A Novel Architecture for High Quality AWGN Generation
Based on Central Limit Theorem

by

Muhammad Jameel Nawaz Malik

This thesis is submitted in partial fulfillment of the requirements for the degree of
Masters of Science in Electrical Engineering (MS EE)

School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),
Islamabad, Pakistan.

May 2011

APPROVAL

It is certified that the contents of thesis document titled, “A Novel Architecture of High Quality

AWGN Generation Based on Central Limit Theorem ” submitted by Mr. Muhammad Jameel

Nawaz Malik have been found satisfactory for the requirement of degree.

Advisor: Dr. N. D. Gohar

Signature:
Date:

Commuttee Memberl: Mr. Jamshaid Malik
Signature

Date:

Committee Member2: Dr. Khurram Aziz
Slgnature

Date 10-May-2011

Commuittee Member3: Dr. Osman lHasan
Signature:

Date:

TO MY LOVING FAMILY

CERTIFICATE OF ORIGINALITY

| declare that the research work titled “A Novel Architecture for High Quality AWGN
Generation Based on Central Limit Theorem” is my own work and to the best of my
knowledge. It contains no materials previously published or written by another person, nor
material which to a substantial extent has been accepted for the award of any degree or diploma
at SEECS or any other education institute, except where due acknowledgment, is made in the
thesis. Any contribution made to the research by others, with whom | have worked at SEECS or
elsewhere, is explicitly acknowledged in the thesis.

| also declare that the intellectual content of this thesis is the product of my own work, except to
the extent that assistance from others in the project’s design and conception or in style,
presentation and linguistic is acknowledged. I also verified the originality of contents through

plagiarism software.

Author Name: Muhammad Jameel Nawaz Malik

Signature:

ACKNOWLEGMENTS

| am grateful to Almighty Allah who gave me courage and support to complete this thesis. | owe
my deepest gratitude to my thesis advisor, Dr. N. D. Gohar, for his kind attention and guidance
during this thesis. | am, also, highly obliged and grateful to my thesis co-advisor Mr. Jamshaid
Sarwar Malik, for his valuable guidance throughout my research work. | am, also, grateful to Dr.
Syed Ali Khayyam and Mr. Moin-ud-Din for their valuable guidance during the analysis phase
of this research work. | am, also, thankful to my worthy Committee members, Dr. Osman Hasan
and Dr. Khurram Aziz, for their support and becoming a part this work. | am, also, thankful to
professional members of CEFAR lab for always supporting and encouraging me. | am extremely

gratified to ICT R&D Fund PTCL, Pakistan for their breed financial support.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTIONoiiitittiieesteesieesee s ate s ste e seestae st e ssae s beestaesbaestaessaeanaeesteesteesseesnsesnsesnses 1
11 Y (o1 A7 A o] TSP OSSO 1
O 1= T S O a1] 1] o PSR ST R 3
1.3 THESIS OFQANIZALION ..ottt bbbt b e bbb bbbt s b b e bt bbbt nb bbb 3

CHAPTER 2: LITERATURE SURVEY ..ottt sttt st ste e s 4
2.1 Gaussian Random Number Generators (GRNGS)ccvveiiiieiieieeiieiesesesesresee e seessestesre e e eeeseessesseseens 4
2.2 ClasSITICAtIONS OF GRINGS........ccuiiiiiiieieieie ettt bbbttt e e et e b sb e bt s be e bt e e e nenbennea 6

221 The CDF INVErSion METNOMcoiiiiiiieie e bbbt b b b 7
222 ZIGQUIAE ALGOTTEAIM ...t b bbbt e bbbt b et be e e e e et e 9
2.2.3 POIAI IMIEENOM ... bbbt bbb e b e b s bt bttt bt e e e n b b 10
224 GRAND AlGOTTERML....iiiitiiicec bbbt b ettt st re st e 11
2.25 WaIACE IMELNOM ...t bbbttt bbbt bt e e e b e 13
2.2.6 Box Muller Transformation MEthOd.ooiiiiiiiiii e 15
2.3 Work Related to Central Limit Theorem [3]cccvoeiieiieeieeie et te e sreenreens 18

CHAPTER 3: ANOVEL ARCHITECTURE OFAWGN GENERATOR ..o 19
31 Ideal Gaussian DISIHDULIONccoiiiiiiii et bbbt nne s 19
32 WWNIEE INOISE ...ttt bbbt b e bbbt b bt et e st e h oo bt bt e b e e bt e R b e b e e b e ekt eb e eb e e b e en b e e e b e b e 20
3.3 Central Limit THEOIEM (CLT) cuiioiiiiiiieiie sttt e ettt et et e te et eenaessaestaesreesaaeneeaneesneesseenreens 21
3.4 Calculating Variances for Central Limit TREOTEM.........ccoiviiiiii it 23
3.5 Computing Error in Central Limit TREOIEMccviiii ittt re e esraenreens 25

351 LI AL Lo L= OSSP P RO R PSPPI 25
3.5.2 Algorithm for Error COMPULALIONccieiiiie e re e nae e esnaenreens 26
3.5.3 ErTOr DISTIIDULIONS ...t bbb bbbt e e b e 28
3.6 Compensating Error in Central Limit TREOTEIMc.ciiiiiiiii e nre e 29
3.6.1 Uniform Segmentation AlQOrithMccvoii i 30
3.6.2 A Novel Non-Uniform Segmentation AlQOrithmccoe i 30
3.6.3 RESTAUAL EFTOF ...ttt bbb bbb bbb e b e e bt e e e n b b 32
3.7 Hardware IMPIEMENTALIONc.oiiiiiei et e s e e ste e s reebeeeeanseaneesneenreens 33
371 Uniform Random NUMDEE GENEIALONcc.ciiiiiiiieiriciie ettt st sne 33
3.7.2 SUMMEALION BIOCK ... e et se s 36
3.7.3 DECISION BIOCK. ... ettt b bbbttt b e bt b et be e e e n et b 37
3.74 Contents 0f LOOK-UP-TabIE (LUTS)eiuiiiriiiieieieie sttt sttt s bbb 39
3.75 POIYNOMIAL CAICUIALON ...ttt et b et e b e 39

CHAPTER 4: RESULTS AND DISCUSSION ... oottt stre e sre e s tae e snveeenae e 41
4.1 RESUILS ...ttt ettt ettt ettt ettt e et e e e be e ebe e e beebeeabeeabeebeeebeeebe e beeabeeabeehbeabeeabeeabeebeebeeateereeateenreens 41
A = T o] o] OSSR PRORON 41
4.3 Statistical GOOUNESS-0F-FIt TEST......cviieieriiierr sttt e e tesrestesraenaeneeneeneeneeas 42
4.4 Scatter Plot and AUtOCOITEIAtION TEST......cc.iivieiieieeieierese st sa e ee et sreenaereeneeneenneas 44

Vi

45 BER SIMUIALION ...ttt ettt ettt ettt e sttt e e ettt e e s bt e e e s s bt eessebbeeessabessessbbaessssbeeessabeesessrbes 45

4.6 SYNENESIS RESUILS ...ttt b et b bbb e bbb eb s bt ebenr e ebenr e e ebeere e 46
4.7 Comparison With PreviouS IMEENOUScciiiiiiiieiie et 46
CHAPTER 5: CONCLUSIONottt et b et sttt sb e bbbt ese b 49
B CONCIUSIONS ..ttt b et e bRt e et R bbbt n et n et n s 49
5.2 FULUIE EXEENSIONSveviiieiiiriteiiet ettt bbbttt n e 50
REFERENCESottt ettt bt bt et a et e e bt e eb e e sb bt s be e e st e e be e ebe e sbeesanennbeantas 51

Vil

Table 2.1:

LIST OF TABLES

Implementation results of degree-1 and degree-2 spline CDF Inversion based GRNG

ON @ XIHHNX VITTEX-5 FPGA ..ottt ettt ettt ettt ettt e et et et et et et et eeee et et et e e e seee et ateees 9

Table 2.2:

Table 2.3:

Table 2.4:

Table 2.5:

Table 3.1:

Table 3.2:

Table 4.1:

Table 4.2:

Implementation results for Ziggurat based GRNG on XC2VP30-6 and XC3S200-4

... 10
Implementation results for Wallace based GRNGs on XC2V4000-6 FPGA................... 15
Implementation results for BM-Method ..., 16
Chi-Square test results for BM-MEethod...............cc.cccoeieiiiiicceiccecce e 17
Standard deviations and variances for Varying N.........cccccccccooeeeereciescseieeeeesesssnns 23
Pre-computed values of atr AN Dir c.....couvvcvciicccec s 39
Chi-Square test results for proposed algorithm ..., 43
Comparison of improved CLT with published WOrK ..., 47

viii

LIST OF FIGURES

Figure 2.1: Basic Methodology to Generate GRSccccooiviiiieeeieceeee e 5
Figure 2.2: PDF of Gaussian Random Numbers (GRNS), (a) Linear Scale, (b) Log. Scale............. 6
Figure 2.3: Inverse Gaussian FUNCtION (M= FL(U)) wovvoooooooeeeeccoeeeeeeeeeceseeees oo 8
Figure 2.4: High Level Architecture of CDF Inversion Method............ccccocoviiieciscneiiseieeecens 8
Figure 2.5: Rectangular, Wedge and Tail Regions in Ziggurat Algorithm...........c.ccccccovvviviiccnein. 9
Figure 2.6: BER Simulation Results of Polar Method ... 11
Figure 2.7: Subsections for GRAND MEethOd ..o 12
Figure 2.8: Overview of Wallace MEthodcc.ccoiiiciiicciecceeeeee e 13
Figure 2.9: Hardware Architecture of Wallace Method ... 14
Figure 2.10: Hardware Architecture of Box-Muller Method..............ccccoooeiviieiiiicccccceces 16
Figure 2.11: ASIC Implementation of Box-Muller Method ..o 17
Figure 2.12: PDF plot of BM Method till 6 & for 10 samples......................cccoooiimmmmmmmrrrrrererervrecccciis 17
Figure 3.1: Ideal Gaussian Distribution (from image courtesy of Wikipedia)...............ccccccoevvrrennnc, 19
Figure 3.2: WHIte NOISE PIOCESSccoiviiiieiicieiece e 20
Figure 3.3: Autocorrelation and Power Spectral Density (PSD) of White NOise..........ccc.ccccovvnnnee. 20
Figure 3.4: PDF for varying values of n, (a) Linear Scale, (b) Logarithmic Scale............................ 23
FIgUIE 3.5: PDF PIOt FOr N = deoo s 28
Figure 3.6: PDF PIOt FOr N = 8. 28
Figure 3.7: Error in PDF fOF VaryinNg N ssssssssssens 29
Figure 3.8: Residual Error due to Uniform Segmentation ... 30
Figure 3.9: The unit tangent vector T’(t), points in the direction of velocity vector............ccccouvnue. 31
Figure 3.10: Amplitude to Frequency (AFC) CONVEIET ..o 32

Figure 3.11: Non-Uniform Segmentation SCNEME............ccccoiiiiiiienesssssssessessessenens 32
Figure 3.12: Residual Error due to Non-Uniform Segmentation SCheme..........cccccooevninniinnrnenenn. 33
Figure 3.13: BaSiC LFSR AICNITECIUIE ..ottt 34

Figure 3.14: Covariance of 10° values generated by LFSR using maximal length polynomial

Shows correlations arouNd ZEIO 18J.........cc.oovririeee st 34
Figure 3.15: Power Spectral Density of 10° Values Generated by LFSR.........cccccooooorrrrrevevvvvovccccieins 35
Figure 3.16: 2-D scatter plot of a pseudo random NUMDBEr geNEratorccocvrrnernrrnernerinsrinneens 35
Figure 3.17: (a) Autocorrelation Function (ACF), (b) PSD Plots for Skip Ahead LFSR. 36
Figure 3.18: Summation BIOCK ArChItECIUIE..........cooiiirc e 37
Figure 3.19: Decision BIOCK AICNITECTUIEc.coviiiieiccieeees ettt 38
Figure 3.20: Architecture of Proposed GRNS GENEIatOr ... 40
Figure 4.1: PDF of Proposed GRINS GENETALONccovuriiririieiieiieeiesseessssssssesssssssssssessssssssssens 42
Figure 4.2: 2-D Scatter Plot of Proposed GRNS GENEIator ... 44
Figure 4.3: Autocorrelation Function (ACF) of Proposed GRNSs Generator.............cccccocovenrinrinneen. 45
Figure 4.4: BER simulation of BPSK modulated communication SyStemccccoevvnrrverirnnnenn. 45

Figure 4.5: Proposed GRNs Generator Applied in BER Simulation of BPSK Modulated

COMMUNICATION SYSTEM ... 46

ABSTRACT

Gaussian Random Numbers (GRNs) are required for simulations in a wide variety of
applications. For example, channel code evaluation, simulation of economic systems and product
failure simulations, etc. Mostly, simulations are carried out using systems based on digital signal
processor or other software programmable devices. Such systems generate GRNs using software
libraries to evaluate complex trigonometric functions like natural logarithm, exponential
functions, etc. However, optimized hardware implementation of GRNs generator can operate
many times faster than optimized software implementations.

Hardware implementation of GRNs generator generally involves transformation of uniformly
distributed random numbers and has always been a challenging task. Central Limit Theorem
(CLT), although very simple to implement, has never been used to generate high quality GRNs.
This is because the direct implementation of CLT provides very poor accuracy in the tail region
of probability density function (PDF). This work achieves high quality GRNs generator. The
empirical model of the error in CLT is compensated through deployment of a low complexity
compensation block. A novel non-uniform segmentation algorithm is presented for degree one
piecewise polynomial approximation to non-linear error function. We have proposed a novel
architecture of GRNs generator which requires only 420 configurable slices and 01 DSP block of
Xilinx Virtex-4 XC4VLX15 operating at 220 MHz. The architecture achieves high tail accuracy
of 60 and is scalable to achieve even higher accuracy with minimal increase in hardware

resources. The accuracy of GRNs generator is validated using statistical goodness of fit tests.

Xi

CHAPTER 1
INTRODUCTION

1.1 Motivation

A fast, compact and high quality Gaussian random number generation is a key capability of
simulations across a wide range of disciplines. For example, Channel code evaluation, Monte-
Carlo (MC) simulations, financial modeling, molecular dynamics simulation and product failure
simulations, etc. Most of the processes in nature are Gaussian distributed since they tend to be a
balanced sum of many unobserved random events and by virtue of Central Limit Theorem (CLT)
[1], sum of sufficiently large random numbers tend to become Gaussian distributed. In
simulations, where probability of occurrence of an event is very low, high tail accuracy Gaussian
Random Numbers (GRNSs) are required.

High tail accuracy GRNs generators are of significance assistance in characterization of very low
BER systems (high Signal-to-Noise (SNR) ratio) [2]. One such example is BER simulation of
wireless radio standards. Some of which have maximum allowable BER of less than 107 for
specified SNRs. Other important examples are turbo codes and Low-Density Parity-Check
(LDPC) codes which are currently the focus of an intense research due to their ability to
approach Shannon bound very closely and with only moderate decoding complexity [12].
Simulating occurrence of such events, requires a tail accuracy of at least 6 0 [2]. It takes about
2.5 hours to generate 10° Gaussian samples on a dual core Pentium processor using an optimized
software simulator written in C [2]. This means that it would take about 27000 years to generate
107 Gaussian samples. Clearly, software simulations cannot provide an adequate solution to

examine the behavior of such codes at very low BER rates [12].

Recent advances in Field Programmable Gate Array (FPGA) technology are providing cost
effective, fast and compact solutions towards hardware implementations of algorithms.
Moreover, the user programmability of FPGA facilitates debugging capability and design
characterization, which can reduce the total design time significantly [2]. Hence, this work is
strongly motivated by the efficient hardware Gaussian random generation which should be high
quality, fast, compact and reliable.

In last two decades, intense research has been reported regarding the efficient implementation of
GRNs in hardware. Simulations are usually done in software e.g. Digital Signal Processors
(DSPs) and other software programmable devices. To generate GRNSs, such devices use software
libraries to evaluate complex functions e.g. natural logarithms, square root, exponential functions
etc. These complex functions are now evaluated in hardware using piecewise polynomial
approximation techniques. But, hardware implementation of these functions requires lot of
computational resources and power consumption. Hence, there is a need to come up with a
simple, fast and cost effective solution towards the implementation of GRNSs in hardware.

This work presents an efficient hardware implementation of high quality GRNs generator based
on Central Limit Theorem (CLT). CLT, due to its inherent Gaussian like characteristics, can be
an efficient method for generating high quality GRNs. After a detailed empirical data analysis,
error models for CLT have been computed. The error distributions are compensated using a
novel non-uniform segmentation algorithm. Tail accuracy of 60 is guaranteed which is
considered well enough for all practical purposes. The proposed GRNs generator is scalable to

achieve even higher accuracy with minimal increase in hardware resources.

1.2 Thesis Contributions

Empirical error model based on the actual data samples is computed for a specified value of n
(number of additions) in CLT. A detailed analysis of error model is provided using appropriate
bit width of data path and number of additions (n) for a target sigma or standard deviation value.
A novel non-uniform segmentation algorithm is introduced that computes coefficients for first
degree piecewise polynomial approximation of error functions. A novel architecture of CLT
based GRNs generator is presented that produces high tail accuracy GRNs at minimal hardware
cost.

1.3 Thesis Organization

There are five chapters in this thesis organized as follows:

In Chapter 2, an introduction to GRNs generators is given. After a brief history, various
algorithms used for generating Additive White Gaussian Noise (AWGN) are described in detail
including the work related to Central Limit Theorem.

In Chapter 3, empirical error models for Central Limit Theorem are computed. Compensation
algorithm is, also, described in detail using a novel segmentation algorithm.

In Chapter 4, the simulation and synthesis results are given and explained in detail. Also,
comparison with previous methods is given and discussed.

In Chapter 5, summarizes the work and concludes our thesis with proposals of some possible
extensions to this work.

In the end, references of the work done by different people in this field are given.

CHAPTER 2
LITERATURE SURVEY

2.1 Gaussian Random Number Generators (GRNGS)

Normally distributed random numbers are referred to as Additive White Gaussian Noise
(AWGN). A variety of algorithms have been reported in literature to generate Gaussian Random
Numbers (GRNs) with a varying degree of computational complexity and accuracy [3]. A
popular method is to convert uniformly distributed random numbers to Gaussian by
transformation algorithms [2]. These transformation algorithms have been implemented both in
software [3] and hardware [1]. Software solutions are used in applications where primary
concern is cost and flexibility. However, in applications where high values are required, software
GRN generators fail to provide desired number of samples in short time. For example, at least
10*2 samples are required to detect occurrence of an event in 6 O region. Fastest available
machines today produce around 1 to 10 million GRNs per second [1]. At this rate, such a
machine will take more than a day to generate desired 102 samples. This situation worsens by
order of magnitudes for simulation of higher tail accuracy. Another extreme example, where
software GRNs generators fail is real time radio channel emulation. GRNs generators are an
essential part of any radio channel model [4]. Some complicated fading channel models [4]
require large samples of GRNs. For real-time emulation, these channel models have to be
executed at tens of Mega Hertz (symbol rate of underlying wireless standard). Clearly software
GRN generators don’t have the capacity to execute such models in real-time. Hence, efficient

hardware GRNSs generators are the only option for such applications.

Figure 2.1, shows the basic methodology to generate GRNSs. First step is to produce base
numbers from a uniform distribution using Linear Feedback Shift registers (LFSRs). Some
transformation method is then applied to convert the uniform distribution into Gaussian

distribution.

Normal Distribution

LFSR Uniform Distribution Transformation

Figure 2.1: Basic Methodology to Generate GRNs

Normal distribution is an open-ended distribution in which values of increasing magnitude occur
with rare probabilities. Tail accuracy indicates the similarity between a given distribution and the
ideal normal distribution at high sigma (standard deviation) values. It is one of the most
important parameter of the quality of produced GRNSs. Figure 2.2, shows the GRNs produced on
linear and logarithmic scales. The uniform distribution is also shown with flat density in figure
2.2. A careful observation of the plots shows that the high probability region is more prominent
on linear scale while, the less probability region is more prominent on logarithmic scale. In high
sigma or standard deviation region, a careful observer can see the irregular shape of PDF on
logarithmic scale. This is because of the statistical nature of samples. Due to low probability of

occurrence of samples, the tail region in the statistically plotted PDF never becomes smooth.

Normalized PDFs (linear scale) Z Normalized PDFs (logarithmic)

1 P, J
* Output PDF | /
Ideal PDF g
e * Input PDF
06
; D)
. Output PDF
|deal Gaussian PDF

0.2

0 _.-/

-6 R -2 0 2 4 2 0 2 4 6
Standard Dewviation Standard Dewviation

Figure 2.2: PDF of Gaussian Random Numbers (GRNS), (a) Linear Scale, (b) Log. Scale

2.2 Classifications of GRNGs

The transformation methods for generating GRNs are mainly classified into two broad categories
[3].

1) Exact Methods

The exact methods produce ideal GRNs if the perfect arithmetic is used. For example, the Box
Muller transformation algorithm applies various transformation methods on uniform random
numbers to produce GRNs. Perfect GRNs will be produced if the uniform random numbers and
the arithmetic functions involved in the method are evaluated using infinite arithmetic precision.
Another example is Ziggurat algorithm, which also lies under the category of exact methods that
produces GRNs of any arbitrary tail accuracy by approximating Inverse Gaussian CDF. Ziggurat
algorithm is currently being used to generate Gaussian samples by well known MATLAB

software.

2) Approximate Methods
The approximate methods, on the other hand, generate approximate Gaussian samples even if the
infinite precision arithmetic is used. For example, basic Central Limit Theorem, that produces
approximate Gaussian samples by averaging n uniform samples. This method becomes exact
when infinite uniform samples are combined.
GRNs generators can also be classified into four basic categories [3];

1) Inversion Methods

2) Transformation Methods

3) Rejection-Acceptance Methods

4) Recursive Methods
Inversion methods include CDF inversion that simply inverts the Gaussian CDF to produce
random number from Gaussian distribution. Transformation method includes Box-Muller
method that applies some transformation on uniform random numbers to generate Gaussian
distributed numbers. Rejection-Acceptance methods include Ziggurat algorithm that produce
GRNs based upon conditional rejection acceptance criteria applied to certain transformed values.
The recursive methods include Wallace method that produces new Gaussian output samples with
the help previously generated Gaussian outputs using a feedback network. In the upcoming
subsections, various algorithms for generating GRNs are explained in detail.
2.2.1 The CDF Inversion Method [8]
The CDF inversion method generates a random number from the normal distribution by
approximating the Inverse Gaussian Cumulative Distribution Function (IGCDF) described by the

following equation;

n=F() 1)

where, “u” is the number from a uniform distribution, “n” is the number form Gaussian

distribution and F! is the IGCDF as shown in figure 2.3.

0.5
X

Figure 2.3: Inverse Gaussian Function (n = F*(u))

The conceptual block diagram of the algorithm is given in figure 2.4.

sign
~
, 1
Uniform N)
e i Inverse >j , Gaussian
X | Gaussian CDF }'i 7 Samples
Number |- . (IGCDF) 2 ~> 1
Generator Evaluation Unit 3
(URNG)

Figure 2.4: High Level Architecture of CDF Inversion Method

This method requires a large amount of memory to store the CDF inverse, especially, for the data
in tail region of the Gaussian distribution. The most efficient method reported in [8] uses the
hierarchical non-uniform segmentation algorithm that reduces the large memory requirement. In
its segmentation approach, one out of four segmentation schemes (US, P2S., P2Sr, P2S(R) is
selected for initial segmentation of an input function. US stands for uniform segments. P2S.
implies increasing number of segments with power of two beginning from the start of input
range to the end. P2Sr implies decreasing number of segments with power of two beginning
from the start of input range till end. P2S.r implies increasing number of segments with power
of two till mid of the given input range and then decreasing number of segments with power of
two till end. The term hierarchical is used because of the fact that in first step, the entire region

is divided using one of the above four segmentation schemes in. In the next step, each segment is

further subdivided into inner segments using US. A detailed range and precision analysis of the
arithmetic used for hierarchical non-uniform segmentation scheme is also given in [8]. Table 2.1
summarizes the hardware implementation details of the algorithm.

Table 2.1: Implementation results of degree-1 and degree-2 spline CDF Inversion based GRNG on a
Xilinx Virtex-5 FPGA

Method Degree-1 | Degree-2
Slices 543 579
Block RAMs 2 1
DSP Slices 2 -
Clock Speed [MHz] 371 370
Samples / Cycle 1 1
Million Samples / Sec 371 370
Throughput / Slice 0.683 0.639

2.2.2 Ziggurat Algorithm [6]

In Ziggurat algorithm, the Gaussian probability density function is partitioned into three different
regions to generate Gaussian samples. These are rectangular, wedge and tail regions as shown in
figure 2.5. A rejection-acceptance criterion is used to examine whether a random sample falls

into one of these three regions.

rectangular region z

R

wedge region

[tail region

+ ey ;w-_.__‘___

X

_‘l'” X X

-l

Figure 2.5: Rectangular, Wedge and Tail Regions in Ziggurat Algorithm

The highest probability of occurrence of a random sample lies in rectangular region. The
numbers falling in this region are directly taken as output random numbers from Gaussian
distribution. Secondly, there is a 1.5 percent chance of occurrence of a random input sample in

non-rectangular region because it is a low probability region. The exponential or logarithmic

functions are evaluated and an iterative fixed point operation unit is used for the samples

occurring in non-rectangular region. The algorithm [3] for ziggurat method is given below;

loop
i < 1+ |nU;| {Usually n is a binary power: can be done with bitwise mask]
X «— X; LI‘_'_)

if |x| < x;_; then

return z {Point completely within rectangle.}

else if i # n then {Note that ¢(x; ;) and ¢(x;) are table look-ups.}
y <« (¢(x; 1) — ¢(x;)U |Generate random vertical position.]
if y < (¢(x)— ¢(x;)) then |[Test position against PDFE.}

return x {Point is inside wedge.)
end if

else

return |x| > r from the tail {see section 3}

end if

end loop

The summary of the latest hardware implementation of ziggurat algorithm is given in Table 2.2.

The algorithm provides any arbitrary tail accuracy but suffers from a problem that its output rate

IS not constant, which means that some of the times samples are missing in continuously running

clock cycles. Also, there is a need for more accurate evaluation of complex elementary functions

involved in ziggurat method as its future extension.

Table 2.2: Implementation results for Ziggurat based GRNG on XC2VP30-6 and XC3S5200-4 FPGAs

XC2VP30-6 XC38200-4
SLICEs 868 out of 13,696 (69) | 908 out of 1,920 (47%)
Block RAMs 4 out of 136 (2%) 4 out of 12 (33%)
MULT18X18s 2 out of 136 (13%) 2 out of 12 (16%)
DCMs 1 out of 8 (12%) 1 out of 4 (25%)
Period of “CLK" 5.88ns (170MHz) 6.11ns (164MHz)
Period of “CLK2” 11.76ns (85MHz) 12.21ns (82MHz)

2.2.3 Polar Method [7]

The polar method requires two uniform random numbers to covert into two Gaussian output

random numbers. The two uniform random numbers are taken between the range -1 and +1 and

the magnitude of their vector in polar plane is computed. If the vector magnitude is greater than

1, the numbers are discarded. If magnitude is less than 1, the magnitude of the vector is

10

transformed and scaled to give two Gaussian output numbers. The algorithm is described as

under,
repeat
x <« V,y <V,
d «—x%+y?
until0 <d < 1
f < v—2(nd)/d
return (f xx, f x y)
The algorithm requires the computation of a division, square root and two multiplications. Also,
the output rate no longer remains constant due to conditional if-then-else statements. The BER
simulation result of a communication system [7] over AWGN channel based on polar method is

illustrated in figure 2.6.

— bt al B]
+ Fromour DERT 3
Proe Aghert BERT

0 L
T 0 2 < B B 10 12 14
SNR (o)

Figure 2.6: BER Simulation Results of Polar Method

2.2.4 GRAND Algorithm [3]
The GRAND algorithm, also known as the odd-even method, belongs to the class of exact GRNs
generators. It transforms uniform random numbers into Gaussian distributed, by using the
formula given by eq.2.2
f (X) =ke o 22
where, “x” is a random sample from uniform distribution, “k” is a constant and “G(x)” is a

probability density function of any arbitrary distribution and its range is between 0 and 1. For

11

the Gaussian distribution the G(x) is given by eq.2.3.

G)=5¢-2) @3

In order to keep the range in between 0 and 1, it is necessary to divide the range of distribution

into various sections as shown in figure 2.7.

ol s,
\
0.3F
Y
0.2}
0.1}
0- % L C‘.,, C? ,l,c?,k(i‘,,l, B I . S
0 1 2 3 4

Figure 2.7: Subsections for GRAND Method

The algorithm of the GRAND method is given below;

i <0, x < U {Notethat 0 < x < 1 according to definition of U}
while x < 0.5 do [Generate i with geometric distribution]
x «—2x, i<—i1+1
end while
loop ([Now sample within chosen segment using odd-even method)
u «— (ajy; —a;)Uy
v —u(u/2+a;)
repeat
if v < Us then
if U; < 0.5 then
returna; +u
else
return —a; — u

end if
else
v<U,
end if
untilv < U;
end loop

The output rate of GRAND method is not constant due to conditional if-then-else statements as

evident from the algorithm given above. Also, the efficient hardware implementation of this

12

method has not been reported yet.

2.2.5 Wallace Method [9]

The Wallace method eliminates the requirement of evaluation of complex functions like sine,
cosine, natural logarithms etc. thus, making it suitable for applications that require high

throughput rates. The conceptual block diagram of Wallace method is shown in figure 2.8.

Pool of |21 Xk-1
N K-by-K Sum-of-squares Gaussian
Gaussian : Transformation |, | Correction Samples
% Xy
Samples J 0 I -

Figure 2.8: Overview of Wallace Method

This method applies k-by-k transformation using Hadamard orthogonal matrix [3] on a pool of
already generated Gaussian samples “N”, to produce new Gaussian outputs. The main drawback
associated with this method is its inherent feedback nature that causes severe correlations
between successive data samples. Correlation effect is highly undesired characteristic for the
Gaussian distributed samples because it indicates the presence of some frequencies or similarities
in the resultant distribution. The Wallace method is highly resource consuming but provides a
high throughput rate. The algorithm for the Wallace method is given below and its hardware
implementation is shown in figure 2.9.

for i =1..R do {R = retention factor)
for j =1.L do (L =N/K]
forz =1..K do {K = matrix size}
x[z] < pool[generate_addr()]

end for {Apply matrix transformation to the K values})
x’ « transform(x)
forz =1..K do {write K values to pool}
pool[generate_addr()] < x[z]’
end for
end for
end for

S <« /pool[N]/N {Approximate a 3 correction for sum of squares.}
return pool[1...N — 1)] x S {Return pool with scaled sum of squares.}

13

Stage 1:
generate unifrom
random variables

"start", "stride" and
"mask"

start

Stage 2:
generate addresses
for p.q.r,s

Stage 3:
4-by-4
transformation

Stage 4:
sum-of-squares
correction

Figure 2.9: Hardware Architecture of Wallace Method

14

The hardware resource utilization is given in Table 2.3.

Table 2.3: Implementation results for Wallace based GRNGs on XC2V4000-6 FPGA

stage | slices block RAMs MULTI8X18s
1 77
121
342
4 230
total 770 6 4

SR N
(]
&

2.2.6 Box Muller Transformation Method [2]
This method is the most popular method for generating high quality GRNs in hardware. It falls
under the category of exact algorithms. It basically, transforms two input uniform random

numbers to provide two Gaussian samples. The Box Muller algorithm is given by below;

X =20 as(27) (29

X=—2InU,008(22) (25
The conceptual block diagram of the Box-Muller method is shown in figure 2.10. Various
algorithms and techniques have been applied to implement the above mentioned Box-Muller
equations in hardware. In [10], Boutillon reported hardware implementation of Gaussian noise
generator based on Box-Muller algorithm where CLT is used to reduce the approximation errors
of the mathematical functions involved in Box-Muller method. In [11], mathematical functions
in Box-Muller method are approximated using degree one piecewise polynomial approximation
along with non-uniform segmentation scheme. Due to high approximation and quantization
errors, CLT is employed to enhance the noise quality. The output rate is one sample per clock
cycle and highest attainable tail accuracy is 6.7 0. Dong-U Lee, in [12], presented an accurate
analytical error analysis and bit width optimization for mathematical functions of Box-Muller
method. CLT is not used, thus, providing the output rate of two samples per clock cycle. The

highest attainable tail accuracy is 8.2 0. This method [12] is highly efficient both in terms of

15

hardware and throughput compared to previously reported method.

H [

1 N e 1!

N \ NV = 2nul’lunction | [“oint function |1

1| URNG(U1) | 3201 C,M, U1_tr(16-bit) e :

: | o’ address generator | | =M.U_tr+C 1
‘ 1

] i

' ; ; | 1,
1 f— N Y R

: p . § | Sin{16bit) A E‘Mﬁj
H URNG (U2} | 18.bit Sin, Cos V N X : P
| — calculator — NZE N

: Cos (16b1t) - 1 X2{16-b8))
B s N e S e P e e e (R 1

Figure 2.10: Hardware Architecture of Box-Muller Method

Among all these implementations, the most efficient hardware implementation of Box-Muller
method is reported in [2], that achieves lower hardware cost and maximum attainable sigma
values larger than previously published designs. The method uses polynomial curve fitting with
hybrid segmentation and scaling scheme to more accurately approximate the mathematical
functions involved in Box-Muller method. The resource utilization summary is given in Table
2.4. The ASIC implementation of the architecture is given in figure 2.11.

The tail accuracy till 9.4 sigma has been shown using PDF plots in [2]. The PDF plot for 10!
Gaussian samples till 6 0 is shown in figure 2.9. The chi-square simulation results are shown in
Table 2.5.

Table 2.4: Implementation results for BM-Method

Device” Il | [T m T IV
Bivwidih of 32 32 [iE] 32
Period of the PNG AN | 288 | 2208 | 2133
Max. deviation 6660 6660 9. 40 6.660
Clock freq. (MHz) 269 248 248 336
Qutput rate (MGVs/sec) 538 496 196 672
Number of logic cells 576 534 852 G668
Resource wtilization 1.3% 2.3% 3.6% 0.4%
On-chip memory blocks 2 2 3 2
18 x 18-bir Mults. 3 3 3 3

2 Design [was synthesized for a Xilinx Virtex-II Pro XC2VP100-6 FPGA.
Designs 11 and 11T were synthesized for a Xilinx Virtex-II XC2V4000-6
FPGA. Design IV was synthesized for an Altera StratixII EP2S180F1508C4
FPGA.

16

Figure 2.11: ASIC Implementation of Box-Muller Method

fin)

Figure 2.12: PDF plot of BM Method till 6 O for 10* samples

Table 2.5: Chi-Square test results for BM-Method

Threshold
Range Colonlansd 132 121 15 111
Xa,o7 al 001 0.05 010 0.15
n| <45 109 pass pass pass pass
1< |n| < 6.0 9% pass pass pass pass
60<|n <75 103 pass pass pass pass
75 < |nl <94 110 pass pass pass pass

17

Xilinx [13] have released an IP core based on Box-Muller algorithm. ASIC chip implementation
of Box-Muller Method is given by Fung [14].

2.3 Work Related to Central Limit Theorem [3]

The Central Limit Theorem (CLT) states that the sum of infinitely large uniform random
numbers approaches to Gaussian distribution. CLT has been used in various algorithms to
improve the noise quality of the generated Gaussian samples. It has been implemented earlier in

software using the methods given below;

= |n order to enhance the tail accuracy, the idea is to “stretch” the PDF in the tail region

= Teichroew (1953) used a Chebyshev interpolating polynomial to map the PDF of CLT,
for a given n, to that of Gaussian distribution

= Muller in 1959 used a 9" degree polynomial on the sum of 12 uniform random numbers

= The degree of polynomials used in the above mentioned techniques increases the
Complexity of the algorithm. Therefore, a tradeoff has to be made between the accuracy
and complexity. The corrected PDF still deviates from ideal Gaussian PDF for any given
value of n. Also, averaging large number of uniform random numbers constitute a big
computational challenge.

= That is why Central Limit Theorem was rarely used in hardware implementation of high

quality GRNGs

To date, no hardware implementation of improved Central Limit Theorem has been reported.
Hence this work, to the best of our knowledge, is the first attempt to generate high tail accuracy

GRNSs in hardware using CLT.

18

CHAPTER 3

A NOVEL ARCHITECTURE OFAWGN GENERATOR

3.1 Ideal Gaussian Distribution
The normal (or Gaussian) distribution is normally used to represent real-valued random variables
that tend to accumulate around mean value. The PDF equation of a normal distribution is given

as,

f(X) :ﬁ g Osplac? 3D

where, o7 is the variance and # is the mean or expected value of normal distribution. For a

standard normal distribution, mean is 0 and variance is 1. The PDF equation becomes

f9) =Ji%erx2/2 (32

Gaussian distribution does not deviate from its mean by more than 3 standard deviations 99.7
percent of the times or in other words, the probability of occurrence of data samples in high
probability region is very low [2] as shown in figure 3.1.

=
=

03

0.z

01

0.0

=3 —d= -1z R 1z 2o 3o

Figure 3.1: Ideal Gaussian Distribution (Image courtesy: Wikipedia)

19

3.2 White Noise

White noise is a random signal as shown in figure 3.2 with a flat Power Spectral Density (PSD)
or in other words, whose response is a low pass filter effect [17]. A perfect white noise is
independent and identically distributed, which implies no autocorrelation (correlation between
successive samples) as shown in figure 3.3. If a white noise signal is normally distributed with
mean zero and variance G, then, it is called as the Gaussian white noise signal or Uniform

random sequence.

. pl M W \M ’w’ |JW .“ WJ‘ M “MH

Figure 3.2: White Noise Process

Aurocoredaton Function Power Spectral Dansity

Figure 3.3: Autocorrelation and Power Spectral Density (PSD) of White Noise

20

3.3 Central Limit Theorem (CLT)
The sum of n independent random variables, each with finite mean and variance, becomes
Gaussian distributed by virtue of CLT [1]. As n increases, resultant distribution becomes closer

to Gaussian. The normalized random variable is given as

42%3;‘” (33)

where, X is the i independent random variable, £{ is the mean or expected value of the it

independent random variable and G is the standard deviation of the i'" independent random
variable.
If n approaches infinity or under certain regularity conditions, the limiting distribution of Zis

standard normal distribution.

P, () =lmPrZ, <0}= | ey 349
Z,-NOY 69

where, N(O.) is the normal distribution whose mean is 0 and standard deviation is 1.

CLT is extremely simple and efficient in implementation as it produces GRNs by simply adding
n numbers with arbitrary PDFs. But, this method has never been used to generate high quality
Gaussian samples. This is due to error in tail region of the probability density function (PDF),
which is inversely proportional to number of samples to be added. For example, addition of at
least 100 samples is required to achieve a tail accuracy of 5. The PDF curve deviates from the
ideal Gaussian PDF very sharply for higher values of standard deviation and also, the PDF tends

to become straight in tail region. To achieve a better tail accuracy, the value of n (number of

21

additions) needs to be increased. In fact, in order to produce a perfect PDF, n should be infinitely
large.

This is shown in figure 3.4 where normalized PDF is plotted for varying values of n. Base
numbers or initial numbers are uniformly distributed between +1 and -1. We generated 10°
samples by adding 2, 4, 8 and 16 uniformly distributed numbers respectively. In Figure 3.4a, the
PDF for the generated samples is plotted on linear scale. Apparently, the PDF seems close to
ideal Gaussian PDF for values of n greater than 2. This is because for standard deviation greater
than 2 0, the probability becomes too small to be detected on linear scale. In Figure 3.4b, the
PDF is plotted on logarithmic scale. Now, the errors in tail region are more prominent. It can be
clearly seen that even for n= 16, PDF deviates from ideal curve drastically after 3 0. It is, also,
apparent that as n becomes greater, PDF curves for CLT tend to be closer to ideal Gaussian
curve.

A careful observer can notice irregular shape of PDF at the edges particularly for higher values
of n. This is due to the statistical nature of data samples. No matter how many data samples are
taken, edge (tail) of a statistically plotted PDF is never smooth due to low probability of

occurrence of data samples in this region as explained in section 3.1.

22

Probability Density Functions for varying values of n

N T T T T (e . Ll Eey IR
; : :"‘:""’L reference
f AR e
0.8 fs---varrommetonasaccitaramanesas % -"‘i -------------
w ' ' CHE +n=4
o { &y O 3 |LEEE _

: ' # ' & “--n=8§
006 [H=-=mmrmens Jrereenseann Jeemnn } SRt v nne b R Sl H
B I : Fl : % n=16
o b : i : ‘k, :

L R e 7 e S T S —— iy
= H . e . » | H
Z. .l ; &y : L ;
02":""““""“ """""" TV"“"“"; """""" \'&""“"“""‘““"“:“
; { & ! & ;
: . ; S
0py Moo i T e ©- X "
4 - 4
® StandardD Dewiation 2 §
(a) _
Probability Density Function for varying values of n (Logrithmic scale)
) o —— . S e s P
] ')./" E "‘\‘\
(T8
o
a
o
N, 5 :
‘—E“w Reference | !
o 3 ~ecte-en =12
z
n=4
n=8
n=16

-2 0o .
Standard Deviation

Figure 3.4: PDF for varying values of n, (a) Linear Scale, (b) Logarithmic Scale

3.4 Calculating Variances for Central Limit Theorem

As shown in figure 3.4 that PDF for a specified value of n remains fixed. So, the variance and
standard deviation for that specified value of n is also fixed. Variance and standard deviation are
calculated below for n = 8 when the base numbers are normally distributed between +1 and -1.

Similar procedure can be followed to find the variances and standard deviations for other values

of n as summarized in Table 3.1

Table 3.1: Standard deviations and variances for varying n

T Standard Deviation & | Variance o2
2 0.816496581 0.666666667
4 1.154700538 1.333333333
8 1.632993162 2.666666667
16 2.3004010773 5.333333333
32 3.26598632 10.66666666

23

The PDF of a uniform distribution is given as,
f()=rte ifaceb, de0
u(X) =pg Taxb e
The expected value or mean value is given as,

B0 =4 =232

The variance is given as,

Var()=cs? =

If lower limit a = -1 and upper limit b = +1, then mean value is calculated as,

E(X) = 14 :agb :—12+1:O

Variance is computed as,

—ay (+1¥ 1
12 2 3

And the standard deviation evaluates to,

wap@

Var(x)=c52 =L

24

(36)

(37)

(39)

(39

(310

G1)

Let “Y” be a random variable that represents the summation of eight uniform random numbers

between +1 and -1. X; is the i uniform distribution. Then variance is calculated as,

Y=x1+x2+x3+x4+><5+><6+x7+><8:§;>g (312)
E(Y) =4 =3 JE(X)=8*0=0 (1)
Var(Y) =i = 3 Var () =8+ ;=0 =2667 (314

3d(Y)=c =J§ 162 (315)

3.5 Computing Error in Central Limit Theorem

The variance and standard deviation for any value of n in CLT is fixed as shown in section 3.4.
Also, the PDF curves for both the CLT and ideal Gaussian distribution remain fixed for any
value n. So, we can map the CLT curve on to the ideal one by following the concept described in
the next subsection.

3.5.1 Theldea

Analyzing figure 3.4 reveals that in the high probability region before 3 sigma, both the curves,
the CLT and the reference, are indistinguishable (overlapping each other) and after 3 sigma both
the curves grow in different directions. For simplicity, we call the overlapping region as the Ideal
region and non-overlapping region as the Non-Ideal region.

Therefore, we can say that,

“When in Non-ldeal region, Scale up the random number”

25

Now, the “n” degree polynomial is given as

y=anP"+an1 P"1+ ..+ aP?+aiP + ao (3.16)

where, an ap are the polynomial constants.

Reducing this equation to only first degree, we get

y =aiP + ao (3.17)
This is equivalent to

y=MP+C (3.18)

where, “M” is the slope and “C” is the intercept of a straight line. This means that we can
scale-up a number P by simply multiplying it with a slope and adding an intercept value.
3.5.2 Algorithm for Error Computation
The error function for CLT can be computed empirically by using the algorithm explained below;
1- Uniform random numbers are generated between +1 and -1. A MATLAB script is written
to generate random numbers as
urng = 2*(rand(1,M)-0.5)
wWhere, “rand” is a built in function to generate a uniform random signal between 0 and
1 and “M” defines the length of the generated random signal.
For a specified value of n, such n uniform random distributions are generated and added
by virtue of Central Limit Theorem. The resultant distribution is of length “M” and is
called as the approximate Gaussian distribution. Clearly, the highest value sample will be
+n and the lowest value sample will be —n.

2- To compute the PDF of generated approximate Gaussian samples, the samples are

26

4-

distributed into buckets or bins over the sigma or standard deviation range from -n to +n

as described in step 1. The results are shown in figure 4.4 for varying values of n. The

values corresponding to the sigma axis or horizontal axis are represented as Xc

We have the PDF of an ideal Gaussian distribution with zero mean as given by eq. 3.19;

fOQ)=—5="""" G199

where, Xg are the points on horizontal axis corresponding to ideal Gaussian distribution.

Now, the sigma or standard deviation values corresponding to ideal Gaussian distribution
can be found using the PDF values for approximate Gaussian distribution by rearranging

eg. 3.19. The standard deviation in terms of PDF is given by the following equation;

X =\ 2R INJ2R F () (3)

where, f(X.) is the probability of occurrence of Xc

The error in the CLT PDF is then simply;

B =X —% (3Z|-)

27

The plots in figure 3.5 and figure 3.6 are obtained for the positive side with the symmetric
negative side, using the above algorithm for n = 4 and 8. For each point on the CLT curve, there

is a corresponding straight or horizontal point on the reference curve.

Empencal datafrn=4 |

.....

Al ol cune

10 & S

|)"‘- %

| » .- 1
3 .

10§

o
10 %

Nomalized POF
Loganthmic Scale

10°k * 4

1':"; 1

11 .
10! A i ! A i A

zed POF

normak
Loganthmec scalke
L

0° b 4

10 A A A A A A A A A J
i) 1 2 3 4 5 8 7 B 9 19

r-anis{linenr scale)

Figure 3.6: PDF Plotforn =8

3.5.3 Error Distributions

The above algorithm was implemented in MATLAB script for varying values of n. In Figure 3.7,
the computed error functions are shown. The horizontal axis has been normalized to standard
normal distribution using fixed variances for CLT PDFs.

It is evident from figure 3.7 that there is an initial error growing towards the positive side and

28

after that, the curve decays exponentially. This means that the positive error region requires
negative polynomial constants and vice versa.

There is, also, a statistical inaccuracy in the tail region which is because of the statistical nature
of the data samples. The error goes on decreasing as n increases, because the higher value of n

takes the curve closer to the ideal reference curve.

CLT PDF Error Function

[}

0.2

0.4

06

08}

'
—_

Error in Standard Deviation (zigma)

jry
s}

Standard Deviation (sigma)

Figure 3.7: Error in PDF for Varying n
3.6 Compensating Error in Central Limit Theorem
This subsection explains the methodology to compensate and correct the above computed error
distribution. Methodology for n = 8 and a 16 bit datapath will be explained that provides the tail
accuracy of 6 0. However, depending upon available computational resources and desired tail
accuracy, this methodology can be used for any value of n and bit width.
Now, the accuracy of the algorithm depends upon how the best we model this error function so
that it can be implemented using minimal hardware resources.
As it has been mentioned before, our idea is to use first degree polynomial as it leads to the most
efficient implementation of the algorithm in hardware. So, first degree piecewise polynomial

approximation will be used to model the error distribution.

29

3.6.1 Uniform Segmentation Algorithm

Piecewise polynomial approximation is applied using uniform segmentation algorithm. The
entire error curve has been divided into 16 uniform segments. The figure 3.8 shows the

approximation technique applied and the residual error

Approximating CLT PDF Error Function using 16 uniform segments (n = 8)

0 _

05+ -
1k 4

15 i
Error function

= Approximated error function

10 x residual error (uniform segments)

| | | | | | |
0 1 2 3 4 5 6 7
Standard Deviation

Figure 3.8: Residual Error due to Uniform Segmentation

The residual error is observed to be growing exponentially with increasing standard deviation.
This is because the error function is a non-linear function. Hence, uniform segmentation is not
suitable for such functions. The problem is to find a solution so that,

Errrmx _ETm'n —0 (3'22)

where, BT is the maximum residual error and BT,;, is the minimum residual error.

3.6.2 A Novel Non-Uniform Segmentation Algorithm
A simple and efficient algorithm is proposed to compute non-uniform segments with minimum
residual error as described below;
The algorithm exploits the fact that residual error due to piecewise polynomial approximation of
non-linear function is directly proportional to curvature of the function [16].
The curvature defines the deviation of a non-linear curve along its path. Let us suppose that we

have a position vector I()=<X(t), Y(t) > that follows a path in the plane with the passage of

30

time as shown in the figure 3.9. We know that the velocity is the instantaneous rate at which the
position vector changes with respect to time. So that I'({{)=<X(t),y (t)> and the unit tangent

vector is shown in figure 3.9.

rit)

Figure 3.9: The unit tangent vector T’(t), points in the direction of velocity vector

If the unit tangent vector is changing rapidly with respect to time (dT’/dt), then there is a great
deal of deviation of the curve at that point. If the unit vector is changing slowly with time, it
means that there is not a great deal of deviation in the curve at that point.

Obviously, the derivative of the unit tangent vector has a close relationship with the curvature of
a non-linear function. So, we define curvature of function k with respect to rate of change of its

unit vector T (also called as the velocity vector) as
k=dT/cs 3D

Or simply, curvature of a non-linear function can be defined as its second order derivative as
shown in figure 3.11.
Once the curvature of a function is known, the problem is reduced to finding the segments on the
curve with length of each segment proportional to the curvature of the function.
These sample points or segments can be found using Amplitude to Frequency Converter (AFC).

A simple AFC (designed in simulink, MATLAB) is shown in figure 3.10.

31

var o O l FJ_,_:'JJ_ = simout

z
From Uinit Delay1 Quantizer To Workspace
Workspace
f’_’r‘:I=
Gain

Figure 3.10: Amplitude to Frequency (AFC) Converter

This is basically a Sigma-Delta modulator that modulates a carrier signal with respect to the
input signal amplitude. A feedback gain “K” is provided to control the oscillations at the output
of AFC. Output of the AFC is the sampling or frequency points on the input function with
respect to the change in amplitude of the function.

3.6.3 Residual Error

Second order derivative of the error distribution is given as an input to AFC and the output is a
discrete signal whose frequency is proportional to the input signal. By changing the gain on the
feedback path, we can tune the AFC to provide any number of sampling points. This is shown in
figure 3.11. We have tuned the AFC to provide 17 sampling points (or 16 segments) on the entire

error function.

Muodeling error function

0.5 T T T i
| -—-""""--.
1 \\ \\ N
e \\\ |
2 \ H
25¢ o rror function \
a3tk curvature
1 | | | 1 1 1 1 1
0 1 2 3 4 5 6 7

Standard Deviation (sigma)

Figure 3.11: Non-Uniform Segmentation Scheme

32

Now, using the known non-uniform segments, we can apply the piecewise polynomial
approximation to the error function and find the residual error. Clearly, the non-uniform

segmentation drastically reduces the residual error as shown in figure 3.12.

505}
m
& 4 || = PDF Error A
215 : :
5 10xresidual error (non-uniform segments) AW
7R | 10xresidual error (uniform segments) YR
= H
525 1
|

3r N

0 1 6 T

3 4
Standard Dewviation

Figure 3.12: Residual Error due to Non-Uniform Segmentation Scheme

3.7 Hardware Implementation

The algorithm described in the previous section is implemented in hardware using verilog HDL
and fixed point arithmetic. The data path is of 16 bit and calculations are performed for n = 8.
The input is in Q1.15 format and the output is in Q4.12 format. The design is partitioned into
four distinct blocks, Linear Feedback Shift Registers (LFSRs), summation block, decision block
and first order polynomial calculator, and is explained in detail in upcoming sub-sections.

3.7.1 Uniform Random Number Generator

As stated earlier, that Uniform Random Numbers (URNGS) are also known as white noise,
which essentially covers all frequency spectrum range. In hardware, Linear Feedback Shift
Registers (LFSRs) are commonly utilized as noise and data sources because they are easily
implemented and require minimal hardware resources [17].

Hardware implementation of an LFSR (flip flop or storage registers) and a feedback network as
shown in figure 3.13. The generator polynomial of LFSR is implemented by the feedback path as

33

given by eq. 3.16. The generator polynomial describes the statistical characteristics and sequence
length (period) of LFSR. If the sequence period of LFSR is 2™, then the sequence is known as

the maximal length sequence.

¥
'_/.
A

v

A J

ds > O d1 do

Figure 3.13: Basic LFSR Architecture

However, this class of pseudo random number generators (PNGs) shares a common disadvantage
that they exhibit severe correlations between successive data samples as shown in figure 3.14.
This effect can be seen in covariance and power spectral density plots shown in figures 3.14 and
3.15 respectively. The covariance is not a delta function, as would be expected for uncorrelated
values, but, it shows significant correlations up to +8 and -8 lags. Also, the power spectral
density is not flat as expected for white noise (section 3.2), but the low pass effect is clearly seen

in the figure 3.15.

- — e R S—
< = —

|
‘ |
- ! 1 J
B e M e I L Nt e e b
‘ 1

|
|
"

Figure 3.14: Covariance of 10° values generated by LFSR using maximal length polynomial shows
correlations around zero lag

34

.............................

MNormaized Powor ME)

13 c4

Normalk 2ol Fraguency (M7

Figure 3.15: Power Spectral Density of 10° Values Generated by LFSR
The correlation effect can be understood by observing that, for any step in the sequence, the
generating polynomial changes only a few of the bits in registers (flops) [17].
The 2-D scatter plot in figure 3.16 clearly shows a visible lattice structure that indicates the

correlation between adjacent data samples [2].

,'1"’
1 HHIH

0.8

o6 il

-

5=

1
0.2

|
|
ol LTI

0 0.2 04 06 0.8 1

——
fam—

-
—_——
—

Figure 3.16: 2-D scatter plot of a pseudo random number generator

There are many techniques to overcome these short comings. A simple approach is to advance
the LFSR by number of steps “k” so that the required number of bits has changed before the
arrival of new output. This method proves to be costly because the LFSR has to be executed “k”
times faster than rest of the design.

In this thesis work, we have used Skip-Ahead LFSR logic that follows from the algorithm

presented by Leonard Calvito [17]. It is the most recent and simplest technique which can

35

advance the LFSR to “k” steps ahead in a single step and, also, requires minimal hardware
resources.

Our requirement is to use eight 16-bit LFSRs as base numbers. So, we designed a 128-bit Skip
Ahead LFSR architecture using maximal length polynomial. This technique basically uses a
transition matrix “A*” which can advance the LFSR to k steps ahead. LFSR can be represented

by the eq. 3.24;

A 629

where,

In our design, we advanced this LFSR by k = 16 to ensure that successive samples are un-
correlated. Eight 16-bit LFSRs are taken from the 128-bit Skip Ahead design. The results are
shown in figure 3.17. The output is taken in Q1.15 format for each 16 bit Uniform Random

Number Generator (URNG).

Autocorrelation Function
(a) (b}

Figure 3.17: (a) Autocorrelation Function (ACF), (b) PSD Plots for Skip Ahead LFSR.
3.7.2 Summation Block
The summation block can also be called as averaging block as it implements the Central Limit

Theorem. This block basically implements a hierarchical structure of seven 16-bit adders as

36

shown in figure 3.18. To perform the averaging process in hardware, we discard 3 least
significant bits from the output of this block which is equivalent to dividing the summation of
eight numbers by 8 (2%). So, at each clock edge, 8 URNGs with range +1 and -1 are simply
added and divided by 8 simultaneously. The final output of this block is in Q4.12 format within
the range of +8 and -8. The architecture is fully pipelined and symmetric. In the intermediate
stages, as indicated, we get the Gaussian samples at lower sigma accuracies and the final output

gives the accuracy upto 30.

3 g 41 1.2 sigma
r y
> |
&+
S
58 I | 2.6 sigma
3F |- L r .
£33 [
—Ea
l
3% Al :
>
+ r1.2 sigma
g ,
3 >l 3 sigma
] +
g |-
1) 1.2 sigma
|
| + -
]
| |.2.6 sigma
| .
2% -
L—f]
1.2 sigma
> o
—_—
- ;
=3

Figure 3.18: Summation Block Architecture

3.7.3 Decision Block

The decision block or compensation block is the most important and novel part of the hardware
GRN generator. The input of this block is a 16 bit number in Q4.12 format from the summation
block. It comprises of two look-up-tables (LUTS) which contain coefficients to be used with the
first order polynomial calculator. An address generator selects the coefficients from LUTSs based

upon input number from summation block. The search space is made hierarchical to make the

37

output rate constant as shown in figure 3.19. That is why the number of segments chosen was 16

so that we could a symmetric architecture in powers of two. Based upon 16 non-uniform

segments computed using the algorithm described in section 3.63, coefficients ap and bo are pre-

calculated and stored in the LUTs. The whole search space architecture is shown in figure 3.19

within the range of 0 to 7.649 sigma.

As indicated in table 3.1, standard deviation for n = 8 is 1.632. Hence, to get the Gaussian

samples at the sigma or standard deviation scale or normalized variance, every output needs to be

divided by 1.632. This will require an additional multiplier in the architecture which proves to be

costly. However, this multiplier can be avoided by pre-dividing the Look-up-Table (LUT)

coefficients ap and bo. We call these as transformed coefficients and denote them by ay and by

respectively. Hence,

Output of
Decision
Block
—_—
M1,.C1

Input form
Summation

3.504

7.281

1.997

4.915

1.198

2.766

M2,c2
L

—
M3,C3

M4,C4
L .

—
M5,C5

4.239

5.560

M6,C6
L

—
M7,C7

M8,C8
L

—
M9,C9

Figure 3.19: Decision Block Architecture

6.881

7.526

6.543

7.127

M10,C10
e ———

M11,C11

M12,C12
e ———

M13,C13

38

7.434

7.588

M14,C14
e ———

M15,C15

M16,C16
———

(32)

3.7.4 Contents of Look-up-Tables (LUTS)

The pre-computed values of ay and by for n = 8 using 16 non-uniform segments are shown in
Table 4.2. Here we can decide the bit widths of the coefficients in fixed in arithmetic. From the
table 4.2, it can be noticed that the highest absolute value of ay is 2.98586 and the highest
absolute value of by is 16.0741. So, we take Q2.14 format for ay and Q4.12 format for by.

Table 3.2: Pre-computed values of ai and by

Segment atr bir Segment ar bir
1 0.60311 0 9 1.00640 | -1.98295
2 0.61158 | -0.00994 10 1.19128 | -3.16846
3 0.62492 | -0.03604 11 1.42539 | -4.74712
4 0.64493 | -0.09029 12 1.67874 | -6.51661
5 0.67398 | -0.19003 13 1.97865 | -B.65662
[0.71590 | -0.36419 14 2.64596 | -11.2220
7 0.77646 | -0.65589 15 233078 | -13.5465
] 0.86953 | -1.16301 16 298586 | -16.0741

3.7.5 Polynomial Calculator

Polynomial calculator is the final block of the GRNs generator. It comprises of an adder and a
multiplier. The decision block provides the random number “x” and its corresponding
coefficients ay and by. The multiplier result is truncated to fit into 16 bits as per rules of fixed
point arithmetic. The output of this block is a Gaussian random number in Q4.12 format.

Corrected Gaussian number Xcor is then generated by first degree polynomial equation;
Xor =8 X+, (32%)

The proposed GRNs hardware architecture is shown in figure 3.20.

39

LESR [LFSR|LFSR |LFSR |LESR |LFSR [LESR |LFESR

\®/\/\®/ \®/

)
g
@:/ \®/
\\ /
decision block
a; o btr

N4 l
Output

Figure 3.20: Architecture of Proposed GRNs Generator

The base numbers (LFSR) are uniformly distributed within 0 and 1. The pseudo-code for the

proposed improved CLT architecture, for any value of n, is given below,

n
« (_x—stn(;ag)l(x)
X<«—selet(mc)

retum(X,,, =mMx+c)
The proposed architecture is implemented on FPGA (Virtex-4) using Verilog HDL. The results

obtained are explained and discussed in detail in the next chapter.

40

CHAPTER 4
RESULTS AND DISCUSSION

4.1 Results

Since, the error function estimation in our methodology is based upon empirical data analysis, it
does not guarantee arbitrarily accurate Gaussian numbers. However, after correction, the
architecture should provide accurate Gaussian numbers with tail accuracy till 6 0. To, validate
this claim, we have applied standard tests to measure statistical accuracy of generated numbers.
These tests include Probability Density Function (PDF) plots, Chi-Square tests, Scatter plots and
Autocorrelation function.

4.2 PDF Plots

To obtain tail accuracy till 6 &, at least 10* samples are required [2]. At such high sigma values
the probability is too low to observe on linear scale. The architecture explained in chapter 3 is
used to generate 10'* Gaussian samples. Figure 4.1 shows the PDF plots of the generated GRNs
on logarithmic scale as compared to ideal Gaussian PDF as well as PDF of random numbers
generated by simple summation (CLT).

Although, accuracy till 6 0 is guaranteed, the algorithm is capable of giving even higher sigma
accuracy (till 7 0) as described in chapter 3. To achieve this, the number of generated Gaussian
samples should be increased. Since, the length of segments decrease with increasing sigma
values, hence, the curve becomes more accurate and smooth at the low probability or tail region

(non-uniform segmentation).

41

Probability Density Function

107 F7 T 'MI T =
*‘,# Yo,
0-‘* "t
al
o e
= # + * %
= ¥ + e
= * *
= i . *,
]
o= 5 # 0+ oy
e 10 r L o .
o ¥ oo +*
¥ : *
. * Thearetical N .
y . + Simple summation (CLT) N *+
* .

¥ . + After transfarmation %

| | | | | | L] |

-B -4 -2 0 2 4 B

Standard Dewiation

Figure 4.1: PDF of Proposed GRNs Generator

4.3 Statistical Goodness-of-Fit Test

A Chi-Square test is called as the statistical goodness-of-fit test. It is a statistical hypothesis test

in which the sampling distribution is said to be a Chi-Square distribution when the null

hypothesis is true. Both the standard and tail generation algorithms are evaluated using chi-

square test [3]. This test is normally used to verify the normality of generated Gaussian samples.

A set of observed samples (observed frequencies) is compared against the expected distribution

(expected frequencies). Using more bins or buckets gives higher resolution with respect to the

different input values, but reduces the expected number in each bin [3]. The test is performed by

dividing the data samples into number of bins. For each bin, observed and expected counts are

calculated. The Chi-

-3 IO EOF

E)=kR

where, ‘O (.)’ is

Square test statistic is then computed using the formula;

@)
@2

E()

the observed counts, ‘E (.)” is the expected counts, ‘K’ is the number of

generated Gaussian variates, ‘KPi’ is the expected number of samples according to normal

42

distribution [1], - O’ is the desired significance level, Y’ is the total number of bins in which the
distribution is divided into and < y—1" is the degree of freedom. Since, the normal distribution is

completely characterized by two parameters, the mean and the standard deviation, the degree of
freedom is thus reduced by 2 from y—I toy—3.

Chi-square test is performed by dividing the horizontal axis (sigma axis) into three regions from
00 to 60 as shown in Table 4.1. Each interval is segmented into 100, 50 and 30 bins
respectively. In order to eliminate the statistical inaccuracy, it has been ensured that at least 50
samples should fall into each bin. Chi-Square test is pass for a given value of ¢, if the observed
value (calculated by eq.4.1) is less than or equal to the corresponding theoretical value.

The significance level & means rejecting the null hypothesis when actually it is true or accepting
the null hypothesis when actually it is false. These both criteria’s are satisfied if the number of
samples in the bins are large enough (statistical accuracy) in the bin whose chi-square value is
going to be calculated.

The results obtained, as shown in Table 4.1, indicate that the proposed GRN generator
successfully passes the chi square over the entire range of 00 to 6 0 within 5 percent of
significance level .

Table 4.1: Chi-Square test results for proposed algorithm

Range Xope | @=01 | a=.05 | a=.01
0<a<30 33 114 121 132
(100-bins) (pass) (pass) (pass)
3.0<0 <45 53 60 64 73
(50-bins) (pass) (pass) (pass)
4.5<e0<6.0 38 38 40 47
(30-bins) (pass) (pass) (pass)

It is worth-mentioning here that, since, our method of GRNs generation is not exact, it will
always have error in the PDF as shown in figure 3.12. Hence, as the number of samples increase,

the numerator term in eq.4.1 increases as square of the value leading to greater chi-square value.

43

However, as mentioned earlier, we have used at least 50 samples in every bin for the tests in
Table 4.1 and the test passes for the 10 percent or less significance. This is even better than the
generally accepted criteria of 5 percent or less significance level [18].

4.4 Scatter Plot and Autocorrelation Test

Any correlation between neighboring numbers can be seen as a regular lattice structure as shown
in figure 3.16. This is an unwanted property in any random sequence as it indicates some
similarities between adjacent data samples that leads to the undesired low pass characteristics as
explained in chapter 3. Figure 4.2 shows a 2-D scatter plot of generated GRNs with no visible
lattice structure. The plot indicates that most of the times the samples tend to cluster around the
mean value and with very less probability they occur in high sigma regions. This can, also, be
seen in figure 4.3 which shows the Autocorrelation function over a range of 32000 lags.

Correlation values for all non-zero lags are extremely low.

Figure 4.2: 2-D Scatter Plot of Proposed GRNs Generator

44

-—"“WW

Figure 4.3: Autocorrelation Function (ACF) of Proposed GRNs Generator

4.5 BER Simulation

The proposed architecture of improved CLT has been used in a communication system with
BPSK signaling over AWGN channel. In figure 4.4, the Bit-Error-Rate (BER) simulation for
basic CLT shows the incorrect results and shifts in Signal-to-Noise Ratio (SNR) values at low
BER values. In figure 4.5, the BER simulation has been done using our AWGN generator taking
the signal length of 107. The results are as accurate as for BM method and show no shift in SNR
at low BER values. Hence, inaccurate GRNs generator may lead to incorrect simulation results.

L

Bit Error Rate

-
S
&

107
- Theoretical BER Performance
—&— Accurate Gaussian Variate Generator

| =¥ Inaccurate GVG (summation of 12 unlform PNs)

107
0 2 4 5 8 10 12 14
Eh’"a

Figure 4.4: BER simulation of BPSK modulated communication system [2]

45

SNR Vs BER plot for BPSK Modualtion in Gaussian Environment

10 T T T T T T
= Theoretical
2 B o : ' + Improved CLT
LU s e b o e e !
. . J
1l O SO |G| SR {‘:?"; ! J— -
Ak
o
1 |t VU OSSP SUURPIOY LOPUR X enansibesesanas .
@ ' G S
: . S
10° e e) Raessans =
N L [= B -
: \
; \
H A\
10" | 1 1 | | 1 \
0 2 4 6 8 10 12 14
SNR (dB)

Figure 4.5: Proposed GRNs Generator Applied in BER Simulation of BPSK Modulated Communication
System

4.6 Synthesis Results

The proposed GRNs generator architecture is implemented in Verilog HDL. The design was
synthesized using an older FPGA device family (Xilinx XC4VLX15 Virtex-4 device). This is
because, later versions of FPGAs (for example, Virtex-5 and Virtex-6) are faster and have more
resources available in a single configurable slice. Hence, for the sake of fair comparison with the
previously reported work, we used FPGA from an older family.

The design requires 440 configurable slices and 1 DSP block. No memory blocks are utilized
because the memory for LUTs and pipeline registers has been implemented within the used
configurable blocks. The design speed (Mega Samples/sec.) is 220MHz with critical path delay
of 4.54 ms.

4.7 Comparison with Previous Methods

A detailed comparison of our proposed architecture is given in Table 4.2 with well-known

previously reported architectures.

46

Table 4.2: Comparison of improved CLT with published work

Design [10] [14] 2] [12] [9] [6] This
work
Method BM BM BM BM Wic. Zert. CLT
Used
Logic 437 480 534 1528 770 891 420
Cells
Memory 0.5 5 2 3 6 2 0
Blocks
Multi- N/A 5 3 12 4 2 1
pliers
GRN 12 16 16 16 24 32 16
Bitwidth
Tail lo 4.80 | 6.60 8o To N/A 6o
Accuracy
Speed 25 245 440 468 155 168 220
(M samples/s)

The comparison has been done in terms of logic cells utilized, memory blocks, number of
multipliers used, bit width of GRNG, speed and tail accuracy. The first four implementations are
the most widely used architectures of Box-Muller method. The BM method is also being used by
the Xilinx core [14]. Ziggurat algorithm is being used in MATLAB.

In terms of configurable logic cells utilization, our design is much better than other designs,
since, it requires only 440 slices. BM method requires 2 memory blocks and 3 multipliers to
achieve a tail accuracy of 6.6 0, while our design achieves the closer accuracy by using only one
multiplier and no memory block. The BM method produces two Gaussian samples per clock
cycle so, its speed is twice than our architecture (440). The ziggurat algorithm is quite efficient in
implementation and provides any arbitrary tail accuracy (N/A). But, as explained earlier, that its
output rate is not constant. It means that sometimes the samples are missing on some edges of
clock cycles. This may lead to inaccurate simulation results. Wallace method is not efficient in
terms of hardware resources and, also, has a drawback of correlations between successive
samples.

Therefore, resource utilization is better than any of the previously reported hardware

implementation of GRNs generator. It is worth mentioning here, that our design is scalable to

47

achieve even higher sigma accuracy with minimal increase in hardware cost. Also, the speed of
the design can, also, be increased by using the concept explained in chapter 3 where we are

getting Gaussian samples in the intermediate stages with lower tail accuracies.

48

CHAPTER 5
CONCLUSION

5.1 Conclusions

This work achieves high tail accuracy GRNs generator. The empirical model of the error in CLT
is compensated through deployment of a low cost compensation block. After a detailed error
analysis, coefficients for degree one piecewise polynomial approximation have been computed

using a novel non-uniform segmentation algorithm.

The proposed GRNs generator falls under the category of approximate algorithms.

= The proposed architecture is highly efficient (area, speed and hardware cost), simple,

fast, compact and regular as compared to all previous architectures.

= The architecture is fully pipelined with an initial delay of 4 clock cycles and

thereafter, generates Gaussian samples at every clock edge (constant output rate).

= The proposed GRNs generator successfully passes the chi-square statistical test over

the entire range of 0 0 to 6 0 within 5 percent of significance level &.

= Although, tail accuracy of 6 O is guaranteed, the architecture is scalable to achieve

even higher tail accuracies with minimal increase in hardware resources.

= The proposed architecture outperforms any previously reported designs.

49

5.2 Future Extensions
As stated earlier that, the hardware architecture explained in chapter 3, guarantees tail accuracy
till 6 o, which is good enough for all practical purposes and the most of the AWGN simulations.

This architecture can be further improved in various dimensions as explained below;

= Approximation errors in PDF can be further reduced using higher order polynomials.
Degree one polynomial is used in our design as a simplest method for implementation.
Higher order polynomials will require more number of multiplications. Also, the
approximation errors can be reduced using higher number of segments. As explained
earlier that number of segments will be increased by powers of two. Hence, more

memory will be required to store the additional polynomial coefficients (LUTS).

= Tail accuracy can be improved by increasing number of addition operations (value of n)
by virtue of CLT. Increasing value of n will move the CLT curve closer to the reference
and, hence, greater standard deviation or sigma value will be obtained for the highest
generated sample value. The tail accuracy can, also, be improved by increasing the bit
width of the data path. As stated earlier, we have used 16 bit datapath. Increasing width

of the datapath will reduce the quantization errors.

= Complexity can be further reduced by replacing the multiplication operation with a shift

and add operations.

All of the above mentioned improvements involve more hardware resources. Therefore,

depending upon the user demand, there will be a trade-off between complexity and accuracy.

50

REFERENCES

H. Fischer, “A History of the Central Limit Theorem: From Classical to Modern
Probability Theory”, (2010), Springer. ISBN0387878564.

. A. Alimohammad, S. F. Fard, B. F. Cockburn and C. Schlegel, “A Compact and
Accurate Gaussian Variate Generator”, in IEEE Transaction on very Large Scale
Integration (VLSI) Systems, Vol. 16, No. 5, May 2008.

D. B. Thomas , W. Luk, Philip HW. Leong and J. D. Villasenor, “Gaussian Random
Number Generators”, in ACM Computing Surveys, Vol. 39, No. 4, Article 11,
Publication date: October 2007.

. C. Iskander, “A MATLAB-based Object-Oriented Approach to Multipath Fading
Channel Simulation”, MATLAB White Paper.

Muhammad Ali Shami, Ahmed Hemani, “Partially Reconfigurable Interconnection
Network for Dynamically Reprogrammable Resource Array”, in IEEE ASICON
2009, 8th International Conference on ASICs.

. G. Zhang, P. H. W. Leong, D. Lee, J. D. Villasenor, R. C. C. Cheung, and W. Luk,
“Ziggurat-based hardware Gaussian random number generator,” in Proc. IEEE Int.

Conf. Field Program. Logic It’s Appl., 2005.

. Y. Fan, Z. Zilic, M. W. Chiang, “A versatile high speed bit error rate testing scheme
”,in Proc. IEEE Int. Symp. Quality Electron. Dec. 2004, pp. 395-400.

D. Lee, W. Luk, Ray C.C. Cheung, J. D. Villasenor, W. Luk, “Inversion-Based
Hardware Gaussian Random Number Generator: A Case Study of Function

Evaluation via Hierarchical Segmentation”, in Field Programmable Technology

51

10.

11.

12.

13.

14.

15.

16.

17.

(FTP), IEEE International Conference on Dec. 2006.

D. Lee et al., “A hardware Gaussian noise generator using the Wallace method,” in

IEEE Transactions on VLSI Systems. Oct. 2007.

E. Boutillon, J. L. Danger, and A. Gazel, “Design of high speed AWGN
communication channel emulator,” Analog Integr. Circuits Signal Process, pp. 133—
142, 2003.

D. W. Luk, J. D. Villasenor, and P. Y.K. Cheung, “A Gaussian Noise Generator for
Hardware-Based Simulations”, in IEEE Transactions on Computers, VOL. 53, NO. 12.
Dec. 2004.

D.-U. Lee, J. D. Villasenor,W. Luk, and P. H. W. Leong, “A hardware Gaussian noise
generator using the Box—Muller method and its error analysis,” IEEE Trans. on
Computers, vol. 55, no. 6, pp. 659-671, Jun. 2006.

E. Fung, K. Leung, N. Parimi, M. Purnaprajna, V. Gaudet, ”ASIC Implementation of a
High Speed WGNG for Communication Channel Emulation ”, Proc. IEEE Workshop
Signal Processing Systems, pp. 304-409, 2004.

“Additive White Gaussian Noise (AWGN) Core”, v1.0, Xilinx Inc., 2002.

M. E. Muller, “A comparison of methods for generating normal deviates on digital

computers”, in Association for Computing Machinery, pp. 376-383, 1959.

D. Arnold, “Curvature in Matlab ”, Math 50C Multivariable Calculus.

L.Colavito and D. Silage, “Efficient PGA LFSR Implementation Whitens
Pseudorandom Numbers”, in International Conference on Reconfigurable Computing
and FPGAs, 20009.

52

18. D’Agostino and Stephens, “Goodness-of-Fit Techniques”, New York: Marcel Dekker,
1986.

19.C. M. Grinstead and J. L. Snell, “Introduction to Probability”, in American
Mathematical Society, pp. 299-301.

53

