

ADD ON SECURTIY MODULE FOR WIRELESS SETS

By

Hafiza Fareeha Jabeen

Imama Ghazanfar

Shafique Ur Rehman

Submitted to the Faculty of Department of Electrical Engineering,

Military College of Signals, National University of Science and Technology, Islamabad

In partial fulfilment for the requirements of a B.E Degree in

Telecom Engineering

JUNE 2016

ABSTRACT

ADD ON SECURITY MODULE FOR WIRELESS SETS

In today's high technology environment, organizations like military are becoming more

and more dependent on their information systems. Information security is one of the most

important military issues of the 21st century. Thus, we need to reduce the risk of data

breach by developing a low cost and trust worthy module which could not only be locally

produced but shall also be compatible with military communication devices like wireless

sets. The project focuses on development of a minimum cost module with implementation

of the advanced encryption standard (AES) algorithm and serial communication on

Raspberry pi board. The module thus produced shall be used with military wireless sets via

RS232 communication standard.

iii

DEDICATED TO

Allah Almighty,

Our parents, friends and family for their support and prayers,

Our supervisor,

And all faculty members for their help.

iv

ACKNOWLEDGEMENTS

First and foremost, all praises to the Almighty Allah for giving us strength and continuous

shower of His blessings.

We would also like to thank our project supervisor Lt. Col. Saifullah Khalid for showing

trust in our capabilities and giving us the opportunity to accomplish this task. His

motivation and help deeply inspired us.

We would also like to thank all the respectable faculty members for always helping us

throughout this period and for their golden advices.

Special gratitude to our parents and families who continuously supported us through their

prayers and encouragement.

Lastly, we would like to thank our colleagues who always helped us to the best of their

ability and our dear friends for not only helping us and for also building our morale.

v

TABLE OF CONTENTS

1. Introduction 1

1.1 Background and Motivation 1

1.2 Project Description and Salient Features 1

1.3 Scope 2

1.4 Objectives 2

1.4.1 Secured Data Transmission 2

1.4.2 Low Cost Module 2

1.5 Specifications 3

1.6 Deliverables 3

2. Literature Review 5

2.1 Serial Port Communication 5

2.1.1 RS232 Standard 5

2.1.2 Serial Port: DTE (PC) and DCE (Modem) 6

2.1.3 Hardware Flow Control 7

2.2 Advance Encryption Standard 7

2.2.1 AES methodology 7

2.3 Secure Hash Algorithm 9

3. Design and Development 11

3.1 Hardware 11

3.1.1 RS-232 Connectors and Cables 11

3.1.2 Raspberry Pi Board 12

vi

3.1.3 RF-5800h MP 14

3.1.4 TTL to RS232 Converter 15

3.2 Software Implementation 16

3.2.1 Serial communication implementation 16

3.2.2 AES Implementation 17

3.3 Detailed design 17

3.4 Tasks and Challenges 17

4. Project Analysis and Evaluation 19

4.1 AES Implementation 19

4.2 Serial Communication 20

4.3 Combining AES and Serial Communication 20

4.4 Final Testing 20

4.5 Data Flow Model 21

5. Recommendations and Conclusion 23

5.1 Overview 23

5.2 Limitations 23

5.3 Recommendations 23

5.4 Conclusion 23

6. Bibliography 26

6.1 General References 26

6.2 Online help 26

6.3 In Text Citations 26

7. Appendix-A: Codes 29

vii

LIST OF FIGURES

Figure 1-1: Crypto Ag HC-2605 terminal 3

Figure 2-1: Connection between two devices communicating

Through Rs232 standard 5

Figure 2-2: Male and female connectors (Pin configuration) 6

Figure 2-3: NULL Modem 7

Figure 2-4: Structure of Key and Input Data 8

Figure 2-5: Subbytes operation 8

Figure 2-6: Shiftrows operation 8

Figure 2-7: MixColumn operation 9

Figure 2-8: Add round key 9

Figure 3-1: RS232 Connectors 12

Figure 3-2: Features of Raspberry Pi 13

Figure 3-3: RF 5800-h MP 15

Figure 3-4: Timing diagram of TTL and RS232 16

Figure 3-5: TTL to RS232 logic converter 16

Figure 3-6: Detailed Design 17

Figure 4-1: Finalized Design 19

viii

Figure 4-2: Data Flow Model (sending end) 21

Figure 4-3: Data Flow Model (receiving end) 22

ix

LIST OF TABLES

Table 2.1: Pin configuration of 9 DB9 female/male connector 6

Table 3-1: Raspberry pi 1 model B specs 14

Table 3-2: Raspberry pi 1 model B+ specs 14

x

LIST OF ABBREVIATIONS

AES Advance encryption standard

DB D-shell Body

DCE Data Circuit-Terminating Equipment

DES Data Encryption Standard

DTE Data Terminal Equipment

HF High Frequency

NIST National Institute of Standards and Technology

OS Operating System

PC Personal Computer

RF Radio Frequency

RS Recommended Standard

1

1. Introduction

The project focuses on the design of an ADD-ON security module for wireless radio sets

which are being widely used by soldiers in battle field. The project has been designed to

provide conservancy of confidentiality of data sent over wireless sets. It focuses on design

and development of a security module which can be connected externally to wireless sets

and can provide encryption of all the data before sending it to wireless set and also

decryption of the encrypted data externally after receiving it from wireless set and security

module.

1.1 Background and motivation

The Add-on module provides highly secure data communication over high frequency

radio sets. The module uses the art of encryption and serial communication techniques.

Currently available encryption in HF radio set used in military is of foreign origin, has

limited security value and is unable to fetch user confidence. Therefore, designing an

external add-on security module would not only provide better security but would also

satisfy user up to greater extent. The module is used along with in effect radio sets for

end-to-end encryption without the compulsion of varying radio communication

infrastructures.

Encryption/Decryption is used to defend sensitive information from unauthorized access,

use, disclosure, modification or destruction. It is a general term that can be used regardless

of the form the data. The field is growing rapidly as the need for securing the data with

the growth in the technology is becoming necessity.

1.2 Project Description and salient features

The project is intended to provide a low cost reliable add-on security module for wireless

radio sets. It will serve two main purposes of securing the data and providing cost

efficiency. A locally developed low cost, trustworthy Security Module is a need of the

soldiers in the era where Data breaching and intelligence failure are considered as worst in

the fate of the nations. The module will help army men to have better as well as reliable

communication with complete trust and without having a fear of the information stealing.

The module will also be a cheaper one than those currently available as it will be produced

2

locally. The project will provide a platform for secure tactical chat between soldiers in

battle field with minimum errors and delay time.

1.3 Scope

The project basically involves the design of a hardware architecture, for people longing for

to achieve confidential data communication like army men especially those deployed in

battlefield, that will not only ensure the security of all the data passing through the wireless

sets (extensively used in battle field), but will also aim at overcoming the cost inefficiency

of security modules currently available in the market. The scope of the project includes

Secure and reliable wireless communication using some communication technique

compatible with hf radio sets. Preserving the confidentiality of data that needs to be

transmitted by a user, precisely a soldier, over wireless radio set. The project also serves

national goal as it is specifically made for army radio sets which are imported from other

countries and have foreign origin based encryption techniques employed in them.

1.4 Objectives

The project served the main objectives of securing the data transmission over wireless sets

and reducing cost inefficiency of currently available modules.

1.4.1 Secured Data Transmission

RF-5800h-mp used for testing purpose in our project is a member of the falcon ii® family

of multiband tactical radio systems. It provides communications of voice and data. The

radio set has its own encryption algorithm Citadel which is embedded in Citadel ASIC. But

the problem is that the algorithm as well as hardware is of foreign origin. Foreign

equipment cannot be trusted due to presence of backdoors especially when it comes to

areas as sensitive as battlefield communication. Thus we need an encryption module which

shall be locally developed and whose key is only known to soldier. Thus a locally

developed encryption module was designed.

1.4.2 Low cost module

The other main objective was to provide a low cost solution for the problem stated above.

There are some modules currently available in market like Crypto Ag HC-2605 terminal

which can be used as an additional security module but its cost is very high ranging from

 3

PKR-20000 to PKR-35000 per module and number of required modules is as large as

25000. A module with such high cost cannot be provided for each and every wireless set

thereby making it an ineffective module in terms of affordability which is a great factor in

deciding the success of a product in rapports of fetching the trust of user and making

customers. The module thus developed is a low cost one and was developed using the

currently available resources.

Figure 1-1: Crypto Ag HC-2605 terminal

1.5 Specifications

The hardware of the project has been developed using an embedded Raspberry bi board 1

class B and B+.

The module has been programmed by c, c++ which is the highly hardware descriptive

language.

The technique used for encryption and decryption is Advanced Encryption Standard-256

(AES-256).

SHA-1 algorithm developed in c++ is used to maintain security of key and passwords used

for encryption and decryption.

After development of module, the module is also made compatible to radios by converting

its TTL logic for serial communication to RS232 logic.

1.6 Deliverables

The project was aimed to deliver a working add-on security module for reliable and secure

data communication using RF-5800H. At the transmitting end the module sends cipher text

 4

of data provided by user serially to radio set and at the receiving end, it serially receives

data from radio set, decrypts it and display is on screen.

 5

2. Literature Review
Our project has two main components. One is Serial communication using RS232 standard

and other is AES 128 encryption/decryption. This chapter will give background of both.

2.1 Serial Port Communication

Serial communication implies sending data bit by bit over a single wire. Data rate for the

link must be the same for the transmitter and the receiver. [1] RS-232 is a standard for serial

communication transmission of data. This section of document explains about RS232

connection working between rpi and other computer or radio.

Figure 2-1: Connection between two devices communicating through Rs232 standard.

The serial port on radio used for testing purpose is a half-duplex i-e it can either send or

receive data at the same time and uses same communication channel for transmission as

well as reception of data. Thus, it used RTS/CTS handshake protocol.

2.1.1 RS232 Standard
RS stands for “Recommended Standard”. The standard was established by a committee of

standards now known as Electronic Industries Association in 1960s. It defines the

mechanical and electrical characteristics of the connection including handshake pins and

the function of the signals, the voltage levels and maximum bit rate. The standard also

defines how computers (DTEs) connect to modems (DCEs). Mainly two configurations are

characteristically used: One for a 9-pin connector and the other for a 25-pin connector. We

used 9 pin configuration for radio.

 6

2.1.2 Serial Port: DTE (PC) and DCE (Modem)

DTE stands for Data Terminal Equipment and DCE stands for Data Communications

Equipment. Both these terms are used to specify the direction of the signals on the pins and

the pin-out for the connectors on a device. The system we are using(Raspberry Pi) is a DTE

device, while most other devices (radio) are usually DCE devices.

Figure 2-2: Male and female connectors (Pin configuration)

Pin # Direction of signal

1 Carrier Detect (CD) (from DCE) Incoming signal from a modem

2 Received Data (RD) Incoming Data from a DCE

3 Transmitted Data (TD) Outgoing Data to a DCE

4 Data Terminal Ready (DTR) Outgoing handshaking signal

5 Signal Ground Common reference voltage

6 Data Set Ready (DSR) Incoming handshaking signal

7 Request To Send (RTS) Outgoing flow control signal

8 Clear To Send (CTS) Incoming flow control signal

9 Ring Indicator (RI) (from DCE) Incoming signal from a modem

Table 2-1: Pin configuration of 9 DB9 female/male connector.

 7

DTE devices usually use a 25-pin male connector, and DCE devices use a 25-pin female

connector. In order to connect two DTE devices, NULL Modem is used.

Figure 2-3: NULL Modem.

2.1.3 Hardware Flow Control

RTS stands for Request To Send and CTS stands for Clear To Send. RTS and CTS are used

when "hardware flow control" is enabled in both the DTE and DCE devices. The DTE puts

RTS high when it is ready and able to transmit data .The DCE device puts CTS in high

condition to tell the DTE device that it is ready to receive the data. If the DCE is unable to

receive data puts CTS in low condition. Together, these two lines make up “hardware flow

control.

2.2 Advance Encryption Standard

In January 1997 the National Institute of Standards and Technology (NIST) initiated the

search for a replacement for the Data Encryption Standard (DES) .The requirements for

new standards were that it should be an 18 bit block cipher with the choice of three key

sizes i.e. 128,192,256 bits, it should be a public design and it should be secure and available

royalty-free worldwide. At the conclusion of this standardization effort, with many man-

years of cryptanalytic and implementation expertise provided from around the world,

Rijndael, developed by John Daemen and Vincent Rijmen was selected as AES. [2]

2.2.1 AES methodology

The AES is a classic substitution/permutation network that requires 10, 12 or 14 rounds of

encryption. The exact number depends upon the length of the key. Using the nomenclature

of FIPS 197, a typical round of the cipher uses the four operations namely substitutebytes,

 8

shift rows, mix columns and add round key. Before encryption/decryption both

the key and the input data (state) are structured in a 4x4 matrix of bytes.[3]

Figure 2-4: Structure of Key and Input Data

Substitute Bytes Operation:

The Subbytes operation is a nonlinear substitution. It can be interpreted in different ways.

It can be considered as a lookup table. With the help of this lookup table, each of the 16

bytes of the state is substituted by the corresponding values found in the table

Figure 2-5: Subbytes operation

Shift Rows Operation:

In this operation different rows of the 4x4 input data are processed. The first row remains

unchanged. The second row is shifted one byte to the left in the matrix, the third row is

shifted two bytes, and the fourth row is shifted three bytes.

Figure 2-6: Shiftrows operation

 9

Mix Columns Operation:

This is the most complex operation. This operation is performed in two steps. First is

Matrix Multiplication and second one is Galois Field. In Matrix multiplication, the

multiplication is performed one column at a time. Each value in the column is multiplied

against every value of the matrix (16 total multiplications).The results of these

multiplications are XOR’ed together to produce only 4 result bytes for the next state.

Therefore 4 bytes input, 16 multiplications 12 XORs and 4 bytes output. The multiplication

is performed one matrix row at a time against each value of a state column. Whereas in

Galois Field Multiplication, the multiplication is performed over a Galois Field with the

help of two tables called E table and L table. The result of the multiplication is simply the

result of a lookup of the L table, followed by the addition of the results, followed by a look

up to the E table. The addition is a regular mathematical addition represented by +, not a

bitwise AND.[4]

Figure 2-7: MixColumn operation.

Add Round Key:

The corresponding bytes of the input data and the expanded key are XOR’ed in this step

Figure 2-8: Add round key

2.3 Secure Hash Algorithm (SHA)

 10

SHA is a cryptographic hash function. It was designed by US NSA and is a US FIPS

standard published by NIST US. Three successive SHA algorithms were developed named:

SHA-1, SHA-2 and SHA-3. The original specification of the algorithm was published in

1993 by U.S. SHA is widely used in security application and protocols. The SHA-1 is

called secure because it is computationally infeasible to find a message which corresponds

to a given message digest, or to find two different messages which produce the same

message digest.

When a message of any length less than 2^64 bits is input, a 160-bit output is produced by

SHA-1 which is called message digest. The message digest can input to a signature

algorithm which generates or verifies the signature for the message. The same hash

algorithm must be used by both the verifier and creator of the digital signature. Any change

to the message in transit will, with very high probability, result in a different message

digest, and the signature. In this algorithm, following logical operations are applied on

words. [5]

Message Digest:

The purpose of message padding is to make the total length of a padded message a multiple

of 512. SHA-1 sequentially processes blocks of 512 bits when computing the message

digest.[6]

All these techniques were thoroughly studied and different methods of their

implementations as well as vulnerability of each implementation of encryption techniques

were studied. And after all the research the best possible solution was selected and

implemented in the project.

 11

3. Design and Development

The aim of our project is to create a cheap security module for wireless radio sets. The

module shall be stand alone and shall also be capable of storing and processing all the data

and codes. The project can be divided into a hardware and a software part.

The hardware part includes the boards used for implementing the codes and security

algorithm with specified memory and processing power. For this purpose we used

Raspberry Pi 1 model B and B+ since these models met all our requirements and still were

not too costly

For the final testing of the project designed and developed, we used RF5800 h MP radio

set which is a high frequency radio set widely used in Pakistan army.

To create compatibility between the modules designed and the radio sets TTL to RS232

logic converters were used. Since the raspberry pi board’s gpio pins used for transmission

and reception work on TTL logic whereas radio uses RS232 logic for serial

communication.

A null modem was also developed between modules and radios to cross connect the

transmitters and receivers of both and to also make use of hardware flow control i.e.

RTS/CTS handshake which was required to create compatibility with radio set since it uses

RTS/CTS handshaking protocol. For the creation of null modem RS232 connectors and

cables were used along with female connectors and cables.

The Software part of the project included the development of code for serial

communication and AES along with SHA implementation for key protection and security.

The codes were developed in c and c++ languages with wiringPi library used for serial

communication. G++ and gcc compilers were used to compile codes in raspberry pi boards.

3.1 Hardware

3.1.1 RS-232 Connectors and Cables

The RS232 standard defines at each device which wires will be sending and receiving each

of the signal. According to the standard, male connectors have DTE pin functions, and

female connectors have DCE pin functions. The standard recommends the D-subminiature

25-pin connector, but does not make it mandatory. Most devices only implement or use a

https://en.wikipedia.org/wiki/D-subminiature

 12

few of the twenty signals specified in the standard, so connectors and cables with fewer

pins are sufficient for most connections, more compact, and less expensive. The standard

does not define a maximum cable length, but instead defines the maximum capacitance

that a compliant drive circuit must tolerate. A widely used rule of thumb indicates that

cables more than 15 m (50 ft) long will have too much capacitance, unless special cables

are used. By using low-capacitance cables, full speed communication can be maintained

over larger distances up to about 300 m (1,000 ft). For longer distances, other signal

standards are better suited to maintain high speed.[7]

Figure 3-1: RS232 Connectors

3.1.2 Raspberry Pi Board

Raspberry pi boards are tiny computers with memory and processing power which can be

used in projects to create portable devices. Several generations of Raspberry pi boards have

been released so far. All models include on chip operating power and systems. The

Raspberry Pi hardware has evolved through several versions that feature variations in

memory capacity and peripheral-device support.[8]

 13

Figure 3-2: Features of Raspberry Pi

All models feature a Broadcom system on a chip (SOC), which includes an ARM

compatible CPU and an on chip graphics processing unit GPU. CPU speed ranges from

700 MHz to 1.2 GHz for the Pi 3 and on board memory range from 256 MB to 1 GB RAM.

Secure Digital SD cards are used to store the operating system and program memory in

either the SDHC or MicroSDHC sizes. Most boards have between one and four USB slots,

HDMI and composite video output, and a 3.5 mm phono jack for audio. Lower level output

is provided by a number of GPIO pins which support common protocols like I2C. Some

models have an 8P8C Ethernet port and the Pi 3 has on board Wi-Fi 802.11n and Bluetooth.

The power consumed by the processes required to be run on the raspberry pi board and the

memory required decides which board is the best suited for the task. Since in our case we

did not require much power and memory so we decided to use the boards with

comparatively less memory available to reduce the overall cost of the project and modules

The Raspberry Pi 1 Model B is the first generation Raspberry Pi. It replaced the original

Raspberry Pi 1 A in February 2014. Model B is the higher-spec variant of Raspberry Pi 1,

with 512 MB of RAM, two USB ports and a 100mb Ethernet port.

On the other hand the model B+ is the newer version of model B with improved memory

and more ports. The processing power is also more than model B.The Model B+ is the final

modification of the original Raspberry Pi. It replaced the Model B in July 2014 and was

superseded by the Raspberry Pi 2 Model B in February 2015. Compared to the Model B it

has many specifications improved.

Both boards were used in the project as module 1 and 2.

http://www.raspberrypi.org/products/model-b-plus/

 14

 A 900MHz quad-core ARM Cortex-A7 CPU

 512MB RAM

 2 USB ports and 40 GPIO pins

 Full HDMI port

 Ethernet port

 Combined 3.5mm audio jack and composite

video

 Micro SD card slot

 CSI and DSI interface

 Table 3-1: Raspberry pi 1 model B specs

 Table 3-2: Raspberry pi 1 model B+ specs

3.1.3 RF-5800h MP

 A 1800MHz quad-core ARM Cortex-A7 CPU

 1GB RAM

 4 USB ports and 40 GPIO pins

 Full HDMI port

 Ethernet port

 Combined 3.5mm audio jack and composite video

 Micro SD card slot

 CSI and DSI interface

 15

Designed to provide soldiers with secure voice and data communications, even in the

harshest conditions, the RF-5800H-MP provides continuous coverage in the 1.6 to 60 MHz

frequency band and enables them to stay connected to mission critical information during

operations where line of sight communications are not an option.

Figure 3-3: RF 5800-h mp

For the final testing of project, data port of RF5800h MP was used.

3.1.4 TTL to RS232 Converter

Serial communication at a TTL level will always stay between the limits of 0V and Vcc,

which is frequently 5V or 3.3V. A logic high ('1') is signified by Vcc, while a logic low

('0') is 0V. By the RS-232 standard a logic high ('1') is denoted by a negative voltage –

anywhere from -3 to -25V – while a logic low ('0') communicates a positive voltage that

can be anywhere from +3 to +25V. On most PCs these signals swipe from -13 to +13V.The

more extreme voltages of an RS-232 signal help to make it less susceptible to noise,

interference, and degradation. This means that an RS-232 signal can largely travel longer

physical distances than their TTL counterparts, while still providing a consistent data

transmission. The radios use RS232 standard whereas Raspberry pis use TTL logic for this

purpose we used a TTL to RS232 converter between both. [9]

http://en.wikipedia.org/wiki/Transistor-transistor_logic

 16

Figure 3-4: Timing diagram of TTL and RS232

Figure 3-5: TTL to RS232 logic converter

3.2 Software Implementation

3.2.1 Serial communication implementation

In the first step of our project, serial communication between two PCs was carried out in

windows. Hardware Flow control was also used i.e. RTS/CTS handshake protocol was

used. For this purpose a code in visual studio using c language using libserial library was

developed and then communication was achieved using a null modem configuration

between two PCs as shown earlier. The next step in implementation of serial

communication was to establish it in Linux environment and then import it to Raspberry

 17

Pi board which has also been completed. For this purpose a make file compatible to Linux

environment for the code was generated and an executable was created.

3.2.2 AES Implementation

In this step, using the same resources as that in serial communication task, AES was first

implemented in windows, then in Linux and ultimately ran on Raspberry Pi board.

3.3 Detailed design

In our design, the first step includes transmission of data from one PC to other via RS232

standard using RTS handshaking. In the next step AES c/c++ code would be used to

encrypt/decrypt data and that very encrypted data would be shared between PCs. In the

next sequence of events, the same steps would be imported to hardware cubie board with

Linux OS in it. Once the module would be fully functional and capable of encrypting and

sending the data, it will be tested with the wireless radio set. A general flowchart at the end

of our project showing sequence of events taking place in module is given below:

Figure 3-6: Detailed Design

On the Sending end the user enters data in the command window with send script running

on it, the data is encrypted automatically and sent to radio connected to the module. Radio

sends this cipher text of original data to another radio which hands it over to second

module on receiving end. This module then decrypts the data and displays the message to

the user at receiving end sent by the user at sending end.

3.4 Tasks and Challenges

The project had some main tasks and challenges which included development of code for

communication between two computers then searching for perfect encryption technique

 18

and choosing the best and affordable hardware to Implement Encryption. After selection

of all the main things, major task was to implement it with as little resources as possible

and make it as user friendly as possible for example keeping the delay as low as possible.

Next task was to implement the encryption technique on to the hardware and to ensure

communication between add on security module and radio Set.

 19

4. Project Analysis and Evaluation

This chapter focuses on final development of module including the methodology used and

results achieved. It also briefs about the method used for testing and narrates how good the

performance of the module designed was.

The aim of our project was to design a module that could be used by soldiers in battlefield to

encrypt the message before transmitting it wirelessly using hf set and to also decrypt the

encrypted message received on module from other users. The project was tested for RF5800h

MP, a military wireless set.

Figure 4-1: Finalized Design

4.1 AES implementation

One of the main tasks of the project was implementation of AES algorithm in raspberry pi

board with effective use of key and as little delay as possible. The code for AES was

developed using c language and was compiled using standard gcc compiler of Raspberry

pi board. In the first sequence of events on encrypting side, the user was asked to provide

a password which was then automatically stored in .txt file format in the working directory

of program. The hash of the file with contents provided by user as password was then

created using SHA-1 algorithm, also developed in c language using g++ compiler. After

successful generation of hash file, the user was asked to enter the text to be encrypted using

the password provided by the user. The text was encrypted with hash of user entered

password using AES-256. The delay for the complete encryption was set to be 500ms

which is quite economical and acceptable for the user.

 20

On the decrypting side, same password used for encryption was used to generate another

hash file using SHA-1 algorithm. The both hashes i.e. that of received file and the one

generated using password in the same module, were then compared and on successful

comparison the cipher text was decrypted and displayed on screen to the user.

4.2 Serial Communication

Next task ahead was the development of the code for serial communication on Raspberry

pi board. The code was developed in c++ language using wiringPi library and compiled

using g++ compiler of raspberry Pi. The UART was developed using GPIO pins of

raspberry pi. Baud rate was set to be 19200bps to match the baud rate of radio set used for

testing. To test the successful running of codes a null modem was established between two

Raspberry Pi and a non-erroneous two way communication was achieved successfully with

a delay of 20ms.

4.3 Combining AES and Serial Communication

In the final step, code for AES and Serial communication were made to work together using

bash programming. Two separate scripts for sending and receiving were developed. The

script for send asked the user for data whenever the RTS pin was set, encrypted it and

transmitted it serially to the radio set. Whereas the receiving script received the cipher text,

decrypted it and displayed it to the user. In this way a secure tactical chat application was

developed. Baud rate was again kept to be 19200Hz for serial communication.

4.4 Final testing

The final design included two raspberry pi boards with fully developed AES and Serial

communication codes connected to Radios using Null Modem and TTL to RS232

converters between Pi boards and radios. The setup was so that gpio transmitting and

receiving pins of one of the module were connected to TTL to RS232 logic converter circuit

which was then connected to radio via Null modem.

Same connections were made for second module with another radio set. The two radio sets

were then configured over a single RF channel and tested for communication without

modules. After the successful wireless communication between radio sets, the modules

were used to send and receive data over the radio sets. The timeout for the whole procedure

was set to be 750ms and a data file of up to 80k bytes was required to be sent. The goal

 21

was achieved.

4.5 Data Flow Model

Sending End:

The flow of the data in the sending end of module starts from getting input from the user

which can either be data or text file. The input is then encrypted using AES-256 and store

in a new unreadable file. The AES file is then handed over to radio by the security module

which wirelessly transmits it over the frequency for which it is configured. Any of the both

modules as well as radios can act as sender or receiver depending upon the current state of

respective RTS pin of radio or the current script i.e. that of sending or receiving used by

the user.

Figure 4-2: Data Flow Model (sending end)

Receiving end:

The flow of the data in the receiving end of module starts from getting input from the

reception of encrypted file by the other radio. This encrypted file is handed over to the

other module by the radio set. The module after receiving encrypted file from radio,

decrypts it and stores the readable decrypted file in .txt format. After successfully saving

the file in directory it is also shown on screen to the user in the form of text in tactical chat

window.

1. GETTING INPUT FROM USER

•Accepts user input (text & file)

2. ENCRYPTION

•Encrypt the user data file or text

•Store encrypted text in another file

3. DATA COMMUNICATION

•Security module hands over the data file to radio

•Radio wirelessly transmits the data to another radio

 22

Figure 4-3: Data Flow Model (receiving end)

All the Objectives proposed in the beginning were thus met and verified.

1. DATA COMMUNICATION

radio on receiving side , after receiving
data hands it over to security module.

2. DECRYPTION

• Store the data received in a text file

•Decrypt the file with user provided data

3. DISPLAYING MESSAGE TO USER

Store decrypted data in a new file.

Display file contents on screen.

 23

5 Recommendations and Conclusion

The chapter briefs the reader about the current status of the project, what are its limitations

and how this can be improved in future.

5.1 Overview

The main idea of the project was to design and create such a security module which can be

connected to radio sets externally and shall still be completely functional and useful in

terms of providing the security and preserving confidentiality of data. The project was

research based and aimed at checking the feasibility of the idea of addition of external

security module for overcoming hazard of lack of trust on foreign origin based security

algorithms.

5.2 Limitations

Since before starting it, the project was just an idea so we were given a task to implement

idea only for simple text data since data requires no real time processing like compression

techniques. So, the security module has only been developed and tested for simple text

data.

Also, the data port of radio used for testing purpose can only send and receive files up to

80 kilo bytes so the data larger than this limit could not be tested.

5.3 Recommendations

The current module focuses on securing data and text files only. Also, it is only developed

to be used with data ports of the radios. In future, students can further extend the project

by making it compatible with all sorts of data like voice, video. By adding a codec and

some compression techniques in the code the student shall be able to implement the project

for voice as well. The security module can also be developed IP data and for radio sets

other than HF sets.

5.4 Conclusion

During recent times, AES and its implementation has become something

substantially used in all kinds of projects involving communication and information

sharing. But no work on AES involving radio sets especially those used by soldiers

has been done yet in any of the students’ projects. The module we have created is

first of its kind and it will open up doors of new field in projects. Overall, the

 24

objectives of the project were met. The design process of module was examined.

The module was also tested with a radio set namely RF-5800h MP to check for its

application based use.

 25

BIBLIOGRAPHY

 26

6. Bibliography

6.1 General References

[1]Margaret Rouse (may 10, 2016). Advanced Encryption Standard (AES). Retrieved from

http://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard/

[2]Anitha, P. & Palanisamy, V. (2011) Data protection algorithm using AES. International

journal of current research, 3(6), pp. 291-294,

[3]Beer, K. & Holland, R. Amazon web services. (2013). Securing Data at Rest with

Encryption. Washington, DC: U.S. Amazon Printing Office

[4]Hollabaugh, C. (2004) Embedded Linux: Hardware, Software and Interfacing. Boston,

Massachusetts: Addison Wesley.

[5]Breese, F. (2010) Serial Communication Over RTP/CDP. Norderstedt, Germany: books

on demand.

[6]Nechvatal, J., Barker, E., Bassham, L., Burr, W., Dworkin, M., Foti, M. & Edward

Roback. (2000) Report on the Development of the Advanced Encryption Standard (AES).

Retrieved from Computer Security Division, National Institute of Standards and

Technology, U.S. Department of Commerce.

http://csrc.nist.gov/archive/aes/round2/r2report.pdf

6.2 Online Help

[1]AES 128 bit Encryption http://aesencryption.net/ retrieved on Oct 19, 2015.

[2] Harris Equipment “Radio set RF-5800h-mp” http://rf.harris.com/capabilities/tactical-

radios-networking/rf-5800h-mp.asp, retrieved on Oct 11, 2015.

6.3 In text Citations

[1]http://www.silabs.com/Support%20Documents/Software/Serial_Communications.pdf

retrieved in August, 2016

http://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard/
http://csrc.nist.gov/archive/aes/round2/r2report.pdf
http://aesencryption.net/
http://rf.harris.com/capabilities/tactical-radios-networking/rf-5800h-mp.asp
http://rf.harris.com/capabilities/tactical-radios-networking/rf-5800h-mp.asp
http://www.silabs.com/Support%20Documents/Software/Serial_Communications.pdf

 27

[2] Computer Security Resource Center. (2016, June 9). Retrieved from National Institute

of Standards and Technolo

[3]Kretzschmar, U. (2009). AES128 – A C Implementation for Encryption and decrytion.

Texas: Texas Instruments

[4]Mahanta, K., & Maringanti, H. B. (2015). An Enhanced Advanced Encryption

Standard Algorithm. International Journal of Advanced Trends in Computer Science and

Engineering , 4 (4), 28-33

 [5]Eastlake, D., Motorola, & Jones, P. E. (2001, September). US secure hash algorithm 1

(SHA1). Retrieved from https://tools.ietf.org/html/rfc3174. Retrieved on June 16, 2016.

[6]Secure hash standard. Retrieved from http://cis-

linux1.temple.edu/~giorgio/cis307/readings/sha1.html on Jan 10, 2016

[7]Tech stuff - RS232 cables and wiring. (2016, April 06). Retrieved from

http://www.zytrax.com/tech/layer_1/cables/tech_rs232.htm

[8]Richardson, M., & Wallace, S. (2012). Getting Started with Raspberry Pi. O'Reilly

Media, Inc.

[9]Jimb0. (2010, November 23). RS-232 vs. TTL Serial Communication. Retrieved from

Sparkfun: https://www.sparkfun.com/tutorials/215. Retrieved on June 16, 2016.

[10]Code for AES retrieved from www.github.com in December, 2015

https://tools.ietf.org/html/rfc3174
http://cis-linux1.temple.edu/~giorgio/cis307/readings/sha1.html%20on%20Jan%2010
http://cis-linux1.temple.edu/~giorgio/cis307/readings/sha1.html%20on%20Jan%2010
http://www.zytrax.com/tech/layer_1/cables/tech_rs232.htm
https://www.sparkfun.com/tutorials/215
http://www.github.com/

 28

APPENDIX

29

APPENDIX-A

CODES

30

CODE FOR ENCRYPTION/DECRYPTION

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <string.h>

#include <strings.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <unistd.h>

#include <assert.h>

#include <time.h>

#include "aescrypt.h"

#include "password.h"

#include "keyfile.h"

#include "util.h"

#include "aesrandom.h"

int encrypt_stream(FILE *infp, FILE *outfp, unsigned char* passwd, int passlen)

{

aes_context aes_ctx;

sha256_context sha_ctx;

aescrypt_hdr aeshdr;

sha256_t digest;

unsigned char IV[16];

unsigned char iv_key[48];

unsigned i, j;

size_t bytes_read;

unsigned char buffer[32];

unsigned char ipad[64], opad[64];

time_t current_time;

pid_t process_id;

void *aesrand;

unsigned char tag_buffer[256];

memset(iv_key, 0, 48);

for (i=0; i<48; i+=16)

{

memset(buffer, 0, 32);

sha256_starts(&sha_ctx);

for(j=0; j<256; j++)

{

if ((bytes_read = aesrandom_read(aesrand, buffer, 32)) != 32)

{

fprintf(stderr, "Error: Couldn't read from random : %u\n",

(unsigned) bytes_read);

31

aesrandom_close(aesrand);

return -1;

}

sha256_update(&sha_ctx, buffer, 32);

}

sha256_finish(&sha_ctx, digest);

memcpy(iv_key+i, digest, 16);

}

buffer[0] = 'A';

buffer[1] = 'E';

buffer[2] = 'S';

buffer[3] = (unsigned char) 0x02; /* Version 2 */

buffer[4] = '\0'; /* Reserved for version 0 */

if (fwrite(buffer, 1, 5, outfp) != 5)

{

fprintf(stderr, "Error: Could not write out header data\n");

aesrandom_close(aesrand);

return -1;

}

if (j < 256)

{

buffer[0] = '\0';

buffer[1] = (unsigned char) (j & 0xff);

if (fwrite(buffer, 1, 2, outfp) != 2)

{

fprintf(stderr, "Error: Could not write tag to AES file (1)\n");

aesrandom_close(aesrand);

return -1;

}

strncpy((char *)tag_buffer, "CREATED_BY", 255);

tag_buffer[255] = '\0';

if (fwrite(tag_buffer, 1, 11, outfp) != 11)

{

fprintf(stderr, "Error: Could not write tag to AES file (2)\n");

aesrandom_close(aesrand);

return -1;

}

sprintf((char *)tag_buffer, "%s %s", PACKAGE_NAME, PACKAGE_VERSION);

j = strlen((char *)tag_buffer);

if (fwrite(tag_buffer, 1, j, outfp) != (size_t)j)

{

fprintf(stderr, "Error: Could not write tag to AES file (3)\n");

aesrandom_close(aesrand);

return -1;

}

}

32

/* Write out the "container" extension */

buffer[0] = '\0';

buffer[1] = (unsigned char) 128;

if (fwrite(buffer, 1, 2, outfp) != 2)

{

fprintf(stderr, "Error: Could not write tag to AES file (4)\n");

aesrandom_close(aesrand);

return -1;

}

memset(tag_buffer, 0, 128);

if (fwrite(tag_buffer, 1, 128, outfp) != 128)

{

fprintf(stderr, "Error: Could not write tag to AES file (5)\n");

aesrandom_close(aesrand);

return -1;

}

/* Write out 0x0000 to indicate that no more extensions exist */

buffer[0] = '\0';

buffer[1] = '\0';

if (fwrite(buffer, 1, 2, outfp) != 2)

{

fprintf(stderr, "Error: Could not write tag to AES file (6)\n");

aesrandom_close(aesrand);

return -1;

}

current_time = time(NULL);

for(i = 0; i < 8; i++)

{

buffer[i] = (unsigned char)

(current_time >> (i * 8));

}

process_id = getpid();

for(i = 0; i < 8; i++)

{

buffer[i+8] = (unsigned char)

(process_id >> (i * 8));

}

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, buffer, 16);

for (i=0; i<256; i++)

{

if (aesrandom_read(aesrand, buffer, 32) != 32)

{

fprintf(stderr, "Error: Couldn't read from /dev/random\n");

aesrandom_close(aesrand);

return -1;

33

}

sha256_update(&sha_ctx,

buffer,

32);

}

sha256_finish(&sha_ctx, digest);

memcpy(IV, digest, 16);

aesrandom_close(aesrand);

if (fwrite(IV, 1, 16, outfp) != 16)

{

fprintf(stderr, "Error: Could not write out initialization vector\n");

return -1;

}

/* Hash the IV and password 8192 times */

memset(digest, 0, 32);

memcpy(digest, IV, 16);

for(i=0; i<8192; i++)

{

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, digest, 32);

sha256_update(&sha_ctx,

passwd,

(unsigned long)passlen);

sha256_finish(&sha_ctx,

digest);

}

aes_set_key(&aes_ctx, digest, 256);

memset(ipad, 0x36, 64);

memset(opad, 0x5C, 64);

for(i=0; i<32; i++)

{

ipad[i] ^= digest[i];

opad[i] ^= digest[i];

}

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, ipad, 64);

for(i=0; i<48; i+=16)

{

memcpy(buffer, iv_key+i, 16);

for(j=0; j<16; j++)

{

buffer[j] ^= IV[j];

}

aes_encrypt(&aes_ctx, buffer, buffer);

sha256_update(&sha_ctx, buffer, 16);

34

if (fwrite(buffer, 1, 16, outfp) != 16)

{

fprintf(stderr, "Error: Could not write iv_key data\n");

return -1;

}

memcpy(IV, buffer, 16);

}

sha256_finish(&sha_ctx, digest);

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, opad, 64);

sha256_update(&sha_ctx, digest, 32);

sha256_finish(&sha_ctx, digest);

if (fwrite(digest, 1, 32, outfp) != 32)

{

fprintf(stderr, "Error: Could not write iv_key HMAC\n");

return -1;

}

memcpy(IV, iv_key, 16);

aes_set_key(&aes_ctx, iv_key+16, 256);

memset(ipad, 0x36, 64);

memset(opad, 0x5C, 64);

for(i=0; i<32; i++)

{

ipad[i] ^= iv_key[i+16];

opad[i] ^= iv_key[i+16];

}

memset_secure(iv_key, 0, 48);

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, ipad, 64);

aeshdr.last_block_size = 0;

while ((bytes_read = fread(buffer, 1, 16, infp)) > 0)

{

for(i=0; i<16; i++)

{

buffer[i] ^= IV[i];

}

aes_encrypt(&aes_ctx, buffer, buffer);

sha256_update(&sha_ctx, buffer, 16);

if (fwrite(buffer, 1, 16, outfp) != 16)

{

fprintf(stderr, "Error: Could not write to output file\n");

return -1;

}

memcpy(IV, buffer, 16);

aeshdr.last_block_size = bytes_read;

}

35

if (ferror(infp))

{

fprintf(stderr, "Error: Couldn't read input file\n");

return -1;

}

buffer[0] = (char) (aeshdr.last_block_size & 0x0F);

if (fwrite(buffer, 1, 1, outfp) != 1)

{

fprintf(stderr, "Error: Could not write the file size modulo\n");

return -1;

}

sha256_finish(&sha_ctx, digest);

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, opad, 64);

sha256_update(&sha_ctx, digest, 32);

sha256_finish(&sha_ctx, digest);

if (fwrite(digest, 1, 32, outfp) != 32)

{

fprintf(stderr, "Error: Could not write the file HMAC\n");

return -1;

}

if (fflush(outfp))

{

fprintf(stderr, "Error: Could not flush output file buffer\n");

return -1;

}

return 0;

}

int decrypt_stream(FILE *infp, FILE *outfp, unsigned char* passwd, int passlen)

{

aes_context aes_ctx;

sha256_context sha_ctx;

aescrypt_hdr aeshdr;

sha256_t digest;

unsigned char IV[16];

unsigned char iv_key[48];

unsigned i, j, n;

size_t bytes_read;

unsigned char buffer[64], buffer2[32];

unsigned char *head, *tail;

unsigned char ipad[64], opad[64];

int reached_eof = 0;

/* Read the file header */

if ((bytes_read = fread(&aeshdr, 1, sizeof(aeshdr), infp)) !=

sizeof(aescrypt_hdr))

{

36

if (feof(infp))

{

fprintf(stderr, "Error: Input file is too short.\n");

}

else

{

perror("Error reading the file header:");

}

return -1;

}

if (!(aeshdr.aes[0] == 'A' && aeshdr.aes[1] == 'E' &&

aeshdr.aes[2] == 'S'))

{

fprintf(stderr, "Error: Bad file header (not aescrypt file or is corrupted? [%x, %x,

%x])\n", aeshdr.aes[0], aeshdr.aes[1], aeshdr.aes[2]);

return -1;

}

aeshdr.last_block_size = (aeshdr.last_block_size & 0x0F);

}

else if (aeshdr.version > 0x02)

{

fprintf(stderr, "Error: Unsupported AES file version: %d\n",

aeshdr.version);

return -1;

}

if (aeshdr.version >= 0x02)

{

do

{

if ((bytes_read = fread(buffer, 1, 2, infp)) != 2)

{

if (feof(infp))

{

fprintf(stderr, "Error: Input file is too short.\n");

}

else

{

perror("Error reading the file extensions:");

}

return -1;

}

i = j = (((int)buffer[0]) << 8) | (int)buffer[1];

while (i--)

{

if ((bytes_read = fread(buffer, 1, 1, infp)) != 1)

{

37

if (feof(infp))

{

fprintf(stderr, "Error: Input file is too short.\n");

}

else

{

perror("Error reading the file extensions:");

}

return -1;

}

}

} while(j);

}

/* Read the initialization vector from the file */

if ((bytes_read = fread(IV, 1, 16, infp)) != 16)

{

if (feof(infp))

{

fprintf(stderr, "Error: Input file is too short.\n");

}

else

{

perror("Error reading the initialization vector:");

}

return -1;

}

/* Hash the IV and password 8192 times */

memset(digest, 0, 32);

memcpy(digest, IV, 16);

for(i=0; i<8192; i++)

{

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, digest, 32);

sha256_update(&sha_ctx,

passwd,

passlen);

sha256_finish(&sha_ctx,

digest);

}

aes_set_key(&aes_ctx, digest, 256);

memset(ipad, 0x36, 64);

memset(opad, 0x5C, 64);

for(i=0; i<32; i++)

{

ipad[i] ^= digest[i];

opad[i] ^= digest[i];

38

}

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, ipad, 64);

if (aeshdr.version >= 0x01)

{

for(i=0; i<48; i+=16)

{

if ((bytes_read = fread(buffer, 1, 16, infp)) != 16)

{

if (feof(infp))

{

fprintf(stderr, "Error: Input file is too short.\n");

}

else

{

perror("Error reading input file IV and key:");

}

return -1;

}

memcpy(buffer2, buffer, 16);

sha256_update(&sha_ctx, buffer, 16);

aes_decrypt(&aes_ctx, buffer, buffer);

for(j=0; j<16; j++)

{

iv_key[i+j] = (buffer[j] ^ IV[j]);

}

memcpy(IV, buffer2, 16);

}

sha256_finish(&sha_ctx, digest);

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, opad, 64);

sha256_update(&sha_ctx, digest, 32);

sha256_finish(&sha_ctx, digest);

if ((bytes_read = fread(buffer, 1, 32, infp)) != 32)

{

if (feof(infp))

{

fprintf(stderr, "Error: Input file is too short.\n");

}

else

{

perror("Error reading input file digest:");

}

return -1;

}

if (memcmp(digest, buffer, 32))

39

{

fprintf(stderr, "Error: Message has been altered or password is incorrect\n");

return -1;

}

memcpy(IV, iv_key, 16);

aes_set_key(&aes_ctx, iv_key+16, 256);

memset(ipad, 0x36, 64);

memset(opad, 0x5C, 64);

for(i=0; i<32; i++)

{

ipad[i] ^= iv_key[i+16];

opad[i] ^= iv_key[i+16];

}

memset_secure(iv_key, 0, 48);

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, ipad, 64);

}

if ((bytes_read = fread(buffer, 1, 48, infp)) < 48)

{

if (!feof(infp))

{

perror("Error reading input file ring:");

return -1;

}

else

{

if ((aeshdr.version == 0x00 && bytes_read != 32) ||

(aeshdr.version >= 0x01 && bytes_read != 33))

{

fprintf(stderr, "Error: Input file is corrupt (1:%u).\n",

(unsigned) bytes_read);

return -1;

}

else

{

if (aeshdr.version >= 0x01)

{

aeshdr.last_block_size = (buffer[0] & 0x0F);

}

if (aeshdr.last_block_size != 0)

{

fprintf(stderr, "Error: Input file is corrupt (2).\n");

return -1;

}

}

40

reached_eof = 1;

}

}

head = buffer + 48;

tail = buffer;

while(!reached_eof)

{

if (head == (buffer + 64))

{

head = buffer;

}

if ((bytes_read = fread(head, 1, 16, infp)) < 16)

{

if (!feof(infp))

{

perror("Error reading input file:");

return -1;

}

else

{

if ((aeshdr.version == 0x00 && bytes_read > 0) ||(aeshdr.version >= 0x01 &&

bytes_read != 1))

{

fprintf(stderr, "Error: Input file is corrupt (3:%u).\n",

(unsigned) bytes_read);

return -1;

}

if (aeshdr.version >= 0x01)

{

if ((tail + 16) < (buffer + 64))

{

aeshdr.last_block_size = (tail[16] & 0x0F);

}

else

{

aeshdr.last_block_size = (buffer[0] & 0x0F);

}

}

reached_eof = 1;

}

}

if ((bytes_read > 0) || (aeshdr.version == 0x00))

{

if (bytes_read > 0)

{

head += 16;

41

}

memcpy(buffer2, tail, 16);

sha256_update(&sha_ctx, tail, 16);

aes_decrypt(&aes_ctx, tail, tail);

for(i=0; i<16; i++)

{

tail[i] ^= IV[i];

}

memcpy(IV, buffer2, 16);

n = ((!reached_eof) ||

(aeshdr.last_block_size == 0)) ? 16 : aeshdr.last_block_size;

/* Write the decrypted block */

if ((i = fwrite(tail, 1, n, outfp)) != n)

{

perror("Error writing decrypted block:");

return -1;

}

/* Move the tail of the ring buffer forward */

tail += 16;

if (tail == (buffer+64))

{

tail = buffer;

}

}

}

sha256_finish(&sha_ctx, digest);

sha256_starts(&sha_ctx);

sha256_update(&sha_ctx, opad, 64);

sha256_update(&sha_ctx, digest, 32);

sha256_finish(&sha_ctx, digest);

if (aeshdr.version == 0x00)

{

memcpy(buffer2, tail, 16);

tail += 16;

if (tail == (buffer + 64))

{

tail = buffer;

}

memcpy(buffer2+16, tail, 16);

}

else

{

memcpy(buffer2, tail+1, 15);

tail += 16;

if (tail == (buffer + 64))

{

42

tail = buffer;

}

memcpy(buffer2+15, tail, 16);

tail += 16;

if (tail == (buffer + 64))

{

tail = buffer;

}

memcpy(buffer2+31, tail, 1);

}

if (memcmp(digest, buffer2, 32))

{

if (aeshdr.version == 0x00)

{

fprintf(stderr, "Error: Message has been altered or password is incorrect\n");

}

else

{

fprintf(stderr, "Error: Message has been altered and should not be trusted\n");

}

return -1;

}

if (fflush(outfp))

{

fprintf(stderr, "Error: Could not flush output file buffer\n");

return -1;

}

return 0;

}

int main(int argc, char *argv[])

{

int rc=0;

int passlen=0;

FILE *infp = NULL;

FILE *outfp = NULL;

encryptmode_t mode=UNINIT;

char *infile = NULL;

unsigned char pass[MAX_PASSWD_BUF];

int file_count = 0;

char outfile[1024];

int password_acquired = 0;

/* Initialize the output filename */

outfile[0] = '\0';

while ((rc = getopt(argc, argv, "vhdek:p:o:")) != -1)

{

switch (rc)

43

{

case 'h':

usage(argv[0]);

return 0;

case 'v':

version(argv[0]);

return 0;

case 'd':

if (mode != UNINIT)

{

fprintf(stderr, "Error: only specify one of -d or -e\n");

cleanup(outfile);

return -1;

}

mode = DEC;

break;

case 'e':

if (mode != UNINIT)

{

fprintf(stderr, "Error: only specify one of -d or -e\n");

cleanup(outfile);

return -1;

}

mode = ENC;

break;

case 'k':

if (password_acquired)

{

fprintf(stderr, "Error: password supplied twice\n");

cleanup(outfile);

return -1;

}

if (optarg != 0)

{

if (!strcmp("-",optarg))

{

fprintf(stderr,

"Error: keyfile cannot be read from stdin\n");

cleanup(outfile);

return -1;

}

passlen = ReadKeyFile(optarg, pass);

if (passlen < 0)

{

cleanup(outfile);

return -1;

44

}

password_acquired = 1;

}

break;

case 'p':

if (password_acquired)

{

fprintf(stderr, "Error: password supplied twice\n");

cleanup(outfile);

return -1;

}

if (optarg != 0)

{

passlen = passwd_to_utf16((unsigned char*) optarg,

strlen((char *)optarg),

MAX_PASSWD_LEN,

pass);

if (passlen < 0)

{

cleanup(outfile);

return -1;

}

password_acquired = 1;

}

break;

case 'o':

/* outfile argument */

if (!strncmp("-", optarg, 2))

{

/* if '-' is outfile name then out to stdout */

outfp = stdout;

}

else if ((outfp = fopen(optarg, "w")) == NULL)

{

fprintf(stderr, "Error opening output file %s:", optarg);

perror("");

cleanup(outfile);

return -1;

}

strncpy(outfile, optarg, 1024);

outfile[1023] = '\0';

break;

default:

fprintf(stderr, "Error: Unknown option '%c'\n", rc);

}

}

45

if (optind >= argc)

{

fprintf(stderr, "Error: No file argument specified\n");

usage(argv[0]);

cleanup(outfile);

return -1;

}

if (mode == UNINIT)

{

fprintf(stderr, "Error: -e or -d not specified\n");

usage(argv[0]);

cleanup(outfile);

return -1;

}

/* Prompt for password if not provided on the command line */

if (passlen == 0)

{

passlen = read_password(pass, mode);

switch (passlen)

{

case 0: /* no password in input */

fprintf(stderr, "Error: No password supplied.\n");

cleanup(outfile);

return -1;

case AESCRYPT_READPWD_FOPEN:

case AESCRYPT_READPWD_FILENO:

case AESCRYPT_READPWD_TCGETATTR:

case AESCRYPT_READPWD_TCSETATTR:

case AESCRYPT_READPWD_FGETC:

case AESCRYPT_READPWD_TOOLONG:

case AESCRYPT_READPWD_ICONV:

fprintf(stderr, "Error in read_password: %s.\n",

read_password_error(passlen));

cleanup(outfile);

return -1;

case AESCRYPT_READPWD_NOMATCH:

fprintf(stderr, "Error: Passwords don't match.\n");

cleanup(outfile);

return -1;

}

}

file_count = argc - optind;

if ((file_count > 1) && (outfp != NULL))

{

if (outfp != stdout)

{

46

fclose(outfp);

}

fprintf(stderr, "Error: A single output file may not be specified with multiple input

files.\n");

usage(argv[0]);

cleanup(outfile);

/* For security reasons, erase the password */

memset_secure(pass, 0, MAX_PASSWD_BUF);

return -1;

}

if (mode == ENC)

{

if (outfp == NULL)

{

snprintf(outfile, 1024, "%s.aes", infile);

if ((outfp = fopen(outfile, "w")) == NULL)

{

if ((infp != stdin) && (infp != NULL))

{

fclose(infp);

}

fprintf(stderr, "Error opening output file %s : ", outfile);

perror("");

cleanup(outfile);

/* For security reasons, erase the password */

memset_secure(pass, 0, MAX_PASSWD_BUF);

return -1;

}

}

rc = encrypt_stream(infp, outfp, pass, passlen);

}

else if (mode == DEC)

{

if (outfp == NULL)

{

strncpy(outfile, infile, strlen(infile)-4);

outfile[strlen(infile)-4] = '\0';

if ((outfp = fopen(outfile, "w")) == NULL)

{

if ((infp != stdin) && (infp != NULL))

{

fclose(infp);

}

fprintf(stderr, "Error opening output file %s : ", outfile);

perror("");

cleanup(outfile);

47

}

}} [10]

CODES FOR SERIAL COMMUNICATION

1. Code to Get Input From User:

#include <iostream>

#include <fstream>

using namespace std;

int main()

{ char data[100];

 ofstream outfile;

 outfile.open("text.txt");

 cout << "Enter text you want to encrypt: ";

 cin.getline(data,100);

 outfile << data << endl;

 outfile.close();}

Code to serially receive the data:

#include <iostream>

#include <fstream>

#include <wiringSerial.h>

#include <stdlib.h>

#include <unistd.h>

using namespace std;

int main()

{ ofstream outfile;

 outfile.open("txt1.txt.aes",ios::binary);

 int fd = serialOpen("/dev/ttyAMA0",19200);

 if (fd==-1)

 { cout<< " Serial Error" << endl;

 return 0; }

 char ch;

48

 while (1)

 { if (serialDataAvail(fd)>0)

 { while (serialDataAvail(fd)>0)

 { read(fd,&ch,1);

 outfile.write(&ch,1);

 usleep(500); }

 outfile.close();

 serialClose(fd);

 return 0; }}}

Code to Send Data Serially:

#include <iostream>

#include <fstream>

#include <wiringSerial.h>

#include <unistd.h>

using namespace std;

int main()

{ int fd;

 fd=serialOpen("/dev/ttyAMA0",19200);

 if (fd==-1)

 { cout << "Serial not open";

 return 0; }

 ifstream infile;

 infile.open("text.txt.aes",ios::binary);

 infile.seekg(0,infile.end);

 int length = infile.tellg();

 infile.seekg(0,infile.beg);

 char ch;

 while (length>0)

 { infile.read(&ch,1);

 write(fd,&ch,1);

49

 length--;}

 infile.close();

serialClose(fd);}

