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Abstract 

Functional magnetic resonance imaging (fMRI) is widely used technique for Brain 

functional connectivity analysis. MRI Acquisition acceleration is a hot area of research from many 

decades where a number of techniques were suggested. Echo planar imaging (EPI) is one of the 

most promising acceleration techniques in most fMRI studies. However, advancement to shorten 

the acquisition time using EPI have been proposed recently and simultaneous multi slice imaging 

technique is one of the most promising technique allowing acquisition of multiple slices 

simultaneously yielding an equivalent reduction of time. This technique has recently been using 

in resting state fMRI studies along with dual regression for group comparison. While the benefit 

of acquisition time reduction by high multiband acceleration factor (M) appears tempting, 

sensitivity of resting state network in subcortical region have only been investigated partially. In 

this study, we therefore used resting state fMRI data of 18 subjects acquired with two different 

multiband acceleration factors (M=1 and M=4), to investigate sensitivity of default mode network 

in datasets with increasing acceleration factor. Our results suggest that there is no significant 

sensitivity difference between common default mode network got from data acquired with both 

the acceleration factor. 

 

 

 

 

 

Key Words: Resting State fMRI, Default Mode Network, Echo planer imaging, 

Multiband Echo planer imaging 
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1 INTRODUCTION 

On a general level, there are two overarching concepts in the field of neuroimaging that can 

inform us about how the brain works. The first of these is localization, which aims to assign 

functions to specific regions of the brain. Many researchers use carefully designed behavioral 

tasks that subjects perform in the MRI scanner in order to localize functionally specialized 

regions of the brain that activate in response to a specific aspect of behavior. Tasks typically 

include multiple different conditions (including baseline periods), and task-induced activation 

is measured and localized by comparing the blood oxygen level dependent (BOLD) signal between 

different conditions. The second general concept is to investigate connectivity, or the 

way in which brain regions communicate with one another and information is passed from 

one brain area to the next. In order to investigate connectivity, we measure the similarity of 

the BOLD signals from different brain regions, because if the signals are similar, this is likely to 

mean that the regions are passing on information from one region to the other (i.e., there is 

connectivity). In order to study connectivity, we often look at spontaneous fluctuations in the 

signal, when there are no specific cognitive demands for the subject (so-called resting state 

scans). Using spontaneous fluctuations allows us to investigate similarity between regions when 

it is not biased by any specific task. As such, resting state fMRI has emerged as a valuable way 

to study brain connectivity. It is useful to understand how these concepts relate to 

physiological processes in the brain both at the neuronal level and at the macroscopic level 

that we measure in fMRI (Figure 1.1). At the microscopic level, a neuron consists of a cell body 

(soma) that receives input through dendrites and passes action potentials through axonal tracts 
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to other cells. These microscopic processes in turn result in a localized increase in blood flow 

that far exceeds the oxygen demands of the neural activity, leading to a local increase in blood 

oxygenation level (Figure 1.1). It is crucial to appreciate that BOLD fMRI measures this increase 

in blood oxygenation, which is a secondary and indirect measure of neuronal activity. The 

hemodynamic response to neural activity which is measured in fMRI (i.e., blood oxygenation 

levels) is a relatively slow process that only reaches its peak approximately 5–6 seconds after 

the start of the neural activity. Using concurrent fMRI and electrophysiological recording, 

previous research has shown a strong link between spontaneous fluctuations in resting state BOLD 

data and slow fluctuations in the local field potential (LFP). Therefore, the BOLD signal 

is thought to primarily reflect the excitatory inputs to the neural population (synchronized 

post-synaptic activity).  

 

Figure 1.1: The BOLD signal is an indirect measure of neuronal activity that is mediated by a slow 

increase in local oxygenated blood flow that takes several seconds to peak. (a) Several complex 
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biological processes such as neurovascular coupling take place, which together result in the localized 

increases in blood oxygenation that are measured in BOLD fMRI. (b) The standard form of the 

hemodynamic response function is shown. From stimulus onset, the BOLD signal takes approximately 

5 seconds to reach its maximum 

 

Functional connectivity is typically defined as: “the observed temporal correlation (or other 

statistical dependencies) between two electro- or neurophysiological measurements from 

different parts of the brain.” For resting state fMRI this definition means that functional 

connectivity can inform us about the relationship between BOLD signals obtained from two 

separate regions of the brain. The underlying assumption is that if two regions show similarities in 

their BOLD signals over time, they are functionally connected. 

The simplest way to investigate similarity between two signals is by looking at their timeseries 

correlation using Pearson’s correlation coefficient. Correlation ranges from –1 (perfect negative 

correlation) to +1 (perfect positive correlation), where 0 indicates no relationship on average 

between two signals. In 1995, Biswal and colleagues compared task activation maps during finger 

tapping with a map of correlation coefficients of BOLD data obtained during a scan when the 

subject was resting. The resting state correlation map was created by taking all voxels that were 

activated by the motor task and using only the resting state data to calculate the correlation of each 

voxel in the brain with those “activated” voxels. The task activation map and resulting resting state 

correlation map showed strong spatial similarities. This work is now often cited as the first study 

to show that intrinsic fluctuations measured in the brain at rest by functional MRI hold information 

about the inherent functional organization of the human brain. The spatial structure of functionally 
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connected regions, which is consistently and reliably found in resting state fMRI data, forms the 

foundation for resting state fMRI research. Therefore, while functional connectivity is defined in 

terms of temporal similarity between signals, the spatial patterns that emerge when looking at 

connectivity are often of primary interest in functional connectivity research. 

1.1 Resting state fMRI 

Resting state fMRI is aimed to detect low frequency (<0.1Hz), spontaneous fluctuations 

in BOLD signal. For the first time Biswal in his study in 1995 have documented the functional 

importance of these fluctuations[1]. In his study, he instructed the subjects to not perform any 

motor or cognitive task. The author demonstrated high correlation of low frequency fluctuations 

in BOLD signal between bilateral somatosensory cortexes in subjects at rest. Similar synchronous 

fluctuations were also noted in visual and auditory cortex, identifying all of these to be indicators 

of functional connectivity of brain. 

Resting state fMRI is identical to conventional fMRI, however it does not need the subject 

to respond to a stimulus or perform an explicit task. BOLD data of whole brain is collected while 

the subject lie in the scanner with staring at fixed point or their eyes closed. Normally T2-weighted 

echo-planar images are acquired with isotropic spatial resolution of 3-4 mm, TR values of 2-3 sec, 

and if available, with multi-band acceleration. 

 



5 

 

1.2 Resting state networks 

With resting state fMRI, at least 10 distinct maps of brain connections called resting state 

networks (RSNs) were discovered. The most significant RSNs include visual and auditory 

processing network, salience, dorsal attention, executive control and default mode network (most 

active network at rest, containing posterior cingulate and superior parietal areas involved in 

attention and consciousness) [2]. These networks have provided important understandings into the 

cognitive organization of the brain in health and disease.  

A group or system of interconnected people or things is often called a network. Think, 

for example, about your social media network or a computer network. Given the definition of 

functional connectivity described above, a resting state network is simply a set of brain regions 

that show similarities in their BOLD timeseries obtained during rest. At present, we do not have 

a complete understanding of the network structure of the resting brain. Nonetheless, several 

networks can be reproducibly found using a variety of analysis approaches. 

Different resting state networks have been identified and “named” mostly on the basis of 

the spatial similarity between the resting state networks and activation patterns seen in task 

fMRI experiments. This naming convention is most accurate for areas associated with sensory 

processing, where it has been established that a correspondence exists between areas that can 

be mapped in response to sensory stimulation and areas that have strong resting state BOLD 

similarities. Other parts of the brain, for example within multimodal association cortex, are 

more ambiguously related to task experiments. Perhaps the best-known resting state network of all 

is the Default Mode Network (DMN; Figure 1.2). The DMN contains regions in the brain that 
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consistently show decreases in activity when the brain is performing any type of task compared 

with rest (deactivations), as shown by early task-based imaging studies using both fMRI and 

positron emission tomography (PET). Key regions of the DMN are the posterior cingulate cortex, 

precuneus, medial prefrontal cortex, inferior parietal lobule, and lateral temporal cortex. 

The dorsal attention network (DAN; also called the task-positive network; Figure 1.2) is 

another commonly described network made up of regions that are commonly activated 

during various types of goal-directed behavior. Regions that are included in the DAN are the 

inferior parietal cortex, frontal eye fields, supplementary motor area, insula and dorsolateral 

prefrontal cortices. Some findings suggest that the DMN and the DAN may be anticorrelated, 

although these results may, in part, be driven by preprocessing choices. Other commonly described 

networks include multiple distinguishable visual networks (including dorsal and ventral visual 

networks), auditory networks, and sensorimotor networks. In addition to the DMN and DAN, 

additional cognitive networks include salience, executive control, and fronto-parietal networks. It 

is important to note that this nomenclature describes a categorization of the brain at a single and 

somewhat arbitrarily chosen level of granularity. This is to say that these resting state networks 

form a hierarchy, where networks can be broken down further into yet finer-grained systems (i.e., 

form “networks within networks”). As such, it is not the case that every area in the brain can be 

uniquely assigned to one of a set of resting state networks. Indeed, brain regions that are known to 
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have extensive connectivity with many other brain regions, also show functional connectivity with 

multiple resting state networks.  

 

 

 

 

Figure 1.2: Resting state networks and consciousness 

Alterations of multiple resting state network connectivity in physiological, 

pharmacological, and pathological consciousness states Lizette Heine et al. 
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1.3 Multiband Echo planer imaging 

Multiband (MB) echo planer imaging is a technique in which a complex radio frequency 

pulse along with parallel imaging is used to scan multiple slices at a time. It is also known as 

simultaneous multi-slice (SMS) imaging technique. 

For the first time (Larkman et al, 2001) used multi-band (MB) imaging with a spine radio 

frequency coil and leg imaging [3]. In the MB approach, a specific excitation pulse is used to excite 

each slice at the same time, and multiple coils are placed which are tuned to sense a specific 

frequency in parallel to the other coils. These slices are unaliased after the multiple slice acquisition 

is done. In brain imaging Nunes et al (2006) was the first to introduce the application of Multiband 

to echo planer imaging [4]. In 2012 Uğurbil et al, studied the possibility of using Multiband 

imaging to acquire high resolution functional brain images at 7 T over the entire brain [5]. 

In typical echo planar imaging (EPI), data are acquired slice-by-slice, meaning that the 

data are acquired from one thin slab of the brain, before moving on to the next slab. Modern MRI 

equipment allows for signals from multiple detector coils to be measured simultaneously. When 

using a multiband (or simultaneous multislice) accelerated sequence, multiple slices of the brain 

are acquired at the same time and information from multiple radiofrequency coils is used in order 

to separate the overlapping images into their separate slices. In order to separate signals from 

different slices, a multi-channel radiofrequency coil, with at least 32 channels, is necessary. The 

number of slices that are acquired at the same time in a multiband EPI sequence is known as the 

multiband factor, and this factor controls the amount of speed-up that is obtained. While the trade-

off between spatial and temporal resolution is still there when using a multiband sequence, it is 
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much less limiting due to the parallel acquisition of multiple slices. For example, it is possible to 

acquire whole-brain data at 2 mm isotropic spatial resolution with a TR of roughly 1 second when 

adopting a multiband factor of 6–8 (i.e., acquiring 6 or 8 slices at the same time). In contrast, a 

typical whole-brain non-multiband EPI acquisition is likely to have 2.5–3.5 mm isotropic voxels 

and a TR of approximately 3 seconds. 

 

Multiband EPI sequences can be used to reduce the voxel size, and/or the TR compared 

with non-multiband EPI. Researchers typically choose parameters such that the biggest benefit of 

the multiband acquisition is the reduction in the TR (due to the downsides of extremely small voxel 

sizes discussed above). There are two main benefits of reducing the TR. The first is that a shorter 

TR allows sampling of a wider range of frequencies, which improves the sampling of the signal, 

and can also help with preprocessing, if the TR is fast enough to sample key periodic signals, such 

Figure 1.3: Using a multiband EPI sequence allows us to push the limits of spatial and temporal resolution. 
In multiband EPI, data are acquired from multiple slices at once, the multiband factor describes the number of slices 
acquired at the same time (here the MB factor is six). As described previously, the 16-degree tilt of 
the field of view helps ensure full brain coverage in a large percentage of the population. 
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as the respiratory cycle. The second advantage of a shorter TR is that increasing the total number 

of time points in the resting state dataset improves the statistical power in analyses because it 

increases the temporal degrees of freedom. 

Despite the improvement in spatio-temporal resolution achieved when using a multiband 

EPI sequence, there are some important differences between regular EPI and multiband EPI data. 

First, multiband data can suffer from more artifacts compared with non-multiband EPI. 

In addition, artifacts that are common to regular and multiband EPI can often look 

different in multiband EPI due to the multislice acquisition. An example of this is head motion, 

which can show up as a striped pattern (one line along each simultaneously acquired slice) in 

multiband EPI, due to the interaction between motion and the slice acquisition pattern. A further 

effect of multiband EPI acquisition is that the tissue contrast between gray and white matter can 

be much lower than it is in non-multiband EPI. This reduction in tissue contrast occurs when using 

short TRs, because the slices are excited in rapid succession, giving tissue less recovery time. Due 

to these differences in terms of data acquisition and artifacts, there are some implications for the 

analysis of multiband data. To address the reduced tissue contrast, it is important to make sure that 

the sequence also writes out a single-band reference image (a single fMRI volume, often called 

“SBref”). The purpose of this image is primarily to calibrate the coil profiles to help in the 

separation of concurrently acquired slices, but this SBref image also has good tissue contrast. The 

SBref image can subsequently be used for motion correction and for registration to make sure the 

lack of tissue contrast in the rest of the functional images does not affect these important 

preprocessing steps. Secondly, due to the sensitivity of multiband EPI to distortions, it is important 
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to apply appropriate shimming during acquisition, and to acquire fildmaps that can be used later 

to correct for distortions and aid registration. Finally, head motion can interact with the multi-slice 

acquisition in multiband data causing striping artifacts, as explained previously. Therefore, it is 

particularly important to make sure this potential source of noise is dealt with appropriately when 

preprocessing the data. 

1.4 Independent component analysis  

Independent component analysis (ICA) is a statistical and computational technique 

separating unknown sources that underlie sets of signals, measurements, or random variables. ICA 

is a data driven technique which outlines a generative model for the observed multivariate data, 

which is typically given as a large database of samples. To decompose the data into its components, 

the data must be a linear mixture of some unknown source components, and the mixing mechanism 

of these components is also unknown. The source variables are supposed to be non-gaussian and 

independent of each other. These independent components combine to form the data that is why 

their separation method is called independent component analysis. 

There exist other methods for source separation, such as principal component analysis 

and factor analysis, but ICA is superficial related to these techniques, and is much more powerful 

and capable of finding unknown sources and factors concealed in the data when the other classic 

methods fail completely. 

The data input for ICA can come from many kinds of sources including time series data, 

digital image data or psychometric measurements. This data in many cases is in the form of time 
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series or a set of parallel signals; the term blind source separation is used to characterize this 

problem. Typical examples of input data are mixtures of electroencephalogram signals recorded 

by multiple sensors, interfering radio signals arriving at the mobile phone, BOLD signal of a brain 

functional magnetic resonance imaging, simultaneous speech signals that have been picked up by 

several microphones or parallel time series obtained from some industrial process. 
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2 LITERATURE REVIEW 

Functional magnetic resonance imaging (fMRI) is widely used technique for Brain 

functional connectivity analysis. Predominantly, the resting state networks obtained from fMRI is 

based on the correlation of Blood Oxygenation Level Dependent (BOLD) Signal [6,7]. At this 

time the most widely used acquisition technique is echo planar imaging (EPI) [8] with its high 

acquisition acceleration, and high sensitivity towards BOLD signal, is mainly used in almost every 

fMRI study [9,10]. Repetition Time (TR) of several seconds is required to acquire whole brain 

image. Recent advancement in fMRI acquisition protocols [11], parallel imaging [12,14] and 

sparse sampling technique [15,17] has empowered to accelerate the acquisition speed to a 

considerable factor, with full brain coverage at acquisition time of about one to two seconds. 

Although, parallel imaging is relatively very fast, but we are still not be able to completely 

understand the temporal and spatial characteristics of large-scale brain networks. Reduction in 

scan time by this technique has significant effect on SNR due to the fact that high acceleration 

factor shortens the echo train resulting in a lesser amount of echo time. A typical sensitivity to 

bold signal requires the echo time to be nearly equal to the repetition time TR. An echo time of 

30ms to 40ms is most commonly used in majority of the fMRI studies at 3T due to the critical 

signal loss in areas with strong background susceptibility gradients as in orbitofrontal and temporal 

areas of the brain and SNR reduction at longer echo times. Although T2 of 50ms was found in 

most of the areas of brain [18]. 

Multiband Echo planar or simultaneous multi slice (SMS) is an alternative technique [19] 

used to decrease acquisition time considerably without effecting the echo time and hence not 
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decreasing SNR by scanning of multiple slices simultaneously. Like parallel imaging, spatial 

encoding in multiband imaging relies critically on the varying sensitivities of RF receive coil 

arrays.  Multiple slices can be excited simultaneously by multiband RF pulses [20,21]. These slices 

can be reconstructed easily through SENSE algorithm [22]. Multiband echo planar imaging 

considerably reduces acquisition time by simultaneously exciting multiple slices, i.e. the multiband 

factor (M). Due to a reduced number of sampling with acceleration factor of R, parallel imaging 

is a good way to preserve the spatial information of acquired data but in consequence the SNR of 

the data is decreased. Though, with increasing M-factor the amplification of spatially dependent 

noise may increase depending on coil geometry, which can be quantified by a geometry factor g 

[23].  

In human brain studies, multiband echo planar imaging was first demonstrated by Nunes 

et al [3]. Due to small distance space between the simultaneously excited slices they found a strong 

noise amplification which was causing ill-natured unaliasing problem. To alleviate this, a 

wideband technique [24] was used where they introduce a shift between pixels in phase encoding 

direction by means of unipolar blips in slice direction. This technique helped reduce unaliasing, 

but also resulted in blurring effect due to the effective voxel tilt. This technique is recently 

extended by Setsompop et al. by introducing ‘blipped-CAIPI’ where balanced gradient blips in 

slice direction to achieve alternating phase shifts similar to 'controlled aliasing in parallel imaging 

results in higher acceleration' (CAIPIRINHA) [25,26]. Xu et al. in their study concluded that 

multiband factor of up to 8 can be used without any aliasing when blipped CAIPI is employed 

[27]. They have compared signal leakage between simultaneously excited slices and noise 

enhancement in a systematic way in multiband echo planar imaging using acceleration factor of 
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up to twelve. Simultaneous multi slice imaging has also been used in combination with 

simultaneous echo refocusing and parallel imaging [28,29,30]. Generally, multiband echo planar 

imaging is now mature enough to be used on a broader scale. A number of studies show that these 

acceleration techniques have enhanced the capabilities of task as well as resting state fMRI [31,32]. 
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3 METHODOLOGYData DescriptionThe resting state fMRI data used in this 

research is from “1000 functional connectomes project”, containing data of more than 1200 

subjects and is independently collected at more than 33 sites around the globe. The dataset 

consists of resting state data of 18 subjects in 2 sessions with a TR of 645ms (M4) and 

2500ms (M1) respectively. The first session was acquired at a multiband factor of 4 with 

voxel size of 3x3x3mm, 960 volumes and at a total run time of 10 minutes. The second 

session was acquired at a multiband factor of 1 with voxel size of 3x3x3mm, 120 volumes 

and at a total run time of 5 minutes. The flip angles used for group 1 and 2 was 60 and 80 

respectively. These flip angles were adjusted to have signal strength as maximum as 

possible. The M4 dataset was truncated to have the acquisition time similar to that of the M1 

dataset. It is reported by Van Dijk and colleagues that a scan time of 5 minute is enough to 

detect resting state networks easily.   

For satisfactory registration of functional scan to standard space, T1- weighted scan was 

also acquired for each subject. The voxel size of structural scan was 2mm isotropic, with FOV of 

256 and 36 number of slices. 
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Group 1 2 

No. of Subjects 18 18 

Repetition Time (TR) 645ms 2500ms 

Multiband Factor 4 1 

Sampling Interleaved Interleaved 

Voxel Size 3x3x3 3x3x3 

No. of time points 480 120 

Acquisition Time 5 Minutes 1 Minutes 

 

3.2 Pre processing 

For every fMRI analysis the first step is to preprocess the data. For preprocessing FMRIB 

Software Library (FSL) was used. The preprocessing was done in two steps, Conventional 

preprocessing and Noise reduction, which are discussed in detail in the following sections. 

3.3 Conventional preprocessing 

The common preprocessing steps involved in conventional preprocessing are as follows 
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3.3.1 Brain Extraction 

FSL bet tool was used to remove unwanted tissues like skull and fat. Fractional Intensity 

Threshold (FIT) parameter is used to control the overall segmentation of brain. Default value of 

FIT is 0.5 and should be in the range of 0-1. FIT of <5 segment the brain region larger while FIT 

of >5 segment the brain region smaller. 

A brain mask was also generated and both T1-weighted and functional scan was brain 

extracted. Figure 3.1 shows T1-weigted scan with non- brain tissue. T1-weighted image has high 

resolution, so we used it as first step of brain extraction, a brain mask is generated which is used 

to extract brain in functional scan. A functional scan with non-brain tissue and skull stripped scan 

is shown in Figure 3.2. Figure 3.3 shows a binary brain mask overlaid on top of T1-weighted raw 

scan. 

Figure 3.1: Brain extraction of structural scan 
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Figure 3.2: Brain extraction of functional scan (A) functional scan with skull (B) skull stripped functional scan (C) 

skull stripped structural scan overlaid over raw structural scan 

 

3.3.2 Slice time correction 

Data used in this research is acquired with slices being interleaved. Interleaved means 

that the sequence of slice acquisition is 1-3-5-7-2-4-6-8, this is because if the time required for 

whole volume acquisition is larger, there will be difference in BOLD signal at the first slice and at 

the last slice. Therefore, it is useful to apply slice time correction. 
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Figure 3.3 shows a depiction of slice time correction of interleaved data. Assuming the 

number of slices to be 8 and repetition time to be 2 seconds. The green colored slices were acquired 

first and then the red colored slices were acquired in 1 3 5 7 2 4 6 8 sequence. After slice time 

correction placement of each slice is corrected according to its position. The aim of this step is to 

correct for the slight difference in the time at which each slice of BOLD data was acquired (i.e., 

some slices are acquired at the start of the TR, whereas others are acquired later). When the TR of 

a sequence is, for example, 3 seconds, the difference in slice time acquisition can vary quite a lot 

and it may be useful to apply slice timing correction. However, with the development of 

accelerated multiband EPI sequences, the TR is often closer to 1 second or even less. Given the 

sluggishness of the hemodynamic response function, such small differences in slice time 

acquisition may have little effect on the analysis. Hence, in studies with fast TRs, it may be 

beneficial to avoid using slice timing correction because it also has disadvantages, such as the use 

of interpolation. 

Slice timing correction uses interpolation in time to slightly shift the BOLD timecourses 

of voxels in order to account for these small differences in acquisition time. However, interpolation 

causes a slight temporal smoothing of the data, and therefore results in an unavoidable loss of high-

frequency information. Finally, slice timing correction interacts with motion correction and spatial 

smoothing in ways that are complicated, and typically cannot be corrected fully. 

Whether or not to apply slice timing correction should be determined separately for each 

individual study. This decision should be made based on the TR, and also on the aim of the study 
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and the type of analysis that will be performed after preprocessing (for example, in studies where 

exact timing is crucial to the hypotheses and methods, slice timing correction may become more 

important, even for fast TR data). 

3.3.3 Spatial smoothing 

The next step in conventional preprocessing is spatial filtering, which has the advantage 

of reducing noise. In this step a weighted average of certain numbers of neighboring voxels is 

calculated at each voxel. The amount of spatial smoothing is defined by Full Width Half Maximum 

(FWHM) of Gaussian kernel used to create weighting sum.  

Figure 3.3: Slice time correction 
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The value of FWHM is generally set to 1.5-2 times the size of voxel. So in our study the 

value of FWHM was set to 6mm. Figure 3.4 shows (A) a functional scan with no smoothing and 

(B) a functional scan with spatial smoothing of 6mm. 

However, when deciding on the amount of smoothing to apply to the data, it is also 

important to consider the size of the regions that you are most interested in. For example, if the 

aim of a study is to investigate connectivity in the amygdala (a relatively small subcortical 

structure), then smoothing should be set smaller than the size of the amygdala. In this example, 

Figure 3.4: Left: no spatial smoothing, Right: spatial smoothing of 6mm 
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applying too much smoothing would result in blurring the signal too much in the region that is of 

primary interest for the study. 

In EPI datasets with high spatial resolution (i.e., equal to or less than 2.5 mm isotropic 

voxels) and high temporal resolution (i.e., TR below 1.5 seconds), as well as lengthy timeseries 

(i.e., at least 10 minutes of acquisition), smoothing is not always necessary. The reason for this is 

primarily related to the high number of timepoints available, because more time points leads to a 

higher number of degrees of freedom, which improves the ability to get accurate functional 

connectivity estimates. However, for lower resolution datasets (in particular, when the number of 

time points is relatively low), some degree of spatial smoothing may be advantageous. 

 

3.3.4 Temporal filtering 

Resting state networks are considered to have low signal fluctuations in the range of 0.01-

0.1Hz. The fMRI data acquired initially has a lot of high frequency noise e.g. physiological and 

machine related noise. Therefore, the data is used to be band pass filtered. Figure 3.5 shows a time 

series of a single voxel which has both very low and high frequency fluctuations. If this time series 

is high pass filtered at frequency threshold of 0.01Hz, the linear trend is removed, and the signal 

fluctuates to a common baseline value.  



24 

 

Low pass filtering is not enough as the signal contains high frequency components, which 

is considered noise in resting state fMRI. So, a band pass filter is applied, which removed both low 

frequency fluctuations and high frequency noise. The low frequencies that we aim to remove here 

are ideally lower than the low-frequency fluctuations that dominate the BOLD signal. The amount 

of temporal filtering that is applied is typically expressed using a cut-off frequency or a cut-off 

period. For example, when a high-pass filter with a cut-off of 0.01Hz (or 100 seconds) is used, this 

means that any signal fluctuations that vary more slowly than the cut-off will be (entirely or 

Figure 3.5: Effects of temporal filtering. The raw BOLD signal (extracted from the posterior cingulate 

cortex) shown on the top displays some drift (i.e., the signal amplitude slowly goes up over time). After 

high-pass filtering this drift has been removed from the data, as shown in the graph in the middle (i.e., 

the signal at the start of the sequence is no longer lower than the signal at the end of the sequence). On 

the bottom, the effects of bandpass filtering are shown. Bandpass filtering removes both low and high 

frequencies from the data, resulting in a smoother timecourse. 
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partially) removed Figure 3.5. Essentially, the aim of high-pass filtering is to remove scanner drift 

from the data (i.e., changes in the baseline of the BOLD signal that occur slowly over time as a 

result of the scanner hardware). It is typically advisable to apply high-pass filtering as part of 

preprocessing. The amount of filtering depends on the data quality; in high quality datasets it is 

possible to set a higher cut-off period (1000 seconds) in order to remove less and retain more data, 

whereas lower quality data often use lower cut-off periods (100 seconds) in order to remove more 

noise. In resting state fMRI, more stringent bandpass temporal filtering is sometimes applied.  

3.3.5 Registration 

For group analysis, each subject scan needs to be registered to a standard space. A 

standard space is a coordinate space used to standardize locations of different areas of brain. 

Montreal Neurological Institute (MNI) is a standard space template generated by taking MRI scans 

of large number of healthy subject brain. Another standard template used in MRI research is 

Talairach, which is created by taking photographs of dissected brain slices. The native space in 

which each subject data is acquired has different voxel size and dimensions, so a voxel in one 

Figure 3.6: Depiction of location differences if the data is not co-registered 
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subject’s scan will not cover the same area in the other subject’s scan. So, the main purpose of 

registration is to match the spatial location of each subjects scan to standard scan. 

 

 In registration, first the functional scan is registered to the individual structural scan. In 

the next step, the individual structural scan is registered to standard space. A transformation matrix 

is generated for each step which can be used to transform from one space to another. An inverse 

transformation matrix can also be generated which can be used to transform back to previous space 

e.g. from standard space to individual structural space. This is also important, because if a region 

of interest is selected in standard space, it can be transformed easily into the individual functional 

scan using this transformation matrix. 

Figure 3.7: Registration methods are used to put data from different subjects into the same space so 
that group comparison can be performed. (a) Different images are acquired in different “spaces.” This 
illustrates a two-stage registration process. (b) The first stage of registration involves estimating the required 
transformations (which can either be linear matrices, or non-linear warp images). (c) The second step of 
registration involves applying the transformation in order to resample an image into a different space. The 
transformations can be combined and applied to resample the EPI functional data into standard space. 
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Importantly, the brain can be represented in three-dimensional space as it exists in its 

natural form (also called volumetric space, made up of voxels). However, the gray matter cortex 

can also be represented on a surface made up of vertices. Registration can be performed in 

volumetric space or on the cortical surface. Without going into too much detail, the surface 

representation isolates the ribbon of gray matter that makes up the cortex and either represents this 

as a flattened sheet or inflates it until all the gyral folds flatten out, creating an inflated or spherical 

surface. There is general consensus that registration performed on a surface representation is 

superior for cortical regions, because in volumetric space two regions that lie on opposite sides of 

a sulcal fold would be right next to each other (because of the folding), whereas the surface would 

accurately reflect the biological distance between the same two regions (because they would 

separate as a result of flattening or inflation). It has been shown that much better cross-subject 

alignment of functional areas (and, hence, connectivity) can be achieved through surface-based 

registration, compared with volumetric registration. Additionally, it is beneficial to perform spatial 

smoothing on the cortical surface, rather than in volumetric space, to avoid blurring across the 

sulcal fold. However, surface representations do not capture all the subcortical regions, and these 

regions are known to play an important role in cognitive and clinical neuroscience. Therefore, it is 

necessary to work either in volumetric space, or to adopt a hybrid approach that represents the 

cortex on the surface and subcortical regions as volumes. Such a hybrid approach was developed 

as part of the Human Connectome Project in the form of a grayordinate system. A grayordinate is 

a gray matter location in the brain that is represented either by a surface vertex for cortical regions 

or by a volumetric voxel for subcortical regions. 
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3.4 Nuisance Regression 

Nuisance Regression is commonly used to reduce the effect of structured noise in resting 

state fMRI. There are different versions of nuisance regression, which include physiological noise 

regression, global signal regression, volume censoring and Independent Component Analysis 

(ICA). In this research we used ICA for structured noise removal, which is discussed in detail in 

the following section. 

3.4.1 ICA clean up 

Unlike other model driven techniques for example Seed-based Correlation Analysis 

(SCA), ICA is a data driven technique used for blind source separation without the prior knowledge 

of the sources.  ICA can be used to decompose the resting state fMRI data into a mixture of 

components. These components can either be a resting state network or a structured noise. 

Therefore, this approach is used for cleaning the resting state fMRI after identifying the noise 

components. 

Conventionally pre-processed data of each subject is used when applying ICA for noise 

removal. These noise components are supposed to be extracted from the input data. For this we 

must identify which component is signal and which is noise. There are three criterions for the 

identification process of the components. We investigate the spatial location and its distribution of 

the map, as well as its time series and power spectra. The frequency components lying in the range 

0-0.1 is signal, while other is noise. 
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Independent component analysis (ICA) is a method that can be used to decompose a 

whole brain resting state BOLD dataset into a set of spatially-structured components (Figure 1.2). 

These components are typically a mixture that contains some components that represent 

neuronal signal and some components that represent structured noise. Therefore, ICA can be used 

for clean-up purposes by identifying the noise components and removing these from the data. Note 

that ICA can also be performed at the group-level to identify large scale resting stat. The remainder 

of this section focuses on using single-subject ICA for noise-reduction. When using ICA for noise-

reduction, it should be applied separately to data acquired from each subject (and each run) after 

conventional preprocessing steps (i.e., motion correction, slice timing correction if used, temporal 

filtering, and spatial smoothing if used) have been applied. The output from single-subject ICA is 

a set of components, each of which is described by a spatial map and a timecourse. The number of 

components that should be extracted can be estimated automatically based on the data. Once ICA 

has been run to estimate the components, the next step for ICA-based cleanup is to label each of 

the components as either signal or noise (classification of the components). This can be done 

manually, based on inspecting each of the components, or the labeling can be done using one of 

the available automated or semi-automated ICA classification methods. Once the components have 

all been labeled as either signal or noise, the last step is to 

perform a regression analysis to remove the variance associated with the components labeled 

as noise from the data. There are two options for removing the noise ICA components from 

the data, and they are typically known as “aggressive” and “non-aggressive.” The aggressive 

approach is similar to nuisance regressing and removes all of the variance explained by the 

timeseries of the noise components from the data. This aggressive approach will lead to the 
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removal of all of the variance that can be explained by the timecourses, even if some of that 

variance is shared with signal components. The alternative, non-aggressive approach is to only 

remove the variance that is unique to the noise components and keep in any variance that might be 

related to signals of interest. That is, it keeps variance that is shared between components 

labeled as noise relative to components that are not clearly identifiable as being noise, and 

thus could contain signal. By taking into account the spatial maps and timecourses of the 

noise components, the regression does not fully remove all variance expressed by the noise 

timecourse, but only the part of the variance that is not correlated (i.e., shared) with nonnoise 

components. In order to preserve signal as much as possible, the “non-aggressive” 

approach is typically preferable, because it effectively treats signals as innocent until proven 

guilty 

3.5 Group level ICA 

ICA can be applied to data from a single subject (or run), to identify and remove noise 

components. However, ICA can also be used at the group level to identify large-scale resting state 

networks (such as the default mode network), using resting state from a group of subjects. When 

performing a group-ICA, the inputs are the preprocessed and cleaned resting state BOLD data 

from all subjects (i.e., the components extracted in the single-subject ICA decomposition are not 

needed for the group-ICA). To extract group-level components, it is necessary to combine the data 

from all subjects. Combining resting state fMRI data for a group-level ICA decomposition is 

typically done by spatially registering all subjects to a standard space and then temporally 

concatenating the registered datasets from all subjects together. This means that the dataset from 
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subject 2 is pasted after the last time point of the dataset from subject 1 and so on, effectively 

creating one very long dataset. The concatenated dataset from all subjects is then fed into ICA, 

and components are extracted using data from all subjects. The output from a concatenated group-

ICA still contains a set of spatial maps (one per component, representing the group map), and a set 

of timeseries (a very long timeseries for each component, containing subject 1 first and then subject 

2, etc., in order of the concatenation). Another method for running group-ICA is the tensor ICA 

approach, which combines all subjects in a separate subject-dimension. This approach is preferable 

if all subjects are expected to have similar timecourses (such as when they are all performing the 

same task). However, for resting state group-ICA, the temporal concatenation approach should be 

used. The result of a group-ICA decomposition is a single group-level spatial map for each 

component. However, it is often of interest to run statistical analyses to compare components 

between groups of subjects, for example, to ask questions like: are there any changes in the default 

mode network between patients suffering from depression and healthy control subjects? To 

address this type of question a further analysis is required to calculate subject-specific maps that 

can be compared, and a commonly used approach for this is a dual regression analysis, which is 

discussed in the next section. 

 

3.6 Dual regression 

The two stages of a dual regression analysis are essentially the same as steps two and 

three of an SCA (i.e., extracting the timeseries, and correlating each voxel against the extracted 

timeseries). In fact, if you enter a single seed-based ROI map (instead of multiple group-ICA maps) 
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into a dual regression analysis, the results will be identical to performing an SCA. The key 

difference is that we typically use a set of group-ICA maps as the input for the dual regression 

analysis. This means that instead of a simple correlation, we are performing multiple regression 

for both stage 1 and stage 2 of dual regression. Another important difference is that the group-ICA 

maps contain weights for all voxels, whereas a seed region in SCA is typically a binary mask 

(containing ones within the seed region and zeros in all other areas of the brain).  

As explained in Figure 3.8, the first stage of a dual regression analysis is to perform a 

multiple regression analysis where the group-ICA maps are the spatial regressors (independent 

variables), and the subject’s preprocessed BOLD dataset is the input data (dependent variable). 

The result of this first stage of dual regression is a set of timecourses (one for each group map) 

that describe the temporal structure of each component for that subject (like the timecourse 

extraction stage in SCA). Essentially the timecourses contain information on how much each of 

the components contributed to the overall BOLD signal. These timecourses derived from stage 1 

of the dual regression now become the model input for the second regression. Stage 2 involves the 

second multiple regression analysis, where the temporal regressors obtained from stage 1 

(independent variables) are regressed against the same subject’s preprocessed BOLD data 

(dependent variable). The output of stage 2 of dual regression is a set of maps (one for each original 

group-level ICA component) that describe the network structure based on the data from that 

subject alone. Together, the outputs from stage 1 and 2 give us subject maps that best fit the group-

ICA maps that are used as a starting point. The subject maps can contain either parameter estimates 

(beta values) or Z-statistics (which have been normalized by the within-subject noise) at every 

voxel. While either of these types of maps can be used for further group-level analysis, it is the 
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beta maps that are most commonly used. The outputs from stage 2 of the dual regression (i.e., the 

subject maps) are subsequently used for between-subject analyses. Specifically, the subject-

specific maps can be used for group-level comparisons to study differences in network structure 

between subjects (which is sometimes called stage 3 of dual regression). For example, you can ask 

in what regions a certain network might differ in shape or strength between a group of patients and 

a group of healthy control subjects. Or you can look at individual difference analyses, for example, 

in what regions of the brain the shape or size of a network varies across subjects in a way that is 

linked to a cross-subject measure such as disease severity, or mathematical ability. It is important 

for the dual regression approach that each stage involves a multiple regression analysis. This means 

that regressors corresponding to all the components are entered into the model together and the 

best fit of each regressor is calculated while taking into account the influence of the other 

Figure 3.8: Dual regression is a two-stage process aimed at obtaining component spatial maps for every 
subject. The data input to the multiple regression analysis is the same in both stages (i.e., the preprocessed 
BOLD data from one subject). The model input for stage 1 contains the set of ICA components from 
the group-ICA. The outputs of stage 1 are the subject-specific component timeseries for each group 
component of interest, and these are used as the model input for stage 2 of the dual regression analysis. 
The spatial maps that are obtained from stage 2 can be used in a group analysis. 
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regressors. Remember that in our case the regressors for stage 1 of the dual regression represent 

the group-ICA maps. The set of components obtained from a group-ICA fully represent the group 

data (at least, the part of the group data that was kept after the PCA data reduction step). Group-

ICA decomposition commonly results in multiple structured noise components even after 

performing careful clean-up of the subject data, because some structured noise is only detected by 

ICA when data from all subjects are analyzed at the same time. Therefore, the timecourses that are 

the output from the multiple spatial regression (stage 1 of the dual regression) represent the unique 

signal associated with each component, while the noise components capture confounding, 

unwanted noise timecourses as long as they are entered into the same multiple regression analysis. 

For this reason, it often is useful to include all of the components extracted from the group-ICA in 

the dual regression analysis, even if you are only interested in looking at a few of them in 

subsequent analyses. This essentially provides another useful way to denoise the single-subject 

estimates, by using noise components that exist on average at the group level. Further, within the 

dual regression procedure we go back to the full original timeseries data at both stages of the 

analysis. 

 

3.7 Randomise 

A common statistical problem in neuroimaging studies (that occurs in relation to null 

hypothesis testing) is the multiple comparisons problem (also called the multiple testing problem). 

In order to localize the effects of our analyses in the brain, we typically perform many tests at 

different locations in the brain (e.g., at each voxel). If the tests are being performed independently 
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(like in the SCA approach described at the start of this chapter) then this is typically referred to as 

a mass univariate analysis. In standard statistics, a p-value threshold of 0.05 implies that we accept 

a 5% chance of obtaining a false result when there is no signal. Hence, on average 1 in 20 of the 

tests we perform will show a significant result by chance, when there was actually no real effect 

there. When using a p-value threshold of 0.05 in a whole brain analysis across 20,000 voxels (i.e., 

we are performing 20,000 univariate tests), 5% of those, i.e., 1000 voxels in the brain will show 

up as being significant when there is no true effect in those voxels (they are false positives). From 

this example it should be clear that when we perform a large number of tests it is essential to apply 

some form of correction to control the number of false positives and address the multiple 

comparisons problem. Without appropriate correction for multiple comparisons the results of a 

study are highly problematic and uninterpretable because it is impossible to know which findings 

reflect true activation/connectivity, and which are false positives. While some studies containing 

uncorrected results can be found in the literature, this is poor practice that is no longer accepted by 

journals and reviewers. When writing up your results for publication, it is essential to specify the 

type of correction applied, to enable replication and to help your audience interpret the findings. 

In practice, the two most common approaches to multiple comparisons correction applied in 

neuroimaging are the family-wise error rate correction (FWE) and the false discovery rate 

correction (FDR). These two approaches are briefly explained here, but much more detailed 

information about multiple comparison correction can be found elsewhere. 
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n Confidence limits for p=0.05 

100 0.0500 ± 0.0436 

500 0.0500 ± 0.00195 

1,000 0.0500 ± 0.0138 

5,000 0.0500 ± 0.0062 

10,000 0.0500 ± 0.0044 

50,000 0.0500 ± 0.0019 

 

In randomise the number of permutations to use is specified with the -n option. If this 

number is greater than or equal to the number of possible permutations, an exhaustive test is run. 

If it is less than the number of possible permutations a Conditional Monte Carlo permutation test 

is performed. The default is 5000, though if time permits, 10000 is recommended. 
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4 RESULTS 

Contrast 2 results shows that we have no significant difference between group A and 

group B Default Mode Network. The p-value selected for testing is 0.001. After selecting the p-

value range, there is no number of voxels that shows significant difference. The deduced results 

from the comparison shows that there is no significant difference in the sensitivity of the Default 

Mode Network. Figure 4.1 shows the result of dual regression by applying t-test on the two groups 

data. The heatmap shown in this figure is the z-statistics values. In (A) we supposed that the 

sensitivity of default mode network in multiband factor of 4 is greater than that of Mb factor of 1. 

Therefore, the result shows that there is no single pixel showing significant difference. While the 

the other two maps are (B) and (C) are the group means of both the datasets resulted by taking 

independent t-test of each the dataset. 
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Figure 4.1: The heatmap shown in this figure is the z- statistics values. (A) is the group comparison result where there 

is no pixel showing significant difference. (B) map shwon in this figure is the z-values of indepandent sample t-test result. (C) map 

shwon in this figure is the z-values of indepandent sample t-test result. 

4.1 Statistical Analysis 

In addition to spatial investigation of differences in sensitivity of Default mode network 

further investigation was done by calculating number of voxels in each subject’s DMN map. To 

normality of the data a well-known “Shapiro Wilk test” was applied. The p values in the graph 

shows that the distribution is normal, and we can do group comparison on the data. 
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Figure 4.2: Shapiro Wilk test result, showing that the data distribution of both the groups are normal. 

A two-sample independent t-test was used to check group differences. Each voxel’s z-value was 

arranged in an array for each group.  A p value of 0.001 was selected group differences 

investigation. Although the number of voxels in each group default mode network is different but 

the resulted p value shows that there is no significant difference in functional sensitivity of DMN 

as shown in Figure 4.3. 
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Figure 4.3: Box-plot of number of voxel in each group 
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