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PREFACE 
 

   Software radio is an emerging technology, thought to build flexible radio systems, 

multiuser, multistandard, multiband, reconfigurable and reprogrammable by software. 

In fact the term software radio stands for the radio functionalities defined by software, 

meaning the possibility to define by software the typical functionality of a radio, 

usually implemented in transmitter and receiver equipment by dedicated hardware. 

The presence of software defining the radio necessarily implies the use of DSPs to 

replace dedicated hardware, to execute, in real time, the necessary software. 
 

Software radio will provide the means to realize signal processing tasks of 

communication transceiver by means of software .The replacement of ASIC 

technology with DSP technology opens the road to new horizons. Software 

implementation of baseband functions such as coding, modulation, equalization and 

pulse shaping.  
 

An approach towards this project required adequate knowledge of Digital Signal 

Processing and Digital Communications to implement the communication functions 

in software . We have designed a complete all digital communication transceiver in 

Matlab which is capable of the modulation, pulse shaping, phase synchronization, 

timing synchronization, equalization, channel coding etc. The wireless channel effects 

like multipath delay spread and mobility are created in software and the performance 

of the transceiver is evaluated for such channel.    
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CHAPTER  1                                                           

 

SOFTWARE RADIO CONCEPT 
 
 
1.1   NEED FOR SOFTWARE RADIOS  
   With the emergence of new standards and protocols, wireless 

communications is developing at a furious pace. Rapid adoption of the 

wireline-base Internet has led to demand for wireless Internet connectivity but 

with added capabilities, such as integrated services that offer seamless global 

coverage and user-controlled quality of service (QoS). The challenge in 

creating sophisticated wireless Internet connectivity is compounded by the 

desire for future-proof radios, which keep radio hardware and software from 

becoming obsolete as new standards, techniques, and technology become 

available. The concept of integrated seamless global coverage requires that 

the radio support two distinct features: first, global roaming or seamless 

coverage across geographical regions; second, interfacing with different 

systems and standards to provide seamless services at a fixed location. 

Multimode phones that can switch between different cellular standards like IS-

95 and Global System Mobile (GSM) fall in the first category, while the ability 

to interface with other services like Bluetooth or IEEE 802;11 networks falls in 

the second category. Further, the rate of technology innovation is 

accelerating, and predicting technological change and its ramifications to 

business is especially problematic. As a result, to keep their systems up to 

date, wireless systems manufacturers and service providers must respond to 

changes as they occur by upgrading systems to incorporate the latest 

innovations or to fix bugs as they are discovered. Many manufacturers tell 

horror stories of releasing hundreds of thousands of defective phones that 

had to be recalled and discarded. Since frequent redesign is expensive, time-

consuming, and inconvenient to end users, interest is increasing in future-

proof radios.  
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   Existing technologies for voice, video, and data use different packet 

structures, data types, and signal processing techniques. Integrated services 

can be obtained with either a single device capable of delivering various 

services or with a radio that can communicate with devices providing 

complementary services. The supporting technologies and networks that 

might have to use can vary with the physical location of the user. To 

successfully communicate with different systems, the radio has to 

communicate and decode the signals of devices using different air interfaces.  

Furthermore, to manage changes in networking protocols,  

 Services and environments, mobile protocols, such as IP(Internet Protocol) 

and MExE (Mobile Execution Environment ). Such radios can be implemented 

efficiently using software radio architectures in which the radio reconfigures 

itself based on the system it will be interfacing with and the functionalities it 

will be supporting. 

   Second generation (2G) wireless technology consists of a handful of 

incompatible standards, and the goal behind the development of third 

generation (3G) standards is compatibility among these standards within and 

between different generations’ standards. Even if cellular standards globally 

converge, 3G systems require multimode operation and automatic mode 

selection. With fourth generation (4G) and possibly 3G Systems , the user’ s 

application will likely have the ability to control the quality of service and 

obtain a higher QoS for a higher cost . Higher QoS can be achieved through 

priority scheduling of packets, changes in data packaging, improved 

protection coding, better channel equalization techniques, implementation of 

smart antennas, and so on. The mobile subscriber must have the ability to 

select the network provider as well as the services needed. 

 
1.2   WHAT IS SOFTWARE RADIO? 
  The term “software radio” was coined by Joe Mitola in 1991 to refer to the 

class of reprogrammable or reconfigurable radios. In other words, the same 

piece of hardware can perform different functions at different times. The SDR 

forum defines the ultimate software radio (USR) as a radio that accepts fully 

programmable traffic and control information and supports a broad range of 
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frequencies, air interfaces, and applications software. The user can switch 

from one air interface format to another in milliseconds,  

Use the Global Positioning System (GPS) for location, store money using 

smartcard technology, or watch a local broadcast station and or receive a 

satellite transmission. 

  The exact definition of a software radio is controversial and no consensus 

exists about the level of reconfigurability needed to qualify a radio as a 

software radio. A radio that includes a microprocessor or digital signal 

processor (DSP) does not necessarily qualify as a software radio [1]. 

However, a radio that defines in software its modulation, error correction, and 

encryption processes, exhibits some control over the RF hardware, and can 

be reprogrammed is clearly a software radio. A good working definition of a 

software radio: 

      “A radio that is substantially defined in software and whose physical layer 

behavior can be significantly altered through changes to its software.” 

    The degree of reconfigurability is largely determined by a complex 

interaction between a number of common issues in radio design , including 

systems engineering , antenna form factors , RF electronics , Baseband 

processing , speed and reconfigurability of the hardware and power supply 

management . 

   The term software radio generally refers to a radio that derives its flexibility 

through software while using a static hardware platform. On the other hand, a 

soft radio denotes a completely configurable radio that can be programmed in 

software to configure the physical hardware. In other words, the same piece 

of hardware can be modified to perform different functions at different times, 

allowing the hardware to be specifically t tailored to the application at hand. 

Nonetheless, the term software radio is sometimes used to encompass soft 

radios as well.  

  The functionality of conventional radio architectures is usually determined 

primarily by hardware with minimal configurability through software. The 

hardware consists of the amplifiers, filters, mixers (probably several stages), 

and oscillators. The software is confined to controlling the interface with the 

network, stripping the headers and error correction codes from the data 

packets, and determining where the data packets need to be routed based on 
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the header information. Because the hardware dominates the design, 

upgrading a conventional radio design essentially means completely 

abandoning the old design and starting over again. In upgrading a software 

radio design, the vast majority of the new content is software and the rest is 

improvements in hardware component design. In short, software radios 

represent a paradigm shift from fixed, hardware-intensive radios to multi- 

band, multimode, software-intensive radios.  

1.3 CHARACTERISTICS AND BENEFITS OF A SOFTWARE RADIO     
Implementation of the ideal software radio would require either the digitization 

at the antenna, allowing complete flexibility in the digital domain, or the design 

of a completely flexible radio frequency (RF) front-end for handling a wide 

range of carrier frequencies and modulation formats [2]. The ideal software 

radio, however. is not yet fully exploited in commercial systems due to 

technology limitations and cost considerations.  

   A model of a practical software radio is shown in figure. The receiver begins 

with a smart antenna that provides a gain versus direction characteristic to 

minimize interference, multipath, and noise. The smart antenna provides 

similar benefits for the transmitter. Most practical software radios digitize the 

signal as early as possible in the receiver chain while keeping the signal in the 

digital domain and converting to the analog domain as late as possible for the 

transmitter using a digital to analog converter (DAC). Often the received 

signal is digitized in the intermediate frequency (IF) band. Conventional radio 

architectures employ a super heterodyne receiver, in which the RF signal is 

picked up by the antenna along with other spurious/unwanted signals, filtered, 

amplified with a low noise amplifier (LNA), and mixed with a local oscillator 

(LO) to an IF. Depending on the application, the number of stages of this 

operation may vary. Finally, the IF is then mixed exactly to baseband. 

Digitizing the signal with an analog to digital converter (ADC) in the IF range 

eliminates the last stage in the conventional model in which problems like 

carrier offset and imaging are encountered. When sampled, digital IF signals 

give spectral replicas that can be placed accurately near the baseband 

frequency, allowing frequency translation  

and digitization to be carried out simultaneously. Digital filtering 
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(channelization) and sample rate conversion are often needed to interface the 

output of the ADC to the processing hardware to implement the receiver. 

Likewise, digital filtering and sample rate conversion are often necessary to 

interface the digital hardware that creates the modulated waveforms to the 

digital to analog converter. Processing is performed in software using DSPs, 

field programmable gate arrays (FPGAs), or application specific integrated 

circuits (ASICs). The algorithm used to modulate and demodulate the signal 

may use a variety of software methodologies, such as middleware, e.g., 

common object request broker architecture (CORBA), or virtual radio 

machines, which are similar in function to JAVA virtual machines. This forms a 

typical model of a software radio.  

 
Figure 1.1: Model of a software radio. 

 

    The software radio provides a flexible radio architecture that allows 

changing the radio personality, possibly in real-time, and in the process 

somewhat guarantees a desired QoS. The flexibility in the architecture allows 

service providers to upgrade the infrastructure and market new services 

quickly. This flexibility in hardware architecture combined with flexibility in 

software architecture, through the implementation of techniques such as 

object - oriented programming and object brokers, provides software radio 

with the ability to seamlessly integrate itself into multiple networks with wildly 

different air and data interfaces. In addition, software radio architecture gives 

the system, new capabilities that are easily implemented with software. For 

example, typical upgrades may include interference rejection techniques, 

encryption, voice recognition and compression, software-enabled power 

minimization and control, different addressing protocols, and advanced error 

recovery schemes. Such capabilities are well-suited for 3G and 4G wireless 
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requirements and advanced wireless networking approaches [3]. In summary, 

five factors are expected to push wider acceptance of software radio.  

•         Multifunctionality: With the development of short-range networks like 

Bluetooth and IEEE 802.11, it is now possible to enhance the services of a 

radio by leveraging other devices that provide complementary services. For 

instance, a Bluetooth-enabled fax machine may be able to send a fax to a 

nearby laptop computer equipped with a software radio that supports the 

Bluetooth interface. Software radio's reconfiguration capability can support an 

almost infinite variety of service capabilities in a system.  

• Global mobility: A number of communication standards exist today. In the 

2G alone, there are IS-136, GSM, IS-95ICDMA1, and many other, less well 

known standards. The 3G technology tried to harmonize all the standards. 

However, there are many standards under the 3G umbrella. The need for 

transparency, i.e., the ability of radios to operate with some, preferably all, of 

these standards in different geographical regions of the world has fostered the 

growth of the software radio concept. Military services also face a similar 

issue with incompatible radio standards existing between as well as within 

branches of the military.  

• Compactness and power efficiency: Multifunction, multimode radios 

designed using the "Velcro" approach of including separate silicon for each 

system can become bulky and inefficient as the number of systems increases. 

The software radio approach, however, results in a compact and, in some 

cases, a power-efficient design, especially as the number of systems 

increases, since the same piece of hardware is reused to implement multiple 

systems and interfaces.  

• Ease of manufacture: RF components are notoriously hard to standardize 

and may have varying performance characteristics. Optimization of the 

components in terms of performance may take a few years and thereby delay 

product introduction. In general, digitization of the signal early in the receiver 

chain can result in a design that incorporates significantly fewer parts, 

meaning a reduced inventory for the manufacturer.  
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• Ease of upgrades: In the course of deployment, current services may need 

to be updated or new services may have to be introduced. Such 

enhancements have to be made without disrupting the operation of the 

current infrastructure. A flexible architecture allows for improvements and 

additional functionality without the expense of recalling all the units or 

replacing the user terminals. Vocoder technology, for example, is constantly 

improving to offer higher quality voice at lower bit rates. As new vocoders are 

developed, they can be quickly fielded in software radio systems. 

Furthermore, as new devices are integrated into existing infrastructures, 

software radio allows the new devices to interface seamlessly, from the air-

interface all the way to the application, with the legacy network.  

   Users/customers expect service regardless of the geographical areas in 

which they travel and the wireless technologies that are in use in different 

regions in the world, but carrying several devices that cover the broad range 

of technology alternatives is impractical. Users expect one device to utilize 

services in all regions, which is possible only by reconfiguring the receiver to 

the air-interface standards used in the respective regions, By dynamically 

downloading the software to cover the needed air-interface standard, perhaps 

through transmission of the software configuration to the remote terminal, 

such over-the-air updates will allow for speedy implementation of software 

upgrades and new features.  

1.4 OUR DESIGN 

So far we have explained the software radio and its benefits. Since the major 

characteristic of software radio is that all the communication functionalities are 

defined in software. We have designed a complete digital radio which defined 

all the communication functionalities in software as shown in figure 1.2. We 

have used the latest techniques for all the functionalities especially for timing 

synchronization. Since one of biggest challenge for software radio is 

computational complexity because of unavailability of strong processors in 

small size a special care has been taken to reduce the computational 

complexity as low as possible.  
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Figure 1.2: Our Design 

In the preceding chapters of this report we will examine each block separately 

in detail.   
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CHAPTER  2 

 

SAMPLE RATE CONVERSION 
 
 

2.1   INTRODUCTION 
   Since different communications standards are based upon different master 

clock rates it is principally necessary to provide these different clock rates in a 

terminal that is to process signals according to those different standards. Due 

to the strong requirements on the quality of the clock, specifically required for 

the analog-to digital converter, it is reasonable to assume that only one fixed 

master clock will be provided in practical software radio applications. A 

solution to this conflict is to provide the different clock rates virtually by means 

of digital sample rate conversion (SRC). SRC is the task of converting the 

sample rate of a first digital signal to another sample rate resulting in a second 

digital signal, while a certain amount of information - usually in a limited 

frequency band - must not be corrupted [3].  In this chapter we will discuss the 

sample rate conversion in digital domain only.   
 

2.2   DOWNSAMPLING BY INTERGER FACTOR (DECIMATION) 
   Decimation can be regarded as the discrete-time counterpart of sampling. 

Whereas in sampling we start with a continuous-time signal x(t) and convert it 

into a sequence of samples x(n), in decimation we start with a discrete-time 

signal x(n) and convert it into another discrete-time signal y(n), which consists 

of sub-samples of x(n). Thus, the formal definition of M-fold decimation, or 

down-sampling, is defined by equation 2.1. In decimation, the sampling rate is 

reduced from Fs to Fs/M by discarding M – 1 samples for every M samples in 

the original sequence. 

∑
∞
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Figure 2.1: Block diagram notation of decimation, by a factor of M. 
 

   The block diagram notation of the decimation process is depicted in figure 

2.1. An anti-aliasing digital filter precedes the down-sampler to prevent 

aliasing from occurring, due to the lower sampling rate. In figure 2.2, it 

illustrates the concept of 3-fold decimation i.e. M = 3. Here, the samples of x[n] 

corresponding to n = …, -2, 1, 4, and n = …, -1, 2, 5,… are lost in the decimation 

process. In general, the samples of x[n] corresponding to n ≠ kM, where k is an 

integer, are discarded in M-fold decimation. In figure 2.2 (b), it shows samples 

of the decimated signal y[n] spaced three times wider than the samples of 

x[n]. This is not a coincidence. In real time, the decimated signal appears at a 

slower rate than that of the M. If the sampling frequency of x[n] is then that of 

y[n] is M. 

 

 
 

Figure 2.2: Decimation of a discrete-time signal by a factor of 3. 

2.2.1   Frequency Domain Analysis of Decimation 
   The implications of aliasing caused by decimation are very similar to those 

in the case of sampling a continuous-time signal. In general, if the Fourier 

transform of a signal, X(θ), occupies the entire bandwidth from [-π, π], then the 
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Fourier transform of the decimated signal, )(θMX↓ , will be aliased because the 

spectrum now occupies the bandwidth [-Mπ, Mπ]. This is due to the 

superposition of the M shifted and frequency-scaled transforms. This is 

illustrated in figure 2.3 below, which shows the aliasing phenomenon for M = 

3. From figure 2.3 it is clear that the cut off frequency for anti-aliasing filter 

must be less than equal to π / M. 

Mathematically in the z-transform the relation between x(n) and y(n) can be 

derived. 
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Figure 2.3: Aliasing caused by decimation. (a) Fourier transform of the original signal. (b) 

After anti-aliasing filter. (c) Fourier transform of the decimated signal. 

   Normally decimation process is implemented using a transversal structure 

as shown in figure 2.4 (a,b). First it is filtered and then at the output every Mth 

sample is taken out. But the question is why to compute those values which 

are not required because we are only interested in every Mth sample [6]. This 
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can be achieved by putting the decimator first and then perform the filtering as 

shown in figure 2.4 (c).      

 
 

Figure 2.4: Efficient implementation of decimator 

 

2.3   UPSAMPLING BY INTEGER FACTOR (INTERPOLATION) 
   Interpolation is the exact opposite of decimation. It is an information 

preserving operation, in that all samples of x(n) are present in the expanded 

signal y(n). The mathematical definition of L-fold interpolation is defined by 

equation 2.3 and the block diagram notation is depicted in figure 2.5. 

Interpolation works by inserting (L–1) zero-valued samples for each input 

sample. The sampling rate therefore increases from Fs to LFs. With reference 

to figure 2.5, the expansion process is followed by a unique digital low-pass 

filter called an anti-imaging filter [5]. Although the expansion process does not 

cause aliasing in the interpolated signal, it does however yield undesirable 

replicas in the signal’s frequency spectrum. We shall see how this special 

filter, is necessary to remove these replicas from the frequency spectrum. 
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Figure 2.5: Block diagram notation of interpolation, by a factor of L. 
 

   In figure 2.6, it depicts 3-fold interpolation of the signal x(n) i.e. L = 3. 

 
Figure 2.6: Interpolation of a discrete-time signal by a factor of 3. 

 The insertion of zeros effectively attenuates the signal by L, so the output of 

the anti-imaging filter must be multiplied by L, to maintain the same signal 

magnitude. 

 

2.3.1   Frequency Domain Analysis of Interpolation 
   The effect of expansion on a signal in the frequency domain is illustrated in 

figure 2.7. Part (a) shows the Fourier transform of the original signal; part (b) 
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illustrates the Fourier transform of the signal with zeros added W(θ); and part 

(c) shows the Fourier transform of the signal after the interpolation filter. It is 

clearly visible that the shape of the Fourier transform is compressed by a 

factor L in the frequency axis and is also repeated L times in the range of [-π, 

π]. Despite the compression of the signal in the frequency axis, the shape of 

the Fourier transform is still preserved, confirming that expansion does not 

lead to aliasing [4]. These replicas are removed by a digital low-pass filter 

called an anti-imaging filter shown in figure 2.5. From figure it is very clear that 

cut off frequency for anti-imaging filter must be less than equal to π / L to 

remove the images. 

Mathematically the z-transform relations are 
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  Interpolator can be implemented using the same transversal structure as the 

decimator. The flow diagram is shown in figure 2.8. However, this type of 

structure is very inefficient owing to the interpolation process, which 

introduces (L–1) zeros between consecutive points in the signal. If L is large, 

then the majority of the signal components fed into the FIR filter are zero. As a 

result, most of the multiplications and additions are zero i.e. many pointless 

calculations.  We will see very shortly that how design an efficient interpolator 

who can take care of such point less calculations 
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Figure 2.7: Expansion in the frequency domain of original signal (a) and the expanded signal 

(b). 

 

2.4   CHANDING SAMPLING RATE BY NON INTEGER FACTOR   
   A common use of multirate signal processing is for sampling-rate 

conversion. Suppose a digital signal x(n) is sampled at an interval T1, and we 

wish to obtain a signal y(n) sampled at an interval T2. Then the techniques of 

decimation and interpolation enable this operation, providing the ratio T1/T2 is 

a rational number i.e. L/M. Sampling-rate conversion can be accomplished by 

L-fold expansion, followed by low-pass filtering and then M-fold decimation, as 

depicted in figure 2.9. It is important to emphasis that the interpolation should 

be performed first and decimation second, to preserve the desired spectral 

characteristics of x(n). Furthermore by cascading the two in this manner, both 

of the filters can be combined into one single low-pass filter because both 

filters are linear. Actually while combining the filters we will select the filter 

which has the less cut off frequency from both of them.  
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Figure 2.8: Interpolator Implementation flow diagram 
 

   An example of sampling-rate conversion would take place when data from a 

CD is transferred onto a DAT. Here the sampling-rate is increased from 44.1 

kHz to 48 kHz. To enable this process the non-integer factor has to be 

approximated by a rational number: 

08844.1
147
160

48
1.44

===
M
L  

Hence, the sampling-rate conversion is achieved by interpolating by L i.e. from 

44.1 kHz to [44.1x160] = 7056 kHz. Then decimating by M i.e. from 7056 kHz 

to [7056/147] = 48 kHz. 

 
2.5   MULTISAGE APPROACH 
   When the sampling-rate changes are large, it is often better to perform the 

operation in multiple stages, where Mi (Li), an integer, is the factor for the stage i 

Ii LLLLandMMMM ,,,,,, 2121 KK == . 
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Figure 2.9: Sampling-rate conversion using (a) separate anti-imaging and anti-aliasing filters.        

(b) combined low pass filter 

 

An example of the multistage approach for decimation is shown in figure 2.10. 

The multistage approach allows a significant relaxation of the anti-alias and 

anti-imaging filters, with a consequent reduction in the filter complexity [6]. 

The optimum number of stages is one that leads to the least computational 

effort in terms of either the multiplications per second (MPS), or the total 

storage requirement (TSR). 

 
 

Figure 2.10: Multistage approach for the decimation process. 

 

2.6   POLYPHASE STRUCTURES  

    Potential computational savings can be made within the process of 

decimation, interpolation, and sampling-rate conversion. Polyphase filters are 

the name given to certain realizations of multirate filtering operations, which 

facilitate computational savings in both hardware and software. Actually a 

filter is broken in to sub filters called polyphase filters. Their name polyphase 
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is because of the fact that they have same amplitude response and differ in 

phases. 

  We will derive the polyphase components for a factor 2. The extension to 

any number is straightforward. In z-domain any filter can be divided into 

polyphase components as 
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where )( 2
0 zE  and )( 2

1 zE  are the polyphase components. 

 
2.6.1   Decimator 
 For decimation by a factor of M the anti-aliasing filter can be divided into M 

polyphase components. In figure 2.11 the decimation process using 

polyphase structure is shown. 

 
 

Figure 2.11: Decimation by a factor of 2 using polyphase structure 
 

   Now we will derive the time domain relation for decimation.  If y(m) is the 

decimated signal and x(n) is the input signal then and h(n) is the anti-aliasing 

filter then decimator filter output is 

∑
−

=

−=
1

0

)()()(
N

n

nMmxnhmy                                                    (2.6) 

By changing the variables 

∑
−

=

−=
1

0

)()()(
N

k

kxkmMhmy                                                 (2.7) 



Simulation Of QPSK Transceiver 

 

xxxv

Signal parallelization is  
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where the polyphase components of the decimation filter are computed by the 

relation     

)()( qiMhihq +=                                                           (2.9) 

and inputs signal to polyphase components  are given by the relation 
 

)()( qiMxixq −=                                                         (2.10) 

 Actually you can see that y(k) is computed in parallel. Every polyphase filter 

is computing a single output for every value of n in parallel. Since we require 

every Mth sample so we can only use a single polyphase filter for a single 

value of n. This can be done using a commutator as shown in figure 2.12. 
They are also called type-1 polyphase structure. If h(n) is the anti-aliasing filter 

, then the M polyphase components are:  
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Figure 2.12: Decimation using type-1 polyphase structure. 

The beauty of polyphase structure is that they are computing those samples 

which are not required but actually throwing them away. You can see in the 

above figure that there is no decimator. The input is at the rate N and the 

output is at the rate N/M      

 
2.6.2   Interpolator 
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   In the previous section we have seen how to design a computationally 

efficient polyphase decimator. The interpolation is just the reverse process of 

decimation. Using the same notations as earlier the time domain derivation for 

interpolator is: 

Interpolator filter output is 

∑
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After parallelization the output signal is 
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and the relation for polyphase components is 

1,,1,0),()( −=+= LppiLhihp K                                               (2.14) 

you can the components are the same as for decimator. The flow diagram for 

interpolation process using polyphase structure is shown in figure 2.13.   

You can see in the above figure there is no insertion of zeros. The input is at 

rate N and the output is at rate NL. Actually the pointless calculations which 

are there in the case of transversal structure are avoided. 

 
Figure 2.13: Interpolation using type-2 polyphase structure 

2.6.3   Sample Rate Conversion by Non-integer Factor 
   So far we have discussed interpolation and decimation using polyphase 

structures. It is also possible to change the sampling rate by non-integer 

factors using polyphase structure.  

   As described earlier for a non-integer SRC the anti-imaging and anti-

aliasing filters can be combined into a single filters. Actually the filter which 

has lower cut-off frequency is selected. Now if we have to change the 
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sampling rate by L / M then for polyphase implementation the combined filter 

should be divided into L × M polyphase components. The polyphase structure 

for L=2, and M=3 is shown in figure 2.14.         

 

 
 

Figure 2.14:  Sample rate conversion using polyphase structures for L=2 and M=3 
 

In figure 2.14 L=2 and M=3 therefore we have 6 polyphase components 

510 ,,, hhh K . These polyphase components can be obtained by using the 

relation in equation 2.11. 

 
2.7   RELATIONSHIP FOR ESTMATING FILTER LENGTH, N 
   Now one question arises how many taps for the combined filter or any anti-

imaging or anti-aliasing filters. The answer is the filter taps can be determined 

by using the relation derived by Herrman in 1973. The relation is for the 

optimal method (equaripple method) for lowpass filters only.   
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∆
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where F∆  is the width of the transition band normalized to the sampling 

frequency, Pδ  is the passband ripple or deviation and Sδ  is the stopband 

ripple or deviation and 
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[ ]SPSPf δδδδ 1010 loglog51244.001217.11),( −+=  

 

a1 = 5.309 × 10–3     a2 = 7.114 × 10–2     a3 = – 4.761 × 10–1    

 

a4 = – 2.66 × 10–3     a5 = – 5.941 × 10–1     a6 = –4.278 × 10–1 

 

2.8 SIMULATION RESULTS 
 

2.8.1   Interpolation 
  A simulation for interpolation by a factor of 3 is run in matlab. The 

spectrum of the signal is given below before interpolation. 
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Figure 2.15: Spectrum before interpolation 

After insertion of zeros the spectrum is given on next page. 

-15 -10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Figure 2.16: Spectrum after insertion of zeros interpolation 

The spectrum of interpolator filter is  
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Figure 2.17: Spectrum of interpolator filter 

At the output of interpolator filter the spectrum is 

-40 -30 -20 -10 0 10 20 30 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
Figure 2.18: Spectrum of interpolator filter using transversal structure. 

The spectrum using the polyphase approach is given below which is 

same as using the conventional approach in figure 18. 
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Figure 2.19: Spectrum of interpolator filter using polyphase structure. 
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2.8.2 Decimation 
  A simulation is run for decimation by a factor of 2. The spectrum of signal 

before decimation is 
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Figure 2.20: Spectrum of the signal before decimation 

 

The spectrum of decimator filter is given below 
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Figure 2.21: Spectrum of decimator filter 

The spectrum at the out of decimator filter using transversal structure is 
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Figure 2.22: Spectrum at the output of decimator filter 

Spectrum after decimation by 2 is given below 
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Figure 2.23: Spectrum after decimation by 2 

The spectrum at the out of decimator filter using the polyphase structure for 

decimator filter is given below which is same as for transversal filter. 
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Figure 2.24: Spectrum after decimation using polyphase structure 
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CHAPTER  3 

 

THE WIRELESS CHANNEL 
 
 
3.1   PHYSICAL MODELING FOR WIRELWSS CHANNELS 
   Wireless channels operate through electromagnetic radiation from 

transmitter to receiver. In principle, one could solve the electromagnetic field 

equations, in conjunction with the transmitted signal, to find the 

electromagnetic field impinging on the receiver antenna. This would have to 

be done taking into account the obstructions caused by ground, buildings, 

vehicles, etc. in the vicinity of this electromagnetic wave. By obstructions, we 

mean not only objects in the line of sight between transmitter and receiver, but 

also objects in locations that cause non-negligible changes in the 

electromagnetic field at the receiver. 

  The wavelength λ of electromagnetic radiation at any given frequency f is 

given by λ=c/f, where c = 3 x108 mps is the velocity of light. The wavelength is 

thus a fraction of a meter, so to calculate the electromagnetic field at a 

receiver, the locations of the receiver and the obstructions would have to be 

known within sub meter accuracies. The electromagnetic field equations are 

therefore too complex to solve, especially on the fly as vehicles move. Thus 

we have to ask what we really need to know about these channels, and what 

approximations might be reasonable. The solution is to construct stochastic 

models of the channel, assuming that different channel behaviors appear with 

different probabilities, and change over time in particular stochastic ways. 
 

3.1.1   Free space, fixed transmitting and receiving antennas 
    First consider a fixed antenna radiating into free space. In the far field, the 

electric field (the far field is far enough away from the transmitting antenna 

that the antenna looks like a point ) and magnetic field at any given location 

are perpendicular both to each other and to the direction of propagation from 
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the antenna. They are also proportional to each other, so it is sufficient to 

know only one of them (just as in wired communication, where we view a 

signal as simply a voltage waveform or a current waveform). In response to a 

transmitted sinusoid cos(2πft) = Real[exp(2πft)], we can express the electric far 

field at time t, in its particular direction, as 

r
crtiffartfE s )}]/(2exp{),,([)),,(,,( −ℜ

=
πψθ

ψθ                             (3.1) 

  Here (r, θ, ψ) represents the point u in space at which the electric field is 

being measured, where r is the distance from the transmitting antenna to u 

and where (θ, ψ) represent the vertical and horizontal angles from the antenna 

to u.                 c = 3 x 108 m/s is the velocity of light, and as(θ, ψ, f)  is the 

radiation pattern of the sending antenna at frequency f in the direction (θ, ψ). 

as also contains a scaling factor to account for antenna losses and an initial 

phase. Note that the phase of the field varies with fr/c, corresponding to the 

delay caused by the radiation traveling at the speed of light.  

  We are not concerned here with actually finding the radiation pattern for any 

given antenna, but only with recognizing that antennas have radiation 

patterns, and that the free space far field behaves as above.  

  It is important to observe that as the distance r increases, the electric field 

goes down as r -1 and thus the power per square meter in the free space wave 

goes down as r -2. This is expected, since if we look at concentric spheres of 

increasing radius r around the antenna, the total power radiated through the 

sphere remains constant, but the surface area increases with r2. Thus the 

power per unit area must decrease as r-2. We will see shortly that this r-2 

reduction of power with distance is often not valid when there are obstructions 

to free space propagation. 

  Next, suppose there is a fixed receiving antenna at location u = (r, θ, ψ). The 

received waveform (in the absence of noise) in response to the above 

transmitted sinusoid is then 

  

r
crtiffautfEr
)}]/(2exp{),,([),,( −ℜ

=
πψθ                              (3.2) 

Where a(θ, ψ, f) is the product of the antenna patterns of transmitting and 

receiving antennas in the given direction. Again, a(θ, ψ, f) takes into account 
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losses and phase changes at both antennas. We have done something a little 

strange here in starting with the free space field at u in the absence of an 

antenna. Placing a receiving antenna there changes the electric field in the 

vicinity of u, but this is taken into account by the antenna pattern of the 

receiving antenna. Now suppose, for the given u, that we define 

r
cifrfafh )/2exp(),,()( πψθ −

=
)

                                                (3.3) 

    We then have Er(f, t, u) = Real[ĥ(f) exp(2πift)], We have not yet mentioned it 

yet, but (3.1) and (3.2) are both linear in the input. That is, the received field 

(waveform) at u in response to a weighted sum of transmitted waveforms is 

simply the weighted sum of responses to those individual waveforms. Thus, ĥ( 

f ) is the system function for an LTI (linear time invariant) channel, and its 

inverse Fourier transform is the impulse response. For this simple example, 

the channel is described in exactly the same way as the wire line channels 

that we have been dealing with. The only need for understanding 

electromagnetism is to determine what this system function is. We will find in 

what follows that linearity is a good assumption for all the wireless channels 

we consider, but that the time invariance does not hold when either the 

antennas or obstructions are in relative motion.  

 

3.1.2. Free space, moving antenna 
  Next consider the fixed antenna and free space model above with a 

receiving antenna that is moving with velocity v in the direction of increasing 

distance from the transmitting antenna. That is, we assume that the receiving 

antenna is at a moving location described as u(t) = (r(t), θ, ψ)  with r(t) = r0 +vt. 

Using (3.1) to describe the free space electric field at the moving point u(t) (for 

the moment with no receive antenna), we have 

vtr
cvtcrtiffavtrtfE

o

os
o

+
−−ℜ

=+
)}]//(2exp{),,([)),,(,,( πψθ

ψθ                        (3.4) 

Note that we can rewrite f(t–r0/c–vt/c) as f(1–v/c)t – fr0/c. Thus the sinusoid at 

frequency f has been converted to a sinusoid of frequency f(1–v/c); there has 

been a Doppler shift of  –fv/c due to the motion of the observation point. 

Physically, each successive crest in the transmitted sinusoid has to travel a 

little further before it gets observed at this moving observation point. If the 
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antenna is now placed at u(t), and the change of field due to the antenna 

presence is again represented by the receiver antenna pattern, the received 

waveform, in analogy to (3.2), is 

vtr
cfrtcvfifavtrtfE

o

o
or

+
−−ℜ

=+
)}]/)/1((2exp{),,([)),,(,,( πψθ

ψθ                 (3.5) 

    This channel cannot be represented as an LTI channel. If we ignore the 

time varying attenuation in the denominator of (3.5), however, we can 

represent the channel as an LTI system followed by a translation of each 

frequency f by a Doppler shift –fv/c. For narrow band communication around a 

carrier fc, this is essentially a fixed frequency shift of –fcv/c. We will come back 

to discussing the importance of this Doppler shift and of the time varying 

attenuation after considering the next example.  

  The above analysis does not depend on whether it is the transmitter or the 

receiver (or both) that are moving. So long as r(t) is interpreted as the 

distance between the antennas (and the relative orientations of the antennas 

are constant), (3.4) and (3.5) are valid.  

 

3.1.3. Moving antenna, reflecting wall 
  Consider figure 3.1 below in which there is a fixed sending antenna 

transmitting the sinusoid cos(2πft), a mobile receiving antenna, and a single 

perfectly reflecting large fixed wall. We assume that in the absence of the 

receiving antenna, the electromagnetic field at the point where the receiving 

antenna will be placed is the sum of the free space field coming from the 

sending antenna plus a reflected wave coming from the wall. 

 
 

Figure 3.1: Illustration of a direct path and a reflected path 
 

   As before, in the presence of the receiving antenna, the perturbation of the 

field due to the antenna is represented by the antenna pattern. Additional 

assumptions are that the presence of the receiving antenna does not 
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appreciably affect the plane wave impinging on the wall and that the wall is 

large enough that the reflected wave can be modelled as a plane wave. In 

essence, what we are doing is approximating the solution of Maxwell's 

equations by an approximate method called ray tracing. The assumption here 

is that the received waveform can be approximated by the sum of the far field 

wave from the sending transmitter plus a reflected far field wave via each 

reflecting obstacle. 

  In the present situation, if we assume that the wall is very large, the reflected 

wave at a given point is the same (except for a sign change) as the free space 

wave that would exist on the opposite side of the wall if the wall were not 

present (see Figure 3.2). This means that the reflected wave from the wall has 

the intensity of a free space wave at a distance equal to the distance to the 

wall and then back to the cell phone, i.e., 2d – r(t). Taking   r(t) = r0 + vt  again, 

using (3.5) for both the direct and the reflected wave, and assuming the same 

antenna gain a for both waves, 

vtrd
cfdfrtcvfia

vtr
cfrtcvfiatfE

o

o

o

o
r

−−
−++ℜ

−
+

−−ℜ
=

2
)}]/)2()/1((2exp{[)}]/)/1((2exp{[),( ππ      

(3.6) 

 

 
Figure 3.2: Relation of reflected wave to wave without wall. 

The first term, the direct wave, is a sinusoid of slowly decreasing magnitude at 

frequency f(1 – v/c). The second is a sinusoid of smaller but increasing 

magnitude at frequency f(1+v/c). The combination of the two creates a beat 

frequency at fv/c. As an example, if the cell phone is moving at 60 km/hr and f 

= 900MH, this beat frequency is 50Hz. The waveform can be visualized most 

easily when the cell phone is much closer to the wall than to the sending 

antenna. In this case we can approximate the denominator of the second term 

by r0 + vt. Then, combining the exponentials, we get 
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vtr

cfdftia
c

drf
c
fvt

tfE
o

o

r
+

−−ℜ×
−

+
≈

)}]/(2exp{[])(22sin[2
),(

π
π

π
                 (3.7) 

  This is the product of two sinusoids, one at the input frequency f, which is 

typically on the order of GHz, and the other at the Doppler shift fv/c, which 

might be on the order of 50Hz. Thus the response to a sinusoid at f is another 

sinusoid at f whose amplitude is varying with peaks going to zeros every 5 ms 

or so. This is called multipath fading. Note that in (3.6) we are viewing the 

response as the sum of two sinusoids, each of different frequency, while in 

(3.7), we are viewing the response as a single sinusoid of the original 

frequency with a time varying amplitude. These are just two different ways to 

view the same phenomenon. 

  We now see why we have partially ignored the denominator terms in (3.6) 

and (3.7). When the difference between two paths changes by a quarter 

wavelength, the phase difference between the responses on the two paths 

change by π/2, which causes a very significant change in the overall received 

amplitude. Since the carrier wavelength is very small relative to the path 

lengths, the time over which this phase effect causes a significant change is 

far smaller than the time over which the denominator terms cause a significant 

change. The effect of the phase changes is on the order of milliseconds, 

whereas the effect of changes in the denominator is relevant over periods of 

seconds or minutes. In terms of modulation and detection, the time scales of 

interest are in the range of milliseconds and less, and the denominators are 

effectively constant over these periods of interest. 

 The reader might notice that we are constantly making approximations in 

trying to understand wireless, much more so than for wired communication. 

This is partly because the standard LTI assumptions of wired communication 

are taught from the sophomore year on, and questioning those assumptions is 

rarely necessary. The wireless systems here are typically time varying, and 

appropriate models depend very much on the time scales of interest. For 

wireless systems, the most important issue is what approximations to make. 

Solving and manipulating equations is far less important. Thus it is important 

to understand these modeling issues thoroughly. 
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3.1.4. Reflection from a Ground Plane 
  Consider a transmitting and receiving antenna, both above a plane surface 

such as a road (see figure 3). If the angle of incidence between antenna and 

road is sufficiently small, then even a dielectric will reflect most of the incident 

wave, with a sign change. When the horizontal distance r between the 

antennas becomes very large relative to their vertical displacements from the 

ground plane, a very surprising thing happens. In particular, the difference 

between the direct path length and the reflected path length goes to zero as r-

1 with increasing r. 

 

 
 

Figure 3.3: Illustration of a direct path and a reflected path of a ground plane. 

 

When r is large enough, this difference between the path lengths becomes 

small relative to a wavelength c/f. Since the sign of the electric field is 

reversed on the reflected path, these two waves start to cancel each other 

out. The electric wave at the receiver is then attenuated as r-2, and the 

received power goes down as r-4. What this example shows is that the 

received power can decrease with distance considerably faster than r-2 in the 

presence of disturbances to free space. This situation is particularly important 

in rural areas where base stations tend to be placed on roads. Note, however, 

that the way the power decreases with distance is both helpful and harmful. It 

is helpful in reducing the interference between adjoining cells, but it is harmful 

in reducing the coverage of cells. As cellular systems become more popular, 

however, the major determinant of cell size is the number of cell phones in the 

cell. The size of cells has been steadily decreasing, and one talks of micro 

cells and pico cells as a response to this effect. 

 

3.1.5. Shadowing 
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  Shadowing is a phenomenon that occurs when partially absorbing materials 

lie between the sending and receiving antenna. This is called shadowing 

because it is similar to the effect of clouds partly blocking sunlight. Shadowing 

occurs when cell phones are inside buildings and the electromagnetic wave 

must pass through building walls. It also occurs when an outside cell phone is 

temporarily shielded from the base station by a building or some other 

structure. 

The effect of shadow fading differs from multipath fading in two important 

ways.  

• First, the duration of a shadow fade lasts for multiple seconds or minutes. 

For this reason, shadow fading is often called slow fading and multipath 

fading is called fast fading. 

•  Second, the attenuation due to shadowing is exponential in the width of 

the barrier that must be passed through. Thus the overall attenuation contains 

not only the r-2 effect of free space transmission, but also the exponential 

attenuation over the depth of the obstructing material. 

 

3.1.6. Moving antenna, multiple reflectors 
   Dealing with multiple reflectors, under the assumption of ray tracing, is in 

principle simply a matter of modeling the received waveform as the sum of 

many responses from different paths rather than just two paths. We have 

seen enough examples, however, to understand that finding the magnitude 

and phase of these responses is no simple task. Even for the very simple 

large wall assumed in figure 3.1, the reflected field calculated in (3.6) is valid 

only at small distances from the wall relative to the dimensions of the wall. At 

very large distances, the total power reflected from the wall is proportional to 

both d-2 and to the cross section of the wall. The part of this reaching the 

receiver is proportional to           (d _ r(t))-2. Thus the power attenuation from 

transmitter to receiver (for the large distance case) is proportional to [d (d _ 

r(t)]-2 rather than to [2d _ r(t)]-2. This shows that ray tracing must be used with 

some caution. Fortunately, however, linearity still holds in these more complex 

cases. Another type of reflection is known as scattering and can occur in the 

atmosphere or in reflections from very rough objects. Here there are a very 
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large number of individual paths, and the received waveform is better 

modeled as an integral over infinitesimally small paths rather than as a sum. 

  Knowing how to find the amplitude of the reflected field from each type of 

reflector above is an important topic if our objective is trying to determine 

where to place base stations, since this type of analysis is helpful in 

determining the coverage of a base station (although ultimately 

experimentation is necessary). Studying this in more depth, however, would 

take us too far into electromagnetic theory. In addition, we are primarily 

interested in questions of modulation, detection, multiple access, and network 

protocols rather than location of base stations. Thus, we turn our attention to 

understanding the nature of the aggregate received waveform, given a 

representation for each reflected wave. Thus we turn to modeling the 

input/output behavior of a channel rather than the detailed response on each 

path. 
 

3.2 INPUT/OUTPUT MODEL FOR WIRELESS CHANNELS 
  Now we will derive the input/output model for wireless channel and show that 

the multipath effects can be modeled as a linear time varying system. Then 

we obtained the baseband representation of this model. The continuous time 

model is sampled to obtain a discrete time model. Finally we add noise in our 

model.   

   Suppose a transmitting antenna sends a sinusoid, cos(2πft), which is 

received at a receiving antenna after reflection from some intermediate object. 

The response will be a function of each antenna pattern and of the 

intermediate object's reflection pattern. In addition, there will be an attenuation 

factor that is a function of the distance from transmitting antenna to reflector 

and from reflector to receiving antenna. To describe this path in terms of an 

input/output relationship between transmitter and receiver, we simply multiply 

all of these attenuation terms together as a single attenuation factor αj (t) at 

time t from transmitter to receiver via a given path j. For the example of a 

perfectly reflecting wall in the previous section, then, 

                                   
vtr

t
o +

=
α

α )(1  ,  
vtrd

t
o −−

=
2

)(2
α

α                         

(3.8) 
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  Where the first expression is for the direct path and the second for the 

reflected path. Similarly, we define τj (t) as the propagation delay on path j 

from transmitter to receiver. Thus, for the reflecting wall example, 

f
f

c
vtrt o

π
φτ
2

)()( 1
1

∠
−

+
=  ,  

f
f

c
vtrdt o

π
φτ
2

)(2)( 2
2

∠
−

−
=

−                       (3.9) 

The term ∠фj(f) here is to account for possible phase changes at the 

transmitter, reflector, and receiver. For the example here, there is a phase 

reversal at the reflector so we can take ф1 = 0 and ф2 = π. With these 

definitions, the response to a sinusoid for the reflecting wall example can be 

expressed as 

))}]((2exp{)([))}]((2exp{)([),( 2211 ttfitttfittfEr τπατπα −ℜ+−ℜ=                 (3.10) 

For an arbitrary number k of paths, this expression becomes 

∑
=

−ℜ=
k

j
jjr ttfittfE

1
))}]((2exp{)([),( τπα                                        (3.11) 

In the previous lecture, our focus was on the electromagnetic effects which 

give rise to time varying attenuation and path delay (along with the very notion 

of multiple propagation paths). Today, we abstract from these electromagnetic 

effects to study their effect on communication. The attenuations and path 

delays are now taken as given and we want to find an input/output 

characterization of the channel. We will use the physical mechanisms to get 

some order-of-magnitude sense of how the parameters vary with time, but 

otherwise, we simply explore the consequences of the assumed sinusoidal 

response in (3.11). 

The effect of the Doppler shift is not immediately evident in (3.11). Recall that 

the Doppler shift Dj on path j is defined as –fvj/c where vj is the velocity at 

which the path length is changing. Thus we can express τj (t) in (3.9) as 

f
tDt j

jj −′= ττ )(                                                         (3.12) 

Here τ'j is assumed to be constant with respect to both t and f. Dj is linearly 

increasing in f, so that Dj / f is not a function of f, and thus τj(t) is also 

independent of f. The attenuations in (3.11) are usually slowly varying 

functions of frequency. These variations follow from the time-varying path 

lengths (as in (3.8)) and also from frequency dependent antenna gains. For 
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bands that are narrow relative to the carrier frequency, we can safely omit this 

frequency dependence. As we see later, however, there is an important 

frequency dependence in (3.11) that arises from multiple paths at different 

delays and Doppler shifts. The behavior of (3.11) does not depend critically on 

the number of paths, k, so this will be suppressed from now on. 
 

3.2.1 Time-varying System Functions 
  We now derive a time-varying system function and then a time-varying 

impulse response for the above channel; the procedure is quite similar to that 

for linear time invariant (LTI) channels. View (3.11) as giving the response to 

sinusoids at arbitrary frequencies (within the band of interest). Define the 

time-varying system function ĥ(f, t) as 

∑=
j

jj tfittfh )}(2exp{)(),(ˆ τπα                                             (3.13) 

Substituting this in (3.11), we see that the response to an input cos(2πft) is  

}]2exp{),(ˆ[ ftitfh πℜ . More generally, the response to an input cos(2πft +ф) is 

}]2exp{),(ˆ[ φπ +ℜ ftitfh . As usual with system functions, it is convenient to 

define     ĥ(f, t) for negative frequencies as ĥ(f, t)= ĥ*(f, t). We can then view 

the response to an input exp(i2πft)  as ĥ(f, t)exp(i2πft) for both f>0 and f<0. Using 

linearity, the response to a weighted sum of sinusoids, say 

∑=
k

kk tfixtx }2exp{)( π  

∑=
k

kkk tfitfhxty }2exp{),(ˆ)( π                                           (3.14) 

We can represent any input x(t) (in the frequency band of interest) by a 

Fourier transform 

∫
∞

∞−

= dfftifxtx )2exp()(ˆ)( π   ;   ∫
∞

∞−

−= dtftitxfx )2exp()()(ˆ π  

Using linearity on a continuum of sinusoids in the same way as on the sum in 

(3.14), the response to  ∫
∞

∞−

= dfftifxtx )2exp()(ˆ)( π  is 

∫
∞

∞−

= dfftitfhfxty )2exp(),(ˆ)(ˆ)( π                                             (3.15) 
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   There is a temptation here to blindly imitate the theory of LTI linear systems 

and to confuse the Fourier transform of y(t), namely ŷ(f), with ),(ˆ)(ˆ tfhfx . This 

is wrong mathematically whenever ĥ(f, t) is a non-constant function of t; this 

dependence on t prevents taking the Fourier transform of (3.8) in any 

straightforward way. 

Confusing ŷ(f), with ),(ˆ)(ˆ tfhfx  is also wrong physically. The response, for a 

given f, to )2exp()(ˆ ftifx π  is )2exp(),(ˆ)(ˆ ftitfhfx π . This is a narrow band 

waveform rather than a sinusoid because of Doppler shifts. This means that 

ŷ(f) at a given f also depends on )(ˆ fx ′  over a range of f ′ . 

Finally, confusing ŷ(f), with ),(ˆ)(ˆ tfhfx  is non sensical, because  ŷ(f) is not a 

function of  t and ),(ˆ)(ˆ tfhfx  is. 
 

3.2.2. The Impulse Response and the Convolution Equation 
   Fortunately, (3.15) can still be used to derive a very satisfactory form of 

impulse response and convolution equation. Define the time-varying impulse 

response h(τ, t) as the inverse Fourier transform (in τ) of ),(ˆ tfh ,  where t is 

viewed as a parameter. In particular, 

∫
∞

∞−

= dffifhth )2exp(),(ˆ),( τπττ   ;   ∫
∞

∞−

−= ττπτ dfithtfh )2exp(),(),(ˆ              (3.16) 

Intuitively, we regard ĥ(f, t) as a system function that is slowly changing with t, 

and view h(τ, t) as a channel filter whose impulse response (as a function of τ ) 

is slowly changing with t. If we substitute the second part of (3.16) into (3.15) 

∫∫
∞

−∞=

∞

−∞=

−=
τ

ττπτ dfdtfithfxty
f

))(2exp(),()(ˆ)(                             (3.17) 

Interchanging the order of integration and recognizing the integration over f as 

the inverse Fourier transform of )(ˆ fx , we get the convolution equation for 

time-varying filters, 

∫
∞

∞−

−= τττ dthtxty ),()()(                                                (3.18) 

This expression is really quite nice. It says that the effect of mobile users, 

arbitrarily moving reflectors and absorbers, and all of the complexities of 

solving Maxwell's equations, finally reduce to an input/output relation between 
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transmit and receive antennas which is simply represented as the impulse 

response of a linear time varying channel filter. That is, h(τ, t) is the response 

at time t to an impulse at time t – τ . If h(τ, t) is a constant function of t, then this 

is the conventional LTI impulse response. 

  For the particular form of ĥ(f, t) in (3.13), the inverse transform h(τ, t) is 

∑ −=
j

jj ttth )]([)(),( ττδατ                                               (3.19) 

Where δ is the Dirac impulse function. These idealized, non-physical, 

impulses arise here because of our earlier assumption that αj(t) and τj(t) are 

not functions of frequency, which we justified by our interest only in inputs 

over a narrow band of frequencies around some carrier fc. Physically, these 

delta functions arose from viewing reflectors solely through the ray tracing 

approximation and by ignoring the frequency attenuation of the antennas. We 

can see in (3.13) that if )(ˆ fx  is limited to a given band, then it makes no 

difference what ),(ˆ tfh  is outside of that band. In the same way, if the 

impulses in (3.19) were filtered to eliminate the out-of-band components, the 

response to a band-limited input would remain the same. To see this more 

clearly, we can substitute (3.19) into (3.18), getting 

∑ −=
j

jj ttxtty )]([)()( τα                                              (3.20) 

Note that if )}({ tjττδ − (t) in (3.19) were replaced with a sinc function centered 

on τj(t) with a bandwidth wider than of x(t), then the response in (3.20) would 

not be changed. Perhaps more to the point, if we used a more elaborate 

electromagnetic model, the response from the jth path would be a linear time 

varying filter in its own right, so that the overall response would again be a 

linear time-varying filter. 
 

3.3   PARAMETERS OF MOBILE MULTIPATH CHANNELS 
  Recall from previous section that significant changes in αj occur over periods 

of seconds or more. Significant changes in the phase for each path occur at 

intervals of 1/(2D), where D is the Doppler spread for the channel. Multipath 

fading occurs because different paths have different Doppler shifts [7]. Typical 

intervals for such changes are on the order of 10msec.Thus, the fastest 
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changes in the filter taps occur because of the phase changes, and these are 

significant over delay changes of 1/(2D). So there has to be some 

formulization for these. 
 

3.3.1   Coherence time 
  The time coherence, Tc, of a narrowband wireless channel was defined (in 

an order of magnitude sense) as the interval over which h(t,τ) changes 

significantly. What we have found, then, is the important relation. 

Tc  = 1/4D                                                          (3.21) 

This is a somewhat imprecise relation, since different paths have different 

Doppler shifts, and the largest Doppler shifts may belong to paths that are too 

weak to make a difference.  
 

3.3.2   Multipath Delay Spread 
Another important general parameter of a wireless system is the multipath 

delay spread, Td, defined as the difference in propagation time between the 

longest and shortest path, where we assume, in all of the above sums over 

different paths, that only the significant paths are included [7]. Thus, 

)(min)(max jjjjdT ττ −=                                                  (3.22) 

3.3.3   Coherence Bandwidth 
   There is one additional gross mechanism called frequency coherence. 

Wireless channels change both in time and frequency. The time coherence 

shows us how quickly the channel changes in time, and similarly, the 

frequency coherence shows how quickly it changes in frequency. We first 

understood about channels changing in time, and correspondingly about the 

duration of fades, by studying the simple example of a direct path and a single 

reflected path. That same example shows us how channels change with 

frequency. For a particular path, αj has linear phase in f [8]. For multiple paths, 

there is a differential phase, 2πf( ))()((2 ttf kj ττπ − . This differential phase 

causes frequency selective fading (equalization is required for frequency 

selective fading) in frequency. 

   This says that not only does Er(f; t) change significantly when t changes by 

1/(2D), but also when f changes by 1/2Td. This argument extends to an 

arbitrary number of paths, so the coherence, bandwidth Fc is given by 
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Fc = 1/ 2Td                                                          (3.23) 

This relationship, like (3.19) is intended as an order of magnitude relation, 

essentially pointing out that frequency coherence is reciprocal to multipath 

spread. When the bandwidth of the input is considerably less than Fc, the 

channel is usually referred to as at frequency flat fading, and, in essence, a 

single channel filter tap is sufficient to represent the channel (no equalization 

required). Note that flat fading is not a property of the channel alone, but of 

the relationship between W and Fc. 
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CHAPTER  4 

 

MODULATION, MATCH FILTERING 

AND PULSE SHAPING 
 
 
   Many information bearing signals are transmitted by some type of carrier 

modulation. The channel over which the signal is transmitted is limited in 

bandwidth to an interval of frequencies centered about the carrier, as in 

double sideband modulation Signals and channel which satisfy the condition 

that their bandwidth is much smaller than the carrier frequency are termed 

narrow bandpass signals and channels. The modulation performed at the 

transmitting end of the communication system to generate the bandpass 

signal and the modulation performed at the receiving end to recover the digital 

information involves the frequency translations. With no loss in generality and 

mathematical convenience, it is desirable to reduce all the bandpass signals 

and channels to equivalent lowpass signals and channels [8].  This leads to 

the complex envelop representation of real bandpass signals.                
 

4.1   COMPLEX ENVELOP REPRESENTATION 

   The real-valued signal x(t) is a passband signal when its nonzero Fourier 

transform is near cω , as in Figure 4.1. Passband signals never have DC 

content, so X(0) = 0.  A carrier modulated signal is any passband signal that 

can be written in the following form 

))(cos()()( tttatx c θω +=                                                (4.1) 

where a(t) is the time-varying amplitude or envelope of the modulated signal 

and θ(t) is the time-varying phase. cω  is called the carrier frequency (in 

radians/sec). The carrier frequency cω  is chosen sufficiently large compared 

with the amplitude and phase variations of a(t) so that the power spectral 
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density does not have significant energy at ω = 0. See Figure 4.1, wherein the 

spectrum of X(ω ) is concentrated in the passband highlow ωωω << . In digital 

communication, x(t) is equivalently written in quadrature form using the 

trigonometric identity              cos(u + v) = cos(u) cos(v) – sin(u) sin(v), leading to a 

quadrature decomposition. The quadrature decomposition of a carrier 

modulated signal is 

)sin()cos()()( txttxtx cQcI ωω −=                                      (4.2) 
 

 
 

Figure 4.1: Fourier spectrum of Bandpass signal  
 

where ))(cos()()( ttatxI θ=  is the time-varying inphase component of the 

modulated signal, and ))(sin()()( ttatxQ θ=  is the time-varying quadrature 

component. Relationships determining a(t), θ(t) from )()( txtx QI −  are 

)()()( 22 txtxta QI +=                                                     (4.3) 

⎥
⎦

⎤
⎢
⎣

⎡
= −

)(
)(

tan)( 1

tx
tx

t
I

Qθ                                                         (4.4) 

In equation 4.4, the inverse tangent is taken with the polarities of the 

numerator and denominator independently known, so there is no quadrant 

ambiguity in computing θ(t). In passband processing and analysis, the 

objective is to eliminate explicit consideration of the carrier frequency cω and 

directly analyze systems using only the inphase and quadrature components. 

These inphase and quadrature components can be combined into a two-

dimensional vector, or into an equivalent complex signal. By convention, a 

graph of a quadrature-modulated signal plots the inphase component along 

the real axis and the quadrature component along the imaginary axis as 



Simulation Of QPSK Transceiver 

 

lix

shown in figure 4.2. The resultant complex vector )(txbb  is known as the 

complex baseband-equivalent signal. The complex baseband-equivalent 

signal for x(t) in equation 4.1 is  

)()()( txjtxtx QIbb +=                                                      (4.5) 
 

 
 

Figure 4.2: Decomposition of baseband-equivalent signal. 
 

   The baseband-equivalent signal expression no longer explicitly contains the 

carrier frequency cω  Another complex representation that does explicitly 

contain cω  is the analytic equivalent signal for x(t). The analytic-equivalent 

signal for x(t) in equation 4.1 is 
tj

bbA
Cetxtx ω)()( =                                                       (4.6) 

The original real-valued passband signal x(t) is the real part of the analytic 

equivalent signal 

[ ])()( txtx Aℜ=                                                          (4.7) 

The Hilbert transform of x(t), denoted by )(tx( , is the imaginary part of the 

analytic signal as 

[ ])()( txtx Aℑ=(                                                         (4.8) 

Finally, the inphase component )(txI  and the quadrature component )(txQ  

can be expressed using the signal x(t) and its Hilbert transform )(tx(  as (using 

tj
AQIbb

Cetxtxjtxtx ω)()()()( =+= : 

)sin()()cos()()( ttxttxtx ccI ωω (+=                                       (4.9) 

)sin()()cos()()( ttxttxtx ccQ ωω (−=                                    (4.10) 

4.1.2   Spectrum of Analytic and Baseband-Equivalent Signals 
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   Using equations 4.7 and 4.8 the analytic signal is represented as shown in 

figure 4.3 

)()()( txjtxtx QIA +=                                                    (4.11) 

Taking the Fourier Transform of both sides of equation 4.11 yields 

[ ]

⎪
⎩

⎪
⎨

⎧

<
==

>
=

+=

00
00)0(

0)(2
)()sgn(1)(

ω
ω

ωω
ωωω

X
X

XX A

                                    (4.12) 

 

 
 

Figure 4.3: Complex baseband signal recovery from real passband signal 
 

   The analytic equivalent signal, )(tx A , contains only the positive frequencies 

of x(t) and is identically zero for negative frequencies. The Fourier transform 

X(ω ) of the real signal x(t) has two symmetry properties. The real part [ ])(ωXℜ  

is even inω , while the imaginary part [ ])(ωXℑ  is odd inω . Knowledge of only 

the non-negative frequencies of X(ω ), such as are supplied by the analytic 

signal, is sufficient for reconstruction of X(ω ). Thus, one confirms that the 

analytic signal )(tx A  is truly equivalent to the original signal x(t). Using 

equation 4.6, the Fourier transform of the baseband equivalent signal is 

simply the Fourier transform of the analytic signal translated in frequencyω . 

Thus 

)()( cbbA XwX ωω −=                                                  (4.13) 

)()( cAbb XwX ωω +=                                                 (4.14) 

   Use of equations 4.6 and 4.7 allows reconstruction of the signal x(t) from the 

baseband equivalent signal )(txbb  and the carrier frequency cω . The 

baseband equivalent signal, in general, may be complex-valued, and thus as 

)(tx(
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shown in figure 4.4 the spectrum of )(txbb  may be asymmetric about the 

originω  = 0 

 
Figure 4.4: Baseband signal spectrum. 

 

4.1.2   Generation of the baseband equivalent 
   To generate the baseband equivalent of a signal, the structure in figure 4.3 
is used, where the second complex multiply simply is 4 real multiplies using 

Euler’s formula )sin()cos( tjte cc
tj C ωωω += . The first multiply by j alone is, of 

course, symbolic and simply means that the receiver processing views the 

signal on that path as the imaginary part in complex arithmetic. 
 

4.2   DIGITAL BANDPASS MODULATION 
   Digital modulation is the process by which digital symbols are transformed 

into waveforms that are compatible with the characteristics of the channel and 

demodulation is the reverse process of again recovering the original 

message. In the case of baseband modulation, these waveforms usually take 

the form of shaped pulses. But in the case of bandpass modulation the 

shaped pulses modulate a sinusoid called a carrier wave, or simply a carrier; 

for radio transmission the carrier is converted to an electromagnetic (EM) field 

for propagation to the desired destination [14].  

   The modulating process transforms the low frequency baseband signal to a 

bandpass signal around a carrier frequency as sketched in figure 4.5. The 

bandpass signal is the one actually transmitted to the receiver where the 

demodulator reconstructs the low-frequency baseband message. 
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Figure 4.5: Power spectra for signals in the modulation and demodulation processes. 
 

Bandpass modulation (either analog or digital) is the process by which an 

information signal is converted to a sinusoidal waveform; for digital 

modulation, such a sinusoid of duration T is referred to as a digital symbol. 

The sinusoid has just three features that can be used to distinguish it from 

other sinusoids: amplitude, frequency, and phase. Thus bandpass modulation 

can be defined as the process whereby the amplitude, frequency, or phase of 

an RF carrier, or a combination of them, is varied in accordance with the 

information to be transmitted. The general form of the carrier wave is 

                                     )(cos)()( ttAts θ=                                                   (4.15) 

where A(t) is the time-varying amplitude and θ(t) is the time-varying angle. It is 

convenient to write 

)()( ttt O φωθ +=                                                   (4.16)     

so that 

[ ])(cos)((( tttAts φω ο +=                                               (4.17) 

Where WO is the radian frequency of the carrier and φ(t) is the phase. The 

terms f and ω will each be used to denote frequency. When f is used, 

frequency in hertz is intended; when ω is used, frequency in radians per 

second is intended. The two frequency parameters are related by ω = 2π f. 
 

4.2.1   Phase Shift Keying 
   Under phase-shift keying (PSK), the information bits determine the phase of 

a carrier, which takes values from a discrete set in accordance with the 

information bits. The general form of PSK signals is given by 
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MiTttt
T
Ets ici ,,2,1,0)cos(2)( K=≤≤+= θω          (4.18) 

where the phase term, θi , will have M discrete values, typically given by 

Mi
M

i
i ,,2,1

2
K==

π
θ                                                 (4.19) 

∫=
T

dttsE
0

2
0 )(                                                          (4.20) 

is the signal energy (the same for all signals). We will assume that the signal 

is bipolar rectangular pulse of duration T until the discussion about pulse 

shaping. Equation 4.18 can be re-written in a slightly different form as 

[ ])()sin()()cos(

)2sin(2)sin()2cos(2)cos()(

21 ttE

t
T

t
T

Ets

ii

cicii

φθφθ

πωθπωθ

−=

⎥
⎦

⎤
⎢
⎣

⎡
−=                (4.21) 

where )(1 tφ  and )(2 tφ  are easily seen to be orthonormal. Thus, PSK signals 

are points in a two-dimensional space spanned by )(1 tφ and )(2 tφ  [14]. 
 

4.2.2   QPSK Transmitter 
   For the binary PSK M = 2 this means that modulating data signal shifts the 

phase of the waveform )(tsi  to one of the two states either zero or π . 

Similarly for quadriphase or quadrature shift keying M = 4 and the waveform 

)(tsi shifts the phase to one of 4 pahses separated by π/4. The constellation 

diagram for QPSK signal using relation in equation 4.21 is shown in figure 4.6. 
 

 
Figure 4.6: QPSK Constellation diagram 
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   The illustrated constellation mapping in figure 6, known as Gray coding, has 

the property that adjacent signals are assigned binary sequences that differ in 

only one bit. This is desirable in practice, because, when a detection error is 

made, it is more likely to be to a signal adjacent to the transmitted signal. 

Then Gray coding results in a single bit error for the most likely signal errors. 

QPSK is also a real bandpass signal and using the complex baseband 

envelop representation of real bandpass signals the baseband representation 

of QPSK is 
tj

AQIbb
Cetstsjtsts ω)()()()( =+=                                                    (4.22) 

where 

)sin()()cos()()( ttsttsts ccI ωω (+=  

)sin()()cos()()( ttsttsts ccQ ωω (+=  

are the inphase and quadrature phase components of )(ts i . The relation 

between )(ts i  and )(tsbb  is given as 

[ ] [ ])()()( tsetsts A
tj

bbi
c ℜ=ℜ= ω                                        (4.23) 

Using the above relation the QPSK constellation using the complex baseband 

representation is redrawn in figure 4.7. 

 
 

Figure 4.7: QPSK Constellation diagram for complex baseband representation. 
 

   Now using the complex baseband representation the QPSK transmitter is 

drawn in figure 4.8. QPSK lookup table in figure 4.8 is simply the assignment 

of one phase to each of four symbols. Transmit filter is a filter which shapes 

the bitstream to a waveform. After constellation mapping we are having only 

phase as shown in table below. It is the transmit filter which convert them in a 

waveform We will discuss it later. 
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Table 4.1: QPSK lookup table 

 

 

 

 
Figure 4.8: QPSK Transmitter 

To recover the analytic signal from the received real QPSK signal same 

approach is used which is described in figure 4.3.  

 

4.2.3   QPSK Detection 

    There are two approaches for detection of any modulated signal. One is 

called coherent detection and other is called non-coherent detection. When 

the receiver exploits knowledge of the carrier's phase to detect the signals, 

the process is called coherent detection; when the receiver does not utilize 

such phase reference information, the process is called no coherent 

detection. In ideal coherent detection, there is available at the receiver a 

prototype of each possible arriving signal. These prototype waveforms 

attempt to duplicate the transmitted signal set in every respect, even RF 

phase. The receiver is then said to be phase locked with the incoming signal. 

While for non-coherent detection the there is no need for the receiver to be 

phase locked with the transmitter because the phase information is provided 

to the receiver by differentially encoding the symbols at the receiver. Thus the 

receiver design is simplified. 

Symbol Phase 

00 4/πje  

01 4/πje−  

10 4/3πje  

11 4/3π−je  



Simulation Of QPSK Transceiver 

 

lxvi

   We are not using the differential encoding, so we will only discuss the 

coherent detection. In coherent detection the receiver has the decision 

regions as shown in figure 4.9.  

 
 

Figure 4.9: Decision regions for QPSK signal 

If the symbol is in region 1 then the receiver makes the decision that it is 00 

and so on. The receiver structure is shown in figure 4.10. After recovering the 

complex baseband signal from the real received signal we have to determine 

only the phase and according to that phase we have to select that particular 

region in which phase is lying. After selecting the region the only job left is to 

recover the two bits which conveyed by the phase using the same lookup 

table as shown before. We will discuss the receive filter later.             
 

 
 

Figure 4.10: QPSK Receiver structure 
 

   So far we have explained complex envelop representation of bandpass 

signals and QPSK modulation/demodulation. From now on we will not use the 
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receiver structure explained above but only the complex baseband part will be 

used. The frequency translation part will be removed because it the same for 

all. The baseband receiver structure is given in figure 4.11. 
 

 
 

Figure 4.11: Baseband model for QPSK communication system    

4.3   DETECTION IN ADDITIVE WHITE GAUSSIAN NOISE (AWGN)    
 

4.3.1   Additive White Gaussian Noise 
   So far we have assuming the ideal channel because we are receiving the 

same signal which we are transmitting. But this will never happen in practice. 

There are many sources of noise which corrupt the transmitted signal like 

galaxy and atmospheric noise, switching transients, interfering signals from 

other sources and many many more sources. With proper precautions much 

of the noise and interference entering the receiver can be reduced or even 

eliminated. However there is one noise source that cannot be eliminated and 

that is the noise caused by the thermal motion of electrons in any conducting 

media. This motion produces thermal noise in amplifiers and circuits and 

corrupts the signal. 

   The noise can be thought as a random process. Any random process can 

be modelled statistically using normal or Gaussian. An important case of a 

random signal is the case where the autocorrelation function is a dirac delta 

function which has zero value everywhere except when τ = 0. In other words, 

the case where 
 

⎩
⎨
⎧ =

=
elsewhere
forN

Rx 0
0

)( 0 τ
τ                                                          (4.24) 
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where Rx(τ) is the auto-correlation function of a random variable x(t) and N0 is 

any constant. The auto-correlation at τ = 0 is also called the power of the 

signal. The Fourier transform of auto-correlation function is called as the 

power spectral density and power spectral density for noise is 

2
)()( 0N

deRS j
xx == ∫

∞

∞−

− ττω τω                                          (4.25) 

In this special case where the autocorrelation is a “spike” the Fourier 

transform results in a constant frequency spectrum as shown in figure 4.12. 
This is in fact a description of white noise, which be thought of both as having 

power at all frequencies in the spectrum, and being completely uncorrelated 

with itself at any time except the present (τ = 0). This latter interpretation is 

what leads white noise signals to be called independent. Any sample of the 

signal at one time is completely independent (uncorrelated) from a sample at 

any other time. While impossible to achieve or see in practice (no system can 

exhibit infinite energy throughout an infinite spectrum), white noise is an 

important building block for design and analysis. Often random signals can be 

modeled as filtered or shaped white noise. Literally this means that one could 

filter the output of a (hypothetical) white noise source to achieve a non-white 

or colored noise source that is both band-limited in the frequency domain, and 

more correlated in the time domain. 

 

 
Figure 4.12: White noise shown in both the time (left) and frequency domain (right). 

 

From above it is clear why thermal noise is called Additive white Gaussian 

noise (AWGN). Additive because it adds in the signal not multiplies. White 

because it has the same power for all the frequencies. Gaussian because it 

can be modelled using Gaussian or normal distribution and power for any 

normally distributed random variable is 2
0σ , where 2

0σ  is the variance of the 
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random variable. 

 

4.3.2   SNR Maximization with a Matched Filter 
   SNR is a good measure for a system’s performance, describing the ratio of 

signal power (message) to unwanted noise power. The SNR at the output of a 

filter is defined as the ratio of the modulated signal’s energy to the mean-

square value of the noise. The SNR can be defined for both continuous- and 

discrete-time processes; the discrete SNR is SNR of the samples of the 

received and filtered waveform. A matched filter is a linear filter designed to 

provide the maximum signal-to-noise power ratio at its output for a given 

transmitted symbol waveform. It is called match filter because it impulse 

response exactly matches with the impulse response of the transmitted 

signal1 [14]. It will be proved now. 

   Consider that a known signal s(t) plus AWGN n(t) is the input to a linear, 

time-invariant (receiving) filter followed by a sampler, as shown in Figure 4.13. 

Actually the receive filter is replaced with match filter. At time t = T, the 

sampler output z(T) consists of a signal component ai and a noise component 

n0 . 

z (T) = ai + n0                                                       (4.26) 

 The variance of the output noise (average noise power) is denoted by 2
0σ , so 

that the ratio of the instantaneous signal power to average noise power. 

(S/N)T. at time t = T, out of the sampler in step 1, is 

                   2

2

O

i

T

a
N
S

σ
=⎟

⎠
⎞

⎜
⎝
⎛

                                                         (4.27) 

 

Figure 4.13: QPSK receiver with sampler at symbol rate T and match filter 
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   We wish to find the filter transfer function Ho(f) that maximizes equation 4.27. 

We can express the signal ai(t) at the filter output in terms of the filter transfer 

function H(f) (before optimization) and the Fourier transform of the input 

signal,  

                 ∫
∞

∞−

= dfefSfHta Tfj
i

π2)()()(                                             (4.28) 

   where S(f) is the Fourier transform of the input signal, S(t). If the two-sided 

power spectra} density of the input noise is No/2 watts/hertz, then, we can 

express the output noise power as              

                 dffH
N o

o

2
2 )(

2 ∫
∞

∞−

=σ                                              (4.29) 

We then combine equations 4.27 to 4.29 to express (S/N)T. as follows 
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                                            (4.30) 

We next find that value of H(f) = Ho(f) for which the maximum (S/N)T is 

achieved, by using Schwarz's inequality. One form of the inequality can be 

stated as 

    dxxfdxxfdxxfxf i

2

2

2

1

2

2 )()()()( ∫∫∫
∞

∞−

∞

∞−

∞
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≤                            (4.31) 

The equality holds if f1(x) = kf*2(x) where k is an arbitrary constant and * 

indicates complex conjugate. If we identify H(f) with f1(x) and S(f) eTf�j2 with 

f2(x), then 

         dffSdffHdfefSfH Tfj
2

2
2
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≤π                          (4.32) 

Substituting into Equation 4.30 yields 

                      dffS
NN

S
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∞

∞−
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⎜
⎝
⎛                                            (4.33) 

Where the energy E of the input signal S(t) is 

                      dffSE
2

)(∫
∞

∞−

=                                               (4.34) 

Thus, the maximum output (S/N)T depends on the input signal energy and the 

power spectral density of the noise, not on the particular shape of the 
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waveform that is used. The equality in Equation 4.33 holds only if the optimum 

filter transfer function HO(f) is employed, such that 

               Tfj
O efkSfHfH π2)(*)()( −==                                           (4.35) 

                { }TfjefkSth π21 )(*)( −−ℑ=                                            (4.36) 

Since S(t) is a real-valued signal, we can write, 
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)(                                        (4.37) 

Thus, the impulse response of a filter that produces the maximum output 

signal-to-noise ratio is the mirror image of the message signal s(t), delayed by 

the symbol time duration T. Note that the delay of T seconds makes Equation 

4.37 causal; that is, the delay of T seconds makes h(t) a function of positive 

time in the interval 0 < t < T as shown in figure 4.14. Without the delay of T 

seconds, the response s(–t) is unrealizable because it describes a response 

as a function of negative time.  

 
 

Figure 4.14: Impulse responses of received signal and match filter  
 

   The above mathematical discussion proves that if the impulse responses of 

the received signal and the match filter are mirror images of each other then 

at t=T the SNR is maximized. Actually the convolution with itself is a process 

of integration. By match filtering we are actually integrating the received 

signal. AWGN is a zero mean random variable. By averaging we are trying to 

force it to zero. It can be verified that as T approaches ∞  the noise averaged 

to zero.    

The QPSK receiver with match filter can be redrawn in figure 4.15.    
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Figure 4.15: QPSK receiver with match filter 

 
4.4   INTERSYMBOL INTERFERENCE AND PULSE SHAPING  
    The spreading and smearing of symbols such that the energy from one 

symbol effects the next ones in such a way that the received signal has a 

higher probability of being interpreted incorrectly is called inter symbol 

interference (ISI). 

  Let’s assume that the transmit filter has a impulse response of a rectangular 

pulse as shown. We know that the frequency response of rectangular pulse is 

a sinc function which is from [ ∞∞− , ].  This means that it has infinite 

bandwidth which is not the requirement and also the rectangular pulse is not 

possible to design practically.   

 
 

Figure 4.16: Time and frequency response of rectangular pulse 
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   Another solution is that we used the sinc in time domain because it has a 

gate function in frequency domain which has very pleasant from bandwidth 

requirement. But the problem is that the impulse response of one pulse has 

infinite length. But the sinc pulse is passing through zero after every multiple 

of T as shown above. Now if we transmit the successive pulses such that a 

pulse has its max peak value when the others are passing through zero. In 

this case we may have ISI at the other time but this will ensure that there is no 

ISI at the multiples of symbol interval as shown in figure 4.16.  

Sinc pulse has problem that it is also impractical to design and also it has 

infinite impulse response. A single pulse is affecting all the pulses before or 

after it. Slight misadjustment in time will result in effecting all the pulses.  

     

 
 

Figure 4.17: pulse shaping using sinc. 
 

Nyquist offered ways to build (realizable) shapes that had the same good 

qualities as the sinc pulse and less of the disadvantages. One class of pulses 

he proposed are called the raised cosine pulses. They are really a 

modification of the sinc pulse. Where the sinc pulse has a bandwidth of W, 

which is given as 

W  =  1 / 2T                                                         (4.38) 

The raised cosine pulses have an adjustable bandwidth which can be varied 

from W to 2W. We want to get as close to W, which is called the Nyquist 

bandwidth, as possible with a reasonable amount of power. The factor α 

related the achieved bandwidth to the ideal bandwidth W as 
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0

1
W
W

−=α
                                                                                       (4.39) 

  where W is Nyquist bandwidth, and W0 is the utilized bandwidth. 

   The factor α is called the roll-of factor. It indicates how much bandwidth is 

being used over the ideal bandwidth. Smaller this factor, the more efficient will 

be the scheme. The percentage over the minimum required W is called the 

excess bandwidth. It is 100% for roll-off of 1.0 and 50% for roll-off of 50%. The 

alternate way to express the utilized bandwidth is.  

sRW )1(0 α+=
                                                                                 (4.40) 

Typical roll-off values used for wireless communications range from 2 to 4. 

Obviously we want to use as small a roll-off as possible, since this gives the 

smallest bandwidth. Here is how the class of raised cosine pulse is defined in 

time domain. 
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The first part is the sinc pulse. The second part is a cosine correction applied 

to the sinc pulse to make it behave better. The sinc pulse insures that the 

function transitions at integer multiples of symbol rate which makes it easy to 

extract timing information of the signal. The cosine part works to reduce the 

excursion in between the sampling instants.  The bandwidth is now 

adjustable. It can be any where from 1/2 Rs to Rs.  It is greater than the Nyquist 

bandwidth by a factor       (1+ α). For α = 0, the above equation reduces to the 

sinc pulse, and for α  = 1, the equation becomes that of a pure square pulse. 
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Figure 4.18: Impulse responses of raised cosine filter with 1,5.0,0=α   

In frequency domain, the relationship is given by 
 

                   (2.41) 

   Why do they call it raised cosine? Because the above response has a 

cosine function in the frequency domain, although other many other 

trigonometric representations of this equation that do not have the cosine-

squared term, so it is not always clear why these are called raised cosine. 

  The frequency response looks somewhat like a square pulse as we would 

expect. A range of bandwidths are possible depending on the chosen α. The 

bandwidth can be anywhere from 1/2 Rs (this term same as W, the Nyquist 

bandwidth) for the sinc pulse to Rs for the square pulse. The bandwidth utilized 

is greater than the Nyquist bandwidth by a factor (1 + α ). For α = 1 the above 
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equation reduces to the sinc pulse, and for α = 1 the equation becomes that of 

a pure square pulse. 

 
 

Figure 4.19: Frequency responses of raised cosine filter with 1,5.0,0=α  
 

  To implement the raised cosine response, we split the filtering in two parts to 

create a matched set. When we split the raised cosine filtering in two parts, 

each part is called the root-raised cosine.  In frequency domain, we take the 

square root of the frequency response hence the name root-raised cosine.   

  Yes, the whole raised cosine can be applied at once at the transmitter but in 

practice it has been found that concatenating two filters each with a root 

raised cosine response (called split-filtering) works better. 

The root raised cosine shaping of pulses is also called baseband filtering. The 

frequency response of the root raised cosine is given by 
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Compare the impulse response of the root raised filter to that of the raised 

cosine. We do not see much of a difference except that there is a little bit 

more excursion in the root-raised cosine response. The time domain function 

is of course NOT the square root. The root part applies to frequency domain 
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Figure 4.20: Frequency responses of raised cosine and rootraised cosine filters 

 

   By splitting the raised cosine into two rootraised cosine filter we are 

achieving two things. First is that by doing so we are forcing the ISI to zero at 

the receiver. There is ISI when we are transmitting but there is no ISI at the 

receiver. Second is match filtering because the impulse response of transmit 

and receiver filters are exactly matched. This will give us the highest SNR 

point at the symbol interval. Now the final baseband communication system is 

given below. Two wire connections are for complex data. 

 

    
Figure 4.21: Baseband model of QPSK communication system 

 

4.5   DISCRETE TIME MODEL OF COMMUNICATION SYSTEM 
   So far we have explained discrete partial analog communication system. In 

figure 4.20 the only analog portion is raised cosine filter. If we realize it in 

discrete time the complete system will become digital. We have already 

explained the upsampling using interpolation in a previous chapter.  We know 

that the raised cosine filter requires the excess bandwidth. So in order to filter 

the QPSK symbol we have to upsample by at least factor of 2 because the 

maximum excess bandwidth is equal to the Nyquist bandwidth. The 
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upsampling is done by the insertion of  M–1 zeros in between the QPSK 

symbol stream and then interpolation is done by the digital raised cosine filter. 

If we are sampling by a factor of M then we will say that we have M samples 

per symbol. At the receiver we have to downsample by a factor of M in order 

to recover the QPSK symbol stream. The complete discrete time model is 

given below 

 
Figure 4.22: Discrete time baseband model of QPSK communication system 

 
4.6 SIMULATION RESULTS 
  A simulation is run for QPSK modulation and pulse shaping using raised 

cosine pulse shaping. The constellation diagram for QPSK symbols at 

transmitter is  
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Figure 4.23: QPSK Constellation diagram at transmitter 

 

QPSK constellation diagram after the coherent detection at the receiver is  
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Figure 4.24: QPSK Constellation diagram at receiver 

 

Raised cosine filter is splitted into root raised cosine filters at transmitter and 

receiver for match filtering and pulse shaping. 10 samples per symbol are 

chosen for convenience in plotting and the length of filters is 101. The impulse 

response of the raised cosine and root raised cosine filters are shown in 

figures.    

0 10 20 30 40 50 60 70 80 90 100

-0.2

0

0.2

0.4

0.6

0.8

1

 
Figure 4.25: Impulse response of root raised cosine pulse 

 

From the above figure you can see that impulse response is not passing 

through zero crossings at symbol intervals (multiples of 10) 
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Figure 4.26: Impulse response of root raised cosine pulse 

 

In the above the impulse response is passing through zero crossings at 

symbol intervals and this guarantees the zero ISI at symbol intervals. 

In the following two figures the eye-diagram at transmitter and receiver is 

plotted and from these figures it is clear that there is ISI at the transmitter after 

filtering using root raised cosine filter but the ISI is removed at the receiver 

after root raised cosine filtering because both of them collectively make a 

raised cosine filter.       
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Figure 4.27: Eye diagram at transmitter (there is ISI) 
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Figure 4.28: Eye diagram at receive (no ISI) 

 

 

 

 

 



Simulation Of QPSK Transceiver 

 

lxxxii

CHAPTER  5 

            

ADAPTIVE FILTERS 
 
 
5.1   INTRODUCTION 
  Filters are devices that are used in a variety of applications, often with very 

different aims. For example, a filter may be used, to reduce the effect of 

additive noise or interference contained in a given signal so that the useful 

signal component can be discerned more effectively in the filter output. Much 

of the available theory deals with linear filters, where the filter output is a 

(possibly time-varying) linear function of the filter input. There are basically 

two distinct theoretical approaches to the design of such filters.  

• The ‘classical’ approach is aimed at designing frequency selective filters 

such as lowpass/bandpass/notch filters etc. For a noise reduction application, 

for example, it is based on knowledge of the gross spectral contents of both 

the useful signal and the noise components. It is applicable mainly when the 

signal and noise occupy clearly different frequency bands.  

• The ‘Optimal filter design’, on the other hand, is based on optimization 

theory, where the filter is designed to be “best” (in some sense). The 

fundamental difference is that in adaptive filters the desired signal and the 

unwanted noisy signal occupies the same frequency band and therefore linear 

filters which are frequency selective filters are no more useful. If the signal 

and noise are viewed as stochastic processes, based on their statistical 

parameters, an optimal filter is designed that, for example, minimizes the 

effects of the noise at the filter output according to some statistical criterion. In 

the context of ‘adaptive filtering’ where we do not assume knowledge of the 

stochastic parameters but which is based on a very similar idea.  

5.2   LINEAR OPTIMUM FILTERS 
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   The theory of optimal filter design dates back to the work of Wiener in 1942 

and Kolmogorov in 1939. The resulting solution is often referred to as the 

Wiener filter.   

   We may classify filters as linear or nonlinear. A filter is said to be linear if the 

filtered, smoothed, or predicted quantity at the out put of the filter is a linear 

function of the observations applied to the filter input. Otherwise, filter is 

nonlinear. 

   In the statistical approach to the solution of the linear filtering problem, we 

assume the availability of certain statistical parameters (i.e., mean & 

correlation functions) of the useful signal & unwanted additive noise, & the 

requirement is to design a linear filter with the noisy data as input so as to 

minimize the effect of noise at the filter out put according to statistical criterion 

[10]. A useful approach to this filter optimization problem is to minimize the 

mean-square value of the error signal defined as the difference between 

some desired response & the actual filter output. For stationary inputs, the 

resulting solution commonly known as the wiener filter, which is said to be 

optimum in the mean square error sense. A plot of the mean-square value of 

the error signal versus the adjustable parameters of a linear filter is referred to 

as the error signal performance surface. The minimum point of this surface 

represents the wiener solution. 

   The wiener filter is inadequate for dealing with situation in which 

nonstationarity of the signal and/or noise is intrinsic to the problem. In such 

situations, the optimum filter has to assume a time-varying form. A highly 

successful solution to this more difficult problem is found in the Kalman filter, 

which is a powerful system with a wide variety of engineering applications. 

   Linear filter theory, encompassing both Wiener and Kalman filters, is well 

developed in the literature for continuous time as well as discrete time signals. 

However, for technical reasons influenced by the wide availability of digital 

computers and the ever-increasing use of digital signal processing devices, 

the discrete time representation is often the preferred method. 
 

 
5.3   ADAPTIVE FILTERS 
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    The design of a Weiner filter requires a priori information about the 

statistics of the data to be processed. The filter is optimum only when the 

statistical characteristics of the input data match the priori information on 

which the design of the filter is based. When this information is not known 

completely, however, it may not possible to design the wiener filter or else the 

design may no longer be optimum. A straightforward approach that we may 

use in such situation is the “estimate and plug” procedure. This is a two-stage 

process whereby the filters first “estimate” the statistical parameters of the 

relevant signals and then “plug” the results so obtained into a nonrecursive 

formula for computing the filter parameters. For real-time operation, this 

procedure has the disadvantage of requiring excessively elaborated & costly 

hardware. To mitigate this limitation, we may use adaptive filter. By such a 

system we mean one that is self-designing in that the adaptive filter relays for 

it operation on a recursive algorithm, which make it possible for the filter to 

perform satisfactorily in an environment where complete knowledge of the 

relevant signal characteristics is not available. The algorithm starts from some 

predetermined set of initial conditions, representing whatever we know about 

the environment. Yet, in stationary environment, we find that after successive 

iterations of the algorithm it converges to the optimum Weiner solution in 

some statistical sense. In a nonstationary environment, the algorithm the 

algorithm offers a tracking capability in that it can track time variations in the 

statistics of the input data provided that the variation are sufficiently slow [10]. 

   As a direct consequence of the application of the recursive algorithm 

whereby the parameters of an adaptive filter are updated from one iteration to 

the next, the parameters become data dependent. This, therefore, means that 

an adaptive filter is in reality a nonlinear system, in a sense that it does not 

obey the principle of superposition. Notwithstanding this property, adaptive 

filters are classified as linear or nonlinear. An adaptive filter is said to be linear 

if its input output obeys the principle of superposition whenever its parameter 

are held fixed. Otherwise, the adaptive filter is said to be nonlinear.                         
 

5.4   WIENER FILTER THEORY 
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  We will explain the Weiner filter theory using its application in adaptive 

channel equalization. The equalizer considered here is known as the MMSE 

linear equalizer.   

 Let us assume that Weiner filter is a FIR filter with 2K+1 coefficients 

,,,,, 21 KKKK cccc K+−+−−                                                    (5.1) 

The input to the filter is the received signal r(n) and the output signal is 

∑
−=

−=
K

Kk
k knrcns )()(ˆ                                                      (5.2) 

The filter coefficients are chosen to minimize the mean square value of the 

)(ˆ)()( nsnsn −=ε                                                          (5.3) 

where s(n) is the transmitted symbol and )(ˆ ns  is the its estimate( see figure 

5.1).   Note that after equalization, there will still be residual ISI. On top of that, 

there is an additive Gaussian noise term. The MMSE equalizer minimizes the 

combined residual ISI plus noise power. The non-casuality in the 

mathematical description of the MMSE equalizer translates into a decision 

delay in the actual implementation (see figure 5.1). The delay is due to the 

filtering with channel filter and equalizer filter. 

 

 
 

Figure 5.1: The Weiner filter(C(n)) configuration for equalization  
 

To obtain the filter coefficients of the equalizer filter, we first express all 

signals involved in matrix form. Specifically, let 
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be the received vector at time n and 
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],,,,[ 21 KKKK cccc K+−+−−=C                                           (5.5) 

be a general transversal (i.e. FIR) equalizer. By substituting for the matrix 

notation into equation 5.2, it is possible to represent the estimated error signal 

by equation 5.6 below. The equalizer output at time n is thus 

)()(ˆ nns CR=                                                      (5.6) 

 and instantaneous squared error of the signal can be found by squaring 

equation 5.6 such that it can be represented as the following equation: 
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where 2σ is the variance of s(n) because s(n) has a zero mean, i.e., 

( )222 )()( xExE −=σ . Also assuming s(n) a bipolar signal (BPSK or QPSK) with 

values ±1 then we can say 2σ =1. Mean square error (MSE),γ , is defined by 

the “expectation” of the squared error, from equation 5.7. Hence the MSE can 

be represented by equation 5.8. 
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where 

[ ] T
Rs

T
sR nnsE uRu == )()(                                          (5.9) 

is the 2K+1 length cross correlation vector between s(n) and the received 

vector R(n), and 
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(5.10) 

is the (2K+1)× (2K+1) order auto correlation matrix of the received vector R(n). 

Note that RRU  is a symmetric matrix and  ),(),( ijrjir = . 

   It is clear from this expression that the mean square error γ  is a quadratic 

function of the weight vector C (filter coefficients). That is, when Equation 5.8 

is expanded, the elements of C will appear in the first and second order only. 

This is valid when the input components and desired response inputs are 

wide-sense stationary stochastic (random) variables [18]. 
 

5.5   PERFORMANCE SURFACE 

  A portion of a typical two-dimensional MSE function is illustrated in figure 

5.2. The vertical axis represents the mean square error and the two horizontal 

axes represent the values of two filter coefficients. The quadratic error 

function, or performance surface, can be used to determine the optimum 

weight vector optC  (or Wiener filter coefficients). With a quadratic performance 

function there is only one global optimum; no local minima exist. The shape of 

the function would be hyper-parabolic if there were more than two weights.  

  In this example, the filter coefficient c(0) varies between [1,…,3] while c(1) 

varies between the range [-1,…,1]. The optimum weight vector is given by                

optC = [2, -0.1], corresponding to the values for which the mean square error 

takes the minimum value, minγ . 

Many adaptive processes that cause the weight vector to search for the 

minimum of the performance surface do so by the gradient method [11]. The 

gradient of the mean square error of the performance surface, designated∇ , 

can be obtained by differentiating equation 5.8 with respect to each 

component of the weight vector. 
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Figure 5.2: A two dimensional error performance surface 
 

   Remember that the MSE was derived from the expectation of the squared 

error function, from equation 5.8. So as an alternative method, the gradient 

can also be found by differentiating the expected squared error function with 

respect to the weight vector. 
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   The gradient vector is the tangent of the N-dimensional surface γ  at the 

point optC  When the gradient vector is zero, the surface γ  reaches its lowest 

value and hence the mean square error will be minimized. The point in the N-

dimensional space where this occurs is. Therefore, setting equation 5.13 to 

zero we get 

optRRsR CUu 220 +−=  

1−= RRsRopt UuC                                                    (5.14) 

and corresponding MSE is 
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   This equation is known as the Wiener-Hopf equation in matrix form, and the 

filter given by optC  in equation 5.14 is the Wiener filter. However, in practice it 

is not usual to evaluate. In addition, optC  has to be calculated repeatedly for 

non-stationary signals and this can be computationally intensive because it 

requires matrix inversions. But another question is how to determine the 

values of sRu  and RRU  in case of channel equalization. Recall that 

[ ]T
sR nnsE )()( Ru = . The m-th element of this row vector, where m= 1,2 

….,2K+1 is given as 
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where  f(n) is the impulse response of channel filter and L is the length of f(n). 

v(n) is the additive white Gaussian noise (see figure 5.1). Assuming that 

different data bits are statistically independent, then 
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Furthermore, the data bits are independent of the channel noise. 

Consequently, 
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Substituting equations 5.17 and 5.18 into equation 5.16 yields 
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Now if L = 4 and K = 3 (7 tap equalizer), we have 

[ ]0,0,0),0(),1(),2(),3( ffffsR =u  

this is not desired because f (4) is not included. However if K=5, then  
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[ ]0,0,0,0,0),0(),1(),2(),3()4(,0 fffffsR =u  

which is a desired result that’s why selection of K (equalizer length 2K+1) is 

very critical for a particular L (channel impulse response length). 

The element on the i-th row and j-th column i , j =1,2,...,2K = 1, of the 

covariance matrix RRU  is 
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  Substituting equations 5.17 and 5.18 into equation 5.20 yields 
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where it is understood that 
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   Note that )(nδ  is the discrete-time impulse function and that the first term 
),( jiU RR  is actually the auto correlation function of the channel’s impulse 

response. We will denote it by 
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and in the matrix form 
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    In order to implement the MMSE equalizer the receiver needs to know what 

the correlation vector sRu  and the covariance matrix RRU are. As shown in 
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equations 5.19 and 5.24, these parameters depends on the channel 

conditions, namely the impulse response f(n) of the channel and the noise 

variance 2
vσ . The channel conditions are usually unknown to the receiver 

prior to the communication session. Moreover, they may vary slowly with time 

after a connection has been established. What this means is that the receiver 

must estimate sRu  and  RRU  online, either explicitly or implicitly. There is an 

iterative procedure called the least mean square (LMS) algorithm for 

determining the coefficients of a MMSE equalizer in an unknown channel. 

   The LMS algorithm is based on the method of steepest descent. The key 

difference between the method of steepest descent and LMS is that the 

former uses the true gradient vector (which depends on the channel condition) 

of the error surface γ  in the iterations while the latter uses an estimate of the 

gradient vector. The use of noisy gradients in the LMS algorithm leads to a 

MSEγ  that is slightly larger than that of the true MMSE equalizer. 

 

5.6    STEEPEST DESCENT ALGORITHM 
   In practice it is not usual to calculate the optimum filter optC  using equation 

14 directly. The problem is that the evaluation of 1−
RRU involves the inversion 

of a matrix of dimension 2K+1 by 2K+1 which is computationally very complex. 

Furthermore, if the channel statistics are non-stationary, which is quite often 

the case, then the calculation has to be undertaken periodically in order to 

track the changing conditions. An alternative method of calculation is 

therefore the steepest descent algorithm. In this method the weights are 

adjusted iteratively in the direction of the gradient. Let C(n) be the estimate of  

optC  at discrete-time (or iteration index) n. Then based on C(n), we can obtain 

[ ]RRsr nn UCu )(2)( −−=∇                                  (5.25) 

The gradient vector of the error surface γ  at C(n) ; see the equation 5.13 

Based C(n) and )(n∇ , we obtain the next estimate of optC  according to 

[ ]
[ ] srRR

RRsr

n
nn

nnn

uUIC
UCuC

CC

µµ
µ

µ

+−=
−+=

∇−=+

)(
)()(

)(
2

)()1(

                                   (5.26) 



Simulation Of QPSK Transceiver 

 

xcii

where µ is the step size of this iterative procedure, and I is an identity matrix 

of 2K+1 by 2K+1 . Basically, the method of steepest descent is based on the 

idea that we can reach the global minimum by searching in the opposite 

direction as indicated by the gradient vector (slope) at the current estimate; 

see the scalar case below as an example. 

 
Figure 5.3: Operation of steepest descent algorithm. 

 

To prove that the global minimum can indeed be reached through this iterative 

procedure, let us first rewrite C(n+1) as 

[ ]
{ }[ ]( )

[ ] [ ]∑
=

+ −+−=

=
+−+−−=

+−=+

n

k

k
RRsR

n
RR

sRRRsRRR

sRRR

n
nn

0

1)0(

1)1(
1)()1(

UIuUIC

uUuUIC
uUCC

µµµ

µµµµ
µµ

MMMMMM                    (5.27) 

where C(0) denotes the initial estimate. Since the matrix RRU  is a covariance 

matrix, it is positive definite and can be written as 
T

RR VDVU =                                                  (5.28) 

where V is a unitary matrix with the property 

IVVVV == TT                                                 (5.29) 

and 
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is a diagonal matrix containing all the eigenvalues of RRU  . Note that 

12,,1,0;0 +=> Kii Kλ                                (5.31) 

because RRU  is positive definite, and that 
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T
RR VVDU 11 −− =                                                (5.32) 

Based on these properties of RRU  , we can express the terms I – µ RRU  and         

(I – µ RRU )k in equation 5.27  as 
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and 
Tkk

RR VVQUI =− )( µ                                               (5.34) 

where 
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if 

12,,2,1,0;11 +=<− Kii Kµλ                            (5.36) 

then 

0)(lim 1 =− +

∞→

n
RRn

UI µ                                            (5.37) 

and 

RR

T

T

T

T

k

k

k

Tk
n

ok

k
RRn

U

VVD

VDV
VQIV

VQV

VVQUI

µ

µ

µ

µ

1

1
)(

)(

)(lim

1

1

1

0

0

=

=

=

−=

⎥
⎦

⎤
⎢
⎣

⎡
=

=−

−

−

−

∞

=

∞

==
∞→

∑

∑∑

                                  (5.38) 

In this case, equation 5.27 becomes 

optRRsRn
n CUuC ==+

∞→
)1(lim                                      (5.39) 

In other word, the equalizer’s coefficients eventually converge to the optimal 

values.  Equation 5.36 provides the requirements for the convergence of the 
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steepest descent algorithm. These requirements can be written alternatively 

as 

12,,2,1;20 +=<< Ki
i

K
λ

µ                              (5.40) 

or simply 

max

20
λ

µ <<                                                     (5.41) 

where maxλ  is the largest eigenvalue of the covariance matrix RRU  . 

  For the steepest descent algorithm at hand, it is desirable to use a step size 

as close to the upper limit,
max

2
λ , as possible. This guarantees the fastest 

convergence rate possible. However, for the LMS algorithm discussed in next 

section, using too large a step size will increase the MSE of the equalizer. 

Assume we select a step size of 

max

2
+

=
λ

µ                                                          (5.42) 

where max
+λ  is a number slightly greater than maxλ  . Then the absolute values 

of the elements of the diagonal matrix 11 )( ++ −= nn DIQ µ  are 
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The rate of decay of the matrix, and consequently the rate of decay of the 

matrix Tnn
RR VVQUI 11)( ++ =− µ  in equation 5.27, is determined by the 

smallest eigenvalue minλ  according to 
1

max

min2
1

+

+
−

n

λ
λ

                                                    (5.44) 

If maxmin λλ << , i.e. a large eigenvalue spread, then 121 maxmin →− λλ  and the 

algorithm converges slowly. A large eigenvalue spread occurs when the 

frequency response of the channel has deep spectral nulls. 
 

5.6.1   A simple choice for µ 
   From the equation 5.24, we see that all the diagonal elements of the 

covariance matrix RRU  equal 2)0( vff σφ + , where )0(ffφ  is the autocorrelation 
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function of the channel f(n) at a delay of zero, and 2
vσ  is the power (or 

variance) of the channel’s noise. The sum of all the diagonal elements of RRU  

is the trace of the matrix. It is the same as the sum of all the eigenvalues of 

the matrix. Since 

{ } ( ) ( )∑
+
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++==<
12

1

2
max )0(12

K

i
vffRRi Ktrace σφλλ U                            (5.45) 

if we use as step size 

( ) ( )2)0(12
2

vffK σφ
η

++
=                                         (5.46) 

then it is guaranteed that max/2 λµ <  . 

   For the LMS algorithm discussed in the next section, it is import to make µ 

substantially smaller than ( ) ( )[ ]2)0(122 vffK σφ ++  that the excess MSE is 

relatively small compared to the MSE of the MMSE equalizer. 
 

5.7 THE LMS ALGORITHM 
   While the steepest descent method is able to determine the optimal 

equalizer coefficients without performing any matrix inversion, its operation is 

still based on the assumption that the channel parameters the correlation 

vector sRu  and the covariance matrix RRU  known to the receiver. Recall that 

the receiver uses these parameters to compute the gradient vector )(n∇  

required for updating the the equalizer coefficients. In the LMS algorithm, the 

gradient vector is replaced by its estimate. Let us consider the correlation of 

the received vector R(n) (see equation 5.4) with the equalization error 

)()()(ˆ)()( nnsnsnsn CR−=−=ε                                   (5.47) 

for the equalizer C. The result is 
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Now, if we evaluate this correlation vector at C = C(n) , then we obtain 

)(
2
1)()( nn RRsRnR ∇−=−== UCuw CCε                          (5.49) 
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where )(n∇  is the gradient vector at the point C = C(n) of the error surface γ . 

To simply put, the updating equation in the steepest descent method can be 

rewritten as 

[ ]TnnEn

nnn

)()()(

)(
2

)()1(

RC

CC

ε

µ

+=

∇−=+
                                    (5.50) 

The LMS algorithm is obtained by removing the average operator in the above 

equation, i.e. 
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   In other word, the LMS algorithm uses a noisy estimate of the true gradient 

in updating the filter coefficients. Intuitively, this substitution is justified when 

all the random processes in the system are ergodic. In this case, the statistical 

average (as in the steepest gradient algorithm) equals the time average (as in 

the case of LMS). Notice that the LMS-based equalizer does not need any 

information about the channel to update its coefficients. The algorithm 

however does require knowledge of the transmitted symbols, which are 

supposed to be unknown to the receiver. In practice, we can get around this 

problem by using the detected symbol )(~ ns instead of  s(n) when we update 

the equalizer coefficients. Assuming s(n) = ±1 (BPSK) signal  

⎩
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ns                                    (5.52) 

   Furthermore, we can send an initial training sequence to help the equalizer 

converges quickly. The symbols in the training sequence will be known to the 

receiver. However, frame/bit synchronization are required in order for the 

receiver to locate the training pattern. The use of noisy gradients in the 

adaptation process results in excess MSE. Specifically, the MSE of a LMS-

based adaptive transversal equalizer is  

µγγγ +≈ min                                                     (5.53) 

where minγ  is the MMSE defined in equation  5.15, and 

[ ] min
2 ))0(()12(

2
1 γσφµγ µ vffK ++≈                               (5.54) 
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is the excess MSE. In order to make µγ  substantially smaller than minγ  while 

maintaing a reasonable convergence rate, the step size µ should only be a 

fraction of [ ]))0(()12(2 2
vffK σφ ++  . For example, when 
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then min1.0 γγ µ − and the increase in total MSE is 

dB414.0log10
min

min
10 =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ +

γ
γγ µ  

   As shown previously, using a step size of [ ]))0(()12(2 2
vffK σφ ++  or 

smaller will guarantee convergence. 

  While the LMS algorithm enables us to find the optimal equalizer coefficients 

without any prior knowledge of the channel, it suffers from one drawback – 

slow convergence. A faster algorithm, but more complex, is the recursive least 

square (RLS) algorithm. The figure below compares the convergence rate of 

LMS (labeled as Gradient algorithm in the figure) and RLS (labeled as 

Kalman). We will not discuss RLS algorithm because we are interested in only 

MMSE equalizer. 
 

 
 

Figure 5.4: Learning curves for LMS and RLS algorithms 

 

5.8 SIMULATION RESULTS 
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  We have run a simulation to investigate the effect of step size µ    and 

eigenvalue spread on the convergence of LMS algorithm. The channel is 

raised cosine filter with 3 coefficients  
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where W controls the amount of amplitude distortion. The impulse response of 

the channel for W =2.9 is given below 
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Figure 5.5: Impulse response of channel for W =2.9 

 

The equalizer filter taps are chosen to be equal to 11. Equalizer impulse 

response after running the simulation for 100 independent trials having 1500 

hundred samples each is given below. The data signal is BPSK signal with 

values ±1 and the variance of noise is .001.         

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Filter Taps

A
m

pl
itu

de

 
Figure 5.6: Equalizer impulse response 

 



Simulation Of QPSK Transceiver 

 

xcix

From above two figures it is clear that impulse responses of equalizer and 

channel are inverse of each other. Now varying the step size while keeping 

the W constant (same eigenvalue spread) the learning curves for LMS 

algorithm are given below 
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Figure 5.7: Learning curves for LMS algorithm for =µ 0.0075 
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Figure 5.8: Learning curve for LMS algorithm =µ 0.0375 
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Figure 5.9: Learning curve for LMS algorithm =µ 0.075 

From the simulation results it is clear that by increasing the step size the 

faster convergence of LMS algorithm can be achieved. But care must be 

taken while increasing the step size because LMS algorithm may become 

unstable if the upper bound on the step size is reached.       
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CHAPTER  6 

 

CHANNEL EQUALIZATION 
 
 
6.1   INTRODUCTION 
   Communication channels are susceptible to Intersymbol Interference (ISI). 

Without channel equalization, the utilization of the channel bandwidth 

becomes inefficient. Channel equalization is a process of compensating for 

the effects caused by a band-limited channel, hence enabling higher data 

rates. Equalization describes a set of operations intended to eliminate ISI and 

the effects of multipath propagation in communication channels. One can 

define an equalizer as 

“An equalizer is a device that compensates for unwanted channel effects and 

provides the receiver with a sequence of samples with acceptable levels of 

ISI”. 

   These disruptive effects are due to the dispersive transmission medium (e.g. 

telephone cables) and the multipath effects in the radio channel. A typical 

communication system is depicted in figure 6.1 where the equalizer is 

incorporated within the receiver while the channel introduces intersymbol 

interference. The transfer function of the equalizer is an estimate of the direct 

inverse of the channel transfer function. To transmit high speed data over a 

bandlimited channel, the frequency response of the channel is usually not 

known with sufficient precision to design an optimum match filter. The 

equalizer is, therefore, designed to be adaptive to the channel variation. The 

configuration of an adaptive linear equalizer is depicted in figure 6.2. Based 

on the observed channel output, an adaptive algorithm recursively updates 

the equalizer to reconstruct the output signal. 
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Figure 6.1: A typical communication system. 

 

 
Figure 6.2: A simple linear channel equalizer configuration. 

 

 Equalization does not mean that all the channel distortions are completely 

removed but its job is to provide the receiver enough information which is 

necessary to make a decision.  
 

6.2   ISI DUE TO MULTIPATH EFFECTS  
   In a wireless radio channel, the ISI is caused by the multipath effects when 

the multipath spread as explained previously is greater than the symbol 

interval.   Multipath effects describe the situation in which there are several 

propagation paths from transmitter to receiver. Most commonly, this results 

when there are reflected signals detected at the receiver following the direct 

path. The multipath phenomenon can be modeled by an FIR system (see 

chapter 3). The center tap represents the direct path, while the succeeding 

tap weights represent the amplitudes, delays, and phases of the reflected 

paths. For simple examples, see the two cases described in Figure 6.3 and 

Figure 6.4. 
  Figure 6.3(a) shows the time response of an ideal transmission path, which 

is a δ function. Such a channel exerts no spectral distortion or delayed 

signals. Figure 6.3(b) shows the spectral response of such a system. Note 

that the frequency magnitude response is perfectly flat, as indicated by the 

solid horizontal line. 
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Figure 6.3: (a) Impulse response and (b) frequency response of ideal single path channel 
 

Figure 6.4(a) shows the time response of a system that contains a single 

multipath channel [8]. The first nonzero sample of the response represents 

the direct path, while the second represents a delayed path to the receiver. In 

this instance, the pulses are identical in amplitude and phase and are 

separated by ten sample intervals.  

 

Figure 6.4: (a) Time response and (b) frequency response of two path wireless channel 
 

Notice in Figure 6.4(b) that the magnitude response exhibits t0/2 nulls, where t0 

represents the sample delay. Even though you are effectively adding two 

identical flat spectra (as shown in Figure 6.3(b)) the time delay results in a 

phase delay in the spectral domain. This phase delay results in nulls where 
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the two signals are of equal amplitude but opposite phase. Obviously, 

multipath effects can have major effects on the system spectral response, 

thereby providing another justification for channel equalization 

  Now it is time to represent it mathematically what we all said so far. Suppose 

that a channel model (see figure 6.5) is used to describe the distortion effect 

and it is given as a sum of weighted time delayed discrete-time channel 

impulse responses, H(z): 

L+++== −−−∑ 2
2

1
10)( zhzhhzhzH i

i
i                                  (6.1) 

  The coefficients hi represent the strength of the dispersion and the multipath 

delay. For FIR modelled channel, the output from the channel can be written 

as: 

∑
−

=

+−=
1

0
)()()(

L

i
i knikuhky                                                     (6.2) 

where y(k) is the input to the equalizer (received signal after passing through 

channel) which is simply the convolution of hi and u(k). u(k) is the transmitted 

sequence, hi is the channel impulse response, n(k) represents additive white 

Gaussian noise (AWGN) added to the channel and L represents the length of 

the channel impulse response. Equation (6.2) shows that the transmitted 

symbol u(k) is affected by the weighted delay symbols of u(k-i), thus causing 

intersymbol interference. 

 

 

Figure 6.5: A multipath wireless channel model.  

6.3   COMMUNICATION SYSTEM MODEL WITH EQUALIZER 
 

6.3.1 Continuous-time Model  
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   For our communication system which is employing a linear modulation, 

QPSK, through a dispersive channel, the whole system can be described the 

conceptual model in Figure 6.6, in which the sequence of information symbols 

is denoted by }{ kI and )(),( fHfH CT and )( fH R are the transfer functions of 

the transmission (root raised cosine pulse-shaping) filter, the dispersive 

channel and the receiving filter, respectively. The Nyquist condition for no ISI 

developed in previous chapter can be easily generalized to the above 

communication system. Letting )()()()( fHfHfHfX RCT=  the condition for 

no ISI is that the folded spectrum )( fX , is constant for all frequencies, i.e. 

∑
∞

−∞=

=−
n

T
T
nfX )(                                                  (6.3) 

 
Figure 6.6: Continuous-time communication model over a multipath dispersive channel 

 

One method to achieve the Nyquist condition is to fix the receiving filter to be 

the matched filter, i.e. set )()()( fHfHfH CTR
∗∗= , and choose the 

transmission filter so that (6.5) is satisfied. This is the Nyquist pulse design 

method described in previous chapter. The major disadvantage of this pulse 

shaping method is that it is in general difficult to construct the appropriate 

analog filters for )( fHT  and )( fH R in practice. Moreover, we have to know 

the channel response )( fH C in advance to construct the transmission and 

receiving filters. 

   An alternative method is to fix the transmission filter4 and choose the 

receiving filter )( fH R  to satisfy the condition in (6.3). As for the previous 

method, it is also difficult to build the appropriate analog filter )( fH R  to 

eliminate ISI. However, notice that what we want eventually are the samples 

at intervals T at the receiver. Therefore, we may choose to build a simpler 

(practical) filter )( fH R , take samples at intervals T, and put a digital filter, 

called equalizer, at the output to eliminate ISI as shown below in Figure 6.7. 
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This approach to remove ISI is usually known as equalization. The main 

advantage of this approach is that a digital filter is easy to build and is easy to 

alter for different equalization schemes, as well as to fit different channel 

conditions. 

 
Figure 6.7: Communication system with equalizer 

 

6.3.2   Equivalent discrete-time model 
  Our goal is to design the equalizer which can remove (or suppress) ISI. To 

do so, we translate the continuous-time communication system model in 

Figure 6.7 to an equivalent discrete-time model that is easier to work with. 

The following steps describe the translation process: 

• Instead of considering AWGN being added before the receiving 

filter )( fH R , we can consider an equivalent colored Gaussian noise being 

added after )( fH R  when we analyze the system. The equivalent colored 

noise is the output of )( fH R  due to AWGN. The resulting model is shown in 

Figure 6.8. 

• We input a bit or a symbol to the communication system every T seconds, 

and get back a sample at the output of the sampler every T seconds. 

Therefore, we can represent the communication system in Figure 6.8 from the 

information source to the sampler as a digital filter. 
 

 
 

Figure 6.8: Equivalent communication system with colored Gaussian noise 

Since )(),( fHfH CT and )( fH R  are LTI filters, they can be combined and 

represented by an equivalent digital LTI filter. Denote its transfer function by 

H(z) and its impulse response by ∞
−∞=kkh }{ . The result is the discrete time-
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linear filter model shown in Figure 6.9, in which the output sequence }{ kI ′  is 

given by 

∑
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kjkkk
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kjkkk

nhIhI

nhII

0

                                             (6.4) 

In general, hj ≠ 0 for some j ≠ 0. Therefore, ISI is present. Notice that the noise 

sequence }{ kn consists of samples of the colored Gaussian noise (AWGN filtered 

by )( fH R ), and is not white in general. 

 
Figure 6.9: Equivalent discrete-time communication system model with colored noise 

 

• Usually, the equalizer consists of two parts, namely, a noise-whitening 

digital filter )(zHW  and an equalizing circuit that equalizes the noise-whitened 

output as shown in Figure 6.9. The effect of )(zHW  is to “whiten” the noise 

sequence so that the noise samples are uncorrelated. Notice that )(zHW  

depends only on )( fH R , and can be determined a prior according to our 

choice of )( fH R  . At the output of )(zHW , the noise sequence is white. 

Therefore, equivalently, we can consider the equivalent discrete-time model 

shown in Figure 6.11, in which }{ kn  is an AWGN sequence. 

 
 

Figure 6.10: Typical equalizer 

• Let )()()( zHzHzG W= . The communication system from the information 

source to the output of the noise whitening filter can now be represented by 

the discrete-time white-noise linear filter model in Figure 6.12. The output 

sequence }~{ kI  is given by: 
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                                         (6.5) 

Where }{ kg  is the impulse response corresponding to the transfer function 

G(z), and }{ kn  is an AWGN sequence. We will work with this discrete-time 

model in all the following sections. 
 

 
Figure 6.11: Equivalent discrete-time communication system model with white noise 

 

 
 

 
Figure 6.12: Equivalent discrete-time white-noise linear filter model 

 

  Finally, the equalizing circuit (we simply call it the equalizer from now on) 

attempts to remove ISI from the output of G(z). The focus of our coming 

discussion is the design of this equalizer. Suppose that the equalizer is also 

an LTI filter with transfer function )(zH E  and corresponding impulse 

response }{ Ejh . Then the output of the equalizer is given by 

∑ −=
j

Ejjkk hII ~ˆ                                                     (6.6) 

Ideally kÎ contains only contributions from the current symbol Ik and the AWGN 

sequence with small variance. 

 

6.4 CLASSIFICATION OF EQUALIZERS 
   Equalizers are classified into two main classes. Linear Equalizers Non-linear 

Equalizers 
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Linear equalizers (LE) only have feedback from linear devices and can be 

implemented as a simple FIR filter (transversal filter)also called linear 

transversal equalizer (LTE). They are easy to implement cheap, suboptimal 

performance, high BER they have problem like enhances noise and bad for 

channels with spectral nulls as we will see shortly. They can also be 

implemented as lattice filter to achieve numerical stability and fast 

convergence but they are more complicated to implement. 

 Non-linear equalizers (NLE) have feedback from non-linear devices (i.e. 

quantizer) and they have better performance than linear equalizers like fine 

with spectral nulls and also fine with large distortion.  

   Decision Feedback Equalizers (DFE) are non linear equalizers. They are 

more complex than a linear transversal equalizer. They have both feed 

forward and feedback filters. They are cheap, better performance than LTE 

and they can equalize severely distorted channels & handle spectral nulls. 

  Maximum Likelihood Symbol Detection (MLSD) is also included in the class 

of non linear equalizers. They have optimal performance at the cost of high 

cost & exponential computational complexity. They use trellis approach with 

probability methods and Viterbi algorithm. 

  Maximum Likelihood Sequence Estimation (MLSE) is another category of 

non linear equalizers. Like MLSD they also have optimal performance. They 

are different from MLSD because ML applied to sequences rather than 

symbols. They are often too computationally complex to implement in a 

mobile receiver. 

  In figure 6.13 types of equalizers, their structures and the algorithm for 

learning channel environment is given. 
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Figure 6.13: Classification of equalizers 

  

  Non-linear equalization is important in providing optimum performance for ill-

conditioned channels that non-linear techniques require more computation 

and controls. However, in order the study the gradient descent-based 

adaptive algorithms’ performance, the linear equalizer is more appropriate.  

Table 6.1 also gives some performance, computation complexity and 

implementation cost measures of the equalizers. 
  

Table 6.1: Cost, performance and complexity analysis of equalizers 
 

Equalization System Complexity Cost Performance

Linear Transversal Equalizer Low Cheap Suboptimal 

Decision Feedback Equalizer Medium Average Suboptimal 

Maximum Likelihood Sequenc

Estimation 
High High Optimal 

Maximum Likelihood 

Symbol Detection 
High High Optimal 

 

 6.5   MMSE EQUALIZER 
 The zero-forcing equalizer, although removes ISI, may not give the best error 

performance for the communication system because it does not take into 

account noises in the system. A different equalizer that takes noises into 

account is the minimum mean square error (MMSE) equalizer. It is based on 

the mean square error (MSE) criterion.   Before going into the mathematics of 

MMSE we want to clear that the detail derivation for minimizing the MSE and 
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reaching the Weiner solution can be found from the previous chapter on 

adaptive filters. Here only the necessary steps are repeated.     

   Without knowing the values of the information symbols kI  beforehand, we 

model each symbol kI  as a random variable. Assume that the information 

sequence }{ kI  is WSS. We choose a linear equalizer )(zH E  to minimize the 

MSE between the original information symbols kI  and the output of the 

equalizer kÎ : 

])ˆ[(][ 22
kkk IIEeEMSE −==                                         (6.7) 

 

   Let us employ the FIR filter of order 2L+1 shown in Figure 6.14 as the 

equalizer. We note that a delay of L symbols is incurred at the output of the 

FIR filter. Then 

])ˆ[(

])~[(

2

2
,

E
T

kk

L

Lj
jEjkk

IE

hIIEMSE

hI−=

−= ∑
−=

−
                                     (6.8) 

where  
T

LkLkk II ]ˆ,,ˆ[ˆ
−+= KI                                                   (6.9) 

T
LELEE hh ],,[ ,, K−=h                                               (6.10) 

 

 
Figure 6.14: FIR Filter as a MMSE Equalizer 

We want to minimize MSE by suitable choices of LELE hh ,, ,,K− . Differentiating 

with respect to each jEh ,  and setting the result to zero, we get 

0)]~(~[ =− E
T

kkk IE hII                                               (6.11) 
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Rearranging we get 

dhR =E                                                         (6.12) 

where 

]~~[ T
kkE IIR =                                                 (6.13) 

]~~[ kkIE Id =                                                   (6.14) 

  If R and d are available, then the MMSE equalizer can be found by solving 

the linear matrix equation 6.12. It can be shown that the signal-to-noise ratio 

at the output of the MMSE equalizer is better than that of the zero-forcing 

equalizer. 

  The linear MMSE equalizer can also be found iteratively. First, notice that the 

MSE is a quadratic function of equalizer filter taps hE. The gradient of the MSE 

with respect to hE gives the direction to change hE for the largest increase of 

the MSE. In our notation, the gradient is )(2 ERhd −− . To decrease the MSE, 

we can update hE in the direction opposite to the gradient. This is the steepest 

descent algorithm: At the kth step, the vector hE(k) is updated as 

))1(()1()( −−+−= kkk EEE Rhdhh µ                                    (6.15) 

where µ is a small positive constant that controls the rate of convergence to 

the optimal solution. Once again we are repeating that all this mathematics is 

done in the previous chapter. 

  In many applications, we do not know R and d in advance. However, the 

transmitter can transmit a training sequence that is known a priori by the 

receiver. With a training sequence, the receiver can estimate R and d. 

Alternatively, with a training sequence, we can replace R and d at each step in 

the steepest descent algorithm by the rough estimates T
kk II ~~ and kkI I~~ , 

respectively. The algorithm becomes: 

kE
T

kkEE kIkk IhIhh ~)]1(~[)1()( −−+−= µ                               (6.16) 
 

This is a stochastic steepest descent algorithm called the least mean square 

(LMS) algorithm.  

  The beauty of the approach is that the only parameter to be adjusted is the 

adaptation step size µ. Through an iterative process, explained above, all filter 

tap weights are adjusted during each sample period in the training sequence. 
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Eventually, the filter will reach a configuration that minimizes the mean square 

error between the equalized signal and the stored reference. As might be 

expected, the choice of µ involves a tradeoff between rapid convergence and 

residual steady-state error. A too-large setting for µ can result in a system that 

converges rapidly on start-up, but then chops around the optimal coefficient 

settings at steady state.  

  The LMS equalizer can also be shown to have better noise performance 

than the ZFE. Heuristically, the ZFE calculates coefficients based upon the 

received samples of one training signal. Since the captured data will always 

contain some noise, the calculated coefficients will be noisy (noise in / noise 

out). On the other hand, the LMS algorithm gradually adapts a filter based on 

many cycles of the training signal. If the noise is zero mean and is averaged 

over time, its effect will be minimized (noise integrates to 0).  

   

6.6   FRACTIONALLY SPACED EQUALIZERS    
  In the previous section we have designed the discrete time model of the 

communication system. In that model we have said that we sample the output 

of the receive filter )( fH R  at the symbol rate T (for convenience the figure 6.8 

is redrawn here as 6.15 ). But the sampling at the symbol rate my lead to 

aliasing. Why we will shortly. The equalizer which is operating at the symbol 

rate or one sample per symbol, as in the figure below, is called symbol 

spaced equalizer or baud spaced equalizer.    

 
Figure 6.15: Equivalent communication system with colored Gaussian noise 

 If we are using raised cosine filter for pulse shaping then we should 

remember that because of the excess bandwidth sampling higher than the 

symbol rate is required to satisfy the sampling theorem. Actually we can 

sample at the symbol rate because the raised cosine spectrum has the odd 

symmetry at the symbol rate. But in order to do that the spectrum of receive 

filter has to be matched with the spectrum of the received signal. This 

happens only for the ideal channel but never happens in the practical situation 
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because the channel distorts the transmitted signal. One solution is that we 

adjust the receive filter such that it becomes a match filter but the channel is 

always unknown. Now if we are sampling the output of the receive filter at the 

symbol rate this means that we are not satisfying the Nyquist sampling 

theorem (under sampling). This symbol rate sampling leads to the aliasing. 

Symbol spaced equalizer always operating on the aliased signal and never 

gives optimum result (see figure 6.16). The answer to this is to sample the 

output of the receive filter higher than the symbol rate which leads us to 

another class of equalizers called fractionally spaced equalizers.   

 
Figure 6.16: Spectrums for transmitted and received signals for SSE and FSE    

 

 The aliased spectrum of the signal at the input to the equalizer is given as 
 

∑
−

−=
n

T
nfj

T e
T
nfX

T
fY

0)(2
)(1)(

τπ
                                          (6.17) 

where Y(f) is the aliased spectrum, the folding frequency is Fh=FS / 2=1/2T and 

τ0 is the delay induced by the channel. The symbol spaced equalizer (SSE) 

can be represented as the FIR filter  

∑
−=

−=
L

Lk

kTfj
kSSESSE ehfH π2

,)(                                               (6.18) 

where 2L+1 is the number of tap weights in the equalizer. 

Thus the SSE cannot undo the effects introduced by the channel to the actual 

spectrum. X(f).So that the FSE is used in which tap spacing is less than the 

symbol duration T and the sampling of the signal is done at least at the 

Nyquist rate. Let MNT
N
M

>, , where N and M are integers, (N=M for symbol 
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spaced equalizers) denote the tap spacing of the FSE, we can see that the 

transfer function of the equalizer can be expressed as 

∑
−=

′−=
L

Lk

Tkfj
kFSEFSE ehfH π2

,)(                                              (6.19) 

where T
N
MT =′  and the spectrum at the output of the equalizer is given by 

∑ ′
−

′
−=′

n

T
nfj

FSEFSE e
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nfXfHfYfH
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τπ

                            (6.20) 

Since the transmitted pulse is the raised cosine spectrum with roll off factor β 

the spectrum is bandlimited to 
T2

1 β+   and hence the sampling must be done 

atleast at 
T

FS
β+

=
1   the tap spacing is then 

β+
===′

1
1 T

F
T

N
MT

S
                                                 (6.21) 

Thus from equations 6.20 and 6.21 it can be concluded that there will be no 

aliasing in the spectrum and hence  

T
F

fefXfHfYfH Sfj
FSEFSE ′

=≤=′
2
1

2
,)()()()( 0)(2 τπ

                              (6.22) 

  Thus from the above equation it is clear that the optimum FSE is equivalent 

to the case where the receive filter matched to the channel distorted 

transmitted pulse and the symbol spaced equalizer is used. 

   In our model the match filter )( fH R precedes the sampler, as was shown in 

Figure 6.15. While this may be simple from an analytical viewpoint, there are 

several practical problems with the use of the matched filter. )( fH R  is a 

continuous time filter and may be much more difficult to design accurately 

than an equivalent digital filter and in not applicable to software radio which is 

an all digital radio. For these reasons, sophisticated data transmission 

systems often replace the matched filter/sampler/equalizer system of Figure 

6.15 with the structure of Figure 6.17. Basically, the sampler and the matched 

filter have been interchanged with respect to Figure 6.15. Now with this 

structure we have more flexibility. Because of FSE we can have a digital 

match or receive filter which is much easy to design [9]. There is another 

advantage with this. Since the receive filter and FSE filter both are linear they 
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can be realized as a single combine filter which is actually the case in the 

practical situation. 

 
Figure 6.17: Communication system with digital receive filter and FSE 

 

   The FSE can also exhibit a significant improvement in sensitivity to 

sampling-phase errors. When the received signal is sampled greater than 

twice the highest frequency, then information about the entire signal waveform 

is retained. Equivalently, the FSE can synthesize, via its transfer 

characteristic, a phase adjustment (effectively interpolating to the correct 

phase) so as to correct the timing offset in the sampling device. The symbol-

spaced equalizer cannot interpolate to the correct phase, as no interpolation 

is correctly performed at the symbol rate. Equivalently, information has been 

lost about the signal by sampling at a speed that is too low in the symbol-

spaced equalizer without matched filter. This possible notch is an example of 

information loss at some frequency; this loss cannot be recovered in symbol-

spaced equalizer without a matched filter. In effect, the FSE equalizes before 

it aliases (aliasing does occur at the output of the equalizer where it 

decimates by M for symbol-by-symbol detection), whereas the symbol-spaced 

equalizer aliases before it equalizes; the former alternative is often the one of 

choice in practical system implementation, if the extra memory and 

computation can be accommodated. Effectively, with an FSE, the sampling 

device need only be locked to the symbol rate, but can otherwise provide any 

sampling phase. The phase is tacitly corrected to the optimum phase inside 

the linear filter implementing the FSE.  

  It should be noted, however, that the sensitivity to sampling phase is channel 

dependent. In particular, there is usually significant channel energy near the 

Nyquist frequency in applications that exhibit a significant improvement of the 

FSE with respect to the symbol-spaced equalizer. In channels with little 
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energy near the Nyquist frequency, the FSE is avoided, as it provides little 

performance gain, and is significantly more complex to implement (more 

parameters and higher sampling rate). 

   In practical systems, the four most commonly found values for M are 4/3, 2, 

3, and 4. The major drawback of the FSE is that to span the same interval in 

time (when implemented as an FIR filter, as is typical in practice), it requires 

M more coefficients, leading to an increase in memory by a factor of M. The 

FSE outputs may also appear to be computed M times more often, also, in 

real time. However, only 
th

M
⎟
⎠
⎞

⎜
⎝
⎛ 1

of the output samples need be computed (that 

is, those at the symbol rate, as that is when we need them to make a 

decision), so computation is approximately M times that of symbol-spaced 

equalization corresponding to M times as many coefficients to span the same 

time interval, or equivalently, to M times as many input samples per symbol. 

But this disadvantage cab be removed using the multi-channel model of the 

FSE 
 

 6.6.1   Multi-Channel Model for FSE 

  As explained earlier for a fractionally spaced equalizer (FSE), the tap 

spacing of the equalizer is a fraction of the baud spacing (in time) or the 

transmitted symbol period. As the output of the equalizer has the same rate 

as the input symbol rate, the output of the FSE needs to be calculated once in 

every symbol period. This means that we have to decimate the output of the 

FSE by M (we have to chose every Mth sample from the output), where M is 

the upsampling factor. This is shown in figure 6.18.  

 
Figure 6.18: Communication system with FSE 
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   In this situation, the FSE can be modeled as a parallel combination of a 

number of baud spaced equalizers. This parallel combination of baud spaced 

equalizers is known as the Multi-Channel Model of FSE. Actually this 

approach is the same as the polyphase decomposition of the filter, which we 

have already discussed in a previous chapter, but in the literature it is named 

as the Multi-Channel Model. 

   A tap-spacing of TS /M is assumed for FSE, where M is an integer (M=2 for 

our design). The structure of the FSE in the discrete domain is shown in figure 

6.19.  

 
Figure 6.19: A Discrete time channel model with a FSE 

 

Assuming the channel has an impulse-response of length (L - 1)TS, the 

discrete-time representation of the channel will have a length (L - 1)M because 

the sampling rate is M/TS. 

  Let g be the (L - 1)M-vector representing the discrete time channel filter. For 

simplicity we are using the word channel filter actually it includes all the filters 

before equalizer (see the baseband model in figure 6.12). The input pulse 

sequence Ik at a rate Ts is zero-padded with M zeros in-between samples to 

set the sampling rate to M/Ts (already explained in previous chapter) and the 

output signal from the FSE is sampled at a rate TS (decimated). Let h be the 

vector representing the fractionally-spaced equalizer tap coefficients. Because 

of the presence of these M zeros in-between samples, the convolution 

hgI k ∗∗  can be easily represented as a mutichannel, single-rate (1/Ts) 

structure, as shown in figure 6.20.  
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Figure 6.20: A communication model with multi-channel representation of FSE 
 

The channel filter can be subdivided into M sub-channels as:   

K

M

K

K

,,,

,,,
,,,

13121

1211

20

−−−

++

MMM

MM

MM

ggg

ggg
ggg

                                           (6.23) 

Similarly, the FSE filter can be subdivided into M sub-filters as    
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The total response of the equalizer and the channel is given by 

∑
=

∗=
M

m
mnmnt hgny

1
}{}{)(                                           (6.25) 

where mng }{  and mnh }{  represent the channel and the equalizer impulse 

response respectively in the mth sub-channel. Because of this multi-channel 

approach the computation complexity of the FSE becomes equal to the 

symbol spaced equalizer and hence we are only optimizing the performance 

of equalizer while keeping the computational complexity same. 

In our design M=2 so the actual channel and the equalizer response is split 

into two sub-channels (one even and one odd). 
 

6.7   DECISION FEEDBACK EQUALIZER 
 We are using the raised cosine filter for pulse shaping and we know that any 

nth received symbol is primarily influenced by the nth symbol transmitted; 

however, there are ISI components contributed by prior and subsequent 
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transmit symbols. The terms due to prior symbols are termed postcursor ISI 

because the nth transmitted symbol affects on symbols following the nth 

received symbol. The nature of this ISI can be determined by examining the 

right-hand portion of the raised cosine impulse response. Alternately, the ISI 

terms due to subsequent transmit symbols exert precursor ISI because the 

nth transmit symbol influences received symbols prior to the nth. These ISI 

terms are determined by the shape of the left-hand portion of the raised 

cosine impulse response (see figure 6.21). 

 
Figure 6.21: Raised cosine filter impulse response 

 

 In case of the linear MMSE equalizers (SSE or FSE) what we are doing. We 

are only removing the ISI from any symbol kI  due to the subsequent symbol 

following him. That’s why the linear equalizers are also called precursor 

equalizers because they only take care of the ISI contributed by the symbols 

following them. So there performance is not optimal. To remove the 

postcursor ISI another equalizer is used which is called decision feedback 

equalizer (DFE). DFE is based on the principle that once you have 

determined the value of the current transmitted symbol, you can exactly 

remove the ISI contribution of that symbol to future received symbols. Recall 

from the equivalent discrete-time model in Figure 6.12 that 

∑

∑

≠
−

−

++=

+=

kj
kjkkk

j
kjkkk

ngIgI

ngII

0

~

                                        (6.26) 

The current symbol we want to determine is kI . If we had known the other 

symbols exactly, an obvious approach to eliminate ISI would be to subtract 

their effects off, i.e., the equalizer would give 
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In general, we do not know all the symbols that are affecting the reception of 

the current symbol. However, it is possible to use previously decided symbols 

(output from the decision device) provided that we have made correct 

decisions on them. This approach is called decision feedback equalization. 

With decision feedback, we can think of the equalizer to contain two parts: a 

feedforward part and a feedback part. Feedforward forward equalizer (FFE) 

part is a normal FSE which we have already discussed to remove precursor 

ISI and feedback equalizer (FBE) is an SSE to remove postcursor ISI (see 

figure 6.22). The FFE shapes the channel response (shorten) such that the 

postcursors can be cancelled by the FBE. DFE is classified as a non linear 

equalizer because of this decision device. 

Suppose that feedforward filter is of order L and the feedback filter is of order 

W  
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where jI ′  are the decided symbols. Again, the filter coefficients jEh ,  can be found by 

minimizing the MSE. In general, significant improvement over linear equalizers can 

be obtained with the decision feedback equalizer. 

 
Consider a DFE with a feedforward filter of order L+1 and a feedback filter of order 

W. Assume perfect decision feedback, i.e., jkj II =′  . Then 

BEBFEF HIHI ,,
ˆ TT

kI +=                                                 (6.29) 

where 
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Figure 6.22: A Decision Feedback Equalizer Structure 
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Further assume that the data symbols kI  are zero-mean unit-variance 

identically distributed random variables. We seek the filters FEH ,  and BEH ,  

that minimize the MSE given by 

[ ] ( ) ⎥⎦
⎤

⎢⎣
⎡ −−=−

2
,,)

ˆ( BEBFEF HIHI TT
kkk IEIIE                                      (6.30) 

Differentiating with respect to FEH , and BEH , , we get 

( )[ ] 0,, =−− BEBFEFF HIHII TT
kIE                                        (6.31) 

( )[ ] 0,, =−− BEBFEFB HIHII TT
kIE                                        (6.32) 

Notice that [ ] 0=BIkIE and [ ] WW
TE ×= III BB  i.e., the identity matrix. The 

equations for optimal FEH ,  and BEH , reduce to 

[ ] [ ] [ ]FBEBFFEFF IHIIHII k
TT IEEE =+ ,,                                    (6.33) 

 

[ ] 0,, =+ BEFEFB HHII TE                                                 (6.34) 

Solving these equations, we have 

[ ] [ ] [ ]( ) [ ]FFBBFFFFE IIIIIIIH k
TTT IEEEE

1
,

−
−=                                (6.35) 

[ ] FEFBBE HIIH ,,
TE−=                                                   (6.36) 

  Similar to the case of the MMSE equalizer, we can also solve for the 

feedforward and feedback filters using the steepest descent approach. If we 

do not know the expectations of the matrices above a priori, we can send a 

training sequence to facilitate the estimation of them.  

   For the above discussion we have assumed that all the decision are correct 

but it is not the case in practice. DFE minimizes the MSE if the wrong 

decisions are less than 10%. Otherwise a potential problem for the DFE is 

that any decision errors will cause a corrupted estimate of the postcursor ISI 

generated by the postcursor equalizer. This is called error propagation (in 

tracking mode). This problem can be alleviated by using transmitter precoding 
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also called Tomlinson-Harashima coding. The idea is to move the cancellation 

of the postcursor ISI to the transmitter where no error will occur. The basis of 

this approach is that the channel and the feedback filter are linear. Thus, we 

can change the cascade order without affecting the final result. 

  When the channel response has spectral nulls, the linear equalizer cannot 

compensate for the distortion. The decision feedback equalizer (DFE) can 

remedy this problem because it can handle the spectral nulls. 
 

6.8 SIMULATION RESULTS 
 The two ray channel model is used for simulation with equal gain for both 

rays. The normalized delay spread is greater than T where T is symbol interval 

to create frequency selective fading effects. Two samples per symbol are 

used.      
6.8.1   Linear  FSE 
  Various equalizer taps are tried and 11 taps are found to be optimum. 

Similarly various step sizes are tried and 0.075 is found to be optimum. The 

learning curve for LMS algorithm is given below. 
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Figure 6.23: Learning curve for LMS algorithm  

 

From the above figure you can see that the algorithm converges after 

approximately 600 to 800 samples. Eye diagram for faded received signal is 
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Figure 6.24: Eye diagram for received faded signal 

 

Eye diagram for the equalized signal is given below 
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Figure 6.25: Eye diagram for equalized signal 

6.8.2 Decision Feedback Equalizer 
Optimum length of DFE is found to be equal to 8. 5 taps for feedforward filter 

and 3 taps for feedback filter. Learning curve for LMS algorithm given below  
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Figure 6.26: Learning curve for LMS algorithm  
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From the above figure you can see that the algorithm converges after 

approximately 800 to 1000 samples. Eye diagram for faded received signal is 
 

1 2 3 4 5 6 7 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Samples

A
m

pl
itu

de

 
Figure 6.27: Eye diagram for received faded signal 

 
The eye diagram before decision making device is plotted on the next page. 

Which shows that the ISI is forced to zeros at the input of the decision device.    
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Figure 6.28: Eye diagram for equalized signal 
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CHAPTER  7 

 

SYNCHRONIZATION 
 

7.1   INTRODUCTION 

   Synchronization (“syn” meaning “together” and “chronous” meaning “time”) is the 

process of reconstructing this time base. There are two synchronization problems 

encountered in passband communication systems: Symbol timing recovery and 

Carrier recovery. Symbol timing recovery enables the receiver to select the proper 

samples for decision. Carrier recovery is required for the operation of a 

phase-coherent demodulator. 

    The carrier frequency of the received signal may be different from that of the 

nominal value of the transmitter carrier frequency. This discrepancy can be the results 

of the deviation of the transmitter oscillator from the nominal frequency and, more 

importantly, the Doppler Effect when the transmitter is in motion relative to the 

receiver. In reality, it takes a finite amount of time for the information-bearing 

electromagnetic wave to travel from the transmitter to the receiver. 

   In reality, it takes a finite amount of time for the information-bearing 

electromagnetic wave to travel from the transmitter to the receiver. This transmission 

delay introduces a mismatch between the symbol timing at the transmitter and that at 



Simulation Of QPSK Transceiver 

 

cxxvii

the receiver. Recall that we need to sample the output of the matched filter at an exact 

time to optimize the error performance. We need to know the symbol timing at the 

receiver (or equivalently, the transmission delay) in order to eliminate the 

performance degradation. Due to the timing mismatch Implementation of the receiver 

by digital techniques implies sampling of the signal. In some circumstances, the 

sampling can be synchronized to the symbol rate of the incoming signal  
   Phase lock loops (PLLs) are key components of modern communication systems 

which are used in synchronization [9]. Before going into the discussion of carrier and 

timing recovery techniques it is necessary to provide a detailed overview of PLL.   

7.2   PHASE LOCKED LOOPS 

   The basic PLL structure is shown in Figure 7.1. The voltage-controlled oscillator 

(VCO) attempts to produce a signal v(t) that tracks the phase of the input y(t). A phase 

detector measures the phase error between the input y(t) and the VCO output v(t). The 

resulting error signal can be filtered to become a control signal that drives the VCO. 

The basic idea is obvious—if the VCO phase gets ahead of the phase of the input, the 

control signal should be reduced. If the VCO phase gets behind, the control signal 

should be increased. As with any feedback system, the parameters must be chosen to 

ensure stability. The goal in design of the PLL varies with the application. 

 
Figure 7.1: Basic structure of a continuous-time PLL. 

 

7.3 IDEAL CONTINUOUS TIME PLL 

   PLLs are conceptually simple, but they are inherently non-linear systems and their 

analysis can be difficult. However, with some carefully crafted simplifying 

assumptions we can develop powerful analytical tools that simplify the analysis. 

First assume a particular form for the input 

              ( ))(cos)( ttwAty vy θ+=                                            (7.1) 

where yA  and vw are constants. The output of the VCO is assumed to have a similar 

form 

              ( ))(cos)( ttwAtv vv φ+=                                           (7.2) 
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When )(tφ  is a constant the frequency of the VCO output is vw , called the natural or 

free-running frequency of the VCO. 
 

7.3.1   Ideal Phase Detector 

Assuming forms (7.1) and (7.2) the output of an ideal phase detector is 

              ( ))()()( ttWt φθε −=                                                    (7-3)                        

where the function W(.), shown in Figure 7.2, reflects the 2π  ambiguity in the phase 

difference. Because of the shape of W(.), this phase detector is called a sawtooth 

phase detector. We have assumed unity slope for the function W(.), although in prac-

tice the phase detector may exhibit some other gain, often written PK . That gain is 

easily modeled as part of the loop filter gain, so its explicit inclusion is not necessary. 

Because of the 2π  ambiguities in an ideal phase detector, sudden changes of 2π in 

)(tθ or )(tφ  have no effect on the system (they are not detected by the phase 

detector). Such changes are called clicks, and are usually detrimental. 

 
Figure 7.2: An ideal phase detector which can detect phase errors ψ  modulo 2π . 

 

7.3.2   Ideal VCO 

The ideal VCO, with properties summarized in Figure 7.3, produces the output (7.2), 

which has instantaneous frequency 

        [ ]
dt

tdwttw
dt
d

vv
)()( φφ +=+                                        (7.4) 

Again, a practical VCO may have gain, often written vK , that can be modeled as part 

of the gain of the loop filter. Intuitively, we would like to directly control the instan-

taneous frequency with the control input c(t). The VCO should therefore be designed 

so that 

           )())(( tc
dt

td
=

φ                                              (7.5) 

Taking the Laplace transform of equation (7.5), 

            )()()()( sEsLsCss ==Φ                                         (7.6) 
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where C(s) is the Laplace transform of the control signal and E(s) is the Laplace 

transform of the error signal )(tε . 

 
Figure 7.3: An ideal VCO 

 

7.3.3   Phase and Average-Frequency Lock 

The ideal PLL is phase locked if 

φθφ += )()( tt                                                 (7.7) 

for some constant φ .If 0=φ , the PLL is perfectly phase locked. In other words, the 

VCO output is exactly tracking the phase of the input. It is locked to an average fre-

quency Kwv +  if 

           Ktt =)(φ                                                    (7.8) 

for some constant K . The VCO output frequency is presumably exactly the same as 

the input average frequency. Intuitively, there must be some limitations on the input 

phase Q(t ) for the PLL to be phase or average-frequency locked because the phase 

detector output is bounded by ±π . To find the limitations, assume a simple form for 

the phase of the input, 

            θθ += twt 0)(                                               (7.9) 

In other words, the input y(t) is a sinusoid with frequency 0wwv +  and phase θ , a 

constant. Assume the PLL is phase locked. In order for it to remain phase locked, the 

frequency offset 0w must not exceed a limited range called the lock range or hold-in 

range of the PLL. 
 

7.3.4   Analysis of the Linearized Dynamics 

Phase and average-frequency lock are static concepts. They assume the PLL is in 

steady state. If we assume that the phase error is small enough for all t 

 , πφθ <− )()( tt                                           (7.10) 

then the phase detector is operating in its linear range (Figure 7.2) 

 )()()( ttt φθε −=                                              (7.11) 
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and the analysis of the dynamics of the PLL is simple. The transfer function from the 

phase )(tθ of the input to the phase )(tφ of the VCO follows by taking the Laplace 

transform of (7. 11), 

)()()( sssE Φ−Θ=                                          (7.12) 

and from (7.6), 

          
)(
)()(

sL
sssE Φ

=                                               (7.13) 

Combining these and solving for )(
)(

s
s

Θ
Φ  we get the phase transfer function 

ssL
sL

s
s

+
=

Θ
Φ

)(
)(

)(
)(                                           (7.14) 

From above transfer function it is clear that the order of PLL (transfer function) is 

always 1 greater than the order of the loop filter. Evaluating transfer function     (7. 

14) at s =0, for a zero order loop filter, the PLL has unity gain for dc phase errors. In 

other words, when the input phase is constant, Kt =)(θ , then the output phase is the 

same constant Kt =)(φ , In this case we get perfect phase lock with any loop filter.  

   The bandwidth of a PLL is loosely defined to be the bandwidth of the transfer 

function )(
)(

s
s

Θ
Φ . Lowering the bandwidth means increasing the attenuation of high 

frequency components in the input phase or noise, but for the first order PLL, it also 

reduces the lock range. It is possible to reduce the bandwidth without reducing the 

lock range by using a second-order PLL (first order loop filter) [9]. 

Transfer function for the typical first order PLL is 

s
Ks

KsL L
1)(

+
=                                               (7.15) 

This is sometimes called a proportional plus integral loop filter. The closed-loop 

phase response is 

2
1

1

)(
)(

ssKKK
sKKK

s
s

LL

LL

++
+

=
Θ
Φ                                    (7.16) 

The PLL with above loop filter has unity gain at dc. It has an integrator in the loop 

filter. In fact, by convention, the "type" of a PLL is the number of integrators in the 

loop filter plus one. Its main advantage is that the integrator leads to perfect phase 

lock even in the face of frequency offset. A disadvantage is that it always exhibits 

peaking. 
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7.3.5   Steady-State Response 

It is often useful to know precisely the steady-state operating point of a PLL given 

certain inputs. The steady-state phase error is defined to be 

          )(lim t
tss εε

∞→
=                                              (7.17) 

If the PLL does not achieve perfect phase lock then 0≠ssε . If 0)( =tε  for t < 0 then 

we can (usually) find ssε  using the final value theorem for Laplace transforms, 

)(lim
0

ssE
sss →

=ε                                             (7.18) 

 Laplace transform of )(tε  in terms of the input phase is, 

           
ssL

sssE
+

Θ
=

)(
)()(             ,          

ssL
ss

sss +
Θ

=
→ )(

)(lim
2

0
ε                              (7.19) 

 

7.4   DISCRETE TIME PLL 

In digital communications systems, especially for software radio applications,   analog 

continuous-time PLLs like those discussed in section 7.3 are rare.  So we have to have 

the discrete time equivalent for the continuous time PLLs [9]. 

A typical all digital PLL is shown in figure 7.4. Assumptions about the form of the 

input signal and the output of the digital VCO which is also called numerically 

controlled oscillator (NCO) are analogous to that of continuous time PLL.  
 

7.4.1   Phase Error Detector 

The PED is a discrete time version of the continuous PED discussed previously. 

)( kkk W φθε −=                                                (7.20) 

Where W(.) is shown in figure 7.2. 

 
Figure 7.4: A typical discrete time PLL 

 

7.4.2   Discrete Time VCO 
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Discrete time VCO also called numerically controlled oscillator (NCO). The NCO, 
although analogous to VCO, is not quite as obvious. The phase kφ  satisfies the 
difference equation 

kkk c=−+ φφ 1                                              (7.21) 

Using this output of VCO can be written as  

)cos(
))1(cos( 11

kvkvv

kvvk

cTwkTwA
TkwAv

+++=
++= ++

φ
φ

                             (7.22) 

This leads to the structure in figure 7.5. Taking z-transform we get  

)(
1
)()(

1
1)( zE

z
zLzC

z
z

−
=

−
=Φ                                     (7.23) 

where L(z) is the loop filter transfer function and E(z) is the z-transform of the error 

kε . 

 
Figure 7.5: A typical NCO implementation 

 

  In the above figure you can see that NCO consists of an accumulator and a cosine 

computation, along with some of constant and multiplications. The modulo two 

adders reflect the fact the numbers being added are angles in radians. The cosine 

function can be implemented using a look up table or Taylor series expansion. Look 

up table is the most common method. 

7.4.3   Analysis of the Dynamics 

As before, to analyze the dynamics we assume that the phase error is small enough 

that the phase detector is linear. The phase detector output is 

 kkk φθε −=                       (7.24) 

or taking Z transforms 

           )()()( zzzE Φ−Θ=                                      (7.25) 

Combining (15.43) with (15.39) we get the phase transfer function of the PLL, 

 
1)(

)(
)(
)(

−+
=

Θ
Φ

zzL
zL

z
z                    (7.26) 
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By evaluating this at z = 1 we see that just as with the continuous-time PLL, discrete-

time PLLs have unity gain to dc phase inputs. 
 

7.4.4   Steady-State Error 

Just as with continuous-time PLLs, the steady-state error is 

            kkss εε
∞→

= lim                       (7.27) 

If 0=kε  for k < 0 we can use the final value theorem for z-transform to write 

 )()1(lim
1

zEz
zss −=

→
ε          (7.28) 

Combining (7.25) and (7.26) we get an expression for E(z), 

          
1)(
)1)(()(

−+
−Θ

=
zzL

zzzE        (7.29) 

The "type" of a discrete-time PLL is defined to be one plus the number of poles at 

z=1. First order PLL (with zero order loop filter) can track a phase step with a zero 

steady state error. But it is unable to track a frequency step or phase ramp with a zero 

steady state error. In fact it does track the phase ramp but with a constant steady state 

error. Second order PLL (with a first order loop filter) can track the both phase step 

and phase ramp with a zero steady state error. But it unable to track the frequency 

ramp, which may result if the transmitter and receiver are moving with constant 

acceleration. But the frequency ramp very rarely occurs in practical conditions. There 

is another advantage of second order PLLs that they are unconditionally stable and 

they are most of the time used for synchronization. Third order PLL (with a second 

order loop filter) can track the phase step, phase ramp and frequency ramp with a zero 

steady state error. But they are not unconditionally stable and they are never used in 

synchronization. They have some applications in GPS. 
 

7.4.5 Complex Phase Error Detectors 

We are using the QPSK modulation technique. The input to the phase error detector is 

a complex QPSK signal. So we must have a complex phase error detector.  A simple 

phase detector for complex signals is shown in Figure 7.6. For small phase errors, the 

phase detector is approximately linear, 

          [ ])()()( ttAAt yv φθε −≈                                                (7.30) 
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Figure 7.6: A simple phase error detector for complex signals 

But we are having the discrete time data. We have to modify the above PED by just 

replacing the t by k.  

It concludes our discussion about the PLL. Now we will discuss phase recovery.   

 

7.5 PHASE RECOVERY 

   As described in chapter 4 we are doing coherent detection of QPSK symbols and for 

coherent detection the receiver and transmitter must be locked in phase. One solution 

is to use PLL before the timing recovery (discussed in the next section). But it is 

slightly difficult because we have more than one sample per symbol. So we are 

putting it after the timing recovery because our timing recovery loop is independent of 

phase errors. If there is any mismatch in phases of transmitter and receiver carriers 

then it will rotate the constellation according to the amount of mismatch. Our PLL is 

operating at baseband complex QPSK signal. We are employing all digital, non data 

aided and feedback phase recovery.  The phase recovery loop recovery loop is given 

in figure 7.7.  

 
Figure 7.7: NDA Phase recovery loop for one sample per symbol 

 

The above phase recovery method is called raise to power M phase recovery. The 

BPSK signal at the baseband is just ±1(either cos(0) or cos(π)). By taking power of 2 
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for BPSK signal the modulation is removed. Similarly for QPSK which has 4 phases 

taking power of 4 the modulation is removed. 

The incoming signal has phase )()( kk yθφ ∆+ , where )(kφ  is the QPSK modulation 

phase at time instant k and given by the relation 

3,1
4

±±== iwhereii
πφ                                   (7.31) 

and )(kyθ∆  is the phase distortion. Before discussing each component individually 

one important thing we want to mention.  The values of VCO and PED constants are 

considered in calculating loop filter’s constants (explained shortly). So we will 

assume them 1 from now on.   
 

7.5.1 Phase Error Detector 

   The PED operation is to multiply the incoming signal with the NCO output and then 

take raise to power 4 to remove modulation. The signal at the output of PED is the 

imaginary part of raised to power 4 error signal. The imaginary part is chosen because 

it is proportional and odd function of error signal. 

Let’s assume that the input signal to the PED at any time k is 

)])()([exp()( kkjky yθφ ∆+×=                                    (7.32) 

the phase )(kyθ of the signal y(k) is 

)()()( kkk yy θφθ ∆+=                                             (7.33) 

the phase )(kyθ  is added in the NCO phase vv k θθ ∆−=)(  and the output  

)()()( kkk vye θθθ −=                                                 (7.34) 

is the phase difference between the two. By taking raise to power 4 

[ ]
( )[ ]4

4

)()(exp

))(exp()(

kkj

kjkz

vy

e

θθ

θ

∆−∆×=

×=
                            (7.35) 

You can see that the modulation is removed but the error is also becomes 4 times. 

Taking power ¼ will give us the error )()( kk vy θθ ∆−∆  only.  

[ ] 4/1)()( kzkr =                                           (7.36) 

Now next step is to take imaginary part of the output because it proportional part and 

also sin is odd function of input. The input signal to the loop filter is  

))(()( krke ℑ=                                             (7.37) 
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The open loop characteristic curve for PED which is also called S-curve is shown in 

figure below [13]. This is the same as shown in figure 7.2. 
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Figure 7.8: Characteristic S-Curve for PED from pi/4 to –pi/4 

 

This is from [–pi/4,pi/4] and it shows that the PED will track the phase variations. It has 

zero value at the center when phase error is zero. Actually PLL will start locking at any 

point and then recursively take it to the origin where error is zero. This S-curve will 

guarantee that the in the close loop the PLL will lock the phase. 
 

7.5.2   NCO 

Output signal from  the loop filter kε is the input to the NCO. The NCO has the same 

operation as explained above. The output phase of NCO is   

))(()()1( kKkk vv εθθ +∆=+                                     (7.38) 

The loop is said to be phase locked if the difference between )(kvθ∆  and yθ∆  is 

zero. 

7.5.3   Loop Filter 

 As explained before the order of the PLL is always one greater than the order of the 

loop filter because the NCO is also an integrator. The bandwidth of the loop filter is 

actually the bandwidth of the PLL. So in deciding the loop bandwidth one must take 

care of the bandwidth of the error. For example the max frequency offset between the 

transmitter and receiver in case of carrier recovery.   Here is the block diagram of 

most commonly used first order loop filter.      
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Figure 7.9: First order digital loop filter  
 

   Let us examine this block diagram. The phase detector output, x, is 

multiplied by the proportional gain constant Kp in the upper arm. In the lower 

arm, the phase detector output is first multiplied by Ki, the integral gain 

constant. The result of this multiplication is fed into an integrator comprising 

an adder and a register (unit delay). The final output y is the sum of the 

product of the proportional gain constant Kp and the phase error computed in 

the upper arm, and the output of the integrator in the lower arm.  

This loop filter could be implemented in software using the following equation: 

y(n) = Kp * x(n) + Ki * x(n-1) + y(n-1) - Kp * x(n-1)                          (7.39) 

The phase detector output is computed and the filter output updated every Ts seconds, 

where Ts is the sampling interval. Kp and Ki can be calculated using the relation 

24/11
4

ζ+
=

sL
p

TBK                                                                 (7.40) 

2

4/1
2

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

+
=

ζζ
sLi TBK                                                                   (7.41) 

where BL is the single sided loop bandwidth and Ts is the sampling time. Typical 

values for BL are 10<BL<100 Hz. BLTs is called normalized loop bandwidth. 

We have explained the phase recovery in detail. Now we will discuss the timing 

recovery. 
 

 

7.6   TIMING RECOVERY 

   Symbol Timing Recovery (STR) or Clock Synchronization is the process of 

recovering the optimum sampling time that corresponds to the maximum opening of 
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the eye diagram. This process is often overlooked but it is in fact the most critical in 

the design of digital communication systems: its failure has devastating effects in the 

receiver data. The inherent problem of clock synchronization is that sampling clock of 

the receiver is not synchronized to the strobes of the transmitter.  

The digital information embedded in the transmitted signal is recovered at the receiver 

by means of a decision device. This decision device operates on samples of the noisy 

signal );( εty  taken at symbol rate T
1  at the receive filter output, which is given by  

)()();( tnTmTtgaty
m

m +−−≡ ∑ εε                                    (7.42) 

  In equation above { }ma   is a sequence of zero-mean data symbols (complex QPSK 

symbols). g(t) is the baseband  pulse at the receive filter output, Tε  is an unknown 

fractional time delay ( )2
1

2
1 ≤≤− ε  and n(t) represents zero-mean additive noise. For 

maximum noise immunity, the samples upon which the receiver's decision is based 

should be taken at the instants of maximum eye" opening. As the decision instants are 

a priori unknown (because of the unknown delay Tε ) the receiver must contain a 

device which makes an estimate of the normalized delay. Such a device is called a 

clock synchronizer or symbol synchronizer. The timing estimate is used to bring the 

sampling clock, which activates the sampler at the receive filter output, in close 

synchronism with the received PAM signal. This is achieved by adjusting the phase of 

this sampling clock according to the value of the estimate.  

   The received noisy signal contains no periodic components, because the channel 

symbols { }ma  have zero mean. Therefore, an ordinary PLL operating on the filtered 

received signal );( εty  cannot be used to generate a clock signal which is in 

synchronism with the received QPSK signal. Let us illustrate this fact by considering 

a PLL with multiplying timing error detector: the local reference signal )';( εtr given 

by  

⎟
⎠
⎞

⎜
⎝
⎛ −= )'(2sin2)';( Tt

T
Ktr r επε                            (7.43) 

and is multiplied with the noisy QPSK signal );( εty  as shown in Figure 7.10. Taking 

into account equation ( i ), the timing error detector output signal equals  

⎟
⎠
⎞

⎜
⎝
⎛ −⎥

⎦

⎤
⎢
⎣

⎡
+−−= ∑ )'(2sin2)()()',;( Tt

T
KtnTmTtgatx r

m
m επεεε                 (7.44 )  
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For any values of ε and 'ε  .the statistical average of the timing error detector output is 

identically zero, because the channel symbols { }ma and the additive noise n(t) have 

zero mean. As the average timing error detector output is zero irrespective of ε and 

'ε there is no deterministic force that makes the PLL lock onto the received signal 

[13].  
 

 
 

Figure 7.10: Ordinary PLL operating on baseband QPSK signal 
 

7.6.1   Categorization of Timing Synchronizers 

   From the operating principle point of view, two categories of synchronizers are 

distinguished i.e., error-tracking (or feedback, or closed Loop} synchronizers and 

feedforward (or open loop) synchronizers.  

A general error-tracking synchronizer is shown in figure 7.11. The noisy baseband 

QPSK signal );( εty  and a locally generated reference signal )';( εtr  are “compared” 

by means of a timing error detector, whose output gives an indication of the 

magnitude and the sign of the timing error 'εε −=e . The filtered timing error 

detector output signal adjusts the timing estimate 'ε  in order to reduce the timing 

error e. The timing estimate 'ε  is the normalized delay of the reference signal )';( εtr  

which activates the sampler operating on );( εty . Hence, error-tracking synchronizers 

use the principle of the PLL to extract a sampling clock which is in close synchronism 

with the received baseband QPSK signal.  
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Figure 7.11: General Error Tracking Synchronizer 
 

Figure 7.12 below shows a general feed forward synchronizer. The noisy baseband 

QPSK receive signal );( εty  enters a timing detector, which “measures” the 

instantaneous value of ε (or a function thereof). The noisy measurements at the timing 

detector output are averaged to yield the timing estimate 'ε  (or a function thereof).  

 
Figure 7.12: General Feedforward Synchronizer 

Besides the above categorization into error-tracking and feed forward synchronizers, 

other categorizations can be made: 

• When a synchronizer makes use of the receiver's decisions about the transmitted 

data symbols for producing a timing estimate, the synchronizer is said to be 

decision-directed; otherwise, it is non-data-aided.  

• The synchronizer can operate in continuous time or in discrete time. Discrete time 

synchronizers use samples of the QPSK baseband signal );( εty , and are therefore 

well-suited for digital implementation [13]. 
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7.7   TIMING RECOVERY USING INTERPOLATION 

  As described above all digital synchronizer can be obtained by replacing the sample 

by the interpolator. Now the incoming signal  );( εty  can be a discrete time signal. 

We have designed all digital, non data aided and feedback synchronizer which is 

described in figure 7.13. 

The loop shown in figure 7.13 is an asynchronous, non-data aided, all-digital symbol 

timing recovery proposed by Gardner .It consists of an Interpolator, Timing Error 

Detector (TED), Digital Loop Filter, and an accumulator (NCO). The all-digital 

symbol timing recovery is a feedback timing error synchronizer that can be 

characterized as a Phase Locked Loop (PLL). The loop parameters are designed based 

on the linearized model of the PLL. We will evaluate each block one by one. 

 

 
Figure 7.13: All digital symbol timing recovery 

 
7.7.1   Interpolator 

The incoming signal is discrete time signal. The interpolator computes the 

intermediate values between the adjacent signal samples. There are many 

interpolators which are found in literature. But we have selected cubic Lagrange 

interpolator for our loop [19]. In numerical mathematics the task of interpolation for 

our purpose can be stated as follows. 

Given the function )(tx  defined for NN ttt ,.......,,....... 0)1( −− , find a polynomial 

)(tP  of degree (2N-1) which assumes the given values )( ntx  

     )()( nn txtP =             ),....1,0,1),....,1(( NNn −−−=             (7.44)          
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In general, the points nt  do not need to be equidistant, nor does the number of points 

have to be an even number 2N. There exists a Lagrange polynomial of a degree 2N-1: 

[ ] )())....()().......(()(
)1(

11)1( nNnnN txtttttttttP
N

Nn
n∑

−−=

−−−−= +−−−λ
                (7.45) 
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Using the definition of (7.45) it is verified that for every  nt , we have  )()( nn txtP =  as 

required. The polynomial )(tP  is linear combination of values )( ntx  
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Figure 7.14: Lagrange Interpolation 

 

with so called Lagrange coefficients. 
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Figure 7.15: Farrow structure of Lagrange interpolation 

Since FIR filter also computes a linear combination of sample values )( SkTx it is 

necessary to point out the differences between the two approaches. As we are only 

interested in the interpolated values in the central interval 10 ≤≤ t , we set µ=t  in the 

definition of the Lagrange coefficients )(tqn  . Every )(µnq  is a polynomial in µ which 

can be written as  
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Inserting into equation (7.47), we obtain  
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Thus from equation (9.50) we learn that )(µP  can be computed as the output of a 

Farrow structure. The main advantage of Lagrange interpolation is that the 

computations are done in real time which is much better then the classical approach in 

which the match filter is implemented using polyphase structures for interpolation. 

We have used cubic Lagrange interpolator. Using equation (7.49), we get 



Simulation Of QPSK Transceiver 

 

cxliv

µµµµ
3
1

2
1

6
1)( 23

1 −+−=−q  

1
22

1)( 23
0 +−−=

µµµµq
                              

(7.51)
 

µµµµ ++−= 23
1

2
1

2
1)(q  

µµµ
6
1

6
1)( 3

2 −=q
 

The implementation of cubic Lagrange interpolator is shown in figure 7.16  
 

7.7.2   Gardner Timing Error Detector 

The Gardner algorithm has seen widespread use in many practical timing recovery 

loop implementations. The algorithm uses two samples per symbol and has the 

advantage of being insensitive to carrier offsets. This is the reason for selecting this 

algorithm . The timing recovery loop can lock first, therefore simplifying the task of 

carrier recovery.  

 
Figure 7.16: Farrow structure of a Cubic Lagrange Interpolator 

 

The error for the Gardner algorithm is computed using the following equation: 

)()()( 2121 −−−− −+−= nnnnnn QQQIIIne                          (7.52) 

 where the spacing between n and n-2 is T seconds, and the spacing between n and n-1 

is T/2 seconds and T is the symbol time. Note that the Gardner error is most useful on 

symbol transitions (when the symbol goes from positive to negative or vice-versa). 

The Gardner error is relatively small when the current and previous symbols have the 

same polarity. That’s why it is also called zero crossing detector. It is also shown that 

Gardner TED is very sensitive to self noise which is proportional to roll off factor for 
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the raised cosine filter. Greater the roll off factor lesser will be the self noise and 

better will be the performance.    

 A simulation was run for determination of open loop S-curve and the curve is found 

to be sinusoidal. This will show that the timing errors will be tracked. 
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Figure 7.17: Characteristic S-curve for Gardner’s TED 

 
       7.7.3   Decimator and Loop Filter 

  Gardner algorithm requires two samples per symbol. The output is required only at 

the symbol intervals. So after the timing error detector we have to have a decimator so 

that the output to the loop filter is at symbol interval. The loop filter is the same as 

described in the phase recovery. 
 

7.7.4   Accumulator and Modulo 1 Adder    

 The accumulator or NCO is again has the same roll of integrator. As described earlier 

we have normalized the delay by sampling time. Now we are having the delay in the 

range of [-1,1]. The output of the integrator x(k+1)at any time k+1 is 

)()()1( kykxkx +=+
                                           (7.53) 

Where y(k) is the output of the loop filter.  

The modulo 1 adder is used to prevent the accumulator output from increasing 1 

which is max delay.  If the delay is greater than 1 then the mod operation is used is 

bring it down at also the basepoint of interpolator is changed by 1 [13].  

This concludes our discussion about the timing recovery. 
 

7.8   SIMULATION RESULTS 

7.8.1 Phase Recovery 

 A simulation was run for phase recovery. The phase plus frequency errors are 

introduced. The constellation for received QPSK symbols is given below 
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Figure 7.18: Constellation for received QPSK symbols   

At the output of phase recovery PLL the constellation is given below. You can see 

that the phase errors are removed. 
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Figure 7.19: Constellation after phase recovery   

 

The output error signal from the loop filter is shown below. The steady state value of 

the error is zero which sows that the phase errors are removed. 
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Figure 7.20: Output signal from the loop filter 

 

From the above figure it can be seen that PLL the takes 3000 samples to converge. 

This can be improved by increasing the gain of the PLL. The signal at the output of 

the accumulator is shown in figure 7.21. 
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Figure 7.21: Accumulator output signal 

 

7.8.2 Timing Recovery 

 Another simulation was run for timing recovery for two sample per symbols. Various 

fractional timing delays are introduced and the performance of the timing recovery 

loop is checked. For the fractional delay of T/2 the eye diagram for the signal at the 

input of the loop is 
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Figure 7.22: Eye diagram after delaying T/2. 

 

You can see the ISI very clearly. At the output of the timing recovery loop the eye 

diagram is given in the figure 7.23. In this diagram you can see that the ISI is almost 

removed. 
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Figure 7.23: Eye diagram after timing recovery. 

We have already explained that the Gardner TED is very sensitive to self noise.  

To reduce the effect of self noise the stream of alternate ones and zeros is sent. After 

that the loop bandwidth is reduced and the random data is sent. The loop filter output 

signal is given below. The jitter is the curve is because of self noise.  
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Figure 7.24: Loop filter output signal 
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CHAPTER  8 

 

CHANNEL CODING 
  
 
8.1   INFORMATION THEORY 
   The framework for studying fundamental limits in communication is 

information theory. The fundamental measure of performance is the capacity 

of a channel. Information theory was invented by Claude Shannon in 1948 to 

characterize the fundamental limits of reliable communication [18]. Before 

Shannon, it was widely believed that to the only way achieve reliable 

communication over a noisy channel, i.e. to make the error probability as 

small as desired, is to reduce the data rate, by say repeating the information 

symbol multiple times. Shannon however showed the surprising result that 

this is not necessary: by appropriate coding of the information, one can 

communicate at a positive rate but at the same time with as small an error 

probability as desired. However, there is a maximal rate, called the capacity of 

the channel, for which this can be done: if one attempts to communicate at 

rates above the channel capacity, then it is impossible to drive the error 

probability to zero. The capacity of a channel depends on the statistical 

characteristics of the channel, and for a wide class of channels, Shannon 

showed how the channel capacity can be computed. Channel capacity is 

therefore the fundamental measure of performance limit on reliable 

communication. The most common and probably the most important channel 

for a communication engineer is the gaussian channel, given by 

y[n] = x[n] + w[n]                                                     (8.1) 

where x[n] and y[n] are real inputs at time n and ]}[{ nw  is an i.i.d. sequence of 

),0( 2σN  noise. Given a power constraint of P  on the transmitted signal, the 

capacity is given by 
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Capacity is measured in bits per symbol. This is probably the most well-known 

result of information theory, but it is in fact only a special case of Shannon’s 

general theory applied to a specific channel.   

 

8.2   BASIC MODEL AND FORMULATION 
To develop ideas, let us first start with the simplest class of channels: the 

discrete memoryless channels (DMCs). Both the input x[n] and the output y[n] 

of a DMC are discrete-valued and lie in finite sets X and Y respectively. (These 

sets are called the input and output alphabets of the channel respectively.) 

The statistics of the channel is described by conditional probabilities 

{ } YyXxxPy ∈∈ ,)/ .These are also called transition probabilities. Given an 

input sequence x = (x[1],……., x[N]), the probability of observing an output 

sequence    y = (y[1],…….., y[N]) is given by 

∏
=

=
N

n
nxnypxyp

1
])[[[()/(                                               (8.3)  

The interpretation is that the channel noise corrupts the input symbols 

independently (hence the term memoryless). The communication system is 

abstracted as shown in figure 8.1. The sender has one out of M equally likely 

messages it wants to transmit to the receiver. To convey the information, it 

uses a codebook C of block length N and size M, where }.........,{ 1 MxxC =  and 

xm’s are the codewords. To transmit the mth message, the codeword xm is 

sent across the noisy channel. Based on the received vector y, the decoder 

generates an estimate ˆm of the correct message. The error probability is 

}.ˆ{ mmpe ≠Ρ= We will assume that the maximum-likelihood (ML) decoder is 

used, since it minimizes the error probability for a given code. Since we are 

transmitting one of M messages, the number of bits conveyed is logM. Since 

the block length of the code is N, the rate of the code is R = logM/N bits per 

unit time. The data rate R and the ML error probability pe are the two key 

performance measures of a code. 
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Figure 8.1: Basic communication model with channel encoder and decoder    

 

   Information is said to be communicated reliably at rate R if for every δ  > 0, 

one can find a code of rate R and block length N such that the error probability 

pe <δ . The capacity C of the channel is the maximum rate for which reliable 

communication is possible. Note the key feature of this definition is that one is 

allowed to code over arbitrarily large block lengths N. Since there is noise in 

the channel, it is clear that the error probability cannot be made arbitrarily 

small if the block length is fixed a priori. Only when one codes over long block 

lengths is there hope that one can rely on some kind of law of large numbers 

to average out the random effect of the noise. Still, it is not at all clear a priori 

whether a non-zero reliable information rate can be achieved.  

   Shannon showed not only that C > 0 for all but degenerate channels but in 

fact gives a simple way by which C can be computed as a function 

of )}/({ xyp .  

  That’s concludes our discussion about information theory. We will not go into 

the depth of the topics. There are many error correcting codes found in the 

literature. Most of time forward error correcting codes are used which are 

further classified in block and convolutional codes. We will consider only the 

convolutional codes.    

 

8.3   CHANNEL CODING 

 The purpose of forward error correction (FEC) is to improve the capacity of a 

channel by adding some carefully designed redundant information to the data 

being transmitted through the channel [14]. The process of adding this 

redundant information is known as channel coding. Convolutional coding and 

block coding are the two major forms of channel coding. Convolutional codes 

operate on serial data, one or a few bits at a time. Block codes operate on 

relatively large (typically, up to a couple of hundred bytes) message blocks. 
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There are a variety of useful convolutional and block codes, and a variety of 

algorithms for decoding the received coded information sequences to recover 

the original data. 

     Convolutional encoding with Viterbi decoding is a FEC technique that is 

particularly suited to a channel in which the transmitted signal is corrupted 

mainly by additive white Gaussian noise (AWGN). By using the convolutional 

channel coding significant improvement in SNR can be achieved.  

    Convolutional codes are usually described using two parameters: the code 

rate and the constraint length. The code rate, k/n, is expressed as a ratio of 

the number of bits into the convolutional encoder (k) to the number of channel 

symbols output by the convolutional encoder (n) in a given encoder cycle. The 

constraint length parameter, K, denotes the "length" of the convolutional 

encoder, i.e. how many k-bit stages are available to feed the combinatorial 

logic that produces the output symbols. Closely related to K is the parameter 

m, which indicates how many encoder cycles an input bit is retained and used 

for encoding after it first appears at the input to the convolutional encoder. 

The m parameter can be thought of as the memory length of the encoder. 

Since we have used code rate of 1/2,so we focus on rate 1/2 convolutional 

codes.  

Viterbi decoding is one of two types of decoding algorithms used with 

convolutional encoding-the other type is sequential decoding. Sequential 

decoding has the advantage that it can perform very well with long-constraint-

length convolutional codes, but it has a variable decoding time. 

Viterbi decoding has the advantage that it has a fixed decoding time. It is well 

suited to hardware decoder implementation. But its computational 

requirements grow exponentially as a function of the constraint length, so it is 

usually limited in practice to constraint lengths of K = 9 or less. 

  But there's a tradeoff-the same data rate with rate 1/2 convolutional coding 

takes twice the bandwidth of the same signal without it, given that the 

modulation technique is the same. That's because with rate 1/2 convolutional 
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encoding, you transmit two channel symbols per data bit. However, if you 

think of the tradeoff as a 5 dB power savings for a 3 dB bandwidth expansion, 

you can see that you come out ahead. Remember: if the modulation 

technique stays the same, the bandwidth expansion factor of a convolutional 

code is simply n/k.  

    Many radio channels are AWGN channels, but many, particularly terrestrial 

radio channels also have other impairments, such as multipath, selective 

fading, interference, and atmospheric (lightning) noise. Transmitters and 

receivers can add spurious signals and phase noise to the desired signal as 

well. Although convolutional coding with Viterbi decoding might be useful in 

dealing with those other problems, it may not be the most optimal technique.  

 

8.4   CONVOLUTIONAL ENCODING  

 Convolutionally encoding the data is accomplished using a shift register and 

associated combinatorial logic that performs modulo-two addition. (A shift 

register is merely a chain of flip-flops wherein the output of the nth flip-flop is 

tied to the input of the (n+1)th flip-flop. Every time the active edge of the clock 

occurs, the input to the flip-flop is clocked through to the output, and thus the 

data are shifted over one stage.) The combinatorial logic is often in the form of 

cascaded exclusive-or gates that implements the table 8.1 

 

Input 
A 

Input 
B 

Output

(A xor B) 
0 0 0
0 1 1
1 0 1
1 1 0

 

Table 8.1: Convolutional Encoder output table  

  The exclusive-or gate performs modulo-two addition of its inputs. When you 

cascade q two-input exclusive-or gates, with the output of the first one feeding 
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one of the inputs of the second one, the output of the second one feeding one 

of the inputs of the third one, etc., the output of the last one in the chain is the 

modulo-two sum of the q + 1 inputs.  

    Now that we have the two basic components of the convolutional encoder 

(flip-flops comprising the shift register and exclusive-or gates comprising the 

associated modulo-two adders) defined, let's look at Figure 8.2 to see a 

picture of a convolutional encoder for a rate 1/2, K = 3, m = 2 code.  

 

Figure 8.2: A typical convolutional encoder implementation for code rate 1/2  

 In this encoder, data bits are provided at a rate of k bits per second. Channel 

symbols are output at a rate of n = 2k symbols per second. The input bit is 

stable during the encoder cycle. The encoder cycle starts when an input clock 

edge occurs. When the input clock edge occurs, the output of the left-hand 

flip-flop is clocked into the right-hand flip-flop, the previous input bit is clocked 

into the left-hand flip-flop, and a new input bit becomes available. Then the 

outputs of the upper and lower modulo-two adders become stable. The output 

selector (SEL A/B block) cycles through two states-in the first state, it selects 

and outputs the output of the upper modulo-two adder; in the second state, it 

selects and outputs the output of the lower modulo-two adder.  

   The encoder shown above encodes the K = 3, (7, 5) convolutional code. 

The octal numbers 7 and 5 represent the code generator polynomials, which 

when read in binary (1112 and 1012) correspond to the shift register 

connections to the upper and lower modulo-two adders, respectively. This 
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code has been determined to be the "best" code for rate 1/2, K = 3. It is the 

code I will use for the remaining discussion and examples, for reasons that 

will become readily apparent when we get into the Viterbi decoder algorithm.  

Let's look at an example input data stream, and the corresponding output data 

stream: Let the input sequence be 0 1 0 1 1 1 0 0 1 0 1 0 0 0 12.  

  Assume that the outputs of both of the flip-flops in the shift register are 

initially cleared, i.e. their outputs are zeroes. The first clock cycle makes the 

first input bit, a zero, available to the encoder. The flip-flop outputs are both 

zeroes. The inputs to the modulo-two adders are all zeroes, so the output of 

the encoder is 002. The second clock cycle makes the second input bit 

available to the encoder. The left-hand flip-flop clocks in the previous bit, 

which was a zero, and the right-hand flip-flop clocks in the zero output by the 

left-hand flip-flop. The inputs to the top modulo-two adder are 1002, so the 

output is a one. The inputs to the bottom modulo-two adder are 102, so the 

output is also a one. So the encoder outputs 112 for the channel symbols. The 

third clock cycle makes the third input bit, a zero, available to the encoder. 

The left-hand flip-flop clocks in the previous bit, which was a one, and the 

right-hand flip-flop clocks in the zero from two bit-times ago. The inputs to the 

top modulo-two adder are 0102, so the output is a one. The inputs to the 

bottom modulo-two adder are 002, so the output is zero. So the encoder 

outputs 102 for the channel symbols.  And so on. The timing diagram shown in 

figure 8.3 illustrates the process.     
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Figure 8.3: Timing diagram for convolutional encoder 

  After all of the inputs have been presented to the encoder, the output 

sequence will be: 00 11 10 00 01 10 01 11 11 10 00 10 11 00 112. 

  You can see from the structure of the rate 1/2 K = 3 convolutional encoder 

and from the example given above that each input bit has an effect on three 

successive pairs of output symbols. That is an extremely important point and 

that is what gives the convolutional code its error-correcting power. The 

reason why will become evident when we get into the Viterbi decoder 

algorithm. Now if we are only going to send the 15 data bits given above, in 

order for the last bit to affect three pairs of output symbols, we need to output 

two more pairs of symbols. This is accomplished in our example encoder by 

clocking the convolutional encoder flip-flops two more times, while holding the 

input at zero. This is called "flushing" the encoder, and results in two more 

pairs of output symbols. The final binary output of the encoder is thus 00 11 

10 00 01 10 01 11 11 10 00 10 11 00 11 10 112. If we don't perform the 

flushing operation, the last m bits of the message have less error-correction 

capability than the first through (m - 1)th bits had. This is a pretty important 

thing to remember if you're going to use this FEC technique in a burst-mode 

environment. So's the step of clearing the shift register at the beginning of 
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each burst. The encoder must start in a known state and end in a known state 

for the decoder to be able to reconstruct the input data sequence properly.  

  Now, let's look at the encoder from another perspective. You can think of the 

encoder as a simple state machine. The example encoder has two bits of 

memory, so there are four possible states. Let's give the left-hand flip-flop a 

binary weight of 21, and the right-hand flip-flop a binary weight of 20. Initially, 

the encoder is in the all-zeroes state. If the first input bit is a zero, the encoder 

stays in the all zeroes state at the next clock edge. But if the input bit is a one, 

the encoder transitions to the 102 state at the next clock edge. Then, if the 

next input bit is zero, the encoder transitions to the 012 state, otherwise, it 

transitions to the 112 state.  The table 8.2 gives the next state given the 

current state and the input, with the states given in binary. 

 

   Next State, if
Current 

State
Input = 0: Input = 1:

00 00 10
01 00 10
10 01 11
11 01 11

 

Table 8.2: State transition table 

   The table 8.2 is often called a state transition table. We'll refer to it as the 

next state table 8.3. Now let us look at a table that lists the channel output 

symbols, given the current state and the input data, which we'll refer to as the 

output table :  

 

 Output Symbols, if
Current 

State
Input = 0: Input = 1:

00 00 11
01 11 00
10 10 01
11 01 10
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Table 8.3: Output table 

 

You should now see that with these two tables, you can completely describe 

the behavior of the example rate 1/2, K = 3 convolutional encoder. Note that 

both of these tables have 2(K - 1) rows, and 2k columns, where K is the 

constraint length and k is the number of bits input to the encoder for each 

cycle. These two tables will come in handy when we start discussing the 

Viterbi decoder algorithm.  

 

8.5   SOFT Vs HARD DECISION  

   An ideal Viterbi decoder would work with infinite precision, or at least with 

floating-point numbers. In practical systems, we quantize the received 

channel symbols with one or a few bits of precision in order to reduce the 

complexity of the Viterbi decoder, not to mention the circuits that precede it. If 

the received channel symbols are quantized to one-bit precision (< 0V = 1, > 

0V = 0), the result is called hard-decision data. If the received channel 

symbols are quantized with more than one bit of precision, the result is called 

soft-decision data. A Viterbi decoder with soft decision data inputs quantized 

to three or four bits of precision can perform about 2 dB better than one 

working with hard-decision inputs. The usual quantization precision is three 

bits. More bits provide little additional improvement [14].  

  The selection of the quantizing levels is an important design decision 

because it can have a significant effect on the performance of the link. The 

following is a very brief explanation of one way to set those levels. Let's 

assume our received signal levels in the absence of noise are -1V = 1, +1V = 

0. With noise, our received signal has mean ±1 and standard deviation 

( )( )OS NE21=σ . Let's use a uniform, three-bit quantizer having the 

input/output relationship shown in the figure 8.4, where D is a decision level 

that we will calculate shortly:  
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Figure 8.4: Quantizing the received signal 

 

The decision level, D, can be calculated according to the formula 

( )( )OS NED 215.5. ⋅=⋅= σ , where Es/N0 is the energy per symbol to noise 

density ratio. We will assume hard decision for Viterbi decoding.  

 

8.6   VITERBI DECODING 

 The single most important concept to aid in understanding the Viterbi 

algorithm is the trellis diagram. The figure 8.5 shows the trellis diagram for our 

example rate 1/2 K = 3 convolutional encoder, for a 15-bit message:  

 

 

Figure 8.5: Trellis diagram  
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The four possible states of the encoder are depicted as four rows of horizontal 

dots. There is one column of four dots for the initial state of the encoder and 

one for each time instant during the message. For a 15-bit message with two 

encoder memory flushing bits, there are 17 time instants in addition to t = 0, 

which represents the initial condition of the encoder. The solid lines 

connecting dots in the diagram represent state transitions when the input bit is 

a one. The dotted lines represent state transitions when the input bit is a zero. 

Notice the correspondence between the arrows in the trellis diagram and the 

state transition table discussed above. Also notice that since the initial 

condition of the encoder is State 002, and the two memory flushing bits are 

zeroes, the arrows start out at State 002 and end up at the same state [14].  

 The figure 8.6 shows the states of the trellis that are actually reached during 

the encoding of our example 15-bit message:  

 

 

 

Figure 8.6: Actually reached path through trellis diagram  

 

   The encoder input bits and output symbols are shown at the bottom of the 

diagram. Notice the correspondence between the encoder output symbols 

and the output table discussed above. Let's look at that in more detail, using 

the expanded version of the transition between one time instant to the figure 

8.7.  
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Figure 8.7: Diagram showing transition from one state to other  

The two-bit numbers labeling the lines are the corresponding convolutional 

encoder channel symbol outputs. Remember that dotted lines represent 

cases where the encoder input is a zero, and solid lines represent cases 

where the encoder input is a one. (In the figure above, the two-bit binary 

numbers labeling dotted lines are on the left, and the two-bit binary numbers 

labeling solid lines are on the right.  Now let's start looking at how the Viterbi 

decoding algorithm actually works. For our example, we're going to use hard-

decision symbol inputs to keep things simple. Suppose we receive the above-

encoded message with a couple of bit errors as shown in figure 8.8.  

   Each time we receive a pair of channel symbols, we're going to compute a 

metric to measure the "distance" between what we received and all of the 

possible channel symbol pairs we could have received. Going from t = 0 to t = 

1, there are only two possible channel symbol pairs we could have received: 

002, and 112. That's because we know the convolutional encoder was 

initialized to the all-zeroes state, and given one input bit = one or zero, there 

are only two states we could transition to and two possible outputs of the 

encoder. These possible outputs of the encoder are 00 2 and 112.  
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Figure 8.8:  Path through the trellis diagram for received bits 

 

   The metric we're going to use for now is the Hamming distance between the 

received channel symbol pair and the possible channel symbol pairs. The 

Hamming distance is computed by simply counting how many bits are 

different between the received channel symbol pair and the possible channel 

symbol pairs. The results can only be zero, one, or two. The Hamming 

distance (or other metric) values we compute at each time instant for the 

paths between the states at the previous time instant and the states at the 

current time instant are called branch metrics. For the first time instant, we're 

going to save these results as "accumulated error metric" values, associated 

with states. For the second time instant on, the accumulated error metrics will 

be computed by adding the previous accumulated error metrics to the current 

branch metrics.  

    At t = 1, we received 002. The only possible channel symbol pairs we could 

have received are 002 and 112. The Hamming distance between 002 and 002 

is zero. The Hamming distance between 002 and 112 is two. Therefore, the 

branch metric value for the branch from State 002 to State 002 is zero, and for 

the branch from State 002 to State 102 it's two. Since the previous 

accumulated error metric values are equal to zero, the accumulated metric 

values for State 002 and for State 102 are equal to the branch metric values. 

The accumulated error metric values for the other two states are undefined. 

The figure 8.9 illustrates the results at t = 1.Note that the solid lines between 
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states at t = 1 and the state at t = 0 illustrate the predecessor-successor 

relationship between the states at t = 1 and the state at t = 0 respectively. This 

information is shown graphically in the figure, but is stored numerically in the 

actual implementation. To be more specific, or maybe clear is a better word, 

at each time instant t, we will store the number of the predecessor state that 

led to each of the current states at t.  

 

 

 

Figure 8.9: Trellis diagram at t=1 

 

  Now let's look what happens at t = 2. We received a 112 channel symbol 

pair. The possible channel symbol pairs we could have received in going from 

t = 1 to t = 2 are 002 going from State 002 to State 002, 112 going from State 

002 to State 102, 102 going from State 102 to State 01 2, and 012 going from 

State 102 to State 11 2. The Hamming distance between 002 and 112 is two, 

between 112 and 112 is zero, and between 10 2 or 012 and 112 is one. We add 

these branch metric values to the previous accumulated error metric values 

associated with each state that we came from to get to the current states. At t 

= 1, we could only be at State 002 or State 102. The accumulated error metric 

values associated with those states were 0 and 2 respectively. The figure 8.10 

below shows the calculation of the accumulated error metric associated with 

each state, at t = 2.  
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Figure 8.10: Trellis diagram at t=2 

 

  That's all the computation for t = 2. What we carry forward to t = 3 will be the 

accumulated error metrics for each state, and the predecessor states for each 

of the four states at t = 2, corresponding to the state relationships shown by 

the solid lines in the illustration of the trellis.  

  Now look at the figure for t = 3. Things get a bit more complicated here, 

since there are now two different ways that we could get from each of the four 

states that were valid at t = 2 to the four states that are valid at t = 3. So how 

do we handle that? The answer is, we compare the accumulated error metrics 

associated with each branch, and discard the larger one of each pair of 

branches leading into a given state. If the members of a pair of accumulated 

error metrics going into a particular state are equal, we just save that value. 

The other thing that's affected is the predecessor-successor history we're 

keeping. For each state, the predecessor that survives is the one with the 

lower branch metric. If the two accumulated error metrics are equal, some 

people use a fair coin toss to choose the surviving predecessor state. Others 

simply pick one of them consistently, i.e. the upper branch or the lower 

branch. It probably doesn't matter which method you use. The operation of 

adding the previous accumulated error metrics to the new branch metrics, 

comparing the results, and selecting the smaller (smallest) accumulated error 

metric to be retained for the next time instant is called the add-compare-select 

operation. The figure 8.11 shows the results of processing t = 3:  
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Figure 8.11: Trellis diagram at t=3 

 

Note that the third channel symbol pair we received had a one-symbol error. 

The smallest accumulated error metric is a one, and there are two of these.  

Let's see what happens now at t = 4. The processing is the same as it was for     

t = 3. The results are shown in the figure 8.12:  

 

 

 

Figure 8.12: Trellis diagram at t=4 

Notice that at t = 4, the path through the trellis of the actual transmitted 

message, shown in bold, is again associated with the smallest accumulated 

error metric. Let's look at t = 5 as shown in figure 8.13:  
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Figure 8.13: Trellis diagram at t=5 

 

 At t = 5, the path through the trellis corresponding to the actual message, 

shown in bold, is still associated with the smallest accumulated error metric. 

This is the thing that the Viterbi decoder exploits to recover the original 

message. At t = 17, the trellis looks like this, with the clutter of the 

intermediate state history removed:  

 

 

Figure 8.14: Trellis diagram for complete packet 

 

The decoding process begins with building the accumulated error metric for 

some number of received channel symbol pairs, and the history of what states 

preceded the states at each time instant t with the smallest accumulated error 

metric. Once this information is built up, the Viterbi decoder is ready to 
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recreate the sequence of bits that were input to the convolutional encoder 

when the message was encoded for transmission. This is accomplished by  

following steps  

• First, select the state having the smallest accumulated error metric and 

save the state number of that state.  

• Iteratively perform the following step until the beginning of the trellis is 

reached: Working backward through the state history table, for the selected 

state, select a new state which is listed in the state history table as being the 

predecessor to that state. Save the state number of each selected state. This 

step is called traceback.  

• Now work forward through the list of selected states saved in the previous 

steps. Look up what input bit corresponds to a transition from each 

predecessor state to its successor state. That is the bit that must have been 

encoded by the convolutional encoder. The table 8.4 shows the accumulated 

metric for the full 15-bit (plus two flushing bits) example message at each time 

t. 

 

T = 0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4 

1
5 

1
6 17

State 
002  0 2 3 3 3 3 4 1 3 4 3 3 2 2 4 5 2

State 
012   3 1 2 2 3 1 4 4 1 4 2 3 4 4 2 

State 
102  2 0 2 1 3 3 4 3 1 4 1 4 3 3 2  

State 
112   3 1 2 1 1 3 4 4 3 4 2 3 4 4  

 

Table 8.4: Accumulated metric table 

 

  It is interesting to note that for this hard-decision-input Viterbi decoder 

example, the smallest accumulated error metric in the final state indicates 

how many channel symbol errors occurred. The table 8.5 shows the surviving 

predecessor states for each state at each time t.  
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t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
State 
002 0 0 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 1 

State 
012 0 0 2 2 3 3 2 3 3 2 2 3 2 3 2 2 2 0 

State 
102 0 0 0 0 1 1 1 0 1 0 0 1 1 0 1 0 0 0 

State 
112 0 0 2 2 3 2 3 2 3 2 2 3 2 3 2 2 0 0 

 

Table 8.5: Surviving predecessor states table 

The table 8.6 shows the states selected when tracing the path back through 

the survivor state table shown above. 

 

t = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
 0 0 2 1 2 3 3 1 0 2 1 2 1 0 0 2 1 0

 

Table 8.6: Trace back table 

Using a table that maps state transitions to the inputs that caused them, we 

can now recreate the original message. Here is what this table looks like for 

our example rate 1/2 K = 3 convolutional code. 

 

 Input was, Given Next State = 
Current State 002 = 0 012 = 1 102 = 2 112 = 3 

002 = 0 0 x 1 x
012 = 1 0 x 1 x
102 = 2 X 0 x 1
112 = 3 X 0 x 1

 

Table 8.7: Next state table 

Note: In table 8.7, x denotes an impossible transition from one state to 

another state. So now we have all the tools required to recreate the original 

message from the message we received. 
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t = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 0 1 0 1 1 1 0 0 1 0 1 0 0 0 1

 

Table 8.7: Original message 

 

The two flushing bits are discarded. Here's an insight into how the traceback 

algorithm eventually finds its way onto the right path even if it started out 

choosing the wrong initial state. This could happen if more than one state had 

the smallest accumulated error metric, for example. Figure 8.15 for the trellis 

at t = 3 again to illustrate this point. 

  See how at t = 3, both States 012 and 112 had an accumulated error metric 

of 1. The correct path goes to State 012 -notice that the bold line showing the 

actual message path goes into this state. But suppose we choose State 112 to 

start our traceback. The predecessor state for State 112 , which is State 102 , 

is the same as the predecessor state for State 012! This is because at t = 2, 

State 102 had the smallest accumulated error metric. So after a false start, we 

are almost immediately back on the correct path.  

 

 

Figure 8.15: Trellis diagram at t=3 
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For the example 15-bit message, we built the trellis up for the entire message 

before starting traceback. For longer messages, or continuous data, this is 

neither practical nor desirable, due to memory constraints and decoder delay. 

Research has shown that a traceback depth of K x 5 is sufficient for Viterbi 

decoding with the type of codes we have been discussing. Any deeper 

traceback increases decoding delay and decoder memory requirements, while 

not significantly improving the performance of the decoder. The exception is 

punctured codes, which I'll describe later. They require deeper traceback to 

reach their final performance limits.  

To implement a Viterbi decoder in software, the first step is to build some data 

structures around which the decoder algorithm will be implemented. These 

data structures are best implemented as arrays. The primary six arrays that 

we need for the Viterbi decoder are as follows:  

•   A copy of the convolutional encoder next state table, the state transition 

table of the encoder. The dimensions of this table (rows x columns) are 2(K - 1) 

x 2k. This array needs to be initialized before starting the decoding process.  

•   A copy of the convolutional encoder output table. The dimensions of this 

table are 2(K - 1) x 2k. This array needs to be initialized before starting the 

decoding process.  

• An array (table) showing for each convolutional encoder current state and 

next state, what input value (0 or 1) would produce the next state, given the 

current state. We'll call this array input table. Its dimensions are 2(K - 1) x 2(K - 1). 

This array needs to be initialized before starting the decoding process.  

•   An array to store state predecessor history for each encoder state for up 

to K x 5 + 1 received channel symbol pairs. We'll call this table the state history 

table. The dimensions of this array are 2 (K - 1) x (K x 5 + 1). This array does 

not need to be initialized before starting the decoding process.  

•   An array to store the accumulated error metrics for each state computed 

using the add-compare-select operation. This array will be called the 

accumulated error metric array. The dimensions of this array are 2 (K - 1) x 2. This 

array does not need to be initialized before starting the decoding process.  
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•   An array to store a list of states determined during traceback (term to be 

explained below). It is called the state sequence array. The dimensions of this 

array are (K x 5) + 1. This array does not need to be initialized before starting 

the decoding process.  
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