#. The code for the Fingerprint Scanner is given below

clear;

clc;

close all;

global immagine n_bands h_bands n_arcs h_radius h_lato

n_sectors matrice num_disk

n_bands=4;

h_bands=20;

n_arcs=16;

h_radius=12;

h_lato=h_radius+(n_bands*h_bands*2)+16;

if mod(h_lato,2)==0

 h_lato=h_lato-1;

end

n_sectors=n_bands*n_arcs;

matrice=zeros(h_lato);

for ii=1:(h_lato*h_lato)

 matrice(ii)=whichsector(ii);

end

num_disk=8;

% 1--> add database

% 0--> recognition

%ok=0;

chos=0;

possibility=7;

messaggio='Insert the number of set: each set determins a

class. This set should include a number of images for

each person, with some variations in expression and in

the lighting.';

47

while chos~=possibility,

 chos=menu('Fingerprint Recognition System','Select

image and add to database','Select image for fingerprint

recognition','Info','Delete database',...

 'Fingerprint image: visualization','Gabor Filter:

visualization','Exit');

 %--

 %--

 %--

 % Calculate FingerCode and Add to Database

 if chos==1

 clc;

 close all;

 selezionato=0;

 while selezionato==0

[namefile,pathname]=uigetfile({'*.bmp;*.tif;*.tiff;*.jpg;

.jpeg;.gif','IMAGE Files

(*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose

GrayScale Image');

 if namefile~=0

[img,map]=imread(strcat(pathname,namefile));

 selezionato=1;

 else

 disp('Select a grayscale image');

 end

 if (any(namefile~=0) && (~isgray(img)))

 disp('Select a grayscale image');

 selezionato=0;

 end

 end

 immagine=double(img);

 if isa(img,'uint8')

 graylevmax=2^8-1;

 end

 if isa(img,'uint16')

 graylevmax=2^16-1;

 end

 if isa(img,'uint32')

 graylevmax=2^32-1;

 end

 fingerprint = immagine;

 N=h_lato;

48

[BinarizedPrint,XofCenter,YofCenter]=centralizing(fingerp

rint,0);

[CroppedPrint]=cropping(XofCenter,YofCenter,fingerprint);

[NormalizedPrint,vector]=sector_norm(CroppedPrint,0);

 for (angle=0:1:num_disk-1)

 gabor=gabor2d_sub(angle,num_disk);

ComponentPrint=conv2fft(NormalizedPrint,gabor,'same');

 [disk,vector]=sector_norm(ComponentPrint,1);

 finger_code1{angle+1}=vector(1:n_sectors);

 end

 img=imrotate(img,180/(num_disk*2));

 fingerprint=double(img);

[BinarizedPrint,XofCenter,YofCenter]=centralizing(fingerp

rint,0);

[CroppedPrint]=cropping(XofCenter,YofCenter,fingerprint);

[NormalizedPrint,vector]=sector_norm(CroppedPrint,0);

 for (angle=0:1:num_disk-1)

 gabor=gabor2d_sub(angle,num_disk);

ComponentPrint=conv2fft(NormalizedPrint,gabor,'same');

 [disk,vector]=sector_norm(ComponentPrint,1);

 finger_code2{angle+1}=vector(1:n_sectors);

 end

 % FingerCode added to database

 if (exist('fp_database.dat')==2)

 load('fp_database.dat','-mat');

 fp_number=fp_number+1;

 data{fp_number,1}=finger_code1;

 data{fp_number,2}=finger_code2;

 save('fp_database.dat','data','fp_number','-

append');

 else

 fp_number=1;

 data{fp_number,1}=finger_code1;

 data{fp_number,2}=finger_code2;

 save('fp_database.dat','data','fp_number');

 end

 message=strcat('FingerCode was succesfully added

to database. Fingerprint no. ',num2str(fp_number));

 msgbox(message,'FingerCode DataBase','help');

49

 end

 %--

 %--

 %--

 % Fingerprint recognition

 if chos==2

 clc;

 close all;

 selezionato=0;

 while selezionato==0

[namefile,pathname]=uigetfile({'*.bmp;*.tif;*.tiff;*.jpg;

.jpeg;.gif','IMAGE Files

(*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose

GrayScale Image');

 if namefile~=0

[img,map]=imread(strcat(pathname,namefile));

 selezionato=1;

 else

 disp('Select a grayscale image');

 end

 if (any(namefile~=0) && (~isgray(img)))

 disp('Select a grayscale image');

 selezionato=0;

 end

 end

 immagine=double(img);

 if isa(img,'uint8')

 graylevmax=2^8-1;

 end

 if isa(img,'uint16')

 graylevmax=2^16-1;

 end

 if isa(img,'uint32')

 graylevmax=2^32-1;

 end

 fingerprint = immagine;

 N=h_lato;

[BinarizedPrint,XofCenter,YofCenter]=centralizing(fingerp

rint,0);

[CroppedPrint]=cropping(XofCenter,YofCenter,fingerprint);

[NormalizedPrint,vector]=sector_norm(CroppedPrint,0);

50

 % memoria per feature vector d'ingresso

 vettore_in=zeros(num_disk*n_sectors,1);

 for (angle=0:1:num_disk-1)

 gabor=gabor2d_sub(angle,num_disk);

ComponentPrint=conv2fft(NormalizedPrint,gabor,'same');

 [disk,vector]=sector_norm(ComponentPrint,1);

 finger_code{angle+1}=vector(1:n_sectors);

vettore_in(angle*n_sectors+1:(angle+1)*n_sectors)=finger_

code{angle+1};

 end

 % FingerCode of input fingerprint has just been

calculated.

 % Checking with DataBase

 if (exist('fp_database.dat')==2)

 load('fp_database.dat','-mat');

 %---- alloco memoria ------------------------

 %...

 vettore_a=zeros(num_disk*n_sectors,1);

 vettore_b=zeros(num_disk*n_sectors,1);

 best_matching=zeros(fp_number,1);

 valori_rotazione=zeros(n_arcs,1);

 % start checking ----------------------------

 for scanning=1:fp_number

 fcode1=data{scanning,1};

 fcode2=data{scanning,2};

 for rotazione=0:(n_arcs-1)

 p1=fcode1;

 p2=fcode2;

 % ruoto i valori dentro disco

 for conta_disco=1:num_disk

 disco1=p1{conta_disco};

 disco2=p2{conta_disco};

 for old_pos=1:n_arcs

new_pos=mod(old_pos+rotazione,n_arcs);

 if new_pos==0

 new_pos=n_arcs;

 end

 for conta_bande=0:1:(n_bands-

1)

disco1r(new_pos+conta_bande*n_arcs)=disco1(old_pos+conta_

bande*n_arcs);

51

disco2r(new_pos+conta_bande*n_arcs)=disco2(old_pos+conta_

bande*n_arcs);

 end

 end

 p1{conta_disco}=disco1r;

 p2{conta_disco}=disco2r;

 end

 % ruoto i dischi circolarmente

 for old_disk=1:num_disk

new_disk=mod(old_disk+rotazione,num_disk);

 if new_disk==0

 new_disk=num_disk;

 end

 pos=old_disk-1;

vettore_a(pos*n_sectors+1:(pos+1)*n_sectors)=p1{new_disk}

;

vettore_b(pos*n_sectors+1:(pos+1)*n_sectors)=p2{new_disk}

;

 end

 d1=norm(vettore_a-vettore_in);

 d2=norm(vettore_b-vettore_in);

 if d1<d2

 val_minimo=d1;

 else

 val_minimo=d2;

 end

valori_rotazione(rotazione+1)=val_minimo;

 end

[minimo,posizione_minimo]=min(valori_rotazione);

 best_matching(scanning)=minimo;

 end

[distanza_minima,posizione_minimo]=min(best_matching);

 beep;

 message=strcat('The nearest fingerprint

present in DataBase which matchs input fingerprint is :

',num2str(posizione_minimo),...

 ' with a distance of :

',num2str(distanza_minima));

 msgbox(message,'DataBase Info','help');

 else

 message='DataBase is empty. No check is

possible.';

 msgbox(message,'FingerCode DataBase

Error','warn');

 end

52

 end % fine caso 2

 if chos==3

 clc;

 close all;

 helpwin fprec;

 end % fine caso 3

 if chos==4

 clc;

 close all;

 if (exist('fp_database.dat')==2)

 button = questdlg('Do you really want to

remove the Database?');

 if strcmp(button,'Yes')

 delete('fp_database.dat');

 msgbox('Database was succesfully removed

from the current directory.','Database removed','help');

 end

 else warndlg('Database is empty.',' Warning)

 end

 end % fine caso 4

 if chos==5

 clc;

 close all;

 selezionato=0;

 while selezionato==0

[namefile,pathname]=uigetfile({'*.bmp;*.tif;*.tiff;*.jpg;

.jpeg;.gif','IMAGE Files

(*.bmp,*.tif,*.tiff,*.jpg,*.jpeg,*.gif)'},'Chose

GrayScale Image');

 if namefile~=0

[img,map]=imread(strcat(pathname,namefile));

 selezionato=1;

 else

 disp('Select a grayscale image');

 end

 if (any(namefile~=0) && (~isgray(img)))

 disp('Select a grayscale image');

 selezionato=0;

 end

 end

 figure('Name','Selected image');

 imshow(img);

 end % fine caso 5

 if chos==6

 clc;

 close all;

 figure('Name','Gabor Filter');

 mesh(gabor2d_sub(0,num_disk));

 end % fine caso 6

end % fine while

53

Client- Server Communication

The code is written in C#. The code for Client-Server Communication Module is

given as follows.

Client Code
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Threading.Tasks;

using System.Net;

using System.Net.Sockets;

using System.Net.NetworkInformation;

using System.IO;

namespace form

{

 public partial class Form1 : Form

 {

 private static string shortFileName = "";

 private static string fileName = "";

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 }

 private void browse_Click(object sender,

EventArgs e)

 {

 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Title = "File Sharing Client";

 dlg.ShowDialog();

 file.Text = dlg.FileName;

 fileName = dlg.FileName;

 shortFileName = dlg.SafeFileName;

 }

 private void send_Click(object sender, EventArgs e)

 {

 string ipAddress = ip.Text;

54

 int port = int.Parse(port1.Text);

 string fileName = file.Text;

 Task.Factory.StartNew(() =>

SendFile(ipAddress, port, fileName, shortFileName));

 MessageBox.Show("File Sent");

 }

 public void SendFile(string remoteHostIP, int

remoteHostPort,

 string longFileName, string shortFileName)

{

try

{

if (!string.IsNullOrEmpty(remoteHostIP))

{

byte[] fileNameByte =

Encoding.ASCII.GetBytes(shortFileName);

byte[] fileData = File.ReadAllBytes(longFileName);

byte[] clientData = new byte[4 + fileNameByte.Length +

fileData.Length];

byte[] fileNameLen =

BitConverter.GetBytes(fileNameByte.Length);

 fileNameLen.CopyTo(clientData, 0);

fileNameByte.CopyTo(clientData, 4);

fileData.CopyTo(clientData, 4 + fileNameByte.Length);

TcpClient clientSocket = new TcpClient(remoteHostIP,

remoteHostPort);

NetworkStream networkStream = clientSocket.GetStream();

 networkStream.Write(clientData, 0,

clientData.GetLength(0));

networkStream.Close();

}

}

catch

{

}

}

}

 }

Server Code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Net;

55

using System.Net.Sockets;

using System.Net.NetworkInformation;

using System.IO;

using System.Threading.Tasks;

namespace FileSharingServer

{

 public partial class Form1 : Form

 {

 public delegate void

FileRecievedEventHandler(object source, string fileName);

 public event FileRecievedEventHandler

NewFileRecieved;

 public Form1()

 {

 InitializeComponent();

 }

 private void Form1_Load(object sender, EventArgs e)

 {

 this.NewFileRecieved += new

FileRecievedEventHandler(Form1_NewFileRecieved);

 }

 private void Form1_NewFileRecieved(object sender,

string fileName)

 {

 this.BeginInvoke(new Action(delegate()

 {

 MessageBox.Show("New File Received\n" +

fileName);

System.Diagnostics.Process.Start("explorer", @"c:\");

 }));

 }

 private void button1_Click(object sender, EventArgs e)

 {

 int port = int.Parse(port1.Text);

 Task.Factory.StartNew(() =>

HandleIncomingFile(port));

 MessageBox.Show("Listening on port" + port);

 }

 public void HandleIncomingFile(int port)

 {

 try

 {

 TcpListener tcpListener = new

TcpListener(port);

 tcpListener.Start();

 while (true)

 {

56

 Socket handlerSocket =

tcpListener.AcceptSocket();

 if (handlerSocket.Connected)

 {

 string fileName = string.Empty;

 NetworkStream networkStream = new

NetworkStream(handlerSocket);

 int thisRead = 0;

 int blockSize = 1024;

 Byte[] dataByte = new

Byte[blockSize];

 lock (this)

 {

 string folderPath = @"c:\";

 int receivedBytesLen =

handlerSocket.Receive(dataByte);

 int fileNameLen =

BitConverter.ToInt32(dataByte, 0);

 fileName =

Encoding.ASCII.GetString(dataByte, 4, fileNameLen);

 Stream fileStream =

File.OpenWrite(folderPath + fileName);

 fileStream.Write(dataByte, 4

+ fileNameLen, (1024 - (4 + fileNameLen)));

 while (true)

 {

 thisRead =

networkStream.Read(dataByte, 0, blockSize);

fileStream.Write(dataByte, 0, thisRead);

 if (thisRead == 0)

 break;

 }

 fileStream.Close();

 }

 if (NewFileRecieved != null)

 {

 NewFileRecieved(this,

fileName);

 }

 handlerSocket = null;

 }

 }

 }

 catch { }

 }

 }

}

57

GSM Module Code

The code is written in C#. The code for GSM module for sending the SMS is given

below.

using System;

using System.Drawing;

using System.Collections;

using System.ComponentModel;

using System.Windows.Forms;

using GsmComm.PduConverter;

using GsmComm.GsmCommunication;

namespace SMS

{

 /// <summary>

 /// Summary description for Send.

 /// </summary>

 public class Send : System.Windows.Forms.Form

 {

 private System.Windows.Forms.PictureBox

pictureBox1;

 private System.Windows.Forms.Label label1;

 private System.Windows.Forms.TextBox

txt_destination_numbers;

 private System.Windows.Forms.Label label2;

 private System.Windows.Forms.TextBox

txt_text_remaining;

 private System.Windows.Forms.Button

btnSendMessage;

 private System.Windows.Forms.Button BtnClear;

 private System.Windows.Forms.TextBox

txt_message;

 private System.Windows.Forms.TextBox txtOutput;

 private System.Windows.Forms.CheckBox

chkUnicode;

 private System.Windows.Forms.CheckBox chkAlert;

 private System.Windows.Forms.GroupBox

groupBox1;

 private System.Windows.Forms.Label label19;

 private System.Windows.Forms.TextBox

txtSendTimes;

 private System.Windows.Forms.CheckBox

chkMultipleTimes;

 /// <summary>

 /// Required designer variable.

 /// </summary>

58

 private System.ComponentModel.Container

components = null;

 private delegate void SetTextCallback(string

text);

 public Send()

 {

 //

 // Required for Windows Form Designer

support

 //

 InitializeComponent();

 //

 // TODO: Add any constructor code after

InitializeComponent call

 //

 }

 /// <summary>

 /// Clean up any resources being used.

 /// </summary>

 protected override void Dispose(bool disposing

)

 {

 if(disposing)

 {

 if(components != null)

 {

 components.Dispose();

 }

 }

 base.Dispose(disposing);

 }

 #region Windows Form Designer generated code

 /// <summary>

 /// Required method for Designer support - do

not modify

 /// the contents of this method with the code

editor.

 /// </summary>

 private void InitializeComponent()

 {

 System.Resources.ResourceManager resources

= new System.Resources.ResourceManager(typeof(Send));

 this.pictureBox1 = new

System.Windows.Forms.PictureBox();

 this.label1 = new

System.Windows.Forms.Label();

 this.txt_destination_numbers = new

System.Windows.Forms.TextBox();

59

 this.label2 = new

System.Windows.Forms.Label();

 this.txt_message = new

System.Windows.Forms.TextBox();

 this.txt_text_remaining = new

System.Windows.Forms.TextBox();

 this.btnSendMessage = new

System.Windows.Forms.Button();

 this.BtnClear = new

System.Windows.Forms.Button();

 this.txtOutput = new

System.Windows.Forms.TextBox();

 this.chkUnicode = new

System.Windows.Forms.CheckBox();

 this.chkAlert = new

System.Windows.Forms.CheckBox();

 this.groupBox1 = new

System.Windows.Forms.GroupBox();

 this.txtSendTimes = new

System.Windows.Forms.TextBox();

 this.chkMultipleTimes = new

System.Windows.Forms.CheckBox();

 this.label19 = new

System.Windows.Forms.Label();

 this.groupBox1.SuspendLayout();

 this.SuspendLayout();

 //

 // pictureBox1

 //

 this.pictureBox1.BackgroundImage =

((System.Drawing.Image)(resources.GetObject("pictureBox1.

BackgroundImage")));

 this.pictureBox1.Location = new

System.Drawing.Point(0, 0);

 this.pictureBox1.Name = "pictureBox1";

 this.pictureBox1.Size = new

System.Drawing.Size(368, 104);

 this.pictureBox1.TabIndex = 0;

 this.pictureBox1.TabStop = false;

 //

 // label1

 //

 this.label1.Font = new

System.Drawing.Font("Microsoft Sans Serif", 10F,

System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, ((System.Byte)(0)));

 this.label1.Location = new

System.Drawing.Point(0, 112);

 this.label1.Name = "label1";

 this.label1.Size = new

System.Drawing.Size(144, 24);

 this.label1.TabIndex = 1;

 this.label1.Text = "Destination Number :";

60

 //

 // txt_destination_numbers

 //

 this.txt_destination_numbers.Location =

new System.Drawing.Point(0, 136);

 this.txt_destination_numbers.Name =

"txt_destination_numbers";

 this.txt_destination_numbers.Size = new

System.Drawing.Size(224, 20);

 this.txt_destination_numbers.TabIndex = 2;

 this.txt_destination_numbers.Text = "";

 //

 // label2

 //

 this.label2.Font = new

System.Drawing.Font("Microsoft Sans Serif", 10F,

System.Drawing.FontStyle.Regular,

System.Drawing.GraphicsUnit.Point, ((System.Byte)(0)));

 this.label2.Location = new

System.Drawing.Point(0, 168);

 this.label2.Name = "label2";

 this.label2.Size = new

System.Drawing.Size(72, 16);

 this.label2.TabIndex = 3;

 this.label2.Text = "Message :";

 //

 // txt_message

 //

 this.txt_message.Location = new

System.Drawing.Point(0, 192);

 this.txt_message.Multiline = true;

 this.txt_message.Name = "txt_message";

 this.txt_message.ScrollBars =

System.Windows.Forms.ScrollBars.Both;

 this.txt_message.Size = new

System.Drawing.Size(224, 112);

 this.txt_message.TabIndex = 4;

 this.txt_message.Text = "";

 this.txt_message.TextChanged += new

System.EventHandler(this.textBox1_TextChanged);

 //

 // txt_text_remaining

 //

 this.txt_text_remaining.BackColor =

System.Drawing.SystemColors.Control;

 this.txt_text_remaining.Enabled = false;

 this.txt_text_remaining.Location = new

System.Drawing.Point(224, 288);

 this.txt_text_remaining.Name =

"txt_text_remaining";

 this.txt_text_remaining.Size = new

System.Drawing.Size(40, 20);

 this.txt_text_remaining.TabIndex = 5;

61

 this.txt_text_remaining.Text = "160";

 //

 // btnSendMessage

 //

 this.btnSendMessage.FlatStyle =

System.Windows.Forms.FlatStyle.System;

 this.btnSendMessage.Location = new

System.Drawing.Point(144, 320);

 this.btnSendMessage.Name =

"btnSendMessage";

 this.btnSendMessage.Size = new

System.Drawing.Size(80, 24);

 this.btnSendMessage.TabIndex = 16;

 this.btnSendMessage.Text = "Send";

 this.btnSendMessage.Click += new

System.EventHandler(this.btnSendMessage_Click);

 //

 // BtnClear

 //

 this.BtnClear.FlatStyle =

System.Windows.Forms.FlatStyle.System;

 this.BtnClear.Location = new

System.Drawing.Point(56, 320);

 this.BtnClear.Name = "BtnClear";

 this.BtnClear.Size = new

System.Drawing.Size(80, 24);

 this.BtnClear.TabIndex = 17;

 this.BtnClear.Text = "Clear";

 this.BtnClear.Click += new

System.EventHandler(this.BtnClear_Click);

 //

 // txtOutput

 //

 this.txtOutput.Location = new

System.Drawing.Point(0, 352);

 this.txtOutput.Multiline = true;

 this.txtOutput.Name = "txtOutput";

 this.txtOutput.ScrollBars =

System.Windows.Forms.ScrollBars.Vertical;

 this.txtOutput.Size = new

System.Drawing.Size(504, 120);

 this.txtOutput.TabIndex = 56;

 this.txtOutput.Text = "";

 //

 // chkUnicode

 //

 this.chkUnicode.FlatStyle =

System.Windows.Forms.FlatStyle.System;

 this.chkUnicode.Location = new

System.Drawing.Point(16, 56);

 this.chkUnicode.Name = "chkUnicode";

 this.chkUnicode.Size = new

System.Drawing.Size(208, 24);

62

 this.chkUnicode.TabIndex = 58;

 this.chkUnicode.Text = "Send as Unicode

(UCS2)";

 //

 // chkAlert

 //

 this.chkAlert.FlatStyle =

System.Windows.Forms.FlatStyle.System;

 this.chkAlert.Location = new

System.Drawing.Point(16, 24);

 this.chkAlert.Name = "chkAlert";

 this.chkAlert.Size = new

System.Drawing.Size(176, 24);

 this.chkAlert.TabIndex = 57;

 this.chkAlert.Text = "Request immediate

display (alert)";

 //

 // groupBox1

 //

 this.groupBox1.Controls.Add(this.chkUnicode);

 this.groupBox1.Controls.Add(this.chkAlert);

 this.groupBox1.Controls.Add(this.txtSendTimes);

 this.groupBox1.Controls.Add(this.chkMultipleTimes);

 this.groupBox1.Controls.Add(this.label19);

 this.groupBox1.Location = new

System.Drawing.Point(240, 112);

 this.groupBox1.Name = "groupBox1";

 this.groupBox1.Size = new

System.Drawing.Size(264, 128);

 this.groupBox1.TabIndex = 59;

 this.groupBox1.TabStop = false;

 this.groupBox1.Text = "Option";

 //

 // txtSendTimes

 //

 this.txtSendTimes.Location = new

System.Drawing.Point(120, 88);

 this.txtSendTimes.Name = "txtSendTimes";

 this.txtSendTimes.Size = new

System.Drawing.Size(48, 20);

 this.txtSendTimes.TabIndex = 61;

 this.txtSendTimes.Text = "1";

 //

 // chkMultipleTimes

 //

 this.chkMultipleTimes.FlatStyle =

System.Windows.Forms.FlatStyle.System;

 this.chkMultipleTimes.Location = new

System.Drawing.Point(16, 88);

63

 this.chkMultipleTimes.Name =

"chkMultipleTimes";

 this.chkMultipleTimes.TabIndex = 60;

 this.chkMultipleTimes.Text = "Send

message";

 //

 // label19

 //

 this.label19.FlatStyle =

System.Windows.Forms.FlatStyle.System;

 this.label19.Location = new

System.Drawing.Point(176, 88);

 this.label19.Name = "label19";

 this.label19.Size = new

System.Drawing.Size(72, 23);

 this.label19.TabIndex = 62;

 this.label19.Text = "times";

 this.label19.TextAlign =

System.Drawing.ContentAlignment.MiddleLeft;

 //

 // Send

 //

 this.AutoScaleBaseSize = new

System.Drawing.Size(5, 13);

 this.ClientSize = new

System.Drawing.Size(504, 478);

 this.Controls.Add(this.groupBox1);

 this.Controls.Add(this.txtOutput);

 this.Controls.Add(this.BtnClear);

 this.Controls.Add(this.btnSendMessage);

 this.Controls.Add(this.txt_text_remaining);

 this.Controls.Add(this.txt_message);

 this.Controls.Add(this.label2);

 this.Controls.Add(this.txt_destination_numbers);

 this.Controls.Add(this.label1);

 this.Controls.Add(this.pictureBox1);

 this.Name = "Send";

 this.StartPosition =

System.Windows.Forms.FormStartPosition.CenterScreen;

 this.Text = "Send SMS";

 this.Load += new

System.EventHandler(this.Send_Load);

 this.groupBox1.ResumeLayout(false);

 this.ResumeLayout(false);

 }

 #endregion

 private void textBox1_TextChanged(object sender,

System.EventArgs e)

 {

64

 int

remaining=int.Parse(txt_text_remaining.Text.Trim());

 remaining-=1;

 txt_text_remaining.Text=remaining.ToString();

 }

 private void BtnClear_Click(object sender,

System.EventArgs e)

 {

 txt_message.Text="";

 txt_message.Focus();

 }

 private void btnSendMessage_Click(object sender,

System.EventArgs e)

 {

 Cursor.Current = Cursors.WaitCursor;

 try

 {

 // Send an SMS message

 SmsSubmitPdu pdu;

 bool alert = chkAlert.Checked;

 bool unicode = chkUnicode.Checked;

 if (!alert && !unicode)

 {

 // The straightforward version

 pdu = new

SmsSubmitPdu(txt_message.Text,

txt_destination_numbers.Text,""); // "" indicate SMSC No

 }

 else

 {

 // The extended version with dcs

 byte dcs;

 if (!alert && unicode)

 dcs =

DataCodingScheme.NoClass_16Bit;

 else if (alert && !unicode)

 dcs =

DataCodingScheme.Class0_7Bit;

 else if (alert && unicode)

 dcs =

DataCodingScheme.Class0_16Bit;

 else

 dcs = DataCodingScheme.NoClass_7Bit; // should

never occur here

pdu = new SmsSubmitPdu(txt_message.Text,

txt_destination_numbers.Text, "", dcs);

 }

65

 // Send the same message multiple

times if this is set

 int times = chkMultipleTimes.Checked

? int.Parse(txtSendTimes.Text) : 1;

 // Send the message the specified

number of times

 for (int i=0;i<times;i++)

 {

 CommSetting.comm.SendMessage(pdu);

 Output("Message {0} of {1}

sent.", i+1, times);

 Output("");

 }

 }

 catch(Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 Cursor.Current = Cursors.Default;

 }

 private void Output(string text)

 {

 if (this.txtOutput.InvokeRequired)

 {

 SetTextCallback stc = new

SetTextCallback(Output);

 this.Invoke(stc, new object[] { text

});

 }

 else

 {

 txtOutput.AppendText(text);

 txtOutput.AppendText("\r\n");

 }

 }

 private void Send_Load(object sender,

System.EventArgs e)

 {

 chkMultipleTimes.Checked=true;

 }

 private void Output(string text, params

object[] args)

 {

 string msg = string.Format(text, args);

66

 Output(msg);

 }

 }

}

Database Code

The application is developed using C#. Code for database is given below.

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Windows.Forms;

using System.Data.SqlClient;

using System.Configuration;

using System.IO;

using System.Diagnostics;

namespace test

{

 public partial class Form1 : Form

 {

 string a = null;

 string b = null;

 string c = null;

67

 public Form1()

 {

 InitializeComponent();

 }

 private void button5_Click(object sender,

EventArgs e)

 {

 OpenFileDialog fdlg = new OpenFileDialog();

 fdlg.Title = "C# Corner Open File Dialog";

 fdlg.InitialDirectory = @"c:\";

 fdlg.Filter = "All files (*.*)|*.*|All files

(*.*)|*.*";

 fdlg.FilterIndex = 2;

 fdlg.RestoreDirectory = true;

 if (fdlg.ShowDialog() == DialogResult.OK)

 {

 // label2.Text =

Path.GetDirectoryName(fdlg.FileName);

 }

 const int BYTES_TO_READ = sizeof(Int64);

 byte[] buff2 = new byte[BYTES_TO_READ];

 string filePath = (@fdlg.FileName);

 string filename2 =

Path.GetFileName(filePath);

 FileStream fs2 = new FileStream(filePath,

FileMode.Open, FileAccess.Read);

 BinaryReader br2 = new BinaryReader(fs2);

68

 Byte[] bytes =

br2.ReadBytes((Int32)fs2.Length);

 long numBytes = new

FileInfo(filePath).Length;

 br2.Close();

 fs2.Close();

 string strQuery = "insert into

Information(FName, LName,PhoneNo,FileName,Data) values

(@FName,@LName,@PhoneNo,@FileName,@Data)";

 SqlCommand cmd = new SqlCommand(strQuery);

 cmd.Parameters.Add("@Fname",

SqlDbType.VarChar).Value = textBox2.Text;

 cmd.Parameters.Add("@Lname",

SqlDbType.VarChar).Value = textBox3.Text;

 cmd.Parameters.Add("@PhoneNo",

SqlDbType.VarChar).Value = textBox4.Text;

 cmd.Parameters.Add("@FileName",

SqlDbType.VarChar).Value = textBox5.Text;

 cmd.Parameters.Add("@Data",

SqlDbType.Binary).Value = bytes;

 InsertUpdateData(cmd);

 }

 private Boolean InsertUpdateData(SqlCommand cmd)

 {

 SqlConnection con = new

SqlConnection(@"Server=(LocalDB)\v11.0; Integrated

Security=true ;AttachDbFileName=F:\Project\adnan.mdf");

 cmd.CommandType = CommandType.Text;

 cmd.Connection = con;

69

 try

 {

 con.Open();

 MessageBox.Show("Done");

 cmd.ExecuteNonQuery();

 return true;

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 return false;

 }

 finally

 {

 con.Close();

 con.Dispose();

 }

 }

 private void button6_Click(object sender,

EventArgs e)

 {

 int i = 0;

 int b = 0;

 string strQuery = "Select * from Information

where FileName='" + textBox1.Text + "'";

 SqlCommand cmd = new SqlCommand(strQuery);

 SqlConnection con = new

SqlConnection(@"Server=(LocalDB)\v11.0; Integrated

Security=true ;AttachDbFileName=F:\Project\adnan.mdf");

70

 cmd.CommandType = CommandType.Text;

 cmd.Connection = con;

 byte[] buff2 = new byte[5000000];

 string filePath = (@textBox6.Text);

 string filename2 =

Path.GetFileName(filePath);

 FileStream fs2 = new FileStream(filePath,

FileMode.Open, FileAccess.Read);

 BinaryReader br2 = new BinaryReader(fs2);

 Byte[] bytes =

br2.ReadBytes((Int32)fs2.Length);

 Byte[] a = br2.ReadBytes((Int32)fs2.Length);

 long numBytes = new

FileInfo(filePath).Length;

 buff2 = br2.ReadBytes((int)numBytes);

 try

 {

 con.Open();

 SqlDataReader dr =

cmd.ExecuteReader();

 while (dr.Read())

 {

 a = (Byte[])dr[5];

 MessageBox.Show("1");

 }

 }

 catch (Exception ex)

 {

71

 MessageBox.Show(ex.ToString());

 }

 finally

 {

 con.Close();

 con.Dispose();

 }

 var md5 = new

System.Security.Cryptography.MD5Cng();

 var md5File1 = md5.ComputeHash(a);

 var md5File2 = md5.ComputeHash(bytes);

 for (i = 0; i < md5File2.Length; ++i)

 {

 if (md5File1[i] == md5File2[i])

 {

 MessageBox.Show("Match");

 Process.Start("C:\\Users\\Adil

Khan\\Desktop\\SMS\\SMS\\bin\\Debug\\SMS.exe");

 check();

 break;

 }

 else

 {

 MessageBox.Show("No Match");

 break;

 } // label2.Text = "no match";

 }

72

 }

 private void check()

 {

 string strQuery = "Select * from Information

where FileName='" + textBox1.Text + "'";

 SqlCommand cmd = new SqlCommand(strQuery);

 SqlConnection con = new

SqlConnection(@"Server=(LocalDB)\v11.0; Integrated

Security=true ;AttachDbFileName=F:\Project\adnan.mdf");

 cmd.CommandType = CommandType.Text;

 cmd.Connection = con;

 try

 {

 con.Open();

 SqlDataReader dr = cmd.ExecuteReader();

 while (dr.Read())

 {

 a = dr[1].ToString();

 b = dr[2].ToString();

 c = dr[3].ToString();

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.ToString());

 }

 finally

 {

73

 con.Close();

 con.Dispose();

 }

 Form2 frm = new Form2();

 frm._textBox = _textBox1;

 frm._textBox1 = _textBox2;

 frm._textBox2 = _textBox3;

 frm.Show();

 }

 public string _textBox1

 {

 get { return a;}

 }

 public string _textBox2

 {

 get { return b; }

 }

 public string _textBox3

 {

 get { return c; }

 }

 private void textBox1_TextChanged(object sender,

EventArgs e)

 {

 }

 private void button1_Click(object sender,

EventArgs e)

74

 {

 OpenFileDialog fdlg = new OpenFileDialog();

 fdlg.Title = "C# Corner Open File Dialog";

 fdlg.InitialDirectory = @"c:\";

 fdlg.Filter = "All files (*.*)|*.*|All files

(*.*)|*.*";

 fdlg.FilterIndex = 2;

 fdlg.RestoreDirectory = true;

 if (fdlg.ShowDialog() == DialogResult.OK)

 {

 textBox6.Text

=Path.GetDirectoryName(fdlg.FileName) + "\\" +

Path.GetFileName(fdlg.FileName);

 }

 }

 private void textBox6_TextChanged(object sender,

EventArgs e)

 {

 }

 private void button2_Click(object sender,

EventArgs e)

 {

 }

75

References

[1] Zhang Yongqiang and Liu Ji ,The design of wireless fingerprint attendance

system, Proceedings of ICCT '06, International Conference on Communication

Technology, 2006.

[2] Younhee Gil, Access Control System with high level security using

fingerprints,IEEE the 32nd Applied Imagery Pattern Recognition Workshop (AIPR

’03)

[3] Jain, A.K., Hong, L., and Bolle, R.(1997), “On-Line Fingerprint Verification,”

IEEE Trans. On Pattern Anal and Machine Intell, 19(4), pp. 302-314.

[4] D.Maio and D. Maltoni. Direct gray-scale minutiae detection in fingerprints.

IEEE Trans. Pattern Anal. And Machine Intell., 19(1):27-40, 1997.

[5] Lee, C.J., and Wang, S.D.: Fingerprint feature extration using Gabor filters,

Electron. Lett., 1999, 35, (4), pp.288-290.

[6] L. Hong, Y. Wan and A.K. Jain, "Fingerprint Image Enhancement: Algorithms

and Performance Evaluation", IEEE Transactions on PAMI ,Vol. 20, No. 8, pp.777-

789, August 1998.

[7] SPRA894A, Texas Instruments, DSP for Smart Biometric Solutions

[8] User Manual, DWA-510

[9] SPRAA23, Texas Instruments, FADT2 Quick Start Guide

[10] TMS320C6713 DSK Technical Reference, (506735-0001 Rev. B)

[11] FVC2002. http://bias.csr.unibo.it/fvc2002/

[12] Fingerprint Recognition System by Luigi Rosa,

(http://www.mathworks.it/matlabcentral/fileexchange/4239)

[13] Shlomo Greenberg, Mayer Aladjem, Daniel Kogan and Itshak Dimitrov,

Fingerprint Image Enhancement using Filtering Techniques

