
Titan: A Tool for Safe and Faithful
Capture of Network Fingerprints of a

Bot

By
Osama Haq

NUST201260797MSEECS61312F

Supervisor
Dr. Muhammad Usman Ilyas

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Computer Science (MS CS)

In
School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

(April 2015)

Approval

It is certified that the contents and form of the thesis entitled “Titan: A
Tool for Safe and Faithful Capture of Network Fingerprints of a Bot
” submitted by Osama Haq have been found satisfactory for the requirement
of the degree.

Advisor: Dr. Muhammad Usman Ilyas

Signature:

Date:

Committee Member 1: Dr. Affan A. Syed

Signature:
Date:

Committee Member 2: Dr. Ali Khayam

Signature:
Date:

Committee Member 3: Dr. Aamir Shafi

Signature:
Date:

i

Dedication

I dedicate this thesis to my family, friends and colleagues that inspired and
motivated me throughout this degree.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by another
person, nor material which to a substantial extent has been accepted for the
award of any degree or diploma at NUST SEECS or at any other educational
institute, except where due acknowledgement has been made in the thesis.
Any contribution made to the research by others, with whom I have worked
at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product
of my own work, except for the assistance from others in the project’s de-
sign and conception or in style, presentation and linguistics which has been
acknowledged.

Author Name: Osama Haq

Signature:

iii

Acknowledgment

I would like to thank my Guidance and Evaluation Committee for their
support throughout this thesis. It would have not been possible without
their encouragement. I would also like to thank all the SysNet lab members
who have helped me during this journey.

iv

Table of Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Contribution . 5

2 Background and Literature Review 7
2.1 Background . 7
2.2 Literature Review . 8

2.2.1 Containment Policies 8
2.2.2 Capturing bot behavior in multiple operational contexts 9
2.2.3 Fingerprint Generation 10
2.2.4 Cost, setup, and management of botnet analysis systems 11

3 Titan: Design and Architecture 13
3.1 Design Challenges . 13

3.1.1 Faithful Bot Fingerprints 13
3.1.2 Cost, Setup, and Management Overheads 14
3.1.3 Incorporating Flexibility and Usability 15

3.2 Titan: Architecture . 15
3.2.1 Web Front End . 15
3.2.2 System Manager . 16
3.2.3 Execution Network . 16
3.2.4 Containment and Logging Modules 16
3.2.5 Fingerprint Generation Engine 17

3.3 Titan: Workflow . 17

4 Titan: Implementation and Evaluation 19
4.1 Implementation Details . 19

4.1.1 System Manager . 19
4.1.2 Containment and Logging Module 22
4.1.3 Fingerprint Generation and Presentation 27

4.2 Demonstration and Evaluation 27

v

TABLE OF CONTENTS vi

4.2.1 Containment of Kanav.F 29
4.2.2 Case Study: Zeus . 31
4.2.3 Evolution of Cryptolocker 33

5 Conclusion and Future Work 36
5.1 Summary of Contributions . 36
5.2 Conclusions . 37
5.3 Future Work . 37

List of Tables

4.1 Traffic classification lists . 24

vii

List of Figures

3.1 Titan Architecture and Workflow: From seeding of a bot bi-
nary to a faithful fingerprint generation 16

4.1 Titan Implementation using just two machines: A Gateway
and a Virtual Execution Platform. 20

4.2 Different Iterations of Containment Module 25
4.3 Features of a faithful bot fingerprint. 28
4.4 C&C servers of Kanav F . 30
4.5 Connection Frequency and Containment Decision of Kanav F 31
4.6 Emulating different network contexts and behavior for the

Zeus botnet . 32
4.7 CryptoLocker 2013 fingerprint generated by Titan 34
4.8 CryptoLocker 2014 fingerprint generated by Titan 35

viii

Abstract

Botnets are an evolutionary form of malware, unique in requiring network
connectivity, for herding by a botmaster, that allows coordinated attacks as
well as dynamic evasion from detection. Thus, the most interesting features
of a bot relate to its rapidly evolving network behavior.

The few academic and commercial malware observation systems that ex-
ist, however, do not safely and faithfully capture fingerprints of a bot. More-
over, these systems are either proprietary or have large cost and management
overhead. We observe that the network behavior of bots is largely depen-
dent upon the containment policy and changes considerably under different
operational contexts.

We first propose an iterative and semi automated way to contain harmful
activity generated by bots and then identify these various contexts that can
impact its fingerprint. We also present Titan: a system that generates faithful
network fingerprints by recreating all these contexts and stressing the bot
with different network settings and host interactions. This effort includes a
semi-automated and tunable containment policy to prevent bot proliferation.
Most importantly, Titan has low cost overhead as a minimal setup requires
just two machines, while the provision of a user-friendly web interface reduces
the setup and management overhead.

We then show a fingerprint of Kanav F bot to demonstrate the bootstrap
capturing feature of Titan. We also show a fingerprint of the Cryptolocker
bot to demonstrate automatic detection of its domain generation algorithm
(DGA) and its evolution over the period of six months. Finally, we demon-
strate the effective identification of context-specific behavior with a controlled
deployment of Zeus botnet.

1

Chapter 1

Introduction

Botnets are networks of malware infected machines, called bots, which are
under the control of an external entity called botmaster. A botmaster uses
command and control (C&C) server to provide configurational as well as
evolutionary updates to the infected machines.

Botnets are different from traditional malware as they are primarily used
for financial gains. A botmaster can rent a subset of their bots for carrying
out large scale distributed attacks (such as DDoS or SPAM) as well as for
information stealing (such as credit card numbers, online banking username
and passwords) [1]. Recent studies have shown existence of large underground
economy based on botnets [2–4]. Thus, to gain the maximum market share
(in terms of number of machines), black-hat hackers continue to innovate
their infection and evasion techniques.

Security companies and researchers analyze malware by studying their
binaries (computer program that is used to infect machines). There are two
types of analysis performed on a malicious binary, host based analysis and
network based analysis. In host based analysis, the effects of binary on the
host’s operating system are analyzed whereas in network based analysis, the
network traffic generated by the infected machine is analyzed. The result-
ing output of host and network based analysis systems is used by security
companies to improve their malware detection and removal solutions.

1.1 Motivation

Botnets have emerged as one of the most prominent cyber security threats
over the last decade. Today, botnets are used by criminal entities for stealing
personal and financial information, launching cyber attacks and sending out
spam emails. The most defining feature of a bot, that separates it from

2

CHAPTER 1. INTRODUCTION 3

other classes of malware like viruses, trojans and worms, is its communication
with the botmaster. A master imparts his instructions to the bot infected
machines using a command and control (C&C) server. After a bot infects a
machine, its main purpose is to lie dormant and act on any instructions from
its C&C server. Although the output of host based analysis can be used to
eradicate a bot infection from a machine, network based analysis of botnet is
required to understand the behavior of bot and for identification of its C&C
servers.

There are many tools that can be used for network analysis of botnet
binaries, some are proposed in academia [5–7] and some of them are avail-
able on the web [8, 9]. Security companies also perform analysis using their
proprietary systems and regularly publish reports on threats [10, 11]. We
observe that there are three major shortcomings in the way network analysis
of botnets is currently being performed.

Firstly, when a bot’s network activity is analyzed, the issue of containing
harmful network activity arises. If a bot is allowed to freely communicate
with external entities, it might launch an attack (like DoS, Spam) and spread
to other systems in its local network. If it is not allowed to communicate
with outside world, its true behavior cannot be captured. Thus, rendering
the analysis useless and resulting fingerprints incomplete. We observe that
most of the publicly available analysis systems as well as solutions proposed
in academia do not tackle this issue and choose to ignore it altogether [12].
The tools which do take in to account the issue of containment require man-
ual analysis of traffic logs and generation of containment policies requires a
human resource all the time [5, 6], hence, proving costly. The security com-
panies who analyze botnet binaries also do not disclose their containment
methodology and policies to the user. We believe that containment is an
integral part of network analysis and should be incorporated in any analysis
tool for effective and safe fingerprint generation.

Secondly, since a behavior of a bot depends on various environmental
conditions like network configuration, location, hardware and software of in-
fected machine, these analysis systems do not take these factors into account
when performing analysis. A bot regularly sends reports to its C&C server,
which contain information about any user activity along with hardware and
software of the infected machine. Based on these reports sent by the bot,
a botmaster may choose to assign different roles to infected machines [13].
These roles are heavily dependent on the environment of the infected ma-
chine. A machine with a public IP instead of a NATed IP might start acting
a stepping stone to other bot infected machines, similarly a machine with
higher computing resources might be used for bitcoin mining. A botmas-
ter may also detect if a bot is being analyzed in virtual environment and

CHAPTER 1. INTRODUCTION 4

cease any network activity. Thus, behavior of a bot is dependent on the in-
structions received from botmaster and may change from time to time. We,
however, observe that botnet network analysis tools and systems, do not
take into account this changing behavior of bots when performing analysis.
Hence, the output fingerprints of these systems are partial and do not truly
identify behavior of a bot. We believe that in order to fully understand bot-
nets, these environmental conditions should be identified and a bot must be
rigorously analyzed in these conditions.

Thirdly, current botnet analysis systems are either proprietary or have
high setup and management cost [5, 6, 12]. Furthermore along with limited
output, very little information is available for anyone who wants to replicate
and enhance the system. Most of the tools that are proposed in academia
require high performance machines and an elaborate network architecture.
Although, some tools available as web based services require simpler network
architectures but lack analysis in different environmental contexts and do
not have effective containment policies. Hence providing incomplete network
fingerprints to the user.

While most of the existing work focuses on providing great details about
host based behavior of bots, there is very little focus on providing detailed
network fingerprints [14] [12]. While we can only speculate about the reason
for such restricted disclosure, we strongly feel the need for a botnet finger-
printing system that is open source ,can be set up with minimal cost and
management overhead. This systems should also provide detailed network
behavior of a bot under various operational contexts and effective contain-
ment policies. Such a system will be a very useful tool for the academic re-
search community, especially new entrants, to deeply study and understand
the threat and then build and evolve their defenses.

In this thesis we will present Titan, a low overhead botnet analysis tool.
Titan recreates, using SDN and user emulation techniques, various oper-
ational contexts necessary for eliciting network behavior of the bot. Fur-
thermore, Titan has a semi-automated containment engine that minimizes
manual tuning of policies to contain any harmful effects of a bot (attacks or
proliferation). It also provides a hierarchical and multifaceted view of the
network fingerprints generated, which allows intermediate users to quickly
identify salient features of the bot, while allowing advanced users to drill
down into greater detail. Titan is open source, easy to setup and provides
extensibility to developers due to its modular design.

CHAPTER 1. INTRODUCTION 5

1.2 Contribution

In this thesis, we set out to design and implement various features of Titan:
a botnet analysis tool. Titan is an open source, low cost, easy to setup
and manage botnet analysis tool that examines bot binaries under various
environmental settings, provides semi automation of containment policies
and generates network fingerprints in a hierarchical and user friendly format.

In accordance with our problem statement, We now lay out our research
objectives and the corresponding contributions of this thesis.

• Objective 1: Incorporating safety measures for effective fingerprint
generation.

Contribution: The aim of our objective is to provide a method for
effective fingerprint generation using automated containment policies.
We first present our methodology for containment and then address
design challenges in incorporating containment features in Titan. We
discuss our SDN based implementation of containment policies in great
detail and provide a way to minimize human intervention in generation
of containment policies. We show the efficacy of our containment poli-
cies by analyzing real world bots under various policies.

• Objective 2: Identification and implementation of operational con-
texts that impact a bot’s behavior.

Contribution: We first identify various host and network based con-
texts that affect behavior of bots on a victim machine. These opera-
tional contexts include network environment, type of infected machine,
user activity on the machine and observation duration of analysis. The
aim of identifying these contexts is to faithfully capture fingerprints of
a bot. These contexts help us in design of our botnet analysis tool:
Titan. We present our design challenges and decisions in incorporat-
ing these operational contexts in Titan and provide implementation
details for each context. We validate effective fingerprint generation
by deploying a custom botnet infrastructure and analyzing the bot in
different network configurations.

• Objective 3: Minimizing cost, setup and usage overheads in botnet
analysis tools.

Contribution: We present challenges faced in building a low cost
systems that can be setup with minimal deployment and management
overhead. We present our user friendly fingerprint and discuss its gen-
eration. We provide our methodology for generating fingerprints from

CHAPTER 1. INTRODUCTION 6

deluge of logs generated by Titan. We analyze two variants of cryp-
tolocker botnet and show how our fingerprint features help us identify-
ing its evolution over time.

Chapter 2

Background and Literature
Review

2.1 Background

There are two types of analysis performed on botnet executables, host based
analysis and network based analysis. In host based analysis, the effects of
a bot binary on the host operating systems is analyzed whereas in network
based analysis, the network communication carried out by the bot binary
is analyzed. Majority of the botnet analysis systems perform host based
analysis and there are very few systems that indulge in network analysis of
botnet binaries.

The analysis systems performing network analysis of bots do not cater its
changing nature due to its connectivity with botmaster. A bot may change
its behavior in order to fully utilize the available resources on the infected
machine. This change in behavior depends on multiple factors, we call each
of these factors operational contexts.

Based on activity a bot performs on an infected machine, fingerprints are
generated which consist of a summary/highlights of these activities. This
information is useful to researchers studying botnet behaviors as well as to
botnet detection systems. However, a bot may be involved in malicious
activities and may spread to other systems within the network or launch an
attack against any one on the Internet. This problem is known as the issue
of containment. In the coming section, we will present notable work in the
field of network analysis of botnets.

7

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 8

2.2 Literature Review

Much work has been carried out on host based analysis of botnets [15–21],
however there have been very few systems that specifically perform network
analysis of botnets [5–7,13]. In this section, we present a summary of major
work carried out in network fingerprinting of botnets as they form the vast
majority of NIDS-based botnet detection systems [5–7].. Our thesis presents
a low cost, easy to setup and manage botnet analysis tool with multiple
operational contexts, automated containment policies, and effective output
fingerprints. We further divide our related work into these goals identified
above and review existing tools that are proposed in academia along with
online analysis services. We also focus on many online services [8,14,22] that
perform both host based and network based analysis of malware.

2.2.1 Containment Policies

With the rise of botnets over the past few years, the issue of containing harm-
ful traffic when analyzing bots has also gained some prominence. Most of the
analysis systems have some sort of static containment policies in place [7,23],
however only GQ [5] and botlab [6] discuss formation of containment policies
as a part of analysis. We now describe these systems and their containment
policies.

Our inspiration for this work mainly came from GQ [5]. In GQ, Kreibich
et al present the problem of containment in detail. They develop an ar-
chitecture for malware execution, describe a manual approach for develop-
ment of containment policies and also present their operational experiences
in developing different containment policies. The main goal of GQ is to
make containment development a natural step in malware analysis. Their
approach towards containment is deny all out going traffic and iteratively
allowing understood activity by analyzing all the blocked traffic manually.
Although GQ highlights a lot of issues regarding containment but never fully
explains the actual containment policies developed for stopping different type
of known attacks. The malware analysis approach presented requires manual
formation of containment policies for each analysis.

Botlab [6] also highlights the issue of containment in malware analysis.
Their approach is to block all traffic destined towards privileged and vulner-
able ports. They also enforce limits on data transmitted and no of outgoing
going connections along with redirecting all the spam traffic towards a spam
hole. All of the outgoing traffic is also monitored by a human operator as
well. Although botlab had effective containment policies, it was decided by
John et al that unknowingly allowing network attacks posses too much risk

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 9

and the network fingerprinting aspect of botlab was shutdown.
Rajab et al containment policy during their study of botnets was to pre-

vent engagement in outbound attacks [7]. They block outbound traffic on
popular ports (e.g.135, 139, 445) and rate-limit each outgoing connection.
They also detect IRC connections on application level and allow only those
IRC communication.

Although we implement some static containment policies like those in
Botlab and Rajab IRC, we also have dynamic containment policies. These
policies are based on observed attacks and unlike GQ, they are developed in
an automated fashion.

2.2.2 Capturing bot behavior in multiple operational
contexts

Botnet analysis tools proposed rarely focus on capturing bot behavior in
multiple operational contexts. While objective of these systems is to gain
insight into botnets, their analysis does not take into account changing botnet
behavior in various scenarios like different network settings, user activity
on infected machine and analysis on multiple operating systems. However,
there are some systems that do take into account execution environment of
a bot binary as bots are known to hide their behavior in virtual analysis
environment. We now discuss the systems that try to capture to behavior in
multiple operational contexts.

GQ tries to capture bot behavior in both virtual and physical execution
environment. GQ uses a network of virtual machines and raw iron machines,
called inmates, for bot execution. GQ’s architecture comprises of various
components like containment server, logging engine, packet router, NATing
module and vlan learning bridge. Moreover, GQ has the capability to control
each traffic flow generating from a bot infected machine. It can also execute
multiple bots on different machines at the same time.

Although GQ has all the necessary hardware and software to execute a bot
in different contexts like multiple operating systems, network configurations
and high performance bot execution machines. It only tries to capture bot
behavior in different execution environment.

John et al use botlab setup to study the behavior of spamming botnets.
They extract malicious URLs from incoming spam feed of university of Wash-
ington. Malware binaries are downloaded from those urls and executed in
virtual as well as in baremetal environment. The resulting fingerprint from
both executions is compared to deduce bot changing behavior in virtual en-
vironment. However, the focus of their study is to find trends in incoming

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 10

and outgoing spam.
Our system captures bot behavior in different environmental settings in-

cluding operating systems, execution environments, network settings and
user activity. None of the related work in this area covers these operational
contexts.

2.2.3 Fingerprint Generation

The network fingerprints generated by analysis tools are used by botnet
detection systems like BotHunter [24], BotMiner [25], FireEye [26], and
Damballa [27]. These detection systems uses this fingerprint information
to enhance their signature database and to strengthen their correlation mod-
ules. We now present some of the existing systems that generate network
fingerprints by analyzing malware binaries.

Abu Rajab et al botnet analysis system generates two types of network
fingerprints, fnet and firc. The fnet fingerprint of a bot represents the network
features of a bot whereas the firc fingerprint represents the IRC features of
bot. Both of these fingerprints are generated in the execution phase of the
analysis, where all the network traffic generated by a bot is dumped and
analyzed. The fnet portion of fingerprint is a collection of DNS, IP,Port and
scan behaviour of bot. The firc fingerprint comprises of IRC related feature of
bot which are PASS,NICK,USER,MOD,JOIN. The two fingerprints although
limited provide a way to join a botnet in the wild. The IRC feature of the
bot is collected by application level pattern matching of traffic generated by
bot, hence the system also captures botnets that operate on non-standard
ports. This fingerprint forms the basis for custom IRC clients called drones
that authors launch in order to study botnets as a whole.

In order to create a behavioral signature of a bot, botlab generates a net-
work fingerprint. It does so by executing a binary in a sandbox environment
and logging all the network connection attempts made by the bot. Botlab re-
gards set of network flows as the fingerprint of the bot. This flow information
includes protocol, IP address, DNS address and port of the server contacted
by downloaded binary. Botlab also executes the binary twice in order to
eliminate random connections generated by the binary. In order to detect
different variants of a bot binary, john et al also compare the fingerprints of
different executables and calculate the coefficient of similarity. In addition
to the detection of polymorphism, this fingerprint information is also used
to classify spam bot on the basis sent emails.

The network fingerprint defined by Rossow et al in Sandnet is similar
to that of botlab. Their definition of fingerprint includes layer 4 protocol,
source IP addr, destination IP addr, source port, destination port of all IPs

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 11

contacted by the bot. Instead of deploying popular approach of using a
sandbox for traffic analysis, Sandnet lets the malware talk to its C&C server
under certain containment policies.

Online malware analysis services [8, 14, 22] do not address the issue of
containment, and present no details on network traffic is handled in their
systems. These systems although provide both host and network features of
a bot, their main focus is on host based analysis. The network based fea-
tures that these services provide are limited to any outgoing communication
observed in five minutes of analysis.

Although there are tons of host based analysis systems proposes in the
academia and available as online service that provide OS fingerprint of a
malware in great detail but include very limited information about network
fingerprint of a bot binary. Our system tries provide detailed information
about network related fingerprints of bots, these include command and con-
trol server, network attack and behavior features.

2.2.4 Cost, setup, and management of botnet analysis
systems

There are two type of cost, setup, and management approaches followed de-
velopers when in botnet analysis systems. The first approach is to make the
analysis systems easier with the help of virtual machines on simple, com-
modity hardware [23]. The second approach is to setup a complex network
architecture in order to collect and analyze malware [5–7]. The first approach
although easier to manage and setup does not grant researchers fine control
over the over their analysis experiment and environment whereas the second
approach gives that level of control to researchers. We now discuss the cost,
management and setup overheads in notable analysis systems.

Botnet analysis systems proposed by christian et al , john et al and abu
rajab et al require multiple machines to setup [5–7]. In order to fully func-
tion, these machines need to be powerful in terms of their processor and
RAM speed as well as storage. These systems also have complex network
architecture that require expert networking and systems knowledge to setup
and manage.

Sandnet [23] by Rossow et al and several online services [12] [9] [28] fol-
low a different approach for malware analysis. Their analysis systems consist
of 1-4 machines that use popular virtual machine software to deploy their
analysis systems. There are no specific hardware requirements for these host
systems and managing and setup cost is very low as compared to other sys-
tems proposed.

CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 12

Our system has an easy to implement architecture that utilizes cheap and
commodity hardware. We do however require network and system adminis-
tration knowledge.

Chapter 3

Titan: Design and Architecture

3.1 Design Challenges

We now outline design challenges in building a low-cost and user-friendly
system that faithfully captures the network features of a bot. These chal-
lenges stem from two basic questions: what constitutes a faithful network
fingerprint for a bot, and what impacts the cost and overhead of existing
systems with similar objectives?

3.1.1 Faithful Bot Fingerprints

We expect to capture all important network characteristics of a bot. We de-
fine a compact representation of all important characteristics as a “faithful”
fingerprint.

Defining Faithful Features

Previous work has identified some important network characteristics of par-
ticular bots, (such as C&C type [29–31] and attack vectors [30, 31]), and
also pointed out how bot behavior changes under different network and user
stimuli [31, 32]. However, we have not encountered a system that can sys-
tematically generate bot fingerprints for all variations of these stimuli. We
believe that only a system that can elicit all these behaviors can claim to
generate a faithful fingerprint. Thus our first challenge is to identify and
replicate the various operational contexts that can impact a bot’s network
behavior.
Network configuration: Bot binaries can behave differently based on
different network configurations. We know that certain bots act as step-
ping stones in the bot obfuscation architecture when they have public ac-

13

CHAPTER 3. TITAN: DESIGN AND ARCHITECTURE 14

cess [33]. Alternatively, the same binaries when in a NAT-ed environment
show markedly different network characteristics.
Type of machine: Some bot binaries tend to be silent when deployed on
a virtual machine [6], under the assumption that they are being monitored.
Thus the type of infected machine also greatly impacts the network behavior
of a bot.
User Activity: Malware responsible for information stealing and click hi-
jacking triggers this behavior only when a user visits specific locations, such
as banking or social network websites [31]. Thus, without some selective user
interaction, this crucial aspect of a bot fingerprint cannot be obtained.

Factors Affecting Faithfulness of Fingerprint

Observation duration: Rossow et al. point out that the behavior of a
bot immediately after infection (bootstrapping phase1) is markedly different
from its post-bootstrapping phase [23]. We thus need to provide a tunable
observation duration such that a faithful fingerprint is generated considering
both phases of a bot lifecycle.
Containment: Any fingerprint generation system needs a containment pol-
icy that restricts attack and malicious activity for technical (our IPs will be
blacklisted) and ethical reasons [5]. However, care has to be taken in not
making this policy too restrictive, as otherwise the “in-the-wild” behavior of
a bot cannot be understood.

3.1.2 Cost, Setup, and Management Overheads

A second set of challenges arises in building a low-cost system, that can be
set up with minimal deployment and management overhead. Our philosophy
is that anyone with intermediate network administration knowledge should
be able to rapidly deploy and generate fingerprints.

The cost and setup overhead of the existing malware-analysis systems
arises from requiring several high performance machines and an elaborate
network architecture [5, 6]. Similarly, manual tweaking of containment poli-
cies (like in GQ [5]) entails the cost of employing a qualified professional,
while simultaneously creating a time bottleneck in generating fingerprints.
A key challenge here is thus to automate, as much as possible, containment
of attack traffic without compromising on capturing other aspects of a bot’s
behavior. We believe that fully automated containment is not possible due to

1Thus a bot can try contacting its C&C server for configuration or updates, as well as
detecting its network conditions.

CHAPTER 3. TITAN: DESIGN AND ARCHITECTURE 15

the evolvable nature of botnets; a key challenge thus is to minimize manual
intervention through semi-automated generation of a containment policy.

3.1.3 Incorporating Flexibility and Usability

A final challenge is to provide a user friendly representation of the network
fingerprint. Such a system will naturally generate a deluge of logs and net-
work events. We therefore want to provide fingerprints in a format that
makes high-level features immediately obvious, yet still makes it possible to
drill down and get finer granularity of information if desired. This feature
will greatly enhance the usability of this tool, thus aiding security researchers
in understanding and defending against the scourge of botnets.

3.2 Titan: Architecture

Our main focus in designing Titan is to ensure the generation of faithful bot
fingerprints while minimizing cost and setup overheads. We begin by de-
scribing its architectural components and subsequently provide an overview
of the fingerprinting workflow.

Figure 3.1 shows the main architectural components of Titan, each of
which we briefly describe here.

3.2.1 Web Front End

The web frontend allows a user to not only submit the binary for evaluation,
but also easily configure parameters that impact the fingerprint generation.
The user is shown the possible operational contexts in which the binary can
be executed. There are three context families, each with two operational
contexts listed below:

• network configuration context of À public or Á private

• execution machine context over Â Virtual or Ã bare-metal machine

• user activity context in emulating access to Ä banking or Å social
media sites.

The binary is by default tested in each of these contexts, but users may
deselect one or more of them. Advanced users can additionally vary the
duration of observation for each experiment.

CHAPTER 3. TITAN: DESIGN AND ARCHITECTURE 16

Web
Front End

InternetContainment
Module

System
Manager

Logging

Fingerprint Generation
Engine

1010
0110

Selecting Context1 Configuration
of system &

network

Logging
traffic

Containing and
forwarding traffic

Representation of Results

Data Traffic

Control &
Management Traffic

Execution
Network

Updating rule set

Selecting rule set (optional)

3
4

Logging
decisions

5

6

7b
7a

9

Generation of
fingerprints

8

10

Forwarding configuration2

Resetting the
Network

Figure 3.1: Titan Architecture and Workflow: From seeding of a bot binary
to a faithful fingerprint generation

3.2.2 System Manager

The system manager is the glue that holds the entire system together. It
chooses (and in the VM case, spawns) the machine to infect with the provided
binary.

It takes other configuration parameters and converts them into commands
to create the appropriate operational context for bot execution. Finally, in
order to facilitate the automation of a containment policy (details below),
the system manager is also responsible for stopping and restarting a new
execution iteration.

3.2.3 Execution Network

The execution network is a setup of host machines (virtual and/or physical)
that carry out execution of bots in different settings. This network contains,
besides the infected machine, additional machines for logging and services
emulation (like Dionaea [34]), as well as passive companion machines to em-
ulate a populated LAN environment. The network configuration is set by
the system manager according to the experiment requirements.

3.2.4 Containment and Logging Modules

The containment module is responsible for automating, as much as possible,
the traffic filtration rules to prevent unwanted consequences of monitoring a
bot. This containment policy is generated in an iterative manner. We start
with a very conservative policy of blocking most traffic from the bot. After
each iteration, we scan the traffic generated by the bot, continuously logged

CHAPTER 3. TITAN: DESIGN AND ARCHITECTURE 17

as flows by the containment module, to white-list connections that are purely
C&C related and not dangerous. We then restart another iteration with an
updated containment policy, that allows greater communication for the bot.
We default to three iterations for every operational context (network setting
or user behavior) in which the binary is executed. After which, users are
provided an option to manually update the containment policy using their
own heuristics to determine the safe connections.

3.2.5 Fingerprint Generation Engine

We populate an XML fingerprint schema for each operational context, spec-
ifying important characteristics therein. Moreover, we compare these XML
files to further identify whether, and how, the network behavior changes be-
tween different operational contexts. This fingerprint is then provided to the
web front which displays it in a format where a user is easily able to drill
down for the detail of any important characteristic.

3.3 Titan: Workflow

Figure 3.1 shows the steps in a typical experiment on Titan. First, the user
uploads a bot binary and selects appropriate operational contexts (described
previously) from the web application interface (Step ¶). These settings along
with the bot binary are sent to the system manager (Step ·) which is re-
sponsible for the configuration and management of the execution network.
The system manager then spawns VMs or initializes baremetal machines and
also creates the appropriate network environment. The execution machine
downloads the bot binary and any user emulation scripts from the network
manager and execute them locally (Step ¸). In Step ¸ the system man-
ager also initializes the containment and logging modules. The containment
module forwards or blocks any traffic generated from the execution machine
and logs the appropriate containment decisions (Step ¹ and º). The traf-
fic generated to and from execution machines is also logged continuously by
the logging module (Step »). Once a single iteration is over, the system
manager resets the execution network and reinfects the machine (Step ¼a);
meanwhile, the containment policy is updated with a more liberal list to al-
low greater C&C communication (Step ¼b). We explain the formation and
revision of this rule set in Section 4.1.

The fingerprint generation engine applies heuristics on the logged data,
to extract important network features of the bot, once all iterations for every

CHAPTER 3. TITAN: DESIGN AND ARCHITECTURE 18

operational context selected ends2 (Step ½). These fingerprints are then
passed on to the web application, which presents them in a compact but
efficient format for the user (Step ¾).

Advanced users are also presented with the final containment rule set
which they manually tune and then rerun the bot for additional iterations
for more detailed analysis (Step ¿). This step is the only one requiring
manual intervention after the initial bot binary is provided to Titan, and
is the reason we call our containment policy “semi-automated”; this too,
however, is an optional step and intended only for advanced researchers.

2For 3 contexts families having two members each, this defaults to 18 iterations.

Chapter 4

Titan: Implementation and
Evaluation

4.1 Implementation Details

We now describe the current implementation of Titan. We utilize just two
desktop-class machines, a Gateway (4GB, 2.6Ghz) and a VM execution plat-
form (3GB, 2.9 GHz) — in line with our desire for a low cost deployment that
any research lab can put together (Figure 4.1). The Gateway implements all
but one of the architectural modules for Titan. The execution network is
emulated on the VM execution platform, connected to the gateway (provid-
ing NAT service) through a physical L2 switch, using a Xen hypervisor [35]
that can spawn virtual machines (WinXP/Win7) and create context-specific
network configurations. A third machine is connected via the switch, to act
as a physical environment; we have a PXE boot system that uses Trinity
Rescue Kit (TRK) [36] to allow experiments on a baremetal machine.

Titan supports analyzing a single bot at a time. This choice was con-
sciously made as allowing parallel bot analysis (like in GQ [5]) excessively
complicates our system to the detriment of our low-overhead objective.

We now describe in detail how we implement the individual components
of Titan.

4.1.1 System Manager

The system manager is the brains of our system; it is responsible for creating
the different operational contexts as well as for the iterative execution of a
complete experiment. We first describe how we create different contexts and
then divulge the details of iterative execution.

19

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 20

System Manager

Logger

Fingerprint
Generation Engine

Gateway VM Execution Platform

W
e

b
 In

te
rf

a
ce

Public vNIC

Private vNIC
NAT Module

G
a

te
w

a
y

P
u

b
lic

 IP

2
0

8.
x.

x.
x

10.1.4.10

Physical NIC

Containment
module

10.1.4.1

Figure 4.1: Titan Implementation using just two machines: A Gateway and
a Virtual Execution Platform.

Execution and Operating System Context

In the execution machine context, a bot binary is tested on both virtual
machine as well as on a physical machine.

We use Xen for our VM execution platform, where we clone a clean,
base-image VM for infection. This image has a Windows operating system
(XP or 7) with two virtual NICs. These NICs are used to create the net-
work contexts where one of them is removed by system manager to achieve a
particular public or NAT-ed environment. Some features of this base-image
that can generate network traffic like system and application updates are
disabled. This helps us in identifying traffic generated by bot by reducing
white-traffic. The base-image also has DNS cache disabled, to accurately
capture the communication patterns of our infected machine. Currently, it
takes 5 minutes to clone a base-image and infect it with a malicious binary
(Figure 4.1). For bare-metal execution, we employ the network (PXE) boot
option to first load the Trinity Rescue Kit (TRK) [36] into the RAM of our
baremetal machine. When executing this context, we first change the DHCP
configuration of Gateway machine to allow PXE boot based connections and
temporarily disable Gateway to allow TRK migration to the execution ma-
chine.

With TRK loaded, the baremetal machines acts like a client to listen for
connections to transfer a disk image file. We place a clean base image of the
corresponding Windows image on the Gateway machine where the mclone
utility (essentially the TRK server) is initialized to transfer the selected im-

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 21

age 1. The system manager disables the PXE boot option from DHCP after
the image transfer allowing the machine to now boot into its new operat-
ing system. Currently, the image size is around 4GB and it takes around 5
minutes for a successful cloning operation over a 100Mbps LAN connection.

User Activity Context

The user activity context consists of emulating different types of Internet ac-
tivity on the infected machine. These activities include visiting social media
sites or popular banking websites and entering login credentials. Currently,
our system tries to emulate these two activities and see if any extra activity
occurs to indicate the exfiltration of these credentials.

The user activity scripts are written in a windows automation language
called AutoIt [37]. Initially, these scripts are placed on the Gateway along
with the bot binary. Once a VM or physical machine successfully boots and
acquires proper network configuration, the base-image is pre-configured to
use sftp to transfer these scripts, along with the bot binary, from a defined
location on the Gateway. First, the bot binary is executed on the analy-
sis machine then, depending upon the selected context, the AutoIt scripts
are executed. Currently these scripts visit social networking sites (facebook
and twitter) and post as fake (but configurable) accounts, and also attempt
logging in to banking and merchant sites (BoA, Wells Fargo, Amazon).

Our system also allows the user to upload their own custom scripts, since
the underlying service executes only binaries, a custom user script can be
written in any automation language or software.

Network Configuration Context

The creation of different network configurations like Public IP and Private
IP can be easy if we have a pool of public IPs to allocate. However, with
our cost constraints, we limit ourselves to a single assigned to the gateway.
Hence, in order to fool a bot into thinking that it has infected a machine
with public IP, we implement a solution that is both low cost and efficient.

Our implementation of Public IP context involves a two-stage NAT (Public→
Private→ Public) strategy. In this setting, the execution machine (which has
connectivity only through NAT on the Gateway) is assigned Public IP of our
Gateway machine. We configure the public vNIC (Figure 4.1) with a NAT
configuration, where it assigns the public IP of the Gateway (communicated
by the system manager) to the infected machine. The NAT on the Public
vNIC translates the Gateway IP (208.X.X.X in Figure 4.1) to the private IP

1This image was initially made using TRK as well

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 22

assigned to the physical NIC of the VM execution platform (10.1.4.10 in Fig-
ure 4.1) by the Gateway NAT. When the public IP context is required, the
other private vNIC is removed by the system manager (through the hypervi-
sor), and the opposite is done when a normal private IP context is required.

Iteration Management

The system manager is also required to chaperon, for every operational con-
text family, the three minimum iterations in Titan.

After initializing the logging and containment modules, the system man-
ager provides a whitelist of flows registered during an uninfected execution of
our base-image with the user-emulation scripts. The system manager is then
idle for the observation period, after which it stops the logging and contain-
ment module. Before reseting the VM, it uses nmap [38] to scan for any new
opened ports (obviously, by the bot) and logs this information to help create
fingerprints. It also updates the whitelist with all flows whose handshakes
were allowed by the containment module in the previous iteration (details in
next Section 4.1.2). This updated list is supplied in the new iteration where
the manager then recreates the same context for a new cloned VM or for the
baremetal machine.

4.1.2 Containment and Logging Module

The implementation of the containment logic is enforced by the POX con-
troller [39] using network as well as application layer Deep Packet Inspection
(DPI). We configure Open vSwitch [40] for full-packet (not just header) for-
warding to the POX controller. The learning modules at the controller forces
the virtual switch to either forward or drop the packet on the basis of its cur-
rent rule set and the output of the attack sensors. The current rule set is
maintained by the traffic classification module. There is also a DNS spy mod-
ule that keeps records of queries in order to identify any domain generation
algorithm of a bot.

We now describe our active sensors, traffic classification, dns spy and
learning modules. We also describe our methodology for containment in a
typical experiment of Titan.

Active Sensors

All outgoing traffic from the execution network first goes through active
sensors, deployed inside POX, that actively block and log malicious traffic
generated by the bot. A key insight to the effectiveness of our attack sensors

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 23

is the following: we know that all traffic beyond our whitelist is malicious; our
purpose then is just to prevent only that malicious traffic that can constitute
an attack or the proliferation of the bot binary itself. Thus we have a sensor
to detect the forwarding of an executable (exec detect), and five attack and
proliferation detection sensors.

We detect any DoS attacks launching from the infected virtual machine
by tracking outgoing TCP SYN packets to every website. We block these
packets if their count exceeds a threshold of 10 packets for any websites
not visited by our user-emulation scripts. A bot may also target social or
banking websites that our user emulation scripts visit; for these websites, we
choose a threshold just above the attempts made (by the emulation scripts)
in a previous clean run of the system. We also detect all TCP packets with a
spoofed IP, as IP spoofing is often used to launch a DoS attack (DoS detect).

We detect TCP SYN-scanning attempts by maintaining a list of IPs
against a particular port (horizontal) and ports against a particular IP (ver-
tical). Similar to Snort [41], we declare a scan if the number of SYN packets
against a specific IP or port crosses a threshold value of 25 within a 2 minute
time period (netscan detect).

Any outgoing email from the infected machines is classified as spam. We
inspect each outgoing packet for common HTTP web mail as well as SMTP
message headers to trigger this classification. We also block communication
on common SMTP ports (spam detect).

The payload of any outgoing TCP packet is also scanned for SQL queries;
any combination of SELECT,FROM & WHERE is flagged as an SQL injection
attack (inject detect).

We detect information stealing by inspecting each outgoing packet for
transfer of user credentials (used by our user emulation scripts) in clear text
(info detect).

Traffic Classification

This module maintains records of IPs, URLs and ports. There are differ-
ent types of lists that help other learning module in deciding the class of
traffic. This module has the following lists: whitelist, blacklist, new trafic,
internal traffic, dns traffic, previous traffic and cc traffic. Table 4.1 shows
the details of each list.

DNS Spy

This module is build upon the existing DNS spy module provided by POX
controller. The built-in module spies on all DNS queries and keeps a record

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 24

Table 4.1: Traffic classification lists
List name Purpose

Whitelist Traffic generated by User activity emulation
scripts

Blacklist Traffic classified as attack by containment sen-
sors

DNS traffic DNS queries towards our ISP DNS server
Internal traffic Traffic internal to execution network
New traffic New traffic generated by a bot but not seen

previously
Previous traffic Traffic generated by a bot in previous itera-

tions
cc traffic Requests destined towards known C&C

servers

of questions and answers of each successful query. These records helps
us in identifying sites with multiple IP addresses against a single domain
name/URL. We modify this module by keeping record of failed queries as
well. This helps us in identifying presence of domain generation algorithm
(DGA) in a bot binary. When a bot infected machine has more than 5 failed
DNS queries in a single iteration of an experiment, we identify this behavior
as domain generation.

L2 Learning

The L2 learning module decides whether to allow or drop a packet generated
from execution machine. This module is based on traditional L2 learning
component provided by POX controller. It queries traffic classification and
Attack sensors to decide the fate of a packet. It is different from traditional
learning module in the sense that it does not install flow rules against each
allow or block decision. Since no flow rule is installed, the learning module
constantly makes decision for every packet. It logs that decision along with
its attack and IP/URL classification status of destination.

Containment Methodology

The containment rule-set is a combination of a white-list (WL) and a black-
list (BL) of flows updated on each iteration of an experiment. The initial

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 25

(a) Containment: First Iteration

(b) Containment: Second Iteration

(c) Containment: Third Iteration

Figure 4.2: Different Iterations of Containment Module

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 26

WL consists of flows and domain names2 extracted from a benign run, while
the BL, initially empty, is dynamically populated by our active sensors. We
use domain names in the WL because certain benign traffic, like visits to
popular sites with CDNs, results in a different IP resolution every time. We
allow DNS traffic for name resolution as we consider such traffic to pose no
legal or ethical dilemma.

In every iteration we allow all traffic in our WL, block all traffic in the BL,
and allow only the initial TCP hand-shake for any new traffic not flagged by
our active sensors. There are two benefits in allowing such a TCP handshake.
First, the bot binary is made to believe that it can contact any TCP-based
C&C server around the globe with unfettered access to the Internet. Second,
the bot allows us to monitor any built-in backup contact mechanism, while
also revealing any IP and domain fluxing nature. Our policy generation logic
then automatically augments the current WL with all such flows (new in
current iteration and not blacklisted) to be allowed in the next iteration.

Thus, the first iteration allows us to monitor connections to non-WL
flows, which are the bootstrapping connections attempted by the bot(Figure 4.2(a)).
The second iteration will allow such bootstrapping flows to be established,
but blocks any resulting new flow (beyond an initial handshake), that has
a slight chance of causing attack or proliferation(Figure 4.2(b)). The final
iteration will then allow this second round of post-bootstrapping flows, but
again blocks any subsequent flows, most likely containing attack payloads.
We stop the automation of our scripts at this point as our sensor heuristics
become unreliable henceforth(Figure 4.2(c)). Instead, we provide those flows
which our automated policy would have whitelisted in the next iteration, and
were not black-listed by our active sensors, to an advanced user to manually
accept a subset which augments the WL for another iteration with a more
liberal policy.

Extensibility

The containment module implemented in Titan is extensible and easy to
implement. The creation of new module involves writing a program in Python
that interacts with the controller or other modules. Any custom module
written by user can be added into the system during one of its iterations.
Typically, a user can provide an attack sensor (e.g. examining traffic for XSS
attacks) and specify the output file to be displayed along with the fingerprint.
This feature of Titan allows the users to record new malware behaviors with
minimal effort.

2Thus our flow definition consists of the {dest IP, dest port, URL} tuple

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 27

4.1.3 Fingerprint Generation and Presentation

Figure 4.3 shows the features of a bot fingerprint that Titan generates. The
fingerprint generation engine works in two phases after an experiment com-
pletes.

In the first phase we process raw traffic for each operational context to
generate context-specific features (those with parenthesis in Figure 4.3). The
attack features are captured directly from the final blacklist and logs. Most
of the C&C-related features (traffic volume, connection frequency, evasion,
and C&C type) are generated by running simple heuristics over the captured
pcap using Bro [42]. Other features are extracted by using additional tools.
For example, URL features of C&C domains are generated by using a google
safe browsing lookup API [43] and the requests library [44] in python . We
discover the actual server running on a C&C port, if not well known, by
using an nmap scan of that server. Finally, the geographical location of the
C&C is extracted from the MaxMind [45] geo IP database using the pygeoip
api [46].

Second, we generate meta-data for the experiment from its initial con-
figuration. We then also look at differences between fingerprints from every
different execution within the same context family to extract the context-
specific behavior. This additional feature completes a faithful fingerprint.
Currently we identify any change in network activity due to a change in ex-
ecution platform as the anti-analysis feature. Furthermore, if the infected
machine opens up additional ports when going from a private to public exe-
cution environment, we identify it as a potential stepping-stone. Finally, to
populate the information stealing feature, we identify if the (fake) user-name
and passwords used by our user-emulation scripts for logging into banking or
social media sites are sent out by the bot. We are currently limited to only
detecting such information sent by the bot in clear text. However, it is pos-
sible to employ heuristics to identify encrypted transfer of this information,
by comparing with traffic from other operational contexts.

All these features are stored in an XML format and displayed on the
same web frontend used to upload a binary and select the configuration
parameters of the system. We build this website using an Apache server and
a php backend.

4.2 Demonstration and Evaluation

We now present demonstration and evaluation of different features of Titan
We begin by evaluating the containment methodology by studying Kanav F

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 28

Fi
n

ge
rp

ri
n

t

C
o

n
te

xt

d
if

fe
re

n
ce

A
n

ti
 a

n
a

ly
si

s

N
et

w
o

rk

co
n

n
ec

ti
o

n

St
ep

p
in

g
 s

to
n

e

P
o

rt
s

o
p

en
ed

In
fo

rm
a

ti
o

n

st
ea

lin
g

B
an

ki
n

g

So
ci

al
 m

ed
ia

{A
tt

ac
k}

D
D

o
S

Sp
a

m

Sc
a

n

In
fo

 S
te

a
l

SQ
L

in
je

ct

Ex
e

tr
a

n
sf

er

{C
&

C
}

Ty
p

e

H
T

TP

IR
C

IP Lo
ca

ti
o

n

C
o

n
n

ec
ti

o
n

fr

eq
u

en
cy

P
o

rt Se
rv

ic
e

V
o

lu
m

e

U
R

L

R
ed

ir
ec

ti
o

n

Sa
fe

 b
ro

w
si

n
g

st
at

u
s

Ev
a

si
o

n

IP
 f

lu
x

D
o

m
ai

n
 f

lu
x

M
et

ad
at

a

B
in

a
ry

 h
a

sh

Ex
p

er
im

en
t

in
fo

B
o

t
fa

m
ily

F
ig

u
re

4.
3:

F
ea

tu
re

s
of

a
fa

it
h
fu

l
b

ot
fi
n
ge

rp
ri

n
t.

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 29

bot binary. Next, we deploy a custom Zeus botnet infrastructure in order to
evaluate creation of different operational contexts. We also present evolution
of cryptolocker botnet over the period of six months and detect changing
behavior of bot. We then present fingerprint of Virut botnet demonstrating
our different fingerprinting features.

4.2.1 Containment of Kanav.F

We now present a practical example demonstrating the containment method-
ology of Titan. We analyze binary of Kanav. F bot, this malware is known
for downloading and installing several additional modules in the infected
system.

Experiment Methodology

We analyze this binary in three iterations of varying containment policy. The
analysis of this binary is performed in default operational context of Titan.
This context executes the bot binary in a virtual machine with NAT network
configuration and no user activity. The time of all three iterations is varied
from 5 to 30 minutes in order to capture complete network fingerprints of
bot.

Results and Insights

Figure 4.4 presents the C&C portion of Kanav F fingerprint generated by
Titan. The important thing to observe in this fingerprint is the connection
frequency against each C&C server. We see that the bot contacts C&C IP
218.145.x.x in all three iterations, whereas it only contacts rest of the three
IPs in first iteration only. This corresponds to our theory that a bot, when
denied complete access to the C&C server, will contact other C&C servers
in the first iteration. In the second iteration, when it is granted access to
its C&C server, it will not contact other/backup servers. Hence, due to
our containment policy, we were able to observe bootstrapping behavior of
Kanav.F.

In Figure 4.5(a) and 4.5(b), the frequency of Kanav F connection at-
tempts is shown with respect to its C&C servers and containment module
decisions. In the first iteration, presented in figure 4.5(a), we see that the
bot contacts all of its C&C servers only once. The containment module al-
lows the handshake and blocks the subsequent GET request made by the
bot binary. However in the second iteration (figure 4.5(b)), we see that it
only contacts just one of its C&C servers. Since we allow both handshake

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 30

Figure 4.4: C&C servers of Kanav F

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 31

(a) First Iteration Decision

(b) Second Iteration Decision

Figure 4.5: Connection Frequency and Containment Decision of Kanav F

and GET request to go through, it does not contact other C&C servers. An
important thing to observer here is that this C&C server (218.145.x.x) does
not respond appropriately to the GET request. It returns a 404 not found,
which essentially means that it has been taken down. This bot should now
contact other C&C servers but due to the way it is programmed, it does not.
While, we can only speculate about this behavior of bot, we see that our
containment module immensely helps us in extracting this information and
we can easily spot it in our fingerprint.

4.2.2 Case Study: Zeus

In order to verify the effectiveness of operational contexts, we deploy our own
botnet infrastructure using the code for Zeus botnet [47]. Zeus is a famous

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 32

Figure 4.6: Emulating different network contexts and behavior for the Zeus
botnet

open source do it yourself botnet, known for stealing financial information
of users. This bot has many variants present in the wild and its code is
used as a basic building block for various other malwares. We first present
implementation details of our botnet infrastructure and then our results of
executing a custom binary inside Titan.

Zeus Infrastructure

Zeus source code is divided into two parts, malware maker and command
and control setup. The malware maker code is used for compiling bot binary
with custom parameters like list of C&C server IPs and URLs and list of
websites to spy.

We position the C&C server on another machine (on a different subnet

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 33

from our testbed) through which a botmaster can push arbitrary functionality
in the form of executables that are then executed on the infected machine.
Furthermore, we do not modify the C&C server code and only recompile the
bot binary to provide the IP of our C&C server. The bot contacts our C&C
server every 2 minutes to download a new configuration file and to send user
activity reports. We also observe that the Zeus C&C server control panel
displays network operational context (inside or outside NAT) for a victim
machine, indicating the importance of this behavior for a botmaster.

Results and Insights

To evaluate the effectiveness of our tool, we run our system by varying the
network context between Private/NAT and Public. Figure 4.6 shows that for
both different execution scenarios, Titan fools the C&C logic into thinking
that the same Bot ID is first inside and then outside of NAT. We then,
for the outside NAT scenario, push onto the bot a simple port listening
script, indicating that the node should act as a stepping-stone. This emulates
a botnet that would want to use different network conditions for different
purposes. We observe that the fingerprint Titan generates captures this
change in behavior under the stepping-stone feature, as shown in the bottom
half of Figure 4.6.

4.2.3 Evolution of Cryptolocker

To demonstrate fingerprint generation for an active botnet, we analyzed two
different binaries of the CryptoLocker botnet, which besides its notoriety as
a hard-to-remove ransomware, runs a known DGA algorithm [48]. We show
that our system can easily identify the DGA behavior of this botnet. We
also observe the evolution of this bot by analyzing a more recent binary. We
show that DGA algorithm of this bot has been updated and it now carries
the feature of evasion.

Analysis of Cryptolocker - December 2013 Version

We first present the results of Cryptolocker binary found in December 2013.
Figure 4.7 highlights part of a resulting fingerprint, with a 5 minute obser-
vation time in the private network configuration. We observe 51 failed DNS
queries and 1 successful resolution within the first 5 minutes of analysis. Our
system correctly flags it as a bot with DGA ability, as shown in Figure 4.7

Further iterations of this binary reveal that one successfully resolved do-
main is being redirected to a sinkhole; hence the only interesting feature

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 34

Figure 4.7: CryptoLocker 2013 fingerprint generated by Titan

of this bot binary, i.e. DGA, is successfully detected and reported by our
system.

Analysis of Cryptolocker - April 2014 Version

We now present the results of an updated Cryptolocker binary found in
April 2014. Figure 4.8 highlights part of a resulting fingerprint. This binary
is tested in the same conditions as the December 2013 version. We observe
253 successful DNS queries and 19 failed ones in 5 minute analysis. Some of
these queries are also towards known SMTP servers and our system flags it
as the bot trying to send spam emails.

In this version of binary, we do not detect DGA feature due to the fact
that now this bot tries to evade intrusion detection systems by initiating
connections towards large number of benign websites.

Hence by observing two different variants of a bot, we were able to detect
its change in behavior over time.

CHAPTER 4. TITAN: IMPLEMENTATION AND EVALUATION 35

Figure 4.8: CryptoLocker 2014 fingerprint generated by Titan

Chapter 5

Conclusion and Future Work

This chapter presents summary of contributions of this thesis (section 5.1),
key findings and future work in this area (section 5.2 & 5.3).

5.1 Summary of Contributions

In this thesis, our aim was to design and implement various features of a
botnet analysis tool which is opensource, low cost, easy to setup and manage.
It examines bot binaries using semi automation of containment policies and
under various operational contexts. It is extensible and generates network
fingerprints in a hierarchical and user friendly format.

The first contribution of this thesis is methodology for semi-automation
of containment policies. We present an iterative approach to containment
in chapter 3. We then present the implementation of this approach using
Software Defined Networking and demonstrate the efficacy of containment
using real world bot in chapter 4.1.

The second contribution of this thesis is identification and implementation
of various operational context in which a bot shows its behavior. We identify
these context as well as various factors that affect them in chapter 3. We
present the implementation details of three basic contexts in chapter 4.1 and
deploy our own botnet infrastructure in order to evaluate its effectiveness of
this approach.

The third contribution of this thesis is presentation of an extensible and
easy to setup and manage botnet analysis tool. We present in chapter 4.1
the implementation details of this tool and discuss various components that
make it easy to manage as well as extensible.

36

CHAPTER 5. CONCLUSION AND FUTURE WORK 37

5.2 Conclusions

We now conclude by presenting key finding of this thesis.

Semi-automated iterative refinement of containment policies
We first examined existing approaches of containment in malware analysis
and then proposed an iterative mechanism for performing containment of
harmful activities in botnet analysis. The proposed method is also semi-
automated, thus requiring minimal human intervention. Our approach is to
allow understood activity iteratively. We start of with a conservative policy
of allowing no outside connections beyond TCP handshake and also block
any traffic marked as an attack by our sensors. This approach helps us in
capturing the bootstrap behavior of a bot. We then allow all non-attack stan-
dard TCP traffic to pass through to the Internet. This is done using Software
Defined Networking, we use POX controller along with Open vSwitch in our
network. The traffic generated by a bot is constantly monitored by attack
sensors and all the forwarding decisions are made by our learning module.
The containment policies are revised in every iteration and they gradually
move towards a more liberal rule set. Our sensors are extensible and any user
can add their POX based monitoring and blocking modules in our system.

Capturing changing bot behavior
We first identify various operational contexts that affect a behavior of a bot.
These contexts include user activity in infected machine, type of infected
machine, and network configuration of infected machine. We then identify
various factors like observation duration and containment policies that affect
these contexts. We present novel ways in which these contexts can be used
by botnet analysis tools. We also present their implementation in our own
botnet analysis tool called Titan. We show these contexts are effective by
deploying a real world botnet infrastructure and fooling its operator.

5.3 Future Work

While a lot of work has been done in developing this tool, there are some
features that can be enhanced. Firstly, the attack sensors are limited and
the tool needs more breadth of attacks to be covered. Secondly, the opera-
tional contexts that are implemented are also somewhat limited, if they are
increased, they would surely capture complete network behavior of bot.

Bibliography

[1] Brett Stone-Gross, Marco Cova, Lorenzo Cavallaro, Bob Gilbert, Mar-
tin Szydlowski, Richard Kemmerer, Christopher Kruegel, and Giovanni
Vigna. Your botnet is my botnet: Analysis of a botnet takeover. In
Proceedings of the 16th ACM Conference on Computer and Communi-
cations Security, CCS ’09, pages 635–647, New York, NY, USA, 2009.
ACM.

[2] Zhen Li, Qi Liao, and Aaron Striegel. Botnet economics: Uncertainty
matters. In WEIS’2008, 2008.

[3] Yinglian Xie, Fang Yu, Kannan Achan, Rina Panigrahy, Geoff Hulten,
and Ivan Osipkov. Spamming botnets: Signatures and characteristics.
In Proceedings of the ACM SIGCOMM 2008 Conference on Data Com-
munication, SIGCOMM ’08, pages 171–182, New York, NY, USA, 2008.
ACM.

[4] Trendmicro. http://goo.gl/eMNDio.

[5] Christian Kreibich, Nicholas Weaver, Chris Kanich, Weidong Cui, and
Vern Paxson. Gq: Practical containment for measuring modern malware
systems. In Proceedings of the ACM IMC, pages 397–412, New York,
NY, USA, 2011. ACM.

[6] John P. John, Alexander Moshchuk, Steven D. Gribble, and Arvind Kr-
ishnamurthy. Studying spamming botnets using botlab. In Proceedings
of the NSDI, 2009.

[7] Moheeb Abu Rajab, Jay Zarfoss, Fabian Monrose, and Andreas Terzis.
A multifaceted approach to understanding the botnet phenomenon. In
Proceedings of the ACM IMC, 2006.

[8] Malwr. https://malwr.com/.

[9] Anubis. http://anubis.iseclab.org/.

38

BIBLIOGRAPHY 39

[10] Mcafee labs threats report: February 2015. http://www.mcafee.com/

us/resources/reports/rp-quarterly-threat-q4-2014.pdf.

[11] Symantec internet security threat report. http://www.symantec.com/

security_response/publications/threatreport.jsp.

[12] Carsten Willems, Thorsten Holz, and Felix Freiling. Toward automated
dynamic malware analysis using cwsandbox. IEEE Security and Privacy,
pages 32–39, March 2007.

[13] Chris Kanich, Christian Kreibich, Kirill Levchenko, Brandon Enright,
Geoffrey M. Voelker, Vern Paxson, and Stefan Savage. Spamalytics:
An empirical analysis of spam marketing conversion. In Proceedings of
the 15th ACM Conference on Computer and Communications Security,
CCS ’08, pages 3–14, New York, NY, USA, 2008. ACM.

[14] Ulrich Bayer, Imam Habibi, Davide Balzarotti, Engin Kirda, and
Christopher Kruegel. A view on current malware behaviors. In Proceed-
ings of the LEET’09, LEET’09, pages 8–8, Berkeley, CA, USA, 2009.
USENIX Association.

[15] Yuanyuan Zeng, Xin Hu, and K.G. Shin. Detection of botnets using
combined host- and network-level information. In Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International Conference on,
pages 291–300, June 2010.

[16] Jestin Joy and Anita John. Host based attack detection using system
calls. In Proceedings of the Second International Conference on Com-
putational Science, Engineering and Information Technology, CCSEIT
’12, pages 7–11, New York, NY, USA, 2012. ACM.

[17] Anestis Karasaridis, Brian Rexroad, and David Hoeflin. Wide-scale bot-
net detection and characterization. In Proceedings of the First Con-
ference on First Workshop on Hot Topics in Understanding Botnets,
HotBots’07, pages 7–7, Berkeley, CA, USA, 2007. USENIX Association.

[18] Heng Yin, Dawn Song, Manuel Egele, Christopher Kruegel, and Engin
Kirda. Panorama: Capturing system-wide information flow for malware
detection and analysis. In Proceedings of the 14th ACM Conference on
Computer and Communications Security, CCS ’07, pages 116–127, New
York, NY, USA, 2007. ACM.

BIBLIOGRAPHY 40

[19] Artem Dinaburg, Paul Royal, Monirul Sharif, and Wenke Lee. Ether:
Malware analysis via hardware virtualization extensions. In Proceed-
ings of the 15th ACM Conference on Computer and Communications
Security, CCS ’08, pages 51–62, New York, NY, USA, 2008. ACM.

[20] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,
Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam,
and Prateek Saxena. Bitblaze: A new approach to computer security via
binary analysis. In Proceedings of the 4th International Conference on
Information Systems Security, ICISS ’08, pages 1–25, Berlin, Heidelberg,
2008. Springer-Verlag.

[21] Clemens Kolbitsch, Paolo Milani Comparetti, Christopher Kruegel, En-
gin Kirda, Xiaoyong Zhou, and XiaoFeng Wang. Effective and efficient
malware detection at the end host. In Proceedings of the 18th Conference
on USENIX Security Symposium, SSYM’09, pages 351–366, Berkeley,
CA, USA, 2009. USENIX Association.

[22] Cwsandbox. http://mwanalysis.org/.

[23] Christian Rossow, Christian J. Dietrich, Herbert Bos, Lorenzo Cav-
allaro, Maarten van Steen, Felix C. Freiling, and Norbert Pohlmann.
Sandnet: Network Traffic Analysis of Malicious Software. In Proceed-
ings of ACM BADGERS Workshop, 2011.

[24] Guofei Gu, Phillip Porras, Vinod Yegneswaran, Martin Fong, and Wenke
Lee. Bothunter: Detecting malware infection through ids-driven dialog
correlation. In Proceedings of 16th USENIX Security Symposium, Berke-
ley, CA, USA, 2007. USENIX Association.

[25] Guofei Gu, Roberto Perdisci, Junjie Zhang, and Wenke Lee. Bot-
miner: Clustering analysis of network traffic for protocol- and structure-
independent botnet detection. In Proceedings of the 17th Conference on
Security Symposium, SS’08, Berkeley, CA, USA. USENIX Association.

[26] Fireeye. http://www.fireeye.com/products-and-solutions/.

[27] Damballa. https://www.damballa.com/.

[28] None. http://camas.comodo.com/. Online. December,2013.

[29] Pavan Roy Marupally and Vamsi Paruchuri. Comparative analysis and
evaluation of botnet command and control models. In AINA, pages
82–89. IEEE Computer Society, May 2010.

BIBLIOGRAPHY 41

[30] Thorsten Holz, Moritz Steiner, Frederic Dahl, Ernst Biersack, and Felix
Freiling. Measurements and mitigation of peer-to-peer-based botnets: A
case study on storm worm. In Proceedings of the LEET 2008, LEET’08,
pages 9:1–9:9, Berkeley, CA, USA. USENIX Association.

[31] H. Binsalleeh, T. Ormerod, A. Boukhtouta, P. Sinha, A. Youssef,
M. Debbabi, and L. Wang. On the analysis of the zeus botnet crimeware
toolkit. In Eighth Annual International Conference on Privacy Security
and Trust (PST), 2010.

[32] G Kirubavathi and R Anitha. Botnets: A study and analysis. In Compu-
tational Intelligence, Cyber Security and Computational Models, pages
203–214. Springer, 2014.

[33] S. Khattak, N. Ramay, K. Khan, A. Syed, and S. Khayam. A taxonomy
of botnet behavior, detection, and defense. IEEE Commun. Surveys
Tuts., PP(99):1–27, Oct 2013.

[34] Dionaea. http://dionaea.carnivore.it/.

[35] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris,
Alex Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and
the art of virtualization. In Proceedings of the ACM SOSP, SOSP ’03,
pages 164–177, New York, NY, USA, 2003. ACM.

[36] Trinity rescue kit. http://trinityhome.org/.

[37] Autoit. http://www.autoitscript.com/site/autoit.

[38] Nmap security scanner. http://nmap.org/.

[39] Pox. http://www.noxrepo.org/pox/about-pox/.

[40] Ben Pfaff, Justin Pettit, Teemu Koponen, Keith Amidon, Martin
Casado, and Scott Shenker. e.a.: Extending networking into the virtu-
alization layer. In In: 8th ACM Workshop on Hot Topics in Networks,
October 2009.

[41] Martin Roesch. Snort - lightweight intrusion detection for networks. In
Proceedings of the 13th USENIX Conference on System Administration,
LISA, pages 229–238, Berkeley, CA, USA, 1999. USENIX Association.

[42] Bro. http://www.bro.org,.

[43] Google safe browsing lookup api. http://goo.gl/JnV8Fk.

BIBLIOGRAPHY 42

[44] Requests. http://requests.readthedocs.org.

[45] Maxmind. http://www.maxmind.com.

[46] Pygeoip. https://github.com/appliedsec/pygeoip.

[47] Visgean skeloru. https://github.com/Visgean/Zeus.

[48] Securelist. http://goo.gl/vC1JCQ.

