
Towards Using NOSQL Database
Systems for Semantic Web Data

By

Mahek Hanfi

NUST201362761MSEECS61413F

Supervisor

Dr. Khalid Latif

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree

of Masters in Computer Science (MS CS)

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(July 2015)

Approval

It is certified that the contents and form of the thesis entitled

“Towards Using NOSQL Database Systems for Semantic Web Data”

submitted by Mahek Hanfi have been found satisfactory for the require-

ment of the degree.

Advisor: Dr. Khalid Latif

Signature:

Date:

i

ii

Committee Member 1: Dr. Hamid Mukhtar

Signature:

Date:

Committee Member 2: Dr. Farooq Ahmad

Signature:

Date:

Committee Member 3: Dr. Asad Anwar

Signature:

Date:

Dedication

With affection and gratitude, I would like to dedicate this thesis to

my family and teachers who have been a continuous source of inspiration and

motivaion for me and supported me all the way throughout my education.

iii

Certificate of Originality

I hereby declare that this submission is my own work and to the best

of my knowledge it contains no materials previously published or written by

another person, nor material which to a substantial extent has been accepted

for the award of any degree or diploma at NUST SEECS or at any other ed-

ucational institute, except where due acknowledgement has been made in

the thesis. Any contribution made to the research by others, with whom I

have worked at NUST SEECS or elsewhere, is explicitly acknowledged in the

thesis.

I also declare that the intellectual content of this thesis is the prod-

uct of my own work, except for the assistance from others in the project’s

design and conception or in style, presentation and linguistics which has been

acknowledged.

Author Name: Mahek Hanfi

Signature:

iv

Acknowledgment

In the name of Allah the beneficent and merciful, on whom we all

are dependent for eventual support and guidance.

I would like to express my immense gratitude to my supervisor Dr.

Khalid Latif, who has guided and supported me throughout my thesis work

and allow me to work in my own way and polish my skills. I highly appreciate

his help in technical writing.His mentorship was predominant in sustaining

versatile experience in my long term career goals.

I would also like to thank my committee members, Dr. Hamid

Mukhtar, Dr. Farooq Ahmad and Dr. Asad Anwar who continuously guided

me in my thesis, and provided their valuable suggestions and encouragement.

Finally I would like to thanks my siblings,friends and colleagues

who helped and motivated me in completing my thesis.

v

Table of Contents

1 Introduction 1

1.1 Introduction . 1

1.2 Motivation . 3

1.3 Objective . 3

1.4 Problem Statement . 4

1.5 Contribution . 4

1.6 Evaluation . 5

1.7 Methodology . 5

1.8 Expected Results . 6

1.9 Structure . 6

2 Semantic Web and Graph databases 7

vi

TABLE OF CONTENTS vii

2.1 Semantic Web . 7

2.2 RDF . 8

2.3 RDFS . 10

2.4 Inference . 11

2.5 Graph Databases . 12

2.6 Neo4j . 13

3 Related Work 14

4 Mapping of RDF constructs with Neo4j 16

4.1 Mapping of RDF to Neo4j . 16

4.2 Mapping SPARQL to Cypher 20

4.3 Inference . 21

5 System Architecture and Implementation 27

6 Evaluation and Results 29

6.1 Benchmarks . 29

6.1.1 Lehigh University Benchmark (LUBM) 29

TABLE OF CONTENTS viii

6.1.2 Computational Environment 30

6.2 Results . 30

6.2.1 Loading . 30

6.2.2 Inference . 30

7 Conclusion and Future Work 34

7.1 Conclusion . 34

7.2 Future Work . 35

List of Tables

2.1 RDFS Inference Rules . 12

4.1 SPARQL to Cypher Mapping 21

6.1 Positive Entailment . 33

6.2 Negative entailment . 33

ix

List of Figures

2.1 Semantic Web Architecture 8

2.2 RDF Statement . 9

4.1 RDF Statement . 18

4.2 RDF Statement . 18

4.3 RDF Statement with Literal 19

4.4 RDF Statement with Literal 19

4.5 Multiple Statements including Literal values 20

4.6 Multiple Statements including Literal values 20

4.7 RDF Statement . 21

4.8 Statement with Blank nodes 22

4.9 RDFS Rule execution order 26

x

LIST OF FIGURES xi

5.1 Neo4jena architecture . 28

6.1 Load time for lehigh benchmark 31

6.2 Response time for inference 31

6.3 Response time of inference for Tbox rules 32

Abstract

The Semantic Web allows data to be shared and reused through

a mechanism of URIs and resource description. RDF, as a standard for

describing resources and data, models information in the form of subject-

predicate-object triples. This model can be viewed as a graph; subjects and

objects are vertices or nodes and are connected through predicates as edges

of the graph. Relational database systems are not efficient in processing Se-

mantic Web data. With the massive increase in graph data, attributed to the

growth of social networks, many native graph database systems have surfaced

to replace Relational databases. Neo4j is the leading and very scalable graph

database system that can store up to millions of nodes and relationships.

Storage of Semantic Web data in Neo4J requires mapping of RDF constructs

to Neo4j. Henceforth, retrieval requires mapping of the SPARQL query lan-

guage for Semantic Web, with the Cypher query language for Neo4j. Logical

inference or reasoning is a fundamental building block of the Semantic Web.

A complementary standard in the Semantic Web architecture, known as RDF

Schema or RDF/S for short, provides a set of inference rules that define the

mechanism for discovering and generating new relationships based on exist-

xii

LIST OF FIGURES xiii

ing data. An efficient and scalable implementation of RDF/S inference rules

is also missing in most of the graph database systems. This paper contributes

three pieces of the jigsaw to achieve a scalable RDF storage system. First a

mechanism for mapping RDF constructs with Neo4J is outlined. Secondly,

SPARQL query language is mapped with Cypher for efficient retrieval. And

finally, RDF/S inference rules are implemented to realize logical inference

capability.

Chapter 1

Introduction

This chapter gives the basic idea of the concepts involved in this

research. It also presents the background and motivation for this study.

Moreover, it provides an idea of expected results, and methodology to get

and evaluate the results. Finally, it presents the structure of this thesis

document.

1.1 Introduction

Graphs represent entities as nodes and the ways these entities re-

late to the world as relationships. A graph database; uses graph structures

with nodes and edges to represent and store data. It is capable of elegantly

representing any kind of data in a highly accessible way. With the massive

increase in graph data many native graph database systems are surfaced to

1

CHAPTER 1. INTRODUCTION 2

replace relational databases [1] . Neo4j is one of the leading and highly scal-

able graph databases that can store upto billions of nodes and relationships

(edges). It stores data in form of nodes and relationships rather than tables.

Neo4j follow the structure of property graph. Neo4j implements property

graph model. In property graph, each node is identified with a unique iden-

tifier. Each edge is identified with a unique identifier and a labeled string.

Nodes and edges in a property graph can have collection of key/value proper-

ties [2]. Neo4j data is accessed through cypher query language which is based

on patterns. Patterns are used to match desired graph structure. Semantic

Web on the other is a set of standards that allows us to share and reuse data

across the internet. These standards promote standard data models (also

known as ontologies) on the Web. RDF (Resource Description Framework)

is the most fundamental semantic web standard that represents data in the

form of triples ¡subject, predicate, object¿ where predicate is edge between

subject and object [3]. RDF graphs are queried using SPARQL query lan-

guage. RDF data can be viewed as graph with subject and object as nodes

and predicates as edges of the graph [4]. Moreover, there are other standards

in semantic web that allow us to define RDF data models. RDFS is one

of such standards that provide a vocabulary to define RDF data. It also

provides set of inference or reasoning rules that are used to determine what

additional facts can be implied if other facts are known. Jena is a Semantic

Web framework for Java that can store, modify and retrieve data from RDF

graphs. The framework also supports SPARQL (RDF query language) and

inference over RDF data. It has built in support for RDFS and OWL reason-

ers [5]. In this paper, we have proposed and implemented a framework that

CHAPTER 1. INTRODUCTION 3

maps RDF data to property graph and store it in neo4j. Our work focuses on

RDF triple mapping to Neo4j graph and vice versa. The framework includes

the implementation of RDFS reasoner in neo4j and SPARQL query mapping

to neo4j’s cypher queries.

1.2 Motivation

Attributed to the growth of social networks, the need to store and

process graph data has increased many folds in last few years. Every enter-

prise needs a scalable system to manage the data overflow that too in intuitive

way based on emerging industry standards and mature tools. Many enter-

prises are using linked data for knowledge representation. Graph databases

on the other hand can model real world problems and are scalable. This

present us the need of integration of semantic web data with the graph

databases.

1.3 Objective

The objective of this thesis is to :

� Map RDF constructs with the graph database.

� Implement inference engine to add inferred RDF statements based on

RDFS rules

CHAPTER 1. INTRODUCTION 4

� Map SPARQL query language constructs with the graph database

query language constructs.

� Efficient storage and retrieval of RDF for millions of statements.

1.4 Problem Statement

RDF data cannot be directly stored in graph stores. So while storing

RDF data in graph stores we have following challenges:

� RDF data is in triple form (subject, predicate, object) while graph

stores data in form of nodes and relationships.

� RDF data is queries using SPARQL query language while graph stores

have their own query languages which are based on graph patterns.

� Many graph stores doesnot support inference or reasoning over data.

1.5 Contribution

For the integration of semantic web data with graph stores following

contributions are made:

� Mapped and stored RDF data (subject-predicate-object) triple to neo4j

constructs (nodes and edges).

CHAPTER 1. INTRODUCTION 5

� Retrieve data using SPARQL query language - mapped SPARQL to

cypher query language.

� Mapped neo4j constructs to RDF

� Implemented RDF/S rules for semantic reasoning in neo4j.

1.6 Evaluation

The evaluation is based on following perspectives.

� To evaluate the loading and querying performance of data access layer

five different datasets were generated for Lehigh University Bench-

mark(LUBM)

� Inference performance is evaluated using positive and negative entail-

ment tests.

1.7 Methodology

As per methodology, firstly RDF data (subject, predicate, object)

is mapped and stored in neo4j (nodes and relationships) and then retrieved.

For retrieval of RDF from neo4j, SPARQL query is mapped with cypher

query language. Lastly, RDFS inference rules are applied on neo4j data.

CHAPTER 1. INTRODUCTION 6

1.8 Expected Results

As per proposed methodology, the data access layer should store

RDF data in neo4j and query using SPARQL query languagae. And it should

also infer new facts from existing data using RDFS inference rules.

1.9 Structure

Rest of the thesis is structured as follows:

� Chapter 2: Semantic Web and Graph databases

� Chapter 3: Related Work

� Chapter 4: Mapping of RDF constructs with Neo4j

� Chapter 5: System Architecture and Implementation is followed.

� Chapter 6: Evaluation and Results

� Chapter 7: Conclusion.

Chapter 2

Semantic Web and Graph

databases

2.1 Semantic Web

Semantic web also known as Web 3.0 is Web of Data. The main

goal of Web 3.0 is to enable sharing and supporting trusted interactions over

the internet. Web 3.0 is an extension of web through standards of World

Wide Web Consortium (W3C). Semantic Web is W3C’s recommendation for

linked data. For handling of data, semantic web allows to create data that

can be stored on web, build vocabularies and write rules for inferring new

facts from existing data. The semantic web is the collection of standard tech-

nologies to realize Web of data. The technology stack of semantic web data

is shown if figure. In semantic web data is shared and reused through URIs

7

CHAPTER 2. SEMANTIC WEB AND GRAPH DATABASES 8

and resource description. Knowledge in semantic web is represented using

different knowledge representation standards. Some semantic web standards

are described below.

Figure 2.1: Semantic Web Architecture

2.2 RDF

Resource Description Framework (RDF) is a W3C recommendation

for describing information contained in the web. It is a data model for de-

scribing meta data (data about data). RDF represents knowledge in form of

triple (subject, predicate, object). The subject-predicate-object triple form

CHAPTER 2. SEMANTIC WEB AND GRAPH DATABASES 9

a RDF statement. The basic building blocks of RDF are resources and prop-

erties. Resources are always uniquely identified using URIs. Blank nodes

don’t have a unique identifier and can’t be accessed externally. Literal

values are atomic values. Properties(predicates) are the relationship be-

tween resoucres and they are uniquely identified using URI. A simple RDF

statement is represented in following figure.

Figure 2.2: RDF Statement

Subject and predicate are always resources (URIs and blank nodes)

while object can be a resource or literal. Blank nodes can be introduced to

represent multi valued relationships with dependent nodes. Blank nodes are

for resources that don’t need to be referred externally. Literals are atomic

values and consist of three parts; the actual value, data type and language

of value.

CHAPTER 2. SEMANTIC WEB AND GRAPH DATABASES 10

2.3 RDFS

RDF Schema is an ontology language that describes specific do-

mains . RDF Schema is described by:

� Classes and properties

� Class hierarchies and inheritence

� Property hierarchies

Classes are set of objects. Members of classes are called the in-

stances.Forexample Person is a class and John is its instance. Classes are

resources and uniquely identified through URI. The relationship between in-

stances and classes are defined using rdf:type.

:John rdf:type :Person

Classes are organized in hierarchies.

� A is a subclass of B if every instance of A is also an instance of B.

� A class may have multiple super classes.

:Student rdfs:subClassOf :Person

CHAPTER 2. SEMANTIC WEB AND GRAPH DATABASES 11

Properties are the relationship between subject and object re-

sources. For example in the above triple rdfs:subClassOf is a property

that relate Student class with Person class. RDF properties are defined

globally.

Declaration:

:studiedAt rdf:type rdf:Property

Use:

:John :studiedAt :MIT

Domain of a property declares the class of subject and Range of

a property declares the class of object in a triple whose second component is

the predicate.

:studiedAt rdfs:domain :Person

:studiedAt rdfs:range :University

2.4 Inference

Inference is the ability to infer new facts from the existing facts.

Reasoning on knowledge to discover new facts is an important process on

CHAPTER 2. SEMANTIC WEB AND GRAPH DATABASES 12

Table 2.1: RDFS Inference Rules
Rule If KB contains Add

1 s p o (if o is a literal) :n rdf:type rdfs:Literal

2 p rdfs:domain x & s p o s rdf:type x

3 p rdfs:range x & s p o o rdf:type x

4a s p o s rdf:type rdfs:Resource

4b s p o o rdf:type rdfs:Resource

5 p rdfs:subPropertyOf q & q rdfs:subPropertyOf
r

p rdfs:subPropertyOf r

6 p rdf:type rdf:Property p rdfs:subPropertyOf p

7 s p o & p rdfs:subPropertyOf q s q o

8 s rdf:type rdfs:Class s rdfs:subClassOf rdfs:Resource

9 s rdf:type x & x rdfs:subClassOf y s rdf:type y

10 s rdf:type rdfs:Class s rdfs:subClassOf s

11 x rdfs:subClassOf y & y rdfs:subClassof z x rdfs:subClassOf z

12 p rdf:type rdfs:ContainerMembershipProperty p rdfs:subPropertyOf rdfs:member

13 o rdf:type rdfs:Datatype o rdfs:subClassOf rdfs:Literal

the semantic web. Common queries, such as ”what are the (direct and indi-

rect) sub-classes and instances of class” and ”which instances have a certain

relationship with a given instance”, may all involve inference. The fact gen-

eration are based on some set of rules. RDFS provides rules for both Tbox

(schema) and Abox (instance) level rules. The set of RDFS 14 rules are

described in following table:

2.5 Graph Databases

Graph is a collection of nodes(vertices) and edges. Graph represent

entities as nodes and the way these nodes connect with each other as relation-

ships. Data is increasing exponentially and more connected year after year

making it difficult for relational databases to handle as it requires a lot of

CHAPTER 2. SEMANTIC WEB AND GRAPH DATABASES 13

joins. The best way to handle big and connected data is by using Graphs.

A graph database stores data in form of nodes and edges. Processing big

graphs is also a big challenge. The property graph model is a kind of graph

model and has following characteristics:

� Contains nodes and relationships

� Nodes have properties (key-value pair)

� Relationships are directed and contains properties.

2.6 Neo4j

Neo4j is the leading graph database and massively scalable that can

store up to millions of nodes and relationships. Neo4j is the property graph,

nodes and edges can have properties [2]. Labels in neo4j assign roles to the

nodes. A single node can have multiple labels on it. For example, Ali can be

have a label Person as well as Student.

Relationships in neo4j are always directed and must have a start and end

node.

Chapter 3

Related Work

Many RDF management systems are developed using NOSQL databases

[6]. Each NOSQL databases has its own performance. The performance of

these NOSQL databases (HBase, Couchbase, and Cassandra) is compared

with native triple store (4store). RDF triples are first stored on these systems

and then queried using SPARQL. The evaluation determine the performance

profiles of these system on data size, cluster size and query characteristics.

The evaluation was done on Berlin and DBpedia benchmark. On the basic

of the evaluation following conclusion was drawn:

� Simple SPARQL queries having lookups execute more efficiently on

NOSQL databases than native triple store.

� Complex SPARQL queries having complex filters and a lot of data

execute more efficiently on native triple stores than NOSQL databases.

14

CHAPTER 3. RELATED WORK 15

� RDF loading time depends on the indexing approached used.

� When triples are stored in large graph structured, finding data is inef-

ficient because of the expensive join operations.

For property graph model, tinkerpop blueprint provides implemen-

tation, interfaces and ouplementations [7]. Blueprint is the JDBC for graph

databases. Graph databases backend can easily be plug and play using the in-

terfaces provided by blueprint. It is implemented using open RDF (sesame),

an open source framework for querying and analyzing RDF [8]. This RDF

can be viewed as graph with classes as nodes and properties as edges of the

graph. It is possible to model RDF quads (subject, predicate, object and

named graph) as a property graph. The subjects in triples are URIs or blank

nodes, predicates are URIs and objects are URIs, blank nodes or literals.

To map RDF to property graph, all nodes in property graph have a kind

property (key-value pair) which can be a uri, literal or a blank node. The

nodes which have kind literal, can further have three properties (key value

pair). These properties are language, datatype and value of literal [9].

Chapter 4

Mapping of RDF constructs

with Neo4j

4.1 Mapping of RDF to Neo4j

Resource Description Framework (RDF) is the W3C standard for

semantic data modeling. RDF statement consists of subject-predicate-object

triple. Subject must be a URI or a blank node, predicate must be a URI and

object must be a URI, blank node or a literal. URI is the unique identifier

of resource. Blank nodes don’t have a unique identifier and can’t be referred

externally. Literals are atomic values and consist of three parts; the actual

value, data type and language of value. On the other hand neo4j represents

data as nodes, relationships and properties (key -value pairs) of nodes and

edges. RDF URIs and blank nodes are mapped as neo4j nodes. This neo4j

16

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 17

node has a property which stores the URI of resource. In case of blank node

the URI is the hash value of node. Literal values can be stored as subject

node properties. For example an RDF triple: ex:Peter foaf:nick ”Peter”.

The neo4j node Peter has property (key: foaf:nick, value: Peter). But the

problem occurs when a person has two nick names. Another problem in that

mapping is it could not store literal data type and language. When mapping

RDF to neo4j:

� RDF resources (URI) are mapped as neo4j nodes with label ’uri’ and

a property

– key: uri ; value: the URI of resource.

� RDF predicate are mapped as neo4j relationships.

� RDF literals are mapped as neo4j nodes with label ’literal’ and three

properties

– Key: value ; value: the actual value of literal.

– Key: datatype ; value: datatype of value.

– Key: language ; value: language of value

� Blank nodes are mapped as neo4j nodes with label ’bnode’ and a prop-

erty

– Key: uri ; value: hash of blanknode

Example 1: RDF Statement

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 18

Figure 4.1: RDF Statement

This RDF statement has:

� a subject http://www.example.org/index.html

� a predicate http://purl.org/dc/elements/1.1/creator

� and an object http://www.example.org/staffid/85740

The subject and object are resources so while mapping them neo4j

node has label uri. The following figure shows how this statement is repre-

sented in Neo4j. (In mapping prefixes are used)

Figure 4.2: RDF Statement

Example 2: RDF Statement with Literal

This RDF statement has:

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 19

Figure 4.3: RDF Statement with Literal

� a subject http://www.example.org/staffid/85740

� a predicate http://example.org/terms/age

� and an object ”27” which is a literal value.

Figure 4.4: RDF Statement with Literal

The subject is a resource so while mapping them neo4j node has

label uri.Literal values can have their datatype and language as well.

Example 3: Multiple Statements including Literal values

Subjects and objects when mapped in neo4j node have label uri

while literal values have label literal. The properties of uri and literals are

different.

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 20

Figure 4.5: Multiple Statements including Literal values

Figure 4.6: Multiple Statements including Literal values

Example 4:Statement with Blank nodes

While mapping blank node the neo4j node has label bnode.

4.2 Mapping SPARQL to Cypher

SPARQL is the RDF query language and cypher is the neo4j query

language. To retrieve RDF from neo4j, SPARQL query is converted to cypher

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 21

Figure 4.7: RDF Statement

query and executes in neo4j.

Table 4.1: SPARQL to Cypher Mapping
SPARQL CYPHER

Select Return
Where Match

Describe Match
Insert Create

Update Delete,Create
Delete Delete
Limit Limit

4.3 Inference

Reasoning on knowledge to discover implicit information is an im-

portant process on the semantic web. Common queries, such as ”what are

the (direct and indirect) sub-classes and instances of class” and ”which in-

stances have a certain relationship with a given instance”, may all involve

inference. Neo4j doesn’t support inference. RDF(S) rules are implemented to

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 22

Figure 4.8: Statement with Blank nodes

support inference in neo4j. Terminological box (Tbox) describes controlled

vocabularies in term of concepts (classes and properties) and concept hier-

archies. Assertion box (ABox) describes ground sentences stating where in

the hierarchy the individual belongs. Both TBox and ABox are converted to

cypher query and then executes in neo4j. RDFS reasoner consists of set of

14 rules. There are certain rules that produce trivial output that cannot be

used for further derivation. These rules are rules number 1, 4a, 4b, 6, 8, 10.

We haven’t implemented these rules in neo4j.

TBox Rules

Rule 5:

p rdfs : subPropertyOf q & q rdfs : subPropertyOf r

=⇒ p rdfs : subPropertyOf r

The rule states that if p is subproperty of q and q is subproperty of

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 23

r, a new triple will be inferred which implies that p is also the subproperty

of r.

Cypher conversion:

MATCH (p)-[:‘rdfs:subPropertyOf’]->(q)

MATCH (q)-[:‘rdfs:subPropertyOf’]->(r)

MERGE (p)-[:‘rdfs:subPropertyOf’]->(r)

Match construct finds the triples. Merge is the combination of

match and create, it creates a new triple only if it doesnt exist otherwise

it finds the triple.

Rule 11:

x rdfs : subClassOf y & y rdfs : subClassOf z

=⇒ x rdfs : subClassOf z

The rule states that if x is subclass of y and y is subclass of z, a

new triple will be inferred which implies that x is also the subclass of z

Cypher conversion:

MATCH (x)-[:‘rdfs:subClassOf’]->(y)

MATCH (y)-[:‘rdfs:subClassOf’]->(z)

MERGE (x)-[:‘rdfs:subClassOf’]->(z)

ABox Rules

Rule 7:

s p o & p rdfs : subPropertyOf q =⇒ s q o

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 24

The rule states that if there exist a triple whose property (p) is

subproperty of another property (q), a new triple will be inferred with the

property q.

Cypher conversion:

MATCH (p)-[:‘rdfs:subPropertyOf’]->(q)

MATCH (s)-[:p]->(o)

MERGE (s)-[:q]->(o)

Rule 2:

p rdfs : domain x & s p o =⇒ s rdf : type x

The rule states that if there exist a triple with property p and p has

domain x that implies the subject of triple is of type x.

Cypher conversion:

MATCH (p)-[:‘rdfs:domain’]->(x)

MATCH (s)-[:p]->(o)

MERGE (s)-[:‘rdf:type’]->(x)

Rule 3:

p rdfs : range x & s p o =⇒ o rdf : type x

The rule states that if there exist a triple with property p and p has

range x that implies the object of triple is of type x.

Cypher conversion:

MATCH (p)-[:‘rdfs:range’]->(x)

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 25

MATCH (s)-[:p]->(o)

MERGE (o)-[:‘rdf:type’]->(x)

Rule 9:

s rdf : type x & x rdfs : subClassOf y =⇒ s rdf : type y

The rule states that if the type of subject of triple is x and x is

subclass of y that implies subject of triple is also of type y.

Cypher conversion:

MATCH (s)-[:‘rdf:type’]->(x)

MATCH (x)-[:‘rdfs:subClassOf’]->(y)

MERGE (s)-[:‘rdf:type’]->(y)

Rule execution order:

Rule execution order is important as one rule output can be another rule

input and so on. The Tbox rules (5, 11) are recursive i-e they can repeatedly

call themseleves. Rule 2, 3 and 9 outputs data triple that defines type of

some particular resource. The output of rule 7 can be of any nature. Tbox

rules are executed first than abox rules are executed. In abox rules, rule 7

is executed first as its output is of any nature. After that rule 2 and 3 are

executed. And lastly rule 9 is executed.

CHAPTER 4. MAPPING OF RDF CONSTRUCTS WITH NEO4J 26

Figure 4.9: RDFS Rule execution order

Chapter 5

System Architecture and

Implementation

This thesis proposes a framework neo4jena. This framework maps

RDF data with property graph. Two implementations are provided to load

RDF in neo4j

� Triple by triple storing in neo4j

� Bulk load

First RDF triples are converted to neo4j using RDF-Neo mapper.

After this they can be stored in neo4j either triple by triple or by bulk load.

RDF is queried using SPARQL query language. SPARQL query language is

converted to cypher query language using SPARQL- cypher mapper. Cypher

27

CHAPTER 5. SYSTEM ARCHITECTURE AND IMPLEMENTATION28

query is then executed in neo4j and return results in form of neo4j nodes and

relationships. These neo4j nodes and relationships are then converted to

triples. Inference rules are then executed in neo4j.

Figure 5.1: Neo4jena architecture

Chapter 6

Evaluation and Results

6.1 Benchmarks

6.1.1 Lehigh University Benchmark (LUBM)

LUBM is used to evaluate Semantic Web repositories in a standard

and systematic way. The benchmark contains university data which can

have different departments, professors, students, courses and the relationship

between them.Five datasets were generated for this benchmark:

� 15,144 triples

� 95,280 triples

� 230,062 triples

29

CHAPTER 6. EVALUATION AND RESULTS 30

� 477,785 triples

� 1,001,419 triples

6.1.2 Computational Environment

All evaluation was done on CentOS with 4 GB of RAM and 115

GB of storage.

6.2 Results

6.2.1 Loading

The loading performance of RDF in neo4j is compared with TDB

and tinkerpop. The following graph shows time to load single triple in dif-

ferent datasets.

Neo4jena loads 6-30 triples in a millisecond while TDB loads 5-11

triples per millisecond and tinkerpop loads 2-4 triples in a millisecond.

6.2.2 Inference

Inference is performed on wordnet dataset. The following graph

shows the time taken to infer the triples.

CHAPTER 6. EVALUATION AND RESULTS 31

Figure 6.1: Load time for lehigh benchmark

No of triples

Ti
me

 (m
s)

Response time of inference

Inference

762 1362 3162 6162 12162 21162

10k

0k

2.5k

5k

7.5k

12.5k

Highcharts.com

Figure 6.2: Response time for inference

Inference rules are also applied on different schemas to test Tbox

rules. Following graph shows the time taken for Tbox rules (subclass and

subpropertyof) to infer triples.

Rule 5:

p rdfs : subPropertyOf q & q rdfs : subPropertyOf r =⇒ p rdfs :

CHAPTER 6. EVALUATION AND RESULTS 32

subPropertyOf r

Rule 11:

x rdfs : subClassOf y & y rdfs : subClassOf z =⇒ x rdfs : subClassOf z

No of triples

Ti
me

 (m
s)

Response time of inference for TBox rules

Rule 11
Rule 5

165 252 631
50

100

150

200

250

300

Highcharts.com

Figure 6.3: Response time of inference for Tbox rules

Positive and negative entailment test are taken to test the imple-

mentation.

Positive Entailment:

Positive entailment consist of two ontologies in which one is semantically

entail by the other.

Negative entailment:

Negative entailment consist of two ontologies in which one is explicitly not

to be entail by the other.

CHAPTER 6. EVALUATION AND RESULTS 33

Table 6.1: Positive Entailment
Input Output

ex: c1 rdfs:subClassOf ex:c2
ex:c2 rdfs:subClassOf ex:c3 ex : c1 rdfs:subClassOf ex:c3

ex: p1 rdfs:subPropertyOf ex:p2
ex:p2 rdfs:subPropertyOf ex:p3 ex : p1 rdfs:subPropertyOf ex:p3

ex: p rdfs:domain ex:c ex:u ex:p ex:v ex : u rdf:type ex:c

Table 6.2: Negative entailment
Rule name Premises Conclusion

subClass
ex:foo rdf:type,rdf:Property
ex:bar rdfs:subClassOf
ex:foo.

FALSE

subProperty
ex:foo rdf:type rdfs:Class
ex:bar rdfs:subPropertyOf ex:foo.

FALSE

domain
ex:p rdfs:domain ex:c
ex:u ex:q ex:v .

FALSE

range
ex:p rdfs:range ex:c
ex:u ex:q ex:v .

FALSE

Chapter 7

Conclusion and Future Work

7.1 Conclusion

This thesis proposes a mapping of RDF construct with neo4j.By

using the framework (neo4jena) defined in this thesis, RDF data can be

easily stored in a property graph. SPARQL is the W3C recommendation

for querying RDF data. To query RDF data from neo4j, SPARQL query

language constructs are mapped with cypher query language constructs. In-

ference is also applied on neo4j data to infer new facts from the existing

ones. The load time of neo4jena is compared with TDB and tinkerpop on

LUBM dataset. The performance of neo4jena is better than TDB and tinker-

pop. On conclusion, this thesis resolve three problems to achieve a scalable

RDF storage system. Firstly RDF data is successfully mapped with neo4j.

Secondly for retrieval of RDF from neo4j SPARQL query constructs are suc-

34

CHAPTER 7. CONCLUSION AND FUTURE WORK 35

cessfully mapped with cypher query language. Lastly, an RDFS reasoner is

implemented in neo4j.

7.2 Future Work

Querying time of neo4jena can be optimized to achieve high scal-

ability. Moreover other reasoner e.g OWL-DL can also be implemented in

neo4j to perform advance inference operations.

References

[1] Michael Ovelgnne, Noseong Park, V.S. Subrahmanian, ElizabethK. Bow-

man, and KirkA. Ogaard. Personalized best answer computation in

graph databases. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul

Groth, Chris Biemann, JosianeXavier Parreira, Lora Aroyo, Natasha Noy,

Chris Welty, and Krzysztof Janowicz, editors, The Semantic Web ISWC

2013, volume 8218 of Lecture Notes in Computer Science, pages 478–493.

Springer Berlin Heidelberg, 2013.

[2] Inc. Neo Technology. Neo4j, the world leading graph database, 2015.

http://neo4j.com/.

[3] RDF Working Group. Rdf, 2014. http://www.w3.org/RDF/.

[4] Mohsen Taheriyan, CraigA. Knoblock, Pedro Szekely, and JosLuis Am-

bite. A graph-based approach to learn semantic descriptions of data

sources. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris

Biemann, JosianeXavier Parreira, Lora Aroyo, Natasha Noy, Chris Welty,

and Krzysztof Janowicz, editors, The Semantic Web ISWC 2013, vol-

36

REFERENCES 37

ume 8218 of Lecture Notes in Computer Science, pages 607–623. Springer

Berlin Heidelberg, 2013.

[5] Apache Jena. Apache jena, 2011-2015. https://jena.apache.org/.

[6] Philippe Cudr-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth,

Albert Haque, Andreas Harth, FelixLeif Keppmann, Daniel Miranker,

JuanF. Sequeda, and Marcin Wylot. Nosql databases for rdf: An em-

pirical evaluation. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul

Groth, Chris Biemann, JosianeXavier Parreira, Lora Aroyo, Natasha Noy,

Chris Welty, and Krzysztof Janowicz, editors, The Semantic Web ISWC

2013, volume 8219 of Lecture Notes in Computer Science, pages 310–325.

Springer Berlin Heidelberg, 2013.

[7] Apache. Apache tinkerpop. http://tinkerpop.incubator.apache.org/.

[8] Apache. Blueprints, 2014. https://github.com/tinkerpop/blueprints/wiki.

[9] Apache. Sail implementation, 2012.

https://github.com/tinkerpop/blueprints/wiki/Sail-Implementation.

