

AIDING DEVICE FOR VISUALLY IMPAIRED AND BLIND

PEOPLE

BY

NC AREEJ SHAHID

NC TASMIYA SHEIKH

NC M. AZEEM SARWAR

SUBMITTED TO THE FACULTY OF DEPARTMENT OF ELECTRICAL ENGINEERING

MILITARY COLLEGE OF SIGNALS, NATIONAL UNIVERSITY OF SCIENCE AND

TECHNOLOGY, ISLAMABAD

in partial fulfillment for the requirements of a B.E. Degree in Telecom Engineering

June 2016

CERTIFICATE

It is certified that the work contained in this thesis entitled “Aiding System for

Visually Impaired/Blind People” carried out by Areej Shahid, Tasmiya Sheikh and

M.Azeem Sarwar under the supervision of Lt Col. Dr. Abdul Ghafoor for the partial

fulfillment of degree of Bachelors of Telecom (Electrical) Engineering is correct and

approved.

Lt Col. Dr. Abdul Ghafoor

Project Supervisor

Dated:

i

ACKNOWLEDGEMENT

To begin with, there is no greater guide than ALLAH (SWT) Himself and we feel

blessed that He gave us enough strength to complete this project well in time. We are

thankful and would like to express our sincere gratitude to our project supervisor Lt. Col.

Dr. Abdul Ghafoor, our co-supervisor Dr. Mohsin Riaz (COMSATS) and Mr. Saleh

Usman (CAST) for their invaluable guidance, continuous encouragement and constant

support in making this project possible. We are truly obliged for their guidance from the

initial to the final level that enabled us to develop an understanding of this project.

Without their advice and assistance it would not have been possible to complete this

project.

Lastly we express our gratitude to each and every person who contributed to our final

year project directly or indirectly. We would like to acknowledge their comments and

suggestions, which were crucial for the successful completion of this project.

ABSTRACT

This device is portable, wearable, unique, low power, cost effective and user friendly. It

is specially designed for blind people to help them perform their daily chores more

efficiently and independently. It includes the concepts of digital image processing, circuit

designing, coding/programming in python language and prototyping. Its processing unit

is raspberry pi kit which works along with Arduino-Uno board, USB-camera, various

sensors and headphones/speakers. It has multi functionalities which include obstacle

detection in the path of the user using an array of ultrasonic sensors, face recognition,

determining number of people in front of the user by face detection scheme, identifying

paper currency using a camera and it also has health sensors mounted in it which includes

pulse sensor and temperature sensor to monitor user’s health conditions. All of these

functionalities are accessed with the help of dedicated options on a keypad and the

outputs of the respective functions are given to the user through an audio signal via

headphones/speakers.

ii

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

another award or qualification either at this institution or elsewhere.

iii

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent.

To our parents and faculty, without their unflinching support and unstinting cooperation,

a work of this magnitude would not have been possible.

iv

Table of Contents

CHAPTER NO.1: INTRODUCTION ..1

Overview ..1

Background and Motivation ..1

Scope and Deliverables ..2

CHAPTER NO.2: LITERATURE REVIEW ...3

Use of Background Study ..4

CHAPTER NO.3: DESIGN AND SPECIFICATIONS ..5

Project Description and Salient Features ...5

Peripherals Interfacing ...5

Interfacing Arduino with Raspberry Pi ... 7

Interfacing Keypad with Raspberry Pi .. 9

Speech output using Raspberry Pi ... 10

Interfacing Camera with Raspberry Pi ... 11

CHAPTER NO.4: OBSTACLE DETECTION ...12

Ultrasonic Sensors ...12

CHAPTER NO.5: HEALTH MONITORING SYSTEM ..14

Temperature Measurement using Temperature Sensor ...14

Heart Rate measurement using Pulse Sensor ...16

CHAPTER NO.6: FACE DETECTION AND RECOGNITION SYSTEM18

Determining number of people using face detection scheme18

Face Recognition ...20

Algorithm Description .. 20

CHAPTER NO.7: IMAGE TO SPEECH CONVERSION ..25

CHAPTER NO.8: CURRENCY RECOGNITION ..27

Extracting Templates ...27

Testing on HD Images ...29

Implementation on real-time video ..32

v

CHAPTER NO.9: RECOMMENDATIONS AND CONCLUSION35

Recommendations ..35

Conclusion ...35

APPENDIX A: APPROVED SYNOPSIS ..36

APPENDIX B: PROJECT TIMELINE ...37

APPENDIX C: COST BREAKDOWN ..38

APPENDIX D: RASPBERRY-PI CODE ..39

APPENDIX E: FINAL DELIVERABLE ..36

BIBLIOGRAPHY ..58

vi

LIST OF FIGURES

 Figure 1: Raspberry Pi Kit and Its Peripherals

 Figure 2: Block Diagram

 Figure 3: Arduino And R-Pi Kit Interfacing

 Figure 4: Interfacing Results

 Figure 5: Keypad Interfacing

 Figure 6: Camera Interfacing

 Figure 7: Arduino Circuit Diagram

 Figure 8: HC-SR04

 Figure 9: Principle Of Ultrasonic Sensor

 Figure 10: Temperature Sensor Circuit Diagram

 Figure 11: Temperature Sensor

 Figure 12: Pulse Sensor Circuit Diagram

 Figure 13: Pulse Sensor

 Figure 14: Human Pulse

 Figure 15: Haar Features

 Figure 16: Result of Face Detection Module

 Figure 17: Results of Fisherfaces Algorithm

 Figure 18: Grey Scale Conversion

 Figure 19: Results of Face Recognition Module

 Figure 20: Results of Image to Text Conversion

 Figure 21: Results of Text To Speech Conversion

vii

 Figure 22: Currency Templates

 Figure 23: Grayscale Conversion

 Figure 24: Input Image Edge Detection

 Figure 25: Template Image Edge Detection

 Figure 26: Detected Point

 Figure 27: Matched Template

 Figure 28: Results of Currency Recognition

 Figure 29: Final Deliverable

Page 1

CHAPTER NO.1

INTRODUCTION

Overview

Performing daily routine work for blind people has always been a serious issue. They are

not usually independent enough to do their work all by themselves. This issue is the main

focus of our project and we have developed a device completely dedicated to them which

makes their lives easier, is easy to use as well as portable and it is available in very

affordable price.

Background and Motivation

285 million people are estimated to be visually impaired worldwide, out of which, 39

million are blind and 246 million have low vision. In Pakistan 2 million people have no

sight while 6 million have low sight. About 90% of the worlds’ visually impaired live in

low income settings. Existing aids for visually impaired people are either outdated or

unreliable with limited functionalities. The devices however, are available in international

markets but they are too expensive for low income people of our country.

It is evident that existing devices for visually impaired people are very outdated,

unreliable with limited functionalities or are too expensive. In the presence of such

devices there are enormous chances for accidents or mishaps to occur while in case of

expensive devices, masses of our country cannot afford them. Keeping such problems in

consideration, we have designed a low cost, portable and reliable hardware along with the

efficient and easy to use software for helping visually impaired people in such a way that

they can move easily from one place to another by avoiding obstacles in their way and

determining certain health parameters, that too without needing help from other people

and also detect/recognize Pakistani currency as well as people around them. This will aid

them in performing their daily chores easily, independently and more efficiently in an

affordable manner.

Page 2

Scope and Deliverables

This device is portable, wearable, unique, low power, cost effective and user friendly. It

is specially designed for blind people to help them perform their daily chores more

efficiently and independently. It includes the concepts of digital image processing, circuit

designing, coding/programming in python language and prototyping. Its processing unit

is raspberry pi kit which works along with Arduino-Uno board, USB-camera, various

sensors and headphones/speakers. It has multi functionalities which include obstacle

detection in the path of the user using an array of ultrasonic sensors, face recognition,

determining number of people in front of the user by face detection scheme, identifying

paper currency using a camera and it also has health sensors mounted in it which includes

pulse sensor and temperature sensor to monitor user’s health conditions. All of these

functionalities are accessed with the help of dedicated options on a keypad and the

outputs of the respective functions are given to the user through an audio signal via

headphones/speakers.

So through this project we have integrated our theoretical knowledge with practicality

and gained further insight and refined our skills in all the fields mentioned above. The

major part of this project consists of concepts involving digital image processing and

sensors.

Page 3

CHAPTER NO.2

LITERATURE REVIEW

We learned our Digital image processing conceptual theory from the book Digital Image

Processing (Third Edition) by Rafael C. Gonzalez (University of Tennessee) and Richard

E. Woods (Med Data Interactive).[1]

Over the last decades, research has been conducted for new devices to design a good and

reliable system for blind people to detect obstacles and warn them at danger places. There

are some systems which have their benefits as well as deficiencies.

In 2001, a paper published by IEEE “Obstacle detection using adaptive color

segmentation and color stereo homography” described an obstacle detection methodology

which combines two complementary methods: adaptive color segmentation, and stereo-

based color homography. This algorithm is particularly suited for environments in which

the terrain is relatively flat and of roughly the same color.[2]

In 2007 Chang Gul Kim and Byung Seop Song designed a microprocessor and a PDA

called “Design of a Wearable Walking - Guide System for the Blind”. All of the

information about obstacle in front of user is checked by three ultrasound sensor pairs

and delivered to the microprocessor which analyzes the information and generates the

acoustic signal for alarm. This design does not have a very vast scope because of its very

limited functionality.[3]

“An Application of Infrared Sensors for Electronic White Stick” published in 2008

introduced an obstacle avoidance alternative by using an electronic stick that employs an

infrared sensor for detecting obstacles along the pathway. The stick detected obstacles in

range of 80 cm which is the same as the length of white stick. The stick has different

vibration modes for different range which is difficult for a blind to differentiate. It needs

time for training which makes it complex and time wasting process. The stick informs the

person clearly at dangerous stage which conveys less information and safety.[4]

Horace Josh et al. (2011) presented “A Real-time FPGA – Based Vision System for a

Bionic Eye”, an FPGA implementation of a real-time vision system that is mobile and

Page 4

consists of a CMOS camera, FPGA development board and a head-mounted display. But

FPGA based systems are expensive and therefore may be unaffordable for many visually

impaired people.[5]

In 2014, “Automatic Obstacle Detection using Image Segmentation” by Pankaj Jain and

Dr. Mohan Awasthy implemented the method by dividing it into two parts: Segmenting

the obstacle containing image, and then finding the obstacle from those obstacle

containing image.[6]

Use of Background Study

These documents are about obstacle detection and object recognition, but each document

focuses on a special aspect this project. Positives and negatives are discussed and then the

most suitable approach or algorithm is suggested. These background studies not only

highlight a lot of problems that occurred for the previous developers but they suggest

what improvements can be done in the future in terms of functional and cost efficiency.

Page 5

CHAPTER NO.3

DESIGN AND SPECIFICATIONS

Project Description and Salient Features

Our device performs various functions using camera; like currency, no of people and face

recognition; to help blind people identify them without even touching. It also detects

heart rate and temperature of the user using pulse sensor and temperature sensor and also

detects obstacle coming in a Blind person’s way with the help of an array of Ultrasonic

sensors. These sensors send signal to the R-pi kit which will then convert this signal to

the speech output via speakers/headphones.

Figure 1: Raspberry pi kit and its peripherals

Peripherals Interfacing

The coding for interfacing camera and Arduino to Raspberry Pi is done using Python

language. Image processing is also done using this language on a linux operating system

on Raspberry Pi. The sensors send data through Arduino which in turn sends data to

Page 6

Raspberry Pi. The coding for sensors and programming of Arduino is done using the

Arduino IDE.

To control the selection of different options required, we are using a keypad to control

different tasks. Pressing of one button perform a certain task while pressing another

button begins another task.

The output for the user is given using speech output. The Raspberry Pi is programmed to

generate specific commands in speech form through headphones/ speakers.

A block diagram is shown below.

Figure 2: Block diagram

Page 7

Interfacing Arduino with Raspberry Pi

Connection Diagram

Figure 3: Arduino and R-pi kit interfacing

Our project requires that we are able to give speech output to the user when required. For

this purpose we are using Raspberry Pi. In this stage, we send the data collected by the

Arduino through sensors to the RPi for further analysis.

To send the data from Arduino to Raspberry Pi, we use serial communication. Serial

communication on the Raspberry Pi can be done using either GPIO pins or the USB ports

available depending upon the requirements. Since we are trying to make a compact

product, we use the second method i.e we use the USB port to send and receive data.

The first thing required is a cable which can be connected to Arduino at one end and RPi

at the other end. We are using the normal cable provided with the Arduino for uploading

the code. Attaching this cable with the RPi also eliminates the need of external battery for

Arduino as power will be provided through the USB port to the Arduino.

Then we establish serial connection with the help of following command in python

ser = serial.Serial('/dev/ttyACM0', 9600, timeout = 3)

The above command shows that we want to establish a connection with a device

connected at “ttyACM0” port, at baud rate of 9600 and we want to check the reception of

Page 8

data every 3 seconds. But this has an issue regarding the port assignment as it can change

after boot or if we reconnect the Arduino.

This means that we would need to test connectivity and change the port assignment in

your scripts and programs to match following every restart, and this is not really a

practical and acceptable solution for something which is designed to be the heart of an

automation system.

To address this we need to create something called a symbolic link which assigns a name

to a port based on the device that is connected rather than the literal port assignments.

First, we determine the device parameters for Arduino by running the following

command

udevadm info -a -p $(udevadm info -q path -n /dev/ttyACM0)

which provides information about the device connected to ttyACM0.

Now we need to setup some rules so that when the RPi restarts the port is identified based

on the device connected to it. The following command creates the file required that will

be read each time the RPi is restarted.

sudo nano /etc/udev/rules.d/10-local.rules

We enter the required data obtained from first step and set the name of our device as

Arduino. After that we rename the port assignment as following.

ser = serial.Serial('/dev/ttyArduino', 9600, timeout = 3)

Now, we have established a fixed serial connection with Arduino and we can send and

receive data using ser.write and ser.read commands.

Page 9

figure 4: interfacing results

Interfacing Keypad with Raspberry Pi

Connection Diagram

Figure 5: keypad interfacing

The project has a number of operations which can be performed on the request of user.

The user needs to select the option so the appropriate script is executed and the required

function is performed. For this purpose, we interface a keypad with Raspberry Pi so that

the user can get the desired result by just selecting an option on the keypad.

The keypad is connected with the RPi with the help of GPIO pins on RPi. Different pins

are present which include power pins, ground pins and I/O pins. We require 7 I/O pins

Page 10

that needs to be attached with 4 row pins of keypad and 3 I/O pins that needs to be

attached with 3 column pins of keypad.

4 GPIO pins as rows are pulled-up internally and initialized as input. Other 3 GPIO pins

as columns are initialized as output low. First loop will scan for one pressed key being

read as one of the rows pulled-low. After the loop breaks, all columns are set as input,

then the row pin found in the loop is set as output-high. Second loop will scan for column

being pulled-high by that row pin. The code reads row-column combination of the

pressed key and determines which key is pressed.

Speech Output using Raspberry Pi

Speech output requires a few audio software packages to be installed on the R-Pi. We

install them in the following way.

Firstly, we update the Raspbian distribution installed on our RPi. Next, we will need the

alsa sound utilities. We install them by using the following command.

sudo apt-get install alsa-utils

and edit the file /etc/modules using the following command.

sudo nano /etc/modules

Add the following line if not already present in the file.

snd_bcm2835

Now, we need to select a package which can be used by us as a speech output program.

Espeak is a more modern speech synthesis package than other free packages available. It

sounds clearer but does wail a little. It is a good package with great customization

options.

We install Espeak by using the following command.

sudo apt-get install espeak

Page 11

With the help of package installed, we can now get a speech output from our RPi by

giving commands or by setting pre-defined scripts.

Interfacing Camera with Raspberry Pi

Figure 6: Camera interfacing

Page 12

CHAPTER NO.4

OBSTACLE DETECTION

Circuit Diagram

Figure 7: Arduino circuit diagram

Ultrasonic Sensor:

The HC-SR04 ultrasonic sensor uses sonar to determine distance to an object. It offers

excellent non-contact range detection with high accuracy and stable readings in an easy-

to-use package. It comes complete with ultrasonic transmitter and receiver module. It can

measure distance up to 400 cm. Its effectual measuring angle is about 15 degrees. It

operates on 5 volts. It is small in size with dimensions of 45mm x 20mm x 15mm.

Figure 8: HC-SR04

The basic principle of working is by using IO trigger for at least 10us high level signal,

the module automatically sends eight 40 kHz and detect whether there is a pulse signal

back. If the signal is back, through high level, time of high output IO duration is the time

from sending ultrasonic to returning.

Test distance = (high level time × velocity of sound) / 2

Page 13

You only need to supply a short 10uS pulse to the trigger input to start the ranging, and

then the module will send out an 8 cycle burst of ultrasound at 40 kHz and raise its echo.

The Echo is a distance object that is pulse width and the range in proportion .You can

calculate the range through the time interval between sending trigger signal and receiving

echo signal.

Figure 9: Principle of ultrasonic sensor

HC-SR04 has four pins which are power, ground, echo and trigger. We connect echo and

trigger with two digital I/O pins and power and ground of sensor with the power and

ground of Arduino. By attaching the 3 ultrasonic sensors, we will be using digital pins 6,

7, 8, 9, 10 and 11 of Arduino attached with the echo and trigger of ultrasonic sensors.

Then with the help of our code, we will send a 10us high pulse on trigger and determine

the duration of receiving pulse on echo which comes back after hitting an obstacle. Then

we determine the distance between the obstacle and sensor by using the following

formula:

distance = duration/58.2

This operation is done for all the three sensors one by one and if any one of the sensors

detect an obstacle then the user is informed about it.

Page 14

CHAPTER NO.5

HEALTH MONITORING SYSTEM

Temperature measurement using temperature sensor

Circuit Diagram

Figure 10: Temperature sensor circuit diagram

Temperature Sensor:

The DS18B20 digital thermometer provides 9-bit to 12-bit Celsius temperature

measurements. The DS18B20 communicates over a 1-Wire bus that by definition

requires only one data line (and ground) for communication with a central

microprocessor. It has an operating temperature range of -55°C to +125°C and is accurate

to ±0.5°C over the range of -10°C to +85°C.

Page 15

Figure 11: Temperature Sensor

Temperature measurements are made using two bandgap-generated voltage sources. One

of the voltage sources has a high-temperature coefficient and changes deterministically

across temperature. The other voltage source has a low-temperature coefficient and does

not change across temperature. An analog-to-digital converter (ADC) converts the

difference between these two voltages to a digital value, representing the temperature of

the device. The resolution of the temperature conversion can be selected from 9 to 12

bits.

These values are read by the microcontroller and useful data is extracted. Then the

conversion to temperature value is performed to get the temperature.

DS18B20 has three pins which are power, signal and ground. We connect power and

ground of sensor with the power and ground of Arduino and the signal pin of sensor to

the digital I/O pin 2 of Arduino. We also connect a 4.7k resistor between power and

signal pin of sensor. Then we calculate the temperature of user with the help of our code.

To get a temperature measurement, we need to issue a command. When the sensor

receive it, it will initiate data conversion. All that measurements are stored in the sensor’s

RAM. We can read it to get the data and we can also write to it to specify sensor

resolution. To read the data we issue a command and receive the 9 bytes of data. Then we

determine the temperature by using the following formula:

Temp = ((HighByte<< 8) + LowByte) *0.0625

This value is then converted into Fahrenheit and informed to the user.

Page 16

Heart rate measurement using pulse sensor

Circuit Diagram

Figure 12: Pulse sensor circuit diagram

Pulse Sensor:

The Pulse Sensor Amped is a plug-and-play heart-rate sensor for Arduino. It essentially

combines a simple optical heart rate sensor with amplification and noise cancellation

circuitry making it fast and easy to get reliable pulse readings. Also, it sips power with

just 4mA current draw at 5V so it’s great for mobile applications.

Figure 13: Pulse Sensor

When the Pulse Sensor is just sitting there, not in contact with any finger, the analog

signal hovers around the mid-point of the voltage i.e. V/2. When the Pulse Sensor is in

close contact with your fingertip, the change in reflected light when the blood pumps

through your tissues makes the signal fluctuate around that reference point.

Page 17

Arduino watches the analog signal from Pulse Sensor and decides a pulse is found when

the signal rises above mid-point. That is the moment when your capillary tissues gets

slammed with a surge of fresh blood. Then, when the signal drops below the mid-point,

Arduino sees this and gets ready to find the next pulse.

Figure 14: Human Pulse

Pulse sensor has three pins which are power, ground and signal. We connect power and

ground of sensor with the power and ground of Arduino and the signal pin of sensor to

the analog I/O pin 0 of Arduino. Timer2, an 8 bit hardware timer on the ATmega328

(UNO), is set up so that it throws an interrupt every other millisecond. That gives us a

sample rate of 500Hz, and beat-to-beat timing resolution of 2mS. Therefore, an interrupt

is generated every 2ms and an interrupt service routine is run where the signal value is

recorded. The signal value received is checked if it lies in the range pre-set for a pulse

value. If not, then it is discarded else it is used to find the pulse rate.We need to find

successive moments of instantaneous heartbeat. We then measure the time between these

moments, called the Inter Beat Interval (IBI). Heart Rate (HR) is the interval between

successive heartbeats (IBI).IBI is inversely related to HR by the equation

HR = 60000 / IBI

where IBI is calculated in milliseconds.

Page 18

CHAPTER NO.6

FACE DETECTION AND RECOGNITION SYSTEM

Determining Number of People Using Face Detection Scheme

In this module faces are detected using a camera mounted with the raspberry pi kit. It is

done in order to find the number of people present in front of the user. When the user

wishes to find the number of people in a specific location he presses a certain dedicated

button on the keypad which evokes this function.

Face Detection in this module is achieved using Haar feature-based cascade classifiers in

OpenCV, which is an effective object detection method proposed by Paul Viola and

Michael Jones in their paper, “Rapid Object Detection using a Boosted Cascade of

Simple Features” in 2001. It is a machine learning based approach where a cascade

function is trained from a lot of positive and negative images. It is then used to detect

objects in other images.

Initially, the algorithm needs a lot of positive images (images of faces) and negative

images (images without faces) to train the classifier. Then we need to extract features

from it. For this, haar features shown in below image are used. They are just like

convolutional kernel. Each feature is a single value obtained by subtracting sum of pixels

under white rectangle from sum of pixels under black rectangle.

Figure 15: Haar Features

The relevant features are selected out of an image using the concept of Adaboost. For

this, we apply each and every feature on all the training images. For each feature, it finds

the best threshold which will classify the faces to positive and negative. We select the

Page 19

features with minimum error rate, which means they are the features that best classifies

the face and non-face images.

In an image, most of the image region is non-face region. So we check if a window is not

a face region. If it is not, it is discarded it in a single shot and it is not processed again.

We then focus on region where there can be a face. This way, we find more time to check

a possible face region.

For this the concept of Cascade of Classifiers is used. Instead of applying all features on a

window, we group the features into different stages of classifiers and apply one-by-one.

If a window fails the first stage, it is discarded. We don’t consider remaining features on

it. If it passes, we apply the second stage of features and continue the process. The

window which passes all stages is a face region. This algorithm has 6000+ features with

38 stages with 1, 10, 25, 25 and 50 features in first five stages. (Two features in the above

image is actually obtained as the best two features from Adaboost). On an average, 10

features out of 6000+ are evaluated per sub-window. The results of testing of this module

are shown in the following figure.

Figure 16: Results of face detection module

Page 20

When the user evokes this function, the above mentioned scheme is processed and

number of people is determined in the form of text which is then converted to speech and

an output of this audio signal is sent to the user via headphones.

Face Recognition

Faces can be recognized in a similar manner. First of all the faces are detected using the

same scheme mentioned above and then the data bases of known people are made in the

raspberry pi kit along with the training images of faces and their names. Whenever this

function is required a specified dedicated key is pressed on the keypad and this function

working in real time gives an audio signal to the user via headphones.

The face recognition is achieved in our project using the concepts of fisherfaces

algorithm. The Principal Component Analysis (PCA), which is the core of the Eigenfaces

method, finds a linear combination of features that maximizes the total variance in data.

While this is clearly a powerful way to represent data, it doesn’t consider any classes and

so a lot of discriminative information may be lost when throwing components away.

Imagine a situation where the variance in your data is generated by an external source, let

it be the light. The components identified by a PCA do not necessarily contain any

discriminative information at all, so the projected samples are smeared together and a

classification becomes impossible.

The Linear Discriminant Analysis performs a class-specific dimensionality reduction and

was invented by the great statistician Sir R. A. Fisher. He successfully used it for

classifying flowers in his 1936 paper “The use of multiple measurements in taxonomic

problems”. In order to find the combination of features that separates best between

classes the Linear Discriminant Analysis maximizes the ratio of between-classes to

within-classes scatter, instead of maximizing the overall scatter. The idea is simple: same

classes should cluster tightly together, while different classes are as far away as possible

from each other in the lower-dimensional representation.

Algorithm Description:

Let be a random vector with samples drawn from classes:

The scatter matrices and S_{W} are calculated as:

Page 21

where is the total mean:

And is the mean of class :

Fisher’s classic algorithm now looks for a projection , that maximizes the class

separability criterion:

Following is a solution for this optimization problem is given by solving the General

Eigenvalue Problem:

There’s one problem left to solve: The rank of is at most , with samples

and classes. In pattern recognition problems the number of samples is almost always

samller than the dimension of the input data (the number of pixels), so the scatter

matrix becomes singular. This was solved by performing a Principal Component

Analysis on the data and projecting the samples into the -dimensional space. A

Linear Discriminant Analysis was then performed on the reduced data, because isn’t

singular anymore.

The optimization problem can then be rewritten as:

Page 22

The transformation matrix , that projects a sample into the -dimensional space

is then given by:

Following are the results of an experiment performed in order to show the results of this

algorithm. Each Fisherface has the same length as an original image, thus it can be

displayed as an image.

Figure 17: results of Fisherfaces algorithm

The Fisherfaces method learns a class-specific transformation matrix, so the they do not

capture illumination as obviously as the Eigenfaces method. The Discriminant Analysis

instead finds the facial features to discriminate between the persons. It’s important to

mention, that the performance of the Fisherfaces heavily depends on the input data as

well. Practically said: if you learn the Fisherfaces for well-illuminated pictures only and

you try to recognize faces in bad-illuminated scenes, then method is likely to find the

wrong components (just because those features may not be predominant on bad

Page 23

illuminated images). This is somewhat logical, since the method had no chance to learn

the illumination.

OpenCV comes with a trainer as well as detector. It already contains many pre-trained

classifiers for face, eyes, smile etc. Those XML files are stored in opencv’s haar-cascades

folder. We used face and eyes XML files for this module. First we load the required

XML classifiers. Then load our input image taken by the camera. Once it is loaded, we

convert it into grey scale for reduced manipulation complexity.

Colored image  Grey scaled image

Figure 18: grey scale conversion

Once the XML file is loaded and the image is converted into grey scale we find the faces

in the image. For that purpose we run a loop in which all the pixels of the image are

analyzed and matched one by one with the face xml file. If faces are found, the

coordinates or the location of those pixels are returned. Once we get these locations, we

create a region of interest for the face and apply eye detection on this area. Same scheme

is implemented in this phase and if the eyes are matched in the location of detected faces,

rectangle is created using a build in function present in python.

The faces extracted in the above process are then compared with the images stored in the

data base of the kit. This process in done in real time and once the images match with the

Page 24

frames taken by the camera, the result are displayed in the form of names and a speech

signal is sent to the headphone in order to inform the user about recognized person.

Following image is the result of the scheme applied on the above picture.

Figure 19: Results of face recognition module

Page 25

CHAPTER NO.7

IMAGE TO SPEECH CONVERSION

This module is further divided into two parts.

In first part the image is taken using the camera and it is converted into text. This

function loads the image, selects the digits/letters/symbols by contour finding and

applying constraints on area and height of letters to avoid false detections and draws the

bounding rectangle around one letters. Once this is done, it resizes this box to 10x10 and

saves 100 pixel values in an array. Then this array is saved in separate txt files. The

results of this part are shown below.

Figure 20: Results of image to text conversion

In second part this text is converted into speech using eSpeak command that is present in

OpenCV and Python. Its libraries are open source and can directly be downloaded and

installed in your system. eSpeak uses a “formant synthesis” method. This allows many

languages to be provided in a small size. The speech is clear, and can be used at high

speeds, but is not as natural or smooth as larger synthesizers which are based on human

speech recordings. Google has integrated eSpeak, an open source software speech

Page 26

synthesizer for English and other languages, in its online translation service Google

Translate. The move allow users of Google Translate to hear translations spoken out loud

(text-to-speech) by clicking the speaker icon beside some translations.

The results of this part are shown below where the text that was converted from image is

then converted to speech using the above scheme and it is then audible to the user with

the help of headphones/speakers.

Figure 21: Results of text to speech conversion

Page 27

CHAPTER NO.8

CURRENCY RECOGNITION

Currency is identified via image processing in OpenCV/Python using template matching

[7]. Template matching is a technique in digital image processing for finding small parts of

an image which match a template image. The two primary components needed for this

technique are

 Source image: The image in which we expect to find a match to the template

image acquired from the USB camera attached with Raspberry-Pi

 Template image: The patch image which will be compared to the template image

within source image

A basic method of template matching uses a filter mask called template, tailored to a

specific feature of the search/source image, which we want to detect. It is normally

implemented by picking out a part of the source image. This technique can be easily

performed on grey images or edge images.

Let source image be denoted by S(x, y), where (x, y) represent the coordinates of each

pixel in it and template be denoted by T(x t, y t), where (xt, yt) represent the coordinates

of each pixel in the template.

The correlation of this template with input image is then calculated. For this

purpose,center (or the origin) of the template is moved over each point in the source

image and sum of products between the coefficients in S(x, y) and T(xt, yt) is

calculated over the whole area spanned by the template. As all possible positions of the

template with respect to the source image are considered, the output will be highest at

places where the image structure matches the mask structure.

Extracting Templates

The template kernels/masks are manually extracted from the HD currency images

available. For every currency note, four templates are extracted i.e. one from front side,

https://en.wikipedia.org/wiki/Digital_image_processing
https://en.wikipedia.org/wiki/Edge_detection

Page 28

one from the back side and other two being the inverted versions of these for making

identification possible from any side and inversion too.

Front side

upright

Front side

inverted

Back side

upright

Back side

inverted

10 Rupees

20 Rupees

50 Rupees

100 Rupees

500 Rupees

1000 Rupees

5000 Rupees

Figure 22: currency templates

Page 29

Testing on HD Images

As an initial testing of algorithm static, high definition (HD) and perfectly aligned

input/source images were used and template matching was applied on grey images. For

this purpose, both source and template images were subjected to following three

processes:

Preprocessing

The sample image of the object and the input image taken from the R-Pi camera are

preprocessed by conversion to grayscale which reduces the complexity of manipulating

3D (RGB images) and then de-noising. The results of this preprocessing are shown:

Figure 23: grayscale conversion

Edge Detection

It is an image processing technique for finding the boundaries of objects within images. It

works by detecting discontinuities in brightness. Edge detection is used for image

segmentation and data extraction. Subjecting our static image to this technique enhances

the efficiency of code as using edges rather than the raw image gives a substantial boost

in accuracy for template matching. For this purpose, images are first converted to black

and white by defining a threshold value which makes edge detection easier and more

efficient. The results of testing are shown below:

Page 30

Figure 24: Input image edge detection

Figure 25: Template Image Edge Detection

Template matching

To identify the matching area, the template image is compared against the source image

by sliding it over it and detecting the highest matching area. The patch is moved one

pixel at a time (left to right, up to down). At each location, a metric is calculated so it

represents quality of the match at that location (or how similar the patch is to that

particular area of the source image). For each location the metric is stored in the result

matrix (R). Each location in R contains the match metric

OpenCV has a function cv2.matchTemplate() [8] for this purpose. It simply slides the

template image over the input image (as in 2D convolution) and compares the template

and patch of input image under the template image. There are six methods of finding

correlation using this particular function listed as:

 cv2.TM_CCOEFF

 cv2.TM_CCOEFF_NORMED

 cv2.TM_CCORR

Page 31

 cv2.TM_CCORR_NORMED

 cv2.TM_SQDIFF

 cv2.TM_SQDIFF_NORMED

cv2.TM_CCOEFF_NORMED is used in this particular algorithm because of its accuracy

and efficiency. This method calculates correlation result value R(x,y) of template image

T and source/input image I as:

The code slides T over I to apply cv2.matchTemplate() function while keeping track of

the match with the largest correlation coefficient (along with the x, y-coordinates of that

region). The coordinates of template and the matched region (given by resultant image

and cv2.minMaxLoc) are used to draw a rectangle indicating matched result.

Result: Matched Region’s Coordinates:

min_val, max_val, min_loc, max_loc= 0.862194478512 0.999967873096 (146, 79)

(317, 42)

Figure 26: Detected point

Page 32

A more generalized form of above is attained by setting a minimum threshold value that

decides matching and a more robust rectangle plotting accordingly. To save the original

image, a copy is made with a separate name and that is saved as a result image.

The results of template matching using 0.8 as minimum value of correlation result are

shown below:

Figure 27: Matched Template

Implementation on Real-Time Video

Implementation of above algorithm in real time requires processing on multiple frames

per second taken from the video input. Although input image quality is not ideal and the

Page 33

orientation of currency note may not be perfectly aligned with the USB camera, but since

a while loop continuously reads frames, therefore just a slight movement results in the

correct orientation with detection of the matched region. Hence edge detection and its

prerequisite i.e. de-noising are not required in real time processing.

Following important modifications were done to identify any Pakistani currency note in

real time processing:

 Video capturing from USB camera instead of reading saved image

 Input of all currency templates (four per currency note) i.e. front side, inverted

front side, back side, inverted back side

 Reading frames from the video

 A continuous loop to read frames and compare it with each template stored to find

the best match

 Highlight matched region by plotting a rectangle and labeling

 Print output for every reading to check error

 Speech output to the user indicating amount of the currency

Page 34

Results

Figure 28: Results of currency recognition

Page 35

CHAPTER NO.9

RECOMMENDATIONS AND CONCLUSION

Recommendations

In future work following features can be accommodated:

 Instead of a wearable jacket, device can be made as so it can be simply attached

with the clothes.

 Further features and functionalities can be added in order to make it more

efficient e.g. stairs, doors, windows and car detection.

 Instead of Raspberry pi 2 kit, the latest version i.e. Raspberry pi 3 can be used for

faster processing.

 GSM system can be mounted in order to send message about the location of user

to his relatives.

 Parallel implementation of functions can be done rather than serial

implementation.

 Voice recognition can be added as another feature.

Conclusion

We have been able to make this device portable, wearable, unique, low power, cost

effective and easy to use. It is able to help blind people perform their daily chores more

efficiently and independently. We have successfully implemented the concepts of digital

image processing, circuit designing, coding/programming in python language and

prototyping. It is a multi-functional system which successfully performs the function of

obstacle detection in the path of the user using an array of ultrasonic sensors, face

recognition, determines number of people in front of the user by face detection scheme,

identifies paper currency using a camera and it also monitors user’s health conditions

using pulse and temperature sensors. The outputs of the respective functions are given to

the user through an audio signal via headphones/speakers.

So through this project we have integrated our theoretical knowledge with practicality

and gained further insight and refined our skills in all the fields mentioned above. The

major part of this project consists of concepts involving digital image processing and

sensors.

APPENDICES

Page 36

APPENDIX A

Aiding System for Visually Impaired People

Extended Title: A machine vision system that helps visually impaired people in daily

life activities including navigation, object identification and obstacle handling.

Brief Description of The Project / Thesis with Salient Specifications: This project is

designed to ease blind people in navigation, avoiding obstacles and identifying

different objects. The project will include concepts of digital signal and image

processing, programming and prototyping using Raspberry-pi kit.

Scope of Work: This project has a very vast scope in the medical field. It will help

blind people to perform their daily activities in a better and easier way. The project will

be completed within very limited cost to make it easily accessible for all segments of

the society.

Academic Objectives: Digital signal and image processing, programming, circuit

designing and prototyping using Raspberry-pi kit.

Application / End Goal Objectives : The end of this project is to develop a low cost,

portable and reliable hardware along with efficient and easy to use software for helping

visually impaired people in navigation, object detection and obstacle handling.

Previous Work Done on The Subject: There are few products available in internal

markets to help blind people. However, they are costly and are generally application

specific.

Material Resources Required: Raspberry-pi kit, Headphones/Speaker, Camera,

sensors etc

No of Students Required: 3

Group Members: NC Areej Shahid, NC Tasmiya Sheikh, NC M. Azeem Sarwar

Special Skills Required: Nil

Page 37

APPENDIX B

Week No Work done during the week

Week 1-2

Literature Review

Week 3-4 Project layout/design

Week 5 Raspberry Pi installation, basic understanding of operations and config.

Week 6-7 Installation of opencv, Basic examples of coding like blinking an LED, Learning
python(through tutorials)

Week 8 Camera integration and its basic working, Testing of ultrasonic sensors and
Integration with Arduino

Week 9 Image acquisition, Testing of ultrasonic sensors and coding

Week 10-11 Image enhancement and filtering, Testing of ultrasonic sensors and coding

Week 12-13 Segmentation of image, Integration of Arduino with R-Pi

Week 14-15 Edge Detection & Template Matching for currency recognition, Face Detection,
Testing of health sensors (B.P, pulse etc)

Week 16-18 Currency Recognition, Face Detection testing, Testing Health Sensors

Week 19 Currency Rec. code enhace, Coding for Book reading, Final Integration of
Health Sensors

Week 20-21 Real Time Currency Recognition, Coding for Book reading

Week 22-23 Final Testing: Currency Recognition, Face Detection, Book Reading

Week 24-25 Final Testing: Obstacle Detection, Health Sensors

Week 26-27 Code for audio output (gadget response) for all Applications

Week 28-29 Integration of all Apps- using Keypad

Week 30-32 Code optimization (speed issues)

Week 33-34 Hardware Integration- Final Wearable Device

Week 35-36 Testing and Documentation

Page 38

APPENDIX C

Name of Equipment Cost-estimate

Raspberry Pi 6500 PKR

Microsd Card 1350 PKR

Arduino 1250 PKR

Pulse Sensor 1350 PKR

Temperature Sensor 550 PKR

Ultrasonic Sensor x3 350 x3 PKR

Keypad 150 PKR

Camera 1000 PKR

Headphones 750 PKR

Power Bank 3000 PKR

Jacket 300 PKR

 Total 17200 PKR

Page 39

APPENDIX D

#Raspberry-Pi Code

import RPi.GPIO as GPIO

import time

import serial

import subprocess

import sys, os

from facerec.feature import Fisherfaces

from facerec.classifier import NearestNeighbor

from facerec.model import PredictableModel

from PIL import Image

import numpy as np

import cv2

from matplotlib import pyplot as plt

import multiprocessing

import sys

import pyttsx

from pytesser import *

ser = serial.Serial('/dev/Arduino', 9600, timeout = 3)

time.sleep(2)

GPIO.setmode (GPIO.BOARD)

MATRIX = [[1,2,3], [4,5,6], [7,8,9], ['*',0,'#']]

ROW = [31,33,35,37]

COL = [36,38,40]

for j in range(3):

 GPIO.setup(COL[j], GPIO.OUT)

 GPIO.output(COL[j], 1)

Page 40

for i in range (4):

 GPIO.setup(ROW[i], GPIO.IN, pull_up_down = GPIO.PUD_UP)

a = 0

s1 = 'aiding_system_for_visually_impaired_people'

s2 = 'select_option'

a1 = 'obstacle_at_less_than_1_feet'

a2 = 'obstacle_at_less_than_5_feet'

a3 = 'no_obstacle'

b1 = 'bpm'

c = 'fahrenheit'

v1 = 'hold_the_sensor_for_10_seconds'

v2 = 'press_the_sensor_for_5_seconds'

v3 = 'taking_picture'

t1 = 'test'

cur10='10_Ruppees'

cur20='20_Ruppees'

cur50='50_Ruppees'

cur100='100_Ruppees'

cur500='500_Ruppees'

cur0=0

#subprocess.call('espeak -ven+f3 -k5 -s130 '+s1, shell=True)

#time.sleep(2)

#subprocess.call('espeak -ven+f3 -k5 -s130 '+s2, shell=True)

#a=6

try:

 while(True):

 for j in range (3):

Page 41

 GPIO.output(COL[j],0)

 for i in range(4):

 if GPIO.input (ROW[i]) == 0:

 #print MATRIX[i][j]

 a = MATRIX[i][j]

 print a

 if a == '*':

 ser.write(b'1')

 print a

 time.sleep(1)

 y = ser.readline()[:-2]

 if y == '1' :

 print("obstacle at less than 1 ft")

 subprocess.call('espeak -ven+f3 -k5 -s130 '+a1, shell=True)

 elif y == '2' :

 print("obstacle at less than 5 ft")

 subprocess.call('espeak -ven+f3 -k5 -s130 '+a2, shell=True)

 elif y == '3' :

 print("no obstacle")

 subprocess.call('espeak -ven+f3 -k5 -s130 '+a3, shell=True)

 ser.write(b'0')

 elif a == 2:

 ser.write(b'2')

 print a

 subprocess.call('espeak -ven+f3 -k5 -s130 '+v2, shell=True)

 time.sleep(2)

 hb = ser.readline()

Page 42

 print(hb)

 ser.write(b'2')

 time.sleep(1)

 hb = ser.readline()

 print(hb)

 ser.write(b'2')

 time.sleep(1)

 hb = ser.readline()

 print(hb)

 ser.write(b'2')

 time.sleep(1)

 hb = ser.readline()

 print(hb)

 y=len(hb)

 if y < 10:

 if y > 2:

 subprocess.call('espeak -ven+f3 -k5 -s130 '+hb, shell=True)

 ser.write(b'0')

 elif a == 3:

 ser.write(b'3')

 print a

 subprocess.call('espeak -ven+f3 -k5 -s130 '+v1, shell=True)

 time.sleep(6)

 tmp = ser.readline()

 print(tmp)

 y=len(tmp)

 ser.write(b'3')

Page 43

 time.sleep(1)

 tmp = ser.readline()

 print(tmp)

 y=len(tmp)

 ser.write(b'3')

 time.sleep(1)

 tmp = ser.readline()

 print(tmp)

 y=len(tmp)

 ser.write(b'3')

 time.sleep(1)

 tmp = ser.readline()

 print(tmp)

 y=len(tmp)

 ser.write(b'3')

 time.sleep(1)

 tmp = ser.readline()

 print(tmp)

 y=len(tmp)

 if y > 10:

 subprocess.call('espeak -ven+f3 -k5 -s130 '+tmp, shell=True)

 ser.write(b'0')

 elif a == 4:

 vc = cv2.VideoCapture(0)

 threshold = 0.68

temp10a = cv2.imread('./images/temp10a.jpg',0)

w0, h0 = temp10a.shape

Page 44

temp10b = cv2.imread('./images/temp10b.jpg',0)

w1, h1 = temp10b.shape

temp10c = cv2.imread('./images/temp10c.jpg',0)

w2, h2 = temp10c.shape

temp10d = cv2.imread('./images/temp10d.jpg',0)

w3, h3 = temp10d.shape

temp20a = cv2.imread('./images/temp20a.jpg',0)

w4, h4 = temp20a.shape

temp20b = cv2.imread('./images/temp20b.jpg',0)

w5, h5 = temp20b.shape

temp20c = cv2.imread('./images/temp20c.jpg',0)

w6, h6 = temp20c.shape

temp20d = cv2.imread('./images/temp20d.jpg',0)

w7, h7 = temp20d.shape-

temp50a = cv2.imread('./images/temp50a.jpg',0)

w8, h8 = temp50a.shape

temp50b = cv2.imread('./images/temp50b.jpg',0)

w9, h9 = temp50b.shape

temp50c = cv2.imread('./images/temp50c.jpg',0)

w10, h10 = temp50c.shape

temp50d = cv2.imread('./images/temp50d.jpg',0)

w11, h11 = temp50d.shape

temp100a = cv2.imread('./images/temp100a.jpg',0)

w12, h12 = temp100a.shape

temp100b = cv2.imread('./images/temp100b.jpg',0)

w13, h13 = temp100b.shape

temp100c = cv2.imread('./images/temp100c.jpg',0)

Page 45

w14, h14 = temp100c.shape

temp100d = cv2.imread('./images/temp100d.jpg',0)

w15, h15 = temp100d.shape

temp500a = cv2.imread('./images/temp500a.jpg',0)

w16, h16 = temp500a.shape

temp500b = cv2.imread('./images/temp500b.jpg',0)

w17, h17 = temp500b.shape

temp500c = cv2.imread('./images/temp500c.jpg',0)

w18, h18 = temp500c.shape

temp500d = cv2.imread('./images/temp500d.jpg',0)

w19, h19 = temp500d.shape

while 1:

 frame = vc

 frame = cv2.resize(frame, (320,240))

 img_gray = cv2.cvtColour(frame, cv2.COLOR_BGR2GRAY)

 res = cv2.matchTemplate(img_gray,temp10a,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "10/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur10, shell=True)

 cur0=10

 cv2.rectangle(frame, pt, (pt[0] + w0, pt[1] + h0), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 10', (pt[0],

pt[1]),cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp10b,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "10/-"

Page 46

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur10, shell=True)

 cur0=10

 cv2.rectangle(frame, pt, (pt[0] + w1, pt[1] + h1), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 10', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp10c,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "10/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur10, shell=True)

 cur0=10

 cv2.rectangle(frame, pt, (pt[0] + w2, pt[1] + h2), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 10', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp10d,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "10/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur10, shell=True)

 cur0=10

 cv2.rectangle(frame, pt, (pt[0] + w3, pt[1] + h3), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 10', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp20a,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "20/-"

 cv2.rectangle(frame, pt, (pt[0] + w4, pt[1] + h4), (0,0,255), 1)

Page 47

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur20, shell=True)

 cur0=20

 cv2.putText(frame,'Rs/- 20', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp20b,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "20/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur20, shell=True)

 cur0=20

 cv2.rectangle(frame, pt, (pt[0] + w5, pt[1] + h5), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 20', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp20c,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur20, shell=True)

 cur0=20

 print "20/-"

 cv2.rectangle(frame, pt, (pt[0] + w6, pt[1] + h6), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 20', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp20d,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "20/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur20, shell=True)

 cur0=20

Page 48

 cv2.rectangle(frame, pt, (pt[0] + w7, pt[1] + h7), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 20', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp50a,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "50/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur50, shell=True)

 cur0=50

 cv2.rectangle(frame, pt, (pt[0] + w8, pt[1] + h8), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 50', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp50b,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "50/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur50, shell=True)

 cur0=50

 cv2.rectangle(frame, pt, (pt[0] + w9, pt[1] + h9), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 50', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp50c,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "50/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur50, shell=True)

 cur0=50

 cv2.rectangle(frame, pt, (pt[0] + w10, pt[1] + h10), (0,0,255), 1)

Page 49

 cv2.putText(frame,'Rs/- 50', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp50d,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "50/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur50, shell=True)

 cur0=50

 cv2.rectangle(frame, pt, (pt[0] + w11, pt[1] + h11), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 50', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp100a,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "100/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur100, shell=True)

 cur0=100

 cv2.rectangle(frame, pt, (pt[0] + w12, pt[1] + h12), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 100', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res =

cv2.matchTemplate(img_gray,temp100b,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "100/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur100, shell=True)

 cur0=100

 cv2.rectangle(frame, pt, (pt[0] + w13, pt[1] + h13), (0,0,255), 1)

Page 50

 cv2.putText(frame,'Rs/- 100', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res =

cv2.matchTemplate(img_gray,temp100c,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "100/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur100, shell=True)

 cur0=100

 cv2.rectangle(frame, pt, (pt[0] + w14, pt[1] + h14), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 100', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp100d,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "100/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur100, shell=True)

 cur0=100

 cv2.rectangle(frame, pt, (pt[0] + w15, pt[1] + h15), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 100', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res = cv2.matchTemplate(img_gray,temp500a,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "500/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur500, shell=True)

 cur0=500

 cv2.rectangle(frame, pt, (pt[0] + w16, pt[1] + h16), (0,0,255), 1)

Page 51

 cv2.putText(frame,'Rs/- 500', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res =

cv2.matchTemplate(img_gray,temp500b,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "500/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur500, shell=True)

 cur0=500

 cv2.rectangle(frame, pt, (pt[0] + w17, pt[1] + h17), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 500', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res =

cv2.matchTemplate(img_gray,temp500c,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "500/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur500, shell=True)

 cur0=500

 cv2.rectangle(frame, pt, (pt[0] + w18, pt[1] + h18), (0,0,255), 1)

 cv2.putText(frame,'Rs/- 500', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 res =

cv2.matchTemplate(img_gray,temp500d,cv2.TM_CCOEFF_NORMED)

 loc = np.where(res >= threshold)

 for pt in loc[::-1]

 print "500/-"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+cur500, shell=True)

 cur0=500

 cv2.rectangle(frame, pt, (pt[0] + w19, pt[1] + h19), (0,0,255), 1)

Page 52

 cv2.putText(frame,'Rs/- 500', (pt[0], pt[1]),

cv2.FONT_HERSHEY_SIMPLEX,0.6,2,1)

 cv2.imshow('Result', frame)

 cv2.waitKey(1)

print "end code"

cv2.destroyAllWindows()

 elif a == 5:

 vc = cv2.VideoCapture(0)

 ret , frame = vc.read()

 frame=cv2.resize(frame,(320,240))

 cv2.imwrite("picture.tif", frame)

 #cv2.imshow('image',frame)

 im = Image.open('picture.tif')

 text = image_to_string(im)

 print text

 # main() function

 def main():

 # use sys.argv if needed

 print 'running speech-test.py...'

 engine = pyttsx.init()

 engine.setProperty('rate', 120)

 voices = engine.getProperty('voices')

 engine.setProperty('voice', voices[9].id)

 str = text

 if len(sys.argv) > 1:

 str = sys.argv[1]

 engine.say(str)

 engine.runAndWait()

Page 53

 # call main

 if __name__ == '__main__':

 main()

 elif a == 6:

 subprocess.call('espeak -ven+f3 -k5 -s130 '+v3, shell=True)

 face_cascade =

cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

 eye_cascade = cv2.CascadeClassifier('haarcascade_eye.xml')

 vc = cv2.VideoCapture(0)

 _, frame = vc.read()

 img = cv2.resize(frame, (320,240))

 #img = cv2.imread('/home/pi/Desktop/xfiles4.jpg')

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 faces = face_cascade.detectMultiScale(gray, 1.3, 5) #(gray, 1.3, 5)

 print "Found_"+str(len(faces))+"_face(s)"

 x1 = "found_"

 x2 = "faces"

 subprocess.call('espeak -ven+f3 -k5 -s130 '+x1+str(len(faces))+x2,

shell=True)

 elif a == 0:

 pathdir='prove/'

 model = PredictableModel(Fisherfaces(), NearestNeighbor())

 vc=cv2.VideoCapture(0)

 face_cascade = cv2.CascadeClassifier('face.xml')

 a="0"

 def read_images(path, sz=(256,256)):

 c = 0

 X,y = [], []

Page 54

 folder_names = []

 for dirname, dirnames, filenames in os.walk(path):

 for subdirname in dirnames:

 folder_names.append(subdirname)

 subject_path = os.path.join(dirname, subdirname)

 for filename in os.listdir(subject_path):

 try:

 im = cv2.imread(os.path.join(subject_path, filename),

cv2.imread_grayscale)

 if (sz is not None):

 im = cv2.resize(im, sz)

 X.append(np.asarray(im, dtype=np.uint8))

 y.append(c)

 except IOError, (errno, strerror):

 print "I/O error({0}): {1}".format(errno, strerror)

 except:

 print "Unexpected error:", sys.exc_info()[0]

 raise

 c = c+1

 return [X,y,folder_names]

 [X,y,subject_names] = read_images(pathdir)

 list_of_labels = list(xrange(max(y)+1))

 subject_dictionary = dict(zip(list_of_labels, subject_names))

 model.compute(X,y)

 timeout_start = time.time()

 timeout=4

 while (time.time() < timeout_start + timeout):

 rval, frame = vc.read()

Page 55

 img = cv2.resize(frame, (320,240))

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 faces = face_cascade.detectMultiScale(gray, 1.2, 3)

 for (x,y,w,h) in faces:

 cv2.rectangle(img,(x,y),(x+w,y+h),(255,0,0),1)

 sampleImage = gray[y:y+h, x:x+w]

 sampleImage = cv2.resize(sampleImage, (256,256))

 [predicted_label, generic_classifier_output] =

model.predict(sampleImage)

 if int(generic_classifier_output['distances']) <= 620:

 a= str(subject_dictionary[predicted_label])

 print(a)

 print int(generic_classifier_output['distances']), " ", predicted_label

 if cv2.waitKey(10) == 27:

 break

 if len(a) > 2:

 subprocess.call('espeak -ven+f3 -k5 -s80

'+str(dictionary[predicted_label]), shell=True)

 else :

 print "a"

 cv2.destroyAllWindows()

 vc.release()

 #elif a == 8:

 #elif a == 9

 elif a == 7:

 subprocess.call('espeak -ven+f3 -k5 -s130 '+t1, shell=True)

 time.sleep(2)

 cur0=0

Page 56

 y = ser.readline()[:-2]

 hb = ser.readline()

 tmp = ser.readline()

 cv2.destroyAllWindows()

 while (GPIO.input(ROW[i]) == 0):

 pass

 GPIO.output(COL[j],1)

except KeyboardInterrupt:

GPIO.cleanup()

Page 57

APPENDIX E

Figure 29: Final Deliverable

BIBLIOGRAPHY

Page 58

BIBLIOGRAPHY

[1] Visual impairment and blindness. (n.d.). Retrieved October 18, 2015, from

http://www.who.int/mediacentre/factsheets/fs282/en/

[2]Batavia, P., & Singh, S. (2001). Obstacle detection using adaptive color segmentation

and color stereo homography. Proceedings 2001 ICRA. IEEE International Conference

on Robotics and Automation (Cat. No.01CH37164), 1, 705-710.

http://dx.doi.org/10.1109/ROBOT.2001.932633

[3] Kim, C., & Song, B. (2007). Design of a wearable walking-guide system for the blind.

Proceedings of the 1st International Convention on Rehabilitation Engineering &

Assistive Technology in Conjunction with 1st Tan Tock Seng Hospital

Neurorehabilitation Meeting - I-CREATe '07, 118-122. doi:10.1145/1328491.1328523

[4]Innet, S.; Ritnoom, N., "An application of infrared sensors for electronic white stick,"

in Intelligent Signal Processing and Communications Systems, 2008. ISPACS 2008.

International Symposium on , vol., no., pp.1-4, 8-11 Feb. 2008

doi: 10.1109/ISPACS.2009.4806716

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4806716&isnumber=48

06653

[5] Josh, H., Yong, B., &Kleeman, L. (2011). A Real-Time and Portable Bionic Eye

Simulator. Biomedical Engineering Systems and Technologies Communications in

Computer and Information Science, 51-67. Retrieved October 18, 2015, from

http://www.araa.asn.au/acra/acra2011/papers/pap166.pdf

[6] Jain, P., &Awasthy, M. (2014). Automatic Obstacle Detection using Image

Segmentation. International Journal of Emerging Technology and Advanced Engineering,

4(3). Retrieved October 18, 2015, from www.ijetae.com

http://dx.doi.org/10.1109/ROBOT.2001.932633
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4806716&isnumber=4806653
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4806716&isnumber=4806653
http://www.araa.asn.au/acra/acra2011/papers/pap166.pdf

Page 59

[7] Template Matching. (n.d.). Retrieved June 19, 2016, from

http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template

_matching.html

[8] OpenCV: Template Matching. (n.d.). Retrieved June 19, 2016, from

http://docs.opencv.org/master/d4/dc6/tutorial_py_template_matching.html#gsc.tab=0

http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
http://docs.opencv.org/2.4/doc/tutorials/imgproc/histograms/template_matching/template_matching.html
http://docs.opencv.org/master/d4/dc6/tutorial_py_template_matching.html%23gsc.tab=0

	CERTIFICATE
	 Figure 18: Grey Scale Conversion
	 Figure 19: Results of Face Recognition Module
	 Figure 20: Results of Image to Text Conversion
	OpenCV comes with a trainer as well as detector. It already contains many pre-trained classifiers for face, eyes, smile etc. Those XML files are stored in opencv’s haar-cascades folder. We used face and eyes XML files for this module. First we load th...
	Colored image (Grey scaled image
	Figure 18: grey scale conversion
	Once the XML file is loaded and the image is converted into grey scale we find the faces in the image. For that purpose we run a loop in which all the pixels of the image are analyzed and matched one by one with the face xml file. If faces are found, ...
	The faces extracted in the above process are then compared with the images stored in the data base of the kit. This process in done in real time and once the images match with the
	frames taken by the camera, the result are displayed in the form of names and a speech signal is sent to the headphone in order to inform the user about recognized person.
	Following image is the result of the scheme applied on the above picture.

