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ABSTRACT 

 

 

Gaussian Random Numbers (GRNs) are required for simulations in a wide variety of 

applications. For example, channel code evaluation, simulation of economic systems and product 

failure simulations, etc. Mostly, simulations are carried out using systems based on digital signal 

processor or other software programmable devices. Such systems generate GRNs using software 

libraries to evaluate complex trigonometric functions like natural logarithm, exponential 

functions, etc. However, optimized hardware implementation of GRNs generator can operate 

many times faster than optimized software implementations.        

Hardware implementation of GRNs generator generally involves transformation of uniformly 

distributed random numbers and has always been a challenging task. Central Limit Theorem 

(CLT), although very simple to implement, has never been used to generate high quality GRNs. 

This is because the direct implementation of CLT provides very poor accuracy in the tail region 

of probability density function (PDF). This work achieves high quality GRNs generator. The 

empirical model of the error in CLT is compensated through deployment of a low complexity 

compensation block. A novel non-uniform segmentation algorithm is presented for degree one 

piecewise polynomial approximation to non-linear error function. We have proposed a novel 

architecture of GRNs generator which requires only 420 configurable slices and 01 DSP block of 

Xilinx Virtex-4 XC4VLX15 operating at 220 MHz. The architecture achieves high tail accuracy 

of 6  and is scalable to achieve even higher accuracy with minimal increase in hardware 

resources. The accuracy of GRNs generator is validated using statistical goodness of fit tests. 
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CHAPTER 1 

INTRODUCTION 

 

 
 

1.1  Motivation 

A fast, compact and high quality Gaussian random number generation is a key capability of 

simulations across a wide range of disciplines. For example, Channel code evaluation, Monte-

Carlo (MC) simulations, financial modeling, molecular dynamics simulation and product failure 

simulations, etc. Most of the processes in nature are Gaussian distributed since they tend to be a 

balanced sum of many unobserved random events and by virtue of Central Limit Theorem (CLT) 

[1], sum of sufficiently large random numbers tend to become Gaussian distributed. In 

simulations, where probability of occurrence of an event is very low, high tail accuracy Gaussian 

Random Numbers (GRNs) are required. 

High tail accuracy GRNs generators are of significance assistance in characterization of very low 

BER systems (high Signal-to-Noise (SNR) ratio) [2]. One such example is BER simulation of 

wireless radio standards. Some of which have maximum allowable BER of less than 10-10 for 

specified SNRs. Other important examples are turbo codes and Low-Density Parity-Check 

(LDPC) codes which are currently the focus of an intense research due to their ability to 

approach Shannon bound very closely and with only moderate decoding complexity [12]. 

Simulating occurrence of such events, requires a tail accuracy of at least 6  [2]. It takes about 

2.5 hours to generate 109 Gaussian samples on a dual core Pentium processor using an optimized 

software simulator written in C [2]. This means that it would take about 27000 years to generate 

1017 Gaussian samples. Clearly, software simulations cannot provide an adequate solution to 

examine the behavior of such codes at very low BER rates [12]. 
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Recent advances in Field Programmable Gate Array (FPGA) technology are providing cost 

effective, fast and compact solutions towards hardware implementations of algorithms. 

Moreover, the user programmability of FPGA facilitates debugging capability and design 

characterization, which can reduce the total design time significantly [2]. Hence, this work is 

strongly motivated by the efficient hardware Gaussian random generation which should be high 

quality, fast, compact and reliable.  

In last two decades, intense research has been reported regarding the efficient implementation of 

GRNs in hardware. Simulations are usually done in software e.g. Digital Signal Processors 

(DSPs) and other software programmable devices. To generate GRNs, such devices use software 

libraries to evaluate complex functions e.g. natural logarithms, square root, exponential functions 

etc. These complex functions are now evaluated in hardware using piecewise polynomial 

approximation techniques. But, hardware implementation of these functions requires lot of 

computational resources and power consumption. Hence, there is a need to come up with a 

simple, fast and cost effective solution towards the implementation of GRNs in hardware. 

This work presents an efficient hardware implementation of high quality GRNs generator based 

on Central Limit Theorem (CLT). CLT, due to its inherent Gaussian like characteristics, can be 

an efficient method for generating high quality GRNs. After a detailed empirical data analysis, 

error models for CLT have been computed. The error distributions are compensated using a 

novel non-uniform segmentation algorithm. Tail accuracy of 6  is guaranteed which is 

considered well enough for all practical purposes. The proposed GRNs generator is scalable to 

achieve even higher accuracy with minimal increase in hardware resources.            
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1.2  Thesis Contributions 

Empirical error model based on the actual data samples is computed for a specified value of n 

(number of additions) in CLT. A detailed analysis of error model is provided using appropriate 

bit width of data path and number of additions (n) for a target sigma or standard deviation value. 

A novel non-uniform segmentation algorithm is introduced that computes coefficients for first 

degree piecewise polynomial approximation of error functions. A novel architecture of CLT 

based GRNs generator is presented that produces high tail accuracy GRNs at minimal hardware 

cost. 

1.3  Thesis Organization 

There are five chapters in this thesis organized as follows: 

In Chapter 2, an introduction to GRNs generators is given. After a brief history, various 

algorithms used for generating Additive White Gaussian Noise (AWGN) are described in detail 

including the work related to Central Limit Theorem.  

In Chapter 3, empirical error models for Central Limit Theorem are computed. Compensation 

algorithm is, also, described in detail using a novel segmentation algorithm.   

In Chapter 4, the simulation and synthesis results are given and explained in detail. Also, 

comparison with previous methods is given and discussed.   

In Chapter 5, summarizes the work and concludes our thesis with proposals of some possible 

extensions to this work.  

In the end, references of the work done by different people in this field are given.  
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                                                                                                                                  CHAPTER 2 

LITERATURE SURVEY 

 

 

 

2.1 Gaussian Random Number Generators (GRNGs) 

Normally distributed random numbers are referred to as Additive White Gaussian Noise 

(AWGN). A variety of algorithms have been reported in literature to generate Gaussian Random 

Numbers (GRNs) with a varying degree of computational complexity and accuracy [3]. A 

popular method is to convert uniformly distributed random numbers to Gaussian by 

transformation algorithms [2]. These transformation algorithms have been implemented both in 

software [3] and hardware [1]. Software solutions are used in applications where primary 

concern is cost and flexibility. However, in applications where high values are required, software 

GRN generators fail to provide desired number of samples in short time. For example, at least 

1012 samples are required to detect occurrence of an event in 6  region. Fastest available 

machines today produce around 1 to 10 million GRNs per second [1]. At this rate, such a 

machine will take more than a day to generate desired 1012 samples. This situation worsens by 

order of magnitudes for simulation of higher tail accuracy. Another extreme example, where 

software GRNs generators fail is real time radio channel emulation. GRNs generators are an 

essential part of any radio channel model [4]. Some complicated fading channel models [4] 

require large samples of GRNs. For real-time emulation, these channel models have to be 

executed at tens of Mega Hertz (symbol rate of underlying wireless standard). Clearly software 

GRN generators don’t have the capacity to execute such models in real-time. Hence, efficient 

hardware GRNs generators are the only option for such applications. 
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Figure 2.1, shows the basic methodology to generate GRNs. First step is to produce base 

numbers from a uniform distribution using Linear Feedback Shift registers (LFSRs). Some 

transformation method is then applied to convert the uniform distribution into Gaussian 

distribution.   

LFSR Uniform Distribution Transformation Normal Distribution

 

Figure 2.1: Basic Methodology to Generate GRNs 

Normal distribution is an open-ended distribution in which values of increasing magnitude occur 

with rare probabilities. Tail accuracy indicates the similarity between a given distribution and the 

ideal normal distribution at high sigma (standard deviation) values. It is one of the most 

important parameter of the quality of produced GRNs. Figure 2.2, shows the GRNs produced on 

linear and logarithmic scales. The uniform distribution is also shown with flat density in figure 

2.2. A careful observation of the plots shows that the high probability region is more prominent 

on linear scale while, the less probability region is more prominent on logarithmic scale. In high 

sigma or standard deviation region, a careful observer can see the irregular shape of PDF on 

logarithmic scale. This is because of the statistical nature of samples. Due to low probability of 

occurrence of samples, the tail region in the statistically plotted PDF never becomes smooth.   
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Figure 2.2: PDF of Gaussian Random Numbers (GRNs), (a) Linear Scale, (b) Log.  Scale 
 

2.2 Classifications of GRNGs 

The transformation methods for generating GRNs are mainly classified into two broad categories 

[3]. 

1) Exact Methods 

The exact methods produce ideal GRNs if the perfect arithmetic is used. For example, the Box 

Muller transformation algorithm applies various transformation methods on uniform random 

numbers to produce GRNs. Perfect GRNs will be produced if the uniform random numbers and 

the arithmetic functions involved in the method are evaluated using infinite arithmetic precision. 

Another example is Ziggurat algorithm, which also lies under the category of exact methods that 

produces GRNs of any arbitrary tail accuracy by approximating Inverse Gaussian CDF. Ziggurat 

algorithm is currently being used to generate Gaussian samples by well known MATLAB 

software. 
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2) Approximate Methods 

The approximate methods, on the other hand, generate approximate Gaussian samples even if the 

infinite precision arithmetic is used. For example, basic Central Limit Theorem, that produces 

approximate Gaussian samples by averaging n uniform samples. This method becomes exact 

when infinite uniform samples are combined.     

GRNs generators can also be classified into four basic categories [3]; 

 

1) Inversion Methods 

2) Transformation Methods 

3) Rejection-Acceptance Methods 

4) Recursive Methods 

Inversion methods include CDF inversion that simply inverts the Gaussian CDF to produce 

random number from Gaussian distribution. Transformation method includes Box-Muller 

method that applies some transformation on uniform random numbers to generate Gaussian 

distributed numbers. Rejection-Acceptance methods include Ziggurat algorithm that produce 

GRNs based upon conditional rejection acceptance criteria applied to certain transformed values. 

The recursive methods include Wallace method that produces new Gaussian output samples with 

the help previously generated Gaussian outputs using a feedback network.   In the upcoming 

subsections, various algorithms for generating GRNs are explained in detail. 

2.2.1 The CDF Inversion Method [8] 

The CDF inversion method generates a random number from the normal distribution by 

approximating the Inverse Gaussian Cumulative Distribution Function (IGCDF) described by the 

following equation; 

1( )                                                                                          (2.1)n F u
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     where, “u” is the number from a uniform distribution, “n” is the number form Gaussian 

distribution and F-1 is the IGCDF as shown in figure 2.3. 

 

Figure 2.3: Inverse Gaussian Function (n = F-1(u)) 
 

The conceptual block diagram of the algorithm is given in figure 2.4. 

 

                              Figure 2.4: High Level Architecture of CDF Inversion Method 
 

This method requires a large amount of memory to store the CDF inverse, especially, for the data 

in tail region of the Gaussian distribution. The most efficient method reported in [8] uses the 

hierarchical non-uniform segmentation algorithm that reduces the large memory requirement. In 

its segmentation approach, one out of four segmentation schemes (US, P2SL, P2SR, P2SLR) is 

selected for initial segmentation of an input function. US stands for uniform segments. P2SL 

implies increasing number of segments with power of two beginning from the start of input 

range to the end. P2SR implies decreasing number of segments with power of two beginning 

from the start of input range till end. P2SLR implies increasing number of segments with power 

of two till mid of the given input range and then decreasing number of segments with power of 

two till end. The term hierarchical is used because of the fact that in first step, the entire region 

is divided using one of the above four segmentation schemes in. In the next step, each segment is 
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further subdivided into inner segments using US. A detailed range and precision analysis of the 

arithmetic used for hierarchical non-uniform segmentation scheme is also given in [8]. Table 2.1 

summarizes the hardware implementation details of the algorithm. 

Table 2.1: Implementation results of degree-1 and degree-2 spline CDF Inversion based GRNG on a 

Xilinx Virtex-5 FPGA 

 

2.2.2 Ziggurat Algorithm [6] 

In Ziggurat algorithm, the Gaussian probability density function is partitioned into three different 

regions to generate Gaussian samples. These are rectangular, wedge and tail regions as shown in 

figure 2.5. A rejection-acceptance criterion is used to examine whether a random sample falls 

into one of these three regions.  

 

Figure 2.5: Rectangular, Wedge and Tail Regions in Ziggurat Algorithm 
 

 

The highest probability of occurrence of a random sample lies in rectangular region. The 

numbers falling in this region are directly taken as output random numbers from Gaussian 

distribution. Secondly, there is a 1.5 percent chance of occurrence of a random input sample in 

non-rectangular region because it is a low probability region. The exponential or logarithmic 
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functions are evaluated and an iterative fixed point operation unit is used for the samples 

occurring in non-rectangular region. The algorithm [3] for ziggurat method is given below; 

 

The summary of the latest hardware implementation of ziggurat algorithm is given in Table 2.2. 

The algorithm provides any arbitrary tail accuracy but suffers from a problem that its output rate 

is not constant, which means that some of the times samples are missing in continuously running 

clock cycles. Also, there is a need for more accurate evaluation of complex elementary functions 

involved in ziggurat method as its future extension.  

Table 2.2: Implementation results for Ziggurat based GRNG on XC2VP30-6 and XC3S200-4 FPGAs 
 

 

2.2.3 Polar Method [7] 

The polar method requires two uniform random numbers to covert into two Gaussian output 

random numbers. The two uniform random numbers are taken between the range -1 and +1 and 

the magnitude of their vector in polar plane is computed. If the vector magnitude is greater than 

1, the numbers are discarded. If magnitude is less than 1, the magnitude of the vector is 
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transformed and scaled to give two Gaussian output numbers. The algorithm is described as 

under,  

 

The algorithm requires the computation of a division, square root and two multiplications. Also, 

the output rate no longer remains constant due to conditional if-then-else statements. The BER 

simulation result of a communication system [7] over AWGN channel based on polar method is 

illustrated in figure 2.6. 

 

Figure 2.6: BER Simulation Results of Polar Method 
 

2.2.4 GRAND Algorithm [3] 

The GRAND algorithm, also known as the odd-even method, belongs to the class of exact GRNs 

generators. It transforms uniform random numbers into Gaussian distributed, by using the 

formula given by eq.2.2 

( ) ( )                                                                              (2.2)G xf x ke
 

    where, “x” is a random sample from uniform distribution, “k” is a constant and “G(x)” is a 

probability density function of any arbitrary distribution and its range is between 0 and 1.    For 
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the Gaussian distribution the G(x) is given by eq.2.3. 

2 21
( ) (x - a )                                                                                               (2.3)

2
G x 

 

In order to keep the range in between 0 and 1, it is necessary to divide the range of distribution 

into various sections as shown in figure 2.7.  

 

Figure 2.7: Subsections for GRAND Method 
 

The algorithm of the GRAND method is given below;  

 

 

The output rate of GRAND method is not constant due to conditional if-then-else statements as 

evident from the algorithm given above. Also, the efficient hardware implementation of this 
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method has not been reported yet.  

2.2.5 Wallace Method [9] 

The Wallace method eliminates the requirement of evaluation of complex functions like sine, 

cosine, natural logarithms etc. thus, making it suitable for applications that require high 

throughput rates. The conceptual block diagram of Wallace method is shown in figure 2.8. 

 

Figure 2.8: Overview of Wallace Method 
 

This method applies k-by-k transformation using Hadamard orthogonal matrix [3] on a pool of 

already generated Gaussian samples “N”, to produce new Gaussian outputs. The main drawback 

associated with this method is its inherent feedback nature that causes severe correlations 

between successive data samples. Correlation effect is highly undesired characteristic for the 

Gaussian distributed samples because it indicates the presence of some frequencies or similarities 

in the resultant distribution. The Wallace method is highly resource consuming but provides a 

high throughput rate. The algorithm for the Wallace method is given below and its hardware 

implementation is shown in figure 2.9. 
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Figure 2.9: Hardware Architecture of Wallace Method 
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The hardware resource utilization is given in Table 2.3. 

Table 2.3: Implementation results for Wallace based GRNGs on XC2V4000-6 FPGA 

 

 
      

2.2.6 Box Muller Transformation Method [2] 

This method is the most popular method for generating high quality GRNs in hardware. It falls 

under the category of exact algorithms. It basically, transforms two input uniform random 

numbers to provide two Gaussian samples. The Box Muller algorithm is given by below; 

1 1 2X= 2ln cos(2 U)                                                                        (2.4)U 

2 2 1X= 2ln cos(2 U)                                                                       (2.5)U 
 

The conceptual block diagram of the Box-Muller method is shown in figure 2.10. Various 

algorithms and techniques have been applied to implement the above mentioned Box-Muller 

equations in hardware. In [10], Boutillon reported hardware implementation of Gaussian noise 

generator based on Box-Muller algorithm where CLT is used to reduce the approximation errors 

of the mathematical functions involved in Box-Muller method. In [11], mathematical functions 

in Box-Muller method are approximated using degree one piecewise polynomial approximation 

along with non-uniform segmentation scheme. Due to high approximation and quantization 

errors, CLT is employed to enhance the noise quality. The output rate is one sample per clock 

cycle and highest attainable tail accuracy is 6.7 . Dong-U Lee, in [12], presented an accurate 

analytical error analysis and bit width optimization for mathematical functions of Box-Muller 

method. CLT is not used, thus, providing the output rate of two samples per clock cycle. The 

highest attainable tail accuracy is 8.2 . This method [12] is highly efficient both in terms of 
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hardware and throughput compared to previously reported method. 

 

Figure 2.10: Hardware Architecture of Box-Muller Method  

Among all these implementations, the most efficient hardware implementation of Box-Muller 

method is reported in [2], that achieves lower hardware cost and maximum attainable sigma 

values larger than previously published designs. The method uses polynomial curve fitting with 

hybrid segmentation and scaling scheme to more accurately approximate the mathematical 

functions involved in Box-Muller method. The resource utilization summary is given in Table 

2.4. The ASIC implementation of the architecture is given in figure 2.11.  

The tail accuracy till 9.4 sigma has been shown using PDF plots in [2]. The PDF plot for 1011 

Gaussian samples till 6  is shown in figure 2.9. The chi-square simulation results are shown in 

Table 2.5. 

Table 2.4: Implementation results for BM-Method 
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Figure 2.11: ASIC Implementation of Box-Muller Method 

 

 

Figure 2.12: PDF plot of BM Method till 6  for 1011 samples 

 

Table 2.5: Chi-Square test results for BM-Method 
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Xilinx [13] have released an IP core based on Box-Muller algorithm. ASIC chip implementation 

of Box-Muller Method is given by Fung [14]. 

2.3 Work Related to Central Limit Theorem [3] 

The Central Limit Theorem (CLT) states that the sum of infinitely large uniform random 

numbers approaches to Gaussian distribution. CLT has been used in various algorithms to 

improve the noise quality of the generated Gaussian samples. It has been implemented earlier in 

software using the methods given below; 

 

 In order to enhance the tail accuracy, the idea is to “stretch” the PDF in the tail region 

 Teichroew (1953) used a Chebyshev interpolating polynomial to map the PDF of CLT, 

for a given n, to that of Gaussian distribution 

 Muller in 1959 used a 9th degree polynomial on the sum of 12 uniform random numbers 

 The degree of polynomials used in the above mentioned techniques increases the 

Complexity of the algorithm. Therefore, a tradeoff has to be made between the accuracy 

and complexity. The corrected PDF still deviates from ideal Gaussian PDF for any given 

value of n. Also, averaging large number of uniform random numbers constitute a big 

computational challenge. 

 That is why Central Limit Theorem was rarely used in hardware implementation of high 

quality GRNGs 

 

To date, no hardware implementation of improved Central Limit Theorem has been reported. 

Hence this work, to the best of our knowledge, is the first attempt to generate high tail accuracy 

GRNs in hardware using CLT. 
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CHAPTER 3 

 

A NOVEL ARCHITECTURE OFAWGN GENERATOR 

 

 

 

3.1 Ideal Gaussian Distribution 

The normal (or Gaussian) distribution is normally used to represent real-valued random variables 

that tend to accumulate around mean value. The PDF equation of a normal distribution is given 

as,  

2 2( ) /2

2

1
( )                                                                              (3.1)

2
xf x e  


 

 

    where, 2  is the variance and   is the mean or expected value of normal distribution. For a 

standard normal distribution, mean is 0 and variance is 1. The PDF equation becomes   

2/21
( )                                                                                       (3.2)

2
xf x e


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Gaussian distribution does not deviate from its mean by more than 3 standard deviations 99.7 

percent of the times or in other words, the probability of occurrence of data samples in high 

probability region is very low [2] as shown in figure 3.1. 

 

Figure 3.1: Ideal Gaussian Distribution (Image courtesy: Wikipedia) 
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3.2   White Noise 

White noise is a random signal as shown in figure 3.2 with a flat Power Spectral Density (PSD) 

or in other words, whose response is a low pass filter effect [17]. A perfect white noise is 

independent and identically distributed, which implies no autocorrelation (correlation between 

successive samples) as shown in figure 3.3. If a white noise signal is normally distributed with 

mean zero and variance 2 , then, it is called as the Gaussian white noise signal or Uniform 

random sequence. 

 

 

Figure 3.2: White Noise Process 
 

 

Figure 3.3:  Autocorrelation and Power Spectral Density (PSD) of White Noise 
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3.3   Central Limit Theorem (CLT) 

The sum of n independent random variables, each with finite mean and variance, becomes 

Gaussian distributed by virtue of CLT [1]. As n increases, resultant distribution becomes closer 

to Gaussian. The normalized random variable is given as 

1 1

1

                                                                                                      (3.3)

n n
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i i

n n

i
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    where, iX  is the ith independent random variable, i  is the mean or expected value of the ith 

independent random variable and i is the standard deviation of the ith independent random 

variable.  

If n approaches infinity or under certain regularity conditions, the limiting distribution of nZ is 

standard normal distribution. 
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    where, (0,1)N  is the normal distribution whose mean is 0 and standard deviation is 1. 

CLT is extremely simple and efficient in implementation as it produces GRNs by simply adding 

n numbers with arbitrary PDFs. But, this method has never been used to generate high quality 

Gaussian samples. This is due to error in tail region of the probability density function (PDF), 

which is inversely proportional to number of samples to be added. For example, addition of at 

least 100 samples is required to achieve a tail accuracy of 5 . The PDF curve deviates from the 

ideal Gaussian PDF very sharply for higher values of standard deviation and also, the PDF tends 

to become straight in tail region. To achieve a better tail accuracy, the value of n (number of 
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additions) needs to be increased. In fact, in order to produce a perfect PDF, n should be infinitely 

large. 

This is shown in figure 3.4 where normalized PDF is plotted for varying values of n. Base 

numbers or initial numbers are uniformly distributed between +1 and -1. We generated 109 

samples by adding 2, 4, 8 and 16 uniformly distributed numbers respectively. In Figure 3.4a, the 

PDF for the generated samples is plotted on linear scale. Apparently, the PDF seems close to 

ideal Gaussian PDF for values of n greater than 2. This is because for standard deviation greater 

than 2 , the probability becomes too small to be detected on linear scale. In Figure 3.4b, the 

PDF is plotted on logarithmic scale. Now, the errors in tail region are more prominent. It can be 

clearly seen that even for n= 16, PDF deviates from ideal curve drastically after 3 . It is, also, 

apparent that as n becomes greater, PDF curves for CLT tend to be closer to ideal Gaussian 

curve.  

A careful observer can notice irregular shape of PDF at the edges particularly for higher values 

of n. This is due to the statistical nature of data samples. No matter how many data samples are 

taken, edge (tail) of a statistically plotted PDF is never smooth due to low probability of 

occurrence of data samples in this region as explained in section 3.1.  



23 

 

 

Figure 3.4: PDF for varying values of n, (a) Linear Scale, (b) Logarithmic Scale 
 

3.4   Calculating Variances for Central Limit Theorem 

As shown in figure 3.4 that PDF for a specified value of n remains fixed. So, the variance and 

standard deviation for that specified value of n is also fixed. Variance and standard deviation are 

calculated below for n = 8 when the base numbers are normally distributed between +1 and -1. 

Similar procedure can be followed to find the variances and standard deviations for other values 

of n as summarized in Table 3.1 

Table 3.1: Standard deviations and variances for varying n 
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The PDF of a uniform distribution is given as, 

1
( )   if a<x<b, else 0                                                              (3.6)Uf x

b a



 

The expected value or mean value is given as, 

( )                                                                             (3.7)
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The variance is given as,  

2
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( )                                                                      (3.8)
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If lower limit a = -1 and upper limit b = +1, then mean value is calculated as, 

1 1
( ) 0                                                           (3.9)

2 2X

a b
E X    

   

 

Variance is computed as, 

2 2
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And the standard deviation evaluates to, 
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Let “Y” be a random variable that represents the summation of eight uniform random numbers 

between +1 and -1. iX  is the ith uniform distribution. Then variance is calculated as, 

8

1 2 3 4 5 6 7 8
1

8

1

8
2

1

                                       (3.12)

( ) ( ) 8*0 0                                                                      (3.13)

( ) ( )

i
i

Y i
i

Y i
i

Y X X X X X X X X X

EY E X

Var Y Var X











        

   

 




1 8

8* 2.667                                                (3.14)
3 3

8
( ) 1.632                                                                                (3.15)

3YStd Y 

  

  



 

3.5   Computing Error in Central Limit Theorem  

The variance and standard deviation for any value of n in CLT is fixed as shown in section 3.4. 

Also, the PDF curves for both the CLT and ideal Gaussian distribution remain fixed for any 

value n. So, we can map the CLT curve on to the ideal one by following the concept described in 

the next subsection.   

3.5.1 The Idea 

Analyzing figure 3.4 reveals that in the high probability region before 3 sigma, both the curves, 

the CLT and the reference, are indistinguishable (overlapping each other) and after 3 sigma both 

the curves grow in different directions. For simplicity, we call the overlapping region as the Ideal 

region and non-overlapping region as the Non-Ideal region. 

Therefore, we can say that,  

“When in Non-Ideal region, Scale up the random number” 
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Now, the “n” degree polynomial is given as 

y = anPn + an-1 Pn-1 + . . . + a2P2 + a1P + a0                                              (3.16) 

    where, an ….. a0 are the polynomial constants. 

Reducing this equation to only first degree, we get 

 y = a1P + a0                                                                                                                                             (3.17) 

This is equivalent to  

y = MP + C                                                                                                                                              (3.18) 

    where, “M” is the slope and “C” is the intercept of a straight line. This means that we can 

scale-up a number P by simply multiplying it with a slope and adding an intercept value. 

3.5.2 Algorithm for Error Computation 

The error function for CLT can be computed empirically by using the algorithm explained below; 

1- Uniform random numbers are generated between +1 and -1. A MATLAB script is written 

to generate random numbers as  

urng = 2*(rand(1,M)-0.5) 

 

   where, “rand” is a built in function to generate a uniform random signal between 0 and 

1 and “M” defines the length of the generated random signal.  

For a specified value of n, such n uniform random distributions are generated and added 

by virtue of Central Limit Theorem. The resultant distribution is of length “M” and is 

called as the approximate Gaussian distribution. Clearly, the highest value sample will be 

+n and the lowest value sample will be –n.   

2- To compute the PDF of generated approximate Gaussian samples, the samples are 



27 

 

distributed into buckets or bins over the sigma or standard deviation range from -n to +n 

as described in step 1. The results are shown in figure 4.4 for varying values of n. The 

values corresponding to the sigma axis or horizontal axis are represented as xc    

3- We have the PDF of an ideal Gaussian distribution with zero mean as given by eq. 3.19; 

2 2/21
( )                                               (3.19)

2
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cf x e 


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               where, xg are the points on horizontal axis corresponding to ideal Gaussian distribution. 

            Now, the sigma or standard deviation values corresponding to ideal Gaussian distribution 

            can be found using the PDF values for approximate Gaussian distribution by rearranging 

            eq. 3.19. The standard deviation in terms of PDF is given by the following equation;  

2 22 ln( 2 ( ))                                                       (3.20)g n n cx f x    

   where, ( )cf x  is the probability of occurrence of xc 

4- The error in the CLT PDF is then simply; 

                                                                           (3.21)PDF c gErr x x   
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The plots in figure 3.5 and figure 3.6 are obtained for the positive side with the symmetric 

negative side, using the above algorithm for n = 4 and 8. For each point on the CLT curve, there 

is a corresponding straight or horizontal point on the reference curve. 

 

Figure 3.5: PDF Plot for n = 4 

 

 

Figure 3.6: PDF Plot for n = 8 
 

3.5.3 Error Distributions 

The above algorithm was implemented in MATLAB script for varying values of n. In Figure 3.7, 

the computed error functions are shown. The horizontal axis has been normalized to standard 

normal distribution using fixed variances for CLT PDFs. 

It is evident from figure 3.7 that there is an initial error growing towards the positive side and 
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after that, the curve decays exponentially. This means that the positive error region requires 

negative polynomial constants and vice versa. 

There is, also, a statistical inaccuracy in the tail region which is because of the statistical nature 

of the data samples. The error goes on decreasing as n increases, because the higher value of n 

takes the curve closer to the ideal reference curve.  

 

Figure 3.7: Error in PDF for Varying n 
 

3.6   Compensating Error in Central Limit Theorem  

This subsection explains the methodology to compensate and correct the above computed error 

distribution. Methodology for n = 8 and a 16 bit datapath will be explained that provides the tail 

accuracy of 6 . However, depending upon available computational resources and desired tail 

accuracy, this methodology can be used for any value of n and bit width.  

Now, the accuracy of the algorithm depends upon how the best we model this error function so 

that it can be implemented using minimal hardware resources. 

As it has been mentioned before, our idea is to use first degree polynomial as it leads to the most 

efficient implementation of the algorithm in hardware. So, first degree piecewise polynomial 

approximation will be used to model the error distribution. 
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3.6.1 Uniform Segmentation Algorithm 

Piecewise polynomial approximation is applied using uniform segmentation algorithm. The 

entire error curve has been divided into 16 uniform segments. The figure 3.8 shows the 

approximation technique applied and the residual error    

 

Figure 3.8: Residual Error due to Uniform Segmentation 
 

The residual error is observed to be growing exponentially with increasing standard deviation. 

This is because the error function is a non-linear function. Hence, uniform segmentation is not 

suitable for such functions. The problem is to find a solution so that, 

max min 0                                                                            (3.22)Err Err 
 

    where, maxErr  is the maximum residual error and minErr  is the minimum residual error. 

 

3.6.2 A Novel Non-Uniform Segmentation Algorithm  

A simple and efficient algorithm is proposed to compute non-uniform segments with minimum 

residual error as described below; 

The algorithm exploits the fact that residual error due to piecewise polynomial approximation of 

non-linear function is directly proportional to curvature of the function [16].  

The curvature defines the deviation of a non-linear curve along its path. Let us suppose that we 

have a position vector ( ) ( ), ( )r t x t y t  that follows a path in the plane with the passage of 
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time as shown in the figure 3.9. We know that the velocity is the instantaneous rate at which the 

position vector changes with respect to time. So that ' ' '( ) ( ), ( )r t x t y t  and the unit tangent 

vector is shown in figure 3.9. 

 

Figure 3.9: The unit tangent vector T’(t), points in the direction of velocity vector 
 

If the unit tangent vector is changing rapidly with respect to time (dT’/dt), then there is a great 

deal of deviation of the curve at that point. If the unit vector is changing slowly with time, it 

means that there is not a great deal of deviation in the curve at that point.  

Obviously, the derivative of the unit tangent vector has a close relationship with the curvature of 

a non-linear function. So, we define curvature of function k with respect to rate of change of its 

unit vector T (also called as the velocity vector) as 

/                                                                                            (3.23)k dT ds
 

    Or simply, curvature of a non-linear function can be defined as its second order derivative as 

shown in figure 3.11. 

Once the curvature of a function is known, the problem is reduced to finding the segments on the 

curve with length of each segment proportional to the curvature of the function. 

These sample points or segments can be found using Amplitude to Frequency Converter (AFC). 

A simple AFC (designed in simulink, MATLAB) is shown in figure 3.10. 
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Figure 3.10: Amplitude to Frequency (AFC) Converter 
 

This is basically a Sigma-Delta modulator that modulates a carrier signal with respect to the 

input signal amplitude. A feedback gain “K” is provided to control the oscillations at the output 

of AFC. Output of the AFC is the sampling or frequency points on the input function with 

respect to the change in amplitude of the function. 

3.6.3 Residual Error 

Second order derivative of the error distribution is given as an input to AFC and the output is a 

discrete signal whose frequency is proportional to the input signal. By changing the gain on the 

feedback path, we can tune the AFC to provide any number of sampling points. This is shown in 

figure 3.11. We have tuned the AFC to provide 17 sampling points (or 16 segments) on the entire 

error function. 

 

Figure 3.11: Non-Uniform Segmentation Scheme 
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Now, using the known non-uniform segments, we can apply the piecewise polynomial 

approximation to the error function and find the residual error. Clearly, the non-uniform 

segmentation drastically reduces the residual error as shown in figure 3.12. 

 

 
 

Figure 3.12: Residual Error due to Non-Uniform Segmentation Scheme 
 

3.7  Hardware Implementation  

The algorithm described in the previous section is implemented in hardware using verilog HDL 

and fixed point arithmetic. The data path is of 16 bit and calculations are performed for n = 8. 

The input is in Q1.15 format and the output is in Q4.12 format. The design is partitioned into 

four distinct blocks, Linear Feedback Shift Registers (LFSRs), summation block, decision block 

and first order polynomial calculator, and is explained in detail in upcoming sub-sections. 

3.7.1 Uniform Random Number Generator 

As stated earlier, that Uniform Random Numbers (URNGs) are also known as white noise, 

which essentially covers all frequency spectrum range. In hardware, Linear Feedback Shift 

Registers (LFSRs) are commonly utilized as noise and data sources because they are easily 

implemented and require minimal hardware resources [17].  

Hardware implementation of an LFSR (flip flop or storage registers) and a feedback network as 

shown in figure 3.13. The generator polynomial of LFSR is implemented by the feedback path as 
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given by eq. 3.16. The generator polynomial describes the statistical characteristics and sequence 

length (period) of LFSR. If the sequence period of LFSR is 2n-1, then the sequence is known as 

the maximal length sequence.  

 

Figure 3.13: Basic LFSR Architecture 

 

                     

However, this class of pseudo random number generators (PNGs) shares a common disadvantage 

that they exhibit severe correlations between successive data samples as shown in figure 3.14. 

This effect can be seen in covariance and power spectral density plots shown in figures 3.14 and 

3.15 respectively. The covariance is not a delta function, as would be expected for uncorrelated 

values, but, it shows significant correlations up to +8 and -8 lags. Also, the power spectral 

density is not flat as expected for white noise (section 3.2), but the low pass effect is clearly seen 

in the figure 3.15.    

 

Figure 3.14: Covariance of 105 values generated by LFSR using maximal length polynomial shows 

correlations around zero lag 
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Figure 3.15: Power Spectral Density of 105 Values Generated by LFSR 
 

The correlation effect can be understood by observing that, for any step in the sequence, the 

generating polynomial changes only a few of the bits in registers (flops) [17]. 

The 2-D scatter plot in figure 3.16 clearly shows a visible lattice structure that indicates the 

correlation between adjacent data samples [2].  

 

Figure 3.16: 2-D scatter plot of a pseudo random number generator 
 

There are many techniques to overcome these short comings. A simple approach is to advance 

the LFSR by number of steps “k” so that the required number of bits has changed before the 

arrival of new output. This method proves to be costly because the LFSR has to be executed “k” 

times faster than rest of the design. 

In this thesis work, we have used Skip-Ahead LFSR logic that follows from the algorithm 

presented by Leonard Calvito [17]. It is the most recent and simplest technique which can 
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advance the LFSR to “k” steps ahead in a single step and, also, requires minimal hardware 

resources. 

Our requirement is to use eight 16-bit LFSRs as base numbers. So, we designed a 128-bit Skip 

Ahead LFSR architecture using maximal length polynomial. This technique basically uses a 

transition matrix “Ak” which can advance the LFSR to k steps ahead. LFSR can be represented 

by the eq. 3.24; 

( ) ( )                                                                                         (3.24)t k k tq Aq 
 

    where,   

 

In our design, we advanced this LFSR by k = 16 to ensure that successive samples are un-

correlated. Eight 16-bit LFSRs are taken from the 128-bit Skip Ahead design. The results are 

shown in figure 3.17. The output is taken in Q1.15 format for each 16 bit Uniform Random 

Number Generator (URNG). 

 

     

Figure 3.17: (a) Autocorrelation Function (ACF), (b) PSD Plots for Skip Ahead LFSR. 
 

3.7.2 Summation Block   

The summation block can also be called as averaging block as it implements the Central Limit 

Theorem. This block basically implements a hierarchical structure of seven 16-bit adders as 
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shown in figure 3.18. To perform the averaging process in hardware, we discard 3 least 

significant bits from the output of this block which is equivalent to dividing the summation of 

eight numbers by 8 (23). So, at each clock edge, 8 URNGs with range +1 and -1 are simply 

added and divided by 8 simultaneously. The final output of this block is in Q4.12 format within 

the range of +8 and -8. The architecture is fully pipelined and symmetric. In the intermediate 

stages, as indicated, we get the Gaussian samples at lower sigma accuracies and the final output 

gives the accuracy up to 3 .    

 

Figure 3.18: Summation Block Architecture 
 

3.7.3 Decision Block 

The decision block or compensation block is the most important and novel part of the hardware 

GRN generator.  The input of this block is a 16 bit number in Q4.12 format from the summation 

block. It comprises of two look-up-tables (LUTs) which contain coefficients to be used with the 

first order polynomial calculator. An address generator selects the coefficients from LUTs based 

upon input number from summation block. The search space is made hierarchical to make the 
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output rate constant as shown in figure 3.19. That is why the number of segments chosen was 16 

so that we could a symmetric architecture in powers of two. Based upon 16 non-uniform 

segments computed using the algorithm described in section 3.63, coefficients a0 and b0 are pre-

calculated and stored in the LUTs. The whole search space architecture is shown in figure 3.19 

within the range of 0 to 7.649 sigma. 

As indicated in table 3.1, standard deviation for n = 8 is 1.632. Hence, to get the Gaussian 

samples at the sigma or standard deviation scale or normalized variance, every output needs to be 

divided by 1.632. This will require an additional multiplier in the architecture which proves to be 

costly. However, this multiplier can be avoided by pre-dividing the Look-up-Table (LUT) 

coefficients a0 and b0. We call these as transformed coefficients and denote them by atr and btr 

respectively. Hence, 

0 0
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Figure 3.19: Decision Block Architecture 
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3.7.4 Contents of Look-up-Tables (LUTs) 

The pre-computed values of atr and btr for n = 8 using 16 non-uniform segments are shown in 

Table 4.2. Here we can decide the bit widths of the coefficients in fixed in arithmetic. From the 

table 4.2, it can be noticed that the highest absolute value of atr is 2.98586 and the highest 

absolute value of btr is 16.0741. So, we take Q2.14 format for atr and Q4.12 format for btr. 

Table 3.2: Pre-computed values of atr and btr 
 

 

3.7.5 Polynomial Calculator 

Polynomial calculator is the final block of the GRNs generator. It comprises of an adder and a 

multiplier. The decision block provides the random number “x” and its corresponding 

coefficients atr and btr. The multiplier result is truncated to fit into 16 bits as per rules of fixed 

point arithmetic. The output of this block is a Gaussian random number in Q4.12 format. 

Corrected Gaussian number xcor is then generated by first degree polynomial equation; 

                                                                                                (3.26)cor tr trx a x b 
  

The proposed GRNs hardware architecture is shown in figure 3.20. 
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Figure 3.20: Architecture of Proposed GRNs Generator 

  

The base numbers (LFSR) are uniformly distributed within 0 and 1. The pseudo-code for the 

proposed improved CLT architecture, for any value of n, is given below, 

1 1 2 2 3 3

1 2 3

U, U , U,....., U

.....

( )
( )
( , )

( )

n n

n

cor

x x x x

x x x x
x

n
x mean x

x
std x

x select mc
return x mx c
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





 

 

The proposed architecture is implemented on FPGA (Virtex-4) using Verilog HDL. The results 

obtained are explained and discussed in detail in the next chapter. 



41 

 

CHAPTER 4 

RESULTS AND DISCUSSION 

 

 

 

4.1  Results 

Since, the error function estimation in our methodology is based upon empirical data analysis, it 

does not guarantee arbitrarily accurate Gaussian numbers. However, after correction, the 

architecture should provide accurate Gaussian numbers with tail accuracy till 6 . To, validate 

this claim, we have applied standard tests to measure statistical accuracy of generated numbers. 

These tests include Probability Density Function (PDF) plots, Chi-Square tests, Scatter plots and 

Autocorrelation function.    

4.2   PDF Plots 

To obtain tail accuracy till 6 , at least 1011 samples are required [2]. At such high sigma values 

the probability is too low to observe on linear scale. The architecture explained in chapter 3 is 

used to generate 1011 Gaussian samples. Figure 4.1 shows the PDF plots of the generated GRNs 

on logarithmic scale as compared to ideal Gaussian PDF as well as PDF of random numbers 

generated by simple summation (CLT).  

Although, accuracy till 6  is guaranteed, the algorithm is capable of giving even higher sigma 

accuracy (till 7 ) as described in chapter 3. To achieve this, the number of generated Gaussian 

samples should be increased. Since, the length of segments decrease with increasing sigma 

values, hence, the curve becomes more accurate and smooth at the low probability or tail region 

(non-uniform segmentation).   
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Figure 4.1: PDF of Proposed GRNs Generator 

4.3 Statistical Goodness-of-Fit Test   

A Chi-Square test is called as the statistical goodness-of-fit test. It is a statistical hypothesis test 

in which the sampling distribution is said to be a Chi-Square distribution when the null 

hypothesis is true. Both the standard and tail generation algorithms are evaluated using chi-

square test [3]. This test is normally used to verify the normality of generated Gaussian samples. 

A set of observed samples (observed frequencies) is compared against the expected distribution 

(expected frequencies). Using more bins or buckets gives higher resolution with respect to the 

different input values, but reduces the expected number in each bin [3]. The test is performed by 

dividing the data samples into number of bins. For each bin, observed and expected counts are 

calculated. The Chi-Square test statistic is then computed using the formula; 

2
2
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    where, ‘O (.)’ is the observed counts, ‘E (.)’ is the expected counts, ‘K’ is the number of 

generated Gaussian variates, ‘KPi’ is the expected number of samples according to normal 
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distribution [1], ‘’ is the desired significance level, ‘ ’ is the total number of bins in which the 

distribution is divided into and ‘’ is the degree of freedom. Since, the normal distribution is 

completely characterized by two parameters, the mean and the standard deviation, the degree of 

freedom is thus reduced by 2 from  to.   

Chi-square test is performed by dividing the horizontal axis (sigma axis) into three regions from 

0  to 6  as shown in Table 4.1. Each interval is segmented into 100, 50 and 30 bins 

respectively. In order to eliminate the statistical inaccuracy, it has been ensured that at least 50 

samples should fall into each bin. Chi-Square test is pass for a given value of , if the observed 

value (calculated by eq.4.1) is less than or equal to the corresponding theoretical value. 

The significance level   means rejecting the null hypothesis when actually it is true or accepting 

the null hypothesis when actually it is false. These both criteria’s are satisfied if the number of 

samples in the bins are large enough (statistical accuracy) in the bin whose chi-square value is 

going to be calculated.   

The results obtained, as shown in Table 4.1, indicate that the proposed GRN generator 

successfully passes the chi square over the entire range of 0  to 6  within 5 percent of 

significance level .       

Table 4.1: Chi-Square test results for proposed algorithm 
 

 
 

It is worth-mentioning here that, since, our method of GRNs generation is not exact, it will 

always have error in the PDF as shown in figure 3.12. Hence, as the number of samples increase, 

the numerator term in eq.4.1 increases as square of the value leading to greater chi-square value. 
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However, as mentioned earlier, we have used at least 50 samples in every bin for the tests in 

Table 4.1 and the test passes for the 10 percent or less significance. This is even better than the 

generally accepted criteria of 5 percent or less significance level [18]. 

4.4   Scatter Plot and Autocorrelation Test  

Any correlation between neighboring numbers can be seen as a regular lattice structure as shown 

in figure 3.16. This is an unwanted property in any random sequence as it indicates some 

similarities between adjacent data samples that leads to the undesired low pass characteristics as 

explained in chapter 3. Figure 4.2 shows a 2-D scatter plot of generated GRNs with no visible 

lattice structure. The plot indicates that most of the times the samples tend to cluster around the 

mean value and with very less probability they occur in high sigma regions. This can, also, be 

seen in figure 4.3 which shows the Autocorrelation function over a range of 2000  lags. 

Correlation values for all non-zero lags are extremely low.  

 

 
 

Figure 4.2: 2-D Scatter Plot of Proposed GRNs Generator 
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Figure 4.3: Autocorrelation Function (ACF) of Proposed GRNs Generator 

 

4.5  BER Simulation 

The proposed architecture of improved CLT has been used in a communication system with 

BPSK signaling over AWGN channel. In figure 4.4, the Bit-Error-Rate (BER) simulation for 

basic CLT shows the incorrect results and shifts in Signal-to-Noise Ratio (SNR) values at low 

BER values. In figure 4.5, the BER simulation has been done using our AWGN generator taking 

the signal length of 107. The results are as accurate as for BM method and show no shift in SNR 

at low BER values. Hence, inaccurate GRNs generator may lead to incorrect simulation results.      

 

Figure 4.4: BER simulation of BPSK modulated communication system [2] 
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Figure 4.5: Proposed GRNs Generator Applied in BER Simulation of BPSK Modulated Communication 

System 
 

4.6  Synthesis Results 

The proposed GRNs generator architecture is implemented in Verilog HDL. The design was 

synthesized using an older FPGA device family (Xilinx XC4VLX15 Virtex-4 device). This is 

because, later versions of FPGAs (for example, Virtex-5 and Virtex-6) are faster and have more 

resources available in a single configurable slice. Hence, for the sake of fair comparison with the 

previously reported work, we used FPGA from an older family.  

The design requires 440 configurable slices and 1 DSP block. No memory blocks are utilized 

because the memory for LUTs and pipeline registers has been implemented within the used 

configurable blocks. The design speed (Mega Samples/sec.) is 220MHz with critical path delay 

of 4.54 ms. 

4.7   Comparison with Previous Methods  

A detailed comparison of our proposed architecture is given in Table 4.2 with well-known 

previously reported architectures.  
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Table 4.2: Comparison of improved CLT with published work 
 

 
 

The comparison has been done in terms of logic cells utilized, memory blocks, number of 

multipliers used, bit width of GRNG, speed and tail accuracy. The first four implementations are 

the most widely used architectures of Box-Muller method. The BM method is also being used by 

the Xilinx core [14]. Ziggurat algorithm is being used in MATLAB. 

In terms of configurable logic cells utilization, our design is much better than other designs, 

since, it requires only 440 slices. BM method requires 2 memory blocks and 3 multipliers to 

achieve a tail accuracy of 6.6 , while our design achieves the closer accuracy by using only one 

multiplier and no memory block. The BM method produces two Gaussian samples per clock 

cycle so, its speed is twice than our architecture (440). The ziggurat algorithm is quite efficient in 

implementation and provides any arbitrary tail accuracy (N/A). But, as explained earlier, that its 

output rate is not constant. It means that sometimes the samples are missing on some edges of 

clock cycles. This may lead to inaccurate simulation results. Wallace method is not efficient in 

terms of hardware resources and, also, has a drawback of correlations between successive 

samples. 

Therefore, resource utilization is better than any of the previously reported hardware 

implementation of GRNs generator. It is worth mentioning here, that our design is scalable to 
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achieve even higher sigma accuracy with minimal increase in hardware cost. Also, the speed of 

the design can, also, be increased by using the concept explained in chapter 3 where we are 

getting Gaussian samples in the intermediate stages with lower tail accuracies.   
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CHAPTER 5   

CONCLUSION 

 

 

 

5.1 Conclusions 

This work achieves high tail accuracy GRNs generator. The empirical model of the error in CLT 

is compensated through deployment of a low cost compensation block. After a detailed error 

analysis, coefficients for degree one piecewise polynomial approximation have been computed 

using a novel non-uniform segmentation algorithm.  

 

 The proposed GRNs generator falls under the category of approximate algorithms. 

 

 The proposed architecture is highly efficient (area, speed and hardware cost), simple, 

fast, compact and regular as compared to all previous architectures. 

 

 The architecture is fully pipelined with an initial delay of 4 clock cycles and 

thereafter, generates Gaussian samples at every clock edge (constant output rate). 

 

  The proposed GRNs generator successfully passes the chi-square statistical test over 

the entire range of 0  to 6  within 5 percent of significance level .    

    

 Although, tail accuracy of 6  is guaranteed, the architecture is scalable to achieve 

even higher tail accuracies with minimal increase in hardware resources. 

 

 The proposed architecture outperforms any previously reported designs. 
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5.2 Future Extensions 

As stated earlier that, the hardware architecture explained in chapter 3, guarantees tail accuracy 

till 6 , which is good enough for all practical purposes and the most of the AWGN simulations. 

This architecture can be further improved in various dimensions as explained below; 

 

 Approximation errors in PDF can be further reduced using higher order polynomials. 

Degree one polynomial is used in our design as a simplest method for implementation. 

Higher order polynomials will require more number of multiplications. Also, the 

approximation errors can be reduced using higher number of segments. As explained 

earlier that number of segments will be increased by powers of two. Hence, more 

memory will be required to store the additional polynomial coefficients (LUTs).   

 

 Tail accuracy can be improved by increasing number of addition operations (value of n) 

by virtue of CLT. Increasing value of n will move the CLT curve closer to the reference 

and, hence, greater standard deviation or sigma value will be obtained for the highest 

generated sample value. The tail accuracy can, also, be improved by increasing the bit 

width of the data path. As stated earlier, we have used 16 bit datapath. Increasing width 

of the datapath will reduce the quantization errors. 

 

 Complexity can be further reduced by replacing the multiplication operation with a shift 

and add operations. 

 

All of the above mentioned improvements involve more hardware resources. Therefore, 

depending upon the user demand, there will be a trade-off between complexity and accuracy.  
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