

 FNIRS DATA CLASSIFICATION FOR BRAIN COMPUTER

INTERFACE USING DEEP LEARNING

AUTHOR

AHMAD SUBHANI

REGN NUMBER

115577

SUPERVISOR

DR. SYED OMER GILANI

DEPARTMENT OF BIOMEDICAL ENGINEERING AND SCIENCES

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

SEPTEMBER 2019

fNIRS Data Classification for Brain Computer Interface Using

Deep Learning

Author

Ahmad Subhani

Regn Number

00000115577

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Biomedical Engineering

Thesis Supervisor:

Dr. Syed Omer Gilani

Thesis Supervisor’s Signature: ____________________________________

DEPARTMENT OF BIOMEDICAL ENGINEERING AND SCIENCES

SCHOOL OF MECHANICAL & MANUFACTURING ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

SEPTEMBER 2019

i

Thesis Acceptance Certificate

It is certified that the final copy of MS Thesis written by Ahmad Subhani (Registration No.

00000115577), of SMME (School of Mechanical & Manufacturing Engineering) has been vetted

by undersigned, found complete in all respects as per NUST statutes / regulations, is free of

plagiarism, errors and mistakes and is accepted as partial fulfillment for award of MS/MPhil

Degree. It is further certified that necessary amendments as pointed out by GEC members of the

scholar have also been incorporated in this dissertation.

 Signature:

 Name of Supervisor: Dr. Syed Omer Gilani

 Date:

 Signature (HOD):

 Date:

 Signature (Principal):

 Date:

ii

National University of Sciences & Technology

 MASTER THESIS WORK

We hereby recommend that the dissertation prepared under our supervision by: Ahmad

Subhani (REG# 115577) Titled: “fNIRS data classification for Brain Computer Interface

using Deep Learning” be accepted in partial fulfillment of the requirements for the award

of MS degree. GRADE : __

Examination Committee Members

1. Name: Dr. Muhammad Jawad Khan Signature:_______________

2. Name: Dr. Saima Zafar Signature:_______________

3. Name: Dr. Umer Ansari Signature:_______________

Supervisor’s name: Dr. Syed Omer Gilani Signature:_______________

Date:___________________

Head of Department

Date

 COUNTERSINGED

Date: _________

Dean/Principal

FORM TH-4

iii

Declaration

I certify that this research work titled “fNIRS data classification for Brain Computer

Interface using Deep Learning” is my own work. The work has not been presented elsewhere for

assessment. The material that has been used from other sources it has been properly acknowledged

/ referred.

Signature of Student

Ahmad Subhani

00000115577

iv

Plagiarism Certificate (Turnitin Report)

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is

attached.

Signature of Student

Ahmad Subhani

Registration Number

000001155777

Signature of Supervisor

Dr. Syed Omer Gilani

v

Copyright Statement

• Copyright in text of this thesis rests with the student author. Copies (by any process) either

in full, or of extracts, may be made only in accordance with instructions given by the author

and lodged in the Library of NUST School of Mechanical & Manufacturing Engineering

(SMME). Details may be obtained by the Librarian. This page must form part of any such

copies made. Further copies (by any process) may not be made without the permission (in

writing) of the author.

• The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST School of Mechanical & Manufacturing Engineering, subject to any prior

agreement to the contrary, and may not be made available for use by third parties without

the written permission of the SMME, which will prescribe the terms and conditions of any

such agreement.

• Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST School of Mechanical & Manufacturing

Engineering, Islamabad.

vi

Acknowledgements

Glory be to Allah, the Exalted, with all His Praise; True Glory belongs to Allah Who is free of all

faults, free of all needs!

I am immensely grateful to my supervisor Dr. Omer Gilani for his valuable time and guidance during

this thesis, for correcting my direction and keeping me motivated in the times of need. I am especially

thankful to my co-supervisor Dr. Jawad Khan and his team from Pusan National University for

providing me with access to their excellent fNIRS data and for his valued guidance in the project as

well as in content generation for exams and research paper.

I am thankful to my parents for their unwavering care and patience; for being the refuge I could always

return to for: strength, inspiration, and motivation.

I am thankful to the department’s faculty for their help during coursework and for their guidance in the

projects.

Finally, I am very thankful to my dear friends Suhaib Sadiq, Ahmed Raza, Atif Sultan, Azeem Alvi,

Zaeem Hadi, Zaid Ahsan Shah, Saad Habib and to Sarosh Bilal, Amna- and Sonia -Malik. Thank you

for your valuable ideas, reviews and continuing emotional support.

 ahmad subhani

vii

Dedicated to the future of physically and mentally challenged, to their

struggles and dreams.

viii

Abstract

Brain Computer Interfaces (BCIs) translate recorded brain data directly to machine

commands that can be used to control external devices. They are composed of three different

functions i.e. recording of data from the brain, processing of data to recognize the intention of the

subject and translation of the data into appropriate command for the machine being controlled.

Functional near-infrared spectroscopy (fNIRS) is among one of the brain signal recording

techniques which uses near-infrared spectroscopy (NIRS) for functional neuroimaging. It uses

near-infrared light wavelengths (between 650 and 1000 nm) to measure the optical absorption

changes of brain tissues. Use of fNIRS for BCIs limited because of slow hemodynamic response

to stimulus, blood flow in scalp and undeveloped techniques for classifying signals.

In this thesis we train Convolutional Neural Networks to classify fNIRS signals for BCIs.

These networks classify raw signals with more than 95% testing accuracy for cognitive and

imagery tasks with upto five separate categories in less than two milliseconds, (dependent on the

processing power available), thus showing promising improvement in current classification

efficiency.

ix

Table of Contents

Thesis Acceptance Certificate ... i

FORM TH-4 .. ii

Declaration.. iii

Plagiarism Certificate (Turnitin Report)... iv

Copyright Statement ... v

Acknowledgements .. vi

Abstract ... viii

Table of Contents ... ix

List of Figures ... xi

List of Tables ... xii

CHAPTER 1: INTRODUCTION .. 1

1.1 Background, Scope and Motivation ... 1

1.2 Research Problem ... 2

CHAPTER 2: Literature Review .. 3

2.1 Understanding the Working of FNIRS and CNNs ... 3

2.1.1 Functional Near-Infrared Spectroscopy (fNIRS) .. 3

2.1.2 Convolution Neural Networks (CNNs) .. 8

CHAPTER 3: Methods and Materials .. 13

3.1 Experimental Paradigm and Data Specifications ... 13

3.2 Methods .. 17

3.2.1 Preparation of data and Objectives ... 17

3.2.2 Preprocessing Before Training CNN models ... 17

file:///C:/Users/ahmad/Desktop/thesisied.docx%23_Toc23861758
file:///C:/Users/ahmad/Desktop/thesisied.docx%23_Toc23861758
file:///C:/Users/ahmad/Desktop/thesisied.docx%23_Toc23861758

x

3.2.3 CNN and it’s training .. 17

3.3 Methodology .. 20

3.3.1 Preparation of Data ... 20

3.3.2 Conversion of Trials to 2D Tensors and their storage .. 21

3.3.3 CNN and its training ... 22

3.3.4 Platforms/Tools used for Methodology .. 24

Chapter 4: Results and Discussion .. 25

4.1 Performance of selected hyperparameter ranges .. 25

4.2 Effects on performances with different hyperparameters .. 26

4.2.1 Number of Convolution Layers .. 26

4.2.2 Number of Dense Layers .. 27

4.2.3 Number of Kernels and Nodes .. 27

4.3 Different Accuraccies and Losses .. 29

4.3.1 Epoch Accuracy and Loss ... 29

4.3.2 Epoch Validation accuracy (epoch_val_acc) and epoch validation loss

(epoch_val_loss)... 29

4.3.3 Testing Accuracy .. 30

Summary and Conclusion .. 32

APPENDIX .. 33

5.1 MATLAB CODES FOR FNIRS DATA PREPARATION ... 33

5.2 PYTHON CODES.. 39

REFERENCES .. 45

ORIGINALITY REPORT ... 48

Digital Receipt ... 53

xi

List of Figures

Figure 2.1: Placement of NIRS Emitters and Detectors on the scalp ... 4

Figure 2.2: A typical cap worn on head over which these optodes are attached 4

Figure 2.3: Light spectrum with Near IR just after the visible spectrum (Left) and Absorption

Spectra of Hemoglobin and oxy-Hemoglobin (Right).. 5

Figure 2.4: Spikes and Baseline shift artifacts shown left and right respectively 6

Figure 2.5: OxyHb oscillations at cardiac frequency (1 Hz) and at M-wave frequency (0.1 Hz)

enhanced with deep breathing at 0.1 Hz. .. 7

Figure 2.6: Flow chart showing a typical CNN .. 9

Figure 2.7: Application of Convolution Kernels over input tensors and feature maps 10

Figure 2.8: Most common activation functions sigmoid(left) and ReLU(right) 11

Figure 3.1: Locations of placed optodes in the experiment with reference to their EEG locations

... 13

Figure 3.2: Three phases of trials and their division ... 15

Figure 3.2: The Phases of Trials ... 21

Figure 3.3: Illustration of an Image [72 rows and 10 columns (1second)] 21

Figure 3.4: Pattern Diagram of used CNNs .. 22

Figure 4.1 : Classification times and accuracies with different number of convolution layers 26

Figure 4.2 Classification times and accuracies with different number of dense layers 27

Figure 4.3 Classification times and accuracies with different number of kernels and weights 28

Figure 4.4 : Progress of epoch acccuracies and losses .. 29

Figure 4.5: Progress of models with respect to validation accurcies and validation losses 30

Figure 4.6: Predictions (Dark) vs Ground Truths (Light) ... 31

Figure 4.7: Test data analyses ... 31

xii

List of Tables

Table 2.1 Parameters and Hyperparameters of Convolutional Neural Networks 12

Table 3.1 Last Layer Activation choices .. 20

Table 3.2 Summary table of parameters and Hyperparameters .. 20

Table 3.3: Summary of trials of each class for quinary classification .. 22

Table 3.4 Hyperparameter range for comparing accuracies ... 23

Table 3.5 Chosen Optimization methods and other procedure hyperparameters 23

Table 3.6 Specifications of system used for testing data .. 24

Table 4.1 Summary of results with different hyperparameters... 25

Table 4.2 Classification times and accuracies with different number of convolution layers 26

Table 4.3 Classification times and accuracies with different number of dense layers 27

Table 4.4 Classification times and accuracies with different number of kernels and weights 28

1

CHAPTER 1: INTRODUCTION

1.1 Background, Scope and Motivation

Brain Computer interfaces refer to the interfaces that provide a communication channel between a

brain and a computer. These interfaces translate recorded brain data to machine commands that

can be used to control external devices[1], [2]. They usually perform three different functions i.e.

recording of data from the brain, processing of data to recognize the intention of the subject and

translation of the data into appropriate command for the machine the subject is controlling. Data

for BCIs can be recorded by various techniques. FNIRS is a neuroimaging technique used to study

brain activation and brain disorder treatments, it uses sources and detectors of near infrared

wavelengths (650-1000nm) of light to detect changes in the brain tissue [3], [4]These Sources and

Detectors are attached non-invasively on the surface of head where light passes through the skull

and falls upon the brain tissue before being reflected to the detectors. The amount of light reflected

to the detectors depends on the light absorption characteristics of hemoglobin which is indirectly

dependent on brain activation. Thus, brain activation can be quantified using fNIRS measurement.

 Brain Computer interfaces can be very useful to patients with neurological pathologies

such as ALS, Locked-in syndrome in gaining control over their lives and being independent[1].

These interfaces allow the subjects to control devices bypassing their own internal neural pathways

that may not be working e.g. in controlling a prosthetic limb using BCIs amputees can control the

prosthetics and gain some function back of their limbs similarly other patients that have mobility

issues can also control devices such as wheel chairs, Hospital Beds and other commonly used

electrical devices. BCIs can also facilitate healthy subjects in improving their efficiency and

allowing better control with added functions to commonly used devices.

 An ideal BCI should be affordable and comfortable for the subject, it should be accurate

and fast moreover it should be able to conduct complex tasks that involve a large number of

commands. Required tasks vary in complexity from being very simple such as binary tasks with

only two commands to very complex requiring dozens of actions to be conducted either in parallel

or in sequence[5]. To cater these needs we need a reliable neuroimaging and robust classifiers.

 According to current trends, BCIs mostly use EEG for fast detection but it is used for

reactive tasks that require cues for the subject to start[6]. More research is required for active

2

command generating by the subject and for working with cognition-based tasks. Fnirs in

comparison to EEG is a relatively new technique which has shown promising results for BCIs

using both active commands and for cognition-based tasks since it uses variations in

oxyhemoglobin and deoxyhemoglobin changes.[7]

1.2 Research Problem

 Although its use has shown promising results for BCIs, fNIRS relies on the slow

hemodynamic response which takes up to 17 seconds for the signal to reach maximum potential.

This induces an inherent delay in decoding signals. In the past various feature extraction such as

ARMAX modelling, Adaptive Independent component Analysis etc. and classification techniques

such as Linear Discriminant Analysis, Support Vector Machines, Artificial Neural Networks have

been used with Fnirs. These techniques rely on statistical features that need to be extracted before

classification.[8]

Convolution Neural Networks (CNNs) have been shown to classify Neural signals with

higher efficiency, some very recent papers have also shown promising results to classify fNIRS

signals[9]. In this thesis we propose to improve the accuracy and timing of current classification

techniques by using CNNs for Quinary classification including cognitive tasks since most locked

in patients can’t generate motor imagery signals as efficiently as normal healthy patients.[10], [11]

3

CHAPTER 2: Literature Review

2.1 Understanding the Working of FNIRS and CNNs

In this thesis Convolution Neural Networks have been used to classify Fnirs data for

Quinary (Five Categories) Classification. It is therefore necessary to understand the working of

Fnirs and CNNs. This segment describes the fundamentals of fNIRS and CNNs

2.1.1 Functional Near-Infrared Spectroscopy (fNIRS)

2.1.1.1 Theory and Data Recording

fNIRS is the use of near-infrared spectroscopy (NIRS) for the purpose of functional

neuroimaging to measure the optical absorption changes of tissues. It measures brain activation

indirectly through the scalp relying on the change in reflected light from the brain tissue [7]. When

a brain area is activated it causes increase in metabolic activity causing an increased cerebral blood

flow in the respective area, since near infrared light's reflection is dependent on the amount of

blood [12]it is incident upon therefore this increased blood flow changes the amount of reflected

light towards the detector. fNIRS is cheaper than modalities like FMRI and PET scan but with

lower spatial resolution[13], it is also less sensitive to motion than fMRI, so it reduces noise and

is comfortable for children [3]. This also makes it more suitable for long measurement and tasks

which require movements.

To measure brain activation subjects are made to wear caps on which probes of detector or emitter

optodes are attached. Every emitter emits near-infrared wavelengths of light that pass through the

human skull and are reflected to the detectors where blood oxygenation levels are quantified.

Figure 1.1 shows a typical configuration of a source and detector optodes and how they are

attached as probes to a wearable cap. Each pair constitutes an fNIRS channel. Since the reflected

light depends on the hemoglobin in the tissue, we can use modified Beer lambart Law to quantify

changes in hemoglobin. [12], [14]

4

Figure 2.1: Placement of NIRS Emitters and Detectors on the scalp

Fnirs is a noninvasive technique for neuroimaging that can be used for Brain Computer Interfaces,

other non-invasive modalities include Fmri and EEG. fNIRS in comparison to EEG and fMRI is

easier and cheaper to record. It is also less prone to movement artifacts which makes it suitable for

long term experiments. It also allows it to be commonly used with unstable subjects such as

children.

Figure 2.2: A typical cap worn on head over which these optodes are attached

The spatial resolution in detecting hemodynamic response of brain is better than detecting neuronal

response to stimulus in EEG, but the temporal resolution is much lesser than EEG. These separate

characteristics and the fact that they do not interfere with each other during simultaneous recording

allows the use of both techniques together. Several studies under the name of Hybrid-BCIs record

simultaneous data from EEG electrodes and Fnirs optodes. [13], [15]

5

2.1.1.2 Fnirs Signal

Although three types of NIRS devices can be used to record fNIRS signals. Continuous Wave -

NIRS (CW-NIRS) devices are the most popular since they are simpler, cheaper and portable. They

only measure the light attenuation so absolute value of hemoglobin concentration is not

determinable[16] . Each channel configured using CW-NIRS uses values of molar coefficients and

values of DPF to calculate concentration changes if change in hemoglobin concentration in tissue

remains constant. This is not always true however precise quantification can be skipped as overall

trends remain the same so a suitable combination of extinction coefficients and DPF can be chosen

for concentration changes. An Fnirs signal can contain three types of noises that are often necessary

to remove before further analysis.

Figure 2.3: Light spectrum with Near IR just after the visible spectrum (Left) and

Absorption Spectra of Hemoglobin and oxy-Hemoglobin (Right)

a. Motion Artifacts

Motion artifacts appear as sharp peaks and baseline shifts in the data due to movements of head

during recording and unstable connection with the scalp, they are avoided at all costs and usually

whole data is rejected if they are too many. In cases they can’t be ignored e.g. when dataset is

small or when they can’t be avoided like recordings from children It is better to remove the artifacts

and restore the signal. [8], [14], [17]

6

Figure 2.4: Spikes and Baseline shift artifacts shown left and right respectively

Several methods are used for removing spike motion artifacts such as recording additional data

about movements of the subject using reference channels ; Principal Component Analysis (PCA)

based on the fact that these artifacts appear in the form of peaks at the same time in several

channels; techniques making use of the fact that motion artifacts are always positively correlated

in Hb and HbO while normal data is always inversely correlated; and spline interpolation.

Detecting baseline shift due to motion is tricky since it very closely resembles hemodynamic

response of the brain. Therefore, complex techniques are required to distinguish these as quickly

as possible in BCIs.

b. Instrumental Noise

Instrumental noise is a random white noise which can be filtered using simple low-pass filtering

techniques. Techniques such as block averaging, Moving Average and cutting off higher

frequencies after data conversion to frequency domain are used. However, sensitivity of these

techniques needs to be determined manually to avoid distorting data.[13], [18]

c. Physiological Noise

Physiological noise is added to fnirs signal due to several systemic physiological changes other

than the hemodynamic response, activities such as changes in blood pressure, heart rate,

respiration, Mayer wave, blood flow outside the brain beneath skull that are superficial layers.

7

These components of the signal known as physiological noise are defined by Schlokman as any

non-functional brain activity. [13], [14], [18]

Figure 2.5: OxyHb oscillations at cardiac frequency (1 Hz) and at M-wave frequency (0.1 Hz)

enhanced with deep breathing at 0.1 Hz.

Various ranges of lower thresholds of frequencies of a typical hemodynamic response have been

reported in literature. For instance, lower cutoffs such as 0.5Hz (Keles, Barbour, & Omurtag, 2016;

Yücel, Selb, Boas, Cash, & Cooper, 2014; Cui, Bray, Bryant, Glover, & Reiss, 2011) and 0.4Hz

(Spichtig, Scholkmann, Chin, Lehmann, & Wolf, 2012).

i. For non-overlapping ranges

Higher frequency components can be removed using low pass filters, similarly very slow-moving

components (0.01Hz or lesser) can be removed using high pass filters. Other common filtering

techniques such as wavelet filtering, smoothing etc. can also be used.

ii. For Overlapping Ranges

Components with frequency range (0.01-0.5Hz) such as Respiration and Mayer wave overlap with

the Fnirs signal therefore normal low-pass of high pass filters can’t be used to remove these noises.

8

Several Methods are used e.g. method proposed by Zhang (2005) which uses information of

physiological noise from in baseline data. Zhang proposes that physiological noise remains nearly

same during baseline recording and during activity for the same subject so estimated noise from

baseline can be removed from the active data recordings. Another method as discussed before in

removing motion artifacts is the use of reference channels that are placed very close to each other

(3cm), so the light does not reach brain are used. They record superficial components of data

without being affected by brain activity thus providing an estimate of noise. In a similar fashion

sometimes causes of physiological noise such as heart rate, respiration, and blood pressure are

monitored with separate sensors along with fNIRS recording. Just like removing motion artifacts

Principal Component analysis is used to remove estimated physiological noise from the data.

2.1.2 Convolution Neural Networks (CNNs)

A Convolutional Neural Network is a category of Artificial Neural Networks that does not require

separately extracted features before classification. CNNs are designed in a grid like pattern

inspired from an animal visual cortex to automatically learn important features present in the data

at different spatial hierarchies through different layers such as convolution layers, pooling layers

and fully connected layers. In very simple words a CNN finds what to find from comparing and

optimizing results. [9], [19]

A typical CNN processes date in three types of layers most frequently connected in series namely

Convolution Layer, Pooling Layer and a fully connected layer also known as Dense Layer. Before

passing data to these layers the data is usually but not necessarily normalized and down sampled

according to the complexity of required spatial features. The Layers are described in detail as

follows

9

Figure 2.6: Flow chart showing a typical CNN [9], [20]

2.1.2.1 Convolution Layer and Activation

A convolution layer is made up of fixed number of convolution kernels that have a pre-defined

size. These kernels are basically small matrices usually 2x2 or 3x3 with default starting values that

are updated to extract features. These kernels are convolved with input i.e. an element wise product

is obtained between elements of the convolution kernel and the values of input is calculated at each

location and summed. This process is shown in FIGURE 2.7

In figure an Input matrix also known as input tensor is element-wise multiplied and summed up to

the output also known as a feature map, figure b and c show that this process is repeated for each

location and feature maps are obtained. Various paddings, mostly zero padding can be used to

convolve boundary values of the input tensor with the convolution kernels. [20], [21]

10

Figure 2.7: Application of Convolution Kernels over input tensors and feature maps

For CNNs containing more than one Conv layers feature maps of previous layer are dealt as input

tensors of the next layer.

Other important terms include stride length, the distance between two locations on which kernels

are applied is known as stride length, stride length is usually kept one. Moreover, kernel weights

are shared and kept same for all the locations of input tensors which allows kernels to detect local

patterns and increase model’s efficiency.

11

Activation Functions

Output of convolution layers is then fed through non-linear activation functions before down

sampling. Most of the modern CNNs use rectified linear unit (ReLU) function [19], [22]which can

be stated simply in an equation as

F(x) = max (0, x)

Figure 2.8: Most common activation functions sigmoid(left) and ReLU(right)

2.1.2.2 Pooling Layer

Several Down sampling techniques such as max pooling and global average pooling can be used

after application of non-linear activation functions. In max pooling portions from input feature

maps are obtained and maximum of each portion is kept while deleting all other values. Max

pooling kernel sizes are specified before training. [Figure] shows the functioning of a max pooling

layer. In a similar but more severe fashion global average pooling reduces the dimensions of each

input feature to a 1 by 1 value by taking average of all values. This allows dramatic decrease of

variable input tensors to one value. It is important to note that down sampling decreases the size

of tensors therefore limiting the complexity of a convolutional neural network. [9]

2.1.2.3 Fully Connected/ Dense Layer

Output of non-linear activation or pooling layers is then converted to one dimensional array and

connected to one or more fully connected flat (One Dimensional) layers. In these layers every

input and output are connected through a learnable weight. Each connected layer is also passed

through non-linear activation functions such as ReLU. The final flat layer typically has the same

number of nodes as the number of classes the input data must be classified into.

12

Last layer’s activation function is chosen very carefully and is usually different from previous fully

connected layers. One of the most common used layers is SoftMax, which normalizes the results

between 0 and 1 based on the probability of each class.

Parameters and Hyperparameters are summarized in the table below

Table 2.1 Parameters and Hyperparameters of Convolutional Neural Networks

13

CHAPTER 3: Methods and Materials

3.1 Experimental Paradigm and Data Specifications

Two open source data-sets [23], [24] were used together to train Convolution Neural Networks,

both contained experiments commonly used for Brain Computer Interfaces namely

Word Generation (WG), Motor Imagery (Different tasks for left- and right-hand motor imagery

(L- and R-MI)) and Mental Arithmetic (MA). Each experiment contained both resting state data

and activity. In resting state data, the subject did not perform the task and relaxed and in Active

trial the subject performed the mentioned tasks.

During the recording a montage of sources and detector probes were attached to the skin through

a cap on the head of a subject. The source optodes emit near-infrared light which is reflected from

the brain tissue and is received by the detector. This near Infra-red light is relatively left

unabsorbed by the brain tissue and bone and its absorption chiefly depends on the amount of

hemoglobin it encounters. 36 Channels were configured using adjacent sources and detectors in

the data as shown in the figure (Dark Circles)

Fnirs Channels Used Quinary Classification can be seen in red in the following diagram

Figure 3.1: Locations of placed optodes in the experiment with reference to their EEG

locations

14

Experimental Paradigm

Dataset A

The subjects sat on a comfortable armchair in front of a 50-in white screen. The distance between

their heads and the screen was 1.6 m. They were asked not to move any part of the body during

the data recording. The experiment consisted of three sessions of left- and right-hand MI and, MA

and baseline tasks (taking a rest without any thought) each. Each session comprised a 1 min pre-

experiment resting period, 20 repetitions of the given task and a 1 min post-experiment resting

period. The task started with 2 s of a visual introduction of the task, followed by 10 s of a task

period and resting period which was given randomly from 15 to 17 s. At the beginning and end of

the task period, a short beep (250 ms) was played. All instructions were displayed on the white

screen by a video projector. MI and MA tasks were performed in separate sessions but in

alternating order [i.e., sessions 1, 3 and 5 for MI and sessions 2, 4, and 6 for MA].

Dataset B

The participants sat on a comfortable chair in front of a 24’ LCD monitor. The distance between

the participants’ eyes and the monitor was approximately 1.2 m. They were instructed to keep their

eyes on the monitor and refrain as much as possible from moving their body throughout the data

recording. The experiment consisted of three sessions of n-back, DSR, and WG task each.

Only Word Generation task was selected from these three tasks to be used for training data for

both binary and quinary classification since it contained temporally separated trials

Temporal Sequence of Tasks in both data-sets

Each trial started with a 2s instruction on a screen. The subject performed the instruction in the ten

seconds after the initial two seconds. Task period always started with a short (250ms) beep and

ended with a STOP sign on the screen which was displayed for 1 second. The task period was

followed by 13-17 seconds of rest period before the next instruction was shown.

Figure [] shows the temporal sequence of all tasks.

15

Figure 3.2: Three phases of trials and their division

Classes of Data

For the quinary classification the task trials were categorized into Right motor imagery (RMI),

Left Motor Imagery (LMI), Mental Arithmetic (MA), and Word generation (WG). Both datasets

were used in epoching of data. Our classifier needs to be able to detect the first second of active

trials from remaining seconds of the trial. It also needs to classify the type of active trial it is from

LMI, RMI, WG & MA.

Word Generation Task (WG)

Instructions in the initial two seconds either showed a fixation cross or a random letter from the

alphabet. Subjects had to rest or generate words from the shown letter in the 10 seconds of task

after which they rested 13-15 seconds. This task produced 780 trials of both rest and intentional

rest.

Right Hand and Left-Hand motor imagery (RMI & LMI)

Subjects imagined moving their left or right hand depending on the instruction shown in the initial

two seconds. This task provided 870 trials of both Left- and Right-Hand Motor Imagery.

Mental Arithmetic (MA)

In this task subjects were shown multiple arithmetic questions on screen which they had to solve

mentally in the ten second task period. This task constituted of 870 Active trials and 870 intentional

rest periods.

Resting Periods or Baseline (Rest)

16

In WG and MA tasks subjects were also explicitly directed half of the time to relax instead of

performing the task. These intentional rests, and resting periods after the tasks will together be

called as resting periods.

17

3.2 Methods

3.2.1 Preparation of data and Objectives

Data preparation is often used to describe the storage of data where each trial is stored with its

class label so it can be used to train CNN’s. It is best to divide the data into three different types

with as much homogeneity as possible namely Training, Validation and Testing data. [9], [19]

Training data which composes of majority of the data is used to train CNN to recognize the features

from different trails and improve its classification method. After training CNN apply the learned

parameters to the validation data to determine its accuracy and to keep a check on whether the

network is not overfitting or “memorizing data”.[25] Testing data is used after the training and

validation process to test the final accuracy of models over completely unfamiliar trials of data.

Testing accuracy reveals the real accuracy and thus is the best measure of goodness of a model. It

is often used to choose the best model from a bunch of trained models. Other efficiency constraints

along with accuracy of classification include the average time a model take to classify a presented

trial. This is also measured over the testing data. Each trial’s duration may be measured separately,

and statistical analysis is applied over it.

3.2.2 Preprocessing Before Training CNN models

One of the best features of CNN is that it does not need to be fed with explicitly extracted features,

since convolution layers extract useful features automatically in a hierarchal manner. This avoids

bias of explicit feature extraction which may ignore important features.

Several methods can still improve efficiency of CNNs significantly e.g. Down sampling of data,

resizing all images to same sizes and Data normalization into a [0-1] range are among the most

popular and useful methods.

3.2.3 CNN and it’s training

To accommodate the need of speed of a classifier while keeping it complex enough so it can

accurately classify enough classes, A compromise between complexity and speed of classification

is unavoidable. In our case that is using Convolutional Neural Networks for BCI classification,

18

speed and accuracy are the ultimate priorities. It is normal for a subject to expect movement or his

task being executed as quickly as he or she decides to perform it. Therefore, we have kept the

classification as fast and accurate as possible. Convolutional Neural Networks as seen in the

literature review can get increasingly large and require a lot of computational power and time to

but if they are kept from getting complex, they can still be useful in classifying slow changing

signals such as fnirs.

A CNN has two types of characteristics known as Parameters and Hyperparameters that need to

be adjusted according to training requirements. A parameter’s values are adjusted during training

automatically to obtain the best possible results e.g. weights of fully connected layers, values of

convolution kernels etc. whereas hyperparameters make up the structure of network thus

hyperparameters are selected either manually before starting training of the network or a multiple

training session are iterated over specified range of hyperparameters. Some very simple examples

of hyperparameters include Number of each layers, choice of back propagation and optimization

techniques also other choices such as use of different pooling techniques and activation functions.

3.2.3.1 Different Hyperparameters and their uses

Hyperparameters can be classified according the layers which they define, they are briefly

explained before under the headings of the layers they define

a. Convolution Layer Hyperparameters

In order to define a convolution layers in CNN we need to know how many layers to use and in

which order. We also need to know which activation functions follow each layer e.g. activation

functions such as RelU, step, linear or sigmoid. ReLu is used mostly since it resembles actual

activation of neurons. [9]

Number and sizes of convolutional layers define the complexity of a network, time efficiency

chiefly depends on these since more complexity gives rise to more processing time. After the total

number and sequence of convolution layers is decided. Size of each convolutional layer’s kernels

is decided. Each kernel is a small tensor which has adjustable values that adjust during training,

its initial values are usually temporary.

19

Other convolution hyperparameters include stride length which determines the unit number of

pixels over which a convolution kernel moves on an image/tensor. It is mostly kept one, increasing

it is equivalent to down sampling an image before applying convolution by the stride length factor.

To apply convolution function on edges of input tensors we need to extrapolate layers of pixels

around the border this is called padding, type of paddings must be chosen before applying

convolution most common type of padding used is zero padding in which a boundary of zeros is

applied at the edges of input tensor.

b. Pooling Layers

Pooling layers are inserted in between convolution layers to down sample feature maps, several

types of pooling include global average pooling, SoftMax pooling and Max pooling. Max pooling

which is used most frequently determines the greatest value in a fixed sized kernel from the feature

maps in other words it selects the maximum value from a patch of input and rejects the rest. Global

Average pooling just outputs the calculated average of whole feature map. The advantages of

applying global average pooling are that it reduces the number of learnable parameters and enables

the CNN to accept inputs of variable size. Hyperparameters that need to be determined here are

size of the pooling patches and type of pooling.

c. Hyperparameters of Fully Connected Layer

Before feeding feature maps to dense layers they are flattened that is converted to vectors, usually

there are no different types of flattening the data is usually reduced in dimension also known as

flattening

Fully connected layers resemble convolution layers in the sense that they have fixed sizes and

activation functions can be used after each of them. But they do not extract features instead train

their weights over already extracted features in convolutional layers. Hyperparameters here

include number of nodes/weights per each dense layer and type of activation function.

Last activation function before classification is usually different from other activation functions

since it must classify the outputs into clear different classes. The choice of last activation function

depends on the types of classification tasks. For multiple classes problems a SoftMax function is

used which gives result in terms of probabilities per each class. Probabilities as usual are

normalized with 1(ONE) being a 100% probability.

20

Table 3.1 Last Layer Activation choices

Table 3.2 Summary table of parameters and Hyperparameters

3.3 Methodology

3.3.1 Preparation of Data

One second periods from the required channels were cut from the start of active trials (BCI tasks)

and three different non-active one second trials were randomly cut from each resting state time

periods after the task and from the remaining task period (9 seconds) as shown in the figure using

Matlab script

21

Figure 3.2: The Phases of Trials

3.3.2 Conversion of Trials to 2D Tensors and their storage

Data is converted to two dimensional tensors before training models, each tensor contains one

second of raw fNIRS data from various channels. Each row of the image contains oxygenated or

deoxygenated data from different channels. Size of each image is Number of channels by Sampling

Frequency also using Matlab. For convolutional Neural Networks the sequence of channels

(rows) and data values (columns) does not affect the classification accuracy if they are kept same

for all images[9].

Figure 3.3: Illustration of an Image [72 rows and 10 columns (1second)]

Table below shows a summary of Number of trials per each class, before making them all equal

by replicating the activity periods

22

Table 3.3: Summary of trials of each class for quinary classification

Task Label Total Trials

Word Generation WG 4 780

Right Hand Motor

Imagery

RMI 3 870

Left Hand Motor Imagery LMI 2 870

Mental Arithmetic MA 1 870

Baseline / Rest Rest 0 15,120

3.3.3 CNN and its training

A simple structure of CNN was chosen to classify trials for BCI, it constitutes of convolution and

pooling layers appearing periodically in a sequence before being flattened and fed to dense layers

for classification.

Figure 3.4: Pattern Diagram of used CNNs

This figure shows a CNN where various hyperparameters are chosen separately to train numerous

models, following table summarizes the range of hyperparameters chosen for all models

23

Table 3.4 Hyperparameter range for comparing accuracies

Hyperparameter Min Max Increment

Number of

Convolution and

Pooling layers

1 3 +1

Fully Connected

Layers

0 2 +1

Layers Size 10 20 +5

Batch Sizes 10 20 +5

Table 3.5 Chosen Optimization methods and other procedure hyperparameters

Loss Sparse Categorical Cross Entropy

Optimization Adam Optimization

Activation Functions RELU after each layer except output layer

Model Callbacks Tensor Board

Stride Length 1

Convolution Kernel Size 3x3

Max Pooling Kernel Size 2x2

24

3.3.4 Platforms/Tools used for Methodology

A simple laptop Core-M3 was used to train and analyze data and to achieve greater than 95%

accuracy and classification time of less than 2 milli-seconds per trial.

Table 3.6 Specifications of system used for testing data

Additional Solid-State Drive (160GB) was installed for higher reading and writing speed of data

All the preprocessing including epoching and sorting of training data was performed using Matlab

since the data files were already available in ‘mat’ formats and experimental information was

stored in Matlab structures along with it.

After epoching all classes, they were saved in separate folders and trained using TensorFlow, this

shift from Matlab to python was necessary because of higher speed of python specially in training

deep neural networks.

Tensorboard was used to keep track of validation and training process to ensure the models were

not overfitting and moving towards more accuracy with each iteration.

25

Chapter 4: Results and Discussion

4.1 Performance of selected hyperparameter ranges

Following table summarizes the results of models with top five performances in terms of

classification times and accuracies, Number of kernels for conv layers and weights for dense layers

were kept same

Table 4.1 Summary of results with different hyperparameters

Hyperparameters Test Accuracy

(Percentage)

Average Time

To classify one

trial

 (Milli-seconds)

Convolution Layers

(3x3)

Pooling Layers

(2x2); Max Pooling

Dense

Layers [0-2]

Kernels Number Number Number Validation Test

20 2 2 1 100 96.448 1.914

15 2 2 1 99.6 94.924 1.889

20 2 2 0 99.6 89.452 1.795

15 2 2 0 99.4 87.793 1.784

10 2 2 0 99.8 84.675 1.696

The table shows the trends of classification times, accuracies and their dependence on the

complexity of our networks. With an increase in number of convolution layers accuracy increases

significantly before saturating at two layers. Similarly complicating the network’s dense layers is

only useful until a dense single layer. Since every dense layer causes an increase in the

classification time of the network.

26

4.2 Effects on performances with different hyperparameters

4.2.1 Number of Convolution Layers

Increasing convolution layers while using no dense layers and 15 kernels

Table 4.2 Classification times and accuracies with different number of convolution layers

Number of

Layers

Classification

Time (ms)

Testing

Accuracies (%)

1 1.532 77.343

2 1.784 87.793

3 2.051 87.801

Figure 4.1 : Classification times and accuracies with different number of convolution layers

77.343

87.793 87.801

70

75

80

85

90

1 LAYER 2 LAYERS 3 LAYERS

Percentage Accuracy

Percentage Accuracy

1.532 1.784 2.051

0

1

2

3

One Layer Two Layers Three
Layers

Classification times in milli-
seconds

Classification times in milli-seconds

27

4.2.2 Number of Dense Layers

Increasing Dense Layers while using 20 kernels and 2 convolution layers

Table 4.3 Classification times and accuracies with different number of dense layers

Number of

Layers

Classification

Time (ms)

Testing

Accuracies (%)

0 1.795 89.452

1 1.914 96.448

2 2.203 96.551

Figure 4.2 Classification times and accuracies with different number of dense layers

4.2.3 Number of Kernels and Nodes

Increasing the number of kernels from 10 to 25 of the convolution layers while keeping number

of convolution and dense layers same i.e. two convolution layers with one dense layer result in

following performance of networks

89.452

96.448 96.551

85

90

95

100

No layers 1 layer 2 layers

Percentage Accuracy

Percentage Accuracy

1.795 1.914
2.203

0

1

2

3

No layers 1 layer 2 layers

Classification times in milli-
seconds

Classification times in milli-seconds

28

Table 4.4 Classification times and accuracies with different number of kernels and weights

Number of

kernels/nodes

Classification

Time (ms)

Testing

Accuracies

(%)

10 1.852 93.194

15 1.889 94.924

20 1.914 96.448

Figure 4.3 Classification times and accuracies with different number of kernels and weights

93.194

94.924

96.448

90

92

94

96

98

10 Kernels 15 Kernels 20 Kernels

Percentage Accuracy

Percentage Accuracy

1.852

1.889
1.914

1.8

1.85

1.9

1.95

10 Kernels 15 Kernels 20 Kernels

Classification times in milli-
seconds

Classification times in milli-seconds

29

4.3 Different Accuraccies and Losses

4.3.1 Epoch Accuracy and Loss

Epoch accuracy plots the accuracy of training model over the training data, each subsequent epoch

is a better attempt at finding local maxima, that are values of parameters such as weights of dense

layers and element-values of convolutional kernels that yield better accuracy results. These are not

the final measure of performance of a model since they only show how a model is performing on

the “seen” training data. Epoch loss is like epoch accuracy and signifies the error rate per epoch.

Following snippets show progress of our models reaching 80 to 100% testing accuracies around

30th epochs.

Figure 4.4 : Progress of epoch acccuracies and losses

4.3.2 Epoch Validation accuracy (epoch_val_acc) and epoch validation loss

(epoch_val_loss)

A chosen percentage from data is kept separate from training data during training process this data

is known as validation data and is used to confirm the training accuracies on unused data, this data

is different from testing and training data, it is shown to the model after every epoch, although it

usually does not directly affect the parameters of a model but it is very helpful in predicting over-

fitting. Testing data on the other hand is kept disused during the whole training process. Following

snippets show how Tensorboard displays the progress of validation errors of our models

30

Figure 4.5: Progress of models with respect to validation accurcies and validation losses

Ideal validation curves show similar trends to epoch accuracies and losses, presence of abrupt rises

or falls different from epoch accuracies mean the model is not performing same on training and

validation data therefore there are chances of overfitting.

4.3.3 Testing Accuracy

Test data is only used after the parameters of models are fully trained i.e. this data is kept hidden

from the model during all its epochs of training. Testing accuracy is the final measure of a model’s

accuracy performance.[21], [26]

A summary of predictions along with true labels over the testing data is shown in the following

bar graph

31

Figure 4.6: Predictions (Dark) vs Ground Truths (Light)

An overview of all testing predictions can be seen through the following image, in this image each

pixel denotes a trial, each category has its own sseparate color as shown in the legend. Oddities in

the image show wrong predictions (p<0.05)

Figure 4.7: Test data analyses

32

Summary and Conclusion

Deep Lerning is an emerging field of Artificial Intelligence[27] and it has numerous applications

in brain computer interfaces, chiefly because of its inherent ability to extract useful features.

Brain Computer Interfaces require high accuracy and fast classification times which can limit

how complex a Network can be. A useful model should be able to classify small windows of data

accuratly and as quickly as possible on simple processors that can work with BCIs. Our

convolutional neural network classifies one second windows of fNIRS signals down sampled to

10Hz only with excellent accuracy i.e. as much as 96 percent. The preparation is very simple and

includes converting data into simple images [rows into coloumns]. A lot of useful information is

obtained by training various models over various configurations of data such as effects of

changing hyperparameters, complexity, number of channels and number of categories that the

windows can be ssorted into. These characteristics makes CNNs an effective and fast technique

for practicable translation of data to commands for machines.

33

APPENDIX

5.1 MATLAB CODES FOR FNIRS DATA PREPARATION

USED FUNCTIONS

Moves multiple files from pickup to dropoff folder

function move_rand(pickup,dropoff,names)

cd(pickup)

for i=1:numel(names)

x = names{i};

movefile(x,dropoff)

end

end

For Visual inspection and saving specific

portions of fnirs data experiment-B

%% this function plots required data

for visual inspection and returns the

data to workspace

%% Description

% Inputs

% cnt_dsr : data variable oxy and deoxy

% o : mode selection 0-EEG (-1)->ALL

% 1-(oxygenated) 2-(Deoxygenated) 3-

(Both)

% chan: vector containing channels to

be plotted

% time vector contains two elements

starting and ending time in minutes

%

% Default Publish : DATA =

fnirsplot(cnt_dsr,3,[1 2],[0,5])

%% Code

function crop =

fnirsplot(cnt_dsr,o,chan,time) %

(file,mode,channels,[start end])

if o~=0

 XX = 0:1/600:numel(cnt_dsr.oxy.x)/600;

%FOR MINUTES [10Hz*60Sec]

 %XX = 0:1/10:14800/10; %FOR SECONDS

sampling rate [10Hz]

 s = time(1);

 e = time(2);

 % figure;

 if (s==0)

 s=1/600;

 end

 crop.time = time;

 crop.x(1,:) = XX(s*600:e*600); %

minutes

end

 %% EEG

 if o==0

 XX = 0:1/12000:394930/12000; %FOR

MINUTES [10Hz*60Sec]

 %XX = 0:1/10:14800/10; %FOR SECONDS

sampling rate [10Hz]

 s = time(1);

 e = time(2);

 % figure;

 if (s==0)

 s=1/12000;

 end

 crop.time = time;

 crop.x(1,:) = XX(s*12000:e*12000); %

minutes

 figure;

 for i=1:numel(chan)

34

 crop.y(i,:) =

cnt_dsr.x((s*12000:e*12000),chan(i));

%data

 crop.type = 'MINUTES';

 crop.channel(i) = chan(i);

 crop.eegchannel(i) =

cnt_dsr.clab(chan(i));

 subplot(numel(chan),1,i)

plot(crop.x,cnt_dsr.x((s*12000:e*12000)

,chan(i)))

 str = 'MINUTES';

 xlabel(str)

 ylabel(crop.eegchannel(i))

 end

 end

 %% OXY

 if o==1

 figure;

 for i=1:numel(chan)

 crop.y(i,:) =

cnt_dsr.oxy.x((s*600:e*600),chan(i));

%data

 crop.type = 'OXY - MINUTES';

 crop.channel(i) = chan(i);

 crop.eegchannel(i) =

cnt_dsr.oxy.clab(chan(i));

 subplot(numel(chan),1,i)

plot(crop.x,cnt_dsr.oxy.x((s*600:e*600)

,chan(i)))

 str = 'OXY - MINUTES';

 xlabel(str)

 ylabel(num2str(chan(i)))

 end

 end

 %% DEOXY

 if o==2

% figure;

 for i=1:numel(chan)

 crop.y(i,:) =

cnt_dsr.deoxy.x((s*600:e*600),chan(i));

%data

 crop.type = 'DEOXY - MINUTES';

 crop.channel(i) = chan(i);

 crop.eegchannel(i) =

cnt_dsr.deoxy.clab(chan(i));

% subplot(numel(chan),1,i)

%

plot(XX(s*600:e*600),cnt_dsr.deoxy.x((s

*600:e*600),chan(i)))

% str = 'DEOXY - MINUTES';

% xlabel(str)

% ylabel(num2str(chan(i)))

 end

 end

 %% BOTH

 if o==3

 for i=1:numel(chan)

 crop.y(2*i,:) =

cnt_dsr.deoxy.x((s*600:e*600),chan(i));

 crop.y(2*i-1,:) =

cnt_dsr.oxy.x((s*600:e*600),chan(i));

 crop.channel(i) = chan(i);

% figure;

% subplot(2,1,2)

% plot(crop.x,crop.y(2*i,:));

% str = ['DEOXY - MINUTES ',

cnt_dsr.deoxy.clab(chan(i))]; %

displaying eeg location

% ylabel(num2str(chan(i)))

% xlabel(str)

%

% subplot(2,1,1)

% plot(crop.x,crop.y(2*i-1,:))

% str = ['OXY - MINUTES',

cnt_dsr.oxy.clab(chan(i))]; %

displaying eeg location

% xlabel(str)

% ylabel(num2str(chan(i))) %

channel number

%

 end

 end

 %% Moving Average

 if o==4

 for i = 1:numel(chan)

 figure;

 %%

 t(:,i) =

mov(cnt_dsr.x(:,chan(i)),300);

 %%

 crop.y(2*i,:) =

cnt_dsr.x((s*600:e*600),chan(i));

 crop.y(2*i-1,:) =

t((s*600:e*600),i);

 crop.eegchannel(i) =

cnt_dsr.clab(chan(i));

 crop.type = 'Moving average';

 %%

 subplot(2,1,2)

plot(XX(s*600:e*600),crop.y(2*i,:))

 xlabel([cnt_dsr.xInfo

cnt_dsr.clab(chan(i))])

35

 subplot(2,1,1)

plot(XX(s*600:e*600),crop.y(2*i-1,:))

 xlabel(crop.type)

 end

 end

 if o==5

 figure;

 cnt_dsr =

downsample(cnt_dsr,2);

 div =

diff(diff(cnt_dsr(s*300:e*300)));

 plot(div)

figure;plot(cnt_dsr(s*300:e*300))

 movd = mov(div,5);

 movd = movd.*movd;

 movd = movd.*movd;

 figure;plot(movd)

 end

%% ALL

if o==-1

 for i=1:numel(chan)

 %%

 figure;

 crop.y(2*i,:) =

cnt_dsr.deoxy.x((s*600:e*600),chan(i));

 crop.y(2*i-1,:) =

cnt_dsr.oxy.x((s*600:e*600),chan(i));

 crop.channel(i) = chan(i);

 %%

 subplot(3,1,2)

 plot(crop.x,crop.y(2*i,:));

 str = ['DEOXY - MINUTES ',

cnt_dsr.deoxy.clab(chan(i))]; %

displaying eeg location

 ylabel(num2str(chan(i)))

 xlabel(str)

 subplot(3,1,1)

 plot(crop.x,crop.y(2*i-1,:))

 str = ['OXY - MINUTES',

cnt_dsr.oxy.clab(chan(i))]; %

displaying eeg location

 xlabel(str)

 ylabel(num2str(chan(i))) %

channel number

 subplot(313)

 XX = 0:1/12000:394930/12000;

%FOR MINUTES [10Hz*60Sec]

 %XX = 0:1/200:14800/10; %FOR

SECONDS sampling rate [10Hz]

 s = time(1);

 e = time(2);

 % figure;

 if (s==0)

 s=1/12000;

 end

 crop.time = time;

 crop.x(1,:) =

XX(s*12000:e*12000); % minutes

plot(crop.x,cnt_dsr.x((s*12000:e*12000)

,chan(i)))

 str = 'MINUTES';

 xlabel(str)

 ylabel(num2str(chan(i)))

end

end

end

DEVELOPED SCRIPTS

READING WINDOWS OF DATA FROM EXPERIMENT-A FILES

for wl = 9

 X =

'C:\Users\ahmad\Desktop\MODELS\NIRS_01-

29';

 mat = dir(X);

 Y =

'C:\Users\ahmad\Desktop\MODELS\PROCESSE

D\tenx72';

 for t=3:31

 disp(['reading subject number :

',num2str(t-2)])

 p = [X ,'/', mat(t).name];

 max1 = dir([p , '/*.mat']);

% SUBJECT 16 LACKS ARTIFACTS

 if (t~=16)

load(max1(1).name);load(max1(3).name);l

oad(max1(5).name)

 else

36

load(max1(1).name);load(max1(2).name);l

oad(max1(3).name)

 end

% c- data % -i lmi/rmi % -a bls/ma % m-

details

 ci = [cnt(1,1) , cnt(1,3) ,

cnt(1,5)];

 ca = [cnt(1,2) , cnt(1,4) ,

cnt(1,6)];

 mi = [mrk(1,1) , mrk(1,3) ,

mrk(1,5)];

 ma = [mrk(1,2) , mrk(1,4) ,

mrk(1,6)];

% 3 I-'s and 3 A-'s

 for k=1:3

% 20 X 2 X 3 X 29 X 1 TRIALS

 for i=1:20

% trial_end = ending time of each trial

% last element for last trial (20)

 if i~=20

 trial_end_i =

round(((mi{1,k}.time(i+1))/100));

 trial_end_a =

round(((ma{1,k}.time(i+1))/100));;

 else

 trial_end_i =

size(ci{1,k}.x',2);

 trial_end_a =

size(ca{1,k}.x',2);

 end

 s=

round(((mi{1,k}.time(i)+2000)/100));

 e=

round(((mi{1,k}.time(i)+2000)/100)+wl);

 sa=

round(((ma{1,k}.time(i)+2000)/100));

 ea=

round(((ma{1,k}.time(i)+2000)/100)+wl);

 if

mi{1,k}.event.desc(i) ==1

 lmi =

matcut(ci{1,k}.x',s,e) ;

 rlmi =

matcut(ci{1,k}.x',[s-20,e+1],[s-

1,trial_end_i]);

 save([Y,'\lm\lmi',

num2str(t-2), 'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'lmi');

save([Y,'\r_lm\rlmi', num2str(t-2),

'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'rlmi');

 elseif

mi{1,k}.event.desc(i) ==2

 rmi =

matcut(ci{1,k}.x',s,e) ;

 rrmi =

matcut(ci{1,k}.x',[s-20,e+1],[s-

1,trial_end_i]);

 save([Y,'\rm\rmi',

num2str(t-2), 'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'rmi');

save([Y,'\r_rm\rrmi', num2str(t-2),

'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'rrmi');

 end

 if

ma{1,k}.event.desc(i) ==1

 mas =

matcut(ca{1,k}.x',sa,ea) ;

 rmas =

matcut(ca{1,k}.x',[sa-20,ea+1],[sa-

1,trial_end_a]);

 save([Y,'\ma\mas',

num2str(t-2), 'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'mas');

save([Y,'\r_ma\rmas', num2str(t-2),

'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'rmas');

 elseif

ma{1,k}.event.desc(i) ==2

 blsx =

matcut(ca{1,k}.x',sa,ea) ;

 rblsx =

matcut(ca{1,k}.x',[sa-20,ea+1],[sa-

1,trial_end_a]);

save([Y,'\ma_rest\blsx', num2str(t-2),

'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'blsx');

save([Y,'\r_ma_rest\rblsx', num2str(t-

2), 'wl_' ,num2str(wl),'k_'

,num2str(k),'trial_',

num2str(i)],'rblsx');

 end

 end

37

 end

 end

end

READING WINDOWS OF DATA FROM EXPERIMENT-B FILES
for wl = 9

 path =

'C:\Users\ahmad\Desktop\MODELS\PROCESSE

D\garbs';

 mkdir(path,'rst')

 mkdir(path,'rrst')

 mkdir(path,'wg')

 mkdir(path,'rwg')

 for t=1:26

 disp(['reading subject number :

',num2str(t)])

 X =

['C:\Users\ahmad\Desktop\MODELS\RAW\VP0

0',num2str(t),'-NIRS'];

 cd=X;

 load('cnt_wg.mat');

 load('mnt_wg.mat');

 load('mrk_wg.mat');

 data_x =

fnirsplot(cnt_wg,3,[1:36],[0 33]);

 j=1;

 k=1;

% all_trials = randperm(60);

%

save(['C:\Users\ahmad\Desktop\MODELS\re

sults\100\randomization',num2str(t)],al

l_trials)

% training = all_trials(1:54);

% testing = all_trials(55:60);

 for i=1:60

 s=

round(((mrk_wg.time(i)+2000)/100));

 e=

round(((mrk_wg.time(i)+2000)/100)+wl);

 if i~=60

 trial_end =

round(((mrk_wg.time(i+1))/100));

 else

 trial_end =

size(data_x.y,2);

 end

 if mrk_wg.y(1,i)==1 &&

mrk_wg.y(2,i)==0

 wg =

matcut(data_x.y,s,e);

 rwg =

matcut(data_x.y,[s-20,e+1],[s-

1,trial_end]); %this line

 save([path,'\wg\','WG',

num2str(t), '_' ,num2str(wl),'_'

,num2str(j)],'wg');

save([path,'\rwg\','RWG', num2str(t),

'_' ,num2str(wl),'_'

,num2str(j)],'rwg');

 j=j+1;

 end

 if mrk_wg.y(1,i)==0 &&

mrk_wg.y(2,i)==1

 rst =

matcut(data_x.y,s,e);

 rrst =

matcut(data_x.y,[s-20,e+1],[s-

1,trial_end]); %this line

save([path,'\rst\','RST', num2str(t),

'_' ,num2str(wl),'_'

,num2str(k)],'rst');

save([path,'\rrst\','RRST', num2str(t),

'_' ,num2str(wl),'_'

,num2str(k)],'rrst');

 k=k+1;

 end

 end

 end

clear all

end

38

RANDOMLY DIVIDING DATA INTO TRAINING AND TESTING

pickup = 'D:\onex72\10\rnds';

dropoff =

'D:\onex72\10_test\subject_0';

t = dir(pickup);

% for u=1:29

% cd(dropoff)

% mkdir(['subject_0',num2str(u)])

% end

for i=1:29 % 29 SUBJECTS

 dropof = [dropoff,num2str(i)];

%% TASKS_29

 d_1 =

dir(['D:\onex72\10\rnds\lmi*lmi',num2s

tr(i),'wl*.mat']);

 d_2 =

dir(['D:\onex72\10\rnds\ma*mas',num2st

r(i),'wl*.mat']);

 d_4 =

dir(['D:\onex72\10\rnds\rmi*rmi',num2s

tr(i),'wl*.mat']);

%% REST_29

 d_3blsx =

dir(['D:\onex72\10\rnds\rest\blsx',num2

str(i),'wl*.mat']); %30

 d_3rblsx =

dir(['D:\onex72\10\rnds\rest\rblsx',num

2str(i),'wl*.mat']); %300

 d_3rrmi =

dir(['D:\onex72\10\rnds\rest\rrmi',num2

str(i),'wl*.mat']);

 d_3rlmi =

dir(['D:\onex72\10\rnds\rest\rlmi',num2

str(i),'wl*.mat']);

 d_3rmas =

dir(['D:\onex72\10\rnds\rest\rmas',num2

str(i),'wl*.mat']);

 if i<=26

%% RESTS_26

 d_3rst =

dir(['D:\onex72\10\rnds\rest\RST',num2s

tr(i),'_99*.mat']); %30

 d_3rrst=

dir(['D:\onex72\10\rnds\rest\RRST',num2

str(i),'_99*.mat']);

 d_3rwg =

dir(['D:\onex72\10\rnds\rest\RWG',num2s

tr(i),'_99*.mat']);

%% TASK_26

 d_5 =

dir(['D:\onex72\10\rnds\wg*WG',num2str

(i),'_99*.mat']);

 end

%% Randomly obtaining 5 of each task

and 8 types of rest for eaach subject

 k=1;

 for j = randperm(30,5)

 d1{k} = d_1(j).name;

 k=k+1;

 end

 k=1;

 for j = randperm(30,5)

 d2{k} = d_2(j).name;

 k=k+1;

 end

 k=1;

 for j = randperm(30,5)

 d5{k} = d_5(j).name;

 k=k+1;

 end

 k=1;

 for j = randperm(30,5)

 d4{k} = d_4(j).name;

 k=k+1;

 end

 d3{1} =

d_3blsx(randperm(30,1)).name;

 d3{2} =

d_3rblsx(randperm(300,1)).name;

 d3{3} =

d_3rlmi(randperm(300,1)).name;

 d3{4} =

d_3rmas(randperm(300,1)).name;

 d3{5} =

d_3rrmi(randperm(300,1)).name;

 if i <=26

 d3{6} =

d_3rst(randperm(30,1)).name;

 d3{7} =

d_3rrst(randperm(300,1)).name;

 d3{8} =

d_3rwg(randperm(300,1)).name;

 end

 %function

move_rand(pickup,dropoff,names)

 cd(dropof)

 mkdir('lmi')

 mkdir('ma')

 mkdir('rest')

 mkdir('rmi')

 if i<=26

 mkdir('wg')

39

move_rand([pickup,'\wg'],[dropof,'\wg']

,d5)

 end

move_rand([pickup,'\lmi'],[dropof,'\lmi

'],d1)

move_rand([pickup,'\ma'],[dropof,'\ma']

,d2)

move_rand([pickup,'\rmi'],[dropof,'\rmi

'],d4)

move_rand([pickup,'\rest'],[dropof,'\re

st'],d3)

 clear d3

end

5.2 PYTHON CODES

READING DATA INTO PYTHON VARIABLES

@author: ahmad

"""

import os

import scipy.io

#import pickle

import random

dirx = 'D:/onex72'

cats = ["lmi","ma","rest","rmi","wg"]

#D = os.listdir(dirx)

tt_data = []

D = ['10']

Function To create data from a folders 40-45-50-55-60

def create_t_data():

 for wls in D: # wls is window length folder names 40-45

 dx= os.path.join(dirx,wls,'rnds') # '40/subfolder'

 for categ in cats: # categories e.g. word and base

 path= os.path.join(dx,categ) #files in base/word

 class_num = cats.index(categ)

 for img in os.listdir(path):

 try:

 new_array = scipy.io.loadmat(os.path.join(path,img))

 if (class_num ==0):

 for x in range(15):

 tt_data.append([new_array['lmi'],0])

 if (class_num ==1):

 for x in range(15):

 tt_data.append([new_array['mas'],1])

 if (class_num ==2):

 try:

 tt_data.append([new_array['baseline'],2])

 except:

 try:

 tt_data.append([new_array['blsx'],2])

 except Exception:

 print('ERROR IN RESTS')

 if (class_num ==3):

40

 for x in range(15):

 tt_data.append([new_array['rmi'],3])

 if (class_num ==4):

 for x in range(20):

 tt_data.append([new_array['wg'],4])

 except Exception:

 print('Error Reading files')

create_t_data()

cutting to parts and mixing trial wise

dataRS = tt_data;

random.shuffle(dataRS)

seperating

features = []

labels = []

for feature,label in dataRS:

 features.append(feature)

 labels.append(label)

Preparing, training, and saving models

import tensorflow as tf

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Dropout, Activation , Flatten, Conv2D,

MaxPooling2D

from tensorflow.keras.callbacks import TensorBoard

import time

import numpy as np

import random

permutations for loops

dense_layers = [0,1,2]

conv_layers = [2]

layer_sizes = [10,15,20]

batch_sizes = [10]

wl = [10]

data_blodck=[]

x = [1]

folders by window length

for values in x:

 '''

 random.shuffle(data10RS);

 features = []

 labels = []

 for feature,label in data10RS:

 features.append(feature)

 labels.append(label)

41

 for wl in D:

 if wl==10:

 Xa= features[0:8300]

 Xta= features[8300:9880]

 ya= labels[0:8300]

 tl= labels[8300:9880]

 '''

 ftr = np.array(features)

 rftr = ftr.reshape(-1,72,10,1)

 for dense_layer in dense_layers:

 for layer_size in layer_sizes:

 for conv_layer in conv_layers:

 for bs in batch_sizes:

 NAME =

f"thesis_quinary_stats_ep100_{wl}_wl_d1_{conv_layer}_conv_{layer_size}_nodes_{dense_la

yer}_dense_{bs}_batch_{int(time.time())}_time"

 print(NAME)

 tboard = TensorBoard(log_dir =

'binary_ten_eps_logs\{}'.format(NAME))

 model = Sequential()

 # first layer must have input shape

 model.add(Conv2D(layer_size,(3,3),input_shape = rftr.shape[1:]))

 model.add(Activation("relu"))

 model.add(MaxPooling2D(pool_size=(2,2)))

 for l in range(conv_layer-1):

 model.add(Conv2D(layer_size,(3,3)))

 model.add(Activation("relu"))

 model.add(MaxPooling2D(pool_size=(2,2)))

 model.add(Dropout(0.1))

 # flattening before fully connected layers

 model.add(Flatten())

 for l in range(dense_layer):

 model.add(Dense(layer_size))

 model.add(Activation("relu"))

 model.add(Dense(5))

 model.add(Activation("sigmoid"))

 model.compile(loss = "sparse_categorical_crossentropy",

 optimizer = "adam",

 metrics = ['accuracy'])

 print("\nTRAINING : ")

 print(NAME)

 print("xoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxxoxoxoxoxoxoxox")

 model.fit(rftr,labels,batch_size=bs, validation_split=0.2,

epochs=100 , callbacks = [tboard])

 print("xoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxxoxoxoxoxoxoxox")

 print(NAME)

 print("COMPLETED\n\n")

 model.save(NAME)

42

TESTING MODELS OVER IMPORTED TEST DATA-A AND B

A

import tensorflow as tf

import time

import numpy as np

#Xtab = np.array(features_test_2);

Xtab = np.array(features_test_1);

Xtab = Xtab.reshape(-1,72,10,1);

#modelname =

‘QUINARY_stats_[10]_wl_d1_2_conv_15_nodes_1_dense_10_batch_1566013925_time’;

model =tf.keras.models.load_model(modelname)

predicted_labels_1 = []

#predicted_labels_2 = []

data_block_1=[]

#data_block_2=[]

prediction_time_1 = []

for xxx in Xtab:

 xxy = xxx.reshape(-1,72,10,1)

 tima = time.time();

 ytab = model.predict(xxy)

 timb = time.time();

 pt = timb-tima

 prediction_time_1.append(pt)

 #prediction_time_2 = (timb- tima)

 for I in ytab:

 predicted_labels_1.append(np.argmax(i))

 #predicted_labels_2.append(np.argmax(i))

count=0;

test_accuracy=0;

o=range(0,len(predicted_labels_1))

for k in o:

 if predicted_labels_1[k] == labels_test_1[k]:

 count+=1

‘’’

o=range(0,len(predicted_labels_2))

for k in o:

 if predicted_labels_2[k] == labels_test_2[k]:

 count+=1

‘’’

test_accuracy=(count*100)/728

print(test_accuracy)

data_block_1.append([test_accuracy,modelname,prediction_time_1])

43

B

import tensorflow as tf

import time

import numpy as np

import statistics

#Xtab = np.array(features_test_2);

Xtab = np.array(features_test_2);

Xtab = Xtab.reshape(-1,72,10,1);

#modelname =

'QUINARY_stats_[10]_wl_d1_2_conv_15_nodes_1_dense_10_batch_1566013925_time';

model =tf.keras.models.load_model(modelname)

predicted_labels_1 = []

#predicted_labels_2 = []

data_block_2=[]

#data_block_2=[]

prediction_time_b = []

for xxx in Xtab:

 xxy = xxx.reshape(-1,72,10,1)

 tima = time.time();

 ytab = model.predict(xxy)

 timb = time.time();

 pt = timb-tima

 prediction_time_b.append(pt)

 #prediction_time_2 = (timb- tima)

 for i in ytab:

 predicted_labels_1.append(np.argmax(i))

 #predicted_labels_2.append(np.argmax(i))

count=0;

test_accuracy_b=0;

o=range(0,len(predicted_labels_1))

for k in o:

 if predicted_labels_1[k] == labels_test_2[k]:

 count+=1

'''

o=range(0,len(predicted_labels_2))

for k in o:

 if predicted_labels_2[k] == labels_test_2[k]:

 count+=1

'''

test_accuracy_b=(count*100)/60

print(test_accuracy_b)

data_block_2.append([test_accuracy_b,modelname,prediction_time_b])

#data_block_2.append([test_accuracy,ytab,prediction_time_2,labels_test_2,predicted_lab

els_2])

print(modelname)

44

average_accuracy = ((test_accuracy*728)+(test_accuracy_b*60))/(728+60);

average_time =

(((statistics.mean((prediction_time_1))*728)+((statistics.mean(prediction_time_b)*60))

)/(728+60));

print(average_accuracy);

print(average_time);

45

REFERENCES

[1] J. J. Daly and J. R. Wolpaw, “Brain-computer interfaces in neurological rehabilitation,”

The Lancet Neurology. 2008.

[2] J. R. Wolpaw and E. W. Wolpaw, Brain-Computer Interfaces: Principles and Practice.

2012.

[3] M. Cope and D. T. Delpy, “System for long-term measurement of cerebral blood and

tissue oxygenation on newborn infants by near infra-red transillumination,” Med. Biol.

Eng. Comput., 1988.

[4] A. Villringer and B. Chance, “Non-invasive optical spectroscopy and imaging of human

brain function,” Trends Neurosci., 1997.

[5] L. F. Nicolas-Alonso and J. Gomez-Gil, “Brain computer interfaces, a review,” Sensors.

2012.

[6] C. Vidaurre, M. Kawanabe, P. Von Bünau, B. Blankertz, and K. R. Müller, “Toward

unsupervised adaptation of LDA for brain-computer interfaces,” IEEE Trans. Biomed.

Eng., 2011.

[7] D. A. Boas, C. E. Elwell, M. Ferrari, and G. Taga, “Twenty years of functional near-

infrared spectroscopy: Introduction for the special issue,” NeuroImage, 2014.

[8] S. Tak and J. C. Ye, “Statistical analysis of fNIRS data: A comprehensive review,”

NeuroImage. 2014.

[9] R. Yamashita, M. Nishio, R. K. G. Do, and K. Togashi, “Convolutional neural networks:

an overview and application in radiology,” Insights Imaging, vol. 9, no. 4, pp. 611–629,

2018.

[10] A. Torricelli et al., “Assessment of cortical response during motor task in adults by a

multimodality approach based on fNIRS-EEG, fMRI-EEG, and TMS,” in Optics InfoBase

Conference Papers, 2011.

[11] A. Torricelli et al., “Cortical response during motor task in epileptic patients with

movement disorders: A multimodality fNIRS-EEG, fMRI-EEG and TMS clinical study,”

in Asia Communications and Photonics Conference, ACP, 2012.

[12] D. T. Delpy and M. Cope, “Quantification in tissue near-infrared spectroscopy,” Philos.

Trans. R. Soc. B Biol. Sci., 1997.

46

[13] N. Naseer and K.-S. Hong, “fNIRS-based brain-computer interfaces: a review,” Front.

Hum. Neurosci., 2015.

[14] S. Brigadoi et al., “Motion artifacts in functional near-infrared spectroscopy: A

comparison of motion correction techniques applied to real cognitive data,” Neuroimage,

2014.

[15] K.-S. Hong, M. J. Khan, and M. J. Hong, “Feature Extraction and Classification Methods

for Hybrid fNIRS-EEG Brain-Computer Interfaces,” Front. Hum. Neurosci., vol. 12, Jun.

2018.

[16] M. Ferrari and V. Quaresima, “A brief review on the history of human functional near-

infrared spectroscopy (fNIRS) development and fields of application,” NeuroImage. 2012.

[17] S. Brigadoi et al., “Motion artifacts in functional near-infrared spectroscopy: a comparison

of motion correction techniques applied to real cognitive data,” Neuroimage, vol. 85, pp.

181–191, 2014.

[18] E. Kirlilna, N. Yu, A. Jelzow, H. Wabnitz, A. M. Jacobs, and L. Tachtsidis, “Identifying

and quantifying main components of physiological noise in functional near infrared

spectroscopy on the prefrontal cortex,” Front. Hum. Neurosci., 2013.

[19] R. Venkatesan, B. Li, R. Venkatesan, and B. Li, “Convolutional Neural Networks,” in

Convolutional Neural Networks in Visual Computing, 2018.

[20] S. W. Smith, “Properties of Convolution,” in Digital Signal Processing, 2003.

[21] T. Trakoolwilaiwan, B. Behboodi, J. Lee, K. Kim, and J.-W. Choi, “Convolutional neural

network for high-accuracy functional near-infrared spectroscopy in a brain-computer

interface: three-class classification of rest, right-, and left-hand motor execution,”

NEUROPHOTONICS, vol. 5, no. 1, 2018.

[22] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural Networks,” in

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition, 2016.

[23] J. Shin et al., “Open Access Dataset for EEG+NIRS Single-Trial Classification,” IEEE

Trans. Neural Syst. Rehabil. Eng., vol. 25, pp. 1735–1745, 2017.

[24] J. Shin, A. Von Lühmann, D. W. Kim, J. Mehnert, H. J. Hwang, and K. R. Müller, “Data

descriptor: Simultaneous acquisition of EEG and NIRS during cognitive tasks for an open

access dataset,” Sci. Data, 2018.

47

[25] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep

convolutional neural networks,” in Advances in Neural Information Processing Systems,

2012.

[26] P. Y. Simard, D. Steinkraus, and J. C. Platt, “Best practices for convolutional neural

networks applied to visual document analysis,” in Proceedings of the International

Conference on Document Analysis and Recognition, ICDAR, 2003.

[27] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks.

2015.

48

FNIRS Data Classification for Brain Computer Interface Using

Deep Learning

ORIGINALITY REPORT

9% 4% 6% 3%

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Jaeyoung Shin, Alexander von Luhmann,

1

Benjamin Blankertz, Do-Won Kim, Jichai Jeong,

Han-Jeong Hwang, Klaus-Robert Muller. "Open

Access Dataset for EEG+NIRS Single-Trial

Classification", IEEE Transactions on Neural

Systems and Rehabilitation Engineering, 2016

Publication

3%

49

Rikiya Yamashita, Mizuho Nishio, Richard Kinh
2

Gian Do, Kaori Togashi. "Convolutional neural

networks: an overview and application in

radiology", Insights into Imaging, 2018

Publication

1%

Jaeyoung Shin, Alexander von Lühmann, Do3

Won Kim, Jan Mehnert, Han-Jeong Hwang,

Klaus-Robert Müller. "Simultaneous acquisition

of EEG and NIRS during cognitive tasks for an

open access dataset", Scientific Data, 2018

Publication

1%

www.spiedigitallibrary.org
4

Internet Source

1%

fedetd.mis.nsysu.edu.tw
5

Internet Source

1%

deepbci.korea.ac.kr
6

Internet Source

<1%

Noman Naseer, Keum-Shik Hong. "Decoding

7 Answers to Four-Choice Questions Using <1%

Functional near Infrared Spectroscopy", Journal of

Near Infrared Spectroscopy, 2015

Publication

50

Submitted to United World College of South

8

East Asia

Student Paper

<1%

en.wikipedia.org
9

Internet Source

<1%

www.science.gov
10

Internet Source

<1%

digital.lib.washington.edu
11

Internet Source

<1%

Submitted to Loughborough University

12

Student Paper

<1%

Submitted to University College London

13

Student Paper

<1%

docplayer.net
14

Internet Source

<1%

51

Submitted to The Hong Kong Polytechnic

15

University

Student Paper

<1%

Submitted to Eastern Mediterranean University
16

Student Paper

<1%

Jaeyoung Shin, Do-Won Kim, Klaus-Robert

17 Müller, Han-Jeong Hwang. "Improvement of <1%

Information Transfer Rates Using a Hybrid EEG-

NIRS Brain-Computer Interface with a Short

Trial Length: Offline and Pseudo-Online

Analyses", Sensors, 2018

Publication

Submitted to University of Wollongong

18

Student Paper

<1%

Submitted to University of Gloucestershire

19

Student Paper

<1%

52

hal.umontpellier.fr
20

Internet Source

<1%

Submitted to Minnetonka High School

21

Student Paper

<1%

Submitted to Sabanci Universitesi

22

Student Paper

<1%

Yu Zhang, Xiong Zhang, Han Sun, Xuefei

23

Zhong, Zhaowen Fan. "A Wearable Wireless

fNIRS System", Proceedings of the 2018 8th

International Conference on Bioscience,

Biochemistry and Bioinformatics - ICBBB 2018,

2018

Publication

<1%

"Advances in Neuroergonomics and Cognitive
24

Engineering", Springer Science and Business

Media LLC, 2020

Publication

<1%

53

Digital Receipt

Submission author:

Assignment title:

Submission title:

File name:

File size:

Page count:

Word count:

Character count:

Submission date:

Submission ID:

Digital Receipt

This receipt acknowledges that Turnitin received your paper. Below you will find the receipt
information regarding your submission.

The first page of your submissions is displayed below.

Ahmad Subhani

Plagiarism Detection 2019 Part 1 (M …

FNIRS Data Classification for Brain …

88741 _Ahmad_Subhani_FNIRS_Da …

3.32 M

36

6,650

35,608

05- Nov-2019 01:49PM (UTC +0500)

1207442106

Copyright 2019 Turnitin. All rights reserved.

