
Energy-Efficient, Green Job
scheduling for Geographically

Distributed Data Centers

By
Farrukh Mahmood

2011-NUST-MS-CS-016

Supervisor
Dr.Zahid Anwar

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of MSCS

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(August 2015)

Approval

It is certified that the contents and form of the thesis entitled “Energy-
Efficient, Green Job scheduling for Geographically Distributed Data
Centers” submitted by Farrukh Mahmood have been found satisfactory
for the requirement of the degree.

Advisor: Dr.Zahid Anwar
Signature:

Date:

Committee Member 1: Dr. Peter Charles Bloodsworth

Signature:
Date:

Committee Member 2: Dr. Hamid Mukhtar

Signature:
Date:

Committee Member 3: Dr. Asad Waqar Malik

Signature:
Date:

i

Abstract

Geographically distributed data centers are used as backbone infrastructure
by big IT companies to meet rapidly increasing IT services demands and as
the use of internet and information technology is increasing across the globe.
High energy consumption,increased operational expenditures and high car-
bon footprint are becoming points of great concern related to data centers.
In this work we present green aware, network aware, energy efficient job
scheduling mechanism for geographically distributed data centers.It consid-
ers availability of green energy at each data center to maximize utilization of
green energy, it considers the amount of under utilized computation resource
at individual data centers while assigning job to a data center, which helps
to achieve better server consolidation that results in better energy efficiency
and also considers network load at each data center which helps avoiding
hotspots in data center networks. This approach to data center selection
mechanism helps to create better balance between server consolidation and
network utilization at individual data centers. In this work we also present
a framework for simulating infrastructure of geographically distributed data
centers based on OMNET++, an open source object-oriented modular dis-
crete event network simulation framework. It also contains power consump-
tion model for calculation of energy consumption and a hierarchical statistics
collection model for performance evaluation. We have implemented and eval-
uated the performance of our job scheduling mechanism on this framework
to prove efficiency of our job scheduling mechanism.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Farrukh Mahmood
Signature:

iii

Acknowledgment

Thanks to Almighty Allah, by whom all faculties are blessed to me.
I offer my sincere gratitude to my supervisor Dr. Zahid Anwar, who has
supported and guided me throughout my thesis work with his patience and
knowledge. This thesis would not have been completed without his guide-
lines and encouragement.
I wish to take this opportunity to express my heartiest thanks and deep- est
sense of gratitude to Dr. Peter Charles Bloodsworth, Dr. Hamid Mukhtar
and Dr. Dr. Asad Waqar Malik who gave me opportunity to conduct this
study.
I would also like to thank all my friends and family members for their con-
tinuous encouragement and moral support.

iv

v

I dedicate this thesis to my deceased mother whose death was the greatest
and irreparable loss that I met during this endeavor.

Table of Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Thesis Aims and Objectives 4
1.3 Thesis Organization . 4

2 Related Research 5
2.1 Studies Related Single Data Center 5
2.2 Studies Related Multiple Data Center 6
2.3 Simulation Frameworks . 8
2.4 Conclusion . 9

3 Design and Methodology 10
3.1 Architecture . 10

3.1.1 Data Center Architecture 10
3.1.2 Scheduling Mechanism Architecture 11
3.1.3 Statistics Collection Mechanism Architecture 12
3.1.4 Traffic Simulation Mechanism Architecture 13

3.2 Energy Consumption Model 13
3.3 Workload Model . 14

4 Implementation 16
4.1 Tools and Libraries Used . 16

4.1.1 OMNET++ . 16
4.1.2 INET Framework . 19

4.2 Implementation of Proposed Framework 20
4.2.1 Class Diagram . 20
4.2.2 Implementation of Compound Modules 21
4.2.3 Implementation of Simple Modules 24

5 Evaluation 37
5.1 Comparison Baseline . 37

vi

TABLE OF CONTENTS vii

5.2 Evaluation Scenario . 38
5.2.1 Datacenter Setup . 38
5.2.2 Work Load . 38
5.2.3 Green Energy . 39

5.3 Results . 39
5.3.1 Energy Efficiency . 39
5.3.2 Green Energy Utilization 39
5.3.3 Network Performance 41

5.4 Discussion . 42

6 Conclusion and Future Work 44
6.1 Conclusion . 44
6.2 Future Work . 44

List of Figures

1.1 Data Center Operational Expenditure Breakup 2

3.1 Three Tier Architecture of Data center 11
3.2 Hierarchical Scheduling Mechanism 11
3.3 Hierarchical Scheduling Mechanism 12
3.4 Traffic Simulation Mechanism 13

4.1 Modules Hierarchy . 17
4.2 Class Diagram . 20

5.1 Normalized Green and Brown Energy Consumption 41
5.2 Network Performance Comparison 42

viii

List of Tables

2.1 Comparison of Simulation Frameworks 8

5.1 Datacenter Parameters . 38
5.2 Energy Efficiency Comparison 40
5.3 Green Energy Consumption %age of Total Energy 40

ix

Chapter 1

Introduction

1.1 Introduction

In recent years, cloud computing has evolved to provide cost effective IT ser-
vices. Fast penetration of IT services in human society across all continents
has made service providers to build large data centers in geographically dis-
tributed locations to cater these scaled up and distributed service demands.
This distribution of infrastructure has also enabled them to achieve reliability,
reduction in operational cost and better utilization of green energy sources.
Today, large companies like Google, Yahoo and Microsoft have adopted this
model to serve millions of users worldwide.

Cloud computing relies on large data centers at the back end to provide
services. Data centers consume lot of energy not only in account of large
amount of IT equipment but also for supporting cooling and power distri-
bution infrastructure. Energy consumption of data centers is expected to
double every five years [1].Increasing energy consumption in data centers in
not only becoming critical issue for service providers as it is becoming im-
portant factor in operational expenditures, also it is catching attention of
environment watchdogs[2][3]. Energy cost is projected to rise to half of op-
erational expenditures in few years from current 10% value [4]. Out of total
energy consumed by a data center, a handsome share of 40% is consumed by
IT equipment, which includes both computing servers and network hardware
while cooling system and power distribution system use 45% and 15% re-
spectively [5]. Two thirds of this 40% share is utilized by computing servers
while remaining one third is utilized by network hardware [6]. Figure 1.1
depicts the operational expenditure distribution of a typical data center.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Data Center Operational Expenditure Breakup

Rapid increase in energy footprint of data centers has resulted in bigger car-
bon foot print which has led to serious environmental concerns. At one level
efforts have been made to reduce the consumption of traditional brown energy
to reduce environmental impact. Techniques like DVFS (Dynamic Voltage
and Frequency Scaling) and DPM(Dynamic Power Management) were de-
veloped but this approach has very limited capacity to solve the problem.
As result of this,cloud service providers have started focusing on techniques
which incorporate partial utilization of green energy sources in data centers
[7].Consequently; interest of research community has increased in developing
techniques for integrating green energy into data centers ([8],[9], [10], [11],
[12]).

This wish to integrate green energy as power source along with conventional
brown energy adds complexity to the job scheduling problem in data centers.
This complexity arises from the mismatch between inherent intermittence of
green energy sources and fluctuating workloads of data centers.Green energy
generation variates between its minimum (approaching zero) and maximum
capacity over time. Work load also has peak hours and down hours during
different times of the day.If job scheduling is not done smartly, this mismatch
increases the chances for increased utilization of brown energy, hence under-
mining the objective of green energy integration.

In existing works, efforts have been made to address this challenge of mis-
match between green energy availability and data center workloads but these
have not effectively optimized the utilization of green or brown energy in ge-

CHAPTER 1. INTRODUCTION 3

ographically distributed data centers. Moreover, none of the work has con-
sidered network load at individual data centers while assigning jobs to data
centers, which is critical factor for the jobs which involve data transfers.

In this work we present green aware, network aware, energy efficient job
scheduling mechanism for geographically distributed data centers named
DDENS(Distributed Data center Energy-Efficient,Network-Aware schedul-
ing). This work is inspired by [13], which propose scheduling mechanism for
single data center. It tries to achieve balance between conflicting require-
ments of server consolidation and network load balancing. It considers work-
load profile of servers to achieve server consolidation for maximizing energy
conservation and network loads profile to avoid hotspots in the network. Our
work extends this approach to job scheduling mechanism of geographically
distributed data centers. Along with availability of green energy, it considers
work load profile in form of amount of under utilized computation resource
at individual data centers while assigning job to a data center, which helps
to achieve better server consolidation that results in better energy efficiency.

It also considers network load profile at each data center which helps to
achieve the objective of avoiding hotspots in data center networks. In short,
extension of this approach to the data center selection mechanism helps
achieving objective of balanced server consolidation and network performance
at individual data centers.

One other big challenge faced by researchers in this domain is lack access
to infrastructure. Researchers can not afford to own such big infrastructure
and companies owning it do not allow access to researchers. Solution to this
problem is simulation. Simulation frameworks have been developed to enable
researchers to conduct research in this domain.

In this work, we have also developed a simulation framework for geograph-
ically distributed data centers named GreenFrame. It contains power con-
sumption model for different active components of the system which lets to
calculate energy consumption of components as well as whole system. It also
contains hierarchical statistics collection mechanism, which allows collecting
different statistics about components, subsystem and system level. These
statistics can be used in job scheduling mechanism as well as performance
evaluation. Due to its modular structure, different global and local schedul-
ing mechanisms can be easily implemented. This framework is based on
OMNET++ [14], an open source object-oriented modular discrete event net-
work simulation framework and associated INET [15] framework, which is an

CHAPTER 1. INTRODUCTION 4

open source model library for developing models of communication networks

1.2 Thesis Aims and Objectives

This research aims to;

I. Development Energy Efficient, Network Aware, Green Job Scheduling
Algorithm for Geographically Distributed Data Centers.

II. Develop simulation Framework for Geographically Distributed Centers
based on OMNET++ Platform with Power consumption feature.

1.3 Thesis Organization

Rest of the thesis is organized as follow:

Chapter 2 at first discusses works already done related to both single data
centers and geographically distributed data centers and provide critical anal-
ysis of these efforts. Then ,it describes existing simulation platforms and
their comparison critical analysis.At the end, it draws conclusion from these
analysis.

Chapter 3 describes system architecture and working of proposed system.It
depicts and elaborates working of the data center architecture followed in this
work, hierarchical scheduling mechanism and hierarchical statistics collection
mechanism.At the end,it models the network traffic simulation mechanism
with in data center and describe it working.

Chapter 4 talks about implementation details. It describes structure of OM-
NET++, elaborates class diagram, and explains implementation of simple
and compound modules.

Chapter 5 describes evaluation of the system. It presents comparison study
with comparison baselines on basis of energy efficiency, green energy utiliza-
tion and network performance.I also concludes thesis work and highlights
future research directions.

Chapter 2

Related Research

This chapter at first describes and discusses efforts already made related to
achieving energy efficiency and green energy integration in single data centers
and provides critical analysis of existing solutions. Afterward, it discusses
previously done efforts related to achieving same objective in geographically
distributed data centers and provide critical analysis of these efforts. Then
,it describes three well known existing simulation platforms, analyzes their
features and provides comparison and critical analysis.At the end, it draws
conclusion from these analysis and establishes a case for our work.

2.1 Studies Related Single Data Center

Numbers of efforts have been made to use mixture of green energy with tra-
ditional energy sources in order to reduce the carbon footprint of data centers.

Work in [13], proposes a distinctive approach of job scheduling in single data
center by taking into account the requirement of network congestion avoid-
ance. This requirements in conflicting with one important requirement of
energy efficiency which is achieved through server consolidation. This work
achieves balance between these conflicting requirements by making schedul-
ing decision based on a metric which considers work load of servers, racks
and modules along with communication potential of access switches and ag-
gregate switches.This is very novel and elegant approach for job scheduling
but it does not take green energy integration into account.

Work in [16], uses a predictive green energy aware scheduling mechanism
for both service and batch jobs which utilizes short term prediction of solar
and wind energy production. It uses both solar and wind energy as green

5

CHAPTER 2. RELATED RESEARCH 6

energy source. Green energy prediction is made in 30 minutes intervals. At
the beginning of every batch job allocation interval, predictor estimates the
average green energy available in next interval and provides this data to
scheduler. Scheduler then computes number of green job slots available in
next interval and based on this data it schedules the jobs.

Work in[9], proposes GreenSlot, a solar and grid energy powered parallel
batch job scheduler for a data center.It uses green energy prediction, brown-
energy-cost-awareness, and least slack time first (LSTF) job ordering. It
tries to improve consumption of green energy, by predicting the amount of
green energy available in near future.It also ensures that job deadlines are
met. GreenSlot predicts the amount of solar energy that will be available
in the near future, and schedules the workload to improve the green energy
consumption while meeting the jobs deadlines. If green energy falls short,it
utilizes brown energy to meet deadlines.

In[10], proposes that for work loads with slack time, if we adjust the exe-
cution of work loads by playing with available slack times,we can converge
the difference between green energy availability and work loads, hence uti-
lization of green energy can be maximized.Scheduling algorithm uses follow
the energy approach,In this approach,if sufficient green energy supply is not
currently available,either due to low production or high consumption, jobs
with slack time are deferred to the time when either green energy produc-
tion increases or consumption decreases.This work considers scientific batch
jobs,where sufficient slack time is available. It considers wind as green energy
source.

One drawback in these approaches is that they only work for single data
center and are inherently unable to exploit the advantage of complimenting
green energy supplies in different regions. Secondly, besides [13], none of
them while scheduling jobs, consider possibility of development of network
hotspots, which may hinder the timely execution of communication inten-
sive jobs.Thirdly, they strive to improve share of green energy in over energy
consumption of data center,but ignore factor of efficiency of green energy
utilization itself.

2.2 Studies Related Multiple Data Center

Work in [17], proposes a frame work to intelligently exploit the difference
of brown energy costs during different day times in same region and across

CHAPTER 2. RELATED RESEARCH 7

different regions to reduce cost of energy consumption. It also exploits avail-
ability of green energy to minimize environmental impact.Framework applies
optimization based request distribution and enable service providers to man-
age energy consumption and cost by taking advantage of previously men-
tioned factors using one of two optimization policies.After every hour,service
provider front ends compute fractions of user requests using optimization
based policy and then distribute incoming requests during next hour accord-
ing to this computation.Second policy uses heuristics to first exploit data
center with best energy efficiency and then exploits cheap energy.

Work in [12], besides exploitation of different brown energy costs, investi-
gates the possibility for exploitation of geographical distribution of internet
scale systems for environmental gains. This research shows that remarkable
reduction in consumption of green energy can be achieved by adopting ”Fol-
low the renewable” approach in such distributed systems. It contributes i
three dimensions. First, a distributed algorithms for geographical load bal-
ancing wile assuring optimality. Second, algorithms to investigate impacts
of using geographical load balancing on demand response.Third,investigation
of the scenario in which data center is almost wholly powered by green energy.

Work in [18], provides a holistic job scheduling mechanism for geographi-
cally distributed data centers. It promises to decrease the consumption of
brown energy by replacing it with green energy. It caters the work loads
with sufficient slack. It considers amount of green energy available, outside
temperature,energy consumption of cooling systems related to data centers.
Factors related to workload like fluctuation,deadline and job structure are
also considered.

None of these studies consider network profile of a data center while schedul-
ing jobs to individual data centers. As a consequence its highly likely that
situation may regularly arise in data centers when jobs executing face se-
vere competition for network resources.This may result in network hot spots
within data centers. Moreover,they ignore the factor of efficiency of green
energy utilization itself.

CHAPTER 2. RELATED RESEARCH 8

2.3 Simulation Frameworks

In this section, we have reviewed three of well known simulation frameworks
in this domain.Cloudsim [19] is extensible simulation framework for model-
ing, simulation and experimentation of cloud infrastructures.Greencloud [20]
is packet-level simulator for energy-aware cloud computing data centers. It
provides facility for modeling of data center components energy consump-
tion.iCancloud[21] is simulation framework which provides ability to predict
trade-off between cost and performance in cloud infrastructure. Table 2.1
provides summary comparison between he three.

Feature Cloudsim GreenCloud iCanCloud
1 Platform Any NS2 OMNET++
2 Programming Language Java C++/OTcl C++
3 Availability OpenSource OpenSource OpenSource
4 Power Consumption Yes Yes No

Table 2.1: Comparison of Simulation Frameworks

Simulation frameworks exhibit some specific feature based on the plat-
form they are built on.Cloudsim is based on Java platform,so it can run
on any machine which is installed with JVM. Greencloud is a packet level
simulator, which is developed as an extension to NS2 simulation platform.
iCancloud is built on OMNET++ platform.

Every platform has associated language,in which further systems can be de-
veloped using that platform.Cloudsim is associated with Java. Greencloud
supports C++ and OTcl. OTcl is comparatively difficult to work with. iCan-
Cloud supports C++ as is the case with OMNET++. All three are available
as open source.

Energy efficiency is one of important objective of data center job scheduling
algorithms. Any simulation platform in this domain must provide feature to
compute energy consumption of data center components to evaluate schedul-
ing algorithm’s energy efficiency. Power consumption model enables a plat-
form to provide this feature. Cloudsim and Greencloud both possess power
consumption model and provide energy consumption calculation feature, but
iCancloud does not contain power consumption model.

CHAPTER 2. RELATED RESEARCH 9

OMNET++ is a discrete event simulation infrastructure, which is gaining
huge popularity in research community due to its areas of application and
flexible architecture.It has generalized structure and allows to build discrete
event simulation platforms, which monitor and account the interaction of
objects,as a result are time efficient and scalable.One of its strength is its
modular architecture which provides ability to develop reusable components
called modules.As shown in Table:2.1, iCanCloud,an existing well known
simulator based on OMNET++ does not support power consumption model
in order to evaluate energy consumption.Our proposed framework provides
this feature which allows to compute energy consumed by the data center
components. It includes energy model for both servers and network hardware.

2.4 Conclusion

In our literature study, we have noted that existing works in this domain, try
to take advantage of complimenting distributed green energy resources to de-
crease the utilization of green energy, try to achieve maximum possible energy
efficiency by server consolidation and also try to exploit other environmental
and data center features. These work do not consider and balance the con-
flicting requirement of network congestion avoidance at data centers, which
involves distribution of network traffic. Our work does take this conflicting
factor into account and creates a balance between energy efficiency by server
consolidation, Network Load and individual job performance.In purview of
absence of cloud simulation framework based on OMNET++ with power
consumption model,Our work also presents simulation framework for cloud
which contains power consumption model for servers and network hardware.

Chapter 3

Design and Methodology

This chapter describes system architecture and working of proposed system’s
major components.At first, it elaborates the data center architecture followed
in this work.Then it depicts major components of hierarchical scheduling
mechanism proposed in this work, models interaction among these compo-
nents and describe their working.Afterward, it elaborates major components
of hierarchical statistics collection mechanism,their internal coordination and
interaction with scheduling mechanism.At the end,it models the network traf-
fic simulation mechanism with in data center and describe it working.

3.1 Architecture

3.1.1 Data Center Architecture

Although because of modular design of our simulation framework,any data
center topology can be designed, in this work we have considered well known
and widely used three tier architecture for individual data center. Successors
of three tier architecture have been developed but it is still most widely used
architecture.It consists of three tiers.
Core Tier Provides the high-speed packet switching back plane for all flows
going in and out of the data center. The core layer provides connectivity to
multiple aggregation modules.
Aggregation Tier Provide important functions, such as service module in-
tegration, Layer 2 domain definitions, spanning tree processing, and default
gateway redundancy.
Access Tier This is where servers actually reside. Servers are arranged into
racks and connected to Top of Rack (ToR) switch. ToR’s connect to aggre-
gation tier switches. Four aggregation switches along with connected racks

10

CHAPTER 3. DESIGN AND METHODOLOGY 11

form modules.
we have assumed that we have homogenous computation and network hard-
ware in our data centers.

Figure 3.1: Three Tier Architecture of Data center

3.1.2 Scheduling Mechanism Architecture

In this work we have designed a hierarchical scheduling mechanism as shown
in Figure:3.2.It consists of a main scheduler which receives jobs from users
and after selecting appropriate data canter,forwards jobs to local scheduler of
that data center. Local data center using local scheduling mechanism selects
appropriate server and sends job to that server, where it is finally executed.

Figure 3.2: Hierarchical Scheduling Mechanism

CHAPTER 3. DESIGN AND METHODOLOGY 12

3.1.3 Statistics Collection Mechanism Architecture

Every scheduling mechanism needs statistics to make scheduling decision. In
this work we have designed a hierarchical statistics collection mechanism as
shown in Fig: 3.3.

Figure 3.3: Hierarchical Scheduling Mechanism

Every server has a statistics collector module.It collects information about
different parameters of the server. Statistical data from all servers in a rack
are accessed by statistics collector of that rack. Rack statistics collector also
collects statistics from ToR switch of that rack. All this information goes to
data center statistics collector, which also collects statistics from statistics
collectors of all switches from core-tier and aggregation tier. These statis-
tics collected by data center collector are used by local scheduler to make
scheduling decision for assigning incoming jobs to servers. Data center com-
putation load profile and network load profile is also sent by data center
statistics collector to Global statistics collector. Global statistics collector
provides statistics to main scheduler, which makes data center selection de-
cision based on these statistics.

CHAPTER 3. DESIGN AND METHODOLOGY 13

3.1.4 Traffic Simulation Mechanism Architecture

In our work network traffic profile is important scheduling factor and it’s
work load model consists of workloads having balanced processing and com-
munication needs. Network traffic simulation mechanism is shown in Fig:
3.4.

Figure 3.4: Traffic Simulation Mechanism

At access tier every rack consists of a traffic generator node and a traffic
sink node. At core tier a traffic sink node is connected to core network. To
simulate intra-data center traffic, traffic generator nodes at each rack gener-
ates 5KB*N data in form of UDP packets every second, where N is number of
jobs running in rack. This traffic is destined to traffic sink nodes of randomly
selected racks within data center. To simulate data center outbound traffic,
each traffic generator in racks generate 200Kbps*N bit stream destined to
sink node connected to core routers in core tier.

3.2 Energy Consumption Model

Most part of energy in server is utilized by processor, disk storage and net-
work. Energy consumption equation of a server is given as under[22].

CHAPTER 3. DESIGN AND METHODOLOGY 14

PCPU = 14.5 + 0.2UCPU + (4.5e−8)Umem + 0.003Udisk + (3.1e−8)Unet (1)
where
UCPU=Utilization of CPU
Umem= Utilization of Memory.
Udisk= Utilization of Hard Disk
Unet= Utilization of network interface.
Energy consumption model for network switch as under[23].

Pswitch = Pchassis+nlinecards Plinecard +
∑n

1 nports Pr (2)
where
Pchassis = Power consumed by the switch hardware
Plinecard= Power consumed by any active network line card.
Pr= Power consumed by a port running at the rate r.

An idle server utilizes 2/3 of peak energy and 1/3 energy is variably used
by processor with changing load.Two well known methods for energy saving
are DVFS(Dynamic Voltage Frequency Scaling) and DPM (Dynamic Power
Management). DVFS dynamically scales processor frequency up and down
with changing load. It’s impact is limited to 33% of energy utilized by pro-
cessor. DPM shuts down the idle hardware.So, provides much high energy
efficiency when properly applied. Due to high potential for power saving we
have used DPM as power saving method.

3.3 Workload Model

Cloud work loads are represented by jobs,which are defined by parame-
ters like, computation requirement, deadline,communication requirement and
slack time. Cloud jobs are classified into three categories.
Computationally Intensive: These are the jobs like scientific compu-
tation,which have high computational requirements but very low commu-
nication requirements. These jobs don’t create problem of network con-
gestion. Good strategy is to schedule these jobs on minimum numbers of
servers,hence putting maximum number of servers and Network components
to shutdown/sleep.
Communication Intensive: These are the jobs like video streaming, which
have low computational resources demand but very high network resources
requirements.These jobs have high potential of creating network hotspots
in data centers. Its good policy to distribute these jobs such a way that
network load is distributed.It causes more energy consumption by network

CHAPTER 3. DESIGN AND METHODOLOGY 15

components.
Balanced: These type of jobs require both computation and network re-
sources proportionally. One needs to consider both server load and network
load while scheduling these kind of jobs.

In this work we have considered balanced workloads with reasonable slack.As
our work involves scheduling decision making based workload and network
load. Balanced work loads compliment our methodology. Reason able slack
times provide better opportunity to exploit differing availability of green en-
ergy sources in different regions.

Chapter 4

Implementation

This chapter explains implementation of the proposed solution. It starts
with comprehensive intro of Tools and Libraries used in which it explains
architecture and working of OMNET++ and features provided by INET
framework. It is followed by NED implementation of compound modules
and then C++ implementation of simple modules.

4.1 Tools and Libraries Used

In this work we have used OMNET++, a discrete event simulation develop-
ment environment along with its INET model library which provides model
for wired and wireless networks. This section provides overview of OM-
NET++ environment and utility of INET library.

4.1.1 OMNET++

OMNET++ is not a simulator itself,but provides an environment to develop
simulation frameworks. It has component based architecture and simulation
models can be developed from highly reusable components called modules.

4.1.1.1 Types of Modules

There are two types of modules in OMNET++. Simple Modules,which are
active modules and implement some kind of functionality in C++. Simple
modules group together in unlimited hierarchy to make Compound Modules
as shown in Figure: 4.1. In OMNET++ models are referred to as Networks
which depict system module. Model structures are defined in OMNET++
NED language.

16

CHAPTER 4. IMPLEMENTATION 17

Figure 4.1: Modules Hierarchy

4.1.1.2 Module Parameters

Parameters are used to define simple module’s behavior or model’s topology.
Parameters can be defined as numeric, string, boolean and XML data trees.
Parameters are assigned either in NED file or in omnetpp.ini file.

4.1.1.3 Messages,Gates,Links

Modules communicate by exchanging messages. A message can depict a
packet in data network, a job or any other mobile entity. Messages are
received and sent by modules through in gates and out gates via links which
are labeled as connections.

CHAPTER 4. IMPLEMENTATION 18

4.1.1.4 Module Definition

A simple module is defined in NED file as shown in Listing.4.1.

Listing 4.1: Simple Module NED Defination

1 Simple xmodule
2 {
3 parameters:
4 int capacity;
5 gates:
6 input in ;
7 output out;
8
9 }

Every simple module implements functionality using C++ in .cpp file as
shown in Listing 4.2.

Listing 4.2: Simple Module .cpp Implementation

1 class xmodule : public cSimpleModule
2 {
3 protected:
4 // The following redefined virtual function holds the algorithm.
5 virtual void initialize () ;
6 virtual void handleMessage(cMessage ∗msg);
7 };
8
9 void xmodule:: initialize ()

10 {
11 // Initialize is called at the beginning of the simulation.
12
13 }
14
15 void xmodule::handleMessage(cMessage ∗msg)
16 {
17 // The handleMessage() method is called whenever a message

arrives
18 }

Method initialize() is called at start of simulation and sets any initialization
parameters. Method handlemessage() actually implements the algorithm,it
executes whenever it receives message from other module or internally gen-
erated (to implement timers).

CHAPTER 4. IMPLEMENTATION 19

A compound module is defined in NED file as shown in Listing 4.3.

Listing 4.3: Compound Module NED Defination

1 module Host
2 {
3 parameters:
4
5 gates:
6
7 submodules:
8
9 connections:

10
11
12 }

A compound module may have simple modules or compound modules as sub
modules.

4.1.2 INET Framework

It is an open-source model library for the OMNeT++ simulation environ-
ment which provides facility to develop simulations of wired and wireless
networks. INET provides models for TCP/IP stack, Ethernet,802.11, Point
to Point protocol,server application models and many other components for
simulation of data networks.
In our work we have reused components provided by INET to avoid rein-
venting the wheel and have focused our attention to build the framework to
support simulation of job scheduling mechanism, implementation of power
model and integration of green energy.

CHAPTER 4. IMPLEMENTATION 20

4.2 Implementation of Proposed Framework

4.2.1 Class Diagram

Figure 4.2: Class Diagram

CHAPTER 4. IMPLEMENTATION 21

4.2.2 Implementation of Compound Modules

In this section we describe the NED implementation of compound modules
in this framework.

4.2.2.1 GreenFramework Network Module

This is system Module, highest in hierarchy and denoted as Network as per
syntax of OMNET++. Its NED Implementation is shown in Listing 4.4.

Listing 4.4: GreenFramework

1 network GreenFramework
2 {
3 submodules:
4 // DC1,DC2, depictdata centers .
5 DC1: Datacenter {};
6 DC2: Datacenter {};
7
8 // R1,R2, .depict Public Internet Routers.
9 R1: Router {};

10 R2: Router {};
11 .
12 GlobalScheduler: StandardHost {};
13 Gstatcollector : Globalstatcollector {};
14
15 // user racks to generate jobs .
16 RedUsers: UserRacks {};
17 WhiteUsers: UserRacks {};
18
19 // configurator to configure IPV4 configurations.
20 configurator : IPv4NetworkConfigurator {};
21
22 Connections:
23
24 }// end of Greenframe

It is composed of constituent data centers, Public Internet Routers,StandardHost
module named GlobalScheduler on which MainScheduler simple module is
running that implements scheduling algorithm for data center selection,a
global statistics collector module to compute system level statistics and pro-
vide to global scheduler for decision making.

CHAPTER 4. IMPLEMENTATION 22

4.2.2.2 Datacenter Module

This is compound Module that implements single data center following three
tier architecture as shown in Figure 3.1.Its NED Implementation is shown in
Listing 4.5.

Listing 4.5: DataCenter Module

1 module Datacenter
2 {
3 parameters:
4
5
6 gates:
7 .
8 submodules:
9 //Aggregation Tier switches

10 AS1[aggregateswitch]: GreenRouter {};
11 //Core Tier switches
12 CS1[corerouter]: GreenRouter {};
13 //Server racks
14 Rks[accessswitch]: DCRacks {};
15 //Local Scheduler
16 LocalScheduler: StandardHost {};
17 //datacenter statistics collector
18 DCcollector: Dcstatcollector{};
19 //Green energy Source
20 Gsource:GreenSource{};
21
22 connections :
23 .
24
25 }// end of Datacenter

It is composed of core tier switches,aggregation tier switches, Racks of servers,data
center statistics collector which collects data center level statistics ,green en-
ergy source and StandardHost module named LocalScheduler on which Lo-
calScheduler simple module is running that implements scheduling algorithm
for server selection.

CHAPTER 4. IMPLEMENTATION 23

4.2.2.3 UserRack Module

This is compound Module that implements the racks of user machines, which
are generating work load.Its NED Implementation is shown in listing 4.6.

Listing 4.6: User Rack Module

1 module UserRack
2 {
3 parameters:
4 ..
5 gates:
6
7 submodules:
8
9 computingServer[N]: DCHost {};

10 accessRouter: Router {};
11
12 connections:
13 .
14 }

It is composed of an top of rack switch, number of DCHost machines,each of
them running a instance of simple module DCUserApp, which implements
work load generation mechanism.

CHAPTER 4. IMPLEMENTATION 24

4.2.2.4 DCRack Module

This is compound Module that implements the racks of data center servers,
which execute user jobs.Its NED Implementation is shown in Listing 4.7.

Listing 4.7: Datacenter Rack Module

1 module DCRacks
2 {
3 parameters:
4
5 gates:
6
7 submodules:
8 //commputing servers
9 computingServer[N]: DCHost {};

10 //ToR Switches
11 accessswitch: GreenRouter { };
12 // Rack statistics collector
13 statcollector : Rstatcollector{};
14 // Network traffic generator
15 trafficgen : StandardHost{};
16 //Network traffic sink
17 trafficsink : StandardHost{};
18 connections:
19 ..
20 }

It is composed of an top of rack switch,number of DCHost machines,each of
them running a instance of simple module DCServerApp which implements
job execution mechanism,rack statistics collector, traffic generation and traf-
fic sink modules.

4.2.2.5 GreenRouter and DCHost

GreenRouter and DCHost extend NodebaseRouter and NodeBase classes of
INET framework and inherit most of functionality from there.

4.2.3 Implementation of Simple Modules

In this section we describe C++ implementation of simple modules in this
framework.

CHAPTER 4. IMPLEMENTATION 25

Algorithm 4.1 Main Scheduler Algorithm

1: Timer ← 0
2: epoch← tminutes
3: for job J from Job Queue Q with shortest slack do
4: t← Deadline
5: Pr ← ComputationRequirement
6: Rc ← CommunicationRequirement
7: end for
8: DC=SelectDC()
9: if DC 6= NULL then

10: Send(J,DC) //send Job J to Datacenter DC
11: else
12: Add(J,Q) //add Job J to Job queue Q
13: end if
14: function SelectDC
15: g ← NULL
16: D’ is empty Set
17: for all dεD do //D is set of all Data Centers
18: if Upc > PrandUnc > Rb then
19: D’+ {d}
20: end if
21: end for
22: for all d′εD′ do
23: if Gcofd

′ > g then //Gc is green energy capacity
24: g ← d′

25: end if
26: end for
27: return g
28: end function
29: if Timer == epoch then
30: ComputeProfile()
31: end if
32: procedure ComputeProfile
33: for all dεD do //D is set of all Data Centers
34: Gc ← duration(g)−current time //duration(g) gives duration of

green energy availability
35: Upc ← (2000 ∗ n1 + 4000 ∗ n2 + 6000 ∗ n3 + 8000 ∗ n4 + 10000 ∗

n5)/(n1 + n2 + n3 + n4 + n5)
36: Unc ← (b1 + b2 ++ bn)/n
37: Timer ← 0
38: end for
39: end procedure

CHAPTER 4. IMPLEMENTATION 26

4.2.3.1 Main Scheduler

This simple module implements mechanism for selection of data center for
scheduling incoming jobs.Its working is described in Algorithm 4.1.In lines 1
2,it sets timer to zero and value of epoch(time duration) after which main
scheduler computes profiles of data centers.In lines 3-7 it assesses the require-
ments of user job like deadline, processing requirement and communication
requirement. In line-8 calls procedure SelectDC, which is defined from line
14 to line 28. It first selects set of data centers whose work load profile Upc

and network load profile Unc satisfy the computation and communication
requirements of the Job.Out of this set of data centers it selects and returns
the data center with highest value of green energy available.

If SelectDC does return a Data Center job is sent to it otherwise job is
sent to job queue.After expiry of epoch,scheduler reassesses the profile of
data centers by calling procedure ComputeProfile.For each data center Com-
puteProfile does following; (1) In line 34, computes green energy availability
duration.(2) In lines 35 computes work load profile by calculating waited av-
erage of under utilized computational resources. It multiplies weight of each
of five load slabs computed in GlobalStatcollector with number of machines
in that slab and divide by sum of number of machines in all slabs. (3) in line
36,it computes network load profile by dividing sum of free bandwidth in all
active switches in data center by total number of active switches.

4.2.3.2 Local Scheduler

This simple module implements mechanism for selection of server for schedul-
ing incoming jobs.Its working is described in algorithm 4.2. From line 1 to
line 4,this algorithm initializes the variables like weighted coefficients α,β,γ,
proportional coefficient φ and bandwidth over provision factor δr. Then it
calls function ServerSelect() which is described in lines 7-19.Job is scheduled
to server returned by this function. ServerSelect() selects server on basis of
metric M described below
M = α. fs + β. fr + γ. fm (3)
where,
α= weighted co-efficient for servers, high value favours overloaded servers in
underutilized racks.
β= weighted coefficient for racks, high value favour computationally loaded
racks with low network activity.
γ= weighted coefficient for modules, higher value favors loaded modules.

CHAPTER 4. IMPLEMENTATION 27

Algorithm 4.2 Local Scheduler Algorithm

1: α← 0.7
2: β ← 0.2
3: α← 0.1
4: Setϕandδr
5: S=SelectSever()
6: Schedule(J,S) //Schedule Job J to Server S
7: function SelectDC
8: machine← 0
9: for all sεS do //S is set of all Servers

10: fs← Ls ∗Qr(q)
11: fr ← 1/n ∗ Σi = 1..n(Ls).Qm(q)
12: fm← 1/k ∗ Σj = 1..k(Lr(l))
13: M ← α.fs+ β.fr + γ.fm
14: if M > machine then
15: machine← s
16: end if
17: end for
18: return machine
19: end function

α + β + γ = 1 (4)
where,
fs = Ls Qr (q)φ/ δr (5)
where,
Ls is Load factor of Server,δr is bandwidth over provisioning factor at rack
switch,Qr(q)= Communication potential at access Switch Queue.φ is a coef-
ficient defining the proportion between Ls and Qr (q) in the metric. Given
that both Ls and Qr (q) must be within the range [0, 1] higher φ values will
decrease the importance of the traffic-related component Qr (q).
fr = 1/n * Σi=1..n (Ls).Qm(q)φ/ δr (6)
where, Qm (q) =Communication potential of module aggregation Switches
Queue.
fm = 1/k * Σj=1..k(Lr) (7)
where
k = number of racks in module.
Lr = Load factor of rack=1/n * Σi=1..n (Ls).

CHAPTER 4. IMPLEMENTATION 28

4.2.3.3 Globalstatcollector

This simple module implements mechanism for collection of statistics from
data center statistics collectors which are used by main scheduler for decision
making. Class Globalstatcollector is described in Listing 4.8.

Listing 4.8: Global Statistics Collector

1 class globalstatcollector : public cSimpleModule
2 {
3 private :
4 // datastructures to hold collected statistics
5 protected:
6 // to initialize datastructures and implement timer.
7 virtual void initialize () ;
8 //at expiry of each timer, collects statistics from DC statistics

collectors .
9 virtual void handleMessage(cMessage ∗msg);

10 public
11 // Methods used by main scheduler to get statistics
12 virtual double GetPloadmatrix(int);
13 virtual double GetNloadmatrix(int);
14 };

Initialize() method sets initial values of attributes and also implements timer.
handleMessage() method implements statistics collection logic and does so at
each expiry of timer.GetPloadmatrix() and GetNloadmatrix() public meth-
ods are used by main scheduler to access computational and network profile
data respectively.

CHAPTER 4. IMPLEMENTATION 29

4.2.3.4 DCstatcollector

This simple module implements mechanism for collection of statistics from
data center racks statistics collectors and statistics of network switches which
are used by local scheduler for decision making. It also generates data cen-
ter processing load and network load profile,which is passed on to Global
Statistics Collector. Class DCstatcollector is given in Listing 4.9.

Listing 4.9: Datacenter Statistics Collector

1 class DCstatcollector : public cSimpleModule
2 {
3 private :
4 // datastructures to hold collected statistics
5 protected:
6 // to initialize datastructures and implement timer.
7 virtual void initialize () ;
8 //at expiry of each timer, collects statistics from rack

statistics collectors .
9 virtual void handleMessage(cMessage ∗msg);

10 public
11 // Getter,Setter Methods for DC energy,processing profile and

network profile .
12 virtual void SetEnergy(double);
13 virtual double GetEnergy();
14 virtual void SetPload(double,int);
15 virtual double GetPload(int);
16 virtual void SetNload(double,int);
17 virtual double GetNload(int);
18 };

Initialize() method sets initial values of attributes and also implements timer.
handleMessage() method implements statistics collection logic and does so
at each expiry of timer. SetEnergy() and GetEnergy() methods are used to
access data center energy consumption data. SetPload() and GetPload() are
used to access data center work load profile data. SetNload() and GetNload()
are used to access data center network load profile data.

CHAPTER 4. IMPLEMENTATION 30

4.2.3.5 Rstatcollector

This simple module implements mechanism for collection of statistics from
statistics collectors of individual servers in a rack. These statistics are further
passed on to data center Statistics Collector. Class Rstatcollector is given in
Listing 4.10.

Listing 4.10: Rack Statistics Collector

1 class Rstatcollector : public cSimpleModule
2 {
3 private :
4 // datastructures to hold collected statistics
5 protected:
6 // to initialize datastructures and implement timer.
7 virtual void initialize () ;
8 //at expiry of each timer, collects statistics from server

statistics collectors .
9 virtual void handleMessage(cMessage ∗msg);

10 public
11 // Getter,Setter Methods for rack energy,server processing load,

rack processing load profile and network profile .
12 virtual void SetEnergy(double);
13 virtual double GetEnergy();
14 virtual void SetProcRate(double,int);
15 virtual double GetProcrate(int);
16 virtual void SetPload(double,int);
17 virtual double GetPload(int);
18 virtual void SetNload(double,int);
19 virtual double GetNload(int);
20 };

Initialize() method sets initial values of attributes and also implements timer.
handleMessage() method implements statistics collection logic and does so
at each expiry of timer. SetEnergy() and GetEnergy() methods are to ac-
cess rack’s energy consumption data. SetProcRate() and GetProcRate() are
used to access processing load of individual servers in the rack. SetPload()
and GetPload() are used to access rack’s work load profile. SetNload() and
GetNload() are used to access rack’s network load profile.

CHAPTER 4. IMPLEMENTATION 31

4.2.3.6 Sstatcollector

This simple module implements lowest level of statistics collection mech-
anism. It records statistics of individual server machine in which it re-
sides.These statistics are further passed on to rack Statistics Collector of
the rack in which this server machine resides. Class Sstatcollector is given in
Listing 4.11.

Listing 4.11: Server Statistics Collector

1 class Sstatcollector : public cSimpleModule
2 {
3 private :
4 // datastructures to hold collected statistics
5 protected:
6 // to initialize datastructures and implement timer.
7 virtual void initialize () ;
8 //at expiry of each timer, collects statistics from DCServerApp.
9 virtual void handleMessage(cMessage ∗msg);

10 public
11 // Getter,Setter Methods for server energy, and server processing

load.
12 virtual void SetEnergy(double);
13 virtual double GetEnergy();
14 virtual void SetProcRate(double);
15 virtual double GetProcRate(int);
16
17 };

Initialize() method sets initial values of attributes and also implements timer.
handleMessage() method implements statistics collection logic and does so
at each expiry of timer. SetEnergy() and GetEnergy() methods are used to
access server’s energy consumption. SetProcRate() and GetProcRate() are
used to access processing load of the server.

CHAPTER 4. IMPLEMENTATION 32

4.2.3.7 TrafficGenerator

This simple module implements traffic generation module that simulates net-
work load in data center. It generates amount of traffic proportional to work
load of rack in which it resides. Most of traffic is destined to randomly se-
lected rack’s traffic sink module to simulate intra data center network load
but small part is destined to traffic sink module in core tier of data center
to simulate data center outbound traffic. Class TrafficGenerator is given in
Listing 4.12.

Listing 4.12: Traffic Generator

1 class TrafficGenerator : public cSimpleModule
2 {
3 private :
4 // variables
5 protected:
6 // to initialize variables and implement timer.
7 virtual void initialize () ;
8 //at expiry of each timer, generates traffic .
9 virtual void handleMessage(cMessage ∗msg);

10 virtual IPvXAddress chooseDestAddr();
11 virtual void setSocketOptions();
12 virtual cPacket ∗createPacket();
13 virtual void sendPacket();
14
15 };

Initialize() method sets initial values of attributes and also implements timer.
handleMessage() method implements logic to generate traffic. chooseDestAddr()
method chooses destination address for generated traffic. setSocketOptions()
sets socket options for out going packets. createPacket() creates traffic pack-
ets and sets payload proportional to rack’s work load. sendPacket() method
sends traffic packet created.

CHAPTER 4. IMPLEMENTATION 33

4.2.3.8 TrafficSink

This simple module implements traffic disposing mechanism for traffic gen-
erated by Traffic Generator module to simulates network load in data center.
Class TrafficSink is given in Listing 4.13.

Listing 4.13: Traffic Sink

1 class TrafficSink : public cSimpleModule
2 {
3 private :
4 // variables
5 protected:
6 // to initialize variables .
7 virtual void initialize () ;
8 //at arrival of traffic , disposes it off .
9 virtual void handleMessage(cMessage ∗msg);

10 virtual void processPacket(cPacket ∗msg);
11 };

Initialize() method sets initial values of variables. handleMessage() method
implements logic to dispose every incoming traffic packet using method pro-
cessPacket().

CHAPTER 4. IMPLEMENTATION 34

4.2.3.9 DCServerApp

This simple module implements functionality of data center server.It executes
incoming jobs and compute energy consumed. Class DCServerApp is given
in Listing 4.14.

Listing 4.14: Data Center Server Application

1 class DCServerApp: public cSimpleModule
2 {
3 private :
4 // variables
5 protected:
6 virtual void initialize (int stage) ;
7 virtual void handleMessage(cMessage ∗msg);
8 virtual void updateTskListQ;
9 void updateTskComputingRatesQ;

10 void setComputingRate();
11 void eUpdateQ;
12 void setCurrentConsumption();
13 double getMostUrgentTaskRate();
14 double getCurrentLoad();
15 void sched(double delay, cMessage ∗msg);
16
17 };

Initialize() method sets initial values of variables. handleMessage() method
implements logic to execute Incoming jobs and energy computation using
following methods. updateTskList() updates task list to see which tasks are
completed. updateTskComputingRates() updates computing rate of every
task. setComputingRate() sets computing rate of server. eUpdate() updates
the total energy consumed.setCurrentConsumption() sets current energy con-
sumption rate of server. getMostUrgentTaskRate() Compute highest MIP-
S/deadline ratio in task list. getCurrentLoad() gives current load of server.
sched() schedules next job.

CHAPTER 4. IMPLEMENTATION 35

4.2.3.10 DCUserApp

This simple module implements functionality of data center server.It executes
incoming jobs and compute energy consumed. Class DCServerApp is given
in Listing 4.15.

Listing 4.15: Data Center User Application

1 class DCUserApp: public cSirnpleModule
2 {
3 private :
4 // variables
5 protected:
6 virtual void initialize (int stage) ;
7 virtual void handleMessage(cMessage ∗msg);
8 virtual I PvXAddresschooseDestAddr();
9 virtual CloudTask ∗createCloudTaskPacket();

10 virtual cPacket sattachTaskParameters(cPacket ∗pk);
11 virtual void sendPacket();
12 virtual void setSocketOptions();
13
14 };

Initialize() method sets initial values of attributes and also implements timer.
handleMessage() method implements logic to generate jobs. chooseDestAddr()
method chooses destination address which is address of Main Scheduler. cre-
ateCloudTaskPacket() creates job structure packet. attachTaskParameters()
attaches job parameter to created job structure packet. setSocketOptions()
sets socket options. sendPacket() method sends job packet created.

CHAPTER 4. IMPLEMENTATION 36

4.2.3.11 GreenSource

This simple module implements functionality of data center green energy
source.It simulates intermittency and variability of green energy source over
different regions. Class GreenSource is given in Listing 4.16.

Listing 4.16: Green Source

1 class GreenSource: public cSimpleModule
2 {
3 private :
4 // variables
5 protected:
6 virtual void initialize (int stage) ;
7 virtual void handleMessage(cMessage ∗msg);
8 virtual double getEnergy()
9 };

Initialize() method sets initial values of attributes and also implements timer.
handleMessage() method implements logic to simulates intermittency and
variability of green energy source. getEnergy() method is used to access
value of available green energy.

Chapter 5

Evaluation

This chapter details the evaluation of Distributed DENS(DDENS), proposed
job scheduling algorithm for geographically distributed data centers. This
evaluation is done using GreenFrame, framework proposed in our work. It
provides features for evaluation of energy consumption by computation ma-
chines, network components, overall system, network performance and in-
tegration of green energy sources into data centers.Evaluation shows that
DDENS not only provides very good energy efficiency,better green energy
utilization but also provides much better network performance.

5.1 Comparison Baseline

We have used three algorithms as comparison baselines to evaluate our work.

I. Round Robin Algorithm(RR): In this case both global scheduler and
all local schedulers are running RR algorithm. It distributes incoming
workload equally without any parameter consideration.It is a good base
case for evaluation of a scheduling algorithm.

II. MinBrown Algorithm(MB): tries to minimize brown energy usage in data
centers.

III. RR+DENS: In this case we are running RR at global scheduler,which
distributes jobs equally to data centers.At local schedulers,we are run-
ning DENS.

Factors considered in comparison are energy efficiency, utilization of green
energy and network congestion avoidance.

37

CHAPTER 5. EVALUATION 38

5.2 Evaluation Scenario

In this work we have considered four data centers DC1, DC2, DC3 and DC4.
Each located in different time zone for the purpose of simulating different
green energy availability levels

5.2.1 Datacenter Setup

We have used three tier data center topology as shown in figure. 3.1. We
have assumed that our data center consists of homogeneous computation and
network hardware. Each server consists of single core of 10,000MIPS (Million
Instructions per Second) computation power. Energy consumed by a server
at peak load is taken 225 watts same as class 2006 volume server [24]. Data
center topology information is given in table below.

Sr. Parameter Value
1 Servers 1536
2 Racks 32
3 Servers per Rack 48
4 Access Switches 32
4 Aggregation Switches 8
4 Core Switches 4
4 Server-Access Switch link 1 G
4 Fat Tree Network links 10 G

Table 5.1: Datacenter Parameters

Network Load Network traffic is simulated using mechanism shown in
Figure.3.4. Traffic generator module generates 200kbps *N bit stream des-
tined to core tier sink to simulate data center outbound traffic where, N is
number of jobs running in that rack. It also generates constant UDP packets
of size 5KB*N every second where N is number of jobs in the rack, which are
destined to randomly selected racks traffic sink to simulate intra data center
traffic.

5.2.2 Work Load

Dead lined Jobs are generated by DCUserApp module in user racks. Rate
of job generation is defined by exponential function of time exponential(t).

CHAPTER 5. EVALUATION 39

These jobs come with balanced processing and communication demands with
15 % to 50% slack time.

5.2.3 Green Energy

Maximum green energy available is kept to 50% of maximum energy demand
of data center. Green energy availability of a data center varies between zero
and maximum. At any instance of time one data center is in 0% bracket
of maximum green energy capacity, one is in 33% bracket, one is in 66%
bracket and one is in 100%. It is simulated in a way that, over simulated
period, each data center provides equal supply of green energy, so as a result,
all data centers receive approximately same amount of work load, maximum
load of each data center goes up to 50% of its capacity and average load of
a data center remains approximately 30% of capacity.

5.3 Results

This section elaborates the results of comparison evaluation.It describes the
results for overall energy efficiency, utilization of green energy and network
performance in terms of congestion avoidance.

5.3.1 Energy Efficiency

Table 5.2 provides comparison of energy consumed by Servers, Network and
whole data centers while using RR(Round Robin),MB(MinBrown),RR+DENS(Round
Robin plus DENS) and DDENS(Distributed DENS).

5.3.2 Green Energy Utilization

Table 5.3 shows comparison of green energy utilization as %age of total en-
ergy consumption. It shows that MinBrown achieves 40% improvement over
Round Robin in utilization of green energy and DDENS achieves 52% im-
provement. DDENS out performs both baselines on this important scale.

CHAPTER 5. EVALUATION 40

Parameter Power Consumption kWh

Datacenter Entity RR MB RR+DENS DDENS

DC1
Datacenter 852.6k 417.4k(49%) 485.9(57%) 443.9k(52%)
Server 686.9k 309.5k(45%) 364.1(53%) 331.7k(48%)
Network 165.7k 107.9k(65%) 119.5 (72%) 112.2k(67%)

DC2
Datacenter 839.1k 401.8k(48%) 478.2(57%) 433.6k(52%)
Server 682.3k 299.3k(44%) 380.6(55%) 327.4k(48%)
Network 156.8k 102.5k(65%) 114.6(73%) 106.2k(68%)

DC3
Datacenter 857.9k 410.0k(48%) 489.0(57%) 455.9k(53%)
Server 691.7k 304.7k(44%) 366.7(53%) 340.1k(49%)
Network 166.2k 105.3k(63%) 117.8(71%) 115.8k(70%)

DC4
Datacenter 845.3k 416.4K(49%) 481.6(57%) 447.5k(53%)
Server 685.1k 310.3k(45%) 369.9(54%) 332.9k(49%)
Network 160.5k 106.1k(67%) 116.8(73%) 114.6k(71%)

Table 5.2: Energy Efficiency Comparison

Algorithm Type DC1 DC2 DC3 DC4

Round Robin
Green 24.8 % 22.3% 26.9% 23.1%
Brown 75.2% 77.7% 73.1% 76.9%

MinBrown
Green 34.7% 30.2% 37.6% 34.5%
Brown 65.3% 69.8% 62.4% 65.5%

RR+DENS
Green 28.2% 25.6% 30.1% 27.8%
Brown 71.8% 74.4% 69.9% 72.2%

DDENS
Green 42.7% 38.9% 45.9% 39.1%
Brown 57.3% 61.1% 54.1% 60.9%

Table 5.3: Green Energy Consumption %age of Total Energy

Figure 5.1. shows comparison of normalized average value of consumption
of green energy, brown energy and total energy at all four data centers against
all four techniques.these values are normalized against average of total energy
consumed by RR algorithm.

CHAPTER 5. EVALUATION 41

Figure 5.1: Normalized Green and Brown Energy Consumption

5.3.3 Network Performance

Figure 5.2 depicts the network performance of all network switches in all data
centers in terms of avoidance of network congestion. It shows that in case of
Round Robin all switches are minimally burdened , so there is no chance of
congestion.It happens because Round Robin distributes jobs equally across
the data center so network load is also equally distributed, but the cost is
very poor energy efficiency and green energy utilization.On the other hand,
MinBrown tries to schedule jobs on minimum portion of data center,as a
result all network demand is put to small portion of network, which causes
some switches to face congestion. DDENS also tries to schedule jobs on
minimum number of servers,while avoiding network congestion.Small cost of
this gain is that it uses few more network switches and servers as compared to
MinBrown.RR+DENS ovoids network congestion as DENS is running at each
data center’s local scheduler,but it’s performance is compromised against
DDENS because it is running RR at global scheduler,which does not support
local schedulers in achieving best balance of network load distribution and
server consolidation

CHAPTER 5. EVALUATION 42

Figure 5.2: Network Performance Comparison

5.4 Discussion

Table. 5.2 shows that MinBrown on average utilizes 48.5% of energy con-
sumed by base case of Round Robin algorithm. For RR+DENS and DDENS
this value is 57% and 52% respectively.It shows that all three achieve very
good energy efficiency, as compared to base case of RR.It is when we we
compare them with each other, we get insight about their working and per-
formance.

If we compare MB and DDENS, we see that DENS uses 3.5% more energy
on average than MB. This fact along with,facts provided by network per-
formance analysis in Figure.5.2 conform to very design rationale of DDENS
and highlights its advantage over MB. Design rationale of DDENS focuses on
achieving balance between network load distribution and energy consump-
tion. MB does not take into account any effort to avoid network congestion
and schedules jobs on minimum possible numbers of servers. As is result
congestion occurs at some of switches as shown in network performance com-
parison.In effort to avoid network hotspots, DDENS utilizes small number
of extra servers,which leads to this small fraction of extra energy consump-
tion.Gain achieved against this small cost in very valuable as shown in Fig-
ure.5.2. that no network switch enters in state of congestion in this case.

CHAPTER 5. EVALUATION 43

If we compare RR+DENS with others, we see that it consumes 8.5% more en-
ergy as compared to MB and 4.5% more energy as compared with DDENS.Its
over and above difference of energy consumption with DDENS proves and
highlights the advantage and usability of our concept of extending DENS
approach at distributed level. It verifies that global scheduler in our work
compliments the objective of achieving energy efficiency at data centers lo-
cally.

When discussing utilization of green energy,Table.5.3 and Figure. 5.1 pro-
vides us with following insight. On average,DDENS better utilizes green
energy by 7%, which proves worth of our work on this scale too. While com-
paring RR+DENS , we see that its green energy utilization is poor than MB
and DDENS and more trending towards performance of RR. This is because
like RR,it is also not making any effort to match the work load with green
energy availability.

Chapter 6

Conclusion and Future
Directions

In this chapter we present a conclusion on the basis of evaluation and com-
parison results depicted in chapter 5. We also state future directions for
work, in future work section of this chapter.

6.1 Conclusion

In the light of discussion in previous chapter we reach the conclusion that,DDENS
not only provides us very good energy efficiency and better green energy
utilization,but also provides additional safeguard function against network
congestion. It balances the tradeoff between energy efficiency through server
consolidation and network requirement distribution. Hence it is very promis-
ing job scheduling mechanism for geographically distributed data centers with
green energy integration, specially where jobs involve communication along
with computation.

6.2 Future Work

Our future includes following.

I. Adding job migration facility, so that under process jobs with reasonable
work remaining can be migrated to other data center, when green en-
ergy supply is downgraded at data center where it is currently running.

II. Adding sleep state functionality to Servers, so that instead of shutting
down idle servers , they are put to sleep. It will help reducing hardware
wear & tear caused by repeated shutdown and power up.

44

Bibliography

1. J. Koomey, “Worldwide electricity used in data centers”, Environmental
Research Letters, pages 3:1–3:8, 2008.

2. Fan, X., Weber, W.-D., Barroso, L.A., “Power provisioning for a warehouse-
sized computer”, in Proceedings of the ACM International Symposium on
Computer Architecture, San Diego, CA, June 2007.

3. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., Zhu, X.,”No
“power” struggles: Coordinated multi-level power management for the data
center”, in: APLOS (2008).

4. Gartner Group, 2011. [Online]. Available: http://www.gartner.com/
5. Brown, R.,”Report to congress on server and data center energy efficiency”,

public law 109-431, Lawrence Berkeley National Laboratory, Berkeley, 2008.
6. Shang, L., Peh, L.-S., Jha, K.N.,” Dynamic voltage scaling with links for power

optimization of interconnection networks”, in Proceedings of the 9th
International Symposium on High-Performance Computer Architecture,
(2003).

7. Data Center knowledge, “How googles data centers use renewable energy,”
2011. [Online].
Available:http://www.datacenterknowledge.com/archives/2011/09/08/howgoog
les-data-centers-use-renewable-energy/

 8. I. Goiri, et al. GreenHadoop,”Leveraging green energy in data-processing
 frameworks”, in Proceedings of EuroSys’12, pages 57–70, 2012.
 9. I. Goiri, “GreenSlot Scheduling energy consumption in green datacenters”, in
 Proc. of SC’11, pages 20:1–20:11,2011.
 10. A. Krioukov,” Integrating renewable energy using data analytic systems:
 Challenges and opportunities”, IEEE Data Engineering Bulletin, pages 1–9,
 2011.
 11. Y. Zhang,”GreenWare, Greening cloud-scale data centers to maximize the
 use of renewable energy”, in Proceedings of Middleware’11, pages 143–
 164, 2011.
 12. Z. Liu, ”Greening geographical load balancing”, in Proc. of SIGMETRICS’11,
 pages 233–244, 2011.
 13. D Kliazovich, P Bouvry, SU Khan,”DENS: data center energy-efficient,
 network-aware scheduling”, Cluster computing 16 (1), 65-75.2013.
 14. OMNET++.[Online]. Available: https://omnetpp.org/.
 15. INET.[Online]. Available: https://inet.omnetpp.org/.
 16. B. Aksanli,”Utilizing green energy prediction to schedule mixed batch and
 service jobs in data centers”, in Proceedings of HotPower’11, pages 5:1
 5:5, 2011.
 17. K. Le,” Cost- and energy-aware load distribution across data centers”, in
 Proceedings of HotPower’09, pages 1–5, 2009.
 18. R. Chen, X. Weng, B. He, M. Yang, B. Choi, and X. Li,” Improving large graph
 processing on partitioned graphs in the cloud”, in Proceedings of ACM
 SoCC’12, 2012.
 19. CloudSim. [Online]. Available: http://www.cloudbus.org/cloudsim/
 20. GreenCloud . [Online]. Available: http://greencloud.gforge.uni.lu/
 21. iCanCloud. [Online]. Available:
 http://www.arcos.inf.uc3m.es/~icancloud/Home.html

http://www.gartner.com/

 22. Amazon EC2. [Online]. Available: http://aws.amazon.com/ec2/
 23. Mahadevan, P., Sharma, P., Banerjee, S., Ranganathan, P.,” Energy aware
 network operations”, in IEEE INFOCOM Workshops, pp. 1–6 (2009)
 24. JG Koomey,” Estimating total power consumption by servers in the US and
 the world”, Oakland, CA: Analytics Press. 2007.

