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PREFACE

Software radio is an emerging technology, thought to build flexible radio systems,
multiuser, multistandard, multiband, reconfigurable and reprogrammable by software.
In fact the term software radio stands for the radio functionalities defined by software,
meaning the possibility to define by software the typical functionality of a radio,
usually implemented in transmitter and receiver equipment by dedicated hardware.
The presence of software defining the radio necessarily implies the use of DSPs to

replace dedicated hardware, to execute, in real time, the necessary software.

Software radio will provide the means to realize signal processing tasks of
communication transceiver by means of software .The replacement of ASIC
technology with DSP technology opens the road to new horizons. Software
implementation of baseband functions such as coding, modulation, equalization and

pulse shaping.

An approach towards this project required adequate knowledge of Digital Signal
Processing and Digital Communications to implement the communication functions
in software . We have designed a complete all digital communication transceiver in
Matlab which is capable of the modulation, pulse shaping, phase synchronization,
timing synchronization, equalization, channel coding etc. The wireless channel effects
like multipath delay spread and mobility are created in software and the performance

of the transceiver is evaluated for such channel.
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CHAPTER 1

SOFTWARE RADIO CONCEPT

1.1 NEED FOR SOFTWARE RADIOS

With the emergence of new standards and protocols, wireless
communications is developing at a furious pace. Rapid adoption of the
wireline-base Internet has led to demand for wireless Internet connectivity but
with added capabilities, such as integrated services that offer seamless global
coverage and user-controlled quality of service (QoS). The challenge in
creating sophisticated wireless Internet connectivity is compounded by the
desire for future-proof radios, which keep radio hardware and software from
becoming obsolete as new standards, techniques, and technology become
available. The concept of integrated seamless global coverage requires that
the radio support two distinct features: first, global roaming or seamless
coverage across geographical regions; second, interfacing with different
systems and standards to provide seamless services at a fixed location.
Multimode phones that can switch between different cellular standards like IS-
95 and Global System Mobile (GSM) fall in the first category, while the ability
to interface with other services like Bluetooth or IEEE 802;11 networks falls in
the second category. Further, the rate of technology innovation is
accelerating, and predicting technological change and its ramifications to
business is especially problematic. As a result, to keep their systems up to
date, wireless systems manufacturers and service providers must respond to
changes as they occur by upgrading systems to incorporate the latest
innovations or to fix bugs as they are discovered. Many manufacturers tell
horror stories of releasing hundreds of thousands of defective phones that
had to be recalled and discarded. Since frequent redesign is expensive, time-
consuming, and inconvenient to end users, interest is increasing in future-

proof radios.

Simulation Of QPSK Transceiver XVvii



Existing technologies for voice, video, and data use different packet

structures, data types, and signal processing techniques. Integrated services
can be obtained with either a single device capable of delivering various
services or with a radio that can communicate with devices providing
complementary services. The supporting technologies and networks that
might have to use can vary with the physical location of the user. To
successfully communicate with different systems, the radio has to
communicate and decode the signals of devices using different air interfaces.
Furthermore, to manage changes in networking protocols,
Services and environments, mobile protocols, such as IP(Internet Protocol)
and MEXE (Mobile Execution Environment ). Such radios can be implemented
efficiently using software radio architectures in which the radio reconfigures
itself based on the system it will be interfacing with and the functionalities it
will be supporting.

Second generation (2G) wireless technology consists of a handful of
incompatible standards, and the goal behind the development of third
generation (3G) standards is compatibility among these standards within and
between different generations’ standards. Even if cellular standards globally
converge, 3G systems require multimode operation and automatic mode
selection. With fourth generation (4G) and possibly 3G Systems , the user’ s
application will likely have the ability to control the quality of service and
obtain a higher QoS for a higher cost . Higher QoS can be achieved through
priority scheduling of packets, changes in data packaging, improved
protection coding, better channel equalization techniques, implementation of
smart antennas, and so on. The mobile subscriber must have the ability to

select the network provider as well as the services needed.

1.2 WHAT IS SOFTWARE RADIO?

The term “software radio” was coined by Joe Mitola in 1991 to refer to the
class of reprogrammable or reconfigurable radios. In other words, the same
piece of hardware can perform different functions at different times. The SDR
forum defines the ultimate software radio (USR) as a radio that accepts fully

programmable traffic and control information and supports a broad range of
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frequencies, air interfaces, and applications software. The user can switch
from one air interface format to another in milliseconds,

Use the Global Positioning System (GPS) for location, store money using
smartcard technology, or watch a local broadcast station and or receive a
satellite transmission.

The exact definition of a software radio is controversial and no consensus
exists about the level of reconfigurability needed to qualify a radio as a
software radio. A radio that includes a microprocessor or digital signal
processor (DSP) does not necessarily qualify as a software radio [1].
However, a radio that defines in software its modulation, error correction, and
encryption processes, exhibits some control over the RF hardware, and can
be reprogrammed is clearly a software radio. A good working definition of a
software radio:

“A radio that is substantially defined in software and whose physical layer
behavior can be significantly altered through changes to its software.”

The degree of reconfigurability is largely determined by a complex
interaction between a number of common issues in radio design , including
systems engineering , antenna form factors , RF electronics , Baseband
processing , speed and reconfigurability of the hardware and power supply
management .

The term software radio generally refers to a radio that derives its flexibility
through software while using a static hardware platform. On the other hand, a
soft radio denotes a completely configurable radio that can be programmed in
software to configure the physical hardware. In other words, the same piece
of hardware can be modified to perform different functions at different times,
allowing the hardware to be specifically t tailored to the application at hand.
Nonetheless, the term software radio is sometimes used to encompass soft
radios as well.

The functionality of conventional radio architectures is usually determined
primarily by hardware with minimal configurability through software. The
hardware consists of the amplifiers, filters, mixers (probably several stages),
and oscillators. The software is confined to controlling the interface with the
network, stripping the headers and error correction codes from the data

packets, and determining where the data packets need to be routed based on
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the header information. Because the hardware dominates the design,
upgrading a conventional radio design essentially means completely
abandoning the old design and starting over again. In upgrading a software
radio design, the vast majority of the new content is software and the rest is
improvements in hardware component design. In short, software radios
represent a paradigm shift from fixed, hardware-intensive radios to multi-

band, multimode, software-intensive radios.

1.3 CHARACTERISTICS AND BENEFITS OF A SOFTWARE RADIO
Implementation of the ideal software radio would require either the digitization
at the antenna, allowing complete flexibility in the digital domain, or the design
of a completely flexible radio frequency (RF) front-end for handling a wide
range of carrier frequencies and modulation formats [2]. The ideal software
radio, however. is not yet fully exploited in commercial systems due to
technology limitations and cost considerations.

A model of a practical software radio is shown in figure. The receiver begins
with a smart antenna that provides a gain versus direction characteristic to
minimize interference, multipath, and noise. The smart antenna provides
similar benefits for the transmitter. Most practical software radios digitize the
signal as early as possible in the receiver chain while keeping the signal in the
digital domain and converting to the analog domain as late as possible for the
transmitter using a digital to analog converter (DAC). Often the received
signal is digitized in the intermediate frequency (IF) band. Conventional radio
architectures employ a super heterodyne receiver, in which the RF signal is
picked up by the antenna along with other spurious/unwanted signals, filtered,
amplified with a low noise amplifier (LNA), and mixed with a local oscillator
(LO) to an IF. Depending on the application, the number of stages of this
operation may vary. Finally, the IF is then mixed exactly to baseband.
Digitizing the signal with an analog to digital converter (ADC) in the IF range
eliminates the last stage in the conventional model in which problems like
carrier offset and imaging are encountered. When sampled, digital IF signals
give spectral replicas that can be placed accurately near the baseband
frequency, allowing frequency translation

and digitization to be carried out simultaneously. Digital filtering
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(channelization) and sample rate conversion are often needed to interface the
output of the ADC to the processing hardware to implement the receiver.
Likewise, digital filtering and sample rate conversion are often necessary to
interface the digital hardware that creates the modulated waveforms to the
digital to analog converter. Processing is performed in software using DSPs,
field programmable gate arrays (FPGAs), or application specific integrated
circuits (ASICs). The algorithm used to modulate and demodulate the signal
may use a variety of software methodologies, such as middleware, e.g.,
common object request broker architecture (CORBA), or virtual radio
machines, which are similar in function to JAVA virtual machines. This forms a

typical model of a software radio.

Smart
Antenna
_4
’ IF Processing Chatput
: = ADC = Channelization
Fleszihle and Sofirare Hardware
RF i Sample rate -Algorithws | -FPGAs ;
: Middlewr D3P nput
Farcware 4 DAC |#— conversion M= coppa | -ASIcs -—
ry -Virtnal EM
x : 3 =
Cofitrol

Figure 1.1: Model of a software radio.

The software radio provides a flexible radio architecture that allows
changing the radio personality, possibly in real-time, and in the process
somewhat guarantees a desired QoS. The flexibility in the architecture allows
service providers to upgrade the infrastructure and market new services
quickly. This flexibility in hardware architecture combined with flexibility in
software architecture, through the implementation of techniques such as
object - oriented programming and object brokers, provides software radio
with the ability to seamlessly integrate itself into multiple networks with wildly
different air and data interfaces. In addition, software radio architecture gives
the system, new capabilities that are easily implemented with software. For
example, typical upgrades may include interference rejection techniques,
encryption, voice recognition and compression, software-enabled power
minimization and control, different addressing protocols, and advanced error

recovery schemes. Such capabilities are well-suited for 3G and 4G wireless
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requirements and advanced wireless networking approaches [3]. In summary,

five factors are expected to push wider acceptance of software radio.

o Multifunctionality: With the development of short-range networks like
Bluetooth and IEEE 802.11, it is now possible to enhance the services of a
radio by leveraging other devices that provide complementary services. For
instance, a Bluetooth-enabled fax machine may be able to send a fax to a
nearby laptop computer equipped with a software radio that supports the
Bluetooth interface. Software radio's reconfiguration capability can support an

almost infinite variety of service capabilities in a system.

e Global mobility: A number of communication standards exist today. In the
2G alone, there are 1S-136, GSM, IS-95ICDMA1, and many other, less well
known standards. The 3G technology tried to harmonize all the standards.
However, there are many standards under the 3G umbrella. The need for
transparency, i.e., the ability of radios to operate with some, preferably all, of
these standards in different geographical regions of the world has fostered the
growth of the software radio concept. Military services also face a similar
issue with incompatible radio standards existing between as well as within

branches of the military.

e Compactness and power efficiency: Multifunction, multimode radios
designed using the "Velcro" approach of including separate silicon for each
system can become bulky and inefficient as the number of systems increases.
The software radio approach, however, results in a compact and, in some
cases, a power-efficient design, especially as the number of systems
increases, since the same piece of hardware is reused to implement multiple

systems and interfaces.

e Ease of manufacture: RF components are notoriously hard to standardize
and may have varying performance characteristics. Optimization of the
components in terms of performance may take a few years and thereby delay
product introduction. In general, digitization of the signal early in the receiver
chain can result in a design that incorporates significantly fewer parts,

meaning a reduced inventory for the manufacturer.
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e Ease of upgrades: In the course of deployment, current services may need
to be updated or new services may have to be introduced. Such
enhancements have to be made without disrupting the operation of the
current infrastructure. A flexible architecture allows for improvements and
additional functionality without the expense of recalling all the units or
replacing the user terminals. Vocoder technology, for example, is constantly
improving to offer higher quality voice at lower bit rates. As new vocoders are
developed, they can be quickly fielded in software radio systems.
Furthermore, as new devices are integrated into existing infrastructures,
software radio allows the new devices to interface seamlessly, from the air-

interface all the way to the application, with the legacy network.

Users/customers expect service regardless of the geographical areas in
which they travel and the wireless technologies that are in use in different
regions in the world, but carrying several devices that cover the broad range
of technology alternatives is impractical. Users expect one device to utilize
services in all regions, which is possible only by reconfiguring the receiver to
the air-interface standards used in the respective regions, By dynamically
downloading the software to cover the needed air-interface standard, perhaps
through transmission of the software configuration to the remote terminal,
such over-the-air updates will allow for speedy implementation of software

upgrades and new features.
1.4 OUR DESIGN

So far we have explained the software radio and its benefits. Since the major
characteristic of software radio is that all the communication functionalities are
defined in software. We have designed a complete digital radio which defined
all the communication functionalities in software as shown in figure 1.2. We
have used the latest techniques for all the functionalities especially for timing
synchronization. Since one of biggest challenge for software radio is
computational complexity because of unavailability of strong processors in
small size a special care has been taken to reduce the computational

complexity as low as possible.
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Figure 1.2: Our Design

In the preceding chapters of this report we will examine each block separately
in detail.
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CHAPTER 2

SAMPLE RATE CONVERSION

2.1 INTRODUCTION

Since different communications standards are based upon different master
clock rates it is principally necessary to provide these different clock rates in a
terminal that is to process signals according to those different standards. Due
to the strong requirements on the quality of the clock, specifically required for
the analog-to digital converter, it is reasonable to assume that only one fixed
master clock will be provided in practical software radio applications. A
solution to this conflict is to provide the different clock rates virtually by means
of digital sample rate conversion (SRC). SRC is the task of converting the
sample rate of a first digital signal to another sample rate resulting in a second
digital signal, while a certain amount of information - usually in a limited
frequency band - must not be corrupted [3]. In this chapter we will discuss the

sample rate conversion in digital domain only.

2.2 DOWNSAMPLING BY INTERGER FACTOR (DECIMATION)
Decimation can be regarded as the discrete-time counterpart of sampling.
Whereas in sampling we start with a continuous-time signal x(#) and convert it
into a sequence of samples x(n), in decimation we start with a discrete-time
signal x(n) and convert it into another discrete-time signal y(r), which consists
of sub-samples of x(n). Thus, the formal definition of M-fold decimation, or
down-sampling, is defined by equation 2.1. In decimation, the sampling rate is
reduced from F; to Fy/M by discarding M — 1 samples for every M samples in

the original sequence.

y(n)=v(nM) = i h(k)x(nM —k) 2.1)
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Figure 2.1: Block diagram notation of decimation, by a factor of M.

The block diagram notation of the decimation process is depicted in figure
2.1. An anti-aliasing digital filter precedes the down-sampler to prevent
aliasing from occurring, due to the lower sampling rate. In figure 2.2, it
illustrates the concept of 3-fold decimation i.e. M = 3. Here, the samples of x[#]
correspondington=...,-2,1,4,andn=...,-1, 2, 5,... are lost in the decimation
process. In general, the samples of x[r] corresponding to n # kM, where k is an
integer, are discarded in M-fold decimation. In figure 2.2 (b), it shows samples
of the decimated signal y[n] spaced three times wider than the samples of
x[n]. This is not a coincidence. In real time, the decimated signal appears at a
slower rate than that of the M. If the sampling frequency of x[x] is then that of
y[n]is M.

=[]

Figure 2.2: Decimation of a discrete-time signal by a factor of 3.
2.2.1 Frequency Domain Analysis of Decimation
The implications of aliasing caused by decimation are very similar to those
in the case of sampling a continuous-time signal. In general, if the Fourier

transform of a signal, X(#), occupies the entire bandwidth from [-n, x], then the
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Fourier transform of the decimated signal, X, (0), will be aliased because the

spectrum now occupies the bandwidth [-Mn, M=]. This is due to the
superposition of the M shifted and frequency-scaled transforms. This is
illustrated in figure 2.3 below, which shows the aliasing phenomenon for M =
3. From figure 2.3 it is clear that the cut off frequency for anti-aliasing filter
must be less than equal to n / M.

Mathematically in the z-transform the relation between x(n) and y(n) can be

derived.
Y(z)=) y(m)z"
= x(nM)z™" (2.2)

=X(ZI/M)

3
Y

L J

Figure 2.3: Aliasing caused by decimation. (a) Fourier transform of the original signal. (b)

After anti-aliasing filter. (c) Fourier transform of the decimated signal.
Normally decimation process is implemented using a transversal structure
as shown in figure 2.4 (a,b). First it is filtered and then at the output every Mth
sample is taken out. But the question is why to compute those values which

are not required because we are only interested in every Mth sample [6]. This
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can be achieved by putting the decimator first and then perform the filtering as

shown in figure 2.4 (c).

Lar

lar

lar

lar

lar

{b) {c)
Figure 2.4: Efficient implementation of decimator

2.3 UPSAMPLING BY INTEGER FACTOR (INTERPOLATION)
Interpolation is the exact opposite of decimation. It is an information
preserving operation, in that all samples of x(n) are present in the expanded
signal y(n). The mathematical definition of L-fold interpolation is defined by
equation 2.3 and the block diagram notation is depicted in figure 2.5.
Interpolation works by inserting (L—-1) zero-valued samples for each input
sample. The sampling rate therefore increases from F; to LF,. With reference
to figure 2.5, the expansion process is followed by a unique digital low-pass
filter called an anti-imaging filter [5]. Although the expansion process does not
cause aliasing in the interpolated signal, it does however yield undesirable
replicas in the signal’'s frequency spectrum. We shall see how this special

filter, is necessary to remove these replicas from the frequency spectrum.
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- y(n) =LY h(kyw(n—k) (2.3)

k=—0

where
x(n/L) if n/ L is an integer
w(v) = .
0 otherwise
Sampling-rate Anti-nnagmg
expander filter
xli] ' wla| A | N

Figure 2.5: Block diagram notation of interpolation, by a factor of L.

In figure 2.6, it depicts 3-fold interpolation of the signal x(n) i.e. L = 3.

i )
3 [ s,
0 -6 -3 0 3 f 0
Wi
11
g é 3 0 3 é g
i
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-0 - -3 0 3 fi 9

Figure 2.6: Interpolation of a discrete-time signal by a factor of 3.
The insertion of zeros effectively attenuates the signal by L, so the output of
the anti-imaging filter must be multiplied by L, to maintain the same signal

magnitude.

2.3.1 Frequency Domain Analysis of Interpolation
The effect of expansion on a signal in the frequency domain is illustrated in

figure 2.7. Part (a) shows the Fourier transform of the original signal; part (b)
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illustrates the Fourier transform of the signal with zeros added W(0); and part
(c) shows the Fourier transform of the signal after the interpolation filter. It is
clearly visible that the shape of the Fourier transform is compressed by a
factor L in the frequency axis and is also repeated L times in the range of [-x,
n]. Despite the compression of the signal in the frequency axis, the shape of
the Fourier transform is still preserved, confirming that expansion does not
lead to aliasing [4]. These replicas are removed by a digital low-pass filter
called an anti-imaging filter shown in figure 2.5. From figure it is very clear that
cut off frequency for anti-imaging filter must be less than equal to n / L to
remove the images.

Mathematically the z-transform relations are

Y(z) =) y(m)z"
= Zx(n)zf" when n/ L is integer 2.4)

= X"

Interpolator can be implemented using the same transversal structure as the
decimator. The flow diagram is shown in figure 2.8. However, this type of
structure is very inefficient owing to the interpolation process, which
introduces (L—1) zeros between consecutive points in the signal. If L is large,
then the majority of the signal components fed into the FIR filter are zero. As a
result, most of the multiplications and additions are zero i.e. many pointless
calculations. We will see very shortly that how design an efficient interpolator

who can take care of such point less calculations
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Figure 2.7: Expansion in the frequency domain of original signal (a) and the expanded signal

(b).

2.4 CHANDING SAMPLING RATE BY NON INTEGER FACTOR

A common use of multirate signal processing is for sampling-rate
conversion. Suppose a digital signal x(n) is sampled at an interval 7, and we
wish to obtain a signal y(n) sampled at an interval 7,. Then the techniques of
decimation and interpolation enable this operation, providing the ratio 71/T; is
a rational number i.e. L/M. Sampling-rate conversion can be accomplished by
L-fold expansion, followed by low-pass filtering and then M-fold decimation, as
depicted in figure 2.9. It is important to emphasis that the interpolation should
be performed first and decimation second, to preserve the desired spectral
characteristics of x(n). Furthermore by cascading the two in this manner, both
of the filters can be combined into one single low-pass filter because both
filters are linear. Actually while combining the filters we will select the filter

which has the less cut off frequency from both of them.
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x(n)

Figure 2.8: Interpolator Implementation flow diagram

An example of sampling-rate conversion would take place when data from a
CD is transferred onto a DAT. Here the sampling-rate is increased from 44.1
kHz to 48 kHz. To enable this process the non-integer factor has to be
approximated by a rational number:

L34l _T00_ ) og844

M 48 147

Hence, the sampling-rate conversion is achieved by interpolating by L i.e. from
44.1 kHz to [44.1x160] = 7056 kHz. Then decimating by M i.e. from 7056 kHz
to [7056/147] = 48 kHz.

2.5 MULTISAGE APPROACH
When the sampling-rate changes are large, it is often better to perform the

operation in multiple stages, where Mi (Li), an integer, is the factor for the stage i
M =M, M,,...M,

1

and L=1L,L,,....L,.
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Figure 2.9: Sampling-rate conversion using (a) separate anti-imaging and anti-aliasing filters.

(b) combined low pass filter

An example of the multistage approach for decimation is shown in figure 2.10.
The multistage approach allows a significant relaxation of the anti-alias and
anti-imaging filters, with a consequent reduction in the filter complexity [6].
The optimum number of stages is one that leads to the least computational
effort in terms of either the multiplications per second (MPS), or the total

storage requirement (TSR).

Singe | Singe 2

Mul

xnm . \
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0, CM, M,

Figure 2.10: Multistage approach for the decimation process.

2.6 POLYPHASE STRUCTURES

Potential computational savings can be made within the process of
decimation, interpolation, and sampling-rate conversion. Polyphase filters are
the name given to certain realizations of multirate filtering operations, which
facilitate computational savings in both hardware and software. Actually a

filter is broken in to sub filters called polyphase filters. Their name polyphase
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is because of the fact that they have same amplitude response and differ in
phases.

We will derive the polyphase components for a factor 2. The extension to
any number is straightforward. In z-domain any filter can be divided into
polyphase components as

NI
H(z)=) h(n)z™"

n=0
N/2-1 N/2-1

= > h@m)z "+ D h2n)z" (2.5)

n=0 n=0
=E () +z'E (2)

Polyphase Components

where E,(z*) and E,(z*) are the polyphase components.

2.6.1 Decimator
For decimation by a factor of M the anti-aliasing filter can be divided into M
polyphase components. In figure 2.11 the decimation process using

polyphase structure is shown.

B L2 B
¥ z‘l
Bz L2 L2 Bz
(@) (b}

Figure 2.11: Decimation by a factor of 2 using polyphase structure

Now we will derive the time domain relation for decimation. If y(m) is the

decimated signal and x(r) is the input signal then and A(»n) is the anti-aliasing
filter then decimator filter output is
N-1

y(m) =" h(n)x(Mm - n) (2.6)
n=0

By changing the variables

N-1
y(m)="Y h(mM — k)x(k) (2.7)

k=0
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Signal parallelization is

M-1 N/M-1
y(k) = By Giyx, (ki) (28)
0

q= i=
where the polyphase components of the decimation filter are computed by the

relation
h, (i) = h(iM + q) (2.9)

and inputs signal to polyphase components are given by the relation

x, (1) =x(iM - q) (2.10)

Actually you can see that y(k) is computed in parallel. Every polyphase filter
is computing a single output for every value of n in parallel. Since we require
every Mth sample so we can only use a single polyphase filter for a single
value of n. This can be done using a commutator as shown in figure 2.12.
They are also called type-1 polyphase structure. If 4(n) is the anti-aliasing filter
, then the M polyphase components are:

hy = h(0), h(M),h(2M),...

hy = h(l),h(M +1),h(2M +1),... 21

By, = h(M =1),h(2M —1),h(3M —1),...

et

Figure 2.12: Decimation using type-1 polyphase structure.

The beauty of polyphase structure is that they are computing those samples
which are not required but actually throwing them away. You can see in the
above figure that there is no decimator. The input is at the rate ¥ and the
output is at the rate N/M

2.6.2 Interpolator
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In the previous section we have seen how to design a computationally
efficient polyphase decimator. The interpolation is just the reverse process of
decimation. Using the same notations as earlier the time domain derivation for
interpolator is:

Interpolator filter output is

N-1
y(m) = Zh(n)x(m —nlL) (2.12)
n=0
After parallelization the output signal is
N/M-1
y,(k) =D h, ()x(k ~i) (2.13)

i=0
and the relation for polyphase components is
h, (i) = h(iL + p), p=01...,L-1 (2.14)

you can the components are the same as for decimator. The flow diagram for
interpolation process using polyphase structure is shown in figure 2.13.

You can see in the above figure there is no insertion of zeros. The input is at
rate N and the output is at rate NL. Actually the pointless calculations which

are there in the case of transversal structure are avoided.

(1) \D yira)
/‘3

Figure 2.13: Interpolation using type-2 polyphase structure
2.6.3 Sample Rate Conversion by Non-integer Factor
So far we have discussed interpolation and decimation using polyphase
structures. It is also possible to change the sampling rate by non-integer
factors using polyphase structure.
As described earlier for a non-integer SRC the anti-imaging and anti-
aliasing filters can be combined into a single filters. Actually the filter which

has lower cut-off frequency is selected. Now if we have to change the
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sampling rate by L / M then for polyphase implementation the combined filter
should be divided into L x M polyphase components. The polyphase structure

for L=2, and M=3 is shown in figure 2.14.

=/

Figure 2.14: Sample rate conversion using polyphase structures for L=2 and M=3

Fir)

In figure 2.14 L=2 and M=3 therefore we have 6 polyphase components

hy,hy,....hs. These polyphase components can be obtained by using the

relation in equation 2.11.

2.7 RELATIONSHIP FOR ESTMATING FILTER LENGTH, N

Now one question arises how many taps for the combined filter or any anti-
imaging or anti-aliasing filters. The answer is the filter taps can be determined
by using the relation derived by Herrman in 1973. The relation is for the
optimal method (equaripple method) for lowpass filters only.

— Dw(5P95S)
AF

N — £(8p,05)AF +1 (2.15)

where AF is the width of the transition band normalized to the sampling
frequency, &, is the passband ripple or deviation and & is the stopband

ripple or deviation and

D(6p,65) =log,, o5 [a1(10810 513)2 +a,log,, 6p + a3]+ [a4 (logy, 5P)2 +aslog,, 6p + aé]
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f(8p,6) =11.01217 +0.51244]log,, 5, — log,, 5|
a;=5309%x10° 4,=7.114x102 a3=—4.761 x 10!
ar=-2.66%x10° as=—5941 x 10"  as=-4.278 x 10!

2.8 SIMULATION RESULTS

2.8.1 Interpolation
A simulation for interpolation by a factor of 3 is run in matlab. The

spectrum of the signal is given below before interpolation.
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Figure 2.15: Spectrum before interpolation

After insertion of zeros the spectrum is given on next page.
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Figure 2.16: Spectrum after insertion of zeros interpolation

The spectrum of interpolator filter is
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Figure 2.17: Spectrum of interpolator filter

At the output of interpolator filter the spectrum is
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Figure 2.18: Spectrum of interpolator filter using transversal structure.

The spectrum using the polyphase approach is given below which is

same as using the conventional approach in figure 18.
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Figure 2.19: Spectrum of interpolator filter using polyphase structure.
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2.8.2 Decimation
A simulation is run for decimation by a factor of 2. The spectrum of signal

before decimation is
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Figure 2.20: Spectrum of the signal before decimation

The spectrum of decimator filter is given below
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Figure 2.21: Spectrum of decimator filter

The spectrum at the out of decimator filter using transversal structure is
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Figure 2.22: Spectrum at the output of decimator filter

Spectrum after decimation by 2 is given below
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Figure 2.23: Spectrum after decimation by 2
The spectrum at the out of decimator filter using the polyphase structure for

decimator filter is given below which is same as for transversal filter.
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Figure 2.24: Spectrum after decimation using polyphase structure
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CHAPTER 3

THE WIRELESS CHANNEL

3.1 PHYSICAL MODELING FOR WIRELWSS CHANNELS

Wireless channels operate through electromagnetic radiation from
transmitter to receiver. In principle, one could solve the electromagnetic field
equations, in conjunction with the transmitted signal, to find the
electromagnetic field impinging on the receiver antenna. This would have to
be done taking into account the obstructions caused by ground, buildings,
vehicles, etc. in the vicinity of this electromagnetic wave. By obstructions, we
mean not only objects in the line of sight between transmitter and receiver, but
also objects in locations that cause non-negligible changes in the
electromagnetic field at the receiver.

The wavelength A of electromagnetic radiation at any given frequency f is
given by A=c/f, where ¢ = 3 *10® mps is the velocity of light. The wavelength is
thus a fraction of a meter, so to calculate the electromagnetic field at a
receiver, the locations of the receiver and the obstructions would have to be
known within sub meter accuracies. The electromagnetic field equations are
therefore too complex to solve, especially on the fly as vehicles move. Thus
we have to ask what we really need to know about these channels, and what
approximations might be reasonable. The solution is to construct stochastic
models of the channel, assuming that different channel behaviors appear with

different probabilities, and change over time in particular stochastic ways.

3.1.1 Free space, fixed transmitting and receiving antennas

First consider a fixed antenna radiating into free space. In the far field, the
electric field (the far field is far enough away from the transmitting antenna
that the antenna looks like a point ) and magnetic field at any given location

are perpendicular both to each other and to the direction of propagation from
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the antenna. They are also proportional to each other, so it is sufficient to
know only one of them (just as in wired communication, where we view a
signal as simply a voltage waveform or a current waveform). In response to a
transmitted sinusoid cos(2xft) = Real[exp(2xft)], we can express the electric far

field at time ¢, in its particular direction, as
Rlas(0,y, [)exp2mf (t—r/c)}]

r

E(f,t,(r,0,y)) = (3.1)

Here (r, 0, y) represents the point u in space at which the electric field is
being measured, where r is the distance from the transmitting antenna to u
and where (60, y) represent the vertical and horizontal angles from the antenna
to u. ¢ =3 x 10* m/s is the velocity of light, and ay(0, v, f) is the
radiation pattern of the sending antenna at frequency f in the direction (6, v).
as also contains a scaling factor to account for antenna losses and an initial
phase. Note that the phase of the field varies with fi/c, corresponding to the
delay caused by the radiation traveling at the speed of light.

We are not concerned here with actually finding the radiation pattern for any
given antenna, but only with recognizing that antennas have radiation
patterns, and that the free space far field behaves as above.

It is important to observe that as the distance r increases, the electric field
goes down as ' and thus the power per square meter in the free space wave
goes down as r . This is expected, since if we look at concentric spheres of
increasing radius » around the antenna, the total power radiated through the
sphere remains constant, but the surface area increases with #*. Thus the
power per unit area must decrease as 2. We will see shortly that this 2
reduction of power with distance is often not valid when there are obstructions
to free space propagation.

Next, suppose there is a fixed receiving antenna at location u = (r, 6, y). The
received waveform (in the absence of noise) in response to the above
transmitted sinusoid is then

Rla(0.y, ) exp2af (t=r/c)}]

r

E-(f,t,u)= (3.2)

Where a(0, y, f) is the product of the antenna patterns of transmitting and

receiving antennas in the given direction. Again, a(6, vy, f) takes into account
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losses and phase changes at both antennas. We have done something a little
strange here in starting with the free space field at u in the absence of an
antenna. Placing a receiving antenna there changes the electric field in the
vicinity of u, but this is taken into account by the antenna pattern of the

receiving antenna. Now suppose, for the given u, that we define

a(@,y, [)exp(—27fr/c)
r

We then have E(f, t, u) = Real[A(f) exp(2zift)], We have not yet mentioned it
yet, but (3.1) and (3.2) are both linear in the input. That is, the received field

h(f)= (3.3)

(waveform) at u in response to a weighted sum of transmitted waveforms is
simply the weighted sum of responses to those individual waveforms. Thus, /(
f) is the system function for an LTI (linear time invariant) channel, and its
inverse Fourier transform is the impulse response. For this simple example,
the channel is described in exactly the same way as the wire line channels
that we have been dealing with. The only need for understanding
electromagnetism is to determine what this system function is. We will find in
what follows that linearity is a good assumption for all the wireless channels
we consider, but that the time invariance does not hold when either the

antennas or obstructions are in relative motion.

3.1.2. Free space, moving antenna

Next consider the fixed antenna and free space model above with a
receiving antenna that is moving with velocity v in the direction of increasing
distance from the transmitting antenna. That is, we assume that the receiving
antenna is at a moving location described as u(t) = (r(1), 6, w) with r(t) = ry +vt.
Using (3.1) to describe the free space electric field at the moving point u(t) (for

the moment with no receive antenna), we have
Rlas(0,y, [)exp{2mf(t—ro/c—vt/c)}]

ro+ vt

E(f,t,(ro+v1,0,y)) = (3.4)

Note that we can rewrite f{t-ro/c—vt/c) as f(I-v/c)t — fry/c. Thus the sinusoid at
frequency /' has been converted to a sinusoid of frequency f(1-v/c); there has
been a Doppler shift of —fi/c due to the motion of the observation point.
Physically, each successive crest in the transmitted sinusoid has to travel a

little further before it gets observed at this moving observation point. If the
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antenna is now placed at u(?), and the change of field due to the antenna
presence is again represented by the receiver antenna pattern, the received

waveform, in analogy to (3.2), is
Rla(0,y, exp{2m(f(1—v/c)t— fro/c)}]

ro+ vt

Er(f,t,(ro+vt,0,y)) = 3.5

This channel cannot be represented as an LTI channel. If we ignore the
time varying attenuation in the denominator of (3.5), however, we can
represent the channel as an LTI system followed by a translation of each
frequency f'by a Doppler shift —fi/c. For narrow band communication around a
carrier f., this is essentially a fixed frequency shift of —f.v/c. We will come back
to discussing the importance of this Doppler shift and of the time varying
attenuation after considering the next example.

The above analysis does not depend on whether it is the transmitter or the
receiver (or both) that are moving. So long as r() is interpreted as the
distance between the antennas (and the relative orientations of the antennas

are constant), (3.4) and (3.5) are valid.

3.1.3. Moving antenna, reflecting wall

Consider figure 3.1 below in which there is a fixed sending antenna
transmitting the sinusoid cos(2xft), a mobile receiving antenna, and a single
perfectly reflecting large fixed wall. We assume that in the absence of the
receiving antenna, the electromagnetic field at the point where the receiving
antenna will be placed is the sum of the free space field coming from the
sending antenna plus a reflected wave coming from the wall.

Sending
Antenna

e fwan

[
——

60 kem/ hr

rii]

Figure 3.1: lllustration of a direct path and a reflected path

As before, in the presence of the receiving antenna, the perturbation of the
field due to the antenna is represented by the antenna pattern. Additional

assumptions are that the presence of the receiving antenna does not
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appreciably affect the plane wave impinging on the wall and that the wall is
large enough that the reflected wave can be modelled as a plane wave. In
essence, what we are doing is approximating the solution of Maxwell's
equations by an approximate method called ray tracing. The assumption here
is that the received waveform can be approximated by the sum of the far field
wave from the sending transmitter plus a reflected far field wave via each
reflecting obstacle.

In the present situation, if we assume that the wall is very large, the reflected
wave at a given point is the same (except for a sign change) as the free space
wave that would exist on the opposite side of the wall if the wall were not
present (see Figure 3.2). This means that the reflected wave from the wall has
the intensity of a free space wave at a distance equal to the distance to the
wall and then back to the cell phone, i.e., 2d — r(¢). Taking r(t) = ry + vt again,
using (3.5) for both the direct and the reflected wave, and assuming the same
antenna gain « for both waves,

Raexp Ra(f(1-v/c)t—fiv/c)}] RaexpRa(f(1+v/c)t+(fin=2fd)/c)}]
Fo+Vt 2d —ro-vt
(3.6)

Er(f, t) =

Sending

Antenna Wall

Figure 3.2: Relation of reflected wave to wave without wall.
The first term, the direct wave, is a sinusoid of slowly decreasing magnitude at
frequency f(1 — v/c). The second is a sinusoid of smaller but increasing
magnitude at frequency f(1+v/c). The combination of the two creates a beat
frequency at fv/c. As an example, if the cell phone is moving at 60 km/hr and f
= 900MH, this beat frequency is 50Hz. The waveform can be visualized most
easily when the cell phone is much closer to the wall than to the sending
antenna. In this case we can approximate the denominator of the second term

by ry + vt. Then, combining the exponentials, we get
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2sin[27 2 (ro=d)
E/(f,t)~ = o

IxR[-aexp{27(ft - fd /c)}]

ro+ vt

(3.7)

This is the product of two sinusoids, one at the input frequency f, which is
typically on the order of GHz, and the other at the Doppler shift fi/c, which
might be on the order of 50Hz. Thus the response to a sinusoid at fis another
sinusoid at fwhose amplitude is varying with peaks going to zeros every 5 ms
or so. This is called multipath fading. Note that in (3.6) we are viewing the
response as the sum of two sinusoids, each of different frequency, while in
(3.7), we are viewing the response as a single sinusoid of the original
frequency with a time varying amplitude. These are just two different ways to
view the same phenomenon.

We now see why we have partially ignored the denominator terms in (3.6)
and (3.7). When the difference between two paths changes by a quarter
wavelength, the phase difference between the responses on the two paths
change by n/2, which causes a very significant change in the overall received
amplitude. Since the carrier wavelength is very small relative to the path
lengths, the time over which this phase effect causes a significant change is
far smaller than the time over which the denominator terms cause a significant
change. The effect of the phase changes is on the order of milliseconds,
whereas the effect of changes in the denominator is relevant over periods of
seconds or minutes. In terms of modulation and detection, the time scales of
interest are in the range of milliseconds and less, and the denominators are
effectively constant over these periods of interest.

The reader might notice that we are constantly making approximations in
trying to understand wireless, much more so than for wired communication.
This is partly because the standard LTI assumptions of wired communication
are taught from the sophomore year on, and questioning those assumptions is
rarely necessary. The wireless systems here are typically time varying, and
appropriate models depend very much on the time scales of interest. For
wireless systems, the most important issue is what approximations to make.
Solving and manipulating equations is far less important. Thus it is important

to understand these modeling issues thoroughly.
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3.1.4. Reflection from a Ground Plane

Consider a transmitting and receiving antenna, both above a plane surface
such as a road (see figure 3). If the angle of incidence between antenna and
road is sufficiently small, then even a dielectric will reflect most of the incident
wave, with a sign change. When the horizontal distance r between the
antennas becomes very large relative to their vertical displacements from the
ground plane, a very surprising thing happens. In particular, the difference
between the direct path length and the reflected path length goes to zero as »

! with increasing r-.

Sending
| Antenna
] — Receiving

H T T
———__ Antenna

= _'_-:’Il-'r-'.-

Ground Plane

r

Figure 3.3: lllustration of a direct path and a reflected path of a ground plane.

When r is large enough, this difference between the path lengths becomes
small relative to a wavelength ¢/ Since the sign of the electric field is
reversed on the reflected path, these two waves start to cancel each other
out. The electric wave at the receiver is then attenuated as 2 and the
received power goes down as . What this example shows is that the
received power can decrease with distance considerably faster than 2 in the
presence of disturbances to free space. This situation is particularly important
in rural areas where base stations tend to be placed on roads. Note, however,
that the way the power decreases with distance is both helpful and harmful. It
is helpful in reducing the interference between adjoining cells, but it is harmful
in reducing the coverage of cells. As cellular systems become more popular,
however, the major determinant of cell size is the number of cell phones in the
cell. The size of cells has been steadily decreasing, and one talks of micro

cells and pico cells as a response to this effect.

3.1.5. Shadowing
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Shadowing is a phenomenon that occurs when partially absorbing materials
lie between the sending and receiving antenna. This is called shadowing
because it is similar to the effect of clouds partly blocking sunlight. Shadowing
occurs when cell phones are inside buildings and the electromagnetic wave
must pass through building walls. It also occurs when an outside cell phone is
temporarily shielded from the base station by a building or some other
structure.

The effect of shadow fading differs from multipath fading in two important
ways.

e First, the duration of a shadow fade lasts for multiple seconds or minutes.
For this reason, shadow fading is often called slow fading and multipath
fading is called fast fading.

e Second, the attenuation due to shadowing is exponential in the width of
the barrier that must be passed through. Thus the overall attenuation contains
not only the »? effect of free space transmission, but also the exponential

attenuation over the depth of the obstructing material.

3.1.6. Moving antenna, multiple reflectors

Dealing with multiple reflectors, under the assumption of ray tracing, is in
principle simply a matter of modeling the received waveform as the sum of
many responses from different paths rather than just two paths. We have
seen enough examples, however, to understand that finding the magnitude
and phase of these responses is no simple task. Even for the very simple
large wall assumed in figure 3.1, the reflected field calculated in (3.6) is valid
only at small distances from the wall relative to the dimensions of the wall. At
very large distances, the total power reflected from the wall is proportional to
both &* and to the cross section of the wall. The part of this reaching the
receiver is proportional to (d _r)”. Thus the power attenuation from
transmitter to receiver (for the large distance case) is proportional to /d (d _
r(1)]” rather than to [2d _ r(t)]™. This shows that ray tracing must be used with
some caution. Fortunately, however, linearity still holds in these more complex
cases. Another type of reflection is known as scattering and can occur in the

atmosphere or in reflections from very rough objects. Here there are a very
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large number of individual paths, and the received waveform is better
modeled as an integral over infinitesimally small paths rather than as a sum.
Knowing how to find the amplitude of the reflected field from each type of
reflector above is an important topic if our objective is trying to determine
where to place base stations, since this type of analysis is helpful in
determining the coverage of a base station (although ultimately
experimentation is necessary). Studying this in more depth, however, would
take us too far into electromagnetic theory. In addition, we are primarily
interested in questions of modulation, detection, multiple access, and network
protocols rather than location of base stations. Thus, we turn our attention to
understanding the nature of the aggregate received waveform, given a
representation for each reflected wave. Thus we turn to modeling the
input/output behavior of a channel rather than the detailed response on each

path.

3.2 INPUT/OUTPUT MODEL FOR WIRELESS CHANNELS

Now we will derive the input/output model for wireless channel and show that
the multipath effects can be modeled as a linear time varying system. Then
we obtained the baseband representation of this model. The continuous time
model is sampled to obtain a discrete time model. Finally we add noise in our
model.

Suppose a transmitting antenna sends a sinusoid, cos(2xft), which is
received at a receiving antenna after reflection from some intermediate object.
The response will be a function of each antenna pattern and of the
intermediate object's reflection pattern. In addition, there will be an attenuation
factor that is a function of the distance from transmitting antenna to reflector
and from reflector to receiving antenna. To describe this path in terms of an
input/output relationship between transmitter and receiver, we simply multiply
all of these attenuation terms together as a single attenuation factor «; (z) at
time ¢ from transmitter to receiver via a given path j. For the example of a

perfectly reflecting wall in the previous section, then,

el
Fo+vt 2d —ro—vt

(3.8)

ai(t) =
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Where the first expression is for the direct path and the second for the
reflected path. Similarly, we define 7; (1) as the propagation delay on path ;

from transmitter to receiver. Thus, for the reflecting wall example,

ro+vt  ZPu(f) r2(t) = 2d—ro-vt  ZPaf)
c 21 c 2nf

The term Z ;) here is to account for possible phase changes at the

Ti(t) =

(3.9)

transmitter, reflector, and receiver. For the example here, there is a phase
reversal at the reflector so we can take ¢, = 0 and ¢, = n. With these
definitions, the response to a sinusoid for the reflecting wall example can be
expressed as
Er(f,t) =Re1(t) exp{i2af (t —71(2)) } ]+ Rlex2(t) exp{i27f (t — 72(1)) } ] (3.10)
For an arbitrary number k of paths, this expression becomes

Ef,t)= Zk:‘ﬁ[aj(t) exp{i2zf (t—7(1))}] (3.11)

Jj=1
In the previous lecture, our focus was on the electromagnetic effects which
give rise to time varying attenuation and path delay (along with the very notion
of multiple propagation paths). Today, we abstract from these electromagnetic
effects to study their effect on communication. The attenuations and path
delays are now taken as given and we want to find an input/output
characterization of the channel. We will use the physical mechanisms to get
some order-of-magnitude sense of how the parameters vary with time, but
otherwise, we simply explore the consequences of the assumed sinusoidal
response in (3.11).
The effect of the Doppler shift is not immediately evident in (3.11). Recall that
the Doppler shift D; on path j is defined as —fv;/c where v, is the velocity at
which the path length is changing. Thus we can express z; (¢) in (3.9) as
, Dit
rj(t)—rj—T (3.12)

Here t'; is assumed to be constant with respect to both ¢ and 1. D; is linearly
increasing in f, so that D; / fis not a function of £, and thus 7?) is also
independent of f. The attenuations in (3.11) are usually slowly varying
functions of frequency. These variations follow from the time-varying path

lengths (as in (3.8)) and also from frequency dependent antenna gains. For
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bands that are narrow relative to the carrier frequency, we can safely omit this
frequency dependence. As we see later, however, there is an important
frequency dependence in (3.11) that arises from multiple paths at different
delays and Doppler shifts. The behavior of (3.11) does not depend critically on

the number of paths, k, so this will be suppressed from now on.

3.2.1 Time-varying System Functions

We now derive a time-varying system function and then a time-varying
impulse response for the above channel; the procedure is quite similar to that
for linear time invariant (LTIl) channels. View (3.11) as giving the response to
sinusoids at arbitrary frequencies (within the band of interest). Define the

time-varying system function 4(f, t) as
h(f,0)= Y ai(t) expli2afe (1)} (3.13)
J

Substituting this in (3.11), we see that the response to an input cos(2xft) is
‘R[ﬁ(f,t) exp{i2zft}]. More generally, the response to an input cos(2znft +¢) is

ER[ﬁ(f,t)exp{i27ﬁ+¢}]. As usual with system functions, it is convenient to

define  A(f t) for negative frequencies as A(f, H)= h*(f t). We can then view
the response to an input exp(i2zft) as h(f. t)exp(i2nft) for both £>0 and /<0. Using

linearity, the response to a weighted sum of sinusoids, say

x(t)= Z Xk exp{i2zf it}
k

y(0) =Y. xih(f k1) exp{i2af it} (3.14)
k

We can represent any input x(t) (in the frequency band of interest) by a

Fourier transform

x(t)= [%(f)exp@2adf 5 #(f)= [ x(t)exp(-i2aft)dt

Using linearity on a continuum of sinusoids in the same way as on the sum in

(314), the response to x(t) = T)e(f)exp( i2xft)df is

-0

0

W0) = [3()h(f.0) expli2afiydf (3.15)

—00
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There is a temptation here to blindly imitate the theory of LTI linear systems
and to confuse the Fourier transform of y(z), namely 3%, with £(/)A(f,). This
is wrong mathematically whenever /(f, 1) is a non-constant function of t; this
dependence on ¢ prevents taking the Fourier transform of (3.8) in any
straightforward way.

Confusing y(f), with 2(f)ﬁ(f, t) is also wrong physically. The response, for a

given £, to (f)exp(i2aft) is R(f)h(f,t)exp(i27ft). This is a narrow band
waveform rather than a sinusoid because of Doppler shifts. This means that

¥(f) at a given falso depends on x(f') over a range of f'.
Finally, confusing y(f), with )E(f)ﬁ(f, t) is non sensical, because y(f) is not a

function of rand )E(f)fz(f,t) is.

3.2.2. The Impulse Response and the Convolution Equation
Fortunately, (3.15) can still be used to derive a very satisfactory form of

impulse response and convolution equation. Define the time-varying impulse
response A(z, t) as the inverse Fourier transform (in 1) of ﬁ(f,t), where ¢ is

viewed as a parameter. In particular,
h,0)= [h(f, D) exp@2afe)df 5 h(f,0)= [h(z,1)exp(-i2afr)dz (3.16)

Intuitively, we regard A(f, ¢) as a system function that is slowly changing with ¢,
and view A(z, t) as a channel filter whose impulse response (as a function of z)
is slowly changing with ¢. If we substitute the second part of (3.16) into (3.15)

= [ [R()hG ) expli2af (¢t —1))dedf (3.17)

f=—0r=—0
Interchanging the order of integration and recognizing the integration over fas
the inverse Fourier transform of x(f), we get the convolution equation for

time-varying filters,

0

y(1) = j x(t—7)h(r,t)dr (3.18)

This expression is really quite nice. It says that the effect of mobile users,
arbitrarily moving reflectors and absorbers, and all of the complexities of

solving Maxwell's equations, finally reduce to an input/output relation between

Simulation Of QPSK Transceiver liii



transmit and receive antennas which is simply represented as the impulse
response of a linear time varying channel filter. That is, A(z, ¢) is the response
at time 7 to an impulse at time ¢ -1 . If 4(%, ¢) is a constant function of z, then this
is the conventional LTI impulse response.

For the particular form of A(f, ¢) in (3.13), the inverse transform A(z, 1) is
h(z,t) =Y ait)s[r—7 (t)] (3.19)
J

Where ¢ is the Dirac impulse function. These idealized, non-physical,
impulses arise here because of our earlier assumption that ;(?) and ;(z) are
not functions of frequency, which we justified by our interest only in inputs
over a narrow band of frequencies around some carrier f.. Physically, these
delta functions arose from viewing reflectors solely through the ray tracing
approximation and by ignoring the frequency attenuation of the antennas. We

can see in (3.13) that if x(f) is limited to a given band, then it makes no

difference what ﬁ(f,t) is outside of that band. In the same way, if the

impulses in (3.19) were filtered to eliminate the out-of-band components, the
response to a band-limited input would remain the same. To see this more

clearly, we can substitute (3.19) into (3.18), getting
y() = aiOx[t—7(1)] (3.20)
j

Note that if 5{r —7;(¢)}(¢) in (3.19) were replaced with a sinc function centered

on t(t) with a bandwidth wider than of x(z), then the response in (3.20) would
not be changed. Perhaps more to the point, if we used a more elaborate
electromagnetic model, the response from the jth path would be a linear time
varying filter in its own right, so that the overall response would again be a

linear time-varying filter.

3.3 PARAMETERS OF MOBILE MULTIPATH CHANNELS

Recall from previous section that significant changes in a; occur over periods
of seconds or more. Significant changes in the phase for each path occur at
intervals of 1/(2D), where D is the Doppler spread for the channel. Multipath
fading occurs because different paths have different Doppler shifts [7]. Typical

intervals for such changes are on the order of 10msec.Thus, the fastest
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changes in the filter taps occur because of the phase changes, and these are
significant over delay changes of 1/(2D). So there has to be some

formulization for these.

3.3.1 Coherence time
The time coherence, Tc, of a narrowband wireless channel was defined (in
an order of magnitude sense) as the interval over which Ai(z,r) changes
significantly. What we have found, then, is the important relation.
T. = 1/4D (3.21)
This is a somewhat imprecise relation, since different paths have different
Doppler shifts, and the largest Doppler shifts may belong to paths that are too

weak to make a difference.

3.3.2 Multipath Delay Spread
Another important general parameter of a wireless system is the multipath
delay spread, T, defined as the difference in propagation time between the
longest and shortest path, where we assume, in all of the above sums over
different paths, that only the significant paths are included [7]. Thus,

T, :mje‘lx(rj)—mjin(rj) (3.22)

3.3.3 Coherence Bandwidth

There is one additional gross mechanism called frequency coherence.
Wireless channels change both in time and frequency. The time coherence
shows us how quickly the channel changes in time, and similarly, the
frequency coherence shows how quickly it changes in frequency. We first
understood about channels changing in time, and correspondingly about the
duration of fades, by studying the simple example of a direct path and a single
reflected path. That same example shows us how channels change with
frequency. For a particular path, o; has linear phase in f[8]. For multiple paths,

there is a differential phase, 2xf(27/(z,(¢)—7,(¢)). This differential phase

causes frequency selective fading (equalization is required for frequency
selective fading) in frequency.

This says that not only does E,(f; ) change significantly when ¢ changes by
1/(2D), but also when f changes by 1/27, This argument extends to an

arbitrary number of paths, so the coherence, bandwidth F. is given by
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F.=1/2T, (3.23)
This relationship, like (3.19) is intended as an order of magnitude relation,
essentially pointing out that frequency coherence is reciprocal to multipath
spread. When the bandwidth of the input is considerably less than F., the
channel is usually referred to as at frequency flat fading, and, in essence, a
single channel filter tap is sufficient to represent the channel (no equalization
required). Note that flat fading is not a property of the channel alone, but of
the relationship between W and F..
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CHAPTER 4

MODULATION, MATCH FILTERING
AND PULSE SHAPING

Many information bearing signals are transmitted by some type of carrier
modulation. The channel over which the signal is transmitted is limited in
bandwidth to an interval of frequencies centered about the carrier, as in
double sideband modulation Signals and channel which satisfy the condition
that their bandwidth is much smaller than the carrier frequency are termed
narrow bandpass signals and channels. The modulation performed at the
transmitting end of the communication system to generate the bandpass
signal and the modulation performed at the receiving end to recover the digital
information involves the frequency translations. With no loss in generality and
mathematical convenience, it is desirable to reduce all the bandpass signals
and channels to equivalent lowpass signals and channels [8]. This leads to

the complex envelop representation of real bandpass signals.

4.1 COMPLEX ENVELOP REPRESENTATION
The real-valued signal x(¢) is a passband signal when its nonzero Fourier

transform is near w,, as in Figure 4.1. Passband signals never have DC
content, so X(0) = 0. A carrier modulated signal is any passband signal that
can be written in the following form

x(¢) = a(t) cos(w, t+0(t)) (4.1)
where a(?) is the time-varying amplitude or envelope of the modulated signal
and 4(¢) is the time-varying phase.w, is called the carrier frequency (in
radians/sec). The carrier frequency o, is chosen sufficiently large compared

with the amplitude and phase variations of a(f) so that the power spectral
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density does not have significant energy at o= 0. See Figure 4.1, wherein the
spectrum of X(w) is concentrated in the passband ,,, <|®| < ®,,. In digital
communication, x(t) is equivalently written in quadrature form using the
trigonometric identity cos(u + v) = cos(u) cos(v) — sin(u) sin(v), leading to a
quadrature decomposition. The quadrature decomposition of a carrier
modulated signal is

x(#) = x; (1) cos(w 1) — x sin(@, 7) 4.2)

| 3¢ ]

| | i

— iy — Gy ] my al, Wi
Figure 4.1: Fourier spectrum of Bandpass signal
where x,(¢) =a(t)cos(0(¢)) is the time-varying inphase component of the
modulated signal, and x, (1) =a(#)sin(6(¢)) is the time-varying quadrature

component. Relationships determining a(t), 6(t) from x, (1) —x, (¢) are

a(t)=+x,” () +x,° (1) (4.3)
O(t) = tan ™' {xQ (t)} (4.4)
x;(2)

In equation 4.4, the inverse tangent is taken with the polarities of the
numerator and denominator independently known, so there is no quadrant
ambiguity in computing 6(t). In passband processing and analysis, the
objective is to eliminate explicit consideration of the carrier frequency «,and
directly analyze systems using only the inphase and quadrature components.
These inphase and quadrature components can be combined into a two-
dimensional vector, or into an equivalent complex signal. By convention, a
graph of a quadrature-modulated signal plots the inphase component along

the real axis and the quadrature component along the imaginary axis as
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shown in figure 4.2. The resultant complex vector x,,(¢) is known as the

complex baseband-equivalent signal. The complex baseband-equivalent

signal for x(t) in equation 4.1 is

Xpp () =X, (1) + ] x0(2) 4.5)
—sinf 6l f)
1 Imaginary Part
x_Q (I} xbbl:‘t:l
p COSCaLE)
8 R eal Part

Figure 4.2: Decomposition of baseband-equivalent signal.

The baseband-equivalent signal expression no longer explicitly contains the
carrier frequency o, Another complex representation that does explicitly
contain w, is the analytic equivalent signal for x(t). The analytic-equivalent
signal for x(t) in equation 4.1 is

x4 () = X, (1) €7 (4.6)
The original real-valued passband signal x(¢) is the real part of the analytic

equivalent signal

x(1) = Rx ,(1)] (4.7)
The Hilbert transform of x(t), denoted by x(¢), is the imaginary part of the
analytic signal as

%(0) = Ix , ()] (4.8)

Finally, the inphase componentx, () and the quadrature component x, ()
can be expressed using the signal x(t) and its Hilbert transform x(¢) as (using
Xpp (1) =2, (1) + ] 2 (1) = x4 (1) 7"
x;(t)=x(t) cos(w,t) + x(t) sin(w,.t) 4.9)
xg (1) = x(2) cos(w, 1) — x(t) sin(w, 1) (4.10)

4.1.2 Spectrum of Analytic and Baseband-Equivalent Signals
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Using equations 4.7 and 4.8 the analytic signal is represented as shown in
figure 4.3

x, () =x;(0)+ ] xo (1) (4.11)
Taking the Fourier Transform of both sides of equation 4.11 yields
X ()= [1 + sgn(a))]X(a))

2X () >0
(4.12)
= X(0)=0 w=0
0 w<0
Phase Splitter

) d

¥

—

-

=y

—
Ehi

—jo ¢

[

Figure 4.3: Complex baseband signal recovery from real passband signal

The analytic equivalent signal, x ,(z), contains only the positive frequencies
of x(r) and is identically zero for negative frequencies. The Fourier transform
X(w) of the real signal x(t) has two symmetry properties. The real partiR[X(a))]
is even inw, while the imaginary part S[X(a))] is odd in® . Knowledge of only
the non-negative frequencies of X(w), such as are supplied by the analytic
signal, is sufficient for reconstruction of X(w@). Thus, one confirms that the
analytic signal x,(¢) is truly equivalent to the original signal x(t). Using
equation 4.6, the Fourier transform of the baseband equivalent signal is
simply the Fourier transform of the analytic signal translated in frequency .
Thus

X, w=Xy(0-w.) (4.13)
X=X (0+,) (4.14)

Use of equations 4.6 and 4.7 allows reconstruction of the signal x(t) from the

baseband equivalent signal x,,(r) and the carrier frequency .. The

baseband equivalent signal, in general, may be complex-valued, and thus as
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shown in figure 4.4 the spectrum of x,,(r) may be asymmetric about the
originw =0

| el il

iy —, 0 Wy — 8

Figure 4.4: Baseband signal spectrum.

4.1.2 Generation of the baseband equivalent
To generate the baseband equivalent of a signal, the structure in figure 4.3

is used, where the second complex multiply simply is 4 real multiplies using
Euler's formula e/“" = cos(w,t)+ jsin(w,t). The first multiply by ; alone is, of

course, symbolic and simply means that the receiver processing views the

signal on that path as the imaginary part in complex arithmetic.

4.2 DIGITAL BANDPASS MODULATION

Digital modulation is the process by which digital symbols are transformed
into waveforms that are compatible with the characteristics of the channel and
demodulation is the reverse process of again recovering the original
message. In the case of baseband modulation, these waveforms usually take
the form of shaped pulses. But in the case of bandpass modulation the
shaped pulses modulate a sinusoid called a carrier wave, or simply a carrier;
for radio transmission the carrier is converted to an electromagnetic (EM) field
for propagation to the desired destination [14].

The modulating process transforms the low frequency baseband signal to a
bandpass signal around a carrier frequency as sketched in figure 4.5. The
bandpass signal is the one actually transmitted to the receiver where the

demodulator reconstructs the low-frequency baseband message.
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o I I o o
) 0 C —, 0 0, s 0 |
Origional Baseband Transmitted Bandpass Feconstiucted
Sigmal Signal Baseband Sigmal

Figure 4.5: Power spectra for signals in the modulation and demodulation processes.

Bandpass modulation (either analog or digital) is the process by which an
information signal is converted to a sinusoidal waveform; for digital
modulation, such a sinusoid of duration T is referred to as a digital symbol.
The sinusoid has just three features that can be used to distinguish it from
other sinusoids: amplitude, frequency, and phase. Thus bandpass modulation
can be defined as the process whereby the amplitude, frequency, or phase of
an RF carrier, or a combination of them, is varied in accordance with the
information to be transmitted. The general form of the carrier wave is

s(t) = A(t) cos O(t) (4.15)
where A(t) is the time-varying amplitude and #(t) is the time-varying angle. It is
convenient to write
(1) =wyt+ ¢(t) (4.16)
so that

s(t(= A(t) cos [, 1+ ¢(1)] (4.17)

Where W, is the radian frequency of the carrier and ¢(¢) is the phase. The
terms f and o will each be used to denote frequency. When f is used,
frequency in hertz is intended; when o is used, frequency in radians per

second is intended. The two frequency parameters are related by o = 2rf.

4.2.1 Phase Shift Keying
Under phase-shift keying (PSK), the information bits determine the phase of
a carrier, which takes values from a discrete set in accordance with the

information bits. The general form of PSK signals is given by
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s;(t)= 2?Ecos(a)ct+6’it) 0<r<T, i=12,....M (4.18)

where the phase term, 6, , will have M discrete values, typically given by

.-
0, =" i=12,...M (4.19)
M
T
E= j so” () dt (4.20)
0

is the signal energy (the same for all signals). We will assume that the signal
is bipolar rectangular pulse of duration 7 until the discussion about pulse

shaping. Equation 4.18 can be re-written in a slightly different form as

5.0 = Jf{cos(e,» )J% cos(aa) ~sin 0, - i 27:@0} (421)

=VEcos(6,) ¢, (1) ~sin( 6,) 4, (1)]
where ¢,(¢) and ¢,(¢t) are easily seen to be orthonormal. Thus, PSK signals

are points in a two-dimensional space spanned by ¢, (tr)and ¢, (r) [14].

4.2.2 QPSK Transmitter
For the binary PSK M = 2 this means that modulating data signal shifts the

phase of the waveform s,(f) to one of the two states either zero or r.

Similarly for quadriphase or quadrature shift keying M = 4 and the waveform

s; (¢) shifts the phase to one of 4 pahses separated by n/4. The constellation

diagram for QPSK signal using relation in equation 4.21 is shown in figure 4.6.

—sity o 1)
1y ] M——  (00)
(B}
" g Co )
(11) oo o (0D

Figure 4.6: QPSK Constellation diagram
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The illustrated constellation mapping in figure 6, known as Gray coding, has
the property that adjacent signals are assigned binary sequences that differ in
only one bit. This is desirable in practice, because, when a detection error is
made, it is more likely to be to a signal adjacent to the transmitted signal.
Then Gray coding results in a single bit error for the most likely signal errors.
QPSK is also a real bandpass signal and using the complex baseband
envelop representation of real bandpass signals the baseband representation
of QPSK is

sy () =5, + ] 5o () =5 4 (D)e (4.22)
where
s;(t)=s(t)cos(w, t)+5(t)sin(w,t)
5o (1) =s(t) cos(w.1) +5(7) sin(w, 1)
are the inphase and quadrature phase components of s,(¢). The relation
between s,(¢) and s,,(¢) is given as
5:(8) = Rls,, Ve’ |= R[5, (0)] (4.23)

Using the above relation the QPSK constellation using the complex baseband

representation is redrawn in figure 4.7.

0 Axis
e p (00)
e |
= - I Asig
C11) oo 4. Ny

Figure 4.7: QPSK Constellation diagram for complex baseband representation.

Now using the complex baseband representation the QPSK transmitter is
drawn in figure 4.8. QPSK lookup table in figure 4.8 is simply the assignment
of one phase to each of four symbols. Transmit filter is a filter which shapes
the bitstream to a waveform. After constellation mapping we are having only
phase as shown in table below. It is the transmit filter which convert them in a

waveform We will discuss it later.
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Table 4.1: QPSK lookup table

Symbol Phase
00 ej;r/4
01 eszr/4
10 ej3zr/4
11 ej—37r/4
QPEK
Lookup
Tahle
F 3
¥ o
50T
; Synhal | el 5e(E)
B [+ Negpig |—{ e Rl >
of1 Const. B
expljo.t)

Figure 4.8: QPSK Transmitter
To recover the analytic signal from the received real QPSK signal same

approach is used which is described in figure 4.3.

4,2.3 QPSK Detection

There are two approaches for detection of any modulated signal. One is
called coherent detection and other is called non-coherent detection. When
the receiver exploits knowledge of the carrier's phase to detect the signals,
the process is called coherent detection; when the receiver does not utilize
such phase reference information, the process is called no coherent
detection. In ideal coherent detection, there is available at the receiver a
prototype of each possible arriving signal. These prototype waveforms
attempt to duplicate the transmitted signal set in every respect, even RF
phase. The receiver is then said to be phase locked with the incoming signal.
While for non-coherent detection the there is no need for the receiver to be
phase locked with the transmitter because the phase information is provided
to the receiver by differentially encoding the symbols at the receiver. Thus the

receiver design is simplified.
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We are not using the differential encoding, so we will only discuss the
coherent detection. In coherent detection the receiver has the decision

regions as shown in figure 4.9.

Figure 4.9: Decision regions for QPSK signal
If the symbol is in region 1 then the receiver makes the decision that it is 00
and so on. The receiver structure is shown in figure 4.10. After recovering the
complex baseband signal from the real received signal we have to determine
only the phase and according to that phase we have to select that particular
region in which phase is lying. After selecting the region the only job left is to
recover the two bits which conveyed by the phase using the same lookup

table as shown before. We will discuss the receive filter later.

Phasze Splitter Lookup
TP : Tahle

i r Bit

- ; Siream
Recetve | ™% Compute _-Selectmg

Filter Phase Fegion

sarnpler
at T

ligt

gfme?

Figure 4.10: QPSK Receiver structure

So far we have explained complex envelop representation of bandpass

signals and QPSK modulation/demodulation. From now on we will not use the
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receiver structure explained above but only the complex baseband part will be
used. The frequency translation part will be removed because it the same for

all. The baseband receiver structure is given in figure 4.11.

Tratismitter Recetver

QPSK : QPSK

Loakup : Lookup

Tahle : : Table

Fy i : T
; ¥ (;.E T Bit
; D Sl Str
| Bit Strearn | | I\S-'Iaymtjﬁl || Trafstoit |; i .| Receive | Compute| |Selecting =
! | Generator PRIE Filter |: | Filter Phase Region
: o Const. h :
: Sarnpler
at I

Figure 4.11: Baseband model for QPSK communication system

4.3 DETECTION IN ADDITIVE WHITE GAUSSIAN NOISE (AWGN)

4.3.1 Additive White Gaussian Noise

So far we have assuming the ideal channel because we are receiving the
same signal which we are transmitting. But this will never happen in practice.
There are many sources of noise which corrupt the transmitted signal like
galaxy and atmospheric noise, switching transients, interfering signals from
other sources and many many more sources. With proper precautions much
of the noise and interference entering the receiver can be reduced or even
eliminated. However there is one noise source that cannot be eliminated and
that is the noise caused by the thermal motion of electrons in any conducting
media. This motion produces thermal noise in amplifiers and circuits and
corrupts the signal.

The noise can be thought as a random process. Any random process can
be modelled statistically using normal or Gaussian. An important case of a
random signal is the case where the autocorrelation function is a dirac delta
function which has zero value everywhere except when z = 0. In other words,

the case where

R.(r)= {NO Jorz=0 (4.24)

0 elsewhere
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where R,(7) is the auto-correlation function of a random variable x(t) and N is
any constant. The auto-correlation at z = 0 is also called the power of the
signal. The Fourier transform of auto-correlation function is called as the

power spectral density and power spectral density for noise is

S (w)= TRX (D)e™*"dr = % (4.25)

In this special case where the autocorrelation is a “spike” the Fourier
transform results in a constant frequency spectrum as shown in figure 4.12.
This is in fact a description of white noise, which be thought of both as having
power at all frequencies in the spectrum, and being completely uncorrelated
with itself at any time except the present (r = 0). This latter interpretation is
what leads white noise signals to be called independent. Any sample of the
signal at one time is completely independent (uncorrelated) from a sample at
any other time. While impossible to achieve or see in practice (no system can
exhibit infinite energy throughout an infinite spectrum), white noise is an
important building block for design and analysis. Often random signals can be
modeled as filtered or shaped white noise. Literally this means that one could
filter the output of a (hypothetical) white noise source to achieve a non-white
or colored noise source that is both band-limited in the frequency domain, and

more correlated in the time domain.

Ry () ks (o)
|
- 0 e 0 W

Figure 4.12: White noise shown in both the time (left) and frequency domain (right).

From above it is clear why thermal noise is called Additive white Gaussian
noise (AWGN). Additive because it adds in the signal not multiplies. White
because it has the same power for all the frequencies. Gaussian because it

can be modelled using Gaussian or normal distribution and power for any

2

normally distributed random variable is o,°, where o, is the variance of the
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random variable.

4.3.2 SNR Maximization with a Matched Filter

SNR is a good measure for a system’s performance, describing the ratio of
signal power (message) to unwanted noise power. The SNR at the output of a
filter is defined as the ratio of the modulated signal's energy to the mean-
square value of the noise. The SNR can be defined for both continuous- and
discrete-time processes; the discrete SNR is SNR of the samples of the
received and filtered waveform. A matched filter is a linear filter designed to
provide the maximum signal-to-noise power ratio at its output for a given
transmitted symbol waveform. It is called match filter because it impulse
response exactly matches with the impulse response of the transmitted
signal1 [14]. It will be proved now.

Consider that a known signal s(z) plus AWGN n(?) is the input to a linear,
time-invariant (receiving) filter followed by a sampler, as shown in Figure 4.13.
Actually the receive filter is replaced with match filter. At time ¢ = T, the
sampler output z(7) consists of a signal component a; and a noise component
no .

z(D)=a;+ng (4.26)
The variance of the output noise (average noise power) is denoted by o,’, so

that the ratio of the instantaneous signal power to average noise power.

(S/N)r. at time t = T, out of the sampler in step 1, is

S 2
(—j =4/, (4.27)
N ), oo
Looloup
Tahle
3 Iatch E: 21 Compute Selecting| Pit Stream
Filter Phaze Fegion
sampling
at Il

nt)

Figure 4.13: QPSK receiver with sampler at symbol rate T and match filter
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We wish to find the filter transfer function H,(f) that maximizes equation 4.27.
We can express the signal a;(?) at the filter output in terms of the filter transfer
function H(f) (before optimization) and the Fourier transform of the input

signal,
a, ()= [H(N)S(f)e”™ df (4.28)

where S(f) is the Fourier transform of the input signal, S(t). If the two-sided
power spectra} density of the input noise is No/2 watts/hertz, then, we can

express the output noise power as

N20 j|H(f)| df (4.29)

2 _
00_

We then combine equations 4.27 to 4.29 to express (S/N)r. as follows

2

[H (S df

(i] ) (4.30)
Y e[l

We next find that value of H(f) = H,{) for which the maximum (S/N)r is
achieved, by using Schwarz's inequality. One form of the inequality can be

stated as

2

< T\fl (x)| dx T\fz (x)| dr (4.31)

[ 1,000 12 (x)d

The equality holds if fi(x) = kf*,(x) where k is an arbitrary constant and *
indicates complex conjugate. If we identify H(f) with fi(x) and S(f) e 72 with
f(x), then

[HHS(He?™df| < [|HO df || df (4.32)

Substituting into Equation 4.30 yields

),

Where the energy E of the input signal S(z) is

0

[Iser) dar (4.33)

0 -»

2
N

E = T|S(f)| df (4.34)

Thus, the maximum output (S/N)r depends on the input signal energy and the

power spectral density of the noise, not on the particular shape of the
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waveform that is used. The equality in Equation 4.33 holds only if the optimum

filter transfer function Ho(f) is employed, such that

H(f)=H,(f)=kS*(f)e”*™ (4.35)
h(t) =37 kS *(f)e 7 | (4.36)
Since S(t) is a real-valued signal, we can write,
0 elsewhere

Thus, the impulse response of a filter that produces the maximum output
signal-to-noise ratio is the mirror image of the message signal s(t), delayed by
the symbol time duration 7. Note that the delay of T'seconds makes Equation
4.37 causal; that is, the delay of T seconds makes A(t) a function of positive
time in the interval 0 < ¢ < T as shown in figure 4.14. Without the delay of T
seconds, the response s(—¢) is unrealizable because it describes a response

as a function of negative time.

S(8) s(—1) A = T-1)

¢ 3 ¢
T -7 I
signal wavform Lflirror itmage of [tmpulze response
Signal wawform of Match filter

Figure 4.14: Impulse responses of received signal and match filter

The above mathematical discussion proves that if the impulse responses of
the received signal and the match filter are mirror images of each other then
at =T the SNR is maximized. Actually the convolution with itself is a process
of integration. By match filtering we are actually integrating the received
signal. AWGN is a zero mean random variable. By averaging we are trying to
force it to zero. It can be verified that as T approaches « the noise averaged
to zero.

The QPSK receiver with match filter can be redrawn in figure 4.15.
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Figure 4.15: QPSK receiver with match filter

4.4 INTERSYMBOL INTERFERENCE AND PULSE SHAPING

The spreading and smearing of symbols such that the energy from one
symbol effects the next ones in such a way that the received signal has a
higher probability of being interpreted incorrectly is called inter symbol
interference (ISI).

Let’'s assume that the transmit filter has a impulse response of a rectangular
pulse as shown. We know that the frequency response of rectangular pulse is

a sinc function which is from [-w,©]. This means that it has infinite

bandwidth which is not the requirement and also the rectangular pulse is not

possible to design practically.

-T2 T#2

Time Fesponsze

Ban dwidth

Frequency Response

Figure 4.16: Time and frequency response of rectangular pulse
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Another solution is that we used the sinc in time domain because it has a
gate function in frequency domain which has very pleasant from bandwidth
requirement. But the problem is that the impulse response of one pulse has
infinite length. But the sinc pulse is passing through zero after every multiple
of T'as shown above. Now if we transmit the successive pulses such that a
pulse has its max peak value when the others are passing through zero. In
this case we may have ISI at the other time but this will ensure that there is no
ISI at the multiples of symbol interval as shown in figure 4.16.

Sinc pulse has problem that it is also impractical to design and also it has
infinite impulse response. A single pulse is affecting all the pulses before or

after it. Slight misadjustment in time will result in effecting all the pulses.

Figure 4.17: pulse shaping using sinc.

Nyquist offered ways to build (realizable) shapes that had the same good
qualities as the sinc pulse and less of the disadvantages. One class of pulses
he proposed are called the raised cosine pulses. They are really a
modification of the sinc pulse. Where the sinc pulse has a bandwidth of 17,
which is given as

W =1/2T (4.38)
The raised cosine pulses have an adjustable bandwidth which can be varied
from W to 2W. We want to get as close to W, which is called the Nyquist
bandwidth, as possible with a reasonable amount of power. The factor «

related the achieved bandwidth to the ideal bandwidth " as
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w
a=1-—
W, (4.39)
where W is Nyquist bandwidth, and W, is the utilized bandwidth.

The factor « is called the roll-of factor. It indicates how much bandwidth is
being used over the ideal bandwidth. Smaller this factor, the more efficient will
be the scheme. The percentage over the minimum required W is called the
excess bandwidth. It is 100% for roll-off of 1.0 and 50% for roll-off of 50%. The

alternate way to express the utilized bandwidth is.

W, =(1+a)R, (4.40)
Typical roll-off values used for wireless communications range from 2 to 4.
Obviously we want to use as small a roll-off as possible, since this gives the
smallest bandwidth. Here is how the class of raised cosine pulse is defined in
time domain.

sin(2zt/T,) cos(2rat)
2t 1-Qat/ )’ (4.40)

h(t) =

The first part is the sinc pulse. The second part is a cosine correction applied
to the sinc pulse to make it behave better. The sinc pulse insures that the
function transitions at integer multiples of symbol rate which makes it easy to
extract timing information of the signal. The cosine part works to reduce the
excursion in between the sampling instants. The bandwidth is now
adjustable. It can be any where from 1/2 R to R;. It is greater than the Nyquist
bandwidth by a factor (1+ @). For =0, the above equation reduces to the

sinc pulse, and for a = 1, the equation becomes that of a pure square pulse.
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Figure 4.18: Impulse responses of raised cosine filter with oz = 0,0.5,1

In frequency domain, the relationship is given by

(1-a)
1 f0r|f|£ oT
eos? 7L (- (1=2) o)) peee)
1 = o 202 o o1
(1+a)
f0r|f| T
‘ (2.41)

Why do they call it raised cosine? Because the above response has a
cosine function in the frequency domain, although other many other
trigonometric representations of this equation that do not have the cosine-
squared term, so it is not always clear why these are called raised cosine.

The frequency response looks somewhat like a square pulse as we would
expect. A range of bandwidths are possible depending on the chosen a. The
bandwidth can be anywhere from 1/2 R (this term same as W, the Nyquist
bandwidth) for the sinc pulse to R, for the square pulse. The bandwidth utilized

is greater than the Nyquist bandwidth by a factor (1 + o ). For o = 1 the above
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equation reduces to the sinc pulse, and for a = 1 the equation becomes that of

a pure square pulse.

LRl = os 1

Figure 4.19: Frequency responses of raised cosine filter with o = 0,0.5,1

To implement the raised cosine response, we split the filtering in two parts to
create a matched set. When we split the raised cosine filtering in two parts,
each part is called the root-raised cosine. In frequency domain, we take the
square root of the frequency response hence the name root-raised cosine.

Yes, the whole raised cosine can be applied at once at the transmitter but in
practice it has been found that concatenating two filters each with a root
raised cosine response (called split-filtering) works better.

The root raised cosine shaping of pulses is also called baseband filtering. The

frequency response of the root raised cosine is given by

(1-a)
1 for|f|£ oT
T, 1- 1 1
H ()= {cos’;; (|f|—(2rf‘)j} for 2 <<
f0r|f| (lJ;a)
s (4.42)

Compare the impulse response of the root raised filter to that of the raised
cosine. We do not see much of a difference except that there is a little bit
more excursion in the root-raised cosine response. The time domain function

is of course NOT the square root. The root part applies to frequency domain

Simulation Of QPSK Transceiver Ixxvi



1’\

10 4 Root-raized cosine, 3 dB
A5 A
_a0
_a5

_30
& oB Bandwidth

-35 A
of RC
-40 T T T T

15 2 25 3 35 4

Raised cosine, 6 dB

Frequency Response, (B

Frequency

Figure 4.20: Frequency responses of raised cosine and rootraised cosine filters

By splitting the raised cosine into two rootraised cosine filter we are
achieving two things. First is that by doing so we are forcing the ISI to zero at
the receiver. There is ISI when we are transmitting but there is no ISI at the
receiver. Second is match filtering because the impulse response of transmit
and receiver filters are exactly matched. This will give us the highest SNR
point at the symbol interval. Now the final baseband communication system is

given below. Two wire connections are for complex data.

Tratismitter Pulse Shaping and

F Match Filtering j Receiver
E . - Rl:ll:lt- : E__ Rl:ll:lt. o ) :
Bt | | opsk Raised | | | Raised ¢ opsg | i Strearn
Streatn - ) : : : . .
Cenerator Mod. ,| Cosine | L | Cosine >i ) Detection
Filter : | Filter

Figure 4.21: Baseband model of QPSK communication system

4.5 DISCRETE TIME MODEL OF COMMUNICATION SYSTEM

So far we have explained discrete partial analog communication system. In
figure 4.20 the only analog portion is raised cosine filter. If we realize it in
discrete time the complete system will become digital. We have already
explained the upsampling using interpolation in a previous chapter. We know
that the raised cosine filter requires the excess bandwidth. So in order to filter
the QPSK symbol we have to upsample by at least factor of 2 because the

maximum excess bandwidth is equal to the Nyquist bandwidth. The
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upsampling is done by the insertion of M-1 zeros in between the QPSK
symbol stream and then interpolation is done by the digital raised cosine filter.
If we are sampling by a factor of M then we will say that we have M samples
per symbol. At the receiver we have to downsample by a factor of M in order

to recover the QPSK symbol stream. The complete discrete time model is

given below
. Pulse Shaping and
Transmitter ’_'Match Filtering 7 RS
: » Bit
Bit i Inserting [ Diigital o Digital — > Strearm:
Steeam (Mot | | M-l RRC | || RRC | [lag| | 9P v
/| Generator "t Zeros (—w Filter [ Filter | = :

Figure 4.22: Discrete time baseband model of QPSK communication system

4.6 SIMULATION RESULTS
A simulation is run for QPSK modulation and pulse shaping using raised
cosine pulse shaping. The constellation diagram for QPSK symbols at

transmitter is

1
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Figure 4.23: QPSK Constellation diagram at transmitter

QPSK constellation diagram after the coherent detection at the receiver is
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Figure 4.24: QPSK Constellation diagram at receiver

Raised cosine filter is splitted into root raised cosine filters at transmitter and
receiver for match filtering and pulse shaping. 10 samples per symbol are
chosen for convenience in plotting and the length of filters is 101. The impulse
response of the raised cosine and root raised cosine filters are shown in

figures.

Figure 4.25: Impulse response of root raised cosine pulse

From the above figure you can see that impulse response is not passing

through zero crossings at symbol intervals (multiples of 10)
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Figure 4.26: Impulse response of root raised cosine pulse

In the above the impulse response is passing through zero crossings at
symbol intervals and this guarantees the zero ISI at symbol intervals.

In the following two figures the eye-diagram at transmitter and receiver is
plotted and from these figures it is clear that there is ISI at the transmitter after
filtering using root raised cosine filter but the ISI is removed at the receiver
after root raised cosine filtering because both of them collectively make a

raised cosine filter.

Figure 4.27: Eye diagram at transmitter (there is 1SI)
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Figure 4.28: Eye diagram at receive (no ISI)
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CHAPTER 5

ADAPTIVE FILTERS

5.1 INTRODUCTION

Filters are devices that are used in a variety of applications, often with very
different aims. For example, a filter may be used, to reduce the effect of
additive noise or interference contained in a given signal so that the useful
signal component can be discerned more effectively in the filter output. Much
of the available theory deals with linear filters, where the filter output is a
(possibly time-varying) linear function of the filter input. There are basically
two distinct theoretical approaches to the design of such filters.

e The ‘classical’ approach is aimed at designing frequency selective filters
such as lowpass/bandpass/notch filters etc. For a noise reduction application,
for example, it is based on knowledge of the gross spectral contents of both
the useful signal and the noise components. It is applicable mainly when the
signal and noise occupy clearly different frequency bands.

e The ‘Optimal filter design’, on the other hand, is based on optimization
theory, where the filter is designed to be “best’” (in some sense). The
fundamental difference is that in adaptive filters the desired signal and the
unwanted noisy signal occupies the same frequency band and therefore linear
filters which are frequency selective filters are no more useful. If the signal
and noise are viewed as stochastic processes, based on their statistical
parameters, an optimal filter is designed that, for example, minimizes the
effects of the noise at the filter output according to some statistical criterion. In
the context of ‘adaptive filtering’ where we do not assume knowledge of the
stochastic parameters but which is based on a very similar idea.

5.2 LINEAR OPTIMUM FILTERS
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The theory of optimal filter design dates back to the work of Wiener in 1942
and Kolmogorov in 1939. The resulting solution is often referred to as the
Wiener filter.

We may classify filters as linear or nonlinear. A filter is said to be linear if the
filtered, smoothed, or predicted quantity at the out put of the filter is a linear
function of the observations applied to the filter input. Otherwise, filter is
nonlinear.

In the statistical approach to the solution of the linear filtering problem, we
assume the availability of certain statistical parameters (i.e., mean &
correlation functions) of the useful signal & unwanted additive noise, & the
requirement is to design a linear filter with the noisy data as input so as to
minimize the effect of noise at the filter out put according to statistical criterion
[10]. A useful approach to this filter optimization problem is to minimize the
mean-square value of the error signal defined as the difference between
some desired response & the actual filter output. For stationary inputs, the
resulting solution commonly known as the wiener filter, which is said to be
optimum in the mean square error sense. A plot of the mean-square value of
the error signal versus the adjustable parameters of a linear filter is referred to
as the error signal performance surface. The minimum point of this surface
represents the wiener solution.

The wiener filter is inadequate for dealing with situation in which
nonstationarity of the signal and/or noise is intrinsic to the problem. In such
situations, the optimum filter has to assume a time-varying form. A highly
successful solution to this more difficult problem is found in the Kalman filter,
which is a powerful system with a wide variety of engineering applications.

Linear filter theory, encompassing both Wiener and Kalman filters, is well
developed in the literature for continuous time as well as discrete time signals.
However, for technical reasons influenced by the wide availability of digital
computers and the ever-increasing use of digital signal processing devices,

the discrete time representation is often the preferred method.

5.3 ADAPTIVE FILTERS
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The design of a Weiner filter requires a priori information about the
statistics of the data to be processed. The filter is optimum only when the
statistical characteristics of the input data match the priori information on
which the design of the filter is based. When this information is not known
completely, however, it may not possible to design the wiener filter or else the
design may no longer be optimum. A straightforward approach that we may
use in such situation is the “estimate and plug” procedure. This is a two-stage
process whereby the filters first “estimate” the statistical parameters of the
relevant signals and then “plug” the results so obtained into a nonrecursive
formula for computing the filter parameters. For real-time operation, this
procedure has the disadvantage of requiring excessively elaborated & costly
hardware. To mitigate this limitation, we may use adaptive filter. By such a
system we mean one that is self-designing in that the adaptive filter relays for
it operation on a recursive algorithm, which make it possible for the filter to
perform satisfactorily in an environment where complete knowledge of the
relevant signal characteristics is not available. The algorithm starts from some
predetermined set of initial conditions, representing whatever we know about
the environment. Yet, in stationary environment, we find that after successive
iterations of the algorithm it converges to the optimum Weiner solution in
some statistical sense. In a nonstationary environment, the algorithm the
algorithm offers a tracking capability in that it can track time variations in the
statistics of the input data provided that the variation are sufficiently slow [10].

As a direct consequence of the application of the recursive algorithm
whereby the parameters of an adaptive filter are updated from one iteration to
the next, the parameters become data dependent. This, therefore, means that
an adaptive filter is in reality a nonlinear system, in a sense that it does not
obey the principle of superposition. Notwithstanding this property, adaptive
filters are classified as linear or nonlinear. An adaptive filter is said to be linear
if its input output obeys the principle of superposition whenever its parameter

are held fixed. Otherwise, the adaptive filter is said to be nonlinear.

5.4 WIENER FILTER THEORY
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We will explain the Weiner filter theory using its application in adaptive
channel equalization. The equalizer considered here is known as the MMSE
linear equalizer.

Let us assume that Weiner filter is a FIR filter with 2K+ coefficients

C sC gi1sCorrnseesCros (5.1)

The input to the filter is the received signal »(n) and the output signal is
K
$(n)= D c,r(n—k) (5.2)
k=-K

The filter coefficients are chosen to minimize the mean square value of the
e(n)=s(n)—35(n) (5.3)
where s(n) is the transmitted symbol and s(n) is the its estimate( see figure
5.1). Note that after equalization, there will still be residual ISI. On top of that,
there is an additive Gaussian noise term. The MMSE equalizer minimizes the
combined residual ISl plus noise power. The non-casuality in the
mathematical description of the MMSE equalizer translates into a decision
delay in the actual implementation (see figure 5.1). The delay is due to the

filtering with channel filter and equalizer filter.

vl

5(h) Channel Filier Y1) | Equalizer Filier | (%) -
— " Fm Cm) i
/ )

MNoize

V)

Figure 5.1: The Weiner filter(C(n)) configuration for equalization

To obtain the filter coefficients of the equalizer filter, we first express all
signals involved in matrix form. Specifically, let
r(n+K)

R(n) = r(n +:K—1)

5.4)
r(n—K)

be the received vector at time » and
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C=[Cc ,C gi1sC inse-sCi] (5.5)
be a general transversal (i.e. FIR) equalizer. By substituting for the matrix
notation into equation 5.2, it is possible to represent the estimated error signal
by equation 5.6 below. The equalizer output at time n is thus

§(n) =CR(n) (5.6)
and instantaneous squared error of the signal can be found by squaring

equation 5.6 such that it can be represented as the following equation:

&(n)” =(s(n)=3§(m)* = (s(n)-CR(n))’
= (s(n) - CR(m)s(m)-C"R(n)")
=s(n)* —s(n)CR(n)—s(n)C"'R(n)" +CR(n)R(n)" C”
=0’ —s(n)CR(n)-s(n)C"R(n)" + CR(n)R(n)" C”

(5.7)

whereo’is the variance of s(n) because s(n) has a zero mean, i.e.,

o’ =E(x”)-(E(x))*. Also assuming s(n) a bipolar signal (BPSK or QPSK) with

values +1 then we can sayo’=1. Mean square error (MSE), y, is defined by

the “expectation” of the squared error, from equation 5.7. Hence the MSE can
be represented by equation 5.8.

y = Ele(n)* |=1- E[s(n)CR(n)] - E[s())C"R(n)" |+ E[CR(m)R(n)" C” |

= 1-CE[s(mR(n)]- E[s()R(n)" [c” + CE[RmRm)" I

=1-Cu,, —u,C" +CU,C’ 69
=1-2u_C" +CU ,C”
where
u, = E[s(mRm)" |=u,” (5.9)

is the 2K+1 length cross correlation vector between s(n) and the received

vector R(n), and
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Hn+K)

Uye = HROR(' | = r('”:K_D [fnK) rn+ K=y ... Hn—K))
Hn—K)
rn+Ky(n+K)  rn+Krin+K-1) ... rn+Kr(n—-K)
rn+K-Dr(n+K) rn+K-r(n+K-1) ... r(n+K-Dr(n+K-1)
rn=Kyn+K) — rn=Ky(n+K-1) -+ rn=Ky(n-K)
(5.10)

is the (2K+1)x (2K+1) order auto correlation matrix of the received vector R(n).
Note that U ., is a symmetric matrix and r(i, j) =r(J,i).
It is clear from this expression that the mean square error y is a quadratic

function of the weight vector C (filter coefficients). That is, when Equation 5.8
is expanded, the elements of C will appear in the first and second order only.
This is valid when the input components and desired response inputs are

wide-sense stationary stochastic (random) variables [18].

5.5 PERFORMANCE SURFACE

A portion of a typical two-dimensional MSE function is illustrated in figure
5.2. The vertical axis represents the mean square error and the two horizontal
axes represent the values of two filter coefficients. The quadratic error
function, or performance surface, can be used to determine the optimum

weight vector C_ (or Wiener filter coefficients). With a quadratic performance

opt
function there is only one global optimum; no local minima exist. The shape of
the function would be hyper-parabolic if there were more than two weights.

In this example, the filter coefficient ¢(0) varies between [1,...,3] while ¢(1)
varies between the range [-1,...,1]. The optimum weight vector is given by

C,,. = [2, -0.1], corresponding to the values for which the mean square error

takes the minimum value, y . .

Many adaptive processes that cause the weight vector to search for the
minimum of the performance surface do so by the gradient method [11]. The
gradient of the mean square error of the performance surface, designatedV
can be obtained by differentiating equation 5.8 with respect to each

component of the weight vector.
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v-r_|or o (5.12)
oC

b
oc_x 0c_g,,

Lo (2l = (S} m
L 1 L N '

kean sguar= smor

R
i 1

Figure 5.2: A two dimensional error performance surface

Remember that the MSE was derived from the expectation of the squared
error function, from equation 5.8. So as an alternative method, the gradient
can also be found by differentiating the expected squared error function with

respect to the weight vector.

v E[ de(n)? } _ E[zg(n) ag(n)}
oC

oC
=2E{(s(n)—CR(n))a%(ﬂn)—CR(n))}
= 2E|(s(n)-CR(m)R(n)" ] (5.13)
= 2E[s(mRm)" |+ 2E[RmRm)"]C
=-2U_, +2U,,C
The gradient vector is the tangent of the N-dimensional surface y at the
point C,, When the gradient vector is zero, the surface y reaches its lowest

value and hence the mean square error will be minimized. The point in the N-
dimensional space where this occurs is. Therefore, setting equation 5.13 to

zero we get

0=-2u_,+2U,,C

opt

Cop :usRURR_l (5.14)

op

and corresponding MSE is
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.=1-2u,C "+C,6 U,C, '
j/mm sR ™~ opt opt ~ RR ™~ opt (515)

1T
:1_usRURR U x

This equation is known as the Wiener-Hopf equation in matrix form, and the
filter given by C,, in equation 5.14 is the Wiener filter. However, in practice it
is not usual to evaluate. In addition, C,, has to be calculated repeatedly for

non-stationary signals and this can be computationally intensive because it
requires matrix inversions. But another question is how to determine the
values of u, and U,, in case of channel equalization. Recall that
U,z =E[s(n)R(n)T]. The m-th element of this row vector, where m= 1,2
....,2K+1 is given as

u,(m)= E[s(n)r(n +K+1- m)T]

k=0

= E{s(n){if(k)s(n+K+1—m—k)+v(n+K+1—m)H (5.16)

= {i f(k)E(s(n)s(n +K+1-m- k))} + E[s(n)v(n +K+1- m)]

where f(n) is the impulse response of channel filter and L is the length of f{n).
v(n) is the additive white Gaussian noise (see figure 5.1). Assuming that

different data bits are statistically independent, then

1 o
ﬂWMﬁF% T (5.17)

1# ]
Furthermore, the data bits are independent of the channel noise.

Consequently,
E[sw()]= Els@)v()]=0 (5.18)
Substituting equations 5.17 and 5.18 into equation 5.16 yields

U, (m) = {ZL: FR)E(s(m)s(n+ K +1—m —K))} + E[s(n)v(n+ K +1-m)]

_{f(KH—M) if 0OSK+1-m<L

0 otherwise

(5.19)

Now if L =4 and K = 3 (7 tap equalizer), we have
Uy =[£(3), £(2), £(1), £(0),0,0,0]

this is not desired because 1(4) is not included. However if K=5, then
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Uy =0, /(4)/3), /(2), £(1), £(0),0,0,0,0,0]
which is a desired result that's why selection of K (equalizer length 2K+1) is
very critical for a particular L (channel impulse response length).
The element on the i-th row and j-th column i , j =1,2,..2K = 1, of the
covariance matrix U, is
Ui, j) = E[r(n+ K +1=i)r(n+ K +1- j)]

ZL:f(k)s(n+K+1—i—k)+v(n+K+1—i)><
=E kL:O
> f(m)s(n+K +1— j—m)+v(n+K +1- j)

m=0

Loz (5.20)
= FER)FE(s(n+ K +1— j—m)s(n+ K +1-i—k))
k=0 m=0
L
= 4+ f(ROE(s(n+K+1-i—kyw(n+K +1-j))
m=0
=+ f(OE(s(n+K+1— j—mw(n+K +1-i))
m=0
= +v(in+K+1-i)v(n+K+1-)
Substituting equations 5.17 and 5.18 into equation 5.20 yields
L 2
URR(i,j)=;f(k>f(k+i—j)+ov 8- (5.21)
= URR (]’ l)
where it is understood that
k+i—j 0<k+i—-j<L
flhriojy=1 &) e (522)
0 otherwise

Note that o(n) is the discrete-time impulse function and that the first term
U (i,j) is actually the auto correlation function of the channel’s impulse
response. We will denote it by

SRV fh+G= )=, i—))=¢,(j—0) (5.23)
and in the matrix form
4,0+, gD .. @, (-2K)
U =| PO 4 Ore] 42K+ (5.24)
¢,2K)  ¢,QK-1) - ¢,(0)+0c,’

In order to implement the MMSE equalizer the receiver needs to know what

the correlation vector u, and the covariance matrix U,,are. As shown in
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equations 5.19 and 5.24, these parameters depends on the channel

conditions, namely the impulse response f(n) of the channel and the noise
variance o,’. The channel conditions are usually unknown to the receiver

prior to the communication session. Moreover, they may vary slowly with time
after a connection has been established. What this means is that the receiver

must estimate u, and U,, online, either explicitly or implicitly. There is an

iterative procedure called the least mean square (LMS) algorithm for
determining the coefficients of a MMSE equalizer in an unknown channel.

The LMS algorithm is based on the method of steepest descent. The key
difference between the method of steepest descent and LMS is that the
former uses the true gradient vector (which depends on the channel condition)

of the error surface y in the iterations while the latter uses an estimate of the

gradient vector. The use of noisy gradients in the LMS algorithm leads to a
MSE y that is slightly larger than that of the true MMSE equalizer.

5.6 STEEPEST DESCENT ALGORITHM

In practice it is not usual to calculate the optimum filter C_ using equation

opt
14 directly. The problem is that the evaluation of U, 'involves the inversion
of a matrix of dimension 2K+1 by 2K+1 which is computationally very complex.
Furthermore, if the channel statistics are non-stationary, which is quite often
the case, then the calculation has to be undertaken periodically in order to
track the changing conditions. An alternative method of calculation is
therefore the steepest descent algorithm. In this method the weights are
adjusted iteratively in the direction of the gradient. Let C(n) be the estimate of

C,,, at discrete-time (or iteration index) n. Then based on C(n), we can obtain

opt
Vn)==2[u, —C)U ] (5.25)
The gradient vector of the error surface y at C(n) ; see the equation 5.13

Based C(n) and V(n), we obtain the next estimate of C,, according to

C(n+1)=C(n) —%V(n)

=C(n)+ufu,, ~CmU ] (5.26)
= C(”)[I — uU g ]+ g
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where u is the step size of this iterative procedure, and | is an identity matrix
of 2K+1 by 2K+1 . Basically, the method of steepest descent is based on the
idea that we can reach the global minimum by searching in the opposite
direction as indicated by the gradient vector (slope) at the current estimate;
see the scalar case below as an example.

& Y

i ]

(O

'f-hr.l rl”_l |r|”|

Figure 5.3: Operation of steepest descent algorithm.

To prove that the global minimum can indeed be reached through this iterative

procedure, let us first rewrite C(n+1) as

Cn+1)=Cm[l - pl g J+ 10
= [C(”_l){l —uU }"'IUUSR ](l_IUURR )+,UUSR
o S (5.27)

n

= C(O)[I — U g ]n+1 + U Z [I — U 4y ]k
k=0

where C(0) denotes the initial estimate. Since the matrix U,, is a covariance

matrix, it is positive definite and can be written as

U = VDV (5.28)

where V is a unitary matrix with the property
W =V'V =1l (5.29)

and
/11
A,
D= . (5.30)
/12K+I

is a diagonal matrix containing all the eigenvalues of U ., . Note that
A, >0; i=01,..2K+1 (5.31)

because U,, is positive definite, and that
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Uy, =VD'V’ (5.32)
Based on these properties of U,, , we can express the terms | — xU,, and
(1-uU )" in equation 5.27 as

|- U o =V — VDV

=V(l-uD)V" (5.33)
=VQV’
and
(1-pU )" =VQ*V! (5.34)
where
1—-ul,
Q=1-uD= - ak . (5.35)
1= pdyi
if
-, <1 i=012,...2K+1 (5.36)
then
tim (1= )" =0 (5.37)
and

lim Y (1- U )" =D VQ V!
"*)OO]\'ZO =0

sev
=V(I-Q V'

(5.38)
=V(uD™ )V’

=lVD“VT
U

:_URR
u

In this case, equation 5.27 becomes

mC(n+1)=u U, =C (5.39)

opt

In other word, the equalizer’s coefficients eventually converge to the optimal

values. Equation 5.36 provides the requirements for the convergence of the
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steepest descent algorithm. These requirements can be written alternatively

as

O<y</%; i=12,....2K+1 (5.40)

1

or simply

2
O<pu<— 5.41
s (5.41)

max

where A__ is the largest eigenvalue of the covariance matrix U, .
For the steepest descent algorithm at hand, it is desirable to use a step size

as close to the upper Iimit,%1 , as possible. This guarantees the fastest

convergence rate possible. However, for the LMS algorithm discussed in next
section, using too large a step size will increase the MSE of the equalizer.
Assume we select a step size of

2

2/+ max

u (5.42)

where A"m is @ number slightly greater than A__ . Then the absolute values

max

of the elements of the diagonal matrix Q"' = (1-uD)"" are

24,

+
max

n+l
n+l .

- p2, : i=12,....2K+1 (5.43)

2‘1_

The rate of decay of the matrix, and consequently the rate of decay of the
matrix (I1-uU,.)"" =VQ"™'V’" in equation 527, is determined by the

smallest eigenvalue A _. according to

min

n+l

22
] — ZZmin 5.44
‘ ﬂ/+ﬂ’lax ( )
If Apin << 4w - I-€. @ large eigenvalue spread, then |1-24,,, /4...| =1 and the

algorithm converges slowly. A large eigenvalue spread occurs when the

frequency response of the channel has deep spectral nulls.

5.6.1 A simple choice for p

From the equation 5.24, we see that all the diagonal elements of the

covariance matrix U, equal ¢, (0)+o,”, where ¢,(0) is the autocorrelation
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function of the channel fin) at a delay of zero, and o, is the power (or
variance) of the channel’s noise. The sum of all the diagonal elements of U,

is the trace of the matrix. It is the same as the sum of all the eigenvalues of

the matrix. Since

2K+1
A < 3 Ay =tracelU )= 2K +1)(g, (0)+ 5, (5.45)
i=1
if we use as step size
2
(2K +1)g, (0)+5,?)

then it is guaranteed that ©<2/4_,, .

(5.46)

For the LMS algorithm discussed in the next section, it is import to make u
substantially smaller than 2/[(2K+1)(¢_ﬁ(0)+avz)] that the excess MSE is

relatively small compared to the MSE of the MMSE equalizer.

5.7 THE LMS ALGORITHM
While the steepest descent method is able to determine the optimal
equalizer coefficients without performing any matrix inversion, its operation is
still based on the assumption that the channel parameters the correlation
vector u_, and the covariance matrix U,, known to the receiver. Recall that
the receiver uses these parameters to compute the gradient vector V(n)
required for updating the the equalizer coefficients. In the LMS algorithm, the
gradient vector is replaced by its estimate. Let us consider the correlation of
the received vector R(n) (see equation 5.4) with the equalization error
g(n)=s(n)—8(n)=s(n)—CR(n) (5.47)
for the equalizer C. The result is
W, = Ele(mR(n)’ |
= E[e(mR(n)" ~CRmR()" |

(5.48)
= Ele(mR(n)" |- E[CR(m)R(n)"]
=U, —CU 4
Now, if we evaluate this correlation vector at C = C(n) , then we obtain
1
Wkl cecin = Usr —C(mMU, = _EV(n) (5.49)
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where V(n) is the gradient vector at the point C = C(n) of the error surface y.

To simply put, the updating equation in the steepest descent method can be

rewritten as

C(n+1)=C(n) —%V(’l) (5.50)

=C(n)+ Efe(m)R(n)" |

The LMS algorithm is obtained by removing the average operator in the above

equation, i.e.
C(n+1)=C(n) + Ele(m)R(n)" ] 550
=C(n)+[s(m) = 5(mR(m)" '
In other word, the LMS algorithm uses a noisy estimate of the true gradient
in updating the filter coefficients. Intuitively, this substitution is justified when
all the random processes in the system are ergodic. In this case, the statistical
average (as in the steepest gradient algorithm) equals the time average (as in
the case of LMS). Notice that the LMS-based equalizer does not need any
information about the channel to update its coefficients. The algorithm
however does require knowledge of the transmitted symbols, which are
supposed to be unknown to the receiver. In practice, we can get around this

problem by using the detected symbol s(n)instead of s(n) when we update
the equalizer coefficients. Assuming s(n) = +1 (BPSK) signal

S(n)= {j ; i:i Zg (5.52)

Furthermore, we can send an initial training sequence to help the equalizer
converges quickly. The symbols in the training sequence will be known to the
receiver. However, frame/bit synchronization are required in order for the
receiver to locate the training pattern. The use of noisy gradients in the
adaptation process results in excess MSE. Specifically, the MSE of a LMS-

based adaptive transversal equalizer is
}/zymin-i-}/,u (553)

where y, . is the MMSE defined in equation 5.15, and

nz%ﬂbK+nwﬂm+m6hm (5.54)
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is the excess MSE. In order to make y, substantially smaller than y, . while

maintaing a reasonable convergence rate, the step size 4 should only be a

fraction of 2/[(2K+1) (B, (O)+0V2)] . For example, when

N:L[ 2 } 0.2
10| 2K+1) (9, (0)+0,>) | QK+1)(¢,(0)+05,”)

then y, 0.1y, and the increase in total MSE is

7/min+7/,u

min

1010g10( J:0.414dB

As shown previously, using a step size of 2/[(2K+1) ¢y (O)+0V2)J or
smaller will guarantee convergence.

While the LMS algorithm enables us to find the optimal equalizer coefficients
without any prior knowledge of the channel, it suffers from one drawback —
slow convergence. A faster algorithm, but more complex, is the recursive least
square (RLS) algorithm. The figure below compares the convergence rate of
LMS (labeled as Gradient algorithm in the figure) and RLS (labeled as

Kalman). We will not discuss RLS algorithm because we are interested in only
MMSE equalizer.

Output MSI

Figure 5.4: Learning curves for LMS and RLS algorithms

5.8 SIMULATION RESULTS
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We have run a simulation to investigate the effect of step size 4 and

eigenvalue spread on the convergence of LMS algorithm. The channel is

raised cosine filter with 3 coefficients

1 2z
h = 2|:1+COS{W(I1—2)}:| n=12,3 (5.55)

0 Otherwise

where W controls the amount of amplitude distortion. The impulse response of

the channel for W =2.9 is given below

o
o
T
|
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Filter Taps

Figure 5.5: Impulse response of channel for W =2.9

The equalizer filter taps are chosen to be equal to 11. Equalizer impulse
response after running the simulation for 100 independent trials having 1500
hundred samples each is given below. The data signal is BPSK signal with

values +1 and the variance of noise is .001.
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Figure 5.6: Equalizer impulse response
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From above two figures it is clear that impulse responses of equalizer and
channel are inverse of each other. Now varying the step size while keeping

the W constant (same eigenvalue spread) the learning curves for LMS
algorithm are given below

Ensambled MSE
5
—

10 L v
0 500 1000 1500
Number of Iterations

Figure 5.7: Learning curves for LMS algorithm for £ =0.0075

Ensambled MSE
3

I I
0 500 1000 1500
Number of Iterations

Figure 5.8: Learning curve for LMS algorithm z =0.0375
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Figure 5.9: Learning curve for LMS algorithm 1 =0.075
From the simulation results it is clear that by increasing the step size the
faster convergence of LMS algorithm can be achieved. But care must be
taken while increasing the step size because LMS algorithm may become

unstable if the upper bound on the step size is reached.
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CHAPTER 6

CHANNEL EQUALIZATION

6.1 INTRODUCTION

Communication channels are susceptible to Intersymbol Interference (ISI).
Without channel equalization, the utilization of the channel bandwidth
becomes inefficient. Channel equalization is a process of compensating for
the effects caused by a band-limited channel, hence enabling higher data
rates. Equalization describes a set of operations intended to eliminate I1SI and
the effects of multipath propagation in communication channels. One can
define an equalizer as

“An equalizer is a device that compensates for unwanted channel effects and
provides the receiver with a sequence of samples with acceptable levels of
IST”.

These disruptive effects are due to the dispersive transmission medium (e.g.
telephone cables) and the multipath effects in the radio channel. A typical
communication system is depicted in figure 6.1 where the equalizer is
incorporated within the receiver while the channel introduces intersymbol
interference. The transfer function of the equalizer is an estimate of the direct
inverse of the channel transfer function. To transmit high speed data over a
bandlimited channel, the frequency response of the channel is usually not
known with sufficient precision to design an optimum match filter. The
equalizer is, therefore, designed to be adaptive to the channel variation. The
configuration of an adaptive linear equalizer is depicted in figure 6.2. Based
on the observed channel output, an adaptive algorithm recursively updates

the equalizer to reconstruct the output signal.
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Figure 6.1: A typical communication system.
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Figure 6.2: A simple linear channel equalizer configuration.

Equalization does not mean that all the channel distortions are completely
removed but its job is to provide the receiver enough information which is

necessary to make a decision.

6.2 ISI DUE TO MULTIPATH EFFECTS

In a wireless radio channel, the ISl is caused by the multipath effects when
the multipath spread as explained previously is greater than the symbol
interval. Multipath effects describe the situation in which there are several
propagation paths from transmitter to receiver. Most commonly, this results
when there are reflected signals detected at the receiver following the direct
path. The multipath phenomenon can be modeled by an FIR system (see
chapter 3). The center tap represents the direct path, while the succeeding
tap weights represent the amplitudes, delays, and phases of the reflected
paths. For simple examples, see the two cases described in Figure 6.3 and
Figure 6.4.

Figure 6.3(a) shows the time response of an ideal transmission path, which
is a ¢ function. Such a channel exerts no spectral distortion or delayed
signals. Figure 6.3(b) shows the spectral response of such a system. Note
that the frequency magnitude response is perfectly flat, as indicated by the

solid horizontal line.
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Figure 6.3: (a) Impulse response and (b) frequency response of ideal single path channel

Figure 6.4(a) shows the time response of a system that contains a single
multipath channel [8]. The first nonzero sample of the response represents
the direct path, while the second represents a delayed path to the receiver. In
this instance, the pulses are identical in amplitude and phase and are

separated by ten sample intervals.
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Figure 6.4: (a) Time response and (b) frequency response of two path wireless channel

Notice in Figure 6.4(b) that the magnitude response exhibits #,/2 nulls, where ¢,
represents the sample delay. Even though you are effectively adding two
identical flat spectra (as shown in Figure 6.3(b)) the time delay results in a

phase delay in the spectral domain. This phase delay results in nulls where
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the two signals are of equal amplitude but opposite phase. Obviously,
multipath effects can have major effects on the system spectral response,
thereby providing another justification for channel equalization

Now it is time to represent it mathematically what we all said so far. Suppose
that a channel model (see figure 6.5) is used to describe the distortion effect
and it is given as a sum of weighted time delayed discrete-time channel

impulse responses, H(z):

H(z)=Y hz =hy+hz " +hyz? 4 (6.1)

The coefficients h; represent the strength of the dispersion and the multipath
delay. For FIR modelled channel, the output from the channel can be written
as:

L-1
y(k) =" hu(k —i)+n(k) (6.2)
i=0
where y(k) is the input to the equalizer (received signal after passing through
channel) which is simply the convolution of 4#; and u(k). u(k) is the transmitted
sequence, #; is the channel impulse response, n(k) represents additive white
Gaussian noise (AWGN) added to the channel and L represents the length of
the channel impulse response. Equation (6.2) shows that the transmitted
symbol u(k) is affected by the weighted delay symbols of u(k-i), thus causing
intersymbol interference.
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Figure 6.5: A multipath wireless channel model.

6.3 COMMUNICATION SYSTEM MODEL WITH EQUALIZER

6.3.1 Continuous-time Model
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For our communication system which is employing a linear modulation,
QPSK, through a dispersive channel, the whole system can be described the
conceptual model in Figure 6.6, in which the sequence of information symbols
is denoted by {/,}and H,(f),H.(f)and H(f)are the transfer functions of

the transmission (root raised cosine pulse-shaping) filter, the dispersive
channel and the receiving filter, respectively. The Nyquist condition for no ISI
developed in previous chapter can be easily generalized to the above
communication system. Letting X(f)=H,(f)H-(f)H,(f) the condition for

no ISl is that the folded spectrum X (f), is constant for all frequencies, i.e.

= n
Z X(f-—)=T (6.3)
— T
'h;_"®_" Hr(f) Heo(f) —-@—- Hp(f) _e':;:;rT— Decision
Impulses AWGN

Figure 6.6: Continuous-time communication model over a multipath dispersive channel

One method to achieve the Nyquist condition is to fix the receiving filter to be
the matched filter, i.e. set H,(f)=H, (f)H. (f), and choose the

transmission filter so that (6.5) is satisfied. This is the Nyquist pulse design
method described in previous chapter. The major disadvantage of this pulse
shaping method is that it is in general difficult to construct the appropriate
analog filters for H,(f) and H,(f)in practice. Moreover, we have to know
the channel response H.(f)in advance to construct the transmission and
receiving filters.

An alternative method is to fix the transmission filter4 and choose the

receiving filter H,(f) to satisfy the condition in (6.3). As for the previous
method, it is also difficult to build the appropriate analog filter H,(f) to

eliminate ISI. However, notice that what we want eventually are the samples
at intervals T at the receiver. Therefore, we may choose to build a simpler

(practical) filter H,(f), take samples at intervals 7, and put a digital filter,

called equalizer, at the output to eliminate ISI as shown below in Figure 6.7.
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This approach to remove IS| is usually known as equalization. The main
advantage of this approach is that a digital filter is easy to build and is easy to

alter for different equalization schemes, as well as to fit different channel

conditions.
1y —= —a H|(f H-(f Hg(f —LE ualizer Decision
K ? 1(f) clf) (—%—) R(F) [ e

Impulses AWGN

Figure 6.7: Communication system with equalizer

6.3.2 Equivalent discrete-time model

Our goal is to design the equalizer which can remove (or suppress) ISI. To
do so, we translate the continuous-time communication system model in
Figure 6.7 to an equivalent discrete-time model that is easier to work with.
The following steps describe the translation process:
e Instead of considering AWGN being added before the receiving

filter H,(f), we can consider an equivalent colored Gaussian noise being
added after H,(f) when we analyze the system. The equivalent colored
noise is the output of H,(f) due to AWGN. The resulting model is shown in
Figure 6.8.

e We input a bit or a symbol to the communication system every T seconds,
and get back a sample at the output of the sampler every T seconds.
Therefore, we can represent the communication system in Figure 6.8 from the

information source to the sampler as a digital filter.

Ik—-®—h Hy(f) H.(f}) Hplf) —= — ™~ Equalizer Decision
' 1 every T
Impulses colored Gaussian noise

Figure 6.8: Equivalent communication system with colored Gaussian noise

Since H,(f),H-(f)and Hg(f) are LTI filters, they can be combined and
represented by an equivalent digital LTI filter. Denote its transfer function by

H(z) and its impulse response by{x, };__. . The result is the discrete time-
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linear filter model shown in Figure 6.9, in which the output sequence {/,} is
given by

J

J#k

(6.4)

In general, 4; # 0 for some j # 0. Therefore, ISI is present. Notice that the noise

sequence {n, }consists of samples of the colored Gaussian noise (AWGN filtered

by H (/) ), and is not white in general.

I
Iy, —+  H(z) —a—@—"- Equalizer «  Decision
Nk

Figure 6.9: Equivalent discrete-time communication system model with colored noise

e Usually, the equalizer consists of two parts, namely, a noise-whitening

digital filter H,, (z) and an equalizing circuit that equalizes the noise-whitened
output as shown in Figure 6.9. The effect of H, (z) is to “whiten” the noise
sequence so that the noise samples are uncorrelated. Notice that H (z)
depends only onH,(f), and can be determined a prior according to our
choice of H,(f) . At the output of H, (z), the noise sequence is white.

Therefore, equivalently, we can consider the equivalent discrete-time model

shown in Figure 6.11, in which {n,} is an AWGN sequence.

—  Hy(2) - EQZ I

Figure 6.10: Typical equalizer
o lLetG(z)=H(z)H, (z). The communication system from the information

source to the output of the noise whitening filter can now be represented by

the discrete-time white-noise linear filter model in Figure 6.12. The output

sequence {Tk} is given by:
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Tk zz[kgkfj +ny
J
B (6.5)
=18 +Z[kgk7j +ny
j#k
Where {g,} is the impulse response corresponding to the transfer function
G(z), and {n,} is an AWGN sequence. We will work with this discrete-time

model in all the following sections.

1
Iy —o  H(z) Hylz) =X+ Eaz Decision

1

e

Figure 6.11: Equivalent discrete-time communication system model with white noise

r

Decision

[, —= G(z) |p—={P—-= EQZ

Figure 6.12: Equivalent discrete-time white-noise linear filter model

Finally, the equalizing circuit (we simply call it the equalizer from now on)
attempts to remove ISI from the output of G(z). The focus of our coming
discussion is the design of this equalizer. Suppose that the equalizer is also

an LTI filter with transfer function H (z) and corresponding impulse

response {4 } . Then the output of the equalizer is given by
I, =Ty jhy (6.6)
j

Ideally fk contains only contributions from the current symbol and the AWGN

sequence with small variance.

6.4 CLASSIFICATION OF EQUALIZERS
Equalizers are classified into two main classes. Linear Equalizers Non-linear

Equalizers
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Linear equalizers (LE) only have feedback from linear devices and can be
implemented as a simple FIR filter (transversal filter)also called linear
transversal equalizer (LTE). They are easy to implement cheap, suboptimal
performance, high BER they have problem like enhances noise and bad for
channels with spectral nulls as we will see shortly. They can also be
implemented as lattice filter to achieve numerical stability and fast
convergence but they are more complicated to implement.

Non-linear equalizers (NLE) have feedback from non-linear devices (i.e.
quantizer) and they have better performance than linear equalizers like fine
with spectral nulls and also fine with large distortion.

Decision Feedback Equalizers (DFE) are non linear equalizers. They are
more complex than a linear transversal equalizer. They have both feed
forward and feedback filters. They are cheap, better performance than LTE
and they can equalize severely distorted channels & handle spectral nulls.

Maximum Likelihood Symbol Detection (MLSD) is also included in the class
of non linear equalizers. They have optimal performance at the cost of high
cost & exponential computational complexity. They use trellis approach with
probability methods and Viterbi algorithm.

Maximum Likelihood Sequence Estimation (MLSE) is another category of
non linear equalizers. Like MLSD they also have optimal performance. They
are different from MLSD because ML applied to sequences rather than
symbols. They are often too computationally complex to implement in a
mobile receiver.

In figure 6.13 types of equalizers, their structures and the algorithm for

learning channel environment is given.
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Figure 6.13: Classification of equalizers

Non-linear equalization is important in providing optimum performance for ill-
conditioned channels that non-linear techniques require more computation
and controls. However, in order the study the gradient descent-based
adaptive algorithms’ performance, the linear equalizer is more appropriate.
Table 6.1 also gives some performance, computation complexity and

implementation cost measures of the equalizers.

Table 6.1: Cost, performance and complexity analysis of equalizers

Equalization System Complexity Cost Performance
Linear Transversal Equalizer Low Cheap Suboptimal
Decision Feedback Equalizer Medium Averags Suboptimal
Maximum Likelihood Sequend ) ) )

o High High Optimal
Estimation
Maximum Likelihood

High High Optimal

Symbol Detection

6.5 MMSE EQUALIZER

The zero-forcing equalizer, although removes ISI, may not give the best error
performance for the communication system because it does not take into
account noises in the system. A different equalizer that takes noises into
account is the minimum mean square error (MMSE) equalizer. It is based on
the mean square error (MSE) criterion. Before going into the mathematics of

MMSE we want to clear that the detail derivation for minimizing the MSE and
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reaching the Weiner solution can be found from the previous chapter on
adaptive filters. Here only the necessary steps are repeated.

Without knowing the values of the information symbols/, beforehand, we
model each symbol/, as a random variable. Assume that the information
sequence {/,} is WSS. We choose a linear equalizer H ;(z) to minimize the
MSE between the original information symbols 7/, and the output of the
equalizer/, :

MSE = E[e,*]= E[(I, —1;)*] (6.7)

Let us employ the FIR filter of order 2L+/ shown in Figure 6.14 as the

equalizer. We note that a delay of L symbols is incurred at the output of the
FIR filter. Then

L
MSE = E[(I, = 2 1y _jhz ;)]
j=L

(6.8)
= E[(I, -1,"h;)?]
where
[P PSP ) (6.9)
hy =lhe_prohp 1" (6.10)

I kL
Figure 6.14: FIR Filter as a MMSE Equalizer
We want to minimize MSE by suitable choices of #; _,,..., & ;. Differentiating

with respect to each 4, ; and setting the result to zero, we get

E[T, (I, =T,"h;)]=0 (6.11)
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Rearranging we get

Rh, =d (6.12)

where
R=E[T,T,"] (6.13)
d=E[l,1,] (6.14)

If R and d are available, then the MMSE equalizer can be found by solving
the linear matrix equation 6.12. It can be shown that the signal-to-noise ratio
at the output of the MMSE equalizer is better than that of the zero-forcing
equalizer.

The linear MMSE equalizer can also be found iteratively. First, notice that the
MSE is a quadratic function of equalizer filter taps hg. The gradient of the MSE
with respect to hz gives the direction to change hy for the largest increase of
the MSE. In our notation, the gradient is—2(d—-Rh ). To decrease the MSE,
we can update hg in the direction opposite to the gradient. This is the steepest
descent algorithm: At the kth step, the vector hg(k) is updated as

hy(k)=h;(k—1)+ u(d-Rh.(k-1)) (6.15)
where u is a small positive constant that controls the rate of convergence to
the optimal solution. Once again we are repeating that all this mathematics is
done in the previous chapter.

In many applications, we do not know R and d in advance. However, the
transmitter can transmit a training sequence that is known a priori by the
receiver. With a training sequence, the receiver can estimate R and d.

Alternatively, with a training sequence, we can replace R and d at each step in
the steepest descent algorithm by the rough estimates 1,1,"andl,T,,
respectively. The algorithm becomes:

hp(k)=hg(k=1+pll, =T, h (k=D]T, (6.16)

This is a stochastic steepest descent algorithm called the least mean square
(LMS) algorithm.

The beauty of the approach is that the only parameter to be adjusted is the
adaptation step size u. Through an iterative process, explained above, all filter

tap weights are adjusted during each sample period in the training sequence.
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Eventually, the filter will reach a configuration that minimizes the mean square
error between the equalized signal and the stored reference. As might be
expected, the choice of x involves a tradeoff between rapid convergence and
residual steady-state error. A too-large setting for u can result in a system that
converges rapidly on start-up, but then chops around the optimal coefficient
settings at steady state.

The LMS equalizer can also be shown to have better noise performance
than the ZFE. Heuristically, the ZFE calculates coefficients based upon the
received samples of one training signal. Since the captured data will always
contain some noise, the calculated coefficients will be noisy (noise in / noise
out). On the other hand, the LMS algorithm gradually adapts a filter based on
many cycles of the training signal. If the noise is zero mean and is averaged

over time, its effect will be minimized (noise integrates to 0).

6.6 FRACTIONALLY SPACED EQUALIZERS
In the previous section we have designed the discrete time model of the
communication system. In that model we have said that we sample the output

of the receive filter H, (/) at the symbol rate T (for convenience the figure 6.8

is redrawn here as 6.15 ). But the sampling at the symbol rate my lead to
aliasing. Why we will shortly. The equalizer which is operating at the symbol
rate or one sample per symbol, as in the figure below, is called symbol

spaced equalizer or baud spaced equalizer.

|k—-®—- Hy (F) He(f) H () —-€|-)—‘"‘-— Equalizer Decision
' l every T
Impulses colored Gaussian noise

Figure 6.15: Equivalent communication system with colored Gaussian noise

If we are using raised cosine filter for pulse shaping then we should
remember that because of the excess bandwidth sampling higher than the
symbol rate is required to satisfy the sampling theorem. Actually we can
sample at the symbol rate because the raised cosine spectrum has the odd
symmetry at the symbol rate. But in order to do that the spectrum of receive
filter has to be matched with the spectrum of the received signal. This

happens only for the ideal channel but never happens in the practical situation
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because the channel distorts the transmitted signal. One solution is that we
adjust the receive filter such that it becomes a match filter but the channel is
always unknown. Now if we are sampling the output of the receive filter at the
symbol rate this means that we are not satisfying the Nyquist sampling
theorem (under sampling). This symbol rate sampling leads to the aliasing.
Symbol spaced equalizer always operating on the aliased signal and never
gives optimum result (see figure 6.16). The answer to this is to sample the
output of the receive filter higher than the symbol rate which leads us to

another class of equalizers called fractionally spaced equalizers.

/I\Tra nsmitted
>

Received:

f I f Baud rate

Received:

I Fractionally spaced

Figure 6.16: Spectrums for transmitted and received signals for SSE and FSE

The aliased spectrum of the signal at the input to the equalizer is given as

/h(.f—%m

Y, (f) =%ZX(f—§)e' 6.17)

where Y(j) is the aliased spectrum, the folding frequency is F,=Fs/2=1/2T and
79 is the delay induced by the channel. The symbol spaced equalizer (SSE)
can be represented as the FIR filter
L
Hggp ()= ZhSSE,ke_ﬂ”fkT (6.18)
k=—L

where 2L+1 is the number of tap weights in the equalizer.
Thus the SSE cannot undo the effects introduced by the channel to the actual
spectrum. X(f).So that the FSE is used in which tap spacing is less than the

symbol duration 7 and the sampling of the signal is done at least at the

Nyquist rate. Let %T,N > M , where N and M are integers, (N=M for symbol
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spaced equalizers) denote the tap spacing of the FSE, we can see that the

transfer function of the equalizer can be expressed as

L
Hpsp (f)= D hpgp e /M (6.19)
k

=L
.M L
where T' = WT and the spectrum at the output of the equalizer is given by

Hrse (DY = Hpse (DL X (e ™1 (620)

Since the transmitted pulse is the raised cosine spectrum with roll off factor g

+B

the spectrum is bandlimited to 12_T and hence the sampling must be done

+B

atleast at Fj ZIT the tap spacing is then

=y LT (6.21)
N Fg¢ 1+p

Thus from equations 6.20 and 6.21 it can be concluded that there will be no

aliasing in the spectrum and hence

1

. F
H s (N)Y'(f) = H s (NX (N7 |f]< == (6.22)

Thus from the above equation it is clear that the optimum FSE is equivalent
to the case where the receive filter matched to the channel distorted
transmitted pulse and the symbol spaced equalizer is used.

In our model the match filter H , () precedes the sampler, as was shown in

Figure 6.15. While this may be simple from an analytical viewpoint, there are

several practical problems with the use of the matched filter. H,(f) is a

continuous time filter and may be much more difficult to design accurately
than an equivalent digital filter and in not applicable to software radio which is
an all digital radio. For these reasons, sophisticated data transmission
systems often replace the matched filter/sampler/equalizer system of Figure
6.15 with the structure of Figure 6.17. Basically, the sampler and the matched
filter have been interchanged with respect to Figure 6.15. Now with this
structure we have more flexibility. Because of FSE we can have a digital
match or receive filter which is much easy to design [9]. There is another

advantage with this. Since the receive filter and FSE filter both are linear they
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can be realized as a single combine filter which is actually the case in the

practical situation.

Ik

Hr(f) [ Hc(f) N—»| Hg(f) | —» FSE | | Decision

Impulses Noise

Figure 6.17: Communication system with digital receive filter and FSE

The FSE can also exhibit a significant improvement in sensitivity to
sampling-phase errors. When the received signal is sampled greater than
twice the highest frequency, then information about the entire signal waveform
is retained. Equivalently, the FSE can synthesize, via its transfer
characteristic, a phase adjustment (effectively interpolating to the correct
phase) so as to correct the timing offset in the sampling device. The symbol-
spaced equalizer cannot interpolate to the correct phase, as no interpolation
is correctly performed at the symbol rate. Equivalently, information has been
lost about the signal by sampling at a speed that is too low in the symbol-
spaced equalizer without matched filter. This possible notch is an example of
information loss at some frequency; this loss cannot be recovered in symbol-
spaced equalizer without a matched filter. In effect, the FSE equalizes before
it aliases (aliasing does occur at the output of the equalizer where it
decimates by M for symbol-by-symbol detection), whereas the symbol-spaced
equalizer aliases before it equalizes; the former alternative is often the one of
choice in practical system implementation, if the extra memory and
computation can be accommodated. Effectively, with an FSE, the sampling
device need only be locked to the symbol rate, but can otherwise provide any
sampling phase. The phase is tacitly corrected to the optimum phase inside
the linear filter implementing the FSE.

It should be noted, however, that the sensitivity to sampling phase is channel
dependent. In particular, there is usually significant channel energy near the
Nyquist frequency in applications that exhibit a significant improvement of the

FSE with respect to the symbol-spaced equalizer. In channels with little
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energy near the Nyquist frequency, the FSE is avoided, as it provides little
performance gain, and is significantly more complex to implement (more
parameters and higher sampling rate).

In practical systems, the four most commonly found values for M are 4/3, 2,
3, and 4. The major drawback of the FSE is that to span the same interval in
time (when implemented as an FIR filter, as is typical in practice), it requires
M more coefficients, leading to an increase in memory by a factor of M. The

FSE outputs may also appear to be computed M times more often, also, in

1 th
real time. However, only (ﬂj of the output samples need be computed (that

is, those at the symbol rate, as that is when we need them to make a
decision), so computation is approximately M times that of symbol-spaced
equalization corresponding to M times as many coefficients to span the same
time interval, or equivalently, to M times as many input samples per symbol.
But this disadvantage cab be removed using the multi-channel model of the
FSE

6.6.1 Multi-Channel Model for FSE

As explained earlier for a fractionally spaced equalizer (FSE), the tap
spacing of the equalizer is a fraction of the baud spacing (in time) or the
transmitted symbol period. As the output of the equalizer has the same rate
as the input symbol rate, the output of the FSE needs to be calculated once in
every symbol period. This means that we have to decimate the output of the
FSE by M (we have to chose every Mth sample from the output), where M is

the upsampling factor. This is shown in figure 6.18.

Ik

Channel Down [
PthLse » FSE > Sang;llng -
Shaping T M
M
Impulses Noise

Figure 6.18: Communication system with FSE
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In this situation, the FSE can be modeled as a parallel combination of a
number of baud spaced equalizers. This parallel combination of baud spaced
equalizers is known as the Multi-Channel Model of FSE. Actually this
approach is the same as the polyphase decomposition of the filter, which we
have already discussed in a previous chapter, but in the literature it is named
as the Multi-Channel Model.

A tap-spacing of Ts/M is assumed for FSE, where M is an integer (M=2 for
our design). The structure of the FSE in the discrete domain is shown in figure
6.19.

Zero i
) ) Fractionally
padge(lj Iﬁlscrefe tlrgeI > spaced -
symbols channel mode equalizer

T
M
Figure 6.19: A Discrete time channel model with a FSE

Assuming the channel has an impulse-response of length (L - 1)Ts, the
discrete-time representation of the channel will have a length (L - )M because
the sampling rate is M/Ts.

Let g be the (L - 1)M-vector representing the discrete time channel filter. For
simplicity we are using the word channel filter actually it includes all the filters
before equalizer (see the baseband model in figure 6.12). The input pulse
sequence [, at a rate Ts is zero-padded with M zeros in-between samples to
set the sampling rate to M/Ts (already explained in previous chapter) and the
output signal from the FSE is sampled at a rate 75 (decimated). Let  be the
vector representing the fractionally-spaced equalizer tap coefficients. Because
of the presence of these M zeros in-between samples, the convolution

I, *g*h can be easily represented as a mutichannel, single-rate (1/Ts)

structure, as shown in figure 6.20.
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Figure 6.20: A communication model with multi-channel representation of FSE

The channel filter can be subdivided into M sub-channels as:

80-8m>8om>---
gl,nggzMw--- (6.23)

gr-1-820m-1>8&3m-15+++
Similarly, the FSE filter can be subdivided into M sub-filters as
hOahMahZM,...

hys Bagias Boagsas - (6.24)

hM—l’h2M—l’h3M—1""

The total response of the equalizer and the channel is given by
M
yt(n)zz{gn}m*{hn}m (625)
m=1

where {g,}, and {h,}, represent the channel and the equalizer impulse

response respectively in the mth sub-channel. Because of this multi-channel
approach the computation complexity of the FSE becomes equal to the
symbol spaced equalizer and hence we are only optimizing the performance
of equalizer while keeping the computational complexity same.

In our design M=2 so the actual channel and the equalizer response is split

into two sub-channels (one even and one odd).

6.7 DECISION FEEDBACK EQUALIZER
We are using the raised cosine filter for pulse shaping and we know that any
nth received symbol is primarily influenced by the nth symbol transmitted;

however, there are ISI components contributed by prior and subsequent
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transmit symbols. The terms due to prior symbols are termed postcursor ISI
because the nth transmitted symbol affects on symbols following the nth
received symbol. The nature of this ISI can be determined by examining the
right-hand portion of the raised cosine impulse response. Alternately, the ISI
terms due to subsequent transmit symbols exert precursor ISI because the
nth transmit symbol influences received symbols prior to the nth. These ISI
terms are determined by the shape of the left-hand portion of the raised

cosine impulse response (see figure 6.21).

=PrecursanSI i Postcursor [31 >

Figure 6.21: Raised cosine filter impulse response

In case of the linear MMSE equalizers (SSE or FSE) what we are doing. We

are only removing the ISI from any symbol /, due to the subsequent symbol

following him. That's why the linear equalizers are also called precursor
equalizers because they only take care of the ISI contributed by the symbols
following them. So there performance is not optimal. To remove the
postcursor ISI another equalizer is used which is called decision feedback
equalizer (DFE). DFE is based on the principle that once you have
determined the value of the current transmitted symbol, you can exactly
remove the ISI contribution of that symbol to future received symbols. Recall
from the equivalent discrete-time model in Figure 6.12 that
I, :Z[kgkfj +1y

J
- (6.26)
=18 +zlkgk7j +ny

Jj#k
The current symbol we want to determine is/, . If we had known the other

symbols exactly, an obvious approach to eliminate ISI would be to subtract

their effects off, i.e., the equalizer would give
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I=T,-Y 1,8 (6.27)
J#k

In general, we do not know all the symbols that are affecting the reception of
the current symbol. However, it is possible to use previously decided symbols
(output from the decision device) provided that we have made correct
decisions on them. This approach is called decision feedback equalization.
With decision feedback, we can think of the equalizer to contain two parts: a
feedforward part and a feedback part. Feedforward forward equalizer (FFE)
part is a normal FSE which we have already discussed to remove precursor
ISI and feedback equalizer (FBE) is an SSE to remove postcursor ISI (see
figure 6.22). The FFE shapes the channel response (shorten) such that the
postcursors can be cancelled by the FBE. DFE is classified as a non linear
equalizer because of this decision device.

Suppose that feedforward filter is of order L and the feedback filter is of order
W

w
Lejhp 4+ g, (6.28)
J—L =l

M-

I, =

where [ ; are the decided symbols. Again, the filter coefficients % ; can be found by

minimizing the MSE. In general, significant improvement over linear equalizers can
be obtained with the decision feedback equalizer.

- ’

. 1 k 1 k
Feedforward Filter Decision
(for Precursor ISI) Device

L —>

Feedback Filter
(for Postcursor ISI)

Fiaure 6.22: A Decision Feedback Equalizer Structure
Consider a DFE with a feedforward filter of order L+/ and a feedback filter of order
W. Assume perfect decision feedback, i.e., I} =1, . Then

where
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7T T 7 ~ I
IF :[Ik+L7Ik+L_1:Ik+L_2,...,Ik]

IB:[lkflﬂ[k72’1k73"">]k7W]T]
H EF = [hE,—L 5 hE,—L+l 5 hE,—L+2 seees hE,O ]T
H E.B — [hE,l ’hE,Z’hE,S""’hE,W ]T
Further assume that the data symbols/, are zero-mean unit-variance

identically distributed random variables. We seek the filters Hgp and Hgg

that minimize the MSE given by
Elr, -1, = E[([k 1 Hep 15 Heg )2} (6.30)
Differentiating with respectto HgrandH 5, we get
E[IF(I,{—IFTHE,F—IBTHE’B):O (6.31)
Ellglr, ~1: " Her — 15" Heg =0 (6.32)

Notice that E[/,15]=0and E[IBIBT]=IWXW i.e., the identity matrix. The

equations for optimal Hg - and Hg g reduce to

E[IFIFT]HE,F+E[IFIBT]HE’B = E[I,1:] (6.33)
Ellgle" Hep +Heg =0 (6.34)
Solving these equations, we have
Her = (Eete” B ) Bl ] (6.35)
Hep =—Ellgle’ Her (6.36)

Similar to the case of the MMSE equalizer, we can also solve for the
feedforward and feedback filters using the steepest descent approach. If we
do not know the expectations of the matrices above a priori, we can send a
training sequence to facilitate the estimation of them.

For the above discussion we have assumed that all the decision are correct
but it is not the case in practice. DFE minimizes the MSE if the wrong
decisions are less than 10%. Otherwise a potential problem for the DFE is
that any decision errors will cause a corrupted estimate of the postcursor ISI
generated by the postcursor equalizer. This is called error propagation (in

tracking mode), This problem can be alleviated by using transmitter precoding
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also called Tomlinson-Harashima coding, The idea is to move the cancellation
of the postcursor IS to the transmitter where no error will occur, The basis of
this approach is that the channel and the feedback filter are linear. Thus, we
can change the cascade order without affecting the final result.

When the channel response has spectral nulls, the linear equalizer cannot
compensate for the distortion. The decision feedback equalizer (DFE) can

remedy this problem because it can handle the spectral nulls.

6.8 SIMULATION RESULTS

The two ray channel model is used for simulation with equal gain for both
rays. The normalized delay spread is greater than 7 where T is symbol interval
to create frequency selective fading effects. Two samples per symbol are
used.
6.8.1 Linear FSE

Various equalizer taps are tried and 11 taps are found to be optimum.
Similarly various step sizes are tried and 0.075 is found to be optimum. The

learning curve for LMS algorithm is given below.
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Figure 6.23: Learning curve for LMS algorithm

From the above figure you can see that the algorithm converges after

approximately 600 to 800 samples. Eye diagram for faded received signal is
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Amplitude

Figure 6.24: Eye diagram for received faded signal

Eye diagram for the equalized signal is given below
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Figure 6.25: Eye diagram for equalized signal
6.8.2 Decision Feedback Equalizer
Optimum length of DFE is found to be equal to 8. 5 taps for feedforward filter
and 3 taps for feedback filter. Learning curve for LMS algorithm given below

Mean Square Error
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Figure 6.26: Learning curve for LMS algorithm
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From the above figure you can see that the algorithm converges after

approximately 800 to 1000 samples. Eye diagram for faded received signal is
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Figure 6.27: Eye diagram for received faded signal

The eye diagram before decision making device is plotted on the next page.

Which shows that the ISl is forced to zeros at the input of the decision device.
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Figure 6.28: Eye diagram for equalized signal
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CHAPTER 7

SYNCHRONIZATION

7.1 INTRODUCTION

Synchronization (“syn” meaning “together” and “chronous” meaning “time”) is the
process of reconstructing this time base. There are two synchronization problems
encountered in passband communication systems: Symbol timing recovery and
Carrier recovery. Symbol timing recovery enables the receiver to select the proper
samples for decision. Carrier recovery is required for the operation of a
phase-coherent demodulator.

The carrier frequency of the received signal may be different from that of the
nominal value of the transmitter carrier frequency. This discrepancy can be the results
of the deviation of the transmitter oscillator from the nominal frequency and, more
importantly, the Doppler Effect when the transmitter is in motion relative to the
receiver. In reality, it takes a finite amount of time for the information-bearing
electromagnetic wave to travel from the transmitter to the receiver.

In reality, it takes a finite amount of time for the information-bearing
electromagnetic wave to travel from the transmitter to the receiver. This transmission

delay introduces a mismatch between the symbol timing at the transmitter and that at
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the receiver. Recall that we need to sample the output of the matched filter at an exact
time to optimize the error performance. We need to know the symbol timing at the
receiver (or equivalently, the transmission delay) in order to eliminate the
performance degradation. Due to the timing mismatch Implementation of the receiver
by digital techniques implies sampling of the signal. In some circumstances, the
sampling can be synchronized to the symbol rate of the incoming signal

Phase lock loops (PLLs) are key components of modern communication systems
which are used in synchronization [9]. Before going into the discussion of carrier and
timing recovery techniques it is necessary to provide a detailed overview of PLL.
7.2 PHASE LOCKED LOOPS

The basic PLL structure is shown in Figure 7.1. The voltage-controlled oscillator
(VCO) attempts to produce a signal v(¢) that tracks the phase of the input y(#). A phase
detector measures the phase error between the input y(¢) and the VCO output v(¢). The
resulting error signal can be filtered to become a control signal that drives the VCO.
The basic idea is obvious—if the VCO phase gets ahead of the phase of the input, the
control signal should be reduced. If the VCO phase gets behind, the control signal
should be increased. As with any feedback system, the parameters must be chosen to

ensure stability. The goal in design of the PLL varies with the application.

ERROR CONTROL
INPUT PHASE SIGNAL Lok SIGNAL OUTPUT
—_— FILTER vco »
¥y ] 2T e(t) L(s) c(t) v(t)

[

Figure 7.1: Basic structure of a continuous-time PLL.

7.3 IDEAL CONTINUOUS TIME PLL

PLLs are conceptually simple, but they are inherently non-linear systems and their
analysis can be difficult. However, with some carefully crafted simplifying
assumptions we can develop powerful analytical tools that simplify the analysis.

First assume a particular form for the input

y(t) = 4, cos(w,t +0(t)) (7.1)
where A4, and w,are constants. The output of the VCO is assumed to have a similar

form

(1) = A, cos(w,t + ¢(1)) (7.2)
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When ¢(7) is a constant the frequency of the VCO output is w,, called the natural or

free-running frequency of the VCO.

7.3.1 Ideal Phase Detector
Assuming forms (7.1) and (7.2) the output of an ideal phase detector is

£(0) =W(0(1) - (1)) (7-3)
where the function W(.), shown in Figure 7.2, reflects the 2 7 ambiguity in the phase
difference. Because of the shape of W(.), this phase detector is called a sawtooth
phase detector. We have assumed unity slope for the function #(.), although in prac-
tice the phase detector may exhibit some other gain, often written K ,. That gain is
easily modeled as part of the loop filter gain, so its explicit inclusion is not necessary.
Because of the 2 7 ambiguities in an ideal phase detector, sudden changes of 2 7 in
O(t)or ¢(t) have no effect on the system (they are not detected by the phase

detector). Such changes are called clicks, and are usually detrimental.

W (yr)

Figure 7.2: An ideal phase detector which can detect phase errors 7 modulo 2 7.

7.3.2 Ideal VCO
The ideal VCO, with properties summarized in Figure 7.3, produces the output (7.2),

which has instantaneous frequency

d _ de(1)
- [w.t+¢()]=w, + — (7.4)

Again, a practical VCO may have gain, often written K, that can be modeled as part

of the gain of the loop filter. Intuitively, we would like to directly control the instan-

taneous frequency with the control input ¢(¢). The VCO should therefore be designed

so that
@) _ c(t) (7.5)
dt
Taking the Laplace transform of equation (7.5),
sO(s)=C(s) = L(5)E(s) (7.6)
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where C(s) is the Laplace transform of the control signal and E(s) is the Laplace

transform of the error signal &(¢).

Ay coslw i+ )

WCO ——

e

Figure 7.3: An ideal VCO

7.3.3 Phase and Average-Frequency Lock
The ideal PLL is phase locked if

d)=0(1)+¢ (7.7)
for some constant ¢.If ¢ =0, the PLL is perfectly phase locked. In other words, the
VCO output is exactly tracking the phase of the input. It is locked to an average fre-

quency w, + K if

P(t) = Kt (7.8)
for some constant K . The VCO output frequency is presumably exactly the same as
the input average frequency. Intuitively, there must be some limitations on the input
phase Q(t ) for the PLL to be phase or average-frequency locked because the phase
detector output is bounded by £ . To find the limitations, assume a simple form for
the phase of the input,

0(t) =w,t+6 (7.9)
In other words, the input y(7) is a sinusoid with frequency w, +w, and phase €, a

constant. Assume the PLL is phase locked. In order for it to remain phase locked, the

frequency offset w, must not exceed a limited range called the lock range or hold-in

range of the PLL.

7.3.4 Analysis of the Linearized Dynamics
Phase and average-frequency lock are static concepts. They assume the PLL is in

steady state. If we assume that the phase error is small enough for all t

0(t) - g(0)| < = (7.10)

then the phase detector is operating in its linear range (Figure 7.2)

(1) = 0(1) — 9(1) (7.11)
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and the analysis of the dynamics of the PLL is simple. The transfer function from the

phase 6(¢) of the input to the phase ¢(¢)of the VCO follows by taking the Laplace

transform of (7. 11),

E(s)=0(s)—D(s) (7.12)
and from (7.6),
_ sD(s)
E(s)= ) (7.13)

Combining these and solving for (D(% (s) we get the phase transfer function

D(s) _ L(s)
O(s) L(s)+s

(7.14)

From above transfer function it is clear that the order of PLL (transfer function) is
always 1 greater than the order of the loop filter. Evaluating transfer function (7.
14) at s =0, for a zero order loop filter, the PLL has unity gain for dc phase errors. In

other words, when the input phase is constant, #(¢) = K, then the output phase is the
same constant¢(z) = K , In this case we get perfect phase lock with any loop filter.

The bandwidth of a PLL is loosely defined to be the bandwidth of the transfer

function (D(% (s)" Lowering the bandwidth means increasing the attenuation of high

frequency components in the input phase or noise, but for the first order PLL, it also
reduces the lock range. It is possible to reduce the bandwidth without reducing the
lock range by using a second-order PLL (first order loop filter) [9].

Transfer function for the typical first order PLL is

+K
L(s)= K, =

(7.15)
This is sometimes called a proportional plus integral loop filter. The closed-loop
phase response is

O(s) KK +K;s
O(s) KK, +K,s+s’

(7.16)

The PLL with above loop filter has unity gain at dc. It has an integrator in the loop
filter. In fact, by convention, the "type" of a PLL is the number of integrators in the
loop filter plus one. Its main advantage is that the integrator leads to perfect phase
lock even in the face of frequency offset. A disadvantage is that it always exhibits

peaking.
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7.3.5 Steady-State Response
It is often useful to know precisely the steady-state operating point of a PLL given

certain inputs. The steady-state phase error is defined to be

&, =lime(t) (7.17)

[—0

If the PLL does not achieve perfect phase lock then ¢ #0. If &(f) =0 for t <O then

we can (usually) find ¢ using the final value theorem for Laplace transforms,
&, =limsK
s = lIMsE(s) (7.18)
Laplace transform of &(¢) in terms of the input phase is,

E(s)= 206 S (O] (7.19)
L(s)+s T L(s)+s

7.4 DISCRETE TIME PLL

In digital communications systems, especially for software radio applications, analog
continuous-time PLLs like those discussed in section 7.3 are rare. So we have to have
the discrete time equivalent for the continuous time PLLs [9].

A typical all digital PLL is shown in figure 7.4. Assumptions about the form of the
input signal and the output of the digital VCO which is also called numerically

controlled oscillator (NCO) are analogous to that of continuous time PLL.

7.4.1 Phase Error Detector
The PED is a discrete time version of the continuous PED discussed previously.

e =W, —¢) (7.20)
Where W(.) is shown in figure 7.2.

Fr=Ay cosiw, it + &) & Phase % | Loop Filter | “% | Discrete time
Detector b Iz itiale}
f

V=4, cos(w, it + &y

Figure 7.4: A typical discrete time PLL

7.4.2 Discrete Time VCO
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Discrete time VCO also called numerically controlled oscillator (NCO). The NCO,
although analogous to VCO, is not quite as obvious. The phase ¢, satisfies the

difference equation
Pe1 — P = (7.21)

Using this output of VCO can be written as
Vi = A, cos(w, (k+ )T + ;)

(7.22)
=A, cos(w kT +¢, +w,T +c,)
This leads to the structure in figure 7.5. Taking z-transform we get
L
D(z)= L C(z)= L) E(z) (7.23)
z-1 z-1

where L(z) is the loop filter transfer function and E(z) is the z-transform of the error

& -

whT+

¥

—ckh 5 =1 o cus(.}—b@—vi

Wod 2nadder T
w,r

¥

Figure 7.5: A typical NCO implementation

In the above figure you can see that NCO consists of an accumulator and a cosine
computation, along with some of constant and multiplications. The modulo two
adders reflect the fact the numbers being added are angles in radians. The cosine
function can be implemented using a look up table or Taylor series expansion. Look
up table is the most common method.

7.4.3 Analysis of the Dynamics
As before, to analyze the dynamics we assume that the phase error is small enough
that the phase detector is linear. The phase detector output is
& =0,-9, (7.24)
or taking Z transforms
E(z)=0(z)-D(2) (7.25)
Combining (15.43) with (15.39) we get the phase transfer function of the PLL,

@) L(2)
O(z) L(z)+z-1

(7.26)
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By evaluating this at z = 1 we see that just as with the continuous-time PLL, discrete-

time PLLs have unity gain to dc phase inputs.

744 Steady-State Error

Just as with continuous-time PLLs, the steady-state error is

88‘

SS

=lim ¢, (7.27)

k—o©

If ¢, =0 for k <0 we can use the final value theorem for z-transform to write
£, = liml(z -1DE(z) (7.28)

Combining (7.25) and (7.26) we get an expression for E(z),

_0@)(-1)

E(@) L(z)+z-1

(7.29)

The "type" of a discrete-time PLL is defined to be one plus the number of poles at
z=1. First order PLL (with zero order loop filter) can track a phase step with a zero
steady state error. But it is unable to track a frequency step or phase ramp with a zero
steady state error. In fact it does track the phase ramp but with a constant steady state
error. Second order PLL (with a first order loop filter) can track the both phase step
and phase ramp with a zero steady state error. But it unable to track the frequency
ramp, which may result if the transmitter and receiver are moving with constant
acceleration. But the frequency ramp very rarely occurs in practical conditions. There
is another advantage of second order PLLs that they are unconditionally stable and
they are most of the time used for synchronization. Third order PLL (with a second
order loop filter) can track the phase step, phase ramp and frequency ramp with a zero
steady state error. But they are not unconditionally stable and they are never used in

synchronization. They have some applications in GPS.

7.4.5 Complex Phase Error Detectors

We are using the QPSK modulation technique. The input to the phase error detector is
a complex QPSK signal. So we must have a complex phase error detector. A simple
phase detector for complex signals is shown in Figure 7.6. For small phase errors, the

phase detector is approximately linear,

&(t) ~ A,4,[0() - $(1)] (7.30)
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A, e/ @1+ A, A el BO=) e(t)=A,A,sin(0(1) — ¢(t))

C ) =y Im(-} ——

A, e~ @t +60))

Figure 7.6: A simple phase error detector for complex signals
But we are having the discrete time data. We have to modify the above PED by just
replacing the ¢ by £.

It concludes our discussion about the PLL. Now we will discuss phase recovery.

7.5 PHASE RECOVERY

As described in chapter 4 we are doing coherent detection of QPSK symbols and for
coherent detection the receiver and transmitter must be locked in phase. One solution
is to use PLL before the timing recovery (discussed in the next section). But it is
slightly difficult because we have more than one sample per symbol. So we are
putting it after the timing recovery because our timing recovery loop is independent of
phase errors. If there is any mismatch in phases of transmitter and receiver carriers
then it will rotate the constellation according to the amount of mismatch. Our PLL is
operating at baseband complex QPSK signal. We are employing all digital, non data
aided and feedback phase recovery. The phase recovery loop recovery loop is given
in figure 7.7.

Phase Error Detector

| ep(*( i+ A G0
exp(i*[#(+AE00]) |

sin(A6,0k))

F A OM [ e

expl - * A 8k

&

NCO

F 1

Loop Filter

Figure 7.7: NDA Phase recovery loop for one sample per symbol

The above phase recovery method is called raise to power M phase recovery. The

BPSK signal at the baseband is just £1(either cos(0) or cos(w)). By taking power of 2
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for BPSK signal the modulation is removed. Similarly for QPSK which has 4 phases
taking power of 4 the modulation is removed.

The incoming signal has phase ¢(k)+ A0, (k), where ¢(k) is the QPSK modulation

phase at time instant £ and given by the relation
T . .
¢ = Zz where i = 1,13 (7.31)

and A6, (k) is the phase distortion. Before discussing each component individually

one important thing we want to mention. The values of VCO and PED constants are
considered in calculating loop filter’s constants (explained shortly). So we will

assume them 1 from now on.

7.5.1 Phase Error Detector

The PED operation is to multiply the incoming signal with the NCO output and then
take raise to power 4 to remove modulation. The signal at the output of PED is the
imaginary part of raised to power 4 error signal. The imaginary part is chosen because
it is proportional and odd function of error signal.

Let’s assume that the input signal to the PED at any time k is
y(k) = exp(jx[p(k)+ A0, (k)]) (7.32)
the phase 6, (k) of the signal y(k) is
0, (k) =¢(k) + A0, (k) (7.33)
the phase 6, (k) is added in the NCO phase 6, (k) =—A6, and the output
0,(k)=6,(k)=0,(k) (7.34)
is the phase difference between the two. By taking raise to power 4

z(k) =[exp(j x 0, (k))]'
—[exp jx (a6, (k) - A6, (b))

You can see that the modulation is removed but the error is also becomes 4 times.

(7.35)

Taking power /2 will give us the error A&, (k) - A0, (k) only.

(k) =[z(k)]"* (7.36)
Now next step is to take imaginary part of the output because it proportional part and

also sin is odd function of input. The input signal to the loop filter is

e(k) = 3(r(k)) (7.37)
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The open loop characteristic curve for PED which is also called S-curve is shown in

figure below [13]. This is the same as shown in figure 7.2.

Amplitude

Phase Error

Figure 7.8: Characteristic S-Curve for PED from pi/4 to —pi/4

This is from [—pi/4,pi/4] and it shows that the PED will track the phase variations. It has
zero value at the center when phase error is zero. Actually PLL will start locking at any
point and then recursively take it to the origin where error is zero. This S-curve will

guarantee that the in the close loop the PLL will lock the phase.

7.5.2 NCO
Output signal from the loop filter &, is the input to the NCO. The NCO has the same

operation as explained above. The output phase of NCO is
0,(k+1)=A06,(k)+ K(e(k)) (7.38)
The loop is said to be phase locked if the difference between A6, (k) and A6, is

Zero.

7.5.3 Loop Filter

As explained before the order of the PLL is always one greater than the order of the
loop filter because the NCO is also an integrator. The bandwidth of the loop filter is
actually the bandwidth of the PLL. So in deciding the loop bandwidth one must take
care of the bandwidth of the error. For example the max frequency offset between the
transmitter and receiver in case of carrier recovery. Here is the block diagram of

most commonly used first order loop filter.
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Figure 7.9: First order digital loop filter

Let us examine this block diagram. The phase detector output, X, is
multiplied by the proportional gain constant K in the upper arm. In the lower
arm, the phase detector output is first multiplied by K, the integral gain
constant. The result of this multiplication is fed into an integrator comprising
an adder and a register (unit delay). The final output y is the sum of the
product of the proportional gain constant K, and the phase error computed in
the upper arm, and the output of the integrator in the lower arm.

This loop filter could be implemented in software using the following equation:
y(m) =K, * x(n) + K; * x(n-1) + y(n-1) - K, * x(n-1) (7.39)
The phase detector output is computed and the filter output updated every T seconds,

where Tj is the sampling interval. K, and K; can be calculated using the relation

ABLT;
s /L4§2 (7.40)
28T, |
A Lls
k221 aa

where By is the single sided loop bandwidth and T; is the sampling time. Typical
values for By are 10<B; <100 Hz. B_ T is called normalized loop bandwidth.
We have explained the phase recovery in detail. Now we will discuss the timing

recovery.

7.6 TIMING RECOVERY
Symbol Timing Recovery (STR) or Clock Synchronization is the process of

recovering the optimum sampling time that corresponds to the maximum opening of
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the eye diagram. This process is often overlooked but it is in fact the most critical in
the design of digital communication systems: its failure has devastating effects in the
receiver data. The inherent problem of clock synchronization is that sampling clock of
the receiver is not synchronized to the strobes of the transmitter.

The digital information embedded in the transmitted signal is recovered at the receiver

by means of a decision device. This decision device operates on samples of the noisy

signal y(#;¢) taken at symbol rate % at the receive filter output, which is given by
y(t:6) = D ang(t —mT - £T) +n(?) (7.42)

In equation above {am} is a sequence of zero-mean data symbols (complex QPSK

symbols). g(?) is the baseband pulse at the receive filter output, €7 is an unknown

fractional time delay (‘% <e< %) and n(?) represents zero-mean additive noise. For

maximum noise immunity, the samples upon which the receiver's decision is based
should be taken at the instants of maximum eye" opening. As the decision instants are
a priori unknown (because of the unknown delay &7 ) the receiver must contain a
device which makes an estimate of the normalized delay. Such a device is called a
clock synchronizer or symbol synchronizer. The timing estimate is used to bring the
sampling clock, which activates the sampler at the receive filter output, in close
synchronism with the received PAM signal. This is achieved by adjusting the phase of
this sampling clock according to the value of the estimate.

The received noisy signal contains no periodic components, because the channel

symbols {am} have zero mean. Therefore, an ordinary PLL operating on the filtered
received signal y(¢z;¢) cannot be used to generate a clock signal which is in

synchronism with the received QPSK signal. Let us illustrate this fact by considering

a PLL with multiplying timing error detector: the local reference signal »(#;¢') given

by
r(t;€") = 2K sin(%” (t— g‘T)J (7.43)

and is multiplied with the noisy QPSK signal y(#;&) as shown in Figure 7.10. Taking

into account equation ( i), the timing error detector output signal equals

x(t;6,6') = [Z ang(t —mT — eT) + n(t)}/EKr sin(%” (t— g'T)j (7.44)

m
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For any values of € and &' .the statistical average of the timing error detector output is
identically zero, because the channel symbols {a»}and the additive noise n(z) have
zero mean. As the average timing error detector output is zero irrespective of € and

&'there is no deterministic force that makes the PLL lock onto the received signal

[13].

g E) xit g, &)

Loop Filter

VCO

F 3

Figure 7.10: Ordinary PLL operating on baseband QPSK signal

7.6.1 Categorization of Timing Synchronizers

From the operating principle point of view, two categories of synchronizers are
distinguished i.e., error-tracking (or feedback, or closed Loop} synchronizers and
feedforward (or open loop) synchronizers.
A general error-tracking synchronizer is shown in figure 7.11. The noisy baseband
QPSK signal y(z;¢) and a locally generated reference signal r(¢;&') are “compared”
by means of a timing error detector, whose output gives an indication of the
magnitude and the sign of the timing error e=g—¢&'. The filtered timing error
detector output signal adjusts the timing estimate &' in order to reduce the timing

error e. The timing estimate &' is the normalized delay of the reference signal »(¢;¢'")
which activates the sampler operating on y(¢;¢) . Hence, error-tracking synchronizers

use the principle of the PLL to extract a sampling clock which is in close synchronism

with the received baseband QPSK signal.
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Figure 7.11: General Error Tracking Synchronizer
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Figure 7.12 below shows a general feed forward synchronizer. The noisy baseband

QPSK receive signal y(¢;&) enters a timing detector, which “measures” the

instantaneous value of € (or a function thereof). The noisy measurements at the timing

detector output are averaged to yield the timing estimate &' (or a function thereof).

Baseband . 8)
QFSK Signal . KLU
Reu_:ewe
Filter
Titning Detector

o Drata out
- Satnpler DS;EIEDEH —
rit. &)
| avmgng | P R
Filter Generator

Figure 7.12: General Feedforward Synchronizer

Besides the above categorization into error-tracking and feed forward synchronizers,

other categorizations can be made:

e When a synchronizer makes use of the receiver's decisions about the transmitted

data symbols for producing a timing estimate, the synchronizer is said to be

decision-directed, otherwise, it is non-data-aided.

e The synchronizer can operate in continuous time or in discrete time. Discrete time

synchronizers use samples of the QPSK baseband signal y(¢; &) , and are therefore

well-suited for digital implementation [13].
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7.7 TIMING RECOVERY USING INTERPOLATION

As described above all digital synchronizer can be obtained by replacing the sample

by the interpolator. Now the incoming signal y(#;&) can be a discrete time signal.

We have designed all digital, non data aided and feedback synchronizer which is
described in figure 7.13.

The loop shown in figure 7.13 is an asynchronous, non-data aided, all-digital symbol
timing recovery proposed by Gardner .It consists of an Interpolator, Timing Error
Detector (TED), Digital Loop Filter, and an accumulator (NCO). The all-digital
symbol timing recovery is a feedback timing error synchronizer that can be
characterized as a Phase Locked Loop (PLL). The loop parameters are designed based

on the linearized model of the PLL. We will evaluate each block one by one.

—» Natch Filter — Interpolator | b
T Crardner's
TED
Modr,1)

Accurmulator (4 Loop Filter

Figure 7.13: All digital symbol timing recovery

7.7.1 Interpolator

The incoming signal is discrete time signal. The interpolator computes the
intermediate values between the adjacent signal samples. There are many
interpolators which are found in literature. But we have selected cubic Lagrange
interpolator for our loop [19]. In numerical mathematics the task of interpolation for
our purpose can be stated as follows.

Given the function x(¢) defined for 7 - (N - D,....... to,....... ,IN, find a polynomial

P(t) of degree (2N-1) which assumes the given values x(#:)
P(tn) = x(tn) (n=-(N-1),.....—10,1,....N) (7.44)
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In general, the points # do not need to be equidistant, nor does the number of points
have to be an even number 2N. There exists a Lagrange polynomial of a degree 2N-1:

Pt)= Y At =t i )eooeert =t )~ 1)t — 1) Je(8)
n=(N-1) (7.45)

with
/bl = 1
(tn -t - 1)) ...... (tn —t - l)(tn —t+ 1)....(t,, - l‘N) (7.46)

Using the definition of (7.45) it is verified that for every # , we have P(t:)=x(t:) as

required. The polynomial P(¢) is linear combination of values x(#:)
N
P(t)=" D qu(t)x(tr) (7.47)

n=—(N-1)

TP

Figure 7.14: Lagrange Interpolation

with so called Lagrange coefficients.

g ) =2t =1 - )t =1 Y =L))o = 1)] (7.48)

Simulation Of QPSK Transceiver cxlii



T ¥ T T L L)
_.,Id'-.'h I-’N F c oN-2 (N) : z-1 i (N z-1
1 o L L]
() I Fre Yo e
d.,,; ,(N-1 g : T 1 L
W >

L
— - %(1 ;‘j-

Lj}'-‘~,I 110) | z*

¥ ¥

Figure 7.15: Farrow structure of Lagrange interpolation

Since FIR filter also computes a linear combination of sample values x(kT5s)it is

necessary to point out the differences between the two approaches. As we are only

interested in the interpolated values in the central interval 0 <¢ <1, we set ¢ = i in the
definition of the Lagrange coefficients ¢.(¢) . Every ¢.(x) is a polynomial in g which

can be written as

2N-1
()= D dn(m)u” (7.49)
m=0
Inserting into equation (7.47), we obtain
N 2N-1
P(uy= Y. [de(n)lum}x(tn) (7.50)
n=—(N-1)|_ m=0

Thus from equation (9.50) we learn that P(x) can be computed as the output of a
Farrow structure. The main advantage of Lagrange interpolation is that the
computations are done in real time which is much better then the classical approach in
which the match filter is implemented using polyphase structures for interpolation.

We have used cubic Lagrange interpolator. Using equation (7.49), we get
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q-1(u) y7, U 3/1

1 3 2 ,Ll

— — — 1
qo( ) SH TR
(7.51)

1 3 1 2
q(u) = 2/1 2# Y7

qz(ﬂ)—6ﬂ -

The implementation of cubic Lagrange interpolator is shown in figure 7.16

7.7.2 Gardner Timing Error Detector

The Gardner algorithm has seen widespread use in many practical timing recovery
loop implementations. The algorithm uses two samples per symbol and has the
advantage of being insensitive to carrier offsets. This is the reason for selecting this
algorithm . The timing recovery loop can lock first, therefore simplifying the task of
carrier recovery.

Xt i)

P ' ..\'.
v g L xlt 12 .
- L Ll L] 1
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s 2| Hi) E( -1 o i=1/2
T | L
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- 1/8) xlt T 172 - 3 1

Figure 7.16: Farrow structure of a Cubic Lagrange Interpolator

The error for the Gardner algorithm is computed using the following equation:
e(my=1,.,U,-1,,)+0,,(0,-0,2) (7.52)
where the spacing between n and n-2 is 7 seconds, and the spacing between n and n-1
is 7/2 seconds and T is the symbol time. Note that the Gardner error is most useful on
symbol transitions (when the symbol goes from positive to negative or vice-versa).
The Gardner error is relatively small when the current and previous symbols have the
same polarity. That’s why it is also called zero crossing detector. It is also shown that

Gardner TED is very sensitive to self noise which is proportional to roll off factor for
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the raised cosine filter. Greater the roll off factor lesser will be the self noise and
better will be the performance.
A simulation was run for determination of open loop S-curve and the curve is found

to be sinusoidal. This will show that the timing errors will be tracked.

Characteristic S-Curve for Gardner TED

1 1 1
-1 -08 06 -04 -02 0 02 04 06 08 1

Figure 7.17: Characteristic S-curve for Gardner’s TED

7.7.3 Decimator and Loop Filter
Gardner algorithm requires two samples per symbol. The output is required only at

the symbol intervals. So after the timing error detector we have to have a decimator so
that the output to the loop filter is at symbol interval. The loop filter is the same as

described in the phase recovery.

7.7.4 Accumulator and Modulo 1 Adder

The accumulator or NCO is again has the same roll of integrator. As described earlier
we have normalized the delay by sampling time. Now we are having the delay in the

range of [-1,1]. The output of the integrator x(k+1)at any time k+1 is

x(k +1) = x(k) + y(k)
(7.53)

Where y(k) is the output of the loop filter.

The modulo 1 adder is used to prevent the accumulator output from increasing 1
which is max delay. If the delay is greater than 1 then the mod operation is used is
bring it down at also the basepoint of interpolator is changed by 1 [13].

This concludes our discussion about the timing recovery.

7.8 SIMULATION RESULTS
7.8.1 Phase Recovery
A simulation was run for phase recovery. The phase plus frequency errors are

introduced. The constellation for received QPSK symbols is given below

Simulation Of QPSK Transceiver cxlv



Constellation for received Symbols(Frequency+pahse errors)
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Figure 7.18: Constellation for received QPSK symbols
At the output of phase recovery PLL the constellation is given below. You can see

that the phase errors are removed.

Constellation after phase recovery(Using PLL)
1 T T T T T T T T
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Figure 7.19: Constellation after phase recovery

The output error signal from the loop filter is shown below. The steady state value of

the error is zero which sows that the phase errors are removed.
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From the above figure it can be seen that PLL the takes 3000 samples to converge.

This can be improved by increasing the gain of the PLL. The signal at the output of

Samples

Figure 7.20: Output signal from the loop filter

the accumulator is shown in figure 7.21.

7.8.2 Timing

Another simulation was run for timing recovery for two sample per symbols. Various
fractional timing delays are introduced and the performance of the timing recovery

loop is checked. For the fractional delay of 7/2 the eye diagram for the signal at the

input of the loop is

Amplitude

x 10° Accumulator output signal

~o 1000 2000 3000 4000 5000 6000
Samples

Figure 7.21: Accumulator output signal

Recovery
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Eye diagram after delaying (Ts/2)
T T T

Figure 7.22: Eye diagram after delaying T/2.

You can see the ISI very clearly. At the output of the timing recovery loop the eye
diagram is given in the figure 7.23. In this diagram you can see that the ISI is almost

removed.

Eye diagram after timing recovery

Figure 7.23: Eye diagram after timing recovery.
We have already explained that the Gardner TED is very sensitive to self noise.
To reduce the effect of self noise the stream of alternate ones and zeros is sent. After
that the loop bandwidth is reduced and the random data is sent. The loop filter output

signal is given below. The jitter is the curve is because of self noise.
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x 107 Loop filter output signal
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Figure 7.24: Loop filter output signal
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CHAPTER 8

CHANNEL CODING

8.1 INFORMATION THEORY
The framework for studying fundamental limits in communication is
information theory. The fundamental measure of performance is the capacity
of a channel. Information theory was invented by Claude Shannon in 1948 to
characterize the fundamental limits of reliable communication [18]. Before
Shannon, it was widely believed that to the only way achieve reliable
communication over a noisy channel, i.e. to make the error probability as
small as desired, is to reduce the data rate, by say repeating the information
symbol multiple times. Shannon however showed the surprising result that
this is not necessary: by appropriate coding of the information, one can
communicate at a positive rate but at the same time with as small an error
probability as desired. However, there is a maximal rate, called the capacity of
the channel, for which this can be done: if one attempts to communicate at
rates above the channel capacity, then it is impossible to drive the error
probability to zero. The capacity of a channel depends on the statistical
characteristics of the channel, and for a wide class of channels, Shannon
showed how the channel capacity can be computed. Channel capacity is
therefore the fundamental measure of performance limit on reliable
communication. The most common and probably the most important channel
for a communication engineer is the gaussian channel, given by
y[n] = x[n] + win] (8.1)
where x[n] and y[n] are real inputs at time » and {w[n]} is an i.i.d. sequence of

N(0,5%) noise. Given a power constraint of P on the transmitted signal, the

capacity is given by
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Capacity is measured in bits per symbol. This is probably the most well-known
result of information theory, but it is in fact only a special case of Shannon’s

general theory applied to a specific channel.

8.2 BASIC MODEL AND FORMULATION

To develop ideas, let us first start with the simplest class of channels: the
discrete memoryless channels (DMCs). Both the input x[#] and the output y[n]
of a DMC are discrete-valued and lie in finite sets X and Y respectively. (These
sets are called the input and output alphabets of the channel respectively.)
The statistics of the channel is described by conditional probabilities

{Py/x)}xeX,er.These are also called transition probabilities. Given an

input sequence x = (x[1]........ , X[N]), the probability of observing an output
sequence y=(]l],........, y[N]) is given by
N
p(y/x)=T] p(Inlxln]) (83)

n=1
The interpretation is that the channel noise corrupts the input symbols
independently (hence the term memoryless). The communication system is
abstracted as shown in figure 8.1. The sender has one out of M equally likely
messages it wants to transmit to the receiver. To convey the information, it

uses a codebook C of block length N and size M, where C = {x,......... ,X,,+ and

xm’s are the codewords. To transmit the mth message, the codeword xm is
sent across the noisy channel. Based on the received vector y, the decoder
generates an estimate "m of the correct message. The error probability is
p. =P{m = m}.We will assume that the maximum-likelihood (ML) decoder is
used, since it minimizes the error probability for a given code. Since we are
transmitting one of M messages, the number of bits conveyed is logM. Since
the block length of the code is N, the rate of the code is R = logM/N bits per
unit time. The data rate R and the ML error probability p. are the two key

performance measures of a code.
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Figure 8.1: Basic communication model with channel encoder and decoder

Information is said to be communicated reliably at rate R if for every 6 > 0,
one can find a code of rate R and block length N such that the error probability
p. <06 . The capacity C of the channel is the maximum rate for which reliable
communication is possible. Note the key feature of this definition is that one is
allowed to code over arbitrarily large block lengths N. Since there is noise in
the channel, it is clear that the error probability cannot be made arbitrarily
small if the block length is fixed a priori. Only when one codes over long block
lengths is there hope that one can rely on some kind of law of large numbers
to average out the random effect of the noise. Still, it is not at all clear a priori
whether a non-zero reliable information rate can be achieved.

Shannon showed not only that C > 0 for all but degenerate channels but in

fact gives a simple way by which C can be computed as a function
of {p(y/x)}.

That’s concludes our discussion about information theory. We will not go into
the depth of the topics. There are many error correcting codes found in the
literature. Most of time forward error correcting codes are used which are
further classified in block and convolutional codes. We will consider only the

convolutional codes.

8.3 CHANNEL CODING

The purpose of forward error correction (FEC) is to improve the capacity of a
channel by adding some carefully designed redundant information to the data
being transmitted through the channel [14]. The process of adding this
redundant information is known as channel coding. Convolutional coding and
block coding are the two major forms of channel coding. Convolutional codes
operate on serial data, one or a few bits at a time. Block codes operate on

relatively large (typically, up to a couple of hundred bytes) message blocks.

Simulation Of QPSK Transceiver clii



There are a variety of useful convolutional and block codes, and a variety of
algorithms for decoding the received coded information sequences to recover

the original data.

Convolutional encoding with Viterbi decoding is a FEC technique that is
particularly suited to a channel in which the transmitted signal is corrupted
mainly by additive white Gaussian noise (AWGN). By using the convolutional

channel coding significant improvement in SNR can be achieved.

Convolutional codes are usually described using two parameters: the code
rate and the constraint length. The code rate, k/n, is expressed as a ratio of
the number of bits into the convolutional encoder (k) to the number of channel
symbols output by the convolutional encoder (n) in a given encoder cycle. The
constraint length parameter, K, denotes the "length" of the convolutional
encoder, i.e. how many k-bit stages are available to feed the combinatorial
logic that produces the output symbols. Closely related to K is the parameter
m, which indicates how many encoder cycles an input bit is retained and used
for encoding after it first appears at the input to the convolutional encoder.
The m parameter can be thought of as the memory length of the encoder.
Since we have used code rate of 1/2,so we focus on rate 1/2 convolutional

codes.

Viterbi decoding is one of two types of decoding algorithms used with
convolutional encoding-the other type is sequential decoding. Sequential
decoding has the advantage that it can perform very well with long-constraint-

length convolutional codes, but it has a variable decoding time.

Viterbi decoding has the advantage that it has a fixed decoding time. It is well
suited to hardware decoder implementation. But its computational
requirements grow exponentially as a function of the constraint length, so it is

usually limited in practice to constraint lengths of K = 9 or less.

But there's a tradeoff-the same data rate with rate 1/2 convolutional coding
takes twice the bandwidth of the same signal without it, given that the

modulation technique is the same. That's because with rate 1/2 convolutional
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encoding, you transmit two channel symbols per data bit. However, if you
think of the tradeoff as a 5 dB power savings for a 3 dB bandwidth expansion,
you can see that you come out ahead. Remember: if the modulation
technique stays the same, the bandwidth expansion factor of a convolutional

code is simply n/k.

Many radio channels are AWGN channels, but many, particularly terrestrial
radio channels also have other impairments, such as multipath, selective
fading, interference, and atmospheric (lightning) noise. Transmitters and
receivers can add spurious signals and phase noise to the desired signal as
well. Although convolutional coding with Viterbi decoding might be useful in

dealing with those other problems, it may not be the most optimal technique.

8.4 CONVOLUTIONAL ENCODING

Convolutionally encoding the data is accomplished using a shift register and
associated combinatorial logic that performs modulo-two addition. (A shift
register is merely a chain of flip-flops wherein the output of the nth flip-flop is
tied to the input of the (n+1)th flip-flop. Every time the active edge of the clock
occurs, the input to the flip-flop is clocked through to the output, and thus the
data are shifted over one stage.) The combinatorial logic is often in the form of

cascaded exclusive-or gates that implements the table 8.1

Input Input Output

A B
(A xor B)
0 0 0]
0 1 1
1 0] 1
1 1 0]

Table 8.1: Convolutional Encoder output table

The exclusive-or gate performs modulo-two addition of its inputs. When you

cascade q two-input exclusive-or gates, with the output of the first one feeding
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one of the inputs of the second one, the output of the second one feeding one
of the inputs of the third one, etc., the output of the last one in the chain is the

modulo-two sum of the q + 1 inputs.

Now that we have the two basic components of the convolutional encoder
(flip-flops comprising the shift register and exclusive-or gates comprising the
associated modulo-two adders) defined, let's look at Figure 8.2 to see a

picture of a convolutional encoder for a rate 1/2, K= 3, m = 2 code.

INPUT -I FF -I FF s [— OUTPUT
(k BITS/SEC) (n = 2k SYMBOLS/SEC)

Figure 8.2: A typical convolutional encoder implementation for code rate 1/2

In this encoder, data bits are provided at a rate of k bits per second. Channel
symbols are output at a rate of n = 2k symbols per second. The input bit is
stable during the encoder cycle. The encoder cycle starts when an input clock
edge occurs. When the input clock edge occurs, the output of the left-hand
flip-flop is clocked into the right-hand flip-flop, the previous input bit is clocked
into the left-hand flip-flop, and a new input bit becomes available. Then the
outputs of the upper and lower modulo-two adders become stable. The output
selector (SEL A/B block) cycles through two states-in the first state, it selects
and outputs the output of the upper modulo-two adder; in the second state, it

selects and outputs the output of the lower modulo-two adder.

The encoder shown above encodes the K = 3, (7, 5) convolutional code.
The octal numbers 7 and 5 represent the code generator polynomials, which
when read in binary (1112 and 1012) correspond to the shift register

connections to the upper and lower modulo-two adders, respectively. This
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code has been determined to be the "best" code for rate 1/2, K = 3. It is the
code | will use for the remaining discussion and examples, for reasons that

will become readily apparent when we get into the Viterbi decoder algorithm.

Let's look at an example input data stream, and the corresponding output data
stream: Let the input sequence be 01011100101000 1..

Assume that the outputs of both of the flip-flops in the shift register are
initially cleared, i.e. their outputs are zeroes. The first clock cycle makes the
first input bit, a zero, available to the encoder. The flip-flop outputs are both
zeroes. The inputs to the modulo-two adders are all zeroes, so the output of
the encoder is 00,. The second clock cycle makes the second input bit
available to the encoder. The left-hand flip-flop clocks in the previous bit,
which was a zero, and the right-hand flip-flop clocks in the zero output by the
left-hand flip-flop. The inputs to the top modulo-two adder are 100,, so the
output is a one. The inputs to the bottom modulo-two adder are 10, so the
output is also a one. So the encoder outputs 11, for the channel symbols. The
third clock cycle makes the third input bit, a zero, available to the encoder.
The left-hand flip-flop clocks in the previous bit, which was a one, and the
right-hand flip-flop clocks in the zero from two bit-times ago. The inputs to the
top modulo-two adder are 010,, so the output is a one. The inputs to the
bottom modulo-two adder are 002, so the output is zero. So the encoder
outputs 10, for the channel symbols. And so on. The timing diagram shown in

figure 8.3 illustrates the process.

Simulation Of QPSK Transceiver clvi



woreeoes | | [ | | L1 L] |
INPUT BITS o 1 o 1 1 1
LEFT FF [------l___________J
QuTRUT
RIGHT FF
DUTRUT
UPFER XOR |
ouTRUT | |
LOWER: ¥OR
DUTRUT
SYMEOL
CLOCK | | | | | | | | | | | | | | | | | | | | | | |
ouTRUT
SMBOLS o o | 1 1 1 | o i 0 i | 1 1 | o

Figure 8.3: Timing diagram for convolutional encoder

After all of the inputs have been presented to the encoder, the output
sequence will be: 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11>.

You can see from the structure of the rate 1/2 K = 3 convolutional encoder
and from the example given above that each input bit has an effect on three
successive pairs of output symbols. That is an extremely important point and
that is what gives the convolutional code its error-correcting power. The
reason why will become evident when we get into the Viterbi decoder
algorithm. Now if we are only going to send the 15 data bits given above, in
order for the last bit to affect three pairs of output symbols, we need to output
two more pairs of symbols. This is accomplished in our example encoder by
clocking the convolutional encoder flip-flops two more times, while holding the
input at zero. This is called "flushing" the encoder, and results in two more
pairs of output symbols. The final binary output of the encoder is thus 00 11
10 00 01 10 01 11 11 10 00 10 11 00 11 10 11,. If we don't perform the
flushing operation, the last m bits of the message have less error-correction
capability than the first through (m - 1)th bits had. This is a pretty important
thing to remember if you're going to use this FEC technique in a burst-mode

environment. So's the step of clearing the shift register at the beginning of
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each burst. The encoder must start in a known state and end in a known state

for the decoder to be able to reconstruct the input data sequence properly.

Now, let's look at the encoder from another perspective. You can think of the
encoder as a simple state machine. The example encoder has two bits of
memory, so there are four possible states. Let's give the left-hand flip-flop a
binary weight of 2', and the right-hand flip-flop a binary weight of 2°. Initially,
the encoder is in the all-zeroes state. If the first input bit is a zero, the encoder
stays in the all zeroes state at the next clock edge. But if the input bit is a one,
the encoder transitions to the 10, state at the next clock edge. Then, if the
next input bit is zero, the encoder transitions to the 01, state, otherwise, it
transitions to the 11, state. The table 8.2 gives the next state given the

current state and the input, with the states given in binary.

Next State, if

Current Input = 0: Input = 1:
State
00 00 10
01 00 10

10 01 11
11 01 11

Table 8.2: State transition table
The table 8.2 is often called a state transition table. We'll refer to it as the
next state table 8.3. Now let us look at a table that lists the channel output

symbols, given the current state and the input data, which we'll refer to as the

output table :

Output Symbols, if

Current Input = 0: Input = 1:
State
00 00 11
01 11 00
10 10 01

11 01 10
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Table 8.3: Output table

You should now see that with these two tables, you can completely describe
the behavior of the example rate 1/2, K = 3 convolutional encoder. Note that
both of these tables have 2 - " rows, and 2* columns, where K is the
constraint length and k is the number of bits input to the encoder for each
cycle. These two tables will come in handy when we start discussing the

Viterbi decoder algorithm.

8.5 SOFT Vs HARD DECISION

An ideal Viterbi decoder would work with infinite precision, or at least with
floating-point numbers. In practical systems, we quantize the received
channel symbols with one or a few bits of precision in order to reduce the
complexity of the Viterbi decoder, not to mention the circuits that precede it. If
the received channel symbols are quantized to one-bit precision (< 0V =1, >
0V = 0), the result is called hard-decision data. If the received channel
symbols are quantized with more than one bit of precision, the result is called
soft-decision data. A Viterbi decoder with soft decision data inputs quantized
to three or four bits of precision can perform about 2 dB better than one
working with hard-decision inputs. The usual quantization precision is three

bits. More bits provide little additional improvement [14].

The selection of the quantizing levels is an important design decision
because it can have a significant effect on the performance of the link. The
following is a very brief explanation of one way to set those levels. Let's
assume our received signal levels in the absence of noise are -1V =1, +1V =

0. With noise, our received signal has mean %1 and standard deviation
o=.1/2(E;/N,)). Let's use a uniform, three-bit quantizer having the

input/output relationship shown in the figure 8.4, where D is a decision level

that we will calculate shortly:
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Figure 8.4: Quantizing the received signal

The decision level, D, can be -calculated according to the formula

D=.5-0=.5-J1/(2(E;/N,)), where Es/No is the energy per symbol to noise

density ratio. We will assume hard decision for Viterbi decoding.

8.6 VITERBI DECODING

The single most important concept to aid in understanding the Viterbi

algorithm is the trellis diagram. The figure 8.5 shows the trellis diagram for our

example rate 1/2 K = 3 convolutional encoder, for a 15-bit message:

B _ _ _ _ _ _ _ _ _ t= t= t= t=
t=0 t=1 t=& t=3 t=4 t=3 t=6 t=7 t=8 t=3 10 11 1z 13 4

State 00

State 01 »

State 10 »

State 11«

Figure 8.5: Trellis diagram
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The four possible states of the encoder are depicted as four rows of horizontal
dots. There is one column of four dots for the initial state of the encoder and
one for each time instant during the message. For a 15-bit message with two
encoder memory flushing bits, there are 17 time instants in addition to t = 0,
which represents the initial condition of the encoder. The solid lines
connecting dots in the diagram represent state transitions when the input bit is
a one. The dotted lines represent state transitions when the input bit is a zero.
Notice the correspondence between the arrows in the trellis diagram and the

state transition table discussed above. Also notice that since the initial

condition of the encoder is State 00,, and the two memory flushing bits are

zeroes, the arrows start out at State 00, and end up at the same state [14].
The figure 8.6 shows the states of the trellis that are actually reached during

the encoding of our example 15-bit message:

t= = = = = = = =
t=0 t=1 t=2 t=3 t=d4 t=5 t=6 t=7 t=8 t=9 45 41 12 13 14 15 16 17
State 00

State 01 2
State 10 «

State 11 «
ENC IN=10 1 o 1 1 1 o ] 1 i} 1 0 0 i} 1 0 0

EMC OUT =00 1 10 an 01 10 01 1 1 10 an 10 1 an 11 10 1

Figure 8.6: Actually reached path through trellis diagram

The encoder input bits and output symbols are shown at the bottom of the
diagram. Notice the correspondence between the encoder output symbols
and the output table discussed above. Let's look at that in more detail, using
the expanded version of the transition between one time instant to the figure
8.7.
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State 00 - ------- -

State 01 «._

State 10

01"

State 11 ~ 10

Figure 8.7: Diagram showing transition from one state to other

The two-bit numbers labeling the lines are the corresponding convolutional
encoder channel symbol outputs. Remember that dotted lines represent
cases where the encoder input is a zero, and solid lines represent cases
where the encoder input is a one. (In the figure above, the two-bit binary
numbers labeling dotted lines are on the left, and the two-bit binary numbers
labeling solid lines are on the right. Now let's start looking at how the Viterbi
decoding algorithm actually works. For our example, we're going to use hard-
decision symbol inputs to keep things simple. Suppose we receive the above-

encoded message with a couple of bit errors as shown in figure 8.8.

Each time we receive a pair of channel symbols, we're going to compute a
metric to measure the "distance" between what we received and all of the
possible channel symbol pairs we could have received. Going fromt=0tot =
1, there are only two possible channel symbol pairs we could have received:
00,, and 11,. That's because we know the convolutional encoder was
initialized to the all-zeroes state, and given one input bit = one or zero, there
are only two states we could transition to and two possible outputs of the

encoder. These possible outputs of the encoder are 00, and 11.
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_ _ _ _ _ _ _ _ _ _ = t= = = =
t=0 t=1 t=2 t=3 t=4 t=35 t=6 t=7 t=8 t=13 10 1 12 12 14 15 16
State 00 *

State 01 1
State 10 -

Gtate 11 =
EMC IN=10 1 i} 1 1 1 i} i} 1 i} 1 0 1] 0 1 i}

ENC OUT =00 11 10 oo 01 10 01 11 11 10 oo 10 11 oo i 10

RECEIVED =00 ih! ih! ili] 01 10 01 ih! ih! 10 i} ili] 1 Juli] iN 10
ERRORS = i hd

Figure 8.8: Path through the trellis diagram for received bits

The metric we're going to use for now is the Hamming distance between the
received channel symbol pair and the possible channel symbol pairs. The
Hamming distance is computed by simply counting how many bits are
different between the received channel symbol pair and the possible channel
symbol pairs. The results can only be zero, one, or two. The Hamming
distance (or other metric) values we compute at each time instant for the
paths between the states at the previous time instant and the states at the
current time instant are called branch metrics. For the first time instant, we're
going to save these results as "accumulated error metric" values, associated
with states. For the second time instant on, the accumulated error metrics will
be computed by adding the previous accumulated error metrics to the current

branch metrics.

At t =1, we received 00, The only possible channel symbol pairs we could
have received are 00, and 11,. The Hamming distance between 00, and 00,
is zero. The Hamming distance between 00, and 11, is two. Therefore, the
branch metric value for the branch from State 00, to State 00, is zero, and for
the branch from State 00, to State 10, it's two. Since the previous
accumulated error metric values are equal to zero, the accumulated metric
values for State 00, and for State 10, are equal to the branch metric values.
The accumulated error metric values for the other two states are undefined.

The figure 8.9 illustrates the results at t = 1.Note that the solid lines between
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states at t = 1 and the state at t = O illustrate the predecessor-successor
relationship between the states at t = 1 and the state at t = 0 respectively. This
information is shown graphically in the figure, but is stored numerically in the
actual implementation. To be more specific, or maybe clear is a better word,
at each time instant t, we will store the number of the predecessor state that

led to each of the current states at t.

Becumulated
t=0 t=1 Error Metric =

State 00 0

State 0 =
State 10 =

State 11 =
EHMC IM=1

EMC OUT = 00
RECEIVED =00

Figure 8.9: Trellis diagram at t=1

Now let's look what happens at t = 2. We received a 11, channel symbol
pair. The possible channel symbol pairs we could have received in going from
t=1tot =2 are 00, going from State 00, to State 00,, 11, going from State
00, to State 10,, 10, going from State 10, to State 01 ,, and 01, going from
State 10, to State 11 ,. The Hamming distance between 00, and 11; is two,
between 11, and 11, is zero, and between 10, or 01, and 11, is one. We add
these branch metric values to the previous accumulated error metric values
associated with each state that we came from to get to the current states. At t
=1, we could only be at State 00, or State 10,. The accumulated error metric
values associated with those states were 0 and 2 respectively. The figure 8.10
below shows the calculation of the accumulated error metric associated with

each state, att = 2.
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t=0 t=1 t=2
State 00

State 01 =

State 10

State 11 = .

Becurnul sted
Error Metric =

O+2=2

2+1=3

0+H1=0

2+=3

EMC IN=10 1
ENC OUT =00 11
RECEIVED =00 11

Figure 8.10: Trellis diagram at t=2

That's all the computation for t = 2. What we carry forward to t = 3 will be the
accumulated error metrics for each state, and the predecessor states for each
of the four states at t = 2, corresponding to the state relationships shown by

the solid lines in the illustration of the trellis.

Now look at the figure for t = 3. Things get a bit more complicated here,
since there are now two different ways that we could get from each of the four
states that were valid at t = 2 to the four states that are valid at t = 3. So how
do we handle that? The answer is, we compare the accumulated error metrics
associated with each branch, and discard the larger one of each pair of
branches leading into a given state. If the members of a pair of accumulated
error metrics going into a particular state are equal, we just save that value.
The other thing that's affected is the predecessor-successor history we're
keeping. For each state, the predecessor that survives is the one with the
lower branch metric. If the two accumulated error metrics are equal, some
people use a fair coin toss to choose the surviving predecessor state. Others
simply pick one of them consistently, i.e. the upper branch or the lower
branch. It probably doesn't matter which method you use. The operation of
adding the previous accumulated error metrics to the new branch metrics,
comparing the results, and selecting the smaller (smallest) accumulated error
metric to be retained for the next time instant is called the add-compare-select

operation. The figure 8.11 shows the results of processing t = 3:
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Becurnul sted

=0 t=1 D=uz t=3 Error Metric =
State 00 - - 242,34 3
State 04 = oo O+, 341 1
State 10 = 2H, 3 2
041, 3+1: 1

State 11 »
EMC IMN =1 1 i}

ENC OUT = 00 il 10
RECEINVED =00 il i

Figure 8.11: Trellis diagram at t=3

Note that the third channel symbol pair we received had a one-symbol error.

The smallest accumulated error metric is a one, and there are two of these.

Let's see what happens now at t = 4. The processing is the same as it was for

t = 3. The results are shown in the figure 8.12:

- - - - _ Becurnul sted
t=0 t=1 t=2 t=3 t=4 Error Metric =
State 00 il DD 3H, 1+ 3
State 01 = 241, 1+ 2
State 10 = 2 AH: A
State 11 r 241, 1+ 2
ENC M= 10 1 1] 1
EWC QUT = 00 ih! 10 an
RECEIVED =00 i 11 an

Figure 8.12: Trellis diagram at t=4

Notice that at t = 4, the path through the trellis of the actual transmitted
message, shown in bold, is again associated with the smallest accumulated

error metric. Let's look att = 5 as shown in figure 8.13:
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= = - - - _ ¢ Pecumulated
t=0 t=1 t=2 t=3 t=4 t_sErrc\rMeiric=

State 00 o Wl Ju I3+ 2H 3

142, 24 2

State 01 =

State 10 = 32+ 3

State 11 = ; 1+, 2420 1
EHMC IN=1D0 1 1] 1 1

ENC OUT= 00 N 10 Juli] iy}

RECEIVED =00 1 11 Juli] iy}

Figure 8.13: Trellis diagram at t=5

At t = 5, the path through the trellis corresponding to the actual message,
shown in bold, is still associated with the smallest accumulated error metric.
This is the thing that the Viterbi decoder exploits to recover the original
message. At t = 17, the trellis looks like this, with the clutter of the

intermediate state history removed:

State 01 4
State 10 - .

State 11 = .
EHNC IN=10 1 0 1 1 1 0 0 1 0 1 0 0 0 1 0 0

ENC OUT =00 11 10 oo 01 10 01 11 11 10 oo 10 11 oo i 10 11
RECEINED =00 1 1 oo 01 10 01 1 1 10 oo oo 11 oo M 10 1
ERRORS = i Ed

Figure 8.14: Trellis diagram for complete packet

The decoding process begins with building the accumulated error metric for
some number of received channel symbol pairs, and the history of what states
preceded the states at each time instant t with the smallest accumulated error

metric. Once this information is built up, the Viterbi decoder is ready to
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recreate the sequence of bits that were input to the convolutional encoder
when the message was encoded for transmission. This is accomplished by

following steps

o First, select the state having the smallest accumulated error metric and
save the state number of that state.

o lteratively perform the following step until the beginning of the trellis is
reached: Working backward through the state history table, for the selected
state, select a new state which is listed in the state history table as being the
predecessor to that state. Save the state number of each selected state. This
step is called traceback.

« Now work forward through the list of selected states saved in the previous
steps. Look up what input bit corresponds to a transition from each
predecessor state to its successor state. That is the bit that must have been
encoded by the convolutional encoder. The table 8.4 shows the accumulated
metric for the full 15-bit (plus two flushing bits) example message at each time
t.

17

State 002 3 3 3 3/ 4/ 1 3 4 3 3 2 2 4|5 2
00,

State 31,2/ 2/ 3 1,4 4 1 4 2 3 4 4 2
01,

State 2.0 2/ 1, 3 3 4 3 1 4 1 4 3 3 2
10,

State 31 2 111/ 3 4 4 3 4 2 3 4 4
11,

Table 8.4: Accumulated metric table

It is interesting to note that for this hard-decision-input Viterbi decoder
example, the smallest accumulated error metric in the final state indicates
how many channel symbol errors occurred. The table 8.5 shows the surviving

predecessor states for each state at each time t.
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t= 0,1 2 3 4 5/ 6,7 8 9,10 11 12 13 14 15 16 17

State |5 510 1/0 1/1 0/ 1.0 0/1 0 1 0 0 0 1
00,

S(t)"i‘te002233233223232220
2

State ' ' 0011 1 0/1 0 0 1.1 0 1 0l0 o0
10,

State

o€ ojof2/2/3/2 3232 2|3 2 3 2 2 0 0
2

Table 8.5: Surviving predecessor states table

The table 8.6 shows the states selected when tracing the path back through

the survivor state table shown above.

t= 0,1, 2 3,4 5 67,8 9 /10 11 12 13 14 15 16 17
6021, 2 3 3 1 02 1 2 1 0, 02 1 0

Table 8.6: Trace back table

Using a table that maps state transitions to the inputs that caused them, we
can now recreate the original message. Here is what this table looks like for

our example rate 1/2 K = 3 convolutional code.

Input was, Given Next State =

Current State 00,=0  O01,=1 10, =2 11,=3

00,=0 0 X 1 X
01,=1 0 X 1 X
10,=2 X 0 X 1
11,=3 X 0 X 1

Table 8.7: Next state table

Note: In table 8.7, x denotes an impossible transition from one state to
another state. So now we have all the tools required to recreate the original

message from the message we received.
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t= 1 2 3 4 5 6 7 8 9 /10 |11 |12 |13 | 14
0 1 1 1 0 0 1 0 1 0 0 0

Table 8.7: Original message

The two flushing bits are discarded. Here's an insight into how the traceback
algorithm eventually finds its way onto the right path even if it started out
choosing the wrong initial state. This could happen if more than one state had
the smallest accumulated error metric, for example. Figure 8.15 for the trellis

at t = 3 again to illustrate this point.

See how at t = 3, both States 01, and 11, had an accumulated error metric
of 1. The correct path goes to State 01, -notice that the bold line showing the
actual message path goes into this state. But suppose we choose State 11, to
start our traceback. The predecessor state for State 11, , which is State 10, ,
is the same as the predecessor state for State 01,! This is because att = 2,
State 10, had the smallest accumulated error metric. So after a false start, we

are almost immediately back on the correct path.

Becumulated
t=0 t=1 tIII=I]2 t=3 Error Metric =

State 00 =M Wi — 242, 3H: 3

State 04 » oo 0+, 3+ 1
11

State 0 » 2H, 3H: 2

State 11 » 0+, 3+ 1

ENC IN=10 1 0
ENC OUT= 00 i 10
RECEINED =00 i iN

Figure 8.15: Trellis diagram at t=3
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For the example 15-bit message, we built the trellis up for the entire message
before starting traceback. For longer messages, or continuous data, this is
neither practical nor desirable, due to memory constraints and decoder delay.
Research has shown that a traceback depth of K x 5 is sufficient for Viterbi
decoding with the type of codes we have been discussing. Any deeper
traceback increases decoding delay and decoder memory requirements, while
not significantly improving the performance of the decoder. The exception is
punctured codes, which I'll describe later. They require deeper traceback to

reach their final performance limits.

To implement a Viterbi decoder in software, the first step is to build some data
structures around which the decoder algorithm will be implemented. These
data structures are best implemented as arrays. The primary six arrays that

we need for the Viterbi decoder are as follows:

« A copy of the convolutional encoder next state table, the state transition
table of the encoder. The dimensions of this table (rows x columns) are 2K~
x 2%. This array needs to be initialized before starting the decoding process.

e« A copy of the convolutional encoder output table. The dimensions of this
table are 2K - " x 2. This array needs to be initialized before starting the
decoding process.

« An array (table) showing for each convolutional encoder current state and
next state, what input value (0 or 1) would produce the next state, given the
current state. We'll call this array input table. Its dimensions are 2¢- " x 2(¢- 1),
This array needs to be initialized before starting the decoding process.

e An array to store state predecessor history for each encoder state for up
to K x 5 + 1 received channel symbol pairs. We'll call this table the state history
table. The dimensions of this array are 2 %" x (K x 5 + 1). This array does
not need to be initialized before starting the decoding process.

« An array to store the accumulated error metrics for each state computed
using the add-compare-select operation. This array will be called the
accumulated error metric array. The dimensions of this array are 2 €~V x 2. This

array does not need to be initialized before starting the decoding process.
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An array to store a list of states determined during traceback (term to be
explained below). It is called the state sequence array. The dimensions of this
array are (K x 5) + 1. This array does not need to be initialized before starting

the decoding process.

Simulation Of QPSK Transceiver clxxii



(1]

(2]

3]

[4]

[3]

[6]

[7]

[8]

9]

[10]

[11]

[12]

[13]

[14]

[19]

REFRENCES

Jeffrey H. Reed, “Software Radio, A Modern Approach to Radio
Engineering”, Prentice Hall, 2002.
Enrico Buracchini, CSELT, “The Software Radio Concept’, IEEE
Communication Magazine, September 2000.
Tim Hentschel and Gerhard Fettweis, “Sample Rate Conversion for
Software Radio”, IEEE Communication Magazine, August 2000.
Alan V. Oppenheim, Alan Willsky and S. Hamid Nawab, “Signals and
Systems”, Prentice Hall, 2" Edition, 2000.
Alan V. Oppenheim and Ronald W. Schafer, “Discrete-Time signal
Processing”, Prentice Hall, 2001
Emmanual C. Ifeachor and Barrie W. Jervis, “Digital Signal
Processing, A Practical Approach”, Addison Wesely, 1999
Theodore S. Rappaport, “Wireless Communications, Principals and
Practice”, Prentice Hall, 1996.
John G. Proakis, "Digital Communications ”, McGraw Hill, Second
Edition, 1989.
Edward A. Lee and David G. Messerschmitt, “Digital
Communications”, Kluwer Academic Publishers, Second Edition, 1994.

Simon Haykin, “Adaptive Filter Theory”, Prentice Hall, Fourth
Edition,2002.

Dimitris G. Manolakis, Vinay K. Ingle and Stephen M.Kogon,
“Statistical and Adaptive Signal Processing”, McGRAW-HILL
Publishers, 2002.

Erwin Kreyszig, "Advanced Engineering Mathematics”, John Wiley
and Sons, 8" Edition, 1999.

Heinrich Meyr, Marc Moeneclaey and Stafen A. Fechtel, “Digital
Communication Receivers”, John Wiley and Sons, 1998.

Bernard Sklar, “Digital Communications, Fundamentals and

Applications”, Prentice Hall, 2nd Edition, 2001.

B.P Lathi, ” Modern Digital and Analog Communication Systems”,
Holt Saunders, 1983.

Simulation Of QPSK Transceiver clxxiii



[16]

[17]

[18]

[19]

[20]

Andrew S. Tanenbaum, “Computer Networks”, Prentice Hall, 3
Edition, 1996.
John A. C. Bingham, “The Theory and Practice of Modem Design”,
John Wiley and Sons, 1986.
C. E Shanon, “A Mathematical Theory of Communication”, Bell System
Technical Journal, Vol.27, July, October, 1948.
M. K Jain, S. R. K. Iyengar and R. K Jain, “Numerical Methods for Scientific
and Engineering Computation”, Wiley Eastern Limited, 3™ Edition, 1993.
Athanasios Papoulis, “Probablity, Random Variables and Stochastic
Processes”, McGraw Hill, 3™ Edition, 1991.

Simulation Of QPSK Transceiver clxxiv



Simulation Of QPSK Transceiver clxxv



