
i 
 

Inaccuracy in Touch Screen Tapping 

 

 

 

Author 

Mamoona Javaid 

2011-NUST-MS-CS-01 

 

Supervisor 

Dr. Muhammad Muddassir Malik 

 

DEPARTMENT OF COMPUTING 

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

JULY, 2015 

 

 



ii 
 

Inaccuracy in Touch Screen Tapping 

 

Author 

Mamoona Javaid 

2011-NUST-MS-CS-01 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

MS Computer Science 

 

Thesis Supervisor: 

Dr. Muhammad Muddassir Malik 

 

 

Thesis Supervisor’s Signature:_____________________________________ 

 

 

DEPARTMENT OF COMPUTING 

SCHOOL OF ELECTRICAL ENGINEERING & COMPUTER SCIENCE 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

JULY, 2015 

 

  



iii 
 

 

 

Certificate 
 

Certified that the contents of thesis document titled “Inaccuracy in Touch Screen Tapping” submitted by Miss 

Mamoona Javaid have been found satisfactory for the requirement of degree.  

 

Advisor:  ___________________________ 

Dr. Muhammad Muddassir Malik 

 

 

 Committee Member1: _________________ 

     Dr. Aimal Rextin   

  

 

Committee Member2: __________________ 

                 Dr. Hamid Mukhtar      

 

 

    Committee Member3: __________________ 

  Mr. Shamyl Bin Mansoor 

 

  

NUST School of Electrical Engineering and Computer Science 
         A center of excellence for quality education and research 



iv 
 

Declaration 

I certify that this research work titled “Inaccuracy in Touch Screen Tapping” is my own work. 

The work has not been presented elsewhere for assessment. The material that has been used from 

other sources it has been properly acknowledged / referred.  

 

 

 

Signature of Student  

Mamoona Javaid 

2011-NUST-MS-CS-01 

 

 

 

 

 

 

 

 

 

 

 



v 
 

 

Language Correctness Certificate 

This thesis has been read by an English expert and is free of typing, syntax, semantic, grammatical 

and spelling mistakes. Thesis is also according to the format given by the university.  

 

 

 

 

 

 

 

Signature of Student  

Mamoona Javaid 

2011-NUST-MS-CS-01 

 

 

Signature of Supervisor 



vi 
 

Acknowledgements 

All praises are due to ALLAH, the most Merciful, and most Beneficent, Who has guided me 

throughout this work. I am thankful the Almighty ALLAH for the guidance and endless help, he 

bestowed on me during my thesis. 

I am indebted to my family and friends, who supported and helped me along this journey by 

providing the moral and emotional support I needed to complete my thesis. To them, I am eternally 

grateful. 

I take this honor to express my gratitude to my supervisor Dr. Muhammad Muddassir Malik for 

his guidance and patience throughout my whole thesis.  

It’s worth mentioning to appreciate Dr. Aimal Rextin for being on my thesis guidance committee 

and for his extraordinary support and assistance. He helped me find a way out for every issue I 

faced. 

I would also like to thank Dr. Hamid Mukhtar, and Mr. Shamyl Bin Mansoor for being on my 

thesis guidance committee. 

 

 

 

 

 



vii 
 

 

 

 

 

 

 

Dedicated to my exceptional parents, adored siblings and benevolent 

husband whose tremendous support and cooperation led me to this 

wonderful accomplishment 

  



viii 
 

Abstract 

Smart phones have become an essential handheld computing device in recent years. People use 

their phones while performing various routine activities such as standing, walking, traveling, 

shopping, eating, working etc. Text entry is one of the most common feature on smart phones. 

Performing routine activities and typing accurately on phones simultaneously has become difficult 

for users especially with touch screen keyboards. Touch screen keyboards also known as virtual 

keyboards lack tactile feedback and their typing mistakes are higher than physical keyboards. 

Although there has been extensive research in area of virtual keyboards for improving text entry 

on smart phones, still we lack a keyboard which can work better in all activities. Most of the 

research incorporated text entry in static position which can tackle stationary activities such as 

sitting, standing or lying down. While today’s demand is more than just static activities.  In recent 

years walking activity has also been considered. As a result of this ongoing research many 

keyboards have been developed. This work aims to find out specific keyboards for specific 

activities. Instead of developing one keyboard which can work better in all activities, we analyze 

the performance of 5 existing virtual keyboards in three activities. We developed an application 

for text entry and 30 participants were asked to perform testing of our application. Participants 

were asked to fill a survey at the end of each activity. ANOVA analysis and pairwise comparisons 

showed that Android Landscape performed better in travelling and walking activities while sitting 

activity doesn’t show any significant performance difference among keyboards. 

 



Contents

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Smart Phone Usage and Virtual Keyboards . . . . . . . . . . 2

2 Literature Review 4

2.1 Virtual keyboards . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Predictive Language Model . . . . . . . . . . . . . . . 4

2.1.2 Shifting touch position . . . . . . . . . . . . . . . . . . 5

2.1.3 Key-Target resizing . . . . . . . . . . . . . . . . . . . . 5

2.1.4 Custom layouts for virtual keyboards . . . . . . . . . . 6

2.2 Typing while walking . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Comparative studies of virtual keyboards . . . . . . . . . . . . 9

3 Methodology 10

3.1 Virtual Keyboards Selection . . . . . . . . . . . . . . . . . . . 10

3.1.1 Android Portrait, Android Landscape and Android 3x4

T9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1.2 Swiftkey . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.1.3 Thickbuttons . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Android Application . . . . . . . . . . . . . . . . . . . . . . . 11

ix



CONTENTS x

3.3 Phrase set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.5 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.6 Survey Questionnaire . . . . . . . . . . . . . . . . . . . . . . . 16

4 Data Analysis 17

4.1 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.1 Control . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.1.2 Randomization . . . . . . . . . . . . . . . . . . . . . . 18

4.2 ANOVA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Mistakes Data . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Time Data . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Usability Survey . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Conclusion and Future Work 26

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Appendices 28

A Usability Survey on Virtual Keyboards 29

B Measuring Usability with the USE Questionnaire 33

C Android Application for Text Entry Code 36

C.1 LoginActivity.java . . . . . . . . . . . . . . . . . . . . . . . . . 36

C.2 ActivitySelector.java . . . . . . . . . . . . . . . . . . . . . . . 40

C.3 MainActivity.java . . . . . . . . . . . . . . . . . . . . . . . . . 43



List of Figures

2.1 Key Target Resizing . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 QWERT Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Qwerth Layout . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 KALQ layout . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Android Portrait . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 Android 3x4 T9 . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3 Android Landscape . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Thickbuttons . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.5 Swiftkey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.6 Login or Register . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.7 Activity Selection . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.8 Keyboard to Select . . . . . . . . . . . . . . . . . . . . . . . . 13

3.9 Keyboard Selection . . . . . . . . . . . . . . . . . . . . . . . . 14

3.10 Text Entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Boxplot of mistakes data for sitting activity . . . . . . . . . . 20

4.2 Boxplot of mistakes data for walking activity . . . . . . . . . . 21

4.3 Boxplot of mistakes data for travelling activity . . . . . . . . . 21

4.4 Boxplot of time data for sitting activity . . . . . . . . . . . . . 21

4.5 Boxplot of time data for walking activity . . . . . . . . . . . . 22

xi



LIST OF FIGURES xii

4.6 Boxplot of time data for travelling activity . . . . . . . . . . . 22

4.7 Boxplot of Survey data for sitting activity . . . . . . . . . . . 25

4.8 Boxplot of Survey data for walking activity . . . . . . . . . . . 25

4.9 Boxplot of Survey data for travelling activity . . . . . . . . . . 25



List of Tables

4.1 Multiple comparisons of mistakes in sitting activity . . . . . . 19

4.2 Multiple comparisons of mistakes in walking activity . . . . . 20

4.3 Multiple comparisons of mistakes in travelling activity . . . . 20

4.4 Multiple comparisons of time data in sitting activity . . . . . . 22

4.5 Multiple comparisons of time data in walking activity . . . . . 23

4.6 Multiple comparisons of time data in travelling activity . . . . 23

4.7 Survey data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

xiii



Chapter 1

Introduction

1.1 Overview

These days, smart phones is an essential personal hand-held computing de-

vice, it is estimated that one third of all world population will be using smart

phones by the year 2017 [6]. Initially, mobile phones were used only to send

text messages or making phone calls, however these days a wide variety of

applications are available for smart phones [5]. Still, even now, text entry is

the most common activity on smart phones [13, 15]. Hence, it is reasonable

to assume that if the usability of text entry is improved in a smart phone,

then a significant impact on the overall usability of smart phone usage can

be achieved. This is probably the reason why software developers as well

as research community is continuously trying to develop improved virtual

keyboard for smart phones.

1



CHAPTER 1. INTRODUCTION 2

1.2 Smart Phone Usage and Virtual Keyboards

A common user uses her smart phone in a variety of different locations and

while doing many different activities [13]. It is reasonable to assume that

a majority of activities a user performs while using a mobile phone can be

divided into the following activity classes : user is stationary, user is walking,

and the user is travelling in a vehicle. These three types of activity classes

require different types of interfaces due to the accelerations experienced by

the body and differences in attention that a user can give to an interface

[27, 28, 7]. The current research in optimizing virtual keyboard focuses on

improving their efficiency and effectiveness when the user is performing a

single activity class. In terms of keyboards, increasing efficiency means re-

ducing the time in which a user inputs a particular text; while improving

the effectiveness of a keyboard means reducing the errors a user is likely to

make while she inputs a particular text. There has been extensive research

on improving text entry of virtual keyboards when the user is stationary

[20, 33, 36, 19] and some research when the user is walking [34, 26]. As a

result of this ongoing research many keyboards have been developed [3, 2, 1].

But, there has been no research on how one can optimize typing performance

across the three activity classes.

The three activity classes differ in terms of acceleration and body move-

ment. Thus typing across the three activity classes can be improved signif-

icantly if a smart phone is able to activate a virtual keyboard that is most

suitable for the current activity class of the user. Note that activity recogni-

tion is a well studied problem and several well established algorithms exist

for it [10, 39, 22, 16]. Activity recognition is used in many applications,

such as health care [8, 21] and context aware systems for elderly people [12].

It is now available on Android SDK, allowing programmers to develop ap-



CHAPTER 1. INTRODUCTION 3

plications that can behave differently when the user is performing different

activities [4]. However, keyboard performance across different activity classes

with the help of activity recognition algorithm can only be improved, if dif-

ferent keyboards have different performance in unequal activity classes. The

main contribution of this work, is to investigate the performance of 5 differ-

ent keyboards available on Android Play and study if their performance is

significantly different across unequal activity classes.



Chapter 2

Literature Review

Many different approaches have been used to improve typing experience of

users of virtual keyboards in recent years. This research has many aspects

like, virtual keyboard typing accuracy, typing while walking, comparative

analysis of various keyboards. We will briefly look into each of the aspect

and what work has already been done in that area.

2.1 Virtual keyboards

Virtual keyboards have been under consideration of researchers for many

years now. Lack of tactile feedback in virtual keyboards make them prone

to mistakes. Different techniques have been utilized for improving typing

experience of virtual keyboards. These techniques can be divided into sub-

categories as follows.

2.1.1 Predictive Language Model

Many of the available virtual keyboards use language model to predict the

next letter or complete word. This technique has been used drastically to

4



CHAPTER 2. LITERATURE REVIEW 5

facilitate users in speeding up their typing. A Language Model [18] predicts

the word based on the currently typed letters. It uses probability distribution

of strings to predict the correct word. Many virtual keyboards such as Swype,

Swiftkey, Thickbuttons etc. use language models either for word prediction

or next letter prediction. Google Android and Apple’s soft keyboards also

include language models. It is optional for the user to turn prediction on or

off in these built in keyboards.

2.1.2 Shifting touch position

Users hold mobile devices in a tilted position. Research showed that this

tilt in position results in touching below the target key [35]. The effect

of typing below the target can be alleviated by a shift in touched position

to accurately identify target key. Android keyboard already provides 10dp

upward shift in touched position. Dp refers to density independent pixels,

which is an abstract unit where 160dp equals to one inch. Henze et. al. [20]

presented an adaptive shift algorithm which improves performance of typing

accurately compared to the fixed 10dp shift. Adaptive shift is shifting the

center of touched distributions to the center of keys.

2.1.3 Key-Target resizing

Key-target is referred to a key’s hit area which is the square box bounding and

separating it from other keys’ areas. Many researchers proposed resizing of

key-target according to the predicted key based on a language model and the

actual touch position. The resized area is not squared area but can take any

shape according to the touched position shown in Figure 2.1. Gunawardana

et. al. [19] proposed an anchor key-target resizing algorithm. Anchor of a

key corresponds to the center area of the key which shouldn’t be assigned



CHAPTER 2. LITERATURE REVIEW 6

to other keys in process of key-target resizing. Anchor key-target resizing

adjusts the key sizes such that the key’s anchor still returns the actual key

instead of predicted key to avoid users facing a situation of not being able

to type an intended letter. Rudchenko et. al. [33] proposed personalized

key-target resizing which takes data of single user and resize the target key

according to the input of a specific user. This further improved performance

from general key-target resizing.

Figure 2.1: Key Target Resizing

2.1.4 Custom layouts for virtual keyboards

Most common layout for virtual keyboards is Qwerty. Although qwerty per-

forms well in physical keyboards, it fails to do so in virtual environment.

Researchers have explored many custom layouts [14, 30, 11, 38] for virtual

keyboards to improve typing speed. Yanshan Wang [38] proposed a novel

soft keyboard QWERT which is inspired by the Qwerty layout. QWERT is

designed with large buttons for easy access of letters however the large size

of buttons only allow a small numbers of direct access letters on screen. To

access other letters which are not directly available users need to touch and



CHAPTER 2. LITERATURE REVIEW 7

slide up the finger which can be annoying and time consuming. Qwert layout

is shown in Figure 2.2. Another similar layout QWERTH[14] was designed

by Dunlop et. al. with 5 keys per row. It also has the similar problem like

QWERT layout of two letters per key for some keys. It is shown in Figure

2.3. Oulasvirta et. al.[30] presented KALQ layout for easing two thumb en-

try. They proposed a keyboard with keys on two partitions shown in Figure

2.4. Many other layouts have also been designed such as Metropolis [40],

EasyWrite[11], and OPTI[25] to name a few but none of them gained pop-

ularity as the Qwerty layout did. Qwerty still remains the most common

layout and most research has been done to improve the typing experience of

Qwerty users.

Figure 2.2: QWERT

Layout

Figure 2.3: Qwerth Lay-

out

2.2 Typing while walking

Walking activity has also been under consideration by many researchers.

Schildbach et. al. [34] proposed that increase of button size by 20% and

40% reduce the error rate of typing while walking. Their results show that

increasing the size by 20% give significant improvements and increasing by



CHAPTER 2. LITERATURE REVIEW 8

Figure 2.4: KALQ layout

40% completely compensate the effect of walking. Goel et. al. [17] presented

a technique to improve typing accuracy while walking by incorporating mo-

bile phone’s accelerometer data. They used tap location, tap travelling, and

accelerometer values as features for their models. They proposed two models

distance and acceleration model and walking pattern model. Combining the

result of both models improves accuracy significantly. Ahmad et. al. [32]

developed NoShake, which dynamically compensates for screen shaking by

shifting the contents of screen to opposite direction of shaking. They used

accelerometer data to deduct shaking using an empirical threshold value and

applied a simple physics model mass-spring-damper to compensate for shak-

ing. The model is parametric and can be fine-tuned by the user. Hugo et al.

[29] related visually impaired user to motor impaired users and presented a

study where participants were given motor impaired interfaces for text entry

to compensate the visual demands of typing while walking. They analysed

the data from this study and developed new solutions for text entry improve-

ments. Although not much improvements they could achieve, they did found

out that Qwerty keyboard is still preferred over voice input.



CHAPTER 2. LITERATURE REVIEW 9

2.3 Comparative studies of virtual keyboards

Sachi et al. [26] did a comparative analysis of various soft button sizes to

determine which size is most suitable for walking activity. They developed a

testing program with four different keyboard sizes and tested over a number

of users with two activities i.e. standing and walking. They found 3mm key

size is suitable for text entry on soft keyboards. They further discovered

that bigger size doesn’t decrease error significantly. In this study customized

qwerty keyboards were used. Tom Page[31] presented an analysis of five

virtual keyboards available in market to show which keyboard works better.

This study focused on keyboard but not the activity, and the dataset was

very small. Only 6 participants were chosen for testing.

All these works tried to improve text entry on virtual keyboards. But

existing works either have focused on one activity for text entry problem or

if multiple activities have been under consideration then the purpose was to

develop a unique keyboard which can work better in all the activities. Instead

of developing new methods for typing accurately on virtual keyboards this

study explores the problems in typing using existing keyboards in activities

such as sitting, walking, and travelling.



Chapter 3

Methodology

3.1 Virtual Keyboards Selection

Five keyboards were selected to test under three different activities. The se-

lected keyboards are Android Portrait (Figure 3.1), Android Landscape(Figure

3.3), Android 3x4 T9 (Figure 3.2), Swiftkey (Figure 3.5)and Thickbuttons

(Figure 3.4).

3.1.1 Android Portrait, Android Landscape and An-

droid 3x4 T9

Android Portrait, Android Landscape and 3x4 T9 were selected because they

are the most commonly used keyboards by Android users due to the built

in availability. Another factor in choosing different variations of Android

keyboard is that Landscape and 3x4 T9 provides larger buttons than the

Portrait layout.

10



CHAPTER 3. METHODOLOGY 11

3.1.2 Swiftkey

Swiftkey keyboard is one of the best keyboard among all custom keyboards

[9, 37]. It utilizes the language model for word prediction. It not only

predicts the current word based on typed letters but also predicts next words.

Swiftkey learns users writing style and add the new words to its dictionary

for later prediction. It also provides gestures feature to facilitate typing

experience. Swipe up is used to switch to upper case writing. Swipe right to

left deletes the previous word. It also provides auto complete which can be

accomplished by pressing space-bar while typing a word.

3.1.3 Thickbuttons

Thickbuttons uses the technique of enlarging predicted keys for ease of selec-

tion. In Virtual keyboards it is a very common issue that keys are too small

to select with fingers and mostly fingers occlude multiple key areas. Thick-

buttons target this problem by enlarging the actual key size visually. As the

user types the letters prediction becomes narrower and fewer keys enlarge to

maximum, making it easy to select a desired key. However, due to constant

changing size of keys, it is hard to remember key location. The performance

of these keyboards was analysed in sitting, travelling and walking activity

classes.

3.2 Android Application

An Android application was developed for text entry on each keyboard. Mo-

tivation behind the application was to track the information about incorrect

typing. The question was, how incorrect typing can be measured. A person



CHAPTER 3. METHODOLOGY 12

Figure 3.1: Android

Portrait

Figure 3.2: Android 3x4

T9

Figure 3.3: Android Landscape

Figure 3.4: Thickbuttons

typing too slow can make few mistakes in typing while a person typing fast

can make more mistakes. Counting the number of incorrect letters alone was

not sufficient to measure inaccuracy. So an application was developed to log

information about mistakes and the time taken to enter a word. A Mistake

is an incorrect letter typed by the user. Time is the total time taken to enter



CHAPTER 3. METHODOLOGY 13

Figure 3.5: Swiftkey

a word. Mistake count and Time are accumulated for one keyboard to find

out total mistakes and total time.

Figure 3.6: Login or

Register

Figure 3.7: Activity Se-

lection

Figure 3.8: Keyboard to

Select

In the start of application, user is asked to enter demographic information

(Figure 3.6). After login, activity selection screen appears with three options



CHAPTER 3. METHODOLOGY 14

Figure 3.9: Keyboard

Selection
Figure 3.10: Text Entry

containing the three activity classes (Figure 3.7). On the next screen, a mes-

sage box appears showing which keyboard to select. It is shown in Figure

3.8. When user press Ok button, application invokes input method selection

setting which is shown in Figure 3.9. User is presented with a single word

at a time from the phrase to avoid problems arising from using space-bar

to separate words because the focus here was to analyse individual charac-

ter being typed (Figure 3.10. The application also displays upcoming words

for assistance considering the fact, when we type on our mobile phones we

usually know what we are going to type next. Once the user has completed

typing on one keyboard, the application tells user to select the next keyboard

which is displayed on the screen. Next keyboard is chosen at random by the

application.



CHAPTER 3. METHODOLOGY 15

3.3 Phrase set

Phrases were taken from MacKenzie and Soukoreffs phrase set [24]. This

phrase set is published specifically for evaluating text entry techniques by fo-

cusing on including those phrases which are short, easy to remember and are

representative of language. 45 phrases were selected for each activity from

the set. To ensure typing of all alphabets, five pangrams were also added.

These 50 phrases were divided among five keyboards equally. One pangram

was added to each keyboard phrase set.

3.4 Participants

30 users ageing from 15 years to 34 years were selected to use this applica-

tion for text entry. All of the users had touch screen experience of 1 year to

6 years. The group included students, engineers, and teachers. 60% of all

users used Qwerty Portrait keyboard for typing as their default keyboard.

Approximately 3% users used 3x4 T9. 30% users used Qwerty Portrait and

Qwerty Landscape alternatively while only 3% used Qwerty Landscape only.

3.5 Procedure

Users were given an introduction to the whole purpose of study and a practice

session to familiarize themselves with the application before starting testing.

Experiment was designed such that the user typed 50 phrases in one activity

and took a break. The whole experiment took around 1 hour per user. The

sequence of activities was different for each user to ensure randomization.



CHAPTER 3. METHODOLOGY 16

For walking and travelling activities special conditions applied which will be

discussed in next chapter.

3.6 Survey Questionnaire

Users were given a survey questionnaire at the end of each activity. The

survey contained questions regarding each keyboard. The purpose of the

survey was to obtain feedback of users about which keyboard they liked for

particular activity. The questions of Survey were taken from Lund’s Usability

Questionnaire[23]. The original questionnaire from Lund contained a large

number of questions. We took a small subset of questions from original

questionnaire. To choose what questions to include in our survey from the

usability questionnaire we conducted a small survey on 5 participants. All the

participants were University lecturers. They were given a brief introduction

of what we wanted to achieve from the survey. They were then given a

questionnaire containing all the questions from the original questionnaire

and they were asked to choose what questions they think should be included

in Survey. Based on their answers we formed a set of 8 questions for our

Usability survey.



Chapter 4

Data Analysis

4.1 Experimental Design

An experiment is to perform a series of actions on a group of objects to

carefully observe the response. The data generated from an experiment need

to be carefully analysed. The Design of Experiments (DOE) or Experimental

Design defines the steps or plan to perform experiment, acquire data, and

analyse it to answer question of interest for which experiment is carried out.

Experimental design first determines the objectives of an experiments. In

this study, the objective was to determine which keyboard perform better

than others for specific activity.

4.1.1 Control

It is essential to perform the experiment in identical conditions to avoid

external variables effecting the outcome of experiment. This is referred to as

control. To ensure control treatment, users were asked to walk at a constant

pace. For travelling activity, users were taken on a drive on a smooth road.

The driving speed was kept around 50km to 60km per hour. These conditions

17



CHAPTER 4. DATA ANALYSIS 18

were taken into account to ensure that each user has the same environment

for testing and testing is not effected by other variables such as driving speed

and walking pace etc.

4.1.2 Randomization

Randomization refers to randomly assigning objects or individuals to an ex-

perimental group. Randomization prevents from involving potential biases

or judgements. To ensure randomization users were given different sequence

of activities. Sequence of keyboards to appear in one activity was also ran-

domized. Moreover the phrases appear randomly for each keyboard.

4.2 ANOVA

For data analysis ANOVA is used. ANOVA refers to Analysis of Variance

which is a method to compare multiple means to find out significant dif-

ferences among them. To analyse which keyboard works better ANOVA

analysis is applied on mistakes and time data logged by the application.

4.2.1 Mistakes Data

ANOVA is applied on each activity mistakes data separately to determine

the performance of each keyboard in a given activity. Table 4.1 contains

data for multiple comparisons in sitting activity. Results showed that Sit-

ting activity data didn’t show any significant difference across keyboards

while walking and travelling data showed significant differences. We further

applied multiple comparisons on travelling and walking data to see which

keyboard’s performance differ significantly. Table 4.2 shows the results of



CHAPTER 4. DATA ANALYSIS 19

multiple comparisons of mistakes data in walking activity. With 5% level of

significance we can see Landscape has small percentage values compare to

other keyboards such as 3x4 T9, Swiftkey and Thickbuttons. While all other

keyboards have higher values specifying no performance difference among

them. Similarly Table 4.3 shows data of multiple comparisons of mistakes

data in travelling activity and Landscape keyboard has significantly smaller

values than other keyboards. Among all keyboards Qwerty Landscape key-

board has significant performance difference from other keyboards for both

activities i.e. travelling and walking. Multiple comparisons only show that

the difference exists but to ensure that this different is positive we analysed

box-plots of data and the results showed that Landscape performed better

than other keyboards for these two activities.

3x4 T9 Landscape Portrait Swiftkey

Landscape 1.00000 - - -

Portrait 1.00000 1.00000 - -

Swiftkey 1.00000 1.00000 1.00000 -

Thickbuttons 1.00000 1.00000 1.00000 1.00000

Table 4.1: Multiple comparisons of mistakes in sitting activity

4.2.2 Time Data

Multiple comparisons of total time taken by users in each activity is given in

tables 4.4, 4.5 and 4.6. In all the activities, 3x4 T9 keyboard has significant

time difference with other keyboards. From the box-plots of time data given

in Figures 4.4, 4.5, and 4.6, it is observed that 3x4 T9 took more time. Thus,

it can be concluded that 3x4 T9 performed worst in time among all keyboards



CHAPTER 4. DATA ANALYSIS 20

3x4 T9 Landscape Portrait Swiftkey

Landscape 0.012 - - -

Portrait 0.258 0.704 - -

Swiftkey 1.000 0.099 0.773 -

Thickbuttons 0.887 0.016 0.887 1.000

Table 4.2: Multiple comparisons of mistakes in walking activity

3x4 T9 Landscape Portrait Swiftkey

Landscape 0.00052 - - -

Portrait 0.43735 0.43735 - -

Swiftkey 0.83842 0.01361 0.83842 -

Thickbuttons 1.00000 0.00204 0.43735 1.00000

Table 4.3: Multiple comparisons of mistakes in travelling activity

Figure 4.1: Boxplot of mistakes data for sitting activity

for each activity.



CHAPTER 4. DATA ANALYSIS 21

Figure 4.2: Boxplot of mistakes data for walking activity

Figure 4.3: Boxplot of mistakes data for travelling activity

Figure 4.4: Boxplot of time data for sitting activity



CHAPTER 4. DATA ANALYSIS 22

Figure 4.5: Boxplot of time data for walking activity

Figure 4.6: Boxplot of time data for travelling activity

3x4 T9 Landscape Portrait Swiftkey

Landscape 0.05351 - - -

Portrait 0.00150 1.00000 - -

Swiftkey 0.00025 1.00000 1.00000 -

Thickbuttons 0.00015 1.00000 1.00000 1.00000

Table 4.4: Multiple comparisons of time data in sitting activity

4.3 Usability Survey

Survey questionnaire was taken from Lund’s Usability Questionnaire [23].

This questionnaire is divided into four categories of questions usefulness,



CHAPTER 4. DATA ANALYSIS 23

3x4 T9 Landscape Portrait Swiftkey

Landscape 0.11060 - - -

Portrait 0.04429 0.94666 - -

Swiftkey 0.00023 0.79412 0.94666 -

Thickbuttons 0.83816 0.94666 0.43914 0.11060

Table 4.5: Multiple comparisons of time data in walking activity

3x4 T9 Landscape Portrait Swiftkey

Landscape 0.483 - - -

Portrait 0.018 1.000 - -

Swiftkey 0.011 1.000 1.000 -

Thickbuttons 0.011 0.989 1.000 1.000

Table 4.6: Multiple comparisons of time data in travelling activity

ease of use, ease of learning, satisfaction. Overall scores of survey data is

shown in Figures 4.7, 4.8, and 4.9 for sitting, walking and travelling activity

classes respectively. Portrait keyboard was liked most by participants for sit-

ting activity while for walking and travelling activities Portrait and Swiftkey

keyboards both obtained good scores. To analyse it further we looked into

the scores for each category type. Table 4.7 contains score of each cate-

gory type for each keyboard in all activities. For sitting activity, Portrait

keyboard outperforms other keyboards. For travelling activity Swiftkey re-

ceived higher score for usefulness and ease of use categories while Portrait

received higher scores in other two categories. For walking activity Swiftkey

outperforms other keyboards except for ease of learning category in which



CHAPTER 4. DATA ANALYSIS 24

Portrait received slightly better scores.

From survey data we can see that participants favoured Portrait and

Swiftkey keyboards while the mistakes and time data showed different results.

Category type Activity Portrait Landscape 3x4 T9 Swiftkey Thickbuttons

Usefulness Travelling 316 274 202 336 242

Ease of use Travelling 496 446 328 510 450

Ease of learning Travelling 186 178 136 176 168

Satisfaction Travelling 332 260 198 294 246

Usefulness Walking 318 310 124 348 208

Ease of use Walking 500 498 404 508 382

Ease of learning Walking 192 192 148 188 150

Satisfaction Walking 332 280 196 350 200

Usefulness Sitting 348 298 246 310 224

Ease of use Sitting 544 494 358 488 368

Ease of learning Sitting 210 184 130 184 138

Satisfaction Sitting 372 292 186 282 216

Table 4.7: Survey data



CHAPTER 4. DATA ANALYSIS 25

Figure 4.7: Boxplot of Survey data for sitting activity

Figure 4.8: Boxplot of Survey data for walking activity

Figure 4.9: Boxplot of Survey data for travelling activity



Chapter 5

Conclusion and Future Work

5.1 Overview

Virtual keyboards have gained attention of researchers for many years. The

result of this ongoing research is improved better performing virtual key-

boards available in market. We aimed to find out performance of various

virtual keyboards in different activities. For this purpose we chose 5 key-

boards and performed a survey with 30 participants.

5.2 Conclusion

Android Portrait keyboard outperforms other keyboards in sitting activity.

This result was consistent among survey data and the data logged by our ap-

plication. As Android Portrait is used most commonly by users and sitting

is the native position in which typing is the primary task with no other dis-

traction on mind, this can be the reason why participants favoured Portrait

keyboard. While in other activities secondary tasks occlude human mind

such as in walking activity primary task can be typing but walking without

26



CHAPTER 5. CONCLUSION AND FUTURE WORK 27

getting bump into something is a secondary task. Thus a simple Portrait

keyboard doesn’t perform similar in those activities. Our application logged

data showed that Android Landscape keyboard performed well with lesser

mistakes made in these activities. Android Landscape utilize full length of

Mobile phones for keyboard keys hence keys are bigger in size. Feedback

from participants showed that Swiftkey Keyboard was liked by the users in

usefulness and ease of use categories. We performed testing on Swiftkey key-

board in Portrait layout. We believe if Swiftkey is used in landscape layout,

it can outperform Android Landscape keyboard. 3x4 T9 performed worst in

all cases. Thickbuttons keyboard was on average.

5.3 Future Work

Swiftkey keyboard can be tested in landscape layout in walking and travelling

activities to see if performance improved. During our testing, participants

face most problem in typing while travelling. Cumulative result for Mistakes

was also highest for travelling activity. To the best of our knowledge there

isn’t any significant research been done for typing while travelling. We think

this is a new challenge for researchers of virtual keyboards. Furthermore we

only tested 5 keyboards. There are a number of other keyboards in market

and can be tested for walking and travelling activity classes.



Appendices

28



Appendix A

Usability Survey on Virtual

Keyboards

29



Usability Survey On Virtual Keyboards Of Mobile Devices 

 

Name:____________________________________________________________________________ 

Age:__________________________  Profession:_________________________________ 

Gender: Male  Female    

Experience of touch screen typing:  Yes  No 

Which touch screen keyboard are you using (you can select multiple)? 

 Qwerty Portrait    3x4 T9     Swiftkey  

 Swype       Qwerty landscape   Thickbuttons 

 Other, please specify   ___________________________________________________________   

How long have you been using touch screen keyboard?  _____________________________________ 

Please select your activity 

 Sitting     Walking    Traveling  

Kindly provide feedback for the keyboards you have used in testing application. 

Android Portrait 

  Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

1. It helps me be more productive.      

2. It saves me time when I use it.      

3. It requires the fewest steps possible to 
accomplish what I want to do with it.  

    

4. I can use it without written instructions.      

5. I can recover from mistakes quickly and easily.      

6. I learned to use it quickly.      

7. I am satisfied with it.      

8. I feel I need to have it.      

 

  



Android Landscape 

  Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

1. It helps me be more productive.      

2. It saves me time when I use it.      

3. It requires the fewest steps possible to 
accomplish what I want to do with it.  

    

4. I can use it without written instructions.      

5. I can recover from mistakes quickly and easily.      

6. I learned to use it quickly.      

7. I am satisfied with it.      

8. I feel I need to have it.      

 
 
 
 
 
 
 

     

Android 3x4 T9 

  Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

1. It helps me be more productive.      

2. It saves me time when I use it.      

3. It requires the fewest steps possible to 
accomplish what I want to do with it.  

    

4. I can use it without written instructions.      

5. I can recover from mistakes quickly and easily.      

6. I learned to use it quickly.      

7. I am satisfied with it.      

8. I feel I need to have it.      

 

  



Swiftkey Keyboard 

  Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

1. It helps me be more productive.      

2. It saves me time when I use it.      

3. It requires the fewest steps possible to 
accomplish what I want to do with it.  

    

4. I can use it without written instructions.      

5. I can recover from mistakes quickly and easily.      

6. I learned to use it quickly.      

7. I am satisfied with it.      

8. I feel I need to have it.      

 

 

 

 

Thickbuttons Keyboard 

  Strongly 
Agree 

Agree Neutral Disagree Strongly 
Disagree 

1. It helps me be more productive.      

2. It saves me time when I use it.      

3. It requires the fewest steps possible to 
accomplish what I want to do with it.  

    

4. I can use it without written instructions.      

5. I can recover from mistakes quickly and easily.      

6. I learned to use it quickly.      

7. I am satisfied with it.      

8. I feel I need to have it.      

 



Appendix B

Measuring Usability with the

USE Questionnaire

33



Measuring Usability with the USE Questionnaire 

Lund, Arnold (Arnie) M. 

2008-09-05 

 

USEFULNESS Include Neutral Remove 

1. It helps me be more effective.    

2. It helps me be more productive.    

3. It is useful.     

4. It gives me more control over the activities in my life.     

5. It makes the things I want to accomplish easier to get done.     

6. It saves me time when I use it.     

7. It meets my needs.     

8. It does everything I would expect it to do.     

EASE OF USE    

9. It is easy to use.     

10. It is simple to use.     

11. It is user friendly.    

12. It requires the fewest steps possible to accomplish what I 

want to do with it.  

   

13. It is flexible.     

14. Using it is effortless.     

15. I can use it without written instructions.     

16. I don't notice any inconsistencies as I use it.     

17. Both occasional and regular users would like it.     

18. I can recover from mistakes quickly and easily.     

19. I can use it successfully every time.     

EASE OF LEARNING    

20. I learned to use it quickly.     

21. I easily remember how to use it.     

22. It is easy to learn to use it.     

23. I quickly became skillful with it.     

SATISFACTION    

24. I am satisfied with it.     

25. I would recommend it to a friend.     



26. It is fun to use.     

27. It works the way I want it to work.     

28. It is wonderful.     

29. I feel I need to have it.     

30. It is pleasant to use.     

 



Appendix C

Android Application for Text

Entry Code

C.1 LoginActivity.java

36



package com.example.typingwalk; 

 

import android.app.Activity; 

import android.content.Intent; 

import android.os.Bundle; 

import android.text.TextUtils; 

import android.view.KeyEvent; 

import android.view.View; 

import android.view.inputmethod.EditorInfo; 

import android.widget.EditText; 

import android.widget.TextView; 

 

/** 

 * Activity which displays a login screen to the user 

 */ 

public class LoginActivity extends Activity { 

 

 // Values for email and password at the time of the login attempt. 

 private String mName; 

 private String mAge; 

 

 // UI references. 

 private EditText mNameView; 

 private EditText mAgeView; 

 

 @Override 

 protected void onCreate(Bundle savedInstanceState) { 

  super.onCreate(savedInstanceState); 

 

  setContentView(R.layout.activity_login); 

 

  // Set up the login form. 

  mNameView = (EditText) findViewById(R.id.name); 

 

  mAgeView = (EditText) findViewById(R.id.age); 

  mAgeView 

    .setOnEditorActionListener(new 

TextView.OnEditorActionListener() { 

     @Override 

     public boolean onEditorAction(TextView 

textView, int id, 

       KeyEvent keyEvent) { 

      if (id == R.id.login || id == 

EditorInfo.IME_NULL) { 

       attemptLogin(); 

       return true; 

      } 

      return false; 

     } 

    }); 

 

 

  findViewById(R.id.sign_in_button).setOnClickListener( 

    new View.OnClickListener() { 



     @Override 

     public void onClick(View view) { 

      attemptLogin(); 

     } 

    }); 

 } 

 

 /** 

  * Attempts to sign in or register the account specified by the 

login form. 

  * If there are form errors (invalid email, missing fields, etc.), 

the 

  * errors are presented and no actual login attempt is made. 

  */ 

 public void attemptLogin() { 

 

  // Reset errors. 

  mNameView.setError(null); 

  mAgeView.setError(null); 

 

  // Store values at the time of the login attempt. 

  mName = mNameView.getText().toString(); 

  mAge = mAgeView.getText().toString(); 

 

  boolean cancel = false; 

  View focusView = null; 

 

  // Check for a valid age 

  if (TextUtils.isEmpty(mAge)) { 

  

 mAgeView.setError(getString(R.string.error_field_required)); 

   focusView = mAgeView; 

   cancel = true; 

  } 

 

  // Check for a valid name 

  if (TextUtils.isEmpty(mName)) { 

  

 mNameView.setError(getString(R.string.error_field_required)); 

   focusView = mNameView; 

   cancel = true; 

  } 

 

  if (cancel) { 

   // There was an error; don't attempt login and focus the 

first 

   // form field with an error. 

   focusView.requestFocus(); 

  } else { 

   Intent intent = new Intent(this, 

ActivitySelector.class); 

   intent.putExtra("name", mName + mAge); 

   startActivity(intent); 

   finish(); 



  } 

 } 

  

} 



APPENDIX C. ANDROID APPLICATION FOR TEXT ENTRY CODE40

C.2 ActivitySelector.java



package com.example.typingwalk; 

 

import android.support.v7.app.ActionBarActivity; 

import android.support.v7.app.ActionBar; 

import android.support.v4.app.Fragment; 

import android.content.Intent; 

import android.os.Bundle; 

import android.view.LayoutInflater; 

import android.view.Menu; 

import android.view.MenuItem; 

import android.view.View; 

import android.view.ViewGroup; 

import android.widget.RadioButton; 

import android.os.Build; 

 

public class ActivitySelector extends ActionBarActivity { 

 

 private int ActivityType; 

 private String userName; 

 @Override 

 protected void onCreate(Bundle savedInstanceState) { 

  super.onCreate(savedInstanceState); 

  setContentView(R.layout.activity_selector); 

  Intent intent = getIntent(); 

  userName = intent.getStringExtra("name"); 

   

 } 

  

 public void onRadioButtonClicked(View view) { 

     // Is the button now checked? 

     boolean checked = ((RadioButton) view).isChecked(); 

      

     // Check which radio button was clicked 

     switch(view.getId()) { 

         case R.id.radSitting: 

             if (checked) 

                 ActivityType = 0; 

             break; 

         case R.id.radWalking: 

             if (checked) 

                 ActivityType = 1; 

             break; 

         case R.id.radtraveling: 

          if (checked) 

                 ActivityType = 2; 

             break; 

     } 

 } 

  

 public void onStartTesting(View view){ 

  Intent intent = new Intent(this, MainActivity.class); 

  intent.putExtra("activitytype", ActivityType); 

  intent.putExtra("name", userName); 

  startActivity(intent); 



 } 

 

} 



APPENDIX C. ANDROID APPLICATION FOR TEXT ENTRY CODE43

C.3 MainActivity.java



package com.example.typingwalk; 

 

import java.io.Console; 

import java.io.File; 

import java.io.FileNotFoundException; 

import java.io.FileOutputStream; 

import java.io.IOException; 

import java.io.PrintStream; 

import java.util.ArrayList; 

import java.util.Calendar; 

import java.util.List; 

import java.util.Random; 

 

import android.text.Editable; 

import android.text.SpannableString; 

import android.text.TextWatcher; 

import android.util.Log; 

import android.app.Activity; 

import android.app.AlertDialog; 

import android.content.Context; 

import android.content.DialogInterface; 

import android.content.Intent; 

import android.content.res.Configuration; 

import android.hardware.Sensor; 

import android.hardware.SensorEvent; 

import android.hardware.SensorEventListener; 

import android.hardware.SensorManager; 

import android.os.Bundle; 

import android.os.Environment; 

import android.os.Message; 

import android.view.Menu; 

import android.view.MenuItem; 

import android.view.View; 

import android.view.inputmethod.InputMethodInfo; 

import android.view.inputmethod.InputMethodManager; 

import android.widget.EditText; 

import android.widget.LinearLayout; 

import android.widget.TextView; 

 

public class MainActivity extends Activity /*implements 

SensorEventListener*/ 

{ 

 private String[] mWords; 

 private TextView mTop, mSecTop, mLast, mSecLast; 

 private TextView mTypingText; 

 private EditText mInputText; 

 private int mStartPoint = 0; 

 private int[] mTexts; 

 private String currWord; 

 private String typingWord; 

 private SensorManager manager = null; 

 private Sensor accelerometer = null; 

 private boolean bTyping = false; 

 private String letter; 



 private String intendedletter; 

 private String strSensorData; 

 private String[] arrPhraseSet; 

 private ArrayList<Integer> keyboardsInd = new ArrayList<Integer>(); 

 private Random rand = new Random(); 

 private AlertDialog chooseKeyboard; 

 private int ActivityType = 0; 

 private String activityFile = ""; 

 private ArrayList<Integer> phraseInd = new ArrayList<Integer>(); 

 private ArrayList<Integer> pangramInd = new ArrayList<Integer>(); 

 private long wordStartTime = 0; 

 private Calendar calendar = Calendar.getInstance(); 

 private int currKeyboard; 

 private String Keyboardlogging = ""; 

 private int numberOfMistakes = 0; 

 private String userName; 

 private Activity _that = this; 

 InputMethodManager imeManager; 

 

 @Override 

 protected void onCreate(Bundle savedInstanceState) { 

  super.onCreate(savedInstanceState); 

  Intent intent = getIntent(); 

  ActivityType = intent.getIntExtra("activitytype", 0); 

  userName = intent.getStringExtra("name"); 

   

  imeManager = (InputMethodManager) 

getApplicationContext().getSystemService(INPUT_METHOD_SERVICE); 

  String keyboardtype = ChooseNextKeyboard(); 

  chooseKeyboard = new AlertDialog.Builder(this).create(); 

  chooseKeyboard.setTitle("Next Keyboard to Choose"); 

  chooseKeyboard.setMessage(keyboardtype); 

  chooseKeyboard.setButton(DialogInterface.BUTTON_POSITIVE, 

"OK", new DialogInterface.OnClickListener() { 

   public void onClick(DialogInterface dialog,int id) { 

    imeManager.showInputMethodPicker(); 

    imeManager.showInputMethodPicker(); 

   }}); 

  chooseKeyboard.show(); 

   

   

  setContentView(R.layout.fragment_main); 

   

   

   

  LoadPhrases(); 

   

   

   

  mTop = (TextView) findViewById(R.id.topTextview); 

  mSecTop = (TextView) findViewById(R.id.SecondTopTextView); 

  mTypingText = (TextView) findViewById(R.id.TypingTextView);  

  mLast = (TextView) findViewById(R.id.LastTestView); 

  mSecLast = (TextView) findViewById(R.id.secondLastTextView); 



  mInputText = (EditText) findViewById(R.id.InputEditText); 

   

  mTexts = new int[]{ 

    R.id.topTextview, 

    R.id.SecondTopTextView, 

    R.id.TypingTextView, 

    R.id.secondLastTextView, 

    R.id.LastTestView, 

  }; 

   

  mTop.setText(mWords[0]); 

  mSecTop.setText(mWords[1]); 

  mTypingText.setText(mWords[2]); 

  mSecLast.setText(mWords[3]); 

  mLast.setText(mWords[4]); 

  currWord = mWords[2]; 

  typingWord = ""; 

  intendedletter = ""; 

  mStartPoint = 0; 

   

  mInputText.addTextChangedListener(new TextWatcher() { 

    

   @Override 

   public void onTextChanged(CharSequence s, int start, int 

before, int count) { 

    if(wordStartTime == 0){ 

     calendar = Calendar.getInstance(); 

     wordStartTime = calendar.getTimeInMillis(); 

     Log.e("time start: ", 

Long.toString(wordStartTime)); 

    } 

    if(bTyping == false){ 

     bTyping = true; 

    } 

    String str = s.subSequence(start, 

start+count).toString(); 

    letter = str.toLowerCase(); 

    if(start+count <= currWord.length() ){ 

     intendedletter = currWord.substring(start, 

start+count).toLowerCase(); 

    } 

     

    typingWord += str; 

    if(s.toString().contains("\n")) 

    { 

     calendar = Calendar.getInstance(); 

     Long temp = calendar.getTimeInMillis(); 

     Log.e("end time: ", Long.toString(temp)); 

     Long timetaken = calendar.getTimeInMillis() 

- wordStartTime; 

     Keyboardlogging += Long.toString(timetaken) 

+ "," + 

        GetKeyboardName(currKeyboard) + 

"," + currWord + "," + s.toString(); 



     numberOfMistakes = 0; 

     wordStartTime = 0; 

     TextView tv; 

     mStartPoint++; 

     if(mStartPoint + 1 > arrPhraseSet.length){ 

      writeStringToTextFile(Keyboardlogging , 

activityFile); 

      if(keyboardsInd.size() == 5){ 

       _that.finish(); 

       return; 

      } 

      String keyboardtype = 

ChooseNextKeyboard(); 

     

 chooseKeyboard.setMessage(keyboardtype); 

      chooseKeyboard.show(); 

      mStartPoint = 0; 

      LoadPhrases(); 

     } 

     int index = mStartPoint; 

     mInputText.setText(""); 

     for(int i=0; i<5; i++) 

     { 

      tv=(TextView) findViewById(mTexts[i]); 

      if(index <= mWords.length-1){ 

       tv.setText(mWords[index]); 

       if(i == 2) 

       { 

        currWord = mWords[index]; 

       } 

       //break; 

      } 

      else 

       tv.setText(""); 

      index++; 

     } 

      

    } 

    

   } 

   @Override 

   public void beforeTextChanged(CharSequence s, int start, 

int count, 

     int after) { 

    // TODO Auto-generated method stub 

    Log.w("testing app 

beforetextchange:",s.toString()); 

     

   } 

    

   @Override 

   public void afterTextChanged(Editable s) { 

     

   } 



  }); 

   

   

 } 

  

 private void writeStringToTextFile(String s, String f) 

 { 

  File sdCard = Environment.getExternalStorageDirectory(); 

  File dir = new File (sdCard.getAbsolutePath()); 

  dir.mkdirs(); 

  File file = new File(dir, f); 

  if(!(file.exists())){ 

            try{ 

                file.createNewFile();}  

            catch(Exception e){ 

               return;}} 

  try 

  { 

      FileOutputStream f1 = new FileOutputStream(file,true); 

//True = Append to file, false = Overwrite 

      PrintStream p = new PrintStream(f1); 

      p.print(s); 

      p.close(); 

      f1.flush(); 

      f1.close(); 

  }  

  catch (FileNotFoundException e) 

  { 

  }  

  catch (IOException e)  

  { 

  }    

 } 

 

 @Override 

 public boolean onCreateOptionsMenu(Menu menu) { 

 

  // Inflate the menu; this adds items to the action bar if it 

is present. 

  getMenuInflater().inflate(R.menu.main, menu); 

  return true; 

 } 

 

 @Override 

 public boolean onOptionsItemSelected(MenuItem item) { 

  int id = item.getItemId(); 

  switch(id){ 

  case R.id.action_settings: 

   imeManager.showInputMethodPicker(); 

   return true; 

  case R.id.action_keyboard: 

   chooseKeyboard.show(); 

   return true; 

  } 



   

  return super.onOptionsItemSelected(item); 

 } 

  

 private void LoadPhrases(){ 

   

  String[] phrases = 

getResources().getStringArray(R.array.phrases_sitting); 

  String[] pangrams = 

getResources().getStringArray(R.array.pangrams_sitting); 

 

  switch(ActivityType){ 

  case 0: 

   activityFile = userName + "_sitting.txt"; 

   break; 

  case 1: 

   activityFile = userName + "_walking.txt"; 

   phrases = 

getResources().getStringArray(R.array.phrases_walking); 

   pangrams = 

getResources().getStringArray(R.array.pangrams_walking); 

   break; 

  case 2: 

   activityFile = userName + "_traveling.txt"; 

   phrases = 

getResources().getStringArray(R.array.phrases_traveling); 

   pangrams = 

getResources().getStringArray(R.array.pangrams_traveling); 

   break; 

  } 

   

  int nCount = 1; 

  int nIndex = GetNextIndex(pangramInd, 5); 

  pangramInd.add(nIndex); 

  String words = pangrams[nIndex]; 

  while(nCount < 10){ 

   nIndex = GetNextIndex(phraseInd, 45); 

   phraseInd.add(nIndex); 

   words += " " + phrases[nIndex]; 

   nCount++; 

  } 

  arrPhraseSet = words.split(" "); 

 

  int size = arrPhraseSet.length + 2; 

  mWords = new String[size]; 

  for(int i = 0; i < size; i++) 

  { 

   if(i<=1) 

    mWords[i] = ""; 

   else 

    mWords[i] = arrPhraseSet[i-2].trim(); 

  } 

 } 

 



 private String ChooseNextKeyboard(){  

  int currInd = GetNextIndex(keyboardsInd, 5);  

  keyboardsInd.add(currInd); 

  currKeyboard = currInd; 

  return GetKeyboardName(currInd); 

 } 

  

 private int GetNextIndex(ArrayList<Integer> list, int limit){ 

  int currInd = rand.nextInt(limit); 

  Object obj = new Object(); 

  obj = currInd; 

  while(list.contains(obj)){ 

   currInd = rand.nextInt(limit); 

   obj = currInd; 

  } 

  return currInd; 

 } 

 

 private String GetKeyboardName(int index){ 

  switch(index){ 

  case 0: 

   return "Portrait"; 

  case 1: 

   return "Landscape"; 

  case 2: 

   return "3x4 T9"; 

  case 3: 

   return "SwiftKey"; 

  case 4: 

   return "Thickbuttons"; 

  } 

  return "Portrait"; 

 } 

  

 @Override 

 public void onConfigurationChanged(Configuration newConfig) { 

  super.onConfigurationChanged(newConfig); 

  LinearLayout bottomcontainer = (LinearLayout) 

findViewById(R.id.bottomContainer); 

  if(newConfig.orientation == 

Configuration.ORIENTATION_LANDSCAPE) 

  { 

    

   bottomcontainer.setVisibility(View.GONE); 

  } 

  else 

  { 

   bottomcontainer.setVisibility(View.VISIBLE); 

  } 

 } 

 

} 



REFERENCES

[1] Autocorrect that actually works. [Online; accessed 17-06-2015].

[2] Keyboard that enlarges buttons. [Online; accessed 17-06-2015].

[3] Type fast, swype faster. [Online; accessed 17-06-2015].

[4] Google apis for android. 2015. [Online; accessed 17-06-2015].

[5] Number of apps available in leading app stores as of may 2015. 2015.

[Online; accessed 17-06-2015].

[6] Number of smartphones sold to end users worldwide from 2007 to 2014

(in million units). 2015. [Online; accessed 17-06-2015].

[7] Joanna Bergstrom-Lehtovirta, Antti Oulasvirta, and Stephen Brewster.

The effects of walking speed on target acquisition on a touchscreen in-

terface. In Proceedings of the 13th International Conference on Human

Computer Interaction with Mobile Devices and Services, pages 143–146.

ACM, 2011.

[8] Gerald Bieber, Jörg Voskamp, and Bodo Urban. Activity recognition for

everyday life on mobile phones. In Universal Access in Human-Computer

Interaction. Intelligent and Ubiquitous Interaction Environments, pages

289–296. Springer, 2009.

51



REFERENCES 52

[9] Brad Bourque. 5 android keyboards that will have you texting faster

than a 13-year-old. 2015. [Online; accessed 21-06-2015].

[10] Tomas Brezmes, Juan-Luis Gorricho, and Josep Cotrina. Activity recog-

nition from accelerometer data on a mobile phone. In Distributed com-

puting, artificial intelligence, bioinformatics, soft computing, and ambi-

ent assisted living, pages 796–799. Springer, 2009.

[11] PA Condado, R Godinho, M Zacarias, and FG Lobo. Easywrite: A

touch-based entry method for mobile devices. In Proceedings of the

13th IFIP TC13 International Conference on Human-Computer Interac-

tion (INTERACT 2011), Workshop on Mobile Accessibility (MOBACC

2011), Lisbon, Portugal, pages 1–8, 2011.

[12] Barnan Das, Adriana M Seelye, Brian L Thomas, Diane J Cook, Larry B

Holder, and Maureen Schmitter-Edgecombe. Using smart phones for

context-aware prompting in smart environments. In Consumer Com-

munications and Networking Conference (CCNC), 2012 IEEE, pages

399–403. IEEE, 2012.

[13] Trinh Minh Tri Do, Jan Blom, and Daniel Gatica-Perez. Smartphone

usage in the wild: a large-scale analysis of applications and context. In

Proceedings of the 13th international conference on multimodal inter-

faces, pages 353–360. ACM, 2011.

[14] Mark D Dunlop, Naveen Durga, Sunil Motaparti, Prima Dona, and

Varun Medapuram. Qwerth: an optimized semi-ambiguous keyboard

design. In Proceedings of the 14th international conference on Human-

computer interaction with mobile devices and services companion, pages

23–28. ACM, 2012.



REFERENCES 53

[15] Hossein Falaki, Ratul Mahajan, Srikanth Kandula, Dimitrios Lym-

beropoulos, Ramesh Govindan, and Deborah Estrin. Diversity in smart-

phone usage. In Proceedings of the 8th international conference on Mo-

bile systems, applications, and services, pages 179–194. ACM, 2010.

[16] Jordan Frank, Shie Mannor, and Doina Precup. Activity recognition

with mobile phones. In Machine Learning and Knowledge Discovery in

Databases, pages 630–633. Springer, 2011.

[17] Mayank Goel, Leah Findlater, and Jacob Wobbrock. Walktype: using

accelerometer data to accomodate situational impairments in mobile

touch screen text entry. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems, pages 2687–2696. ACM, 2012.

[18] Joshua Goodman, Gina Venolia, Keith Steury, and Chauncey Parker.

Language modeling for soft keyboards. In Proceedings of the 7th inter-

national conference on Intelligent user interfaces, pages 194–195. ACM,

2002.

[19] Asela Gunawardana, Tim Paek, and Christopher Meek. Usability guided

key-target resizing for soft keyboards. In Proceedings of the 15th inter-

national conference on Intelligent user interfaces, pages 111–118. ACM,

2010.

[20] Niels Henze, Enrico Rukzio, and Susanne Boll. Observational and ex-

perimental investigation of typing behaviour using virtual keyboards for

mobile devices. In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems, pages 2659–2668. ACM, 2012.

[21] Yu-Jin Hong, Ig-Jae Kim, Sang Chul Ahn, and Hyoung-Gon Kim. Mo-

bile health monitoring system based on activity recognition using ac-



REFERENCES 54

celerometer. Simulation Modelling Practice and Theory, 18(4):446–455,

2010.

[22] Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. Activity

recognition using cell phone accelerometers. ACM SigKDD Explorations

Newsletter, 12(2):74–82, 2011.

[23] Arnold M Lund. Measuring usability with the use questionnaire. Us-

ability interface, 8(2):3–6, 2001.

[24] I Scott MacKenzie and R William Soukoreff. Phrase sets for evaluating

text entry techniques. In CHI’03 extended abstracts on Human factors

in computing systems, pages 754–755. ACM, 2003.

[25] I Scott MacKenzie and Shawn X Zhang. The design and evaluation of

a high-performance soft keyboard. In Proceedings of the SIGCHI con-

ference on Human Factors in Computing Systems, pages 25–31. ACM,

1999.

[26] Sachi Mizobuchi, Mark Chignell, and David Newton. Mobile text en-

try: relationship between walking speed and text input task difficulty.

In Proceedings of the 7th international conference on Human computer

interaction with mobile devices & services, pages 122–128. ACM, 2005.

[27] Alexander Ng and Stephen Brewster. The relationship between encum-

brance and walking speed on mobile interactions. In CHI’13 Extended

Abstracts on Human Factors in Computing Systems, pages 1359–1364.

ACM, 2013.

[28] Alexander Ng, Stephen A Brewster, and John Williamson. The im-

pact of encumbrance on mobile interactions. In Human-Computer

Interaction–INTERACT 2013, pages 92–109. Springer, 2013.



REFERENCES 55

[29] Hugo Nicolau, Tiago Guerreiro, Joaquim Jorge, and Daniel Gonçalves.

Mobile touchscreen user interfaces: bridging the gap between motor-

impaired and able-bodied users. Universal Access in the Information

Society, 13(3):303–313, 2014.

[30] Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang, Myroslav

Bachynskyi, Keith Vertanen, and Per Ola Kristensson. Improving two-

thumb text entry on touchscreen devices. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems, pages 2765–2774.

ACM, 2013.

[31] Tom Page. Usability of text input interfaces in smartphones. Journal

of Design Research, 11(1):39–56, 2013.

[32] Ahmad Rahmati, Clayton Shepard, and Lin Zhong. Noshake: Content

stabilization for shaking screens of mobile devices. In Pervasive Com-

puting and Communications, 2009. PerCom 2009. IEEE International

Conference on, pages 1–6. IEEE, 2009.

[33] Dmitry Rudchenko, Tim Paek, and Eric Badger. Text text revolution:

a game that improves text entry on mobile touchscreen keyboards. In

Pervasive Computing, pages 206–213. Springer, 2011.

[34] Bastian Schildbach and Enrico Rukzio. Investigating selection and read-

ing performance on a mobile phone while walking. In Proceedings of the

12th international conference on Human computer interaction with mo-

bile devices and services, pages 93–102. ACM, 2010.

[35] Andrew Sears. Improving touchscreen keyboards: design issues and a

comparison with other devices. Interacting with computers, 3(3):253–

269, 1991.



REFERENCES 56

[36] Andrew Sears, Doreen Revis, Janet Swatski, Rob Crittenden, and Ben

Shneiderman. Investigating touchscreen typing: the effect of keyboard

size on typing speed. Behaviour & Information Technology, 12(1):17–22,

1993.

[37] Ara Wagoner. The best android keyboard apps. 2015. [Online; accessed

21-06-2015].

[38] Yanshan Wang. A novel soft keyboard for touchscreen phones: Qwert.

International Journal of Human Factors and Ergonomics, 2(4):246–261,

2013.

[39] Zhixian Yan, Vigneshwaran Subbaraju, Dipanjan Chakraborty, Archan

Misra, and Karl Aberer. Energy-efficient continuous activity recognition

on mobile phones: An activity-adaptive approach. In Wearable Comput-

ers (ISWC), 2012 16th International Symposium on, pages 17–24. Ieee,

2012.

[40] Shumin Zhai, Michael Hunter, and Barton A Smith. The metropolis

keyboard-an exploration of quantitative techniques for virtual keyboard

design. In Proceedings of the 13th annual ACM symposium on User

interface software and technology, pages 119–128. ACM, 2000.


