

A Novel Architecture for High Quality AWGN Generation

Based on Central Limit Theorem

by

Muhammad Jameel Nawaz Malik

This thesis is submitted in partial fulfillment of the requirements for the degree of

Masters of Science in Electrical Engineering (MS EE)

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

May 2011

ii

APPROVAL

It is certified that the contents of thesis document titled, “A Novel Architecture of High Quality

AWGN Generation Based on Central Limit Theorem ” submitted by Mr. Muhammad Jameel

Nawaz Malik have been found satisfactory for the requirement of degree.

Advisor: Dr. N. D. Gohar

Signature: ______________________

Date: __________________________

iii

TO MY LOVING FAMILY

iv

CERTIFICATE OF ORIGINALITY

I declare that the research work titled “A Novel Architecture for High Quality AWGN

Generation Based on Central Limit Theorem” is my own work and to the best of my

knowledge. It contains no materials previously published or written by another person, nor

material which to a substantial extent has been accepted for the award of any degree or diploma

at SEECS or any other education institute, except where due acknowledgment, is made in the

thesis. Any contribution made to the research by others, with whom I have worked at SEECS or

elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except to

the extent that assistance from others in the project’s design and conception or in style,

presentation and linguistic is acknowledged. I also verified the originality of contents through

plagiarism software.

Author Name: Muhammad Jameel Nawaz Malik

 Signature: ______________

v

ACKNOWLEGMENTS

I am grateful to Almighty Allah who gave me courage and support to complete this thesis. I owe

my deepest gratitude to my thesis advisor, Dr. N. D. Gohar, for his kind attention and guidance

during this thesis. I am, also, highly obliged and grateful to my thesis co-advisor Mr. Jamshaid

Sarwar Malik, for his valuable guidance throughout my research work. I am, also, grateful to Dr.

Syed Ali Khayyam and Mr. Moin-ud-Din for their valuable guidance during the analysis phase

of this research work. I am, also, thankful to my worthy Committee members, Dr. Osman Hasan

and Dr. Khurram Aziz, for their support and becoming a part this work. I am, also, thankful to

professional members of CEFAR lab for always supporting and encouraging me. I am extremely

gratified to ICT R&D Fund PTCL, Pakistan for their breed financial support.

vi

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION .. 1

1.1 Motivation ... 1

1.2 Thesis Contributions .. 3

1.3 Thesis Organization ... 3

CHAPTER 2: LITERATURE SURVEY ... 4

2.1 Gaussian Random Number Generators (GRNGs) ... 4

2.2 Classifications of GRNGs .. 6
2.2.1 The CDF Inversion Method ... 7
2.2.2 Ziggurat Algorithm .. 9
2.2.3 Polar Method ... 10
2.2.4 GRAND Algorithm.. 11
2.2.5 Wallace Method ... 13
2.2.6 Box Muller Transformation Method .. 15

2.3 Work Related to Central Limit Theorem [3] ... 18

CHAPTER 3: A NOVEL ARCHITECTURE OFAWGN GENERATOR ... 19

3.1 Ideal Gaussian Distribution ... 19

3.2 White Noise ... 20

3.3 Central Limit Theorem (CLT) ... 21

3.4 Calculating Variances for Central Limit Theorem... 23

3.5 Computing Error in Central Limit Theorem .. 25
3.5.1 The Idea ... 25
3.5.2 Algorithm for Error Computation .. 26
3.5.3 Error Distributions ... 28

3.6 Compensating Error in Central Limit Theorem ... 29
3.6.1 Uniform Segmentation Algorithm ... 30
3.6.2 A Novel Non-Uniform Segmentation Algorithm .. 30
3.6.3 Residual Error .. 32

3.7 Hardware Implementation ... 33
3.7.1 Uniform Random Number Generator .. 33
3.7.2 Summation Block .. 36
3.7.3 Decision Block ... 37
3.7.4 Contents of Look-up-Table (LUTs) ... 39
3.7.5 Polynomial Calculator ... 39

CHAPTER 4: RESULTS AND DISCUSSION ... 41

4.1 Results ... 41

4.2 PDF Plots ... 41

4.3 Statistical Goodness-of-Fit Test ... 42

4.4 Scatter Plot and Autocorrelation Test .. 44

vii

4.5 BER Simulation ... 45

4.6 Synthesis Results ... 46

4.7 Comparison with Previous Methods .. 46

CHAPTER 5: CONCLUSION ... 49

5.1 Conclusions ... 49

5.2 Future Extensions .. 50

REFERENCES .. 51

viii

LIST OF TABLES

Table 2.1: Implementation results of degree-1 and degree-2 spline CDF Inversion based GRNG

on a Xilinx Virtex-5 FPGA ... 9

Table 2.2: Implementation results for Ziggurat based GRNG on XC2VP30-6 and XC3S200-4

FPGAs ... 10

Table 2.3: Implementation results for Wallace based GRNGs on XC2V4000-6 FPGA 15

Table 2.4: Implementation results for BM-Method ... 16

Table 2.5: Chi-Square test results for BM-Method .. 17

Table 3.1: Standard deviations and variances for varying n.. 23

Table 3.2: Pre-computed values of atr and btr .. 39

Table 4.1: Chi-Square test results for proposed algorithm .. 43

Table 4.2: Comparison of improved CLT with published work .. 47

ix

LIST OF FIGURES

Figure 2.1: Basic Methodology to Generate GRNs ... 5

Figure 2.2: PDF of Gaussian Random Numbers (GRNs), (a) Linear Scale, (b) Log. Scale 6

Figure 2.3: Inverse Gaussian Function (n = F-1(u)) ... 8

Figure 2.4: High Level Architecture of CDF Inversion Method.. 8

Figure 2.5: Rectangular, Wedge and Tail Regions in Ziggurat Algorithm ... 9

Figure 2.6: BER Simulation Results of Polar Method .. 11

Figure 2.7: Subsections for GRAND Method ... 12

Figure 2.8: Overview of Wallace Method .. 13

Figure 2.9: Hardware Architecture of Wallace Method ... 14

Figure 2.10: Hardware Architecture of Box-Muller Method .. 16

Figure 2.11: ASIC Implementation of Box-Muller Method ... 17

Figure 2.12: PDF plot of BM Method till 6 for 1011 samples ... 17

Figure 3.1: Ideal Gaussian Distribution (from image courtesy of Wikipedia) 19

Figure 3.2: White Noise Process ... 20

Figure 3.3: Autocorrelation and Power Spectral Density (PSD) of White Noise 20

Figure 3.4: PDF for varying values of n, (a) Linear Scale, (b) Logarithmic Scale 23

Figure 3.5: PDF Plot for n = 4.. 28

Figure 3.6: PDF Plot for n = 8.. 28

Figure 3.7: Error in PDF for Varying n ... 29

Figure 3.8: Residual Error due to Uniform Segmentation ... 30

Figure 3.9: The unit tangent vector T’(t), points in the direction of velocity vector 31

Figure 3.10: Amplitude to Frequency (AFC) Converter .. 32

x

Figure 3.11: Non-Uniform Segmentation Scheme ... 32

Figure 3.12: Residual Error due to Non-Uniform Segmentation Scheme ... 33

Figure 3.13: Basic LFSR Architecture .. 34

Figure 3.14: Covariance of 105 values generated by LFSR using maximal length polynomial

shows correlations around zero lag ... 34

Figure 3.15: Power Spectral Density of 105 Values Generated by LFSR ... 35

Figure 3.16: 2-D scatter plot of a pseudo random number generator ... 35

Figure 3.17: (a) Autocorrelation Function (ACF), (b) PSD Plots for Skip Ahead LFSR. 36

Figure 3.18: Summation Block Architecture ... 37

Figure 3.19: Decision Block Architecture .. 38

Figure 3.20: Architecture of Proposed GRNs Generator ... 40

Figure 4.1: PDF of Proposed GRNs Generator ... 42

Figure 4.2: 2-D Scatter Plot of Proposed GRNs Generator ... 44

Figure 4.3: Autocorrelation Function (ACF) of Proposed GRNs Generator .. 45

Figure 4.4: BER simulation of BPSK modulated communication system ... 45

Figure 4.5: Proposed GRNs Generator Applied in BER Simulation of BPSK Modulated

Communication System ... 46

xi

ABSTRACT

Gaussian Random Numbers (GRNs) are required for simulations in a wide variety of

applications. For example, channel code evaluation, simulation of economic systems and product

failure simulations, etc. Mostly, simulations are carried out using systems based on digital signal

processor or other software programmable devices. Such systems generate GRNs using software

libraries to evaluate complex trigonometric functions like natural logarithm, exponential

functions, etc. However, optimized hardware implementation of GRNs generator can operate

many times faster than optimized software implementations.

Hardware implementation of GRNs generator generally involves transformation of uniformly

distributed random numbers and has always been a challenging task. Central Limit Theorem

(CLT), although very simple to implement, has never been used to generate high quality GRNs.

This is because the direct implementation of CLT provides very poor accuracy in the tail region

of probability density function (PDF). This work achieves high quality GRNs generator. The

empirical model of the error in CLT is compensated through deployment of a low complexity

compensation block. A novel non-uniform segmentation algorithm is presented for degree one

piecewise polynomial approximation to non-linear error function. We have proposed a novel

architecture of GRNs generator which requires only 420 configurable slices and 01 DSP block of

Xilinx Virtex-4 XC4VLX15 operating at 220 MHz. The architecture achieves high tail accuracy

of 6 and is scalable to achieve even higher accuracy with minimal increase in hardware

resources. The accuracy of GRNs generator is validated using statistical goodness of fit tests.

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

A fast, compact and high quality Gaussian random number generation is a key capability of

simulations across a wide range of disciplines. For example, Channel code evaluation, Monte-

Carlo (MC) simulations, financial modeling, molecular dynamics simulation and product failure

simulations, etc. Most of the processes in nature are Gaussian distributed since they tend to be a

balanced sum of many unobserved random events and by virtue of Central Limit Theorem (CLT)

[1], sum of sufficiently large random numbers tend to become Gaussian distributed. In

simulations, where probability of occurrence of an event is very low, high tail accuracy Gaussian

Random Numbers (GRNs) are required.

High tail accuracy GRNs generators are of significance assistance in characterization of very low

BER systems (high Signal-to-Noise (SNR) ratio) [2]. One such example is BER simulation of

wireless radio standards. Some of which have maximum allowable BER of less than 10-10 for

specified SNRs. Other important examples are turbo codes and Low-Density Parity-Check

(LDPC) codes which are currently the focus of an intense research due to their ability to

approach Shannon bound very closely and with only moderate decoding complexity [12].

Simulating occurrence of such events, requires a tail accuracy of at least 6 [2]. It takes about

2.5 hours to generate 109 Gaussian samples on a dual core Pentium processor using an optimized

software simulator written in C [2]. This means that it would take about 27000 years to generate

1017 Gaussian samples. Clearly, software simulations cannot provide an adequate solution to

examine the behavior of such codes at very low BER rates [12].

2

Recent advances in Field Programmable Gate Array (FPGA) technology are providing cost

effective, fast and compact solutions towards hardware implementations of algorithms.

Moreover, the user programmability of FPGA facilitates debugging capability and design

characterization, which can reduce the total design time significantly [2]. Hence, this work is

strongly motivated by the efficient hardware Gaussian random generation which should be high

quality, fast, compact and reliable.

In last two decades, intense research has been reported regarding the efficient implementation of

GRNs in hardware. Simulations are usually done in software e.g. Digital Signal Processors

(DSPs) and other software programmable devices. To generate GRNs, such devices use software

libraries to evaluate complex functions e.g. natural logarithms, square root, exponential functions

etc. These complex functions are now evaluated in hardware using piecewise polynomial

approximation techniques. But, hardware implementation of these functions requires lot of

computational resources and power consumption. Hence, there is a need to come up with a

simple, fast and cost effective solution towards the implementation of GRNs in hardware.

This work presents an efficient hardware implementation of high quality GRNs generator based

on Central Limit Theorem (CLT). CLT, due to its inherent Gaussian like characteristics, can be

an efficient method for generating high quality GRNs. After a detailed empirical data analysis,

error models for CLT have been computed. The error distributions are compensated using a

novel non-uniform segmentation algorithm. Tail accuracy of 6 is guaranteed which is

considered well enough for all practical purposes. The proposed GRNs generator is scalable to

achieve even higher accuracy with minimal increase in hardware resources.

3

1.2 Thesis Contributions

Empirical error model based on the actual data samples is computed for a specified value of n

(number of additions) in CLT. A detailed analysis of error model is provided using appropriate

bit width of data path and number of additions (n) for a target sigma or standard deviation value.

A novel non-uniform segmentation algorithm is introduced that computes coefficients for first

degree piecewise polynomial approximation of error functions. A novel architecture of CLT

based GRNs generator is presented that produces high tail accuracy GRNs at minimal hardware

cost.

1.3 Thesis Organization

There are five chapters in this thesis organized as follows:

In Chapter 2, an introduction to GRNs generators is given. After a brief history, various

algorithms used for generating Additive White Gaussian Noise (AWGN) are described in detail

including the work related to Central Limit Theorem.

In Chapter 3, empirical error models for Central Limit Theorem are computed. Compensation

algorithm is, also, described in detail using a novel segmentation algorithm.

In Chapter 4, the simulation and synthesis results are given and explained in detail. Also,

comparison with previous methods is given and discussed.

In Chapter 5, summarizes the work and concludes our thesis with proposals of some possible

extensions to this work.

In the end, references of the work done by different people in this field are given.

4

 CHAPTER 2

LITERATURE SURVEY

2.1 Gaussian Random Number Generators (GRNGs)

Normally distributed random numbers are referred to as Additive White Gaussian Noise

(AWGN). A variety of algorithms have been reported in literature to generate Gaussian Random

Numbers (GRNs) with a varying degree of computational complexity and accuracy [3]. A

popular method is to convert uniformly distributed random numbers to Gaussian by

transformation algorithms [2]. These transformation algorithms have been implemented both in

software [3] and hardware [1]. Software solutions are used in applications where primary

concern is cost and flexibility. However, in applications where high values are required, software

GRN generators fail to provide desired number of samples in short time. For example, at least

1012 samples are required to detect occurrence of an event in 6 region. Fastest available

machines today produce around 1 to 10 million GRNs per second [1]. At this rate, such a

machine will take more than a day to generate desired 1012 samples. This situation worsens by

order of magnitudes for simulation of higher tail accuracy. Another extreme example, where

software GRNs generators fail is real time radio channel emulation. GRNs generators are an

essential part of any radio channel model [4]. Some complicated fading channel models [4]

require large samples of GRNs. For real-time emulation, these channel models have to be

executed at tens of Mega Hertz (symbol rate of underlying wireless standard). Clearly software

GRN generators don’t have the capacity to execute such models in real-time. Hence, efficient

hardware GRNs generators are the only option for such applications.

5

Figure 2.1, shows the basic methodology to generate GRNs. First step is to produce base

numbers from a uniform distribution using Linear Feedback Shift registers (LFSRs). Some

transformation method is then applied to convert the uniform distribution into Gaussian

distribution.

LFSR Uniform Distribution Transformation Normal Distribution

Figure 2.1: Basic Methodology to Generate GRNs

Normal distribution is an open-ended distribution in which values of increasing magnitude occur

with rare probabilities. Tail accuracy indicates the similarity between a given distribution and the

ideal normal distribution at high sigma (standard deviation) values. It is one of the most

important parameter of the quality of produced GRNs. Figure 2.2, shows the GRNs produced on

linear and logarithmic scales. The uniform distribution is also shown with flat density in figure

2.2. A careful observation of the plots shows that the high probability region is more prominent

on linear scale while, the less probability region is more prominent on logarithmic scale. In high

sigma or standard deviation region, a careful observer can see the irregular shape of PDF on

logarithmic scale. This is because of the statistical nature of samples. Due to low probability of

occurrence of samples, the tail region in the statistically plotted PDF never becomes smooth.

6

Figure 2.2: PDF of Gaussian Random Numbers (GRNs), (a) Linear Scale, (b) Log. Scale

2.2 Classifications of GRNGs

The transformation methods for generating GRNs are mainly classified into two broad categories

[3].

1) Exact Methods

The exact methods produce ideal GRNs if the perfect arithmetic is used. For example, the Box

Muller transformation algorithm applies various transformation methods on uniform random

numbers to produce GRNs. Perfect GRNs will be produced if the uniform random numbers and

the arithmetic functions involved in the method are evaluated using infinite arithmetic precision.

Another example is Ziggurat algorithm, which also lies under the category of exact methods that

produces GRNs of any arbitrary tail accuracy by approximating Inverse Gaussian CDF. Ziggurat

algorithm is currently being used to generate Gaussian samples by well known MATLAB

software.

7

2) Approximate Methods

The approximate methods, on the other hand, generate approximate Gaussian samples even if the

infinite precision arithmetic is used. For example, basic Central Limit Theorem, that produces

approximate Gaussian samples by averaging n uniform samples. This method becomes exact

when infinite uniform samples are combined.

GRNs generators can also be classified into four basic categories [3];

1) Inversion Methods

2) Transformation Methods

3) Rejection-Acceptance Methods

4) Recursive Methods

Inversion methods include CDF inversion that simply inverts the Gaussian CDF to produce

random number from Gaussian distribution. Transformation method includes Box-Muller

method that applies some transformation on uniform random numbers to generate Gaussian

distributed numbers. Rejection-Acceptance methods include Ziggurat algorithm that produce

GRNs based upon conditional rejection acceptance criteria applied to certain transformed values.

The recursive methods include Wallace method that produces new Gaussian output samples with

the help previously generated Gaussian outputs using a feedback network. In the upcoming

subsections, various algorithms for generating GRNs are explained in detail.

2.2.1 The CDF Inversion Method [8]

The CDF inversion method generates a random number from the normal distribution by

approximating the Inverse Gaussian Cumulative Distribution Function (IGCDF) described by the

following equation;

1() (2.1)n F u

8

 where, “u” is the number from a uniform distribution, “n” is the number form Gaussian

distribution and F-1 is the IGCDF as shown in figure 2.3.

Figure 2.3: Inverse Gaussian Function (n = F-1(u))

The conceptual block diagram of the algorithm is given in figure 2.4.

 Figure 2.4: High Level Architecture of CDF Inversion Method

This method requires a large amount of memory to store the CDF inverse, especially, for the data

in tail region of the Gaussian distribution. The most efficient method reported in [8] uses the

hierarchical non-uniform segmentation algorithm that reduces the large memory requirement. In

its segmentation approach, one out of four segmentation schemes (US, P2SL, P2SR, P2SLR) is

selected for initial segmentation of an input function. US stands for uniform segments. P2SL

implies increasing number of segments with power of two beginning from the start of input

range to the end. P2SR implies decreasing number of segments with power of two beginning

from the start of input range till end. P2SLR implies increasing number of segments with power

of two till mid of the given input range and then decreasing number of segments with power of

two till end. The term hierarchical is used because of the fact that in first step, the entire region

is divided using one of the above four segmentation schemes in. In the next step, each segment is

9

further subdivided into inner segments using US. A detailed range and precision analysis of the

arithmetic used for hierarchical non-uniform segmentation scheme is also given in [8]. Table 2.1

summarizes the hardware implementation details of the algorithm.

Table 2.1: Implementation results of degree-1 and degree-2 spline CDF Inversion based GRNG on a

Xilinx Virtex-5 FPGA

2.2.2 Ziggurat Algorithm [6]

In Ziggurat algorithm, the Gaussian probability density function is partitioned into three different

regions to generate Gaussian samples. These are rectangular, wedge and tail regions as shown in

figure 2.5. A rejection-acceptance criterion is used to examine whether a random sample falls

into one of these three regions.

Figure 2.5: Rectangular, Wedge and Tail Regions in Ziggurat Algorithm

The highest probability of occurrence of a random sample lies in rectangular region. The

numbers falling in this region are directly taken as output random numbers from Gaussian

distribution. Secondly, there is a 1.5 percent chance of occurrence of a random input sample in

non-rectangular region because it is a low probability region. The exponential or logarithmic

10

functions are evaluated and an iterative fixed point operation unit is used for the samples

occurring in non-rectangular region. The algorithm [3] for ziggurat method is given below;

The summary of the latest hardware implementation of ziggurat algorithm is given in Table 2.2.

The algorithm provides any arbitrary tail accuracy but suffers from a problem that its output rate

is not constant, which means that some of the times samples are missing in continuously running

clock cycles. Also, there is a need for more accurate evaluation of complex elementary functions

involved in ziggurat method as its future extension.

Table 2.2: Implementation results for Ziggurat based GRNG on XC2VP30-6 and XC3S200-4 FPGAs

2.2.3 Polar Method [7]

The polar method requires two uniform random numbers to covert into two Gaussian output

random numbers. The two uniform random numbers are taken between the range -1 and +1 and

the magnitude of their vector in polar plane is computed. If the vector magnitude is greater than

1, the numbers are discarded. If magnitude is less than 1, the magnitude of the vector is

11

transformed and scaled to give two Gaussian output numbers. The algorithm is described as

under,

The algorithm requires the computation of a division, square root and two multiplications. Also,

the output rate no longer remains constant due to conditional if-then-else statements. The BER

simulation result of a communication system [7] over AWGN channel based on polar method is

illustrated in figure 2.6.

Figure 2.6: BER Simulation Results of Polar Method

2.2.4 GRAND Algorithm [3]

The GRAND algorithm, also known as the odd-even method, belongs to the class of exact GRNs

generators. It transforms uniform random numbers into Gaussian distributed, by using the

formula given by eq.2.2

() () (2.2)G xf x ke

 where, “x” is a random sample from uniform distribution, “k” is a constant and “G(x)” is a

probability density function of any arbitrary distribution and its range is between 0 and 1. For

12

the Gaussian distribution the G(x) is given by eq.2.3.

2 21
() (x - a) (2.3)

2
G x

In order to keep the range in between 0 and 1, it is necessary to divide the range of distribution

into various sections as shown in figure 2.7.

Figure 2.7: Subsections for GRAND Method

The algorithm of the GRAND method is given below;

The output rate of GRAND method is not constant due to conditional if-then-else statements as

evident from the algorithm given above. Also, the efficient hardware implementation of this

13

method has not been reported yet.

2.2.5 Wallace Method [9]

The Wallace method eliminates the requirement of evaluation of complex functions like sine,

cosine, natural logarithms etc. thus, making it suitable for applications that require high

throughput rates. The conceptual block diagram of Wallace method is shown in figure 2.8.

Figure 2.8: Overview of Wallace Method

This method applies k-by-k transformation using Hadamard orthogonal matrix [3] on a pool of

already generated Gaussian samples “N”, to produce new Gaussian outputs. The main drawback

associated with this method is its inherent feedback nature that causes severe correlations

between successive data samples. Correlation effect is highly undesired characteristic for the

Gaussian distributed samples because it indicates the presence of some frequencies or similarities

in the resultant distribution. The Wallace method is highly resource consuming but provides a

high throughput rate. The algorithm for the Wallace method is given below and its hardware

implementation is shown in figure 2.9.

14

Figure 2.9: Hardware Architecture of Wallace Method

15

The hardware resource utilization is given in Table 2.3.

Table 2.3: Implementation results for Wallace based GRNGs on XC2V4000-6 FPGA

2.2.6 Box Muller Transformation Method [2]

This method is the most popular method for generating high quality GRNs in hardware. It falls

under the category of exact algorithms. It basically, transforms two input uniform random

numbers to provide two Gaussian samples. The Box Muller algorithm is given by below;

1 1 2X= 2ln cos(2 U) (2.4)U

2 2 1X= 2ln cos(2 U) (2.5)U

The conceptual block diagram of the Box-Muller method is shown in figure 2.10. Various

algorithms and techniques have been applied to implement the above mentioned Box-Muller

equations in hardware. In [10], Boutillon reported hardware implementation of Gaussian noise

generator based on Box-Muller algorithm where CLT is used to reduce the approximation errors

of the mathematical functions involved in Box-Muller method. In [11], mathematical functions

in Box-Muller method are approximated using degree one piecewise polynomial approximation

along with non-uniform segmentation scheme. Due to high approximation and quantization

errors, CLT is employed to enhance the noise quality. The output rate is one sample per clock

cycle and highest attainable tail accuracy is 6.7 . Dong-U Lee, in [12], presented an accurate

analytical error analysis and bit width optimization for mathematical functions of Box-Muller

method. CLT is not used, thus, providing the output rate of two samples per clock cycle. The

highest attainable tail accuracy is 8.2 . This method [12] is highly efficient both in terms of

16

hardware and throughput compared to previously reported method.

Figure 2.10: Hardware Architecture of Box-Muller Method

Among all these implementations, the most efficient hardware implementation of Box-Muller

method is reported in [2], that achieves lower hardware cost and maximum attainable sigma

values larger than previously published designs. The method uses polynomial curve fitting with

hybrid segmentation and scaling scheme to more accurately approximate the mathematical

functions involved in Box-Muller method. The resource utilization summary is given in Table

2.4. The ASIC implementation of the architecture is given in figure 2.11.

The tail accuracy till 9.4 sigma has been shown using PDF plots in [2]. The PDF plot for 1011

Gaussian samples till 6 is shown in figure 2.9. The chi-square simulation results are shown in

Table 2.5.

Table 2.4: Implementation results for BM-Method

17

Figure 2.11: ASIC Implementation of Box-Muller Method

Figure 2.12: PDF plot of BM Method till 6 for 1011 samples

Table 2.5: Chi-Square test results for BM-Method

18

Xilinx [13] have released an IP core based on Box-Muller algorithm. ASIC chip implementation

of Box-Muller Method is given by Fung [14].

2.3 Work Related to Central Limit Theorem [3]

The Central Limit Theorem (CLT) states that the sum of infinitely large uniform random

numbers approaches to Gaussian distribution. CLT has been used in various algorithms to

improve the noise quality of the generated Gaussian samples. It has been implemented earlier in

software using the methods given below;

 In order to enhance the tail accuracy, the idea is to “stretch” the PDF in the tail region

 Teichroew (1953) used a Chebyshev interpolating polynomial to map the PDF of CLT,

for a given n, to that of Gaussian distribution

 Muller in 1959 used a 9th degree polynomial on the sum of 12 uniform random numbers

 The degree of polynomials used in the above mentioned techniques increases the

Complexity of the algorithm. Therefore, a tradeoff has to be made between the accuracy

and complexity. The corrected PDF still deviates from ideal Gaussian PDF for any given

value of n. Also, averaging large number of uniform random numbers constitute a big

computational challenge.

 That is why Central Limit Theorem was rarely used in hardware implementation of high

quality GRNGs

To date, no hardware implementation of improved Central Limit Theorem has been reported.

Hence this work, to the best of our knowledge, is the first attempt to generate high tail accuracy

GRNs in hardware using CLT.

19

CHAPTER 3

A NOVEL ARCHITECTURE OFAWGN GENERATOR

3.1 Ideal Gaussian Distribution

The normal (or Gaussian) distribution is normally used to represent real-valued random variables

that tend to accumulate around mean value. The PDF equation of a normal distribution is given

as,

2 2() /2

2

1
() (3.1)

2
xf x e

 where, 2 is the variance and is the mean or expected value of normal distribution. For a

standard normal distribution, mean is 0 and variance is 1. The PDF equation becomes

2/21
() (3.2)

2
xf x e

Gaussian distribution does not deviate from its mean by more than 3 standard deviations 99.7

percent of the times or in other words, the probability of occurrence of data samples in high

probability region is very low [2] as shown in figure 3.1.

Figure 3.1: Ideal Gaussian Distribution (Image courtesy: Wikipedia)

20

3.2 White Noise

White noise is a random signal as shown in figure 3.2 with a flat Power Spectral Density (PSD)

or in other words, whose response is a low pass filter effect [17]. A perfect white noise is

independent and identically distributed, which implies no autocorrelation (correlation between

successive samples) as shown in figure 3.3. If a white noise signal is normally distributed with

mean zero and variance 2 , then, it is called as the Gaussian white noise signal or Uniform

random sequence.

Figure 3.2: White Noise Process

Figure 3.3: Autocorrelation and Power Spectral Density (PSD) of White Noise

21

3.3 Central Limit Theorem (CLT)

The sum of n independent random variables, each with finite mean and variance, becomes

Gaussian distributed by virtue of CLT [1]. As n increases, resultant distribution becomes closer

to Gaussian. The normalized random variable is given as

1 1

1

 (3.3)

n n

i i
i i

n n

i
i

X
Z

 where, iX is the ith independent random variable, i is the mean or expected value of the ith

independent random variable and i is the standard deviation of the ith independent random

variable.

If n approaches infinity or under certain regularity conditions, the limiting distribution of nZ is

standard normal distribution.

2/21
2

lim () limPr{)} (3.4)

(0,1)

n

t
y

Z nn n

n

F t Z t e dy

Z N

 (3.5)

 where, (0,1)N is the normal distribution whose mean is 0 and standard deviation is 1.

CLT is extremely simple and efficient in implementation as it produces GRNs by simply adding

n numbers with arbitrary PDFs. But, this method has never been used to generate high quality

Gaussian samples. This is due to error in tail region of the probability density function (PDF),

which is inversely proportional to number of samples to be added. For example, addition of at

least 100 samples is required to achieve a tail accuracy of 5 . The PDF curve deviates from the

ideal Gaussian PDF very sharply for higher values of standard deviation and also, the PDF tends

to become straight in tail region. To achieve a better tail accuracy, the value of n (number of

22

additions) needs to be increased. In fact, in order to produce a perfect PDF, n should be infinitely

large.

This is shown in figure 3.4 where normalized PDF is plotted for varying values of n. Base

numbers or initial numbers are uniformly distributed between +1 and -1. We generated 109

samples by adding 2, 4, 8 and 16 uniformly distributed numbers respectively. In Figure 3.4a, the

PDF for the generated samples is plotted on linear scale. Apparently, the PDF seems close to

ideal Gaussian PDF for values of n greater than 2. This is because for standard deviation greater

than 2 , the probability becomes too small to be detected on linear scale. In Figure 3.4b, the

PDF is plotted on logarithmic scale. Now, the errors in tail region are more prominent. It can be

clearly seen that even for n= 16, PDF deviates from ideal curve drastically after 3 . It is, also,

apparent that as n becomes greater, PDF curves for CLT tend to be closer to ideal Gaussian

curve.

A careful observer can notice irregular shape of PDF at the edges particularly for higher values

of n. This is due to the statistical nature of data samples. No matter how many data samples are

taken, edge (tail) of a statistically plotted PDF is never smooth due to low probability of

occurrence of data samples in this region as explained in section 3.1.

23

Figure 3.4: PDF for varying values of n, (a) Linear Scale, (b) Logarithmic Scale

3.4 Calculating Variances for Central Limit Theorem

As shown in figure 3.4 that PDF for a specified value of n remains fixed. So, the variance and

standard deviation for that specified value of n is also fixed. Variance and standard deviation are

calculated below for n = 8 when the base numbers are normally distributed between +1 and -1.

Similar procedure can be followed to find the variances and standard deviations for other values

of n as summarized in Table 3.1

Table 3.1: Standard deviations and variances for varying n

24

The PDF of a uniform distribution is given as,

1
() if a<x<b, else 0 (3.6)Uf x

b a

The expected value or mean value is given as,

() (3.7)
2X

a b
E X

The variance is given as,

2
2 ()

() (3.8)
12X

b a
Var X

If lower limit a = -1 and upper limit b = +1, then mean value is calculated as,

1 1
() 0 (3.9)

2 2X

a b
E X

Variance is computed as,

2 2
2 () (1 1) 1

() (3.10)
12 12 3X

b a
Var X

And the standard deviation evaluates to,

1
() (3.11)

3
Std X

25

Let “Y” be a random variable that represents the summation of eight uniform random numbers

between +1 and -1. iX is the ith uniform distribution. Then variance is calculated as,

8

1 2 3 4 5 6 7 8
1

8

1

8
2

1

 (3.12)

() () 8*0 0 (3.13)

() ()

i
i

Y i
i

Y i
i

Y X X X X X X X X X

EY E X

Var Y Var X

1 8

8* 2.667 (3.14)
3 3

8
() 1.632 (3.15)

3YStd Y

3.5 Computing Error in Central Limit Theorem

The variance and standard deviation for any value of n in CLT is fixed as shown in section 3.4.

Also, the PDF curves for both the CLT and ideal Gaussian distribution remain fixed for any

value n. So, we can map the CLT curve on to the ideal one by following the concept described in

the next subsection.

3.5.1 The Idea

Analyzing figure 3.4 reveals that in the high probability region before 3 sigma, both the curves,

the CLT and the reference, are indistinguishable (overlapping each other) and after 3 sigma both

the curves grow in different directions. For simplicity, we call the overlapping region as the Ideal

region and non-overlapping region as the Non-Ideal region.

Therefore, we can say that,

“When in Non-Ideal region, Scale up the random number”

26

Now, the “n” degree polynomial is given as

y = anPn + an-1 Pn-1 + . . . + a2P2 + a1P + a0 (3.16)

 where, an ….. a0 are the polynomial constants.

Reducing this equation to only first degree, we get

 y = a1P + a0 (3.17)

This is equivalent to

y = MP + C (3.18)

 where, “M” is the slope and “C” is the intercept of a straight line. This means that we can

scale-up a number P by simply multiplying it with a slope and adding an intercept value.

3.5.2 Algorithm for Error Computation

The error function for CLT can be computed empirically by using the algorithm explained below;

1- Uniform random numbers are generated between +1 and -1. A MATLAB script is written

to generate random numbers as

urng = 2*(rand(1,M)-0.5)

 where, “rand” is a built in function to generate a uniform random signal between 0 and

1 and “M” defines the length of the generated random signal.

For a specified value of n, such n uniform random distributions are generated and added

by virtue of Central Limit Theorem. The resultant distribution is of length “M” and is

called as the approximate Gaussian distribution. Clearly, the highest value sample will be

+n and the lowest value sample will be –n.

2- To compute the PDF of generated approximate Gaussian samples, the samples are

27

distributed into buckets or bins over the sigma or standard deviation range from -n to +n

as described in step 1. The results are shown in figure 4.4 for varying values of n. The

values corresponding to the sigma axis or horizontal axis are represented as xc

3- We have the PDF of an ideal Gaussian distribution with zero mean as given by eq. 3.19;

2 2/21
() (3.19)

2
g nx

cf x e

 where, xg are the points on horizontal axis corresponding to ideal Gaussian distribution.

 Now, the sigma or standard deviation values corresponding to ideal Gaussian distribution

 can be found using the PDF values for approximate Gaussian distribution by rearranging

 eq. 3.19. The standard deviation in terms of PDF is given by the following equation;

2 22 ln(2 ()) (3.20)g n n cx f x

 where, ()cf x is the probability of occurrence of xc

4- The error in the CLT PDF is then simply;

 (3.21)PDF c gErr x x

28

The plots in figure 3.5 and figure 3.6 are obtained for the positive side with the symmetric

negative side, using the above algorithm for n = 4 and 8. For each point on the CLT curve, there

is a corresponding straight or horizontal point on the reference curve.

Figure 3.5: PDF Plot for n = 4

Figure 3.6: PDF Plot for n = 8

3.5.3 Error Distributions

The above algorithm was implemented in MATLAB script for varying values of n. In Figure 3.7,

the computed error functions are shown. The horizontal axis has been normalized to standard

normal distribution using fixed variances for CLT PDFs.

It is evident from figure 3.7 that there is an initial error growing towards the positive side and

29

after that, the curve decays exponentially. This means that the positive error region requires

negative polynomial constants and vice versa.

There is, also, a statistical inaccuracy in the tail region which is because of the statistical nature

of the data samples. The error goes on decreasing as n increases, because the higher value of n

takes the curve closer to the ideal reference curve.

Figure 3.7: Error in PDF for Varying n

3.6 Compensating Error in Central Limit Theorem

This subsection explains the methodology to compensate and correct the above computed error

distribution. Methodology for n = 8 and a 16 bit datapath will be explained that provides the tail

accuracy of 6 . However, depending upon available computational resources and desired tail

accuracy, this methodology can be used for any value of n and bit width.

Now, the accuracy of the algorithm depends upon how the best we model this error function so

that it can be implemented using minimal hardware resources.

As it has been mentioned before, our idea is to use first degree polynomial as it leads to the most

efficient implementation of the algorithm in hardware. So, first degree piecewise polynomial

approximation will be used to model the error distribution.

30

3.6.1 Uniform Segmentation Algorithm

Piecewise polynomial approximation is applied using uniform segmentation algorithm. The

entire error curve has been divided into 16 uniform segments. The figure 3.8 shows the

approximation technique applied and the residual error

Figure 3.8: Residual Error due to Uniform Segmentation

The residual error is observed to be growing exponentially with increasing standard deviation.

This is because the error function is a non-linear function. Hence, uniform segmentation is not

suitable for such functions. The problem is to find a solution so that,

max min 0 (3.22)Err Err

 where, maxErr is the maximum residual error and minErr is the minimum residual error.

3.6.2 A Novel Non-Uniform Segmentation Algorithm

A simple and efficient algorithm is proposed to compute non-uniform segments with minimum

residual error as described below;

The algorithm exploits the fact that residual error due to piecewise polynomial approximation of

non-linear function is directly proportional to curvature of the function [16].

The curvature defines the deviation of a non-linear curve along its path. Let us suppose that we

have a position vector () (), ()r t x t y t that follows a path in the plane with the passage of

31

time as shown in the figure 3.9. We know that the velocity is the instantaneous rate at which the

position vector changes with respect to time. So that ' ' '() (), ()r t x t y t and the unit tangent

vector is shown in figure 3.9.

Figure 3.9: The unit tangent vector T’(t), points in the direction of velocity vector

If the unit tangent vector is changing rapidly with respect to time (dT’/dt), then there is a great

deal of deviation of the curve at that point. If the unit vector is changing slowly with time, it

means that there is not a great deal of deviation in the curve at that point.

Obviously, the derivative of the unit tangent vector has a close relationship with the curvature of

a non-linear function. So, we define curvature of function k with respect to rate of change of its

unit vector T (also called as the velocity vector) as

/ (3.23)k dT ds

 Or simply, curvature of a non-linear function can be defined as its second order derivative as

shown in figure 3.11.

Once the curvature of a function is known, the problem is reduced to finding the segments on the

curve with length of each segment proportional to the curvature of the function.

These sample points or segments can be found using Amplitude to Frequency Converter (AFC).

A simple AFC (designed in simulink, MATLAB) is shown in figure 3.10.

32

Figure 3.10: Amplitude to Frequency (AFC) Converter

This is basically a Sigma-Delta modulator that modulates a carrier signal with respect to the

input signal amplitude. A feedback gain “K” is provided to control the oscillations at the output

of AFC. Output of the AFC is the sampling or frequency points on the input function with

respect to the change in amplitude of the function.

3.6.3 Residual Error

Second order derivative of the error distribution is given as an input to AFC and the output is a

discrete signal whose frequency is proportional to the input signal. By changing the gain on the

feedback path, we can tune the AFC to provide any number of sampling points. This is shown in

figure 3.11. We have tuned the AFC to provide 17 sampling points (or 16 segments) on the entire

error function.

Figure 3.11: Non-Uniform Segmentation Scheme

33

Now, using the known non-uniform segments, we can apply the piecewise polynomial

approximation to the error function and find the residual error. Clearly, the non-uniform

segmentation drastically reduces the residual error as shown in figure 3.12.

Figure 3.12: Residual Error due to Non-Uniform Segmentation Scheme

3.7 Hardware Implementation

The algorithm described in the previous section is implemented in hardware using verilog HDL

and fixed point arithmetic. The data path is of 16 bit and calculations are performed for n = 8.

The input is in Q1.15 format and the output is in Q4.12 format. The design is partitioned into

four distinct blocks, Linear Feedback Shift Registers (LFSRs), summation block, decision block

and first order polynomial calculator, and is explained in detail in upcoming sub-sections.

3.7.1 Uniform Random Number Generator

As stated earlier, that Uniform Random Numbers (URNGs) are also known as white noise,

which essentially covers all frequency spectrum range. In hardware, Linear Feedback Shift

Registers (LFSRs) are commonly utilized as noise and data sources because they are easily

implemented and require minimal hardware resources [17].

Hardware implementation of an LFSR (flip flop or storage registers) and a feedback network as

shown in figure 3.13. The generator polynomial of LFSR is implemented by the feedback path as

34

given by eq. 3.16. The generator polynomial describes the statistical characteristics and sequence

length (period) of LFSR. If the sequence period of LFSR is 2n-1, then the sequence is known as

the maximal length sequence.

Figure 3.13: Basic LFSR Architecture

However, this class of pseudo random number generators (PNGs) shares a common disadvantage

that they exhibit severe correlations between successive data samples as shown in figure 3.14.

This effect can be seen in covariance and power spectral density plots shown in figures 3.14 and

3.15 respectively. The covariance is not a delta function, as would be expected for uncorrelated

values, but, it shows significant correlations up to +8 and -8 lags. Also, the power spectral

density is not flat as expected for white noise (section 3.2), but the low pass effect is clearly seen

in the figure 3.15.

Figure 3.14: Covariance of 105 values generated by LFSR using maximal length polynomial shows

correlations around zero lag

35

Figure 3.15: Power Spectral Density of 105 Values Generated by LFSR

The correlation effect can be understood by observing that, for any step in the sequence, the

generating polynomial changes only a few of the bits in registers (flops) [17].

The 2-D scatter plot in figure 3.16 clearly shows a visible lattice structure that indicates the

correlation between adjacent data samples [2].

Figure 3.16: 2-D scatter plot of a pseudo random number generator

There are many techniques to overcome these short comings. A simple approach is to advance

the LFSR by number of steps “k” so that the required number of bits has changed before the

arrival of new output. This method proves to be costly because the LFSR has to be executed “k”

times faster than rest of the design.

In this thesis work, we have used Skip-Ahead LFSR logic that follows from the algorithm

presented by Leonard Calvito [17]. It is the most recent and simplest technique which can

36

advance the LFSR to “k” steps ahead in a single step and, also, requires minimal hardware

resources.

Our requirement is to use eight 16-bit LFSRs as base numbers. So, we designed a 128-bit Skip

Ahead LFSR architecture using maximal length polynomial. This technique basically uses a

transition matrix “Ak” which can advance the LFSR to k steps ahead. LFSR can be represented

by the eq. 3.24;

() () (3.24)t k k tq Aq

 where,

In our design, we advanced this LFSR by k = 16 to ensure that successive samples are un-

correlated. Eight 16-bit LFSRs are taken from the 128-bit Skip Ahead design. The results are

shown in figure 3.17. The output is taken in Q1.15 format for each 16 bit Uniform Random

Number Generator (URNG).

Figure 3.17: (a) Autocorrelation Function (ACF), (b) PSD Plots for Skip Ahead LFSR.

3.7.2 Summation Block

The summation block can also be called as averaging block as it implements the Central Limit

Theorem. This block basically implements a hierarchical structure of seven 16-bit adders as

37

shown in figure 3.18. To perform the averaging process in hardware, we discard 3 least

significant bits from the output of this block which is equivalent to dividing the summation of

eight numbers by 8 (23). So, at each clock edge, 8 URNGs with range +1 and -1 are simply

added and divided by 8 simultaneously. The final output of this block is in Q4.12 format within

the range of +8 and -8. The architecture is fully pipelined and symmetric. In the intermediate

stages, as indicated, we get the Gaussian samples at lower sigma accuracies and the final output

gives the accuracy up to 3 .

Figure 3.18: Summation Block Architecture

3.7.3 Decision Block

The decision block or compensation block is the most important and novel part of the hardware

GRN generator. The input of this block is a 16 bit number in Q4.12 format from the summation

block. It comprises of two look-up-tables (LUTs) which contain coefficients to be used with the

first order polynomial calculator. An address generator selects the coefficients from LUTs based

upon input number from summation block. The search space is made hierarchical to make the

38

output rate constant as shown in figure 3.19. That is why the number of segments chosen was 16

so that we could a symmetric architecture in powers of two. Based upon 16 non-uniform

segments computed using the algorithm described in section 3.63, coefficients a0 and b0 are pre-

calculated and stored in the LUTs. The whole search space architecture is shown in figure 3.19

within the range of 0 to 7.649 sigma.

As indicated in table 3.1, standard deviation for n = 8 is 1.632. Hence, to get the Gaussian

samples at the sigma or standard deviation scale or normalized variance, every output needs to be

divided by 1.632. This will require an additional multiplier in the architecture which proves to be

costly. However, this multiplier can be avoided by pre-dividing the Look-up-Table (LUT)

coefficients a0 and b0. We call these as transformed coefficients and denote them by atr and btr

respectively. Hence,

0 0

8 8

............ (3.25)tr tr

a b
a b

3.504

1.997

4.915

6.881

7.526

7.281

6.113

1.198

2.766

4.239

5.560

6.543

7.127

7.434

7.588

M1,C1

M2,C2

M3,C3

M4,C4

M5,C5

M6,C6

M7,C7

M8,C8

M9,C9

M10,C10

M11,C11

M12,C12

M13,C13

M14,C14

M15,C15

M16,C16

Input form

Summation

Block

Output of

Decision

Block

Figure 3.19: Decision Block Architecture

39

3.7.4 Contents of Look-up-Tables (LUTs)

The pre-computed values of atr and btr for n = 8 using 16 non-uniform segments are shown in

Table 4.2. Here we can decide the bit widths of the coefficients in fixed in arithmetic. From the

table 4.2, it can be noticed that the highest absolute value of atr is 2.98586 and the highest

absolute value of btr is 16.0741. So, we take Q2.14 format for atr and Q4.12 format for btr.

Table 3.2: Pre-computed values of atr and btr

3.7.5 Polynomial Calculator

Polynomial calculator is the final block of the GRNs generator. It comprises of an adder and a

multiplier. The decision block provides the random number “x” and its corresponding

coefficients atr and btr. The multiplier result is truncated to fit into 16 bits as per rules of fixed

point arithmetic. The output of this block is a Gaussian random number in Q4.12 format.

Corrected Gaussian number xcor is then generated by first degree polynomial equation;

 (3.26)cor tr trx a x b

The proposed GRNs hardware architecture is shown in figure 3.20.

40

Figure 3.20: Architecture of Proposed GRNs Generator

The base numbers (LFSR) are uniformly distributed within 0 and 1. The pseudo-code for the

proposed improved CLT architecture, for any value of n, is given below,

1 1 2 2 3 3

1 2 3

U, U , U,....., U

.....

()
()
(,)

()

n n

n

cor

x x x x

x x x x
x

n
x mean x

x
std x

x select mc
return x mx c

The proposed architecture is implemented on FPGA (Virtex-4) using Verilog HDL. The results

obtained are explained and discussed in detail in the next chapter.

41

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Results

Since, the error function estimation in our methodology is based upon empirical data analysis, it

does not guarantee arbitrarily accurate Gaussian numbers. However, after correction, the

architecture should provide accurate Gaussian numbers with tail accuracy till 6 . To, validate

this claim, we have applied standard tests to measure statistical accuracy of generated numbers.

These tests include Probability Density Function (PDF) plots, Chi-Square tests, Scatter plots and

Autocorrelation function.

4.2 PDF Plots

To obtain tail accuracy till 6 , at least 1011 samples are required [2]. At such high sigma values

the probability is too low to observe on linear scale. The architecture explained in chapter 3 is

used to generate 1011 Gaussian samples. Figure 4.1 shows the PDF plots of the generated GRNs

on logarithmic scale as compared to ideal Gaussian PDF as well as PDF of random numbers

generated by simple summation (CLT).

Although, accuracy till 6 is guaranteed, the algorithm is capable of giving even higher sigma

accuracy (till 7) as described in chapter 3. To achieve this, the number of generated Gaussian

samples should be increased. Since, the length of segments decrease with increasing sigma

values, hence, the curve becomes more accurate and smooth at the low probability or tail region

(non-uniform segmentation).

42

Figure 4.1: PDF of Proposed GRNs Generator

4.3 Statistical Goodness-of-Fit Test

A Chi-Square test is called as the statistical goodness-of-fit test. It is a statistical hypothesis test

in which the sampling distribution is said to be a Chi-Square distribution when the null

hypothesis is true. Both the standard and tail generation algorithms are evaluated using chi-

square test [3]. This test is normally used to verify the normality of generated Gaussian samples.

A set of observed samples (observed frequencies) is compared against the expected distribution

(expected frequencies). Using more bins or buckets gives higher resolution with respect to the

different input values, but reduces the expected number in each bin [3]. The test is performed by

dividing the data samples into number of bins. For each bin, observed and expected counts are

calculated. The Chi-Square test statistic is then computed using the formula;

2
2

1

[() ()]
 (4.1)

()
()

i

i

Oi Ei
Ei

Ei KP

 (4.2)

 where, ‘O (.)’ is the observed counts, ‘E (.)’ is the expected counts, ‘K’ is the number of

generated Gaussian variates, ‘KPi’ is the expected number of samples according to normal

43

distribution [1], ‘’ is the desired significance level, ‘ ’ is the total number of bins in which the

distribution is divided into and ‘’ is the degree of freedom. Since, the normal distribution is

completely characterized by two parameters, the mean and the standard deviation, the degree of

freedom is thus reduced by 2 from to.

Chi-square test is performed by dividing the horizontal axis (sigma axis) into three regions from

0 to 6 as shown in Table 4.1. Each interval is segmented into 100, 50 and 30 bins

respectively. In order to eliminate the statistical inaccuracy, it has been ensured that at least 50

samples should fall into each bin. Chi-Square test is pass for a given value of , if the observed

value (calculated by eq.4.1) is less than or equal to the corresponding theoretical value.

The significance level means rejecting the null hypothesis when actually it is true or accepting

the null hypothesis when actually it is false. These both criteria’s are satisfied if the number of

samples in the bins are large enough (statistical accuracy) in the bin whose chi-square value is

going to be calculated.

The results obtained, as shown in Table 4.1, indicate that the proposed GRN generator

successfully passes the chi square over the entire range of 0 to 6 within 5 percent of

significance level .

Table 4.1: Chi-Square test results for proposed algorithm

It is worth-mentioning here that, since, our method of GRNs generation is not exact, it will

always have error in the PDF as shown in figure 3.12. Hence, as the number of samples increase,

the numerator term in eq.4.1 increases as square of the value leading to greater chi-square value.

44

However, as mentioned earlier, we have used at least 50 samples in every bin for the tests in

Table 4.1 and the test passes for the 10 percent or less significance. This is even better than the

generally accepted criteria of 5 percent or less significance level [18].

4.4 Scatter Plot and Autocorrelation Test

Any correlation between neighboring numbers can be seen as a regular lattice structure as shown

in figure 3.16. This is an unwanted property in any random sequence as it indicates some

similarities between adjacent data samples that leads to the undesired low pass characteristics as

explained in chapter 3. Figure 4.2 shows a 2-D scatter plot of generated GRNs with no visible

lattice structure. The plot indicates that most of the times the samples tend to cluster around the

mean value and with very less probability they occur in high sigma regions. This can, also, be

seen in figure 4.3 which shows the Autocorrelation function over a range of 2000 lags.

Correlation values for all non-zero lags are extremely low.

Figure 4.2: 2-D Scatter Plot of Proposed GRNs Generator

45

Figure 4.3: Autocorrelation Function (ACF) of Proposed GRNs Generator

4.5 BER Simulation

The proposed architecture of improved CLT has been used in a communication system with

BPSK signaling over AWGN channel. In figure 4.4, the Bit-Error-Rate (BER) simulation for

basic CLT shows the incorrect results and shifts in Signal-to-Noise Ratio (SNR) values at low

BER values. In figure 4.5, the BER simulation has been done using our AWGN generator taking

the signal length of 107. The results are as accurate as for BM method and show no shift in SNR

at low BER values. Hence, inaccurate GRNs generator may lead to incorrect simulation results.

Figure 4.4: BER simulation of BPSK modulated communication system [2]

46

Figure 4.5: Proposed GRNs Generator Applied in BER Simulation of BPSK Modulated Communication

System

4.6 Synthesis Results

The proposed GRNs generator architecture is implemented in Verilog HDL. The design was

synthesized using an older FPGA device family (Xilinx XC4VLX15 Virtex-4 device). This is

because, later versions of FPGAs (for example, Virtex-5 and Virtex-6) are faster and have more

resources available in a single configurable slice. Hence, for the sake of fair comparison with the

previously reported work, we used FPGA from an older family.

The design requires 440 configurable slices and 1 DSP block. No memory blocks are utilized

because the memory for LUTs and pipeline registers has been implemented within the used

configurable blocks. The design speed (Mega Samples/sec.) is 220MHz with critical path delay

of 4.54 ms.

4.7 Comparison with Previous Methods

A detailed comparison of our proposed architecture is given in Table 4.2 with well-known

previously reported architectures.

47

Table 4.2: Comparison of improved CLT with published work

The comparison has been done in terms of logic cells utilized, memory blocks, number of

multipliers used, bit width of GRNG, speed and tail accuracy. The first four implementations are

the most widely used architectures of Box-Muller method. The BM method is also being used by

the Xilinx core [14]. Ziggurat algorithm is being used in MATLAB.

In terms of configurable logic cells utilization, our design is much better than other designs,

since, it requires only 440 slices. BM method requires 2 memory blocks and 3 multipliers to

achieve a tail accuracy of 6.6 , while our design achieves the closer accuracy by using only one

multiplier and no memory block. The BM method produces two Gaussian samples per clock

cycle so, its speed is twice than our architecture (440). The ziggurat algorithm is quite efficient in

implementation and provides any arbitrary tail accuracy (N/A). But, as explained earlier, that its

output rate is not constant. It means that sometimes the samples are missing on some edges of

clock cycles. This may lead to inaccurate simulation results. Wallace method is not efficient in

terms of hardware resources and, also, has a drawback of correlations between successive

samples.

Therefore, resource utilization is better than any of the previously reported hardware

implementation of GRNs generator. It is worth mentioning here, that our design is scalable to

48

achieve even higher sigma accuracy with minimal increase in hardware cost. Also, the speed of

the design can, also, be increased by using the concept explained in chapter 3 where we are

getting Gaussian samples in the intermediate stages with lower tail accuracies.

49

CHAPTER 5

CONCLUSION

5.1 Conclusions

This work achieves high tail accuracy GRNs generator. The empirical model of the error in CLT

is compensated through deployment of a low cost compensation block. After a detailed error

analysis, coefficients for degree one piecewise polynomial approximation have been computed

using a novel non-uniform segmentation algorithm.

 The proposed GRNs generator falls under the category of approximate algorithms.

 The proposed architecture is highly efficient (area, speed and hardware cost), simple,

fast, compact and regular as compared to all previous architectures.

 The architecture is fully pipelined with an initial delay of 4 clock cycles and

thereafter, generates Gaussian samples at every clock edge (constant output rate).

 The proposed GRNs generator successfully passes the chi-square statistical test over

the entire range of 0 to 6 within 5 percent of significance level .

 Although, tail accuracy of 6 is guaranteed, the architecture is scalable to achieve

even higher tail accuracies with minimal increase in hardware resources.

 The proposed architecture outperforms any previously reported designs.

50

5.2 Future Extensions

As stated earlier that, the hardware architecture explained in chapter 3, guarantees tail accuracy

till 6 , which is good enough for all practical purposes and the most of the AWGN simulations.

This architecture can be further improved in various dimensions as explained below;

 Approximation errors in PDF can be further reduced using higher order polynomials.

Degree one polynomial is used in our design as a simplest method for implementation.

Higher order polynomials will require more number of multiplications. Also, the

approximation errors can be reduced using higher number of segments. As explained

earlier that number of segments will be increased by powers of two. Hence, more

memory will be required to store the additional polynomial coefficients (LUTs).

 Tail accuracy can be improved by increasing number of addition operations (value of n)

by virtue of CLT. Increasing value of n will move the CLT curve closer to the reference

and, hence, greater standard deviation or sigma value will be obtained for the highest

generated sample value. The tail accuracy can, also, be improved by increasing the bit

width of the data path. As stated earlier, we have used 16 bit datapath. Increasing width

of the datapath will reduce the quantization errors.

 Complexity can be further reduced by replacing the multiplication operation with a shift

and add operations.

All of the above mentioned improvements involve more hardware resources. Therefore,

depending upon the user demand, there will be a trade-off between complexity and accuracy.

51

REFERENCES

1. H. Fischer, “A History of the Central Limit Theorem: From Classical to Modern

Probability Theory”, (2010), Springer. ISBN0387878564.

2. A. Alimohammad, S. F. Fard, B. F. Cockburn and C. Schlegel, “A Compact and

Accurate Gaussian Variate Generator”, in IEEE Transaction on very Large Scale

Integration (VLSI) Systems, Vol. 16, No. 5, May 2008.

3. D. B. Thomas , W. Luk, Philip H.W. Leong and J. D. Villasenor, “Gaussian Random

Number Generators”, in ACM Computing Surveys, Vol. 39, No. 4, Article 11,

Publication date: October 2007.

4. C. Iskander, “A MATLAB-based Object-Oriented Approach to Multipath Fading

Channel Simulation”, MATLAB White Paper.

5. Muhammad Ali Shami, Ahmed Hemani, “Partially Reconfigurable Interconnection

Network for Dynamically Reprogrammable Resource Array”, in IEEE ASICON

2009, 8th International Conference on ASICs.

6. G. Zhang, P. H. W. Leong, D. Lee, J. D. Villasenor, R. C. C. Cheung, and W. Luk,

“Ziggurat-based hardware Gaussian random number generator,” in Proc. IEEE Int.

Conf. Field Program. Logic It’s Appl., 2005.

7. Y. Fan, Z. Zilic, M. W. Chiang, “A versatile high speed bit error rate testing scheme

”, in Proc. IEEE Int. Symp. Quality Electron. Dec. 2004, pp. 395-400.

8. D. Lee, W. Luk, Ray C.C. Cheung, J. D. Villasenor, W. Luk, “Inversion-Based

Hardware Gaussian Random Number Generator: A Case Study of Function

Evaluation via Hierarchical Segmentation”, in Field Programmable Technology

52

(FTP), IEEE International Conference on Dec. 2006.

9. D. Lee et al., “A hardware Gaussian noise generator using the Wallace method,” in

IEEE Transactions on VLSI Systems. Oct. 2007.

10. E. Boutillon, J. L. Danger, and A. Gazel, “Design of high speed AWGN

communication channel emulator,” Analog Integr. Circuits Signal Process, pp. 133–

142, 2003.

11. D. W. Luk, J. D. Villasenor, and P. Y.K. Cheung, “A Gaussian Noise Generator for

Hardware-Based Simulations”, in IEEE Transactions on Computers, VOL. 53, NO. 12.

Dec. 2004.

12. D.-U. Lee, J. D. Villasenor,W. Luk, and P. H. W. Leong, “A hardware Gaussian noise

generator using the Box–Muller method and its error analysis,” IEEE Trans. on

Computers, vol. 55, no. 6, pp. 659–671, Jun. 2006.

13. E. Fung, K. Leung, N. Parimi, M. Purnaprajna, V. Gaudet, ”ASIC Implementation of a

High Speed WGNG for Communication Channel Emulation ”, Proc. IEEE Workshop

Signal Processing Systems, pp. 304-409, 2004.

14. “Additive White Gaussian Noise (AWGN) Core”, v1.0, Xilinx Inc., 2002.

15. M. E. Muller, “A comparison of methods for generating normal deviates on digital

computers”, in Association for Computing Machinery, pp. 376-383, 1959.

16. D. Arnold, “Curvature in Matlab ”, Math 50C Multivariable Calculus.

17. L.Colavito and D. Silage, “Efficient PGA LFSR Implementation Whitens

Pseudorandom Numbers”, in International Conference on Reconfigurable Computing

and FPGAs, 2009.

53

18. D’Agostino and Stephens, “Goodness-of-Fit Techniques”, New York: Marcel Dekker,

1986.

19. C. M. Grinstead and J. L. Snell, “Introduction to Probability”, in American

Mathematical Society, pp. 299-301.

