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Abstract 

Brain Computer Interfaces (BCIs) translate recorded brain data directly to machine 

commands that can be used to control external devices. They are composed of three different 

functions i.e. recording of data from the brain, processing of data to recognize the intention of the 

subject and translation of the data into appropriate command for the machine being controlled. 

Functional near-infrared spectroscopy (fNIRS) is among one of the brain signal recording 

techniques which uses near-infrared spectroscopy (NIRS) for functional neuroimaging. It uses 

near-infrared light wavelengths (between 650 and 1000 nm) to measure the optical absorption 

changes of brain tissues. Use of fNIRS for BCIs limited because of slow hemodynamic response 

to stimulus, blood flow in scalp and undeveloped techniques for classifying signals.  

In this thesis we train Convolutional Neural Networks to classify fNIRS signals for BCIs. 

These networks classify raw signals with more than 95% testing accuracy for cognitive and 

imagery tasks with upto five separate categories in less than two milliseconds, (dependent on the 

processing power available), thus showing promising improvement in current classification 

efficiency.
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CHAPTER 1: INTRODUCTION 

1.1 Background, Scope and Motivation 

Brain Computer interfaces refer to the interfaces that provide a communication channel between a 

brain and a computer. These interfaces translate recorded brain data to machine commands that 

can be used to control external devices[1], [2]. They usually perform three different functions i.e. 

recording of data from the brain, processing of data to recognize the intention of the subject and 

translation of the data into appropriate command for the machine the subject is controlling. Data 

for BCIs can be recorded by various techniques. FNIRS is a neuroimaging technique used to study 

brain activation and brain disorder treatments, it uses sources and detectors of near infrared 

wavelengths (650-1000nm) of light to detect changes in the brain tissue [3], [4]These Sources and 

Detectors are attached non-invasively on the surface of head where light passes through the skull 

and falls upon the brain tissue before being reflected to the detectors. The amount of light reflected 

to the detectors depends on the light absorption characteristics of hemoglobin which is indirectly 

dependent on brain activation. Thus, brain activation can be quantified using fNIRS measurement. 

 Brain Computer interfaces can be very useful to patients with neurological pathologies 

such as ALS, Locked-in syndrome in gaining control over their lives and being independent[1]. 

These interfaces allow the subjects to control devices bypassing their own internal neural pathways 

that may not be working e.g. in controlling a prosthetic limb using BCIs amputees can control the 

prosthetics and gain some function back of their limbs similarly other patients that have mobility 

issues can also control devices such as wheel chairs, Hospital Beds and other commonly used 

electrical devices. BCIs can also facilitate healthy subjects in improving their efficiency and 

allowing better control with added functions to commonly used devices.  

 An ideal BCI should be affordable and comfortable for the subject, it should be accurate 

and fast moreover it should be able to conduct complex tasks that involve a large number of 

commands. Required tasks vary in complexity from being very simple such as binary tasks with 

only two commands to very complex requiring dozens of actions to be conducted either in parallel 

or in sequence[5]. To cater these needs we need a reliable neuroimaging and robust classifiers.   

 According to current trends, BCIs mostly use EEG for fast detection but it is used for 

reactive tasks that require cues for the subject to start[6].  More research is required for active 
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command generating by the subject and for working with cognition-based tasks. Fnirs in 

comparison to EEG is a relatively new technique which has shown promising results for BCIs 

using both active commands and for cognition-based tasks since it uses variations in 

oxyhemoglobin and deoxyhemoglobin changes.[7] 

 

1.2 Research Problem 

 Although its use has shown promising results for BCIs, fNIRS relies on the slow 

hemodynamic response which takes up to 17 seconds for the signal to reach maximum potential. 

This induces an inherent delay in decoding signals. In the past various feature extraction such as 

ARMAX modelling, Adaptive Independent component Analysis etc. and classification techniques 

such as Linear Discriminant Analysis, Support Vector Machines, Artificial Neural Networks have 

been used with Fnirs. These techniques rely on statistical features that need to be extracted before 

classification.[8]  

Convolution Neural Networks (CNNs) have been shown to classify Neural signals with 

higher efficiency, some very recent papers have also shown promising results to classify fNIRS 

signals[9]. In this thesis we propose to improve the accuracy and timing of current classification 

techniques by using CNNs for Quinary classification including cognitive tasks since most locked 

in patients can’t generate motor imagery signals as efficiently as normal healthy patients.[10], [11] 
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CHAPTER 2: Literature Review 

2.1 Understanding the Working of FNIRS and CNNs 

In this thesis Convolution Neural Networks have been used to classify Fnirs data for 

Quinary (Five Categories) Classification. It is therefore necessary to understand the working of 

Fnirs and CNNs. This segment describes the fundamentals of fNIRS and CNNs 

 

2.1.1 Functional Near-Infrared Spectroscopy (fNIRS) 

2.1.1.1 Theory and Data Recording 

fNIRS is the use of near-infrared spectroscopy (NIRS) for the purpose of functional 

neuroimaging to measure the optical absorption changes of tissues. It measures brain activation 

indirectly through the scalp relying on the change in reflected light from the brain tissue [7]. When 

a brain area is activated it causes increase in metabolic activity causing an increased cerebral blood 

flow in the respective area, since near infrared light's reflection is dependent on the amount of 

blood [12]it is incident upon therefore this increased blood flow changes the amount of reflected 

light towards the detector. fNIRS is cheaper than modalities like FMRI and PET scan but with 

lower spatial resolution[13], it is also less sensitive to motion than fMRI, so it reduces noise and 

is comfortable for children [3]. This also makes it more suitable for long measurement and tasks 

which require movements. 

To measure brain activation subjects are made to wear caps on which probes of detector or emitter 

optodes are attached. Every emitter emits near-infrared wavelengths of light that pass through the 

human skull and are reflected to the detectors where blood oxygenation levels are quantified. 

Figure 1.1 shows a typical configuration of a source and detector optodes and how they are 

attached as probes to a wearable cap. Each pair constitutes an fNIRS channel. Since the reflected 

light depends on the hemoglobin in the tissue, we can use modified Beer lambart Law to quantify 

changes in hemoglobin. [12], [14] 

 

 



4 

 

  

Figure 2.1: Placement of NIRS Emitters and Detectors on the scalp  

 

Fnirs is a noninvasive technique for neuroimaging that can be used for Brain Computer Interfaces, 

other non-invasive modalities include Fmri and EEG. fNIRS in comparison to EEG and fMRI is 

easier and cheaper to record. It is also less prone to movement artifacts which makes it suitable for 

long term experiments. It also allows it to be commonly used with unstable subjects such as 

children. 

 

   

Figure 2.2: A typical cap worn on head over which these optodes are attached  

 

The spatial resolution in detecting hemodynamic response of brain is better than detecting neuronal 

response to stimulus in EEG, but the temporal resolution is much lesser than EEG. These separate 

characteristics and the fact that they do not interfere with each other during simultaneous recording 

allows the use of both techniques together. Several studies under the name of Hybrid-BCIs record 

simultaneous data from EEG electrodes and Fnirs optodes. [13], [15] 
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2.1.1.2 Fnirs Signal  

Although three types of NIRS devices can be used to record fNIRS signals. Continuous Wave -

NIRS (CW-NIRS) devices are the most popular since they are simpler, cheaper and portable. They 

only measure the light attenuation so absolute value of hemoglobin concentration is not 

determinable[16] . Each channel configured using CW-NIRS uses values of molar coefficients and 

values of DPF to calculate concentration changes if change in hemoglobin concentration in tissue 

remains constant. This is not always true however precise quantification can be skipped as overall 

trends remain the same so a suitable combination of extinction coefficients and DPF can be chosen 

for concentration changes. An Fnirs signal can contain three types of noises that are often necessary 

to remove before further analysis. 

 

 

    

Figure 2.3: Light spectrum with Near IR just after the visible spectrum (Left) and 

Absorption Spectra of Hemoglobin and oxy-Hemoglobin (Right)  

 

a. Motion Artifacts 

Motion artifacts appear as sharp peaks and baseline shifts in the data due to movements of head 

during recording and unstable connection with the scalp, they are avoided at all costs and usually 

whole data is rejected if they are too many. In cases they can’t be ignored e.g. when dataset is 

small or when they can’t be avoided like recordings from children It is better to remove the artifacts 

and restore the signal. [8], [14], [17] 
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Figure 2.4: Spikes and Baseline shift artifacts shown left and right respectively  

 

Several methods are used for removing spike motion artifacts such as recording additional data 

about movements of the subject using reference channels ; Principal Component Analysis (PCA) 

based on the fact that these artifacts appear in the form of peaks at the same time in several 

channels; techniques making use of the fact that motion artifacts are always positively correlated 

in Hb and HbO while normal data is always inversely correlated; and spline interpolation. 

 

Detecting baseline shift due to motion is tricky since it very closely resembles hemodynamic 

response of the brain. Therefore, complex techniques are required to distinguish these as quickly 

as possible in BCIs.   

 

b. Instrumental Noise 

Instrumental noise is a random white noise which can be filtered using simple low-pass filtering 

techniques. Techniques such as block averaging, Moving Average and cutting off higher 

frequencies after data conversion to frequency domain are used. However, sensitivity of these 

techniques needs to be determined manually to avoid distorting data.[13], [18] 

 

 

c. Physiological Noise 

Physiological noise is added to fnirs signal due to several systemic physiological changes other 

than the hemodynamic response, activities such as changes in blood pressure, heart rate, 

respiration, Mayer wave, blood flow outside the brain beneath skull that are superficial layers. 
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These components of the signal known as physiological noise are defined by Schlokman as any 

non-functional brain activity. [13], [14], [18] 

 

 

Figure 2.5: OxyHb oscillations at cardiac frequency (1 Hz) and at M-wave frequency (0.1 Hz) 

enhanced with deep breathing at 0.1 Hz.  

 

Various ranges of lower thresholds of frequencies of a typical hemodynamic response have been 

reported in literature. For instance, lower cutoffs such as 0.5Hz (Keles, Barbour, & Omurtag, 2016; 

Yücel, Selb, Boas, Cash, & Cooper, 2014; Cui, Bray, Bryant, Glover, & Reiss, 2011) and 0.4Hz 

(Spichtig, Scholkmann, Chin, Lehmann, & Wolf, 2012). 

 

i. For non-overlapping ranges 

Higher frequency components can be removed using low pass filters, similarly very slow-moving 

components (0.01Hz or lesser) can be removed using high pass filters. Other common filtering 

techniques such as wavelet filtering, smoothing etc. can also be used. 

 

ii. For Overlapping Ranges 

Components with frequency range (0.01-0.5Hz) such as Respiration and Mayer wave overlap with 

the Fnirs signal therefore normal low-pass of high pass filters can’t be used to remove these noises. 
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Several Methods are used e.g. method proposed by Zhang (2005) which uses information of 

physiological noise from in baseline data. Zhang proposes that physiological noise remains nearly 

same during baseline recording and during activity for the same subject so estimated noise from 

baseline can be removed from the active data recordings. Another method as discussed before in 

removing motion artifacts is the use of reference channels that are placed very close to each other 

(3cm), so the light does not reach brain are used. They record superficial components of data 

without being affected by brain activity thus providing an estimate of noise. In a similar fashion 

sometimes causes of physiological noise such as heart rate, respiration, and blood pressure are 

monitored with separate sensors along with fNIRS recording. Just like removing motion artifacts 

Principal Component analysis is used to remove estimated physiological noise from the data. 

 

2.1.2 Convolution Neural Networks (CNNs) 

A Convolutional Neural Network is a category of Artificial Neural Networks that does not require 

separately extracted features before classification. CNNs are designed in a grid like pattern 

inspired from an animal visual cortex to automatically learn important features present in the data 

at different spatial hierarchies through different layers such as convolution layers, pooling layers 

and fully connected layers. In very simple words a CNN finds what to find from comparing and 

optimizing results.  [9], [19] 

A typical CNN processes date in three types of layers most frequently connected in series namely 

Convolution Layer, Pooling Layer and a fully connected layer also known as Dense Layer. Before 

passing data to these layers the data is usually but not necessarily normalized and down sampled 

according to the complexity of required spatial features. The Layers are described in detail as 

follows 
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Figure 2.6: Flow chart showing a typical CNN [9], [20] 

 

 

2.1.2.1 Convolution Layer and Activation 

A convolution layer is made up of fixed number of convolution kernels that have a pre-defined 

size. These kernels are basically small matrices usually 2x2 or 3x3 with default starting values that 

are updated to extract features. These kernels are convolved with input i.e. an element wise product 

is obtained between elements of the convolution kernel and the values of input is calculated at each 

location and summed. This process is shown in FIGURE 2.7 

In figure an Input matrix also known as input tensor is element-wise multiplied and summed up to 

the output also known as a feature map, figure b and c show that this process is repeated for each 

location and feature maps are obtained. Various paddings, mostly zero padding can be used to 

convolve boundary values of the input tensor with the convolution kernels. [20], [21] 

 

 

       



10 

 

 

 

Figure 2.7: Application of Convolution Kernels over input tensors and feature maps 

 

 

For CNNs containing more than one Conv layers feature maps of previous layer are dealt as input 

tensors of the next layer. 

Other important terms include stride length, the distance between two locations on which kernels 

are applied is known as stride length, stride length is usually kept one. Moreover, kernel weights 

are shared and kept same for all the locations of input tensors which allows kernels to detect local 

patterns and increase model’s efficiency. 

  



11 

 

 

Activation Functions 

 

Output of convolution layers is then fed through non-linear activation functions before down 

sampling. Most of the modern CNNs use rectified linear unit (ReLU) function [19], [22]which can 

be stated simply in an equation as  

F(x) = max (0, x) 

 

Figure 2.8: Most common activation functions sigmoid(left) and ReLU(right)  

 

2.1.2.2 Pooling Layer 

Several Down sampling techniques such as max pooling and global average pooling can be used 

after application of non-linear activation functions. In max pooling portions from input feature 

maps are obtained and maximum of each portion is kept while deleting all other values. Max 

pooling kernel sizes are specified before training. [Figure] shows the functioning of a max pooling 

layer. In a similar but more severe fashion global average pooling reduces the dimensions of each 

input feature to a 1 by 1 value by taking average of all values. This allows dramatic decrease of 

variable input tensors to one value. It is important to note that down sampling decreases the size 

of tensors therefore limiting the complexity of a convolutional neural network. [9] 

2.1.2.3 Fully Connected/ Dense Layer 

Output of non-linear activation or pooling layers is then converted to one dimensional array and 

connected to one or more fully connected flat (One Dimensional) layers. In these layers every 

input and output are connected through a learnable weight. Each connected layer is also passed 

through non-linear activation functions such as ReLU. The final flat layer typically has the same 

number of nodes as the number of classes the input data must be classified into. 
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Last layer’s activation function is chosen very carefully and is usually different from previous fully 

connected layers. One of the most common used layers is SoftMax, which normalizes the results 

between 0 and 1 based on the probability of each class. 

 

Parameters and Hyperparameters are summarized in the table below 

Table 2.1 Parameters and Hyperparameters of Convolutional Neural Networks  
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CHAPTER 3: Methods and Materials 

 

3.1 Experimental Paradigm and Data Specifications 

Two open source data-sets [23], [24] were used together to train Convolution Neural Networks, 

both contained experiments commonly used for Brain Computer Interfaces namely 

Word Generation (WG), Motor Imagery (Different tasks for left- and right-hand motor imagery 

(L- and R-MI)) and Mental Arithmetic (MA). Each experiment contained both resting state data 

and activity. In resting state data, the subject did not perform the task and relaxed and in Active 

trial the subject performed the mentioned tasks.  

During the recording a montage of sources and detector probes were attached to the skin through 

a cap on the head of a subject. The source optodes emit near-infrared light which is reflected from 

the brain tissue and is received by the detector. This near Infra-red light is relatively left 

unabsorbed by the brain tissue and bone and its absorption chiefly depends on the amount of 

hemoglobin it encounters. 36 Channels were configured using adjacent sources and detectors in 

the data as shown in the figure (Dark Circles) 

 

Fnirs Channels Used Quinary Classification can be seen in red in the following diagram 

     

Figure 3.1: Locations of placed optodes in the experiment with reference to their EEG 

locations  
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Experimental Paradigm 
 
Dataset A 
 

The subjects sat on a comfortable armchair in front of a 50-in white screen. The distance between 

their heads and the screen was 1.6 m. They were asked not to move any part of the body during 

the data recording. The experiment consisted of three sessions of left- and right-hand MI and, MA 

and baseline tasks (taking a rest without any thought) each. Each session comprised a 1 min pre-

experiment resting period, 20 repetitions of the given task and a 1 min post-experiment resting 

period. The task started with 2 s of a visual introduction of the task, followed by 10 s of a task 

period and resting period which was given randomly from 15 to 17 s. At the beginning and end of 

the task period, a short beep (250 ms) was played. All instructions were displayed on the white 

screen by a video projector. MI and MA tasks were performed in separate sessions but in 

alternating order [i.e., sessions 1, 3 and 5 for MI and sessions 2, 4, and 6 for MA]. 

 

Dataset B 

 

The participants sat on a comfortable chair in front of a 24’ LCD monitor. The distance between 

the participants’ eyes and the monitor was approximately 1.2 m. They were instructed to keep their 

eyes on the monitor and refrain as much as possible from moving their body throughout the data 

recording. The experiment consisted of three sessions of n-back, DSR, and WG task each.  

Only Word Generation task was selected from these three tasks to be used for training data for 

both binary and quinary classification since it contained temporally separated trials 

 

 

Temporal Sequence of Tasks in both data-sets 

 

Each trial started with a 2s instruction on a screen. The subject performed the instruction in the ten 

seconds after the initial two seconds. Task period always started with a short (250ms) beep and 

ended with a STOP sign on the screen which was displayed for 1 second. The task period was 

followed by 13-17 seconds of rest period before the next instruction was shown.  

 

Figure [] shows the temporal sequence of all tasks. 
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Figure 3.2: Three phases of trials and their division  

 

 

Classes of Data 

 

For the quinary classification the task trials were categorized into Right motor imagery (RMI), 

Left Motor Imagery (LMI), Mental Arithmetic (MA), and Word generation (WG). Both datasets 

were used in epoching of data. Our classifier needs to be able to detect the first second of active 

trials from remaining seconds of the trial.  It also needs to classify the type of active trial it is from 

LMI, RMI, WG & MA. 

 

Word Generation Task (WG) 

 

Instructions in the initial two seconds either showed a fixation cross or a random letter from the 

alphabet. Subjects had to rest or generate words from the shown letter in the 10 seconds of task 

after which they rested 13-15 seconds. This task produced 780 trials of both rest and intentional 

rest. 

 

Right Hand and Left-Hand motor imagery (RMI & LMI) 

Subjects imagined moving their left or right hand depending on the instruction shown in the initial 

two seconds. This task provided 870 trials of both Left- and Right-Hand Motor Imagery. 

 

Mental Arithmetic (MA) 

In this task subjects were shown multiple arithmetic questions on screen which they had to solve 

mentally in the ten second task period. This task constituted of 870 Active trials and 870 intentional 

rest periods.  

 

Resting Periods or Baseline (Rest) 



16 

 

In WG and MA tasks subjects were also explicitly directed half of the time to relax instead of 

performing the task. These intentional rests, and resting periods after the tasks will together be 

called as resting periods.  
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3.2 Methods 

3.2.1 Preparation of data and Objectives 

Data preparation is often used to describe the storage of data where each trial is stored with its 

class label so it can be used to train CNN’s. It is best to divide the data into three different types 

with as much homogeneity as possible namely Training, Validation and Testing data. [9], [19] 

Training data which composes of majority of the data is used to train CNN to recognize the features 

from different trails and improve its classification method. After training CNN apply the learned 

parameters to the validation data to determine its accuracy and to keep a check on whether the 

network is not overfitting or “memorizing data”.[25] Testing data is used after the training and 

validation process to test the final accuracy of models over completely unfamiliar trials of data. 

Testing accuracy reveals the real accuracy and thus is the best measure of goodness of a model. It 

is often used to choose the best model from a bunch of trained models. Other efficiency constraints 

along with accuracy of classification include the average time a model take to classify a presented 

trial. This is also measured over the testing data. Each trial’s duration may be measured separately, 

and statistical analysis is applied over it. 

 

3.2.2 Preprocessing Before Training CNN models 

One of the best features of CNN is that it does not need to be fed with explicitly extracted features, 

since convolution layers extract useful features automatically in a hierarchal manner. This avoids 

bias of explicit feature extraction which may ignore important features.  

Several methods can still improve efficiency of CNNs significantly e.g. Down sampling of data, 

resizing all images to same sizes and Data normalization into a [0-1] range are among the most 

popular and useful methods. 

3.2.3 CNN and it’s training 

To accommodate the need of speed of a classifier while keeping it complex enough so it can 

accurately classify enough classes, A compromise between complexity and speed of classification 

is unavoidable. In our case that is using Convolutional Neural Networks for BCI classification, 
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speed and accuracy are the ultimate priorities. It is normal for a subject to expect movement or his 

task being executed as quickly as he or she decides to perform it. Therefore, we have kept the 

classification as fast and accurate as possible. Convolutional Neural Networks as seen in the 

literature review can get increasingly large and require a lot of computational power and time to 

but if they are kept from getting complex, they can still be useful in classifying slow changing 

signals such as fnirs. 

 

A CNN has two types of characteristics known as Parameters and Hyperparameters that need to 

be adjusted according to training requirements. A parameter’s values are adjusted during training 

automatically to obtain the best possible results e.g. weights of fully connected layers, values of 

convolution kernels etc. whereas hyperparameters make up the structure of network thus 

hyperparameters are selected either manually before starting training of the network or a multiple 

training session are iterated over specified range of hyperparameters. Some very simple examples 

of hyperparameters include Number of each layers, choice of back propagation and optimization 

techniques also other choices such as use of different pooling techniques and activation functions.   

 

3.2.3.1 Different Hyperparameters and their uses 

Hyperparameters can be classified according the layers which they define, they are briefly 

explained before under the headings of the layers they define 

 

a. Convolution Layer Hyperparameters 

In order to define a convolution layers in CNN we need to know how many layers to use and in 

which order. We also need to know which activation functions follow each layer e.g. activation 

functions such as RelU, step, linear or sigmoid. ReLu is used mostly since it resembles actual 

activation of neurons. [9] 

Number and sizes of convolutional layers define the complexity of a network, time efficiency 

chiefly depends on these since more complexity gives rise to more processing time. After the total 

number and sequence of convolution layers is decided. Size of each convolutional layer’s kernels 

is decided. Each kernel is a small tensor which has adjustable values that adjust during training, 

its initial values are usually temporary.  
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Other convolution hyperparameters include stride length which determines the unit number of 

pixels over which a convolution kernel moves on an image/tensor. It is mostly kept one, increasing 

it is equivalent to down sampling an image before applying convolution by the stride length factor. 

To apply convolution function on edges of input tensors we need to extrapolate layers of pixels 

around the border this is called padding, type of paddings must be chosen before applying 

convolution most common type of padding used is zero padding in which a boundary of zeros is 

applied at the edges of input tensor.  

b. Pooling Layers 

Pooling layers are inserted in between convolution layers to down sample feature maps, several 

types of pooling include global average pooling, SoftMax pooling and Max pooling. Max pooling 

which is used most frequently determines the greatest value in a fixed sized kernel from the feature 

maps in other words it selects the maximum value from a patch of input and rejects the rest. Global 

Average pooling just outputs the calculated average of whole feature map. The advantages of 

applying global average pooling are that it reduces the number of learnable parameters and enables 

the CNN to accept inputs of variable size. Hyperparameters that need to be determined here are 

size of the pooling patches and type of pooling. 

 

c. Hyperparameters of Fully Connected Layer 

Before feeding feature maps to dense layers they are flattened that is converted to vectors, usually 

there are no different types of flattening the data is usually reduced in dimension also known as 

flattening 

Fully connected layers resemble convolution layers in the sense that they have fixed sizes and 

activation functions can be used after each of them. But they do not extract features instead train 

their weights over already extracted features in convolutional layers. Hyperparameters here 

include number of nodes/weights per each dense layer and type of activation function.  

Last activation function before classification is usually different from other activation functions 

since it must classify the outputs into clear different classes. The choice of last activation function 

depends on the types of classification tasks. For multiple classes problems a SoftMax function is 

used which gives result in terms of probabilities per each class. Probabilities as usual are 

normalized with 1(ONE) being a 100% probability. 
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Table 3.1 Last Layer Activation choices 

 

 

Table 3.2 Summary table of parameters and Hyperparameters 

 

3.3 Methodology 

3.3.1 Preparation of Data  

One second periods from the required channels were cut from the start of active trials (BCI tasks) 

and three different non-active one second trials were randomly cut from each resting state time 

periods after the task and from the remaining task period (9 seconds) as shown in the figure using 

Matlab script 
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Figure 3.2: The Phases of Trials  

 

3.3.2 Conversion of Trials to 2D Tensors and their storage 

Data is converted to two dimensional tensors before training models, each tensor contains one 

second of raw fNIRS data from various channels. Each row of the image contains oxygenated or 

deoxygenated data from different channels. Size of each image is Number of channels by Sampling 

Frequency also using Matlab.  For convolutional Neural Networks the sequence of channels 

(rows) and data values (columns) does not affect the classification accuracy if they are kept same 

for all images[9]. 

 

Figure 3.3: Illustration of an Image [72 rows and 10 columns (1second)] 

 

 

Table below shows a summary of Number of trials per each class, before making them all equal 

by replicating the activity periods  
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Table 3.3: Summary of trials of each class for quinary classification 

Task  Label Total Trials 

Word Generation WG 4 780  

Right Hand Motor 

Imagery 

RMI 3 870 

Left Hand Motor Imagery LMI 2 870 

Mental Arithmetic MA 1 870 

Baseline / Rest Rest 0 15,120 

 

3.3.3 CNN and its training  

A simple structure of CNN was chosen to classify trials for BCI, it constitutes of convolution and 

pooling layers appearing periodically in a sequence before being flattened and fed to dense layers 

for classification.  

 

Figure 3.4: Pattern Diagram of used CNNs 

 

This figure shows a CNN where various hyperparameters are chosen separately to train numerous 

models, following table summarizes the range of hyperparameters chosen for all models 

  



23 

 

 

Table 3.4 Hyperparameter range for comparing accuracies  

 

Hyperparameter Min Max Increment 

Number of 

Convolution and 

Pooling layers 

1 3 +1 

Fully Connected 

Layers 

0 2 +1 

Layers Size 10 20 +5 

Batch Sizes 10 20 +5 

 

Table 3.5 Chosen Optimization methods and other procedure hyperparameters  

  

Loss  Sparse Categorical Cross Entropy 

Optimization Adam Optimization 

Activation Functions RELU after each layer except output layer  

Model Callbacks Tensor Board 

Stride Length 1 

Convolution Kernel Size 3x3 

Max Pooling Kernel Size 2x2 
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3.3.4 Platforms/Tools used for Methodology 

A simple laptop Core-M3 was used to train and analyze data and to achieve greater than 95% 

accuracy and classification time of less than 2 milli-seconds per trial. 

 

 

 

 

Table 3.6 Specifications of system used for testing data  

 

 

Additional Solid-State Drive (160GB) was installed for higher reading and writing speed of data 

All the preprocessing including epoching and sorting of training data was performed using Matlab 

since the data files were already available in ‘mat’ formats and experimental information was 

stored in Matlab structures along with it. 

After epoching all classes, they were saved in separate folders and trained using TensorFlow, this 

shift from Matlab to python was necessary because of higher speed of python specially in training 

deep neural networks. 

 

Tensorboard was used to keep track of validation and training process to ensure the models were 

not overfitting and moving towards more accuracy with each iteration.    
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Chapter 4: Results and Discussion 

 

4.1 Performance of selected hyperparameter ranges 

Following table summarizes the results of models with top five performances in terms of 

classification times and accuracies, Number of kernels for conv layers and weights for dense layers 

were kept same 

 

Table 4.1 Summary of results with different hyperparameters 

Hyperparameters Test Accuracy 

(Percentage) 

Average Time 

To classify one 

trial  

 (Milli-seconds) 

Convolution Layers 

(3x3) 

Pooling Layers 

(2x2); Max Pooling  

Dense 

Layers [0-2] 

Kernels Number Number Number Validation Test 

20 2 2 1 100 96.448 1.914 

15 2 2 1 99.6 94.924 1.889 

20 2 2 0 99.6 89.452 1.795 

15 2 2 0 99.4 87.793 1.784 

10 2 2 0 99.8 84.675 1.696 

 

 

The table shows the trends of classification times, accuracies and their dependence on the 

complexity of our networks. With an increase in number of convolution layers accuracy increases 

significantly before saturating at two layers. Similarly complicating the network’s dense layers is 

only useful until a dense single layer. Since every dense layer causes an increase in the 

classification time of the network.  
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4.2 Effects on performances with different hyperparameters 

4.2.1 Number of Convolution Layers 

Increasing convolution layers while using no dense layers and 15 kernels   

 

Table 4.2 Classification times and accuracies with different number of convolution layers 

Number of 

Layers 

Classification 

Time (ms) 

Testing 

Accuracies (%) 

1 1.532 77.343 

2 1.784 87.793 

3 2.051 87.801 

 

 

 

Figure 4.1 : Classification times and accuracies with different number of convolution layers 
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4.2.2 Number of Dense Layers 

Increasing Dense Layers while using 20 kernels and 2 convolution layers 

 

Table 4.3 Classification times and accuracies with different number of dense layers 

Number of 

Layers 

Classification 

Time (ms) 

Testing 

Accuracies (%) 

0 1.795 89.452 

1 1.914 96.448 

2 2.203 96.551 

 

 

 

 

Figure 4.2 Classification times and accuracies with different number of dense layers 

 

 

4.2.3 Number of Kernels and Nodes 

Increasing the number of kernels from 10 to 25 of the convolution layers while keeping number 

of convolution and dense layers same i.e. two convolution layers with one dense layer result in 

following performance of networks 
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Table 4.4 Classification times and accuracies with different number of kernels and weights 

 

Number of 

kernels/nodes 

Classification 

Time (ms) 

Testing 

Accuracies 

(%) 

10 1.852 93.194 

15 1.889 94.924 

20 1.914 96.448 

 

 

 

   

Figure 4.3 Classification times and accuracies with different number of kernels and weights 
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4.3 Different Accuraccies and Losses  

4.3.1 Epoch Accuracy and Loss 

Epoch accuracy plots the accuracy of training model over the training data, each subsequent epoch 

is a better attempt at finding local maxima, that are values of parameters such as weights of dense 

layers and element-values of convolutional kernels that yield better accuracy results. These are not 

the final measure of performance of a model since they only show how a model is performing on 

the “seen” training data. Epoch loss is like epoch accuracy and signifies the error rate per epoch. 

Following snippets show progress of our models reaching 80 to 100% testing accuracies around 

30th epochs.  

 

    

Figure 4.4 : Progress of epoch acccuracies and losses  

 

 

4.3.2 Epoch Validation accuracy (epoch_val_acc) and epoch validation loss 

(epoch_val_loss)  

A chosen percentage from data is kept separate from training data during training process this data 

is known as validation data and is used to confirm the training accuracies on unused data, this data 

is different from testing and training data, it is shown to the model after every epoch, although it 

usually does not directly affect the parameters of a model but it is very helpful in predicting over-

fitting. Testing data on the other hand is kept disused during the whole training process. Following 

snippets show how Tensorboard displays the progress of validation errors of our models  
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Figure 4.5: Progress of models with respect to validation accurcies and validation losses  

 

 

Ideal validation curves show similar trends to epoch accuracies and losses, presence of abrupt rises 

or falls different from epoch accuracies mean the model is not performing same on training and 

validation data therefore there are chances of overfitting. 

4.3.3 Testing Accuracy 

Test data is only used after the parameters of models are fully trained i.e. this data is kept hidden 

from the model during all its epochs of training. Testing accuracy is the final measure of a model’s 

accuracy performance.[21], [26] 

A summary of predictions along with true labels over the testing data is shown in the following 

bar graph 
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Figure 4.6: Predictions (Dark) vs Ground Truths (Light)  

 

An overview of all testing predictions can be seen through the following image, in this image each 

pixel denotes a trial, each category has its own sseparate color as shown in the legend. Oddities in 

the image show wrong predictions (p<0.05) 

 

 

Figure 4.7: Test data analyses 
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Summary and Conclusion 

Deep Lerning is an emerging field of Artificial Intelligence[27] and it has numerous applications 

in brain computer interfaces, chiefly because of its inherent ability to extract useful features. 

Brain Computer Interfaces require high accuracy and fast classification times which can limit 

how complex a Network can be. A useful model should be able to classify small windows of data 

accuratly and as quickly as possible on simple processors that can work with BCIs. Our 

convolutional neural network classifies one second windows of fNIRS signals down sampled to 

10Hz only with excellent accuracy i.e. as much as 96 percent. The preparation is very simple and 

includes converting data into simple images [rows into coloumns]. A lot of useful information is 

obtained by training various models over various configurations of data such as effects of 

changing hyperparameters, complexity, number of channels and number of categories that the 

windows can be ssorted into. These characteristics makes CNNs an effective and fast technique 

for practicable translation of data to commands for machines.  
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APPENDIX  

5.1 MATLAB CODES FOR FNIRS DATA PREPARATION 

USED FUNCTIONS 

 

Moves multiple files from pickup to dropoff folder 

function move_rand(pickup,dropoff,names) 

cd(pickup) 

for i=1:numel(names) 

x = names{i}; 

movefile(x,dropoff) 

end  

end 

 

For Visual inspection and saving specific 

portions of fnirs data experiment-B 
 
%% this function plots required data 

for visual inspection and returns the 

data to workspace 

 

%% Description 

% Inputs 

% cnt_dsr : data variable oxy and deoxy 

% o : mode selection 0-EEG (-1)->ALL 

% 1-(oxygenated) 2-(Deoxygenated) 3-

(Both) 

% chan: vector containing channels to 

be plotted 

% time vector contains two elements 

starting and ending time in minutes 

% 

% Default Publish : DATA = 

fnirsplot(cnt_dsr,3,[1 2],[0,5]) 

 

%% Code 

function crop =  

fnirsplot(cnt_dsr,o,chan,time) % 

(file,mode,channels,[start end]) 

 

if o~=0 

     

 XX = 0:1/600:numel(cnt_dsr.oxy.x)/600; 

%FOR MINUTES [10Hz*60Sec] 

 %XX = 0:1/10:14800/10; %FOR SECONDS 

sampling rate [10Hz] 

 s  =    time(1); 

 e  =    time(2); 

 %  figure;  

 if (s==0) 

     s=1/600; 

 end 

 crop.time = time; 

 crop.x(1,:) = XX(s*600:e*600); % 

minutes 

  

end  

 

 

 %% EEG 

 if o==0 

     XX = 0:1/12000:394930/12000; %FOR 

MINUTES [10Hz*60Sec] 

 %XX = 0:1/10:14800/10; %FOR SECONDS 

sampling rate [10Hz] 

 s  =    time(1); 

 e  =    time(2); 

 %  figure;  

 if (s==0) 

     s=1/12000; 

 end 

 crop.time = time; 

 crop.x(1,:) = XX(s*12000:e*12000); % 

minutes 

      figure; 

       for i=1:numel(chan) 
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            crop.y(i,:) = 

cnt_dsr.x((s*12000:e*12000),chan(i)); 

%data 

            crop.type = 'MINUTES'; 

            crop.channel(i) = chan(i); 

            crop.eegchannel(i) =  

cnt_dsr.clab(chan(i)); 

        

        subplot(numel(chan),1,i) 

         

        

plot(crop.x,cnt_dsr.x((s*12000:e*12000)

,chan(i))) 

         str = 'MINUTES'; 

         xlabel(str) 

         ylabel(crop.eegchannel(i)) 

 

  

        end 

 

 end 

  

 %% OXY 

 if o==1 

        figure; 

       for i=1:numel(chan) 

        crop.y(i,:) = 

cnt_dsr.oxy.x((s*600:e*600),chan(i)); 

%data 

        crop.type = 'OXY - MINUTES'; 

        crop.channel(i) = chan(i); 

        crop.eegchannel(i) =  

cnt_dsr.oxy.clab(chan(i)); 

        

        subplot(numel(chan),1,i) 

         

        

plot(crop.x,cnt_dsr.oxy.x((s*600:e*600)

,chan(i))) 

         str = 'OXY - MINUTES'; 

         xlabel(str) 

         ylabel(num2str(chan(i))) 

 

  

       end 

 end 

 %% DEOXY    

 if o==2 

%         figure; 

       for i=1:numel(chan) 

           

        crop.y(i,:) = 

cnt_dsr.deoxy.x((s*600:e*600),chan(i)); 

%data 

        crop.type = 'DEOXY - MINUTES'; 

        crop.channel(i) = chan(i); 

        crop.eegchannel(i) =  

cnt_dsr.deoxy.clab(chan(i)); 

     

      

%         subplot(numel(chan),1,i) 

%         

plot(XX(s*600:e*600),cnt_dsr.deoxy.x((s

*600:e*600),chan(i))) 

%           str = 'DEOXY - MINUTES'; 

%           xlabel(str) 

%           ylabel(num2str(chan(i))) 

        end     

 end 

 %% BOTH 

 if o==3 

      

       for i=1:numel(chan) 

        

 

        crop.y(2*i,:) = 

cnt_dsr.deoxy.x((s*600:e*600),chan(i)); 

        crop.y(2*i-1,:) = 

cnt_dsr.oxy.x((s*600:e*600),chan(i)); 

        crop.channel(i) = chan(i); 

        

%       figure; 

%         subplot(2,1,2) 

%         plot(crop.x,crop.y(2*i,:)); 

%         str = ['DEOXY - MINUTES ', 

cnt_dsr.deoxy.clab(chan(i))]; % 

displaying eeg location 

%         ylabel(num2str(chan(i))) 

%         xlabel(str) 

%          

%         subplot(2,1,1) 

%         plot(crop.x,crop.y(2*i-1,:)) 

%         str = ['OXY - MINUTES', 

cnt_dsr.oxy.clab(chan(i))]; % 

displaying eeg location 

%         xlabel(str) 

%         ylabel(num2str(chan(i))) % 

channel number 

%          

       end 

 end 

 %% Moving Average 

 if o==4 

     

     for i = 1:numel(chan) 

     figure; 

     %%  

        t(:,i) = 

mov(cnt_dsr.x(:,chan(i)),300); 

     %% 

        crop.y(2*i,:) = 

cnt_dsr.x((s*600:e*600),chan(i)); 

        crop.y(2*i-1,:) = 

t((s*600:e*600),i); 

        crop.eegchannel(i) =  

cnt_dsr.clab(chan(i)); 

        crop.type = 'Moving average'; 

         

     %% 

        subplot(2,1,2) 

                

plot(XX(s*600:e*600),crop.y(2*i,:)) 

                xlabel([cnt_dsr.xInfo 

cnt_dsr.clab(chan(i))]) 
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        subplot(2,1,1) 

                

plot(XX(s*600:e*600),crop.y(2*i-1,:)) 

                xlabel(crop.type) 

     end 

      

 end 

  

 if o==5 

     figure; 

        cnt_dsr = 

downsample(cnt_dsr,2); 

        div = 

diff(diff(cnt_dsr(s*300:e*300))); 

        plot(div) 

        

figure;plot(cnt_dsr(s*300:e*300)) 

        movd = mov(div,5); 

        movd = movd.*movd; 

        movd = movd.*movd; 

        figure;plot(movd) 

 end 

  

%% ALL 

if o==-1 

    for i=1:numel(chan) 

       %% 

       figure; 

        crop.y(2*i,:) = 

cnt_dsr.deoxy.x((s*600:e*600),chan(i)); 

        crop.y(2*i-1,:) = 

cnt_dsr.oxy.x((s*600:e*600),chan(i)); 

        crop.channel(i) = chan(i); 

       %% 

        subplot(3,1,2) 

        plot(crop.x,crop.y(2*i,:)); 

        str = ['DEOXY - MINUTES ', 

cnt_dsr.deoxy.clab(chan(i))]; % 

displaying eeg location 

        ylabel(num2str(chan(i))) 

        xlabel(str) 

         

        subplot(3,1,1) 

         

        plot(crop.x,crop.y(2*i-1,:)) 

        str = ['OXY - MINUTES', 

cnt_dsr.oxy.clab(chan(i))]; % 

displaying eeg location 

        xlabel(str) 

        ylabel(num2str(chan(i))) % 

channel number 

         

        subplot(313) 

         

        XX = 0:1/12000:394930/12000; 

%FOR MINUTES [10Hz*60Sec] 

        %XX = 0:1/200:14800/10; %FOR 

SECONDS sampling rate [10Hz] 

        s  =    time(1); 

        e  =    time(2); 

        %  figure;  

        if (s==0) 

         s=1/12000; 

        end 

        crop.time = time; 

        crop.x(1,:) = 

XX(s*12000:e*12000); % minutes 

         

         

         

plot(crop.x,cnt_dsr.x((s*12000:e*12000)

,chan(i))) 

         str = 'MINUTES'; 

         xlabel(str) 

         ylabel(num2str(chan(i))) 

         

end 

  

end 

end 

 

 

DEVELOPED SCRIPTS 

 

READING WINDOWS OF DATA FROM EXPERIMENT-A FILES 

 

for wl = 9 

    X = 

'C:\Users\ahmad\Desktop\MODELS\NIRS_01-

29';    

    mat = dir(X); 

    Y = 

'C:\Users\ahmad\Desktop\MODELS\PROCESSE

D\tenx72'; 

     

     

    for t=3:31         

        disp(['reading subject number : 

',num2str(t-2)]) 

        p = [X ,'/', mat(t).name]; 

        max1 = dir([p , '/*.mat']); 

% SUBJECT 16 LACKS ARTIFACTS    

        if (t~=16) 

            

load(max1(1).name);load(max1(3).name);l

oad(max1(5).name) 

        else 
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load(max1(1).name);load(max1(2).name);l

oad(max1(3).name) 

        end 

% c- data % -i lmi/rmi % -a bls/ma % m- 

details      

        ci = [cnt(1,1) , cnt(1,3) , 

cnt(1,5)]; 

        ca = [cnt(1,2) , cnt(1,4) , 

cnt(1,6)]; 

        mi = [mrk(1,1) , mrk(1,3) , 

mrk(1,5)]; 

        ma = [mrk(1,2) , mrk(1,4) , 

mrk(1,6)]; 

% 3 I-'s and 3 A-'s 

        for k=1:3 

% 20 X 2 X 3 X 29 X 1  TRIALS            

            for i=1:20 

% trial_end = ending time of each trial 

% last element for last trial (20) 

                if i~=20 

                    trial_end_i = 

round(((mi{1,k}.time(i+1))/100)); 

                    trial_end_a = 

round(((ma{1,k}.time(i+1))/100));; 

                else 

                    trial_end_i = 

size(ci{1,k}.x',2); 

                    trial_end_a = 

size(ca{1,k}.x',2); 

                end 

                 

                s= 

round(((mi{1,k}.time(i)+2000)/100)); 

                e= 

round(((mi{1,k}.time(i)+2000)/100)+wl); 

                sa= 

round(((ma{1,k}.time(i)+2000)/100)); 

                ea= 

round(((ma{1,k}.time(i)+2000)/100)+wl); 

     

                if 

mi{1,k}.event.desc(i) ==1 

                    lmi = 

matcut(ci{1,k}.x',s,e) ; 

                    rlmi = 

matcut(ci{1,k}.x',[s-20,e+1],[s-

1,trial_end_i]); 

  

                    save([Y,'\lm\lmi', 

num2str(t-2), 'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'lmi'); 

                    

save([Y,'\r_lm\rlmi', num2str(t-2), 

'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'rlmi'); 

          

    

                elseif 

mi{1,k}.event.desc(i) ==2 

         

                    rmi = 

matcut(ci{1,k}.x',s,e) ; 

                    rrmi = 

matcut(ci{1,k}.x',[s-20,e+1],[s-

1,trial_end_i]); 

  

         

                    save([Y,'\rm\rmi', 

num2str(t-2), 'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'rmi'); 

                    

save([Y,'\r_rm\rrmi', num2str(t-2), 

'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'rrmi'); 

         

         

                end 

     

     

                if 

ma{1,k}.event.desc(i) ==1 

         

                    mas = 

matcut(ca{1,k}.x',sa,ea) ; 

                    rmas = 

matcut(ca{1,k}.x',[sa-20,ea+1],[sa-

1,trial_end_a]); 

  

                    save([Y,'\ma\mas', 

num2str(t-2), 'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'mas'); 

                    

save([Y,'\r_ma\rmas', num2str(t-2), 

'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'rmas'); 

         

     

                elseif 

ma{1,k}.event.desc(i) ==2 

         

                    blsx = 

matcut(ca{1,k}.x',sa,ea) ; 

                    rblsx = 

matcut(ca{1,k}.x',[sa-20,ea+1],[sa-

1,trial_end_a]); 

     

                    

save([Y,'\ma_rest\blsx', num2str(t-2), 

'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'blsx'); 

                    

save([Y,'\r_ma_rest\rblsx', num2str(t-

2), 'wl_' ,num2str(wl),'k_' 

,num2str(k),'trial_', 

num2str(i)],'rblsx'); 

  

                end 

            end 
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        end 

    end        

end 

 

READING WINDOWS OF DATA FROM EXPERIMENT-B FILES 
for wl = 9   

    path = 

'C:\Users\ahmad\Desktop\MODELS\PROCESSE

D\garbs'; 

         

    mkdir(path,'rst') 

    mkdir(path,'rrst') 

    mkdir(path,'wg') 

    mkdir(path,'rwg') 

  

    for t=1:26 

        disp(['reading subject number : 

',num2str(t)]) 

        X = 

['C:\Users\ahmad\Desktop\MODELS\RAW\VP0

0',num2str(t),'-NIRS']; 

        cd=X; 

        load('cnt_wg.mat'); 

        load('mnt_wg.mat'); 

        load('mrk_wg.mat'); 

         

     

        data_x = 

fnirsplot(cnt_wg,3,[1:36],[0 33]); 

        j=1; 

        k=1; 

  

  

%     all_trials = randperm(60); 

%     

save(['C:\Users\ahmad\Desktop\MODELS\re

sults\100\randomization',num2str(t)],al

l_trials) 

%     training = all_trials(1:54); 

%     testing = all_trials(55:60); 

  

        for i=1:60 

     

            s= 

round(((mrk_wg.time(i)+2000)/100)); 

            e= 

round(((mrk_wg.time(i)+2000)/100)+wl); 

            if i~=60 

                trial_end = 

round(((mrk_wg.time(i+1))/100)); 

            else 

                trial_end = 

size(data_x.y,2);     

            end 

            if mrk_wg.y(1,i)==1 && 

mrk_wg.y(2,i)==0 

  

                wg = 

matcut(data_x.y,s,e); 

                rwg = 

matcut(data_x.y,[s-20,e+1],[s-

1,trial_end]); %this line 

  

                save([path,'\wg\','WG', 

num2str(t), '_' ,num2str(wl),'_' 

,num2str(j)],'wg'); 

                

save([path,'\rwg\','RWG', num2str(t), 

'_' ,num2str(wl),'_' 

,num2str(j)],'rwg'); 

                 

                j=j+1; 

  

            end 

  

            if mrk_wg.y(1,i)==0 && 

mrk_wg.y(2,i)==1 

                    rst = 

matcut(data_x.y,s,e); 

                    rrst = 

matcut(data_x.y,[s-20,e+1],[s-

1,trial_end]); %this line 

  

                    

save([path,'\rst\','RST', num2str(t), 

'_' ,num2str(wl),'_' 

,num2str(k)],'rst'); 

                    

save([path,'\rrst\','RRST', num2str(t), 

'_' ,num2str(wl),'_' 

,num2str(k)],'rrst'); 

                 

                    k=k+1; 

  

            end 

  

        end 

  

    end 

clear all 

end 
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RANDOMLY DIVIDING DATA INTO TRAINING AND TESTING 

 
pickup = 'D:\onex72\10\rnds'; 

dropoff = 

'D:\onex72\10_test\subject_0'; 

t = dir(pickup); 

% for u=1:29 

%     cd(dropoff) 

%     mkdir(['subject_0',num2str(u)]) 

% end 

  

for i=1:29 % 29 SUBJECTS 

    dropof = [dropoff,num2str(i)]; 

%% TASKS_29     

    d_1 = 

dir(['D:\onex72\10\rnds\lmi\*lmi',num2s

tr(i),'wl*.mat']); 

    d_2 = 

dir(['D:\onex72\10\rnds\ma\*mas',num2st

r(i),'wl*.mat']); 

    d_4 = 

dir(['D:\onex72\10\rnds\rmi\*rmi',num2s

tr(i),'wl*.mat']); 

     

%% REST_29 

  

    d_3blsx = 

dir(['D:\onex72\10\rnds\rest\blsx',num2

str(i),'wl*.mat']); %30  

    d_3rblsx = 

dir(['D:\onex72\10\rnds\rest\rblsx',num

2str(i),'wl*.mat']); %300 

    d_3rrmi = 

dir(['D:\onex72\10\rnds\rest\rrmi',num2

str(i),'wl*.mat']); 

    d_3rlmi = 

dir(['D:\onex72\10\rnds\rest\rlmi',num2

str(i),'wl*.mat']); 

    d_3rmas = 

dir(['D:\onex72\10\rnds\rest\rmas',num2

str(i),'wl*.mat']);  

     

    if i<=26 

%% RESTS_26 

        d_3rst = 

dir(['D:\onex72\10\rnds\rest\RST',num2s

tr(i),'_99*.mat']); %30 

        d_3rrst= 

dir(['D:\onex72\10\rnds\rest\RRST',num2

str(i),'_99*.mat']); 

        d_3rwg = 

dir(['D:\onex72\10\rnds\rest\RWG',num2s

tr(i),'_99*.mat']);  

     

%% TASK_26        

        d_5 = 

dir(['D:\onex72\10\rnds\wg\*WG',num2str

(i),'_99*.mat']); 

    end 

     

     

%% Randomly obtaining 5 of each task 

and 8 types of rest for eaach subject         

        k=1; 

        for j = randperm(30,5) 

        d1{k} = d_1(j).name; 

        k=k+1; 

        end 

         

        k=1; 

        for j = randperm(30,5) 

        d2{k} = d_2(j).name; 

        k=k+1; 

        end 

         

        k=1; 

        for j = randperm(30,5) 

        d5{k} = d_5(j).name; 

        k=k+1; 

        end 

         

        k=1; 

        for j = randperm(30,5) 

        d4{k} = d_4(j).name; 

        k=k+1; 

        end 

         

        d3{1} = 

d_3blsx(randperm(30,1)).name; 

        d3{2} = 

d_3rblsx(randperm(300,1)).name; 

        d3{3} = 

d_3rlmi(randperm(300,1)).name; 

        d3{4} = 

d_3rmas(randperm(300,1)).name; 

        d3{5} = 

d_3rrmi(randperm(300,1)).name; 

         

        if i <=26 

        d3{6} = 

d_3rst(randperm(30,1)).name; 

        d3{7} = 

d_3rrst(randperm(300,1)).name; 

        d3{8} = 

d_3rwg(randperm(300,1)).name; 

        end 

    %function 

move_rand(pickup,dropoff,names) 

        cd(dropof) 

         

        mkdir('lmi') 

        mkdir('ma') 

        mkdir('rest') 

        mkdir('rmi') 

        if i<=26 

            mkdir('wg') 
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move_rand([pickup,'\wg'],[dropof,'\wg']

,d5) 

        end 

         

        

move_rand([pickup,'\lmi'],[dropof,'\lmi

'],d1) 

        

move_rand([pickup,'\ma'],[dropof,'\ma']

,d2) 

        

move_rand([pickup,'\rmi'],[dropof,'\rmi

'],d4) 

        

move_rand([pickup,'\rest'],[dropof,'\re

st'],d3) 

         

         

         

       clear d3  

end 

  

5.2 PYTHON CODES  

READING DATA INTO PYTHON VARIABLES 

@author: ahmad 

""" 

import os 

import scipy.io 

#import pickle 

import random 

 

dirx = 'D:/onex72' 

cats = ["lmi","ma","rest","rmi","wg"] 

#D = os.listdir(dirx) 

tt_data = [] 

D = ['10'] 

 

## Function To create data from a folders 40-45-50-55-60 

 

def create_t_data(): 

    for wls in D: # wls is window length folder names 40-45 .... 

        dx= os.path.join(dirx,wls,'rnds') # '40/subfolder' 

        for categ in cats: # categories e.g. word and base 

            path= os.path.join(dx,categ) #files in base/word 

            class_num = cats.index(categ) 

            for img in os.listdir(path): 

                try: 

                    new_array = scipy.io.loadmat(os.path.join(path,img)) 

                     

                    

                    if (class_num ==0): 

                        for x in range(15): 

                            tt_data.append([new_array['lmi'],0]) 

                     

                    if (class_num ==1): 

                        for x in range(15): 

                            tt_data.append([new_array['mas'],1]) 

                     

                    if (class_num ==2): 

                        try: 

                            tt_data.append([new_array['baseline'],2]) 

                        except: 

                            try: 

                                tt_data.append([new_array['blsx'],2]) 

                            except Exception: 

                                   print('ERROR IN RESTS') 

                                         

                    if (class_num ==3): 
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                         for x in range(15): 

                             tt_data.append([new_array['rmi'],3]) 

                    if (class_num ==4): 

                         for x in range(20): 

                             tt_data.append([new_array['wg'],4]) 

                    

                         

                         

                except Exception: 

                    print('Error Reading files') 

     

create_t_data() 

 

 

# cutting to parts and mixing trial wise  

dataRS = tt_data; 

 

random.shuffle(dataRS) 

# seperating  

features = [] 

labels = [] 

 

 

 

for feature,label in dataRS: 

        features.append(feature) 

        labels.append(label)         

 

 

Preparing, training, and saving models 
 

 

import tensorflow as tf 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Dropout, Activation , Flatten, Conv2D, 

MaxPooling2D 

from tensorflow.keras.callbacks import TensorBoard 

import time 

import numpy as np 

import random 

        

 

# permutations for loops 

dense_layers = [0,1,2] 

conv_layers = [2] 

layer_sizes = [10,15,20] 

batch_sizes = [10] 

wl = [10] 

data_blodck=[] 

x = [1] 

 

# folders by window length 

for values in x: 

    ''' 

    random.shuffle(data10RS); 

 

    features = [] 

    labels = [] 

    for feature,label in data10RS: 

        features.append(feature) 

        labels.append(label)  
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    for wl in D: 

        if  wl==10: 

            Xa=  features[0:8300] 

            Xta= features[8300:9880] 

            ya=  labels[0:8300] 

            tl=  labels[8300:9880] 

     

    ''' 

     

    ftr = np.array(features) 

    rftr = ftr.reshape(-1,72,10,1) 

     

 

     

     

    for dense_layer in dense_layers: 

        for layer_size in layer_sizes: 

            for conv_layer in conv_layers: 

                for bs in batch_sizes: 

                    NAME = 

f"thesis_quinary_stats_ep100_{wl}_wl_d1_{conv_layer}_conv_{layer_size}_nodes_{dense_la

yer}_dense_{bs}_batch_{int(time.time())}_time" 

                    print(NAME) 

                    tboard = TensorBoard(log_dir = 

'binary_ten_eps_logs\{}'.format(NAME)) 

          

                    model = Sequential()   

      

                    # first layer must have input shape 

                    model.add(Conv2D(layer_size,(3,3),input_shape = rftr.shape[1:])) 

                    model.add(Activation("relu")) 

                    model.add(MaxPooling2D(pool_size=(2,2))) 

                     

                    for l in range(conv_layer-1): 

                        model.add(Conv2D(layer_size,(3,3))) 

                        model.add(Activation("relu")) 

                        model.add(MaxPooling2D(pool_size=(2,2))) 

                        model.add(Dropout(0.1)) 

                         

                         

                    # flattening before fully connected layers  

                    model.add(Flatten()) 

                     

                     

                    for l in range(dense_layer): 

                        model.add(Dense(layer_size))  

                        model.add(Activation("relu")) 

         

                    model.add(Dense(5)) 

                    model.add(Activation("sigmoid")) 

                    model.compile(loss = "sparse_categorical_crossentropy", 

                               optimizer = "adam", 

                               metrics = ['accuracy']) 

                 

                    print("\nTRAINING : ") 

                    print(NAME) 

                    print("xoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxxoxoxoxoxoxoxox") 

                    model.fit(rftr,labels,batch_size=bs, validation_split=0.2, 

epochs=100 , callbacks = [tboard])                     

                    print("xoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxoxxoxoxoxoxoxoxox") 

                    print(NAME) 

                    print("COMPLETED\n\n") 

                    model.save(NAME) 
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TESTING MODELS OVER IMPORTED TEST DATA-A AND B 

A 

 

import tensorflow as tf 

import time 

import numpy as np 

 

 

#Xtab = np.array(features_test_2); 

Xtab = np.array(features_test_1); 

Xtab = Xtab.reshape(-1,72,10,1); 

#modelname = 

‘QUINARY_stats_[10]_wl_d1_2_conv_15_nodes_1_dense_10_batch_1566013925_time’;  

model =tf.keras.models.load_model(modelname) 

predicted_labels_1 = [] 

 

#predicted_labels_2 = [] 

 

data_block_1=[] 

#data_block_2=[] 

prediction_time_1 = [] 

 

 

for xxx in Xtab: 

    xxy = xxx.reshape(-1,72,10,1) 

    tima = time.time(); 

    ytab = model.predict(xxy) 

    timb = time.time(); 

    pt = timb-tima 

    prediction_time_1.append(pt) 

    #prediction_time_2 = (timb- tima) 

 

    for I in ytab: 

        predicted_labels_1.append(np.argmax(i)) 

   #predicted_labels_2.append(np.argmax(i)) 

     

        

count=0;         

test_accuracy=0; 

 

 

o=range(0,len(predicted_labels_1)) 

 

for k in o: 

    if predicted_labels_1[k] == labels_test_1[k]: 

        count+=1 

‘’’ 

o=range(0,len(predicted_labels_2))         

for k in o: 

    if predicted_labels_2[k] == labels_test_2[k]: 

        count+=1     

‘’’         

test_accuracy=(count*100)/728 

print(test_accuracy)     

 

 

data_block_1.append([test_accuracy,modelname,prediction_time_1]) 
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B 

 

import tensorflow as tf 

import time 

import numpy as np 

import statistics 

 

#Xtab = np.array(features_test_2); 

Xtab = np.array(features_test_2); 

Xtab = Xtab.reshape(-1,72,10,1); 

#modelname = 

'QUINARY_stats_[10]_wl_d1_2_conv_15_nodes_1_dense_10_batch_1566013925_time';  

model =tf.keras.models.load_model(modelname) 

predicted_labels_1 = [] 

 

#predicted_labels_2 = [] 

 

data_block_2=[] 

#data_block_2=[] 

prediction_time_b = [] 

 

 

for xxx in Xtab: 

    xxy = xxx.reshape(-1,72,10,1) 

    tima = time.time(); 

    ytab = model.predict(xxy) 

    timb = time.time(); 

    pt = timb-tima 

    prediction_time_b.append(pt) 

    #prediction_time_2 = (timb- tima) 

 

    for i in ytab: 

        predicted_labels_1.append(np.argmax(i)) 

   #predicted_labels_2.append(np.argmax(i)) 

     

        

count=0;         

test_accuracy_b=0; 

 

 

o=range(0,len(predicted_labels_1)) 

 

for k in o: 

    if predicted_labels_1[k] == labels_test_2[k]: 

        count+=1 

''' 

o=range(0,len(predicted_labels_2))         

for k in o: 

    if predicted_labels_2[k] == labels_test_2[k]: 

        count+=1     

'''         

test_accuracy_b=(count*100)/60 

print(test_accuracy_b)     

 

 

data_block_2.append([test_accuracy_b,modelname,prediction_time_b]) 

#data_block_2.append([test_accuracy,ytab,prediction_time_2,labels_test_2,predicted_lab

els_2]) 

 

 

print(modelname) 
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average_accuracy = ((test_accuracy*728)+(test_accuracy_b*60))/(728+60); 

average_time = 

(((statistics.mean((prediction_time_1))*728)+((statistics.mean(prediction_time_b)*60))

)/(728+60)); 

 

print(average_accuracy); 

print(average_time); 
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