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ABSTRACT 

 
Automatic detection and classification of trees by using remotely analyzed information 

have been a dream of the many scientists, and land use administrators. The motivation for 

this problem comes from pollen tree excavation issue, automated 3D town modeling, 

urban planning and forestation, within which such information is employed to come up 

with the models. 

Here, we offer an automatic methodology for individual tree detection and classification 

through aerial imagery using unmanned aerial vehicles (UAV), which is a rapidly 

evolving, cost effective and economical technology.  

Firstly, the model is trained for the purpose of tree detection per image pixel by assigning 

a {tree, non-tree} label to each pixel in an aerial image. Afterwards, the output is refined 

into clean segmented image based upon which, we implement pattern matching to locate 

the separable tree crowns, which are then classified on the basis of tree species type with 

our algorithm. 

We have verified the algorithm on many gathered aerial pictures across varied zones of a 

district and have confirmed excellent quality results with a good scalability of our 

proposed methodology. In contrast, most of formerly done work used costly hardware like 

multispectral images for tree detection and classification. Thus, our proposed technique 

has the potential to classify individual trees in an exceedingly cost-effective manner. This 

will be a usable tool for several forest researchers, managements, and also for the 

concerned government bodies to detect and excavate pollen trees, to fight with this 

seasonal pollen allergy war.     
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1 INTRODUCTION 

 
1.1 Overview 

Tree Detection and Classification through Aerial imagery with the help of Unmanned 

Aerial Vehicle (UAV) is an innovative idea put forward for the proper detection as well 

as the classification of trees within a defined region. In this prototype, aerial imagery of a 

well-defined region is gathered with the help of drone for the purpose of data set 

formation, which is used for the training of pixel-level classifier for assigning a {tree, non-

tree} label tag to every individual pixel within the aerial image. The trained model is then 

advanced by, a deep neural network based algorithm which is further used to implement 

pattern matching to locate the separable tree crowns, which are then classified on the basis 

of tree types with our algorithm, based on the platform of deep neural networks. 

1.2 Problem Statement 

Tree detection and species classification is an extensive challenge. Since tree and plants 

are possessed with high entropy. The detection technique and classification procedures 

were all primitively based upon the satellite imagery, for instance, LiDAR, Hyperspectral, 

Multispectral, etc. which are all quite expensive and their accuracies are not relatively 

satisfactory. The available dataset and in practice machine learning frameworks are 

complex and convoluted, which in the result are not producing significant or effective 

outcomes.  

Furthermore, with the rapidly increasing deforestation of woodland and enhancing global 

warming has a virulent effect on the environment of the whole world which is the 

consequence of non-monitoring condition of the forest, urban and rural areas, or even the 

generated reports of these areas are not being maintained to prevent all these factors that 

are affecting the environment. 

Lastly, efficient 3D modeling and map-making of cities are not that feasible or achievable, 

if satellite imagery is considered. 
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1.3 Approach 

 Our, proposition is a framework and an enterprise that acquire the automated approach to 

distinct tree detection and classification with the help of optical-aerial imagery using 

unmanned aerial vehicles (UAV), which is a rapidly evolving and cost-effective 

technology, and with our developed and designed deep learning algorithms which help us 

to perform all these tasks with great and comprehensive accuracy and precision. 

Additionally, we allow to observe and analyze the environment of the forests, urban or 

rural areas by monitoring and generating a well-structured report for forest-woodland 

department and city development for management authorities, which subsequently stops 

the factors of forest illegal chopping, cutting and smuggling etc. 

1.4 Scope 

The project finds its scope in the forestation department and all other government bodies 

working for the reduction of illegal tree cutting, smuggling and global warming. 

Considering the innovation side of this prototype, not just the forestation departments but 

also the bodies working for the pollen tree excavation projects like CDA (Child 

Development Association) and PMD (Pakistan Meteorological Department) can take 

benefits from this cost effective and rapid tree detection algorithm. 

1.5 Aim & Objectives 

1.5.1 Research Objectives 

 To attain an automated methodology for the detection and classification of trees in 

a region from aerial imagery obtained by UAV (unmanned aerial vehicle) 

 To design and formulate a neural network framework with the help of structural 

algorithm of machine learning and implication of pixel-level classifier and utilize 

it for objects that have high entropy, for instance, trees, grass, river, etc. that are 

natural objects.  
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 To attain an automated methodology for the detection and classification of trees in 

a region from aerial imagery obtained by UAV (unmanned aerial vehicle) 

 To design and formulate a neural network framework with the help of structural 

algorithm of machine learning and implication of pixel-level classifier and utilize 

it for objects that have high entropy, for instance, trees, grass, river, etc. that are 

natural objects.  

1.5.2 Academic Objectives 

 Working in the field of Image Processing 

 Programming Skills (Practice on Python language) 

 Aerial data acquisition with the help of DJI Phantom 4 pro  

 Deep Neural Network platform 

 Machine Learning for classification of trees 

 

1.5.3 Commercial Objectives 

 Designing of mobile application and online website for generalized density based 

tree map report generation.  

 
1.5.4 Other Objectives 

 To boost the work of forestation and meteorological departments. 

 

With this project, we wish to integrate our academic knowledge with practicality to 

achieve further understanding and polish our skills in all the fields as mentioned above. 
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1.5.5 Organization 

This document is divided into five main sections, including: 

 The first section of the thesis lays the abstract which describes the main details of 

our research idea, followed by the introduction section which specifies the problem 

statement, approach, scope, and objectives. 

 The second section summarizes the literature about the various resources read 

online regarding the project and the previous research on the topic. 

 The third section emphasizes on the design and development part which illustrates 

the flow diagrams of different steps involved in the project as well as the description 

of main modules. 

 The fourth section is the analysis and evaluation part which gives the detail of 

results obtained from deep neural network algorithms. 

 The fifth section compromises of the future work, further improvements and points 

out the additional developments which can be made to enhance the scope of the 

project. 

 In Appendix A we have added the Synopsis document of the project. 

 Appendix B contains the code for tree detection   

 And Appendix C contains the code for tree classification. 
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2 LITERATURE REVIEW 

 
The literature available for this project is explained below: 

 

2.1 Background Study 

2.1.1 Tree Detection  

Individual detection of the tree crown using remotely recognized data plays a large role in 

the monitoring and city planning purposes. There are many methods generated in the past 

for the purpose of tree crown detection. The research into tree detection with the help of 

digital and aerial imagery dates back to the mid of the 1980s. One of the initial examples 

of work on tree detection was the use of the Vision Expert System that was designed and 

developed by Pinz in the year 1991. He was able to detect and locate the tree crown’s 

center by examining the local brightness maxima in the acquired imagery. Later on, other 

algorithms such as region growing were also designed and introduced for the tree detection 

and crown radius size measurements purpose.  

In current years, Light, Detection and Ranging (LiDAR) and Hyperspectral imagery 

information have appeared as the prime source for the detection of trees with the basic 

assumption that the top of tree crown is positioned at the point with the extreme 

radiometric values which decreases by moving nearest to the border of tree crown. 

 

 

 

Figure 2-1 LiDAR Imagery Data 
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 In the image domain, typical algorithms for tree crown detection includes local maximum 

filtering, image binarization or thresholding, and template matching. 

 

2.1.2 Tree Classification 

Spatially categorical information on tree species arrangement offers valuable data for 

environment preservationists as well as for metropolitan and forest managers and is 

required very frequently over large altitudinal ranges. Studies that included remote sensing 

data for the classification of the tree species and their mapping purpose reaches back to a 

time span of numerous years.  Our research shows that the quantity of studies 

concentrating on the classification of tree species has raised over the last few years and 

various approaches have been offered for numerous types of sensors. However, these 

researches were only based on the data acquired with the LiDAR sensors or with the help 

of multispectral and hyperspectral imaging techniques. 

 

Figure 2-2 Hyperspectral Imagery Data Acquisition 
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All these methodologies for tree classification focused only on the following criteria: 

 The algorithm must be able to differentiate between at least two tree species. 

 The research must not focus on the broader forest tree variety. 

 The algorithm must mainly consider the presence/absence of the tree species within 

any geographical region.  

2.2 Existing Literature 

[1] TREE DETECTION FROM AERIAL IMAGERY (Lin Yang, Xiaqing Wu, Emil Praun, 

Xiaoxu Ma).  

This paper gives the overview of the generalized methodology used for tree detection. 

The whole methodology is divided into two phases. During the first phase, a pixel level 

classifier is trained for assigning label of {tree and non-tree} regions within the aerial 

image. This assignment is done on the basis of the features considered for tree detection 

within the acquired image. Afterwards, a segmented image is generated which his passed 

on to the second stage of the methodology. 

During the second phase, a set of templates are considered for the purpose of correlation 

with the output segmented images of the first stage to locate and the tree crowns. A 

correlation score is generated on the basis of these outputs. The images with score above 

the correlation score are considered whereas the ones with lower score are discarded. 

This method as compared to the previous ones, requires only RGB channels of the aerial 

imagery for the detection of tree with up to 90 % of precision level. Also, the training 

procedure for this methodology is open for any type of features and data type thus, this 

method can be easily integrated with the previously existing methods to boost up their 

performance levels. 
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[2] Automatic classification of trees using a UAV onboard camera 

and deep learning (Masanori Onishi, Takeshi Ise) 

This paper proposes an approach for the classification of tree species on the basis of 

remotely sensed data that is acquired from aerial imagery with the help of Unmanned 

Aerial Vehicle (UAV). With the help of UAV and deep learning algorithms, a system is 

constructed for the automatic classification of tree on the basis of their species type. 

In this method, the UAV imagery is segmented into distinct tree crowns on which deep 

learning algorithms are applied as a result of which, 7 tree types with an accuracy of about 

89% have been achieved. This performance is notable because of using easily available 

digital RGB images and publicly available package for deep learning. In contrast, most of 

previous studies used expensive hardware such as multispectral imagers to improve 

performance. In the matter of spatial scale, this method of using a UAV can be limited 

more than previous method using airborne. But low-cost and easy-to-use feature of UAVs 

can enable the periodic monitoring. Thus, machine vision system will be a cost-effective 

and usable tool for forest remote sensing.  
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3 DESIGN AND DEVELOPMENT 

 

3.1 Preliminary Design 

The details for the design are given as below: 

3.1.1 Technical Specification 

The project consists of the following modules: 

 

3.1.1.1 Hardware 

 DJI Phantom 4 pro 

 Intel Movidius 

3.1.1.1.1 DJI Phantom 4 pro 

The DJI phantom 4 pro is an intelligent and easy to operate drone with attached gimbal 

that has cutting-edge 4K camera. The gimbal provides 3-axis stabilization. The drone 

camera provides high resolution aerial images that encompasses great details of crown 

size information. The drone was used to acquire dataset. 

 

 

Figure 3-1 DJI Phantom 4 pro 



13  

3.1.1.1.2 Intel Movidius Neural Compute Stick (NCS) 

The intel NCS is an Intel movidius visual processing unit embedded on a USB. It is a low-

powered chip bringing visual intelligence in thousands of devices. The stick was used to 

boost neural computations and calculations, increasing overall performance. 

 

 

 

 

 

 

 

 

Figure 3-2 Intel Movidius NCS 
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3.1.1.2 Software 

 DJI Go 4 

 Pix4d Mapping  

 Python 

3.1.1.2.1 DJI Go 4 

It is a mobile device application made for DJI drones by DJI manufacturer. The drone is 

controlled using this application. The mobile device is mounted on drone’s remote 

controller. All the operations that a drone performs are done through this application. 

3.1.1.2.2 Pix4d Mapping 

It is a mobile application for automated flight control of drone and automated image 

capturing by giving it the proper constraints and location. Imagery can be taken of a 

defined area with drone following the desired path just by drawing path lines on app, 

measured from a fixed desired altitude. The captured images are then processed into 

desktop version of pix4d for image stitching and generating ortho-maps.  

Figure 3-3 Interface of DJI Go 4 
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3.1.1.2.3 Python IDE 

Python is an interpreted, advanced, general-purpose programming language. It is best for 

developing machine learning algorithms and working on neural networks. It makes these 

tasks easier as it has powerful programming modules such as tensorflow, numpy, scikit, 

opencv. 

3.2 Design Requirements and Specifications 

Tree detection and classification is a state-of-the-art platform that uses deep neural 

networks to process aerial images of an area to detect the number of trees in that area and 

then classify the tree species accordingly. 

The project uses drone for dataset collection, which is then inputed to the neural network 

models. The dataset was divided in 10:90 ratios for testing and training of created models. 

In our project mainly 4 python modules were used which are, 

• Tensorflow (Keras) 

• Numpy 

• Opencv 

• Pandas

Figure 3-4 Mobile application and PC interface of pix4d 
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3.3 Methodology 

The methodology is divided into 5 blocks which are described in detail as follows: 

 

3.3.1 Google Earth Imagery 

With the help of GOOGLE EARTH PRO, we have obtained the whole satellite imagery 

of our campus and other areas and have marked all the trees present within by using the 

GOOGLE LENS and with the slight knowledge about tree types. 

 

 

3.3.2 Ground Resolution 

For this task we took the imagery of our laptop with known dimensions at different height 

levels and then by using MATLAB commands, we have calculated the number of pixels 

that covered the Laptop area and obtained our results as shown in table 3-1. 

 

 

 

 

 

Figure 3-5 Google Earth Imagery 
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Table 3-1 Ground Resolution 

 

Dimensions of laptop: 9.9 x 15 inches 

 

3.3.3 Data Set Acquisition 

For the purpose of data set formation, we have covered aerial imagery with the help of 

our drone of various areas of Rawalpindi and Islamabad which are mentioned as 

follows; 

 Military College of Signals 

 Orchids of Sargodha District 

 Ankara Park, Islamabad 

 Graveyard H-8, Islamabad 

 F-9, Islamabad 

Some of the aerial imagery data acquired with our air drone is shown here; 

 

 

 

 

Height of Drone      

(Feet) 

Width (Pixels) Length (Pixels) Pixel Per Inch 

30 100 150 101 

50 61 93 38 

70 40 63 17 

100 27 41 7 
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Figure 3-6 Data Set Imagery no. 01 

Figure 3-7 Data Set Imagery no.02 
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3.3.4 Pix4D mapping Software 

After the task of aerial imagery data acquisition, we move towards the step of image 

stitching. We have used pix4d app for pre-processing as well as mapping and stitching of 

the imagery taken. Also its android app was used for automated flights of drone and taking 

automated imagery of the orchids by giving it the proper constraints and location.  

By giving the area to be covered, the height and then by randomly selecting the lines of 

the drone flight by adjusting them with our fingers according to our requirement we fed 

the imagery data to the pix4d mapper windows software for the image stitching and 

creation of ortho-maps. 

Figure 3-8 Data Set Imagery of Orchids 

Figure 3-9 Image Stitching with PIX4D software 
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3.3.5 Tree Detection 

The following section will elaborate the 4th block of our model i.e. used codes and 

algorithm along with the employed techniques throughout the framework designing: 

 In the detection part, first of all we run the feature extractor code that will extract 

each pixel’s value from the whole image and will save it in form of numpy array 

of file format with extension of “.npy”. The saved array named with “feature.npy” 

will be call upon every time for it utilization in the forthcoming designed 

algorithm. 

 Secondly, we run the label accumulator code which then extract the labels content 

from the provided ground truth of the image and saved it in corresponding position 

of the pixels in another array of “label.npy”. This array contains the whole pixel’s 

information of whether it represents the “non-tree” or “tree” part of the aerial 

image. 

 Now, we run the model development and training code which is combined together 

in a single code file. This file will develop the training parameters and the structure 

of the deep learning model. The parameters will be trained on the basis of the input 

pixel’s values from feature vector as well as their corresponding labels from the 

label vector. Both the vectors, feature and label are called by this code file. This 

code will also define the optimizer, loss function, metrics, batch size, epoch, model 

approach, activation function and all the values that are essential to design the deep 

neural network on complete foundation. This code file also saves the model-

architecture along with its weight and graphs-flow of trained parameters in “.h5py” 

format. 

 The model will be saved as “model.h5py”, in an appropriate format which will then 

be utilized by prediction code file for making predictable output on the basis of 

input features of the image file, which on the basis of foundation weights and 

trained parameters makes the inference. The provided inference of the prediction 

code file will then be viewed as an output image in the form of {one-zero} values 

that can be analyzed in the form of an array. 
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 The weights and the accuracy of the model can be further enhanced by running the 

file code which is designed for model training. This code file will then be re-

optimized by the weights and training parameters, without changing the 

architecture of the model. 

 Multiple features are tested upon the provision of the same corresponding labels. 

The model which is tested and checked by accuracy parameters is then managed 

to be deployed on the untested and unlabeled data version, which provides the 

prediction score on the basis of the model training and architectural design of the 

network. 

 The metrics and precision factor is set as “accuracy”, which will then be checked 

upon the completion of each epoch. The memory utilization of the model training 

and development will take about the 10 percentage of the total data to fully 

organize the network. The memory utilization is adjusted by changing the 

parameters and the number of layers 

3.3.5.1 Features for Tree Detection 

We have used the following features with given specifications as below: 

3.3.5.1.1 Spectral Features 

 Red, Green, Blue color features which are of the same size as the original image. 

 Hue, Value and Saturation frames which are also same as size of the image. 

 Light frame from the “LAB”-format along with A (combination of green and red 

frames) and B (combination of blue and yellow) textural frames. 

 Likewise, we used about 9 spectral features for the model development and all are 

calculated for each image file. 

3.3.5.1.2 Spatial Features 

The texture feature is uses the filter type of “Gabor-form” with different window size, 

standard deviations (S.D) and angles, while offset and other parameters are of default 

value. 
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 Texture_1: with window of (9, 9) and S.D of 3.5 and angle of pi/14 

 Texture_2: with window of (9, 9) and S.D of 4.0 and angle of pi/24 

 Texture_3: with window of (13, 13) and S.D of 5.0 and angle of pi/20 

 Texture_4: with window of (17, 17) and S.D of 4.0 and angle of pi/16 

 Texture_5: with window of (17, 17) and S.D of 3.5 and angle of pi/10 

All the textures are generated and observed after the hit and trial version of experiment to 

better visualize the texture-analysis. 

 The spatial and spectral features will be extracted per pixel with the help of our algorithm 

and a vectorized feature vector matrix will be generated on the basis of the features 

selected. 

 

3.3.5.2 Labels for Tree Detection 

Ground truth marking is done by making small circles of equal radii on all the tree crowns. 

Afterwards, the labels are simply extracted from the created ground truths and saved in 

array file of appropriate format to recall on its usage. 

Figure 3-10 Feature Vector 
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3.3.5.3 Model Description  

The model is composed of the following parameters as described below: 

 Model = Sequential (Keras library implementation) 

 3 layered model 

 1st layer with 100 hidden units 

 2nd layer with 50 hidden units 

 3rd layer with 50 hidden units 

 4th layer with 20 hidden units  

 5th layer with 20 hidden units 

 And last layer contains only contain one neuron 

 

 

 

 

Figure 3-11 Label Vector Formation 
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 The initial layering contains of “Relu” function as activation function  

 While the last layer contains “Sigmoid” function as activation function 

 Model compilation contain loss, optimizer and measuring metrics 

 Loss = binary cross-entropy 

 Optimizer = Adam 

 Metrics= Accuracy 

 Batch size of 100000 

 Evaluation is also performed on same measuring metrics 

 

The detection is performed by the division of the dataset in ratio of 90 percent for training 

& development while for testing & validating with 10 percent of the data. This division 

of our given dataset will lead to achieve the accuracy of approx. 91 percent on multiple 

testing versions. 

3.3.6 Tree Classification 

This is the final block of our model where the tree classification on the basis of species is 

completed. 

 In the classification portion, we run the binary-image extractor code which will 

take a binary image from the ground truth of the provided image (whole 

orthomosaic-map image). After that it will multiply it smartly with original map 

image that will leave all the sections of the image with zero value except the part 

that contains trees that are already marked in the ground truth making procedure. 

The product image will then be saved for further processing. 

 Secondly, we will run the circular tree image extractor that will crop out the image 

in the form of circles from the previous product of binary and original image and 

then save each cropped image with the name of it’s appropriate class and gives it 

a suitable range number uniquely attached to it. This circular cropping procedure 

will make a comprehensive dataset for classification purpose in forthcoming 

method. 
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 After that, we run the code file of label extractor which will then get the labels 

from the cropped images of the classified dataset. This will then be saved in the 

form of an array that will then be further utilized for model training. 

 Now, we will run the model development and training code which is combined 

together in a single code file and given in the Appendix C of this documentation. 

This file will develop the training parameters and the structure of the convolutional 

neural model. These parameters will be trained and optimized on the basis of the 

input image from the classified dataset as well as their corresponding labels from 

the label vector. This code will also define the optimizer, loss function, metrics, 

batch size, epoch, model approach, activation function and all the values that are 

essential to design the convolutional neural network on complete foundation. This 

code file also saves the model-architecture along with its weight and graphs-flow 

of trained parameters in “.h5py” format. 

 The model file will be saved as “model.h5py” in an appropriate format, which will 

then be utilized by prediction code file for making predictable output on the basis 

of inputted image files, which on the foundation weights and trained parameters 

makes the inference. The provided inference of the prediction code file will then 

be viewed as individual prediction vector that will be comprised of some 

probability score and after maximizing the vector we get the desired output value 

defining the classification of each provided category in the dataset.  

 Multiple images of the same dataset are tested upon the provision of the same 

corresponding labels. The model which is tested and checked by accuracy 

parameter is then managed to deploy on the untested and unlabeled data version 

which will provide the prediction score on the basis of the model training and 

architectural design of the network. 

 The metrics and precision factor is set as “accuracy”, which then be checked upon 

the completion of each epoch. 
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3.3.6.1 Convolutional Neural Network (CNN) 

The provided CNN model for the purpose of tree species classification, has following 

characteristics: 

• Model = Convolutional Sequential Model (Keras library) 

• Convolutional2D 3-layered model with 1 dense layer 

• Image reshaping and resizing is performed for data fitting according to model 

• Input shape of 256 x 256 x 1 (grey scaled) 

• Batch size of 100 

• Kernel size = 3 x 3 

• Filters = 40 

• Dropout = 0.2 

• Pool-size = 2 (Only for Max pooling)  

• 1st layer with input size of 256 x 256 

• 1st Max pooling2D with pool-size 

• 2nd layer with input size of previous output size 

• 2nd Max pooling2D with pool-size 

• 3rd layer with further downed size input from previous output 

• Flattening layer 

• Dense layer contains neurons of equal labels of classes 

• The initial layering contains of “Relu” function 

• While the last layer contains “Softmax” function 

• Model compilation contain loss, optimizer and measuring metrics 

• Loss = Categorical cross-entropy 
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• Epoch = 10 

• Optimizer = Adam 

• Metrics= Accuracy 

We still require a large number of the same aerial imagery dataset to avoid the model 

overfitting. Furthermore, the model generalization task is remained to achieve for better 

assessment of the previously unexposed dataset tiles to the trained model. Model 

overfitting causes the weights of the model shifted to the undesired and unsuitable point 

of accuracy. We still need to gather some large set of aerial imagery with various 

categories to train the model in unbiased manner. The provided and acquired dataset is not 

able to fulfill the very demand of comprehensive model training. Though we finally 

managed to get about the accuracy approx. of 96 % for two classes of tree species at most. 
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3.4 Block Diagram 

This block diagram shows the complete methodology proposed for the purpose of tree 

detection and classification. 

Figure 3-12 Block Diagram for Tree Detection and Classification 
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4 PROJECT ANALYSIS AND EVALUATION 

 

Six types of tree species were considered for the analysis and evolution purpose named 

as follows: 

 Paper Mulberry  

 Pine tree 

 Guava  

 Orange 

 Maple 

 Pine  

 

 
4.1 Feature Extraction Results 

 
We have extracted 7 types of features per each pixel for the purpose of tree 

detection. 

 

Figure 4-1 Original Imagery 
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Figure 4-2 Red Color Feature Image 

Figure 4-3 Green Color Feature Image 
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Figure 4-4 Blue Color Feature Image 

Figure 4-5 Hue 
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Figure 4-6 Saturation 

Figure 4-7 Value 
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Figure 4-8 LAB 

Figure 4-9 Illumination 
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4.2 Results obtained from Ground Truth Generation 

For the purpose of label vector formation, we have marked the tree crowns with single 

colored circle of size equal to the tree crown and then multiplied it with the original image 

for the formation of binary image. These binary labelled vector with the feature vectors 

altogether makes the data vector which is passed through the model for the purpose of tree 

detection. 

 

 
 

 

 

 

 

 

 

 

Figure 4-10 Textural Feature 
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Figure 4-11 Ground Truth Masking 

Figure 4-12 Binary Image 
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4.3 Predicted Output of Tree Detection Model 

The data vector is fed to the deep neural network model to get the predicted output image. 

In this image only the tree area is defined in the form of binary 1 and all the other parts 

are marked as binary 0. Thus in this way the trees are detected. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4 Predicted Output of Tree Classification Model 

The segmented images from the previous feature extraction model are then fed to the 

block of classification model as discussed previously in chapter 3, the output of which is 

saved in the form of excel sheet as shown: 

 

Figure 4-13 Predicted Output 



38  

 

 

  

 

Figure 4-14 Predicted Output of Tree Classification Model 
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5 CONCLUSION 
 

 

5.1 Overview 

We propose an automatic and well-defined approach with the help of data acquired from 

aerial imagery for the prime reason of tree detection and classification. In this model, 

aerial imagery of a well-defined region is gathered with the help of drone for the 

formation of data set, which is used for the training of pixel-level classifier for assigning 

a {tree, non-tree} tag to every individual pixel within the aerial image. The trained model 

is then advanced by a deep neural network based algorithm which is further used to 

implement pattern matching to locate the separable tree crowns, which are then classified 

on the basis of tree types with our algorithm based on the platform of deep neural 

networks. 

 The model works on pure imageries and is competent for the detection of trees and their 

classification on the basis of specie types in enormous sizes. On large data sets, we are 

able to train the classifier on only 1.0 % of the data while achieving more than 90.0 % 

accuracy for our designed model. 

5.2 Objectives Achieved/Achievements 

 Detection of trees and its crown size estimation through pixel classifier 

 

 Multiple feature extraction of the trees (Spatial and Spectral features) 

 

 Classification of various tree species 

 

 Pollen trees determination 

 

 Minimum labor requirement 
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5.3 Limitations 

There are certain limitations associated with the project: 

 Accuracy issue due to time constraints for data acquisition. 

 Proper crown size detection is not possible with a small amount of gathered aerial 

imagery. 

 The requirement of heavy servers for efficient data processing. 

 The success of this whole project depends on the permission of government concerned 

bodies. 

5.4 Future Research 

In future we will work on the generation of proper generalized density map based pollen 

tree reports for the concerned government departments, so that with the help of them, 

complete pollen tree excavation could be performed. 

We will present a whole process in which pollen trees will be excavated with the help of 

our developed team and in return environment friendly trees will be planted so to fight 

with the seasonal pollen allergy issues and to help in the reduction of global warming. 
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FUTURE WORK 
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6 FUTURE WORK 

 

Tree detection and its classification on the basis of tree species is the basic goal and 

foundation of this project, but the project has some additional goals which can be achieved 

through further explorations and practical work. 

 Better classification can be done by adding more tree species in the acquired data 

set. 

 Formulation of city infrastructure and 3D city modeling 

 Enhancement in the map versions. 

 Aerially generated map of the whole globe pointing all the trees and their types. 

 Density-based map and generalized tree report generation 

 This proposed solution can also be used for the determination of pollen trees and 

their proper excavation, to fight with the seasonal pollen allergy war.  
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8 APPENDICES 
 

 

8.1 Appendix A 
 

Synopsis 
 

 

Extended Title:  

Tree Detection And Classification Through Aerial Imagery Using Deep Neural Network  

Brief Description / Abstract:  

 

Automatic detection and classification of trees by using remotely analyzed information 

have been a dream of the many scientists, and land use administrators. The motivation 

for this problem comes from pollen tree excavation issue, automated 3D town modeling, 

urban planning and forestation, within which such information is employed to come up 

with the models. 

Here, we offer an automatic methodology for individual tree detection and classification 

through aerial imagery using unmanned aerial vehicles (UAV), which is a rapidly 

evolving cost effective and economical technology. 

Scope of Work and Deliverable:  

 

The project finds its scope in the forestation department and all other government bodies 

working for the reduction of illegal tree cutting, smuggling and global warming. 

Considering the innovation side of this prototype, not just the forestation departments 

but also the bodies working for the pollen tree excavation projects like CDA (Child 

Development Association) and PMD (Pakistan Meteorological Department) can take 

benefits from this cost effective and rapid tree detection algorithm. 
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Objectives of the project: 

 

 Classification of Tree species. 

 To determine the density of the type of trees in forest that are on extinction level. 

 To provide surveillance through aerial imagery of illegal cutting and smuggling of 

trees. 

 Automated 3D city modeling and urban planning. 

Applications: 

 

• Generalized Report Formation 

• Pollen Tree Excavation 

• 3D City Modeling 

• Enhancement in Map Versions 

• Forestry and Forest Management 

• Wildlife Departments 

• A Precise Analysis and Recognition of Vegetation Types and Agricultural Areas 

Group Members:    

• Naiha Mubashir    (CGPA 3.96)        (Syndicate leader) 

• Mubashir Ilyas      (CGPA 2.74) 

• S.M Umer Latif      (CGPA 2.30) 

• Muhammad Haris  (CGPA 3.93)  

Academic Objectives: 

 
Image Processing, Deep learning Algorithms 

Hardware Requirements: 

 

UAV(Drone),Intel Movidius Neural Compute Stick 
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8.2 APPENDIX B 

 

Code for Tree Detection Algorithm 
 

 Feature Extraction and Accumulation 

 

import cv2 

import numpy as np 

import os, glob 

import pandas as pd 

 

path_npy = str(r'/home/darakht/Desktop/detection/dataset/npy/') 

path_image = str(r'/home/darakht/Desktop/detection/dataset/im.form/image/') 

 

direc = os.listdir(path_image) 

n = 0 

for f in direc: 

    n = n + 1   

 

def gab(kernel, sd, angle): 

    g_kernel = cv2.getGaborKernel(kernel, sd , angle, 1.0, 1.0, 0) 

    gabimg = image.copy() 

    gabimg = cv2.cvtColor(gabimg, cv2.COLOR_BGR2GRAY) 

    tex = cv2.filter2D(gabimg, cv2.CV_8UC3, g_kernel) 
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    return tex 

 

for i in range(n): 

    i = i + 1 

    image = cv2.imread(path_image + r'/image' + str(i)+ r'.png') 

    size = image.shape[0]*image.shape[1] 

        

    bimg, gimg, rimg = cv2.split(image) 

 

    hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) 

    Himg, Simg, Vimg = cv2.split(hsv) 

 

    lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB) 

    Limg, Aimg, Bimg = cv2.split(lab) 

 

    b = bimg.reshape(size) 

    g = gimg.reshape(size) 

    r = rimg.reshape(size) 

    H = Himg.reshape(size) 

    S = Simg.reshape(size) 

    V = Vimg.reshape(size) 

    L = Himg.reshape(size) 

    A = Aimg.reshape(size) 
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    B = Bimg.reshape(size) 

    tex1 = gab((9, 9), 3.5, np.pi/14) 

    tex2 = gab((9, 9), 4.0, np.pi/24) 

    tex3 = gab((13, 13), 5.0, np.pi/20) 

    tex4 = gab((17, 17), 4.0, np.pi/16) 

    tex5 = gab((17, 17), 3.5, np.pi/10) 

    tex1 = tex1.reshape(size) 

    tex2 = tex2.reshape(size) 

    tex3 = tex3.reshape(size) 

    tex4 = tex4.reshape(size) 

    tex5 = tex5.reshape(size) 

 

    features = np.array([b, g, r, H, S, V, L, A, B, tex1, tex2, tex3, tex4, tex5]) 

    features = features.T 

    features = features.astype('float32') 

 

    #pd.DataFrame(features).to_csv(path_npy + r"/features.csv") 

    np.save(path_npy + r'/features/features' + str(i) + r'.npy', features) 

 

 Labels Accumulation 

import cv2 

import numpy as np 

import os, glob 



53  

import pandas as pd 

 

path_npy = str(r'/home/darakht/Desktop/detection/dataset/npy/') 

path_truth = str(r'/home/darakht/Desktop/detection/dataset/im.form/truth/') 

 

lower= np.array([160,100,100]) #red 

upper= np.array([179,255,255]) 

 

direc = os.listdir(path_truth) 

n = 0 

for f in direc: 

    n = n + 1 

 

for i in range(n): 

    i = i + 1 

    truth = cv2.imread(path_truth + r'/truth' + str(i)+ r'.png') 

    size = truth.shape[0]*truth.shape[1]  

     

    hsv = cv2.cvtColor(truth, cv2.COLOR_BGR2HSV) 

    binn = cv2.inRange(hsv, lower, upper) 

    cv2.imwrite(r'/home/darakht/Desktop/range' + str(i) +r'.png', binn) 

     

    labels = binn.reshape(size) 
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    labels = labels.astype('float32') / 255.0 

    #pd.DataFrame(labels).to_csv(path_npy + r"/labels.csv") 

     

    np.save(path_npy + r'/labels/labels' + str(i)+ r'.npy', labels) 

    

 Model Generation 

from __future__ import absolute_import 

from __future__ import print_function 

 

from keras.models import Sequential 

from keras.layers import Dense, Activation, Dropout 

from keras.layers import Conv2D, MaxPooling2D, Flatten 

import numpy as np 

import cv2 

import h5py 

import os,glob 

 

path_features = str(r'/home/darakht/Desktop/detection/dataset/npy/features/') 

path_labels = str(r'/home/darakht/Desktop/detection/dataset/npy/labels/') 

path_model = str(r'/home/darakht/Desktop/detection/models/') 

 

hidden_units1 = 100 

hidden_units2 = 50        
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hidden_units3 = 50 

hidden_units4 = 20 

hidden_units5 = 10 

 

model = Sequential() 

 

model.add(Dense(hidden_units1, input_dim=14)) 

model.add(Activation('relu')) 

 

model.add(Dense(hidden_units2)) 

model.add(Activation('relu')) 

 

model.add(Dense(hidden_units3)) 

model.add(Activation('relu')) 

 

model.add(Dense(hidden_units4)) 

model.add(Activation('relu')) 

 

model.add(Dense(hidden_units5)) 

model.add(Activation('relu')) 

 

model.add(Dense(1)) 

model.add(Activation('sigmoid')) 
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model.summary() 

model.compile(loss='binary_crossentropy',  

optimizer='adam', metrics=['accuracy']) 

 

direc = os.listdir(path_features) 

n = 0 

for f in direc: 

    n = n + 1 

 

for i in range(1, n): 

    i = i + 1 

    f = np.load(path_features + r'/features'+ str(i) + r'.npy') 

    l = np.load(path_labels + r'/labels'+ str(i) + r'.npy')  

    model.fit(f, l, epochs=1, batch_size=100000)   

    #scores = model.evaluate(f, l) 

    #print("\n", r'---------------------------', "\n", r'Evaluation for ' + str(i) + r' instance:' 

, 

 "\n" ,r'---------------------------') 

    #print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))  

    model.save(path_model + r'/modeldnn.h5') 

 

f = np.load(path_features + r'/features4.npy') 

l = np.load(path_labels + r'/labels4.npy')  
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scores = model.evaluate(f, l) 

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))  

 

 Prediction Algorithm 

 version --2.2 

################################################################# 

 

from keras.models import load_model 

import numpy as np 

import cv2 

import h5py 

 

path_features = str(r'/home/darakht/Desktop/detection/dataset/npy/features/') 

path_model = str(r'/home/darakht/Desktop/detection/models/') 

 

model = load_model(path_model + r'/modeldnn.h5') 

x = np.load(path_features + r'/features5.npy') 

  

p = model.predict(x) 

 

p = p * 255 

p = p.reshape([3078, 5472]) 

print(p) 
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np.save(path_model + r'/pred5.npy', p) 

cv2.imwrite(path_model + r'/pred5.png', p) 
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8.3 APPENDIX C 

 

Code for Tree Detection Algorithm 

 

 Binary Classification 

import numpy as np 

import cv2 

import math 

 

image_path = str(r'<<provide path--binary-true multiplied image>>') 

exp = cv2.imread(image_path) 

gray = cv2.imread(image_path, 0) 

 

height = exp.shape[0] 

width = exp.shape[1] 

mask = np.zeros((height,width), np.uint8) 

 

gray_blur = cv2.medianBlur(gray, 13) 

gray_lap = cv2.Laplacian(gray_blur, cv2.CV_8UC1, ksize=5) 

circles = cv2.HoughCircles(gray_lap, cv2.HOUGH_GRADIENT,  

 

1, 180, param1=50,param2=30, minRadius=90, maxRadius=120) 

print(circles) 

num = len(circles[0,:]) 
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def draw_circles(img, circles): 

    cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR) 

    for i in circles[0,:]: 

        cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2) 

    return cimg 

 

cimg = draw_circles(gray, circles) 

 

for i, j in zip(circles[0,:], range(num)):  

    cv2.circle(mask,(i[0],i[1]),i[2],(255,255,255),thickness=-3) 

    masked_data = cv2.bitwise_and(exp, exp, mask=mask) 

    x = i[0] - i[2] 

    y = i[1] - i[2] 

    x = math.ceil(x) 

    y = math.ceil(y) 

    w = math.ceil(i[2]*2) 

    h = math.ceil(i[2]*2) 

    crop = masked_data[y:y+h,x:x+w] 

    print(x,y,w,h) 

    s = 256  

    k = abs(s - h) 

    l = abs(s - w) 
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    a = np.zeros((s ,s ,3), np.uint8) 

    a = np.pad(crop, ((0, k), (0, l), (0, 0)), 'constant') 

    print(a.shape) 

    cv2.imwrite(r'<<provide path>>//orange_' + str(j) + r'.png', a) 

 

cv2.namedWindow('detected circles', cv2.WINDOW_NORMAL) 

cv2.imshow('detected circles',cimg) 

cv2.waitKey(0) 

 

 Label Data Accumulator 

import numpy as np 

import cv2 

import os, glob  

import pandas as pd 

 

path =  str(r'<<provide path>>') 

direc = os.listdir(path) 

c = 2 # no of classes  

i = 0 

data = np.zeros([1,256*256]) 

 

for f in direc: 

    i = i + 1         
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labels = np.zeros([i, c]) 

 

def datastack(fy): 

    img = cv2.imread(path + str(r'/') + fy, 0) 

    x = np.reshape(img,[1, 256*256]) 

    return x 

 

for f in direc: 

         

    title, ext = os.path.splitext(os.path.basename(f)) 

    title = title.split(r'_') 

    n = int(title[1]) 

 

    if title[0] == 'orange':   

        dx = datastack(f) 

        data = np.vstack((data, dx)) 

        labels[n,0] = 1          # '0' means for orange  

         

    if title[0] == 'guava':   

        dx = datastack(f) 

        data = np.vstack((data, dx)) 

        labels[n,1] = 1          # '1' means for guava   

 



63  

data = np.delete(data, 0, 0) # iterative deletion (first axes) 

data = data.astype('float32') 

labels = labels.astype('float32') 

path1 =  str(r'<<provide path>>') 

np.save(path1 + r'/labels.npy', labels) 

np.save(path1 + r'/data.npy', data) 

 

 Binary Multiplication 

import numpy as np 

import cv2 

 

path = str(r'<<provide path>>') 

img = cv2.imread(path + r'\org-truth.png') 

 

lower= np.array([170,100,100])  

upper= np.array([179,255,255]) 

 

hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) 

bin0 = cv2.inRange(hsv, lower, upper) 

 

cv2.imwrite(path + r'\bin.png', bin0) 

 

b = cv2.imread(path + r'\bin.png') 
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x = cv2.imread(path + r'\org.jpg') 

 

b = b / 255.0 

z = x * b 

z = z.astype(np.uint8) 

 

cv2.imwrite(path + r'\binx.png', z) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

 

 Convolutional Neural Network Model 

#################################################### 

## Model 

################################################### 

 

from __future__ import absolute_import 

from __future__ import division 

from __future__ import print_function 

 

import numpy as np 

from keras.models import Sequential 

from keras.layers import Activation, Dense, Dropout 
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from keras.layers import Conv2D, MaxPooling2D, Flatten 

from keras.utils import to_categorical, plot_model 

import h5py 

 

path = str(r'<<provide path>>') 

x = np.load(path + r'/data.npy')   

y = np.load(path + r'/labels.npy')  

num_labels = 2 

par_in_size = 256 

x = np.reshape(x, [-1, par_in_size, par_in_size, 1]) 

x = x.astype('float32') / 255 

input_shape = (par_in_size, par_in_size, 1) 

 

batch_size = 100 

kernel_size = 3 

pool_size = 2 

filters = 40 

dropout = 0.2 

model = Sequential() 

model.add(Conv2D(filters=filters, 

                 kernel_size=kernel_size, 

                 activation='relu', 

                 input_shape=input_shape)) 
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model.add(MaxPooling2D(pool_size)) 

model.add(Conv2D(filters=filters, 

                 kernel_size=kernel_size, 

                 activation='relu')) 

model.add(MaxPooling2D(pool_size)) 

model.add(Conv2D(filters=filters, 

                 kernel_size=kernel_size, 

                 activation='relu')) 

model.add(Flatten()) 

model.add(Dropout(dropout)) 

model.add(Dense(num_labels)) 

model.add(Activation('softmax')) 

model.compile(loss='categorical_crossentropy', 

              optimizer='adam', 

              metrics=['accuracy']) 

 

model.fit(x, y, epochs=10, batch_size=batch_size) 

loss, acc = model.evaluate(x, y, batch_size=batch_size) 

print("\nTest accuracy: %.1f%%" % (100.0 * acc)) 

model.save(path + r'/modelccn.h5') 
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 Output Prediction Model 

from __future__ import absolute_import 

from __future__ import division 

from __future__ import print_function 

 

from keras.models import load_model 

import numpy as np 

import cv2 

import h5py 

 

path = str(r'<<provide path>>') 

model = load_model(path + r'/modelcnn.h5') 

data = np.load(path + r'/data.npy') 

n = 2 # objects  

X = np.reshape(X, [-1, 256, 256, 1])  

for i in range(n): 

    X = data[i,:] 

    p = model.predict(X) 

    print(r'ans:',p) 

    print(r'labeled: ', np.argmax(p)) 


