

DEVELOPMENT OF HIGH SPEED

HARDWARE ACCELERATED LAYER 7

ROUTER

By

Haider Khalid

M. Haseeb Javed

Abdul Moeed Rao

Rawal Khan Baloch

Submitted to the Faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology,

Islamabad in partial fulfillment for the requirements of B.E Degree in

Electrical Engineering JUNE 2016

Abstract

DEVELOPMENT OF HIGH SPEED HARDWARE ACCELERATED

LAYER 7 ROUTER

Our project is based on layer 7(application) routing technique. Improvement for

Quality of Service (QoS) is of great necessity for the World Wide Web due

to its increasing demand day by day . Through our router we have been able

to generate congestion free and improved network availability for the end users

along with onboard data processing for calculation of various valuable data

statistics which if implemented onto the CPU would cause deterioration in the

efficient memory usage . Present routing techniques depend upon IP checking

and OSPF routing protocol which are unintelligent . Through the Layer 7 router

we have been able to forward data packets based on their routing protocols for

intelligent bandwidth allocation and also data processing to meet the data

statistic needs of the day . The layer 7 router is made on ARDUINO board

which allows Software Defined Networking (SDN) on it .

CERTIFICATE FOR CORRECTNESS AND APPROVAL

It is certified that the work contained in the thesis for DEVELOPMENT OF HIGH

SPEED HARDWARE ACCELERATED LAYER 7 ROUTER Haider Khalid, M.

Haseeb Javed, Abdul Moeed Rao and Rawal Khan under the supervision of Lec

Abdul Moiz Ahmed Pirkani for partial fulfillment of Degree of Bachelor of Electrical

Engineering is correct and approved.

Approved by

Lec Abdul Moiz Ahmed Pirkani

Electrical Engineering Dept.

MCS

DECLARATION

No portion of the work presented in this dissertation has been submitted in support of

another award or qualification either at this institution or elsewhere.

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent.

To our parents, without whose unflinching support and unstinting cooperation, a work

of this magnitude would not have been possible.

ACKNOWLEDGEMENTS

We bow in gratitude to Allah Almighty for giving us strength and knowledge

to accomplish this task as nothing happens without his will.

The group is indebted by the immense help and moral support given to us by

our parents as it would not have been possible without their prayers.

The team also likes to thank our project supervisor, Lec Abdul Moiz Ahmed

Pirkani, without his support and encouragement; it would not have been

possible to complete this project.

i

Table of Contents

Chapter 1: Introduction ..1

1.1 Background .. 1

1.1.1 Computer Network .. 1

1.1.2 Router .. 1

1.1.3 OSI Layer .. 2

1.2 Devices that make networking possible .. 2

1.2.1 Hub ... 2

1.2.2 Gateway ... 3

1.2.3 Router .. 3

1.2.4 Switch ... 3

1.2.5 Bridge ... 4

1.2.6 Repeater... 4

1.2.7 Multiplexer ... 5

1.2.8 Modem (Modulator/Demodulator) ... 5

1.3 Future of Networking .. 5

1.4 Problem Statement ... 7

1.5 Proposed Solution ... 8

Chapter 2: Background Study ...9

2.1 Application Aware Routing .. 9

2.1.1 Why Application Aware Routing .. 10

2.2 Scope of Work ... 11

2.3 Software Defined Networks (SDN) .. 11

2.4 ARDUINO ... 12

2.4.1 Onboard Arduino Components .. 12

2.4.2 ARDUINO Mega .. 13

2.4.3 ARDUINO Mega PIN’s... 13

2.4.4 Ethernet Shield .. 15

2.4.5 SD Card Shield .. 17

ii

2.5 Uniform Resource Locator... 17

Chapter 3: Design ... 20

3.1 Working Points .. 20

3.2 Working ... 20

3.2.1 Device setup ... 20

3.3 Hardware Processes .. 22

3.3.1 Flow Chart .. 22

3.4 Software Processes.. 24

3.4.1 Flow Chart .. 24

3.5 Academic Objectives ... 25

3.6 Special Skills Required ... 26

3.7 Work Done... 26

3.7.1 Hardware ... 26

3.7.2 Hardware PCB Design .. 27

3.7.3 Hardware Configuration .. 27

3.7.4 Software ... 30

3.7.5 Software Programs .. 30

3.7.6 Results .. 32

3.8 Visual Indications ... 34

3.8.1 Hardware LCD Display .. 34

3.8.2 Application Indications .. 36

3.9 Deliverables ... 37

3.9.1 Reflective Comments ... 37

Chapter 4: Applications .. 39

4.1 Applications ... 39

4.1.1 Server Load Balancing .. 39

4.1.2 Content Based Routing .. 39

4.1.3 URL Blocking... 39

4.1.4 Multi-layer Switching ... 39

4.1.5 High Availability Networks ... 39

4.1.6 Network Monitoring Device .. 39

4.2 Conclusion ... 40

iii

Chapter 5: Resources Required ... 41

Chapter 6: References .. 42

Chapter 7: Bibliography .. 43

Appendix A .. 44

iv

List of Figures
Figure 1: Computer Network Diagram ... 1

Figure 2: Generic Router Symbol ... 1

Figure 3: OSI Layer Model .. 2

Figure 4: Growth of Network Bandwidth Compared to the Growth of the Processing Power 6

Figure 5: World Wide Data Growth over the Years ... 7

Figure 6: Hour Glass Shape figure of layered protocol stack ... 9

Figure 7: Bandwidth Depiction .. 11

Figure 8: ARDUINO Mega ... 15

Figure 9: ARDUINO Pin Configuration .. 15

Figure 10: Ethernet Shield ... 16

Figure 11 : Stacked Ethernet Shield on ARDUINO Board ... 16

Figure 12: SD Card Shield Module ... 17

Figure 13: URL Breakdown ... 19

Figure 14: Device Set-up and Working Block Diagram .. 20

Figure 15: Hardware Process Flow-chart ... 22

Figure 16: Software Process Flow-chart .. 24

Figure 17: PCB Schematic Diagram .. 27

Figure 18: ARDUINO Mega Pin Configuration .. 27

Figure 19: LCD Pin Configuration ... 28

Figure 20: ARDUINO Pro-Mini Pin Configuration ... 28

Figure 21: Ethernet Shield Pin Configuration .. 29

Figure 22: Card Module Pin Configuration .. 29

Figure 23: Sending Module .. 31

Figure 24: Receiving Module ... 31

Figure 25: Data Statistics Requested by the Server ... 32

Figure 26: Statistics Requested by the Server and their Plotting .. 33

Figure 27: Data Statistics at the Receiving End .. 33

Figure 28: Final Hardware .. 37

v

List of Tables
Table 1 : ARDUINO Mega Specifications .. 13

Table 2 : SD Card Shield Specifications .. 17

Table 3 : Hardware LCD Display Notations .. 36

Table 4 : Software Application Notations .. 36

1

Chapter 1: Introduction

1.1 Background

1.1.1 Computer Network

A computer network is a model which allows computers to exchange data among

themselves. In computer networks, networked computing devices pass data to each other

along network links through which data is transferred in the form of packets. The

connections between nodes are established using either cable media or wireless media.

The best form of extensive computer network is the Internet.

Figure 1: Computer Network Diagram

1.1.2 Router

A router is a networking device that forwards data packets between computer networks.

A router is connected to two or more data lines from different networks. When a data

packet comes in on one of the lines, the router reads the address information in the packet

to determine its ultimate destination. Then, using information in its routing table or

routing policy, it directs the packet to the next network on its journey.

Figure 2: Generic Router Symbol

http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Data_link
http://en.wikipedia.org/wiki/Transmission_line
http://en.wikipedia.org/wiki/Wireless_network
http://en.wikipedia.org/wiki/Data_packet
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Routing_table
http://en.wikipedia.org/wiki/Routing_policy

2

1.1.3 OSI Layer

The OSI, or Open System Interconnection, model defines a networking framework to

implement protocols in seven layers. Control is passed from one layer to the next, starting

at the application layer in one station, and proceeding to the bottom layer, over the

channel to the next station and back up the hierarchy.

Figure 3: OSI Layer Model

1.2 Devices that make networking possible

1.2.1 Hub

 OSI Layer 1 Device

 Provides a physical connection from one node to multiple nodes

 Broadcasts the received signal to all outgoing ports

 Active Hubs act as repeaters i.e. they strengthen signals passing through them

 Passive Hubs simply direct signals to multiple nodes without regeneration

 Originally this device was called a concentrator since it consolidated the cable

runs from all network devices

http://www.webopedia.com/TERM/O/OSI.htm

3

1.2.2 Gateway

 OSI Layers 4 - 7 Device

 Used to interface one network node with another network node that uses different

protocols

 In order to communicate with a host on another network, an IP host must be

configured with a route to the destination network. If a configuration route is not

found, the host uses the gateway (default IP router) to transmit the traffic to the

destination host. The default gateway is where the IP host sends packets that are

destined for remote networks. If no default gateway is specified, communication

is limited to the local network. Gateways receive data from a network using one

type of protocol stack and then remove that protocol stack and repackage it with

the protocol stack that the other network uses

1.2.3 Router

 OSI Layer 3 Device

 Determines the next hop/network node towards which a network packet has to be

directed to in order to reach its final destination

 Works on the basis of IP and MAC Addresses, Longest Prefix Matching, Address

Resolution Protocol, OSPF (Open Shortest Path First) Protocol, etc. to figure out

the shorted path to be taken for speedy packet delivery

 Maintains routing tables which contain a list of IP Addresses and MAC Addresses

of the devices in nearby vicinity of the router

 In static routers, routing tables are to be maintained manually by the users

 In dynamic routers, routing tables are maintained at runtime by the router as it

listens to network traffic (ARP Packets)

1.2.4 Switch

 OSI Layer 2 Device

 A device which maintains a table of MAC Addresses of network nodes connected

to its outgoing ports

4

 It directs network packets to their destined network nodes only (deduced by MAC

Address present in Data Link Layer Header) unlike hubs which direct packets to

all outgoing ports (broadcasting)

1.2.5 Bridge

 OSI Layer 2 Device

 Used for connecting (creating a link/bridge) multiple network segments together

 It allows computers on either segment to access resources on the other. They can

also be used to divide large networks into smaller segments. Bridges have all the

features of repeaters, but can have more nodes, and since the network is divided,

there is fewer computers competing for resources on each segment thus

improving network performance.

 Bridges can also connect networks that run at different speeds, different

topologies, or different protocols. But they cannot join networks on different

networking standards. Bridges operate at both the Physical Layer and the MAC

sub-layer of the Data Link layer. Bridges read the MAC header of each frame to

determine on which side of the bridge the destination device is located, the bridge

then repeats the transmission to the segment where the device is located.

1.2.6 Repeater

 OSI Layer 1 Device

 Regenerates/amplifies a digital signal while transferring it from one node to

another

 Multilayer switch:

 Like OSI Layer 2 switch which uses MAC Addresses to direct packets to their

destinations, multilayer switches work on different layers of the OSI model and

use the features present in those layers to direct packets to their destinations

 Firewall:

 Hardware/Software form

 Used to prevent certain types of communication forbidden by network policy

5

1.2.7 Multiplexer

 A device which combines several electrical signals into a single signal

 Network interface controller (NIC):

 A device responsible for providing a connection between wire-based networks

 Wireless network interface controller:

 A device responsible for providing a connection between radio-based networks

(WiFi)

1.2.8 Modem (Modulator/Demodulator)

 OSI Layer 1 Device

 A device responsible for modulating a carrier analog signal to encode digital

information in transmission mode; While receiving, it demodulates the received

analog carrier wave to decode/extract the digital signal from it

 Used in networks where the network nodes are communicating over telephone

cables

 Wireless Access Point (WAP)

 A wireless network adapter card with a transceiver sometimes called an access

point, broadcasts and receives signals to and from the surrounding computers and

passes them back and forth between the wireless computers and the cabled

network.

 Access points act as wireless hubs to link multiple wireless NICs into a single

subnet. Access points also have at least one fixed Ethernet port to allow the

wireless network to be bridged to a traditional wired Ethernet network (often, this

is a link to the World Wide Web/Internet)

1.3 Future of Networking

 The future is never easy to predict

 Ever since the advent of the World Wide Web, finding better, more efficient,

reliable, faster and more secure means of data transfer has been the major goal

6

 The amount of data worldwide has grown exponentially especially in the past few

years mostly due to media sharing on social networking web sites and due to the

fact that almost all conventional manual systems of data keeping have evolved to

large digital data centers

 We get to hear new terminologies that were never heard of before: Big Data,

Business Intelligence…

 Computer Networks should be ready to assure the speedy transfer of such huge

amounts of data the world over

 We have evolved from 14.4kbps internet connection speeds to internet connection

speeds in the range of hundreds of megabits

 We are looking forward to attaining speeds in the range of gigabits now

 We are also seeing a shift from hardware based network management to the

software era of network management

 We need intelligent (intelligent in a sense that they optimize bandwidth at runtime

while minimizing redundancy) networking devices that operate at extremely high

speeds, but are yet cost effective

Figure 4: Growth of Network Bandwidth Compared to the Growth of the Processing Power

7

Figure 5: World Wide Data Growth over the Years

1.4 Problem Statement

Improved Quality of Service (QoS) experience for World Wide Web (WWW) can be

provided to the end users by utilizing rich set of features and services of upper layers of

the OSI architecture. In the current scenario, WWW is solely based on IP Address (IPv4)

and Open Shortest Path First (OSPF) routing protocol and no onboard data processing

features are available on the router. This tenders it unintelligent because path bandwidth

is not considered during routing also data processing unavailability ability renders it to

abstain functionality from many desired needs required of today of data statistics.

8

1.5 Proposed Solution

QoS deterioration due to routing protocol failure for low bandwidth or high traffic paths

is proposed to be improved by directing (routing) packets based on their application layer

protocol and thereby improving the user experience.

 Layer 7 (application layer) router is proposed which would specify the application

paths based on their usage and provide congestion control and improved network

availability.

 A layer 7 router is sufficiently intelligent to analyze network layer packets and

filter out packets containing the desired URL.

 After extraction of the desired URL, packet's path is allocated based on the

required bandwidth.

 Browser statistics and application forwarding would also be achieved through

calculation and proper assessment of the data from the data storage module.

9

Chapter 2: Background Study

2.1 Application Aware Routing

The network routers that we normally hear about and utilize (often, to act as a wireless

access point) in our daily lives are OSI Layer 3 Routers i.e. they work at the third layer of

the OSI model by routing packets based on the information attained from layer 3 and

layer 2 headers. They route packets by using the destination IP Addresses and MAC

Addresses and by using OSPF (Open Shortest Path First) Protocol, etc. to route packets to

their destinations using the shortest available paths. These routers look up the next hop by

running searches in the routing tables that they maintain. They perform longest prefix

matching and address resolution protocol requests to figure out the next hops and to

update their routing tables.

Figure 6: Hour Glass Shape figure of layered protocol stack

It has recently been in wide speculation that the protocol stack has acquired an hour-glass

shaped figure i.e. more distinguishing features are saturated at the top and bottom layers

whereas very few features distinguishing features are present at the middle layers.

10

Talking about the third layer at which conventional routers work, the IP address is the

only distinguishing feature which makes routing possible from one hop to another. As we

move to seventh layer, we get several features which can help in distinguishing packets

and requests and subsequently the possibility of using a new approach towards routing.

The application layer header provides us with the protocol and the URL of the packet.

We believe that by extracting these features from packets, we can route received packets

to servers that are specified to handle those application requests e.g. routing video

streaming requests to a specific server which aims to provide high bandwidth, while

simple HTML and CSS requests are routed to a server that provides low bandwidth. In

networks, even Nano-seconds spent at each hop matter when network packets have long

routes to travel. We aim to use bandwidth efficiently, achieve higher server cache hit

rates and improve user QoS experience.

2.1.1 Why Application Aware Routing

Today’s networks are forced to be application-aware, to improve user experience,

provide service differentiation, and reduce operational costs. Application awareness is the

result of gained intelligence about Layer 4 to Layer 7 protocol attributes and delivery

requirements. The following are some use cases where the network has to be application-

aware:

 A user watching videos requires more network bandwidth compared to a user

browsing the Internet. The network has to dynamically adjust the bandwidth

allocation to users based on the application, instead of statically allocating

capacity.

 Gaming applications require lower network latency compared to applications

transferring log files over the network. The network has to adapt to the

application’s latency needs.

 A router forwarding request to a content server (cache or streaming server)

doesn’t know whether the content resides in the content server. This increases the

number of hops a request has to traverse before reaching the content server that

can serve the request.

11

2.2 Scope of Work

The proposed project aims at making the router sufficiently intelligent to analyze network

layer packets and filter out packets containing the desired URL (based on their

application layer protocol). After extraction of the desired URL, packet's path is allocated

based on the required bandwidth. Packets for low bandwidth requirement applications

will be routed to low bandwidth providing servers while those for bandwidth hungry

applications will be routed to high bandwidth providing servers. Figure below

conceptualizes the model:

Figure 7: Bandwidth Depiction

2.3 Software Defined Networks (SDN)

Software Defined Networking is a new approach towards designing, implementing and

managing networks. SDN basically is an abstraction between the control and forwarding

planes of network devices. The control plane makes decision about where to send packets

while the forwarding plane puts these packets on the physical media. SDN makes it easier

to manage and optimize each of the control and forwarding planes. SDN acts as a

controller which encompasses the entire network. SDN allows networking devices to be

highly programmable and flexible to suit the needs of the environment in which the bare-

12

metal networking device is placed. Unlike purpose built ASIC Networking Equipment,

SDN offers flexibility and modification in the controlling algorithms. The SDN controller

can be a network operating system (NOS). SDN is often referred to as the software-era of

networks.

2.4 ARDUINO

Arduino is an open-source computer hardware and software board. The board is based on

a family of microcontroller board designs. These systems provide sets of digital and

analog I/O pins that can be interfaced to various expansion boards ("shields") and other

circuits. The boards feature serial communications interfaces, including USB on some

models, for loading programs from personal computers. For programming the

microcontrollers, the Arduino platform provides an integrated development

environment (IDE) based on the Processing project, which includes support

for C, C++ and Java programming languages.

2.4.1 Onboard Arduino Components

An Arduino board consists of an Atmel 8-, 16- or 32-bit AVR microcontroller with

complementary components that facilitate programming and incorporation into other

circuits. An important aspect of the Arduino is its standard connectors, which lets users

connect the CPU board to a variety of interchangeable add-on modules known as shields.

In our case we would be using the Ethernet shield. Some shields communicate with the

Arduino board directly over various pins, but many shields are individually addressable

via an I²C serial bus—so many shields can be stacked and used in parallel.

At a conceptual level, when using the Arduino software stack, all boards are programmed

over an RS-232 serial connection, but the way this is implemented varies by hardware

version. Serial Arduino boards contain a level shifter circuit to convert between RS-232-

level and TTL-level signals. Current Arduino boards are programmed via USB,

implemented using USB-to-serial adapter chips such as the FTDIFT232. Some boards,

such as later-model Uno’s, substitute the FTDI chip with a separate AVR chip containing

USB-to-serial firmware (itself reprogrammable via its own ICSP header).

https://en.wikipedia.org/wiki/Open-source
https://en.wikipedia.org/wiki/I/O
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Processing_(programming_language)
https://en.wikipedia.org/wiki/C_programming_language
https://en.wikipedia.org/wiki/C%2B%2B_programming_language
https://en.wikipedia.org/wiki/Java_programming_language
https://en.wikipedia.org/wiki/Atmel
https://en.wikipedia.org/wiki/Microcontroller
https://en.wikipedia.org/wiki/I%C2%B2C
https://en.wikipedia.org/wiki/Serial_bus
https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/Transistor%E2%80%93transistor_logic
https://en.wikipedia.org/wiki/Universal_Serial_Bus
https://en.wikipedia.org/wiki/FTDI

13

2.4.2 ARDUINO Mega

The Arduino Mega is a microcontroller board based on the ATmega1280 (datasheet). It

has 54 digital input/output pins (of which 14 can be used as PWM outputs), 16 analog

inputs, 4 UARTs (hardware serial ports), a 16 MHz crystal oscillator, a USB connection,

a power jack, an ICSP header, and a reset button. It contains everything needed to support

the microcontroller; simply connect it to a computer with a USB cable or power it with a

AC-to-DC adapter or battery to get started.

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limits) 6-20V

Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 128 KB of which 4 KB used by bootloader

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Table 1 : ARDUINO Mega Specifications

2.4.3 ARDUINO Mega PIN’s

Each of the 54 digital pins on the Mega can be used as an input or output,

using pinMode(), digitalWrite(), anddigitalRead() functions. They operate at 5 volts.

Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor

http://www.atmel.com/dyn/resources/prod_documents/doc2549.pdf
https://www.arduino.cc/en/Reference/PinMode
https://www.arduino.cc/en/Reference/DigitalWrite
https://www.arduino.cc/en/Reference/DigitalRead

14

(disconnected by default) of 20-50 kOhms. In addition, some pins have specialized

functions:

 Serial: 0 (RX) and 1 (TX); Serial 1: 19 (RX) and 18 (TX); Serial 2: 17 (RX) and

16 (TX); Serial 3: 15 (RX) and 14 (TX). Used to receive (RX) and transmit (TX)

TTL serial data. Pins 0 and 1 are also connected to the corresponding pins of the

FTDI USB-to-TTL Serial chip.

 External Interrupts: 2 (interrupt 0), 3 (interrupt 1), 18 (interrupt 5), 19 (interrupt

4), 20 (interrupt 3), and 21 (interrupt 2). These pins can be configured to trigger

an interrupt on a low value, a rising or falling edge, or a change in value. See

the attachInterrupt() function for details.

 PWM: 2 to 13 and 44 to 46. Provide 8-bit PWM output with

the analogWrite() function.

 SPI: 50 (MISO), 51 (MOSI), 52 (SCK), 53 (SS). These pins support SPI

communication, which, although provided by the underlying hardware, is not

currently included in the Arduino language. The SPI pins are also broken out on

the ICSP header, which is physically compatible with the Duemilanove and

Diecimila.

 LED: 13. There is a built-in LED connected to digital pin 13. When the pin is

HIGH value, the LED is on, when the pin is LOW, it's off.

 I2C: 20 (SDA) and 21 (SCL). Support I2C (TWI) communication using the Wire

library (documentation on the Wiring website). Note that these pins are not in the

same location as the I2C pins on the Duemilanove or Diecimila.

The Mega has 16 analog inputs, each of which provide 10 bits of resolution (i.e. 1024

different values). By default they measure from ground to 5 volts, though is it possible to

change the upper end of their range using the AREF pin and analogReference() function.

https://www.arduino.cc/en/Reference/AttachInterrupt
https://www.arduino.cc/en/Reference/AnalogWrite
http://wiring.org.co/reference/libraries/Wire/index.html
http://wiring.org.co/reference/libraries/Wire/index.html

15

Figure 8: ARDUINO Mega

Figure 9: ARDUINO Pin Configuration

2.4.4 Ethernet Shield

The Arduino Ethernet Shield connects the Arduino to the internet in mere minutes.

Requirements:

 Operating voltage 5V (supplied from the Arduino Board)

 Ethernet Controller: W5100 with internal 16K buffer

 Connection speed: 10/100Mb

 Connection with Arduino on SPI port

The Arduino Ethernet Shield allows an Arduino board to connect to the internet. It is

based on the Wiznet W5100ethernet chip. The Wiznet W5100 provides a network (IP)

http://www.wiznet.co.kr/Sub_Modules/en/product/Product_Detail.asp?cate1=5&cate2=7&cate3=26&pid=1011

16

stack capable of both TCP and UDP. It supports up to four simultaneous socket

connections. Use the Ethernet library to write sketches which connect to the internet

using the shield. The Ethernet shield connects to an Arduino board using long wire-wrap

headers which extend through the shield. This keeps the pin layout intact and allows

another shield to be stacked on top.

The current shield has a Power over Ethernet (PoE) module designed to extract power

from a conventional twisted pair Category 5 Ethernet cable.

Figure 10: Ethernet Shield

Figure 11 : Stacked Ethernet Shield on ARDUINO Board

https://www.arduino.cc/en/Reference/Ethernet

17

2.4.5 SD Card Shield

SD card shield provides a storage space for the Arduino. Users can read/write SD card via

Arduino’s built-in SD library. It supports SD, SDHC and Micro SD cards. It will only occupy the

SPI port of your Arduino. It combines the standard SD slot and the Micro SD slot into a

standard one, the included adaptor enables using of Micro SD cards. You can stack on other

shields that work with the unused pins. Additionally, the preformed I2C and UART port

facilitates your connection with Grove modules.

Table 2 : SD Card Shield Specifications

Figure 12: SD Card Shield Module

2.5 Uniform Resource Locator

A Uniform Resource Locator (URL), commonly informally termed a web address (which

term is not defined identically) is a reference to a web resource that specifies its location

on a computer network and a mechanism for retrieving it. A URL is a specific type

of Uniform Resource Identifier (URI). A URL implies the means to access an indicated

resource, which is not true of every URI. URLs occur most commonly to reference web

https://en.wikipedia.org/wiki/Web_resource
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Uniform_Resource_Identifier

18

pages (http), but are also used for file transfer (ftp), email (mailto), database access

(JDBC), and many other applications.

It comprises:

 The scheme, consisting of a sequence of characters beginning with a letter and

followed by any combination of letters, digits, plus (+), period (.), or hyphen (-).

Although schemes are case-insensitive, the canonical form is lowercase and

documents that specify schemes must do so with lowercase letters. It is followed

by a colon (:). Examples of popular schemes include http, ftp, mailto, file,

and data. URI schemes should be registered with the Internet Assigned Numbers

Authority (IANA), although non-registered schemes are used in practice.

 Two slashes (//): This is required by some schemes and not required by some

others. When the authority component (explained below) is absent, the path

component cannot begin with two slashes.

 An authority part, comprising:

 An optional authentication section of a user name and password, separated by a

colon, followed by an at symbol (@)

 A "host", consisting of either a registered name (including but not limited to

a hostname), or an IP address. IPv4 addresses must be in dot-decimal notation,

and IPv6addresses must be enclosed in brackets ([]).

 An optional port number, separated from the hostname by a colon

 A path, which contains data, usually organized in hierarchical form that appears

as a sequence of segments separated by slashes. Such a sequence may resemble or

map exactly to a file system path, but does not always imply a relation to one. The

path must begin with a single slash (/) if an authority part was present, and may

also if one was not, but must not begin with a double slash.

https://en.wikipedia.org/wiki/Http
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Mailto
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/File_Transfer_Protocol
https://en.wikipedia.org/wiki/Mailto
https://en.wikipedia.org/wiki/File_URI_scheme
https://en.wikipedia.org/wiki/Data_URI_scheme
https://en.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority
https://en.wikipedia.org/wiki/Internet_Assigned_Numbers_Authority
https://en.wikipedia.org/wiki/Authentication
https://en.wikipedia.org/wiki/User_name
https://en.wikipedia.org/wiki/Password
https://en.wikipedia.org/wiki/Hostname
https://en.wikipedia.org/wiki/IP_address
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/Dot-decimal_notation
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Port_(computer_networking)
https://en.wikipedia.org/wiki/Path_(computing)

19

Figure 13: URL Breakdown

20

Chapter 3: Design

3.1 Working Points

The proposed project works on the following fronts:

 Prototyping of high-speed, hardware-accelerated networking systems by

reviewing literature provided by various open source platforms for hardware and

software development.

 Development and Integration of Hardware Accelerated Networking Systems

(ARDUINO) with suitable server system

 Development of URL extractor and testing with necessary software

Integration of ARDUINO, URL Extractor on the board for the development of Layer 7

Application based router

The project developed works as follows.

3.2 Working

3.2.1 Device setup

Figure 14: Device Set-up and Working Block Diagram

21

The developed device being a standalone device can work on any of the desired computer

and provide the routing options efficiently. At present the device has the capability to be

attached to a single server computer and 3 peripheral host computers where the device

would send the packets differentiated on the basis of the protocol. All the computers are

connected to the device using LAN cables which are connected through the Ethernet

shields.

The connection process is as follows:

 The device is connected to the computers using the LAN cables.

 The device is connected to the power source.

 The server application is opened on the server computer to monitor the data in

real time.

 The host application is opened on the host computer which is also a tool to

monitor the real time data transfer.

 Wireshark software is opened on all of the computers for result verification.

 The IP’s and other required fields are set on the computers.

 Applications on all of the computers are connected.

 Real time result verification is done.

22

3.3 Hardware Processes

The process followed by the data packets sent from the source computer is as follow:

3.3.1 Flow Chart

Figure 15: Hardware Process Flow-chart

 URL entered onto the address bar of the search engine would send data packets

through the Ethernet cable to the designed device.

 The Ethernet shield stacked onto the Arduino board would be integrating the

functionalities of the Ethernet onto the board.

 The data received from the Ethernet cable sent by the source computer would be

received by the Ethernet shield and sent to the Arduino board for further

processing.

 After the processing and the sorting out of the data, it is labeled to which port it

would be sent to.

23

 The main ARDUINO is connected to three mini ARDUINO which are further

connected to the Ethernet shields.

 The mini ARDUINO is added to the hardware as one mega ARDUINO cannot be

directly to more than one same kind of the shield.

 The labeled data is forwarded to the mini ARDUINO from where to the

respective shields and off to the destination.

 The labeled data is also sent to the SD card module for data storage.

 Received data would be tested on the Wireshark software to check the results.

The URL or the search term which entered in the address bar of the browser are formed

in the form of a data packet and are sent to the Ethernet port through the Network

interface card of the computer. The Ethernet port receives the data packets which are

transmitted to the developed router device using the co-axial cable attached to the

receiving side Ethernet module. The module receives the data packets and forwards them

to the mega ARDUINO board for further processing. The board receives the data packets

and implements the routing methodology on them. The data packets of the google,

YouTube and Facebook are separated; labeled and sent to the specific ports for further

data transmission. The labeled packets are also sent to the SD card module for data

storage and this data can be called upon if requested by the server computer. The data

calling capability is allowed to the server/administrator computer for security purposes.

The Ethernet shields of the host computers are joined to the Mega ARDUINO board

through three specific mini ARDUINO boards as a single board cannot be attached to

more than two shields at one time. The Ethernet shields receive their specific data and

transmit them to the destined computer through the coaxial cables attached.

24

3.4 Software Processes

Software processing done by the Arduino kit is as follows;

3.4.1 Flow Chart

Figure 16: Software Process Flow-chart

 Received data packets from the source server/computer are received by the

Ethernet shield.

 The Ethernet shield forwards the received data packets to the Arduino kit stacked

on with the Ethernet shield.

 The data received is stored by the receiving module and processed by the input

FIFO (First in First out). The input FIFO waits for the whole of the data packet to

be received with the help of the receiving module. It does not forward the packet

until the receiving is completed.

25

 The received data packet is forwarded to the data length inspection module which

inspects the length of the data packet received to determine that it is a valid data

packet and not an unverified data.

 The verified data will be sent to the inspection module.

 The data as processed by all of the OSI layers will be removed with the headers

until the application layer data is achieved. The application layer data would be

extracted with the help of the port numbers and the protocol would be determined

by the help of the protocol numbers.

 The data extracted would also be stored in the data storage module for further

calculation of data statistics i.e. throughput, browsing patterns etc.

 The output ports would be allotted on the basis of the port numbers detected.

 The processed data would be sent to the respective Ethernet shield through the

mini ARDUINO’s and off to the destination computer where further verification

can be done through the Wireshark software.

 The data stored in the data storage module (SD card shield) can be called for to be

displayed at any time when the router is attached to the computer.

Data received by the Mega ARDUINO board is received by the buffer module of the

board which works on the FIFO methodology i.e. first in first out basis. The data packet

which is received at first will be processed first and that received later would be done

later. The received packets would be first inspected for length. If the length of the packet

does not match the required fields it would be rejected. The accepted data packets would

be sent to the next module where the data packets would be opened step by step through

the OSI layers headers to reach the application layer data. The protocol of the packet

would be checked out through the help of the port numbers as each of the protocol has its

own protocol. The detected data packets are labeled and forwarded to their destined ports

for further transmission. The data is also sent to the card module for storage.

3.5 Academic Objectives

During the course of this project we have developed sound knowledge and technical

skills in the fields of:

 Data Networking and Embedded Systems

 Network Monitoring

26

 Network Security

 Software Defined Networks (SDN) and ARDUINO

The developed skills are both hardware and software in nature.

3.6 Special Skills Required

 ARDUINO

 Wireshark Expertise

 ARDUINO Programming

3.7 Work Done

3.7.1 Hardware

Hardware implementation of the project has been completed, which includes proper

router assembly on PCB board. The PCB board was designed on the PROTEUS and

AREAS software. The PCB board was etched and the ARDUINO boards and other

components were soldered onto the board.

The Components used in the hardware include:

 ARDUINO Mega

 ARDUINO mini

 Ethernet shield

 SD card shield

 LCD display

 Timing IC

 Cooling Equipment (Fan’s)

27

3.7.2 Hardware PCB Design

Figure 17: PCB Schematic Diagram

3.7.3 Hardware Configuration

Figure 18: ARDUINO Mega Pin Configuration

Figure 18 shows the pin configuration of how the ARDUINO mega board is assembled

onto the PCB board. The digital pins 1,2 and 14-21 have used for connecting the different

mini ARDUINO pins. The pins 4-7 have been used to connect the mega board with the

28

LCD. The MOSI and MISO pins have been used to attatch the ethernet sheild modules

with the borad which are used for serial communication.

Figure 19: LCD Pin Configuration

Figure 19 shows the Pins which have been connected with the ARDUINO mega board on

the PCB design. The LCD is 2x16 array LCD which takes a 3V input and 5 digital pins

input.

Figure 20: ARDUINO Pro-Mini Pin Configuration

29

Figure 20 shows the pin configuration of the ARDUINO mini pro of how it is attatched to

the mega ARDUINO board on the PCB board. It takes MOSI an MISO inputs for serial

port communiv=cation as it acts as an interface between the Mega ARDUINO board and

the ethernet sheild module.

Figure 21: Ethernet Shield Pin Configuration

Figure 21 shows the pin configuration of the ethernet sheild module of how it is attatched

to the mega ARDUINO and the mini ARDUINO board on the PCB board. The etherent

sheild is used to connect the developed board with the specified computers.

Figure 22: Card Module Pin Configuration

Figure 22 shows the pin configuration of the SD card module sheild of how it is attatched

to the mega ARDUINO board on the PCB board. It takes a 3.3V input and other MOSI

and MISO pins for serial communication.the ground is also provided.

30

3.7.4 Software

The software requirements of the project were completed through the

 Visual Studio

 Arduino 1.6.4

 Wireshark

Visual studio was used for the development of the applications which were to run onto

the computers connected to the Router. Two applications have been developed. One is for

the Server computer and one is developed for the Receiving/Host computer. The

application on the Server would be responsible for extracting the URL’s of the network

application used and send to the ARDUINO board assembly for further processing.

The application on the receiving end would be responsible for collecting the data packets

and information sent from the ARDUINO board through the Ethernet shields. The data

received by the receiving application on the receiving server has already been sorted out

on the basis of the protocols. The data is received and shown in a presentable manner

using GUI. The data shown by the receiving application is

 URL

 IP

 Date and Time

 Subnet Mask

 Gateway IP

Arduino 1.6.4 programming software was used for the programming of the ARDUINO

kits and shields. The programs were made using online help as the Arduino uses open

source software.

3.7.5 Software Programs

Programs attached in Annex B of the document

The developed applications work efficiently on all of the computers attached. Some of

the results are shown as follow:

31

Figure 23: Sending Module

Figure 24: Receiving Module

These are the interfaces of the developed applications. The sending module or named

“URL Extractor” would be working on the server computer. The receiving module would

be working on the host computers attached to the hardware.

32

3.7.6 Results

The working can be seen by the following images

Figure 25: Data Statistics Requested by the Server

Figure 25 shows the data statistics shown at the server application. Once a call for the

searched data is done. The ARDUINO extracts the data from the SD card Module and

sends it to the server application where it is displayed. The file can be loaded using the

LOAD FILE button.

33

Figure 26: Statistics Requested by the Server and their Plotting

Figure 26 shows the data statistics shown at the server application. The server application

has the capability to show the statistics of the data in the form of a plot/graph. The data is

recalled and sent and shown by the server application.The plot is across (request,total

searches). Each sites visiting statistics are shown and the overall queries are also shown.

Figure 27: Data Statistics at the Receiving End

34

Figure 27 shows the data statistics shown at the host application. The server application

has the capability to show the statistics of the data once it starts to receive the frames in

real time. The data transmitted is shown by the host application alongwith its various

other fields.

3.8 Visual Indications

3.8.1 Hardware LCD Display

Ser. Indication Implication Display

1 Initializing Basic boot setup of the

ARDUINO board is

running where the

board boots up the

programmed software

and readies itself.

“DONE” in shown

when the initializing

process is done

2 Connecting There has been a

connection request

from the server

computer to connect

itself with the

prototype hardware.

3 Connecting

Connected..!!

“Connected” is shown

when the handshake

between the server and

the hardware is done

4 Welcome The hardware is in the

idle state. Meaning

whereby no onboard

processing is being

done by the

ARDUINO board. It

can be afterwards

 The hardware

has no further

data to send

 The hardware

35

is awaiting for

some request

 The requested

data has been

sent

5 Google Request A google request has

been generated from

the server computer

which has arrived at

the hardware and

requires further

processing.

6 YouTube Request A YouTube request

has been generated

from the server

computer which has

arrived at the

hardware and requires

further processing.

7 Facebook Request A Facebook request

has been generated

from the server

computer which has

arrived at the

hardware and requires

further processing.

8 Sending File to

Server

Data request has been

generated by the

server. The server

wants to display the

overall data that has

been transmitted by

the hardware. The data

is compiled and sent

back to the server.

36

9 Plotting Data Request to statistically

plot the overall data

which has passed

through the hardware.

The data is compiled

and sent to the server

for further processing.

Table 3 : Hardware LCD Display Notations

3.8.2 Application Indications

Ser. Indication Implication End Displayed
1 Connected

Transmitting

URLs

The server is

connected with the

ARDUINO board and

the process of sending

the generated

requests(URL) is

taking place

Server

2 Upto Date The data sending is

done and no further

requests are being

generated.

Server

3 Upto Date The data receiving is

done and no further

data is to be shown

until new data arrives

Host

Table 4 : Software Application Notations

37

3.9 Deliverables

The layer 7 router has been implemented onto a collection of ARDUINO boards and

various other necessary items. It is a totally separate unit and can standalone alone act as

one. The voltage input of the device being 12V and a maximum of 1 x server and 3 x host

computers can be attached.

Figure 28: Final Hardware

3.9.1 Reflective Comments

 The completed project is able to work to its full capacity as a separate routing

device as well as a network Monitoring device and can standalone act as it.

 The device is working at a minimum load level to the computer, requiring very

less amount of data space

 The device is able to extract the URL packets from the server host to which it is

connected and sort them out on the basis of the routing methodology adopted.

38

 The extracted URL’s are sent to the ARDUINO kit in the form of an array where

they are separated and forwarded to the destined ports passing through the

ARDUINO pro-mini.

 At the same time real time data is being stored for later on data statistical work

and calculation of the search terms etc.

 Data plotting and display capabilities are also available.

 The data statistics can only be accessed by the server computer for security

purposes as no one would want their search history to be shared by anyone,

thereby including security parameters as well.

39

Chapter 4: Applications

4.1 Applications

4.1.1 Server Load Balancing

Using Server load balancing, all possible routing links can be used at the same time to

increase the available bandwidth. A router monitors the accessibility of all links and

selects the path for sending packets.

4.1.2 Content Based Routing

Content-Based Router allows the router to examine message contents and then route the

message onto a corresponding channel. The routing can be based on a number of criteria

such as existence of fields, specific field values, content acceptability of the end router

etc.

4.1.3 URL Blocking

URL blocking refers to allowing or denying the access to a certain websites or certain

URL addresses for the web users either temporarily or permanently.

4.1.4 Multi-layer Switching

Multi-layer switching combines layer 2, 3 and 4 switching technologies and provides

high-speed scalability with low inactivity. Multi-layer switching can move traffic

effectively and also provide layer 3 routing that can eliminate the blockage from network

routers.

4.1.5 High Availability Networks

Improvement towards bandwidth congestion and distribution of traffic over multiple

paths can improve the availability of networks.

4.1.6 Network Monitoring Device

Network monitoring device would allow the constant and real time monitoring of the data

being requested and processed by the router improving security and more control features

40

4.2 Conclusion

Layer 7(application) forms the base of our project. In order to achieve good quality along

with reliable and protected use of World Wide Web we implemented the routing

technique in the layer 7 where a user can catch the packets and can analyze and route the

packets based according to their protocols. We have been able to overcome the

congestion problem along with onboard processing and statistical calculation of packets

with efficient use of memory. Present routing techniques depend upon IP checking and

OSPF routing protocol which are unintelligent and time consuming. Layer 7 router is able

to forward the data packets based on their routing protocols for intelligent bandwidth

allocation and also data processing to meet the data statistical needs of the day.

41

Chapter 5: Resources Required

Ser.

No

Item Required Quantity Estimate Cost (Rs)

1 ARDUINO Mega 1 5,000

2 ARDUINO mini 3 2,500

3 Ethernet Shield Module 4 5,000

4 SD Card Shield Module 1 1,500

5 Ethernet cables 4 500

6 Components (IC, Resistors etc) - 500

7 PCB Board 1 200

8 Hardware Casing 1 2000

 Total 17,200

42

Chapter 6: References
1. https://devcentral.f5.com/articles/layer-7-switching-load-balancing-layer-7-load-

balancing

2. http://nginx.com/resources/glossary/layer-7-load-balancing/

3. http://en.wikipedia.org/wiki/Routing_osilayer_history

4. http://www.xilinx.com/training/Arduino/Arduino-field-programmable-gate-

array.htm

5. http://www.xilinx.com/Arduino/

6. https://www.altera.com/products/Arduino/overview.html

https://www.altera.com/products/Arduino/overview.html

43

Chapter 7: Bibliography

1. SaroVelrajan, “Application Aware Routing in Software Defined Networks”,

Aricent, 2013.

2. G. Antichi, S. Giordano, D. J. Miller, “Enabling Open-Source High Speed

Network Monitoring on NetARDUINO”, Network Operations and Management

Symposium, 2012.

3. J. Naous, G. Gibb, S, Bolouki N. McKeown, “NetARDUINO: Reusable Router

Architecture for Experimental Research” Stanford University, 2009

4. M Ciesla, V Sivaraman, ASeneviratne, “URL Extraction on the NetARDUINO

Reference Router”, The University of New South Wales.

44

Appendix A

Applications code

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

using System.Windows.Forms;

using System.Data.SQLite;

using System.IO;

using System.Net;

using System.Net.Sockets;

using System.Threading;

//using finisar.swqlite;

namespace URL_Extractor

{public partial class Form1 : Form{

 long Myreader6 = 0;

 int file_count = 0;

 int ex_count = 0;

 string google;

 string Facebook;

 string YouTube;

 string TotalRequests;

 //Socket TCPClient;

 //NetworkStream TCPStream;

 Socket tcpserver;

 public Form1()

 { InitializeComponent();}

45

 private void button1_Click(object sender, EventArgs {

 label1.Text = "Connecting ... Please Wait...!!";

 // TCPClient =new System.Net.Sockets.Socket("192.168.1.1",8080);

 // TCPclient = New Sockets.TcpClient(Text_ip.Text, 8080)

 TcpListener tcplist = new TcpListener(IPAddress.Any, 8080);

 tcplist.Start();

 tcpserver = tcplist.AcceptSocket();

 tcpserver.Blocking = false;

 label1.Text = "Connected !! Transmitting URLs !! Please Wait... !!!";

 button1.Enabled = false;

 timer1.Enabled = true;

 timer1.Interval = 10000;

 timer2.Enabled = true;

 timer2.Interval = 100;}

 private void timer1_Tick(object sender, EventArgs e){Start...!!!

/ [snip] - As C# is purely object-oriented the following lines must be put into a class:

// We use these three SQLite objects:

SQLiteConnection sqlite_conn;

SQLiteCommand sqlite_cmd;

SQLiteDataReader sqlite_datareader;

string google = Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData) +

@"\Google\Chrome\User Data\Default\History";

//string google = Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData)

+ @"\D:\test\History";if

(System.IO.File.Exists(Environment.GetFolderPath(Environment.SpecialFolder.Desktop) +

@"\abcc")){

System.IO.File.Delete(Environment.GetFolderPath(Environment.SpecialFolder.Desktop) +

@"\abcc");}

System.IO.File.Copy(google, Environment.GetFolderPath(Environment.SpecialFolder.Desktop)

+ @"\abcc");

string google1 = Environment.GetFolderPath(Environment.SpecialFolder.Desktop) + @"\abcc";

//SQLiteConnection cn = new SQLiteConnection("Data Source=" + google +

".db;Version=3;New=False;Compress=True;");

//cn.Open();

sqlite_conn = new SQLiteConnection("Data Source=" + google1 +

";Version=3;New=False;Compress=True;");

// open the connection:

sqlite_conn.Open();

sqlite_cmd = sqlite_conn.CreateCommand();

sqlite_cmd.CommandText = "CREATE TABLE urls (url varchar, title varchar, visit_count

varchar, last_visit_date varchar);";

// Now lets execute the SQL ;D

//sqlite_cmd.ExecuteNonQuery();

// Lets insert something into our new table:

//sqlite_cmd.CommandText = "INSERT INTO urls (url, title, visit_count, last_visit_time)

VALUES ('www.facebook.com', 'Facebook','1','12/15/2015');";

//sqlite_cmd.CommandText = "INSERT INTO test (id, text) VALUES (2, 'Test Text 2');";

46

// But how do we read something out of our table ?

// First lets build a SQL-Query again:

sqlite_cmd.CommandText = "SELECT * FROM urls";

//SQLiteDataAdapter sd = new SQLiteDataAdapter("select url, title,visit_count,last_visit_time

from urls order by last_visit_time asc", sqlite_conn);

//DataSet ds = new DataSet();

//sd.Fill(ds);

sqlite_datareader=sqlite_cmd.ExecuteReader();

string[] u_url = new string[300];

 string[] u_title = new string[300] ;

 long[] u_time = new long[300] ;

 long count = 0;

 long Myreader5 = 0;

// The SQLiteDataReader allows us to run through the result lines:

while (sqlite_datareader.Read()) // Read() returns true if there is still a result line to read{

// Print out the content of the text field:

//System.Console.WriteLine(sqlite_datareader["text"]);

 string Myreader = sqlite_datareader.GetString(1); // url

 string Myreader2 = sqlite_datareader.GetString(2);// title

long Myreader3 = sqlite_datareader.GetInt64(3);

long Myreader4 = sqlite_datareader.GetInt64(4);

 Myreader5 = sqlite_datareader.GetInt64(5); // time

 // string Myreader4 = sqlite_datareader.GetString(6);

//if (Myreader5 > 0)

 if (Myreader5 > Myreader6){

 u_url[count] = Myreader;

 u_title[count] = Myreader2;

 u_time[count] = Myreader5;

 if (u_url[count].Contains("google.com") || u_url[count].Contains("youtube.com") ||

u_url[count].Contains("facebook.com")){// MessageBox.Show(u_url[count].ToString());

 byte[] send = Encoding.ASCII.GetBytes(u_url[count]);

 Thread.Sleep(3000);

 tcpserver.Send(send); // MessageBox.Show(u_title[count].ToString());

 }count += 1;

 //MessageBox.Show(Myreader);

 //MessageBox.Show(Myreader2);

 //// MessageBox.Show(Myreader3);

 //MessageBox.Show(Myreader3.ToString());

 //MessageBox.Show(Myreader4.ToString());

 //MessageBox.Show(Myreader5.ToString());} // MessageBox.Show(Myreader4);

}if(count == 0) {// MessageBox.Show("No History Update...!!");

 label1.Text = " Up TO date..!! "; }

//if (Myreader6 >= Myreader5)/{

// MessageBox.Show("No update in History

 //if (Myreader6 > Myreader5)

 long maxValue = u_time.Max();

47

 long maxIndex = u_time.ToList().IndexOf(maxValue);

//MessageBox.Show(u_time[maxIndex].ToString());

//MessageBox.Show(u_url[maxIndex].ToString()); //MessageBox.Show(count.ToString());

 if (maxValue == 0)

 { } else

 { Myreader6 = maxValue; }

//MessageBox.Show(u_time[2].ToString());

//MessageBox.Show(u_time[3].ToString());

//MessageBox.Show(u_time[4].ToString());

// We are ready, now lets cleanup and close our connection:

sqlite_conn.Close();

 //string google =

Environment.GetFolderPath(Environment.SpecialFolder.LocalApplicationData) +

@"\Google\Chrome\User Data\Default\History";

 //SQLiteConnection cn = new SQLiteConnection("Data Source="+ google

+".db;Version=3;New=False;Compress=True;");

 //cn.Open();

 //MessageBox.Show("ok");

//SQLiteDataAdapter sd = new SQLiteDataAdapter("select url, tilte,visit_count,last_vist_date

from urls order by last_vist_time desc", sqlite_conn);}

 private void Form1_Load(object sender, EventArgs e){}

 private void timer2_Tick(object sender, EventArgs e)

 {string textbox_data = "";

 try{ Thread.Sleep(3000);

 byte[] rcv = new byte[tcpserver.ReceiveBufferSize];

 tcpserver.Receive(rcv);

 textbox_data = System.Text.Encoding.ASCII.GetString(rcv);

 if (file_count == 1){

 timer2.Enabled = false;

 // string textbox_data = System.Text.Encoding.ASCII.GetString(rcv);

 if (textbox_data.Length > 0)

 {textbox_data = tcpserver.Receive(rcv);

 while (true) {

 ex_count = 1;

 tcpserver.Receive(rcv);

 textbox_data += System.Text.Encoding.ASCII.GetString(rcv);

 if (textbox_data.Contains("^^^^^")){

 //tcpserver.Receive(rcv);

 textbox_data += System.Text.Encoding.ASCII.GetString(rcv);

 timer2.Enabled = true;

 break; }

 else{

 //tcpserver.Receive(rcv);

 textbox_data += System.Text.Encoding.ASCII.GetString(rcv);}}

 textBox1.AppendText(textbox_data);

 file_count = 0; }

 if (file_count == 2)

 { string chart_data = System.Text.Encoding.ASCII.GetString(rcv);

48

 google = chart_data.Split('&').First();

 YouTube = chart_data.Split('&').Last();

 YouTube = YouTube.Split('$').First();

 Facebook = chart_data.Split('$').Last();

 Facebook = Facebook.Split('%').First();

 TotalRequests = chart_data.Split('%').Last();

 TotalRequests = TotalRequests.Split('!').First();

 ex_count = 2; this.chart1.Series["Requests"].Points.Clear();

this.chart1.Series["Requests"].Points.AddXY("Google", google);

this.chart1.Series["Requests"].Points.AddXY("Facebook", Facebook);

this.chart1.Series["Requests"].Points.AddXY("YouTube", YouTube);

this.chart1.Series["Requests"].Points.AddXY("T.Requests", TotalRequests);

 file_count = 0;}}

 catch (System.Exception ex)

 {if (ex_count == 1){

 textBox1.AppendText(textbox_data);

 timer2.Enabled = true;

 ex_count = 0;}if (ex_count == 2){

//this.chart1.Series["Requests"].Points.AddXY("Google", google);

//this.chart1.Series["Requests"].Points.AddXY("Facebook", Facebook);

//this.chart1.Series["Requests"].Points.AddXY("YouTube", YouTube);

//this.chart1.Series["Requests"].Points.AddXY("T.Requests", TotalRequests);

 //file_count = 0;

 //ex_count = 0;}}}

 private void chart1_Click(object sender, EventArgs e){}

 private void button2_Click(object sender, EventArgs e)

 { byte[] send2 = Encoding.ASCII.GetBytes("PLOT");

 //Thread.Sleep(3000);

 tcpserver.Send(send2);

 file_count = 2; }

 private void button3_Click(object sender, EventArgs e)

 { textBox1.Text = "";

 label1.Text = "Recieving File... Please wait...!!";

 byte[] send1 = Encoding.ASCII.GetBytes("GET");

 //Thread.Sleep(3000);

 tcpserver.Send(send1);

 file_count = 1;}}}

49

ARDUINO code (INPUT Port):

#include <UIPEthernet.h>

#include <Wire.h>

#include <Time.h>

#include <DS1307RTC.h>

#include <LiquidCrystal.h>

#include <SPI.h>

#include <SD.h>

LiquidCrystal lcd(49, 47, 45, 43, 41, 39);

int google = 0;

int youtube = 0;

int facebook = 0;

int value ;

EthernetClient client;

signed long next;

uint8_t mac[6] = {0x11, 0x12, 0x13, 0x04, 0x05, 0x06};

IPAddress myip(192, 168, 1, 199);

void setup() {

 lcd.begin(16, 2);

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Initilizing...!");

 delay(2000);

 Serial.begin(9600);

 Serial.println("Initilizing");

 Serial1.begin(9600);

 Serial2.begin(9600);

 Serial3.begin(9600);

 Ethernet.begin(mac, myip);

 Serial.print("localIP: ");

 Serial.println(Ethernet.localIP());

 Serial.print("subnetMask: ");

 Serial.println(Ethernet.subnetMask());

 Serial.print("gatewayIP: ");

 Serial.println(Ethernet.gatewayIP());

 Serial.println("Initilizing SD card!");

 if (!SD.begin(7)) {

 Serial.println("initialization failed!");

 return; }

 Serial.println("Initilizing SD card Done...!");

 lcd.setCursor(0, 1);

 lcd.print("Done..!");

 delay(3000); lcd.clear();lcd.setCursor(0, 0);

 lcd.print("Connecting.....");

 while (value != 1)

 {value = client.connect(IPAddress(192, 168, 1, 3) , 8080);}

 next = 0;

50

 Serial.println("Connection Stablished");

 lcd.setCursor(0, 1);

 lcd.print("Connected!");

 delay(3000);

 lcd.clear();

 lcd.setCursor(4, 0);

 lcd.print("Welcome");

 SD.remove("Record.txt");}

void loop() {

 if (value) {

 int size;

 while ((size = client.available()) > 0)

 { String RecPacket = "";

 uint8_t* msg = (uint8_t*)malloc(size);

 size = client.read(msg, size);

 for (int i = 0; i < size ; i++){

 RecPacket += char(msg[i]); }

 RecPacket += "\t" ;

 RecPacket += "@";

 RecPacket += GetDateTime(1, 1);

 if (RecPacket.indexOf("google.com") > -1) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Google Request!");

 SaveData(RecPacket);

 google += 1;

 Serial.println("its a google Request");

 Serial1.print(RecPacket + '^'); }

 else if (RecPacket.indexOf("youtube.com") > -1) {

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Youtube Request!");

 SaveData(RecPacket);

 youtube += 1;

 Serial.println("Its A Youtube Request");

 Serial2.print(RecPacket + '^'); }

 else if (RecPacket.indexOf("facebook.com") > -1) {lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Facebook Request!");

 SaveData(RecPacket);

 facebook += 1;

 Serial.println("Its A Facebook Request");

 Serial3.print(RecPacket + '^'); }

 else if (RecPacket.indexOf("GET") > -1){

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Sending File..");

 lcd.setCursor(0, 1);

51

 lcd.print("To Server...");

 Serial.println("GET Request!!!!");

 Serial.println(ReadFile() + "^^^^^");

 client.print(ReadFile() + "^^^^^");}

 else if (RecPacket.indexOf("PLOT") > -1){

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Ploting Data..");

 String plot = "";

 plot += String(google);

 plot += "&";

 plot += String(youtube);

 plot += "$";

 plot += String(facebook);

 plot += "%";

 plot += String(google + youtube + facebook);

 plot += "!";

 client.print(plot);

 Serial.println(plot);

 } else{

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("No Request..");

 Serial.println("No Request for (Google,Facebook,Youtube)");}

 delay(2000);

 lcd.clear();

 lcd.setCursor(4, 0);

 lcd.print("Welcome!");

 //Serial.println(RecPacket);

 free(msg);} }}

String GetDateTime(boolean tme , boolean dat){

 String Result = "";

 tmElements_t tm;

 if (RTC.read(tm)) {

 if (tme){

 if (tm.Hour > 12) {

 if ((tm.Hour % 12) >= 0 && (tm.Hour % 12) < 10)Result += '0';

 Result += tm.Hour % 12;} else

 {if (tm.Hour >= 0 && tm.Hour < 10)

 Result += '0';

 Result += tm.Hour;}

 Result += ':';

 if (tm.Minute >= 0 && tm.Minute < 10)

 Result += '0';

 Result += tm.Minute;

 Result += ':';

 if (tm.Second >= 0 && tm.Second < 10)

 Result += '0';

52

 Result += tm.Second;

 if (tm.Hour < 12) Result += "A.M";

 else Result += "P.M";

 if (tme && !dat)

 return Result; } if (dat)

 { if (dat && tme)

 Result += ','; Result += tm.Day;

 Result += '-'; Result += tm.Month;

 Result += '-'; Result += tmYearToCalendar(tm.Year);

 return Result; }}}void SaveData(String data)

{ File myFile = SD.open("Record.txt", FILE_WRITE);

 if (myFile) {

 myFile.println(data);

 myFile.close();}}

String ReadFile(void){

 File myFile = SD.open("Record.txt");

 String readData = "";

 if (myFile) {

 while (myFile.available()){

 readData += char(myFile.read());}

 myFile.close();} return readData; }

53

ARDUINO code (OUTPUT Port):

#include <EtherCard.h>

byte Ethernet::buffer[500];

BufferFiller bfill;

boolean connection = false ;

String RecPacket = "";

boolean DataComplete = false;

void setup() {

 Serial.begin(9600);

 static byte mymac[] = { 0x74, 0x69, 0x69, 0x2D, 0x30, 0x31 };

 static byte myip[] = { 192, 168, 1, 202 };

 static byte subnet[] = { 255, 255, 255, 0 };

 static byte gwip[] = { 192, 168, 1, 1 };

 ether.begin(sizeof Ethernet::buffer, mymac, 10);

 ether.staticSetup(myip, gwip, 0, subnet);}

void loop() { word len = ether.packetReceive();

 word pos = ether.packetLoop(len);

 if (pos && DataComplete)

 { String ip = ""; String sbnet = ""; String gw = "";

 for (byte i = 0; i < 4 ; i++)

 { ip += String(ether.myip[i], DEC);

 if (i < 3)

 ip += ".";}for (byte i = 0; i < 4 ; i++){ sbnet += String(ether.netmask[i], DEC);if (i < 3)

 sbnet += ".";

}for (byte i = 0; i < 4 ; i++)

 {gw += String(ether.gwip[i], DEC);

 if (i < 3)

 gw += ".";}

 RecPacket += ip;

 RecPacket += "%"; RecPacket += sbnet; RecPacket += "{";

 RecPacket += gw; RecPacket += "}";

 char senddatatoclient[RecPacket.length()];

 RecPacket.toCharArray(senddatatoclient, RecPacket.length() + 1);

 ether.httpServerReply(senddata(senddatatoclient));

 DataComplete = false;RecPacket = "";}

 else if (pos && !DataComplete)

 { ether.httpServerReply(senddata("Null"));

 }}void serialEvent() {

 while (Serial.available())

 { char inChar = (char) Serial.read();

 RecPacket += inChar;

 if (inChar == '^')

 { DataComplete = true; }}}

static word senddata(char abc[]) {

 bfill = ether.tcpOffset();

 bfill.emit_p(PSTR("$S"),abc);

 return bfill.position();}

