

TREE DETECTION AND CLASSIFICATION

THROUGH AERIAL IMAGERY USING DEEP

NEURAL NETWORKS

 By

PC Naiha Mubashir

NC Mubashir Ilyas

NC S.M Umer Latif

NC Muhammad Haris

Submitted to the Faculty of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad

in partial fulfillment for the requirements of a B.E. Degree in

Electrical(Telecom) Engineering

MAY 2019

ABSTRACT

Automatic detection and classification of trees by using remotely analyzed information

have been a dream of the many scientists, and land use administrators. The motivation for

this problem comes from pollen tree excavation issue, automated 3D town modeling,

urban planning and forestation, within which such information is employed to come up

with the models.

Here, we offer an automatic methodology for individual tree detection and classification

through aerial imagery using unmanned aerial vehicles (UAV), which is a rapidly

evolving, cost effective and economical technology.

Firstly, the model is trained for the purpose of tree detection per image pixel by assigning

a {tree, non-tree} label to each pixel in an aerial image. Afterwards, the output is refined

into clean segmented image based upon which, we implement pattern matching to locate

the separable tree crowns, which are then classified on the basis of tree species type with

our algorithm.

We have verified the algorithm on many gathered aerial pictures across varied zones of a

district and have confirmed excellent quality results with a good scalability of our

proposed methodology. In contrast, most of formerly done work used costly hardware like

multispectral images for tree detection and classification. Thus, our proposed technique

has the potential to classify individual trees in an exceedingly cost-effective manner. This

will be a usable tool for several forest researchers, managements, and also for the

concerned government bodies to detect and excavate pollen trees, to fight with this

seasonal pollen allergy war.

CERTIFICATE FOR CORRECTNESS AND APPROVAL

This officially states that the thesis work contained in this report

“Tree Detection and Classification through Aerial Imagery using Deep Neural

Networks”

Is carried out by:

Naiha Mubashir, Mubashir Ilyas, S.M Umer Latif and Muhammad Haris

under my supervision and that in my judgement, it is fully ample, in scope and

excellence, for the degree of Bachelors of Electrical (Telecomm) Engineering from

National University of Sciences and Technology (NUST).

Approved By:

Dr. Adil Masood Siddiqui

 EE Department

Military College of Signals, NUST

DATED: May, 2019

DECLARATION

No portion of the work presented in this dissertation has been submitted in

support of another award or qualification either at this institution or elsewhere.

v

DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent

To our Faculty, without whose unflinching support and cooperation,

a work of this magnitude would not have been possible.

And our Parents for their support.

vi

ACKNOWLEDGEMENTS

We would like to thank Allah Almighty for His incessant blessings which have been

bestowed upon us. Whatever we have achieved, we owe it to Him, in totality.

We are also thankful to our families for their continuous moral support which makes us

what we are.

We are extremely grateful to our project supervisor Dr. Adil Masood Siddiqui and our co-

supervisor Dr. Hasnat Khurshid from MCS, who in addition to providing us with valuable

technical help and guidance also provided us moral support and encouraged us throughout

the development of the project.

We are highly thankful to all of our teachers and staff of MCS who supported and guided

us throughout our course work. Their knowledge, guidance and training enabled us to

carry out this whole work.

Finally, we are grateful to the faculty of Electrical(Telecommunication) Department of

the Military College of Signals, NUST.

vii

TABLE OF CONTENTS

1 INTRODUCTION

1.1 Overview .. 2

1.2 Problem Statement ... 2

1.3 Approach .. 3

1.4 Scope .. 3

1.5 Aim & Objectives ... 3

1.5.1 Research Objectives .. 3

1.5.2 Academic Objectives .. 4

1.5.3 Commercial Objectives ... 4

1.5.4 Other Objectives ... 4

1.5.5 Organization .. 5

2 LITERATURE REVIEW

2.1 Background Study .. 7

2.1.1 Tree Detection ... 7

2.1.2 Tree Classification .. 8

2.2 Existing Literature .. 9

3 DESIGN AND DEVELOPMENT

3.1 Preliminary Design ... 12

3.1.1 Technical Specification ... 12

viii

3.2 Design Requirements and Specifications ... 15

3.3 Methodology .. 16

3.3.1 Google Earth Imagery ... 16

3.3.2 Ground Resolution .. 16

3.3.3 Data Set Acquisition ... 17

3.3.4 Pix4D Mapping Software ... 19

3.3.5 Tree Detection ... 20

3.3.6 Tree Classification .. 24

3.4 Block Diagram ... 28

4 PROJECT ANALYSIS AND EVALUATION

4.1 Feature Extraction Results ... 30

4.2 Results Obtained from Ground Truth Generation .. 35

4.3 Predicted Output of Tree Detection Model .. 37

4.4 Predicted Output of Tree Classification Model.. 37

5 CONCLUSION

5.1 Overview .. 40

5.2 Objectives Achieved/Achievements .. 40

5.3 Limitations ... 41

5.4 Future Research .. 42

6 FUTURE WORK ... 43

ix

7 BIBLIOGRAPHY .. 45

8 Appendices

8.1 APPENDIX A .. 47

8.2 APPENDIX B .. 50

8.3 APPENDIX C .. 59

x

LIST OF FIGURES

Figure 2-1: LiDAR Imagery Data ... 7

Figure 2-2: Hyperspectral Imagery Data Acquisition ... 8

Figure 3-1: DJI Phantom 4 pro ... 12

Figure 3-2: Intel Movidius NCS ... 13

Figure 3-3: Interface of DJI Go 4 ... 14

Figure 3-4: Mobile application and PC interface of Pix4D .. 15

Figure 3-5: Google Earth Imagery .. 16

Figure 3-6: Data Set Imagery no. 01 ... 18

Figure 3-7: Data Set Imagery no. 02 ... 18

Figure 3-8: Data Set Imagery of Orchids .. 19

Figure 3-9: Image Stitching with PIX4D Software .. 19

Figure 3-10:Feature Vector ... 22

Figure 3-11: Label Vector Formation ... 23

Figure 3-12: Block Diagram for Tree Detection and Classification 28

Figure 4-1: Original Imagery .. 30

Figure 4-2: Red Color Feature Image ... 31

Figure 4-3: Green Color Feature Image .. 31

Figure 4-4: Blue Color Feature Image .. 32

Figure 4-5: Hue ... 32

Figure 4-6: Saturation ... 33

Figure 4-7: Value .. 33

Figure 4-8: LAB .. 34

Figure 4-9: Illumination .. 34

xi

Figure 4-10:Textural Feature .. 35

Figure 4-11: Ground Truth Marking ... 36

Figure 4-12: Binary Image .. 36

Figure 4-13: Predicted Output .. 37

Figure 4-14: Predicted Output of Tree Classification Model ... 38

xii

LIST OF TABLES

Table 3-1: Ground Resolution .. 17

xiii

LIST OF ABBREVIATIONS

UAV Unmanned Aerial Vehicle

NCS Neural Compute Stick

LIDAR Light Detection and Ranging

CNN Convolutional Neural Network

MATLAB Matrix Laboratory

INTRODUCTION

2

1 INTRODUCTION

1.1 Overview

Tree Detection and Classification through Aerial imagery with the help of Unmanned

Aerial Vehicle (UAV) is an innovative idea put forward for the proper detection as well

as the classification of trees within a defined region. In this prototype, aerial imagery of a

well-defined region is gathered with the help of drone for the purpose of data set

formation, which is used for the training of pixel-level classifier for assigning a {tree, non-

tree} label tag to every individual pixel within the aerial image. The trained model is then

advanced by, a deep neural network based algorithm which is further used to implement

pattern matching to locate the separable tree crowns, which are then classified on the basis

of tree types with our algorithm, based on the platform of deep neural networks.

1.2 Problem Statement

Tree detection and species classification is an extensive challenge. Since tree and plants

are possessed with high entropy. The detection technique and classification procedures

were all primitively based upon the satellite imagery, for instance, LiDAR, Hyperspectral,

Multispectral, etc. which are all quite expensive and their accuracies are not relatively

satisfactory. The available dataset and in practice machine learning frameworks are

complex and convoluted, which in the result are not producing significant or effective

outcomes.

Furthermore, with the rapidly increasing deforestation of woodland and enhancing global

warming has a virulent effect on the environment of the whole world which is the

consequence of non-monitoring condition of the forest, urban and rural areas, or even the

generated reports of these areas are not being maintained to prevent all these factors that

are affecting the environment.

Lastly, efficient 3D modeling and map-making of cities are not that feasible or achievable,

if satellite imagery is considered.

3

1.3 Approach

 Our, proposition is a framework and an enterprise that acquire the automated approach to

distinct tree detection and classification with the help of optical-aerial imagery using

unmanned aerial vehicles (UAV), which is a rapidly evolving and cost-effective

technology, and with our developed and designed deep learning algorithms which help us

to perform all these tasks with great and comprehensive accuracy and precision.

Additionally, we allow to observe and analyze the environment of the forests, urban or

rural areas by monitoring and generating a well-structured report for forest-woodland

department and city development for management authorities, which subsequently stops

the factors of forest illegal chopping, cutting and smuggling etc.

1.4 Scope

The project finds its scope in the forestation department and all other government bodies

working for the reduction of illegal tree cutting, smuggling and global warming.

Considering the innovation side of this prototype, not just the forestation departments but

also the bodies working for the pollen tree excavation projects like CDA (Child

Development Association) and PMD (Pakistan Meteorological Department) can take

benefits from this cost effective and rapid tree detection algorithm.

1.5 Aim & Objectives

1.5.1 Research Objectives

 To attain an automated methodology for the detection and classification of trees in

a region from aerial imagery obtained by UAV (unmanned aerial vehicle)

 To design and formulate a neural network framework with the help of structural

algorithm of machine learning and implication of pixel-level classifier and utilize

it for objects that have high entropy, for instance, trees, grass, river, etc. that are

natural objects.

4

 To attain an automated methodology for the detection and classification of trees in

a region from aerial imagery obtained by UAV (unmanned aerial vehicle)

 To design and formulate a neural network framework with the help of structural

algorithm of machine learning and implication of pixel-level classifier and utilize

it for objects that have high entropy, for instance, trees, grass, river, etc. that are

natural objects.

1.5.2 Academic Objectives

 Working in the field of Image Processing

 Programming Skills (Practice on Python language)

 Aerial data acquisition with the help of DJI Phantom 4 pro

 Deep Neural Network platform

 Machine Learning for classification of trees

1.5.3 Commercial Objectives

 Designing of mobile application and online website for generalized density based

tree map report generation.

1.5.4 Other Objectives

 To boost the work of forestation and meteorological departments.

With this project, we wish to integrate our academic knowledge with practicality to

achieve further understanding and polish our skills in all the fields as mentioned above.

5

1.5.5 Organization

This document is divided into five main sections, including:

 The first section of the thesis lays the abstract which describes the main details of

our research idea, followed by the introduction section which specifies the problem

statement, approach, scope, and objectives.

 The second section summarizes the literature about the various resources read

online regarding the project and the previous research on the topic.

 The third section emphasizes on the design and development part which illustrates

the flow diagrams of different steps involved in the project as well as the description

of main modules.

 The fourth section is the analysis and evaluation part which gives the detail of

results obtained from deep neural network algorithms.

 The fifth section compromises of the future work, further improvements and points

out the additional developments which can be made to enhance the scope of the

project.

 In Appendix A we have added the Synopsis document of the project.

 Appendix B contains the code for tree detection

 And Appendix C contains the code for tree classification.

LITERATURE REVIEW

7

2 LITERATURE REVIEW

The literature available for this project is explained below:

2.1 Background Study

2.1.1 Tree Detection

Individual detection of the tree crown using remotely recognized data plays a large role in

the monitoring and city planning purposes. There are many methods generated in the past

for the purpose of tree crown detection. The research into tree detection with the help of

digital and aerial imagery dates back to the mid of the 1980s. One of the initial examples

of work on tree detection was the use of the Vision Expert System that was designed and

developed by Pinz in the year 1991. He was able to detect and locate the tree crown’s

center by examining the local brightness maxima in the acquired imagery. Later on, other

algorithms such as region growing were also designed and introduced for the tree detection

and crown radius size measurements purpose.

In current years, Light, Detection and Ranging (LiDAR) and Hyperspectral imagery

information have appeared as the prime source for the detection of trees with the basic

assumption that the top of tree crown is positioned at the point with the extreme

radiometric values which decreases by moving nearest to the border of tree crown.

Figure 2-1 LiDAR Imagery Data

8

 In the image domain, typical algorithms for tree crown detection includes local maximum

filtering, image binarization or thresholding, and template matching.

2.1.2 Tree Classification

Spatially categorical information on tree species arrangement offers valuable data for

environment preservationists as well as for metropolitan and forest managers and is

required very frequently over large altitudinal ranges. Studies that included remote sensing

data for the classification of the tree species and their mapping purpose reaches back to a

time span of numerous years. Our research shows that the quantity of studies

concentrating on the classification of tree species has raised over the last few years and

various approaches have been offered for numerous types of sensors. However, these

researches were only based on the data acquired with the LiDAR sensors or with the help

of multispectral and hyperspectral imaging techniques.

Figure 2-2 Hyperspectral Imagery Data Acquisition

9

All these methodologies for tree classification focused only on the following criteria:

 The algorithm must be able to differentiate between at least two tree species.

 The research must not focus on the broader forest tree variety.

 The algorithm must mainly consider the presence/absence of the tree species within

any geographical region.

2.2 Existing Literature

[1] TREE DETECTION FROM AERIAL IMAGERY (Lin Yang, Xiaqing Wu, Emil Praun,

Xiaoxu Ma).

This paper gives the overview of the generalized methodology used for tree detection.

The whole methodology is divided into two phases. During the first phase, a pixel level

classifier is trained for assigning label of {tree and non-tree} regions within the aerial

image. This assignment is done on the basis of the features considered for tree detection

within the acquired image. Afterwards, a segmented image is generated which his passed

on to the second stage of the methodology.

During the second phase, a set of templates are considered for the purpose of correlation

with the output segmented images of the first stage to locate and the tree crowns. A

correlation score is generated on the basis of these outputs. The images with score above

the correlation score are considered whereas the ones with lower score are discarded.

This method as compared to the previous ones, requires only RGB channels of the aerial

imagery for the detection of tree with up to 90 % of precision level. Also, the training

procedure for this methodology is open for any type of features and data type thus, this

method can be easily integrated with the previously existing methods to boost up their

performance levels.

10

[2] Automatic classification of trees using a UAV onboard camera

and deep learning (Masanori Onishi, Takeshi Ise)

This paper proposes an approach for the classification of tree species on the basis of

remotely sensed data that is acquired from aerial imagery with the help of Unmanned

Aerial Vehicle (UAV). With the help of UAV and deep learning algorithms, a system is

constructed for the automatic classification of tree on the basis of their species type.

In this method, the UAV imagery is segmented into distinct tree crowns on which deep

learning algorithms are applied as a result of which, 7 tree types with an accuracy of about

89% have been achieved. This performance is notable because of using easily available

digital RGB images and publicly available package for deep learning. In contrast, most of

previous studies used expensive hardware such as multispectral imagers to improve

performance. In the matter of spatial scale, this method of using a UAV can be limited

more than previous method using airborne. But low-cost and easy-to-use feature of UAVs

can enable the periodic monitoring. Thus, machine vision system will be a cost-effective

and usable tool for forest remote sensing.

DESIGN AND DEVELOPMENT

12

3 DESIGN AND DEVELOPMENT

3.1 Preliminary Design

The details for the design are given as below:

3.1.1 Technical Specification

The project consists of the following modules:

3.1.1.1 Hardware

 DJI Phantom 4 pro

 Intel Movidius

3.1.1.1.1 DJI Phantom 4 pro

The DJI phantom 4 pro is an intelligent and easy to operate drone with attached gimbal

that has cutting-edge 4K camera. The gimbal provides 3-axis stabilization. The drone

camera provides high resolution aerial images that encompasses great details of crown

size information. The drone was used to acquire dataset.

Figure 3-1 DJI Phantom 4 pro

13

3.1.1.1.2 Intel Movidius Neural Compute Stick (NCS)

The intel NCS is an Intel movidius visual processing unit embedded on a USB. It is a low-

powered chip bringing visual intelligence in thousands of devices. The stick was used to

boost neural computations and calculations, increasing overall performance.

Figure 3-2 Intel Movidius NCS

14

3.1.1.2 Software

 DJI Go 4

 Pix4d Mapping

 Python

3.1.1.2.1 DJI Go 4

It is a mobile device application made for DJI drones by DJI manufacturer. The drone is

controlled using this application. The mobile device is mounted on drone’s remote

controller. All the operations that a drone performs are done through this application.

3.1.1.2.2 Pix4d Mapping

It is a mobile application for automated flight control of drone and automated image

capturing by giving it the proper constraints and location. Imagery can be taken of a

defined area with drone following the desired path just by drawing path lines on app,

measured from a fixed desired altitude. The captured images are then processed into

desktop version of pix4d for image stitching and generating ortho-maps.

Figure 3-3 Interface of DJI Go 4

15

3.1.1.2.3 Python IDE

Python is an interpreted, advanced, general-purpose programming language. It is best for

developing machine learning algorithms and working on neural networks. It makes these

tasks easier as it has powerful programming modules such as tensorflow, numpy, scikit,

opencv.

3.2 Design Requirements and Specifications

Tree detection and classification is a state-of-the-art platform that uses deep neural

networks to process aerial images of an area to detect the number of trees in that area and

then classify the tree species accordingly.

The project uses drone for dataset collection, which is then inputed to the neural network

models. The dataset was divided in 10:90 ratios for testing and training of created models.

In our project mainly 4 python modules were used which are,

• Tensorflow (Keras)

• Numpy

• Opencv

• Pandas

Figure 3-4 Mobile application and PC interface of pix4d

16

3.3 Methodology

The methodology is divided into 5 blocks which are described in detail as follows:

3.3.1 Google Earth Imagery

With the help of GOOGLE EARTH PRO, we have obtained the whole satellite imagery

of our campus and other areas and have marked all the trees present within by using the

GOOGLE LENS and with the slight knowledge about tree types.

3.3.2 Ground Resolution

For this task we took the imagery of our laptop with known dimensions at different height

levels and then by using MATLAB commands, we have calculated the number of pixels

that covered the Laptop area and obtained our results as shown in table 3-1.

Figure 3-5 Google Earth Imagery

17

Table 3-1 Ground Resolution

Dimensions of laptop: 9.9 x 15 inches

3.3.3 Data Set Acquisition

For the purpose of data set formation, we have covered aerial imagery with the help of

our drone of various areas of Rawalpindi and Islamabad which are mentioned as

follows;

 Military College of Signals

 Orchids of Sargodha District

 Ankara Park, Islamabad

 Graveyard H-8, Islamabad

 F-9, Islamabad

Some of the aerial imagery data acquired with our air drone is shown here;

Height of Drone

(Feet)

Width (Pixels) Length (Pixels) Pixel Per Inch

30 100 150 101

50 61 93 38

70 40 63 17

100 27 41 7

18

Figure 3-6 Data Set Imagery no. 01

Figure 3-7 Data Set Imagery no.02

19

3.3.4 Pix4D mapping Software

After the task of aerial imagery data acquisition, we move towards the step of image

stitching. We have used pix4d app for pre-processing as well as mapping and stitching of

the imagery taken. Also its android app was used for automated flights of drone and taking

automated imagery of the orchids by giving it the proper constraints and location.

By giving the area to be covered, the height and then by randomly selecting the lines of

the drone flight by adjusting them with our fingers according to our requirement we fed

the imagery data to the pix4d mapper windows software for the image stitching and

creation of ortho-maps.

Figure 3-8 Data Set Imagery of Orchids

Figure 3-9 Image Stitching with PIX4D software

20

3.3.5 Tree Detection

The following section will elaborate the 4th block of our model i.e. used codes and

algorithm along with the employed techniques throughout the framework designing:

 In the detection part, first of all we run the feature extractor code that will extract

each pixel’s value from the whole image and will save it in form of numpy array

of file format with extension of “.npy”. The saved array named with “feature.npy”

will be call upon every time for it utilization in the forthcoming designed

algorithm.

 Secondly, we run the label accumulator code which then extract the labels content

from the provided ground truth of the image and saved it in corresponding position

of the pixels in another array of “label.npy”. This array contains the whole pixel’s

information of whether it represents the “non-tree” or “tree” part of the aerial

image.

 Now, we run the model development and training code which is combined together

in a single code file. This file will develop the training parameters and the structure

of the deep learning model. The parameters will be trained on the basis of the input

pixel’s values from feature vector as well as their corresponding labels from the

label vector. Both the vectors, feature and label are called by this code file. This

code will also define the optimizer, loss function, metrics, batch size, epoch, model

approach, activation function and all the values that are essential to design the deep

neural network on complete foundation. This code file also saves the model-

architecture along with its weight and graphs-flow of trained parameters in “.h5py”

format.

 The model will be saved as “model.h5py”, in an appropriate format which will then

be utilized by prediction code file for making predictable output on the basis of

input features of the image file, which on the basis of foundation weights and

trained parameters makes the inference. The provided inference of the prediction

code file will then be viewed as an output image in the form of {one-zero} values

that can be analyzed in the form of an array.

21

 The weights and the accuracy of the model can be further enhanced by running the

file code which is designed for model training. This code file will then be re-

optimized by the weights and training parameters, without changing the

architecture of the model.

 Multiple features are tested upon the provision of the same corresponding labels.

The model which is tested and checked by accuracy parameters is then managed

to be deployed on the untested and unlabeled data version, which provides the

prediction score on the basis of the model training and architectural design of the

network.

 The metrics and precision factor is set as “accuracy”, which will then be checked

upon the completion of each epoch. The memory utilization of the model training

and development will take about the 10 percentage of the total data to fully

organize the network. The memory utilization is adjusted by changing the

parameters and the number of layers

3.3.5.1 Features for Tree Detection

We have used the following features with given specifications as below:

3.3.5.1.1 Spectral Features

 Red, Green, Blue color features which are of the same size as the original image.

 Hue, Value and Saturation frames which are also same as size of the image.

 Light frame from the “LAB”-format along with A (combination of green and red

frames) and B (combination of blue and yellow) textural frames.

 Likewise, we used about 9 spectral features for the model development and all are

calculated for each image file.

3.3.5.1.2 Spatial Features

The texture feature is uses the filter type of “Gabor-form” with different window size,

standard deviations (S.D) and angles, while offset and other parameters are of default

value.

22

 Texture_1: with window of (9, 9) and S.D of 3.5 and angle of pi/14

 Texture_2: with window of (9, 9) and S.D of 4.0 and angle of pi/24

 Texture_3: with window of (13, 13) and S.D of 5.0 and angle of pi/20

 Texture_4: with window of (17, 17) and S.D of 4.0 and angle of pi/16

 Texture_5: with window of (17, 17) and S.D of 3.5 and angle of pi/10

All the textures are generated and observed after the hit and trial version of experiment to

better visualize the texture-analysis.

 The spatial and spectral features will be extracted per pixel with the help of our algorithm

and a vectorized feature vector matrix will be generated on the basis of the features

selected.

3.3.5.2 Labels for Tree Detection

Ground truth marking is done by making small circles of equal radii on all the tree crowns.

Afterwards, the labels are simply extracted from the created ground truths and saved in

array file of appropriate format to recall on its usage.

Figure 3-10 Feature Vector

23

3.3.5.3 Model Description

The model is composed of the following parameters as described below:

 Model = Sequential (Keras library implementation)

 3 layered model

 1st layer with 100 hidden units

 2nd layer with 50 hidden units

 3rd layer with 50 hidden units

 4th layer with 20 hidden units

 5th layer with 20 hidden units

 And last layer contains only contain one neuron

Figure 3-11 Label Vector Formation

24

 The initial layering contains of “Relu” function as activation function

 While the last layer contains “Sigmoid” function as activation function

 Model compilation contain loss, optimizer and measuring metrics

 Loss = binary cross-entropy

 Optimizer = Adam

 Metrics= Accuracy

 Batch size of 100000

 Evaluation is also performed on same measuring metrics

The detection is performed by the division of the dataset in ratio of 90 percent for training

& development while for testing & validating with 10 percent of the data. This division

of our given dataset will lead to achieve the accuracy of approx. 91 percent on multiple

testing versions.

3.3.6 Tree Classification

This is the final block of our model where the tree classification on the basis of species is

completed.

 In the classification portion, we run the binary-image extractor code which will

take a binary image from the ground truth of the provided image (whole

orthomosaic-map image). After that it will multiply it smartly with original map

image that will leave all the sections of the image with zero value except the part

that contains trees that are already marked in the ground truth making procedure.

The product image will then be saved for further processing.

 Secondly, we will run the circular tree image extractor that will crop out the image

in the form of circles from the previous product of binary and original image and

then save each cropped image with the name of it’s appropriate class and gives it

a suitable range number uniquely attached to it. This circular cropping procedure

will make a comprehensive dataset for classification purpose in forthcoming

method.

25

 After that, we run the code file of label extractor which will then get the labels

from the cropped images of the classified dataset. This will then be saved in the

form of an array that will then be further utilized for model training.

 Now, we will run the model development and training code which is combined

together in a single code file and given in the Appendix C of this documentation.

This file will develop the training parameters and the structure of the convolutional

neural model. These parameters will be trained and optimized on the basis of the

input image from the classified dataset as well as their corresponding labels from

the label vector. This code will also define the optimizer, loss function, metrics,

batch size, epoch, model approach, activation function and all the values that are

essential to design the convolutional neural network on complete foundation. This

code file also saves the model-architecture along with its weight and graphs-flow

of trained parameters in “.h5py” format.

 The model file will be saved as “model.h5py” in an appropriate format, which will

then be utilized by prediction code file for making predictable output on the basis

of inputted image files, which on the foundation weights and trained parameters

makes the inference. The provided inference of the prediction code file will then

be viewed as individual prediction vector that will be comprised of some

probability score and after maximizing the vector we get the desired output value

defining the classification of each provided category in the dataset.

 Multiple images of the same dataset are tested upon the provision of the same

corresponding labels. The model which is tested and checked by accuracy

parameter is then managed to deploy on the untested and unlabeled data version

which will provide the prediction score on the basis of the model training and

architectural design of the network.

 The metrics and precision factor is set as “accuracy”, which then be checked upon

the completion of each epoch.

26

3.3.6.1 Convolutional Neural Network (CNN)

The provided CNN model for the purpose of tree species classification, has following

characteristics:

• Model = Convolutional Sequential Model (Keras library)

• Convolutional2D 3-layered model with 1 dense layer

• Image reshaping and resizing is performed for data fitting according to model

• Input shape of 256 x 256 x 1 (grey scaled)

• Batch size of 100

• Kernel size = 3 x 3

• Filters = 40

• Dropout = 0.2

• Pool-size = 2 (Only for Max pooling)

• 1st layer with input size of 256 x 256

• 1st Max pooling2D with pool-size

• 2nd layer with input size of previous output size

• 2nd Max pooling2D with pool-size

• 3rd layer with further downed size input from previous output

• Flattening layer

• Dense layer contains neurons of equal labels of classes

• The initial layering contains of “Relu” function

• While the last layer contains “Softmax” function

• Model compilation contain loss, optimizer and measuring metrics

• Loss = Categorical cross-entropy

27

• Epoch = 10

• Optimizer = Adam

• Metrics= Accuracy

We still require a large number of the same aerial imagery dataset to avoid the model

overfitting. Furthermore, the model generalization task is remained to achieve for better

assessment of the previously unexposed dataset tiles to the trained model. Model

overfitting causes the weights of the model shifted to the undesired and unsuitable point

of accuracy. We still need to gather some large set of aerial imagery with various

categories to train the model in unbiased manner. The provided and acquired dataset is not

able to fulfill the very demand of comprehensive model training. Though we finally

managed to get about the accuracy approx. of 96 % for two classes of tree species at most.

28

3.4 Block Diagram

This block diagram shows the complete methodology proposed for the purpose of tree

detection and classification.

Figure 3-12 Block Diagram for Tree Detection and Classification

ANALYSIS AND EVALUATION

30

4 PROJECT ANALYSIS AND EVALUATION

Six types of tree species were considered for the analysis and evolution purpose named

as follows:

 Paper Mulberry

 Pine tree

 Guava

 Orange

 Maple

 Pine

4.1 Feature Extraction Results

We have extracted 7 types of features per each pixel for the purpose of tree

detection.

Figure 4-1 Original Imagery

31

Figure 4-2 Red Color Feature Image

Figure 4-3 Green Color Feature Image

32

Figure 4-4 Blue Color Feature Image

Figure 4-5 Hue

33

Figure 4-6 Saturation

Figure 4-7 Value

34

Figure 4-8 LAB

Figure 4-9 Illumination

35

4.2 Results obtained from Ground Truth Generation

For the purpose of label vector formation, we have marked the tree crowns with single

colored circle of size equal to the tree crown and then multiplied it with the original image

for the formation of binary image. These binary labelled vector with the feature vectors

altogether makes the data vector which is passed through the model for the purpose of tree

detection.

Figure 4-10 Textural Feature

36

Figure 4-11 Ground Truth Masking

Figure 4-12 Binary Image

37

4.3 Predicted Output of Tree Detection Model

The data vector is fed to the deep neural network model to get the predicted output image.

In this image only the tree area is defined in the form of binary 1 and all the other parts

are marked as binary 0. Thus in this way the trees are detected.

4.4 Predicted Output of Tree Classification Model

The segmented images from the previous feature extraction model are then fed to the

block of classification model as discussed previously in chapter 3, the output of which is

saved in the form of excel sheet as shown:

Figure 4-13 Predicted Output

38

Figure 4-14 Predicted Output of Tree Classification Model

CONCLUSION

40

5 CONCLUSION

5.1 Overview

We propose an automatic and well-defined approach with the help of data acquired from

aerial imagery for the prime reason of tree detection and classification. In this model,

aerial imagery of a well-defined region is gathered with the help of drone for the

formation of data set, which is used for the training of pixel-level classifier for assigning

a {tree, non-tree} tag to every individual pixel within the aerial image. The trained model

is then advanced by a deep neural network based algorithm which is further used to

implement pattern matching to locate the separable tree crowns, which are then classified

on the basis of tree types with our algorithm based on the platform of deep neural

networks.

 The model works on pure imageries and is competent for the detection of trees and their

classification on the basis of specie types in enormous sizes. On large data sets, we are

able to train the classifier on only 1.0 % of the data while achieving more than 90.0 %

accuracy for our designed model.

5.2 Objectives Achieved/Achievements

 Detection of trees and its crown size estimation through pixel classifier

 Multiple feature extraction of the trees (Spatial and Spectral features)

 Classification of various tree species

 Pollen trees determination

 Minimum labor requirement

41

5.3 Limitations

There are certain limitations associated with the project:

 Accuracy issue due to time constraints for data acquisition.

 Proper crown size detection is not possible with a small amount of gathered aerial

imagery.

 The requirement of heavy servers for efficient data processing.

 The success of this whole project depends on the permission of government concerned

bodies.

5.4 Future Research

In future we will work on the generation of proper generalized density map based pollen

tree reports for the concerned government departments, so that with the help of them,

complete pollen tree excavation could be performed.

We will present a whole process in which pollen trees will be excavated with the help of

our developed team and in return environment friendly trees will be planted so to fight

with the seasonal pollen allergy issues and to help in the reduction of global warming.

42

FUTURE WORK

43

6 FUTURE WORK

Tree detection and its classification on the basis of tree species is the basic goal and

foundation of this project, but the project has some additional goals which can be achieved

through further explorations and practical work.

 Better classification can be done by adding more tree species in the acquired data

set.

 Formulation of city infrastructure and 3D city modeling

 Enhancement in the map versions.

 Aerially generated map of the whole globe pointing all the trees and their types.

 Density-based map and generalized tree report generation

 This proposed solution can also be used for the determination of pollen trees and

their proper excavation, to fight with the seasonal pollen allergy war.

BIBLIOGRAPHY

45

7 BIBLIOGRAPHY

[1] A. Rosebrock, "Keras Tutorial: How to get started with Keras, Deep Learning, and Python," 10 September

2018. [Online]. Available: https://www.pyimagesearch.com/2018/09/10/keras-tutorial-how-to-get-started-

with-keras-deep-learning-and-python/.

[2] A. Rosebrock, "Real-time object detection with deep learning and OpenCV," 18 September 2017. [Online].

Available: https://www.pyimagesearch.com/2017/09/18/real-time-object-detection-with-deep-learning-and-

opencv/.

[3] Tompee, "FF-CNN-Binary-Classification," 13 October 2017. [Online]. Available:

https://github.com/tompee26/FF-CNN-Binary-Classification/blob/master/.

[4] Alexandrejaguar, "Scikit-image: Image processing in Python," 1 June 2011. [Online]. Available:

https://github.com/scikit-image/scikit-image.

[5] L. J. Q. Y. Ke, " A review of methods for automatic individual tree-crown," International Journal of Remote

Sensing, vol. 32, pp. 4725-4747, 2009.

[6] X. W. E. P. X. M. L. Yang, "Tree Detection from Aerial Imagery," Seattle,Washington, 2009.

[7] T. I. M. Onishi, "Automatic classification of trees using a UAV onboard camera and deep learning," 2018.

[8] S. E. Franklin, "Pixel- and object-based multispectral classification of forest tree," Unmanned Vehicle

Systems, vol. 6, pp. 195-211, 2018.

46

APPENDIX

47

8 APPENDICES

8.1 Appendix A

Synopsis

Extended Title:

Tree Detection And Classification Through Aerial Imagery Using Deep Neural Network

Brief Description / Abstract:

Automatic detection and classification of trees by using remotely analyzed information

have been a dream of the many scientists, and land use administrators. The motivation

for this problem comes from pollen tree excavation issue, automated 3D town modeling,

urban planning and forestation, within which such information is employed to come up

with the models.

Here, we offer an automatic methodology for individual tree detection and classification

through aerial imagery using unmanned aerial vehicles (UAV), which is a rapidly

evolving cost effective and economical technology.

Scope of Work and Deliverable:

The project finds its scope in the forestation department and all other government bodies

working for the reduction of illegal tree cutting, smuggling and global warming.

Considering the innovation side of this prototype, not just the forestation departments

but also the bodies working for the pollen tree excavation projects like CDA (Child

Development Association) and PMD (Pakistan Meteorological Department) can take

benefits from this cost effective and rapid tree detection algorithm.

48

Objectives of the project:

 Classification of Tree species.

 To determine the density of the type of trees in forest that are on extinction level.

 To provide surveillance through aerial imagery of illegal cutting and smuggling of

trees.

 Automated 3D city modeling and urban planning.

Applications:

• Generalized Report Formation

• Pollen Tree Excavation

• 3D City Modeling

• Enhancement in Map Versions

• Forestry and Forest Management

• Wildlife Departments

• A Precise Analysis and Recognition of Vegetation Types and Agricultural Areas

Group Members:

• Naiha Mubashir (CGPA 3.96) (Syndicate leader)

• Mubashir Ilyas (CGPA 2.74)

• S.M Umer Latif (CGPA 2.30)

• Muhammad Haris (CGPA 3.93)

Academic Objectives:

Image Processing, Deep learning Algorithms

Hardware Requirements:

UAV(Drone),Intel Movidius Neural Compute Stick

49

Approval Status

Supervisor Name & Signature

 HoD Signature -----------------------------------

R&D SC Record Status File # Coordinator Signature

50

8.2 APPENDIX B

Code for Tree Detection Algorithm

 Feature Extraction and Accumulation

import cv2

import numpy as np

import os, glob

import pandas as pd

path_npy = str(r'/home/darakht/Desktop/detection/dataset/npy/')

path_image = str(r'/home/darakht/Desktop/detection/dataset/im.form/image/')

direc = os.listdir(path_image)

n = 0

for f in direc:

 n = n + 1

def gab(kernel, sd, angle):

 g_kernel = cv2.getGaborKernel(kernel, sd , angle, 1.0, 1.0, 0)

 gabimg = image.copy()

 gabimg = cv2.cvtColor(gabimg, cv2.COLOR_BGR2GRAY)

 tex = cv2.filter2D(gabimg, cv2.CV_8UC3, g_kernel)

51

 return tex

for i in range(n):

 i = i + 1

 image = cv2.imread(path_image + r'/image' + str(i)+ r'.png')

 size = image.shape[0]*image.shape[1]

 bimg, gimg, rimg = cv2.split(image)

 hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)

 Himg, Simg, Vimg = cv2.split(hsv)

 lab = cv2.cvtColor(image, cv2.COLOR_BGR2LAB)

 Limg, Aimg, Bimg = cv2.split(lab)

 b = bimg.reshape(size)

 g = gimg.reshape(size)

 r = rimg.reshape(size)

 H = Himg.reshape(size)

 S = Simg.reshape(size)

 V = Vimg.reshape(size)

 L = Himg.reshape(size)

 A = Aimg.reshape(size)

52

 B = Bimg.reshape(size)

 tex1 = gab((9, 9), 3.5, np.pi/14)

 tex2 = gab((9, 9), 4.0, np.pi/24)

 tex3 = gab((13, 13), 5.0, np.pi/20)

 tex4 = gab((17, 17), 4.0, np.pi/16)

 tex5 = gab((17, 17), 3.5, np.pi/10)

 tex1 = tex1.reshape(size)

 tex2 = tex2.reshape(size)

 tex3 = tex3.reshape(size)

 tex4 = tex4.reshape(size)

 tex5 = tex5.reshape(size)

 features = np.array([b, g, r, H, S, V, L, A, B, tex1, tex2, tex3, tex4, tex5])

 features = features.T

 features = features.astype('float32')

 #pd.DataFrame(features).to_csv(path_npy + r"/features.csv")

 np.save(path_npy + r'/features/features' + str(i) + r'.npy', features)

 Labels Accumulation

import cv2

import numpy as np

import os, glob

53

import pandas as pd

path_npy = str(r'/home/darakht/Desktop/detection/dataset/npy/')

path_truth = str(r'/home/darakht/Desktop/detection/dataset/im.form/truth/')

lower= np.array([160,100,100]) #red

upper= np.array([179,255,255])

direc = os.listdir(path_truth)

n = 0

for f in direc:

 n = n + 1

for i in range(n):

 i = i + 1

 truth = cv2.imread(path_truth + r'/truth' + str(i)+ r'.png')

 size = truth.shape[0]*truth.shape[1]

 hsv = cv2.cvtColor(truth, cv2.COLOR_BGR2HSV)

 binn = cv2.inRange(hsv, lower, upper)

 cv2.imwrite(r'/home/darakht/Desktop/range' + str(i) +r'.png', binn)

 labels = binn.reshape(size)

54

 labels = labels.astype('float32') / 255.0

 #pd.DataFrame(labels).to_csv(path_npy + r"/labels.csv")

 np.save(path_npy + r'/labels/labels' + str(i)+ r'.npy', labels)

 Model Generation

from __future__ import absolute_import

from __future__ import print_function

from keras.models import Sequential

from keras.layers import Dense, Activation, Dropout

from keras.layers import Conv2D, MaxPooling2D, Flatten

import numpy as np

import cv2

import h5py

import os,glob

path_features = str(r'/home/darakht/Desktop/detection/dataset/npy/features/')

path_labels = str(r'/home/darakht/Desktop/detection/dataset/npy/labels/')

path_model = str(r'/home/darakht/Desktop/detection/models/')

hidden_units1 = 100

hidden_units2 = 50

55

hidden_units3 = 50

hidden_units4 = 20

hidden_units5 = 10

model = Sequential()

model.add(Dense(hidden_units1, input_dim=14))

model.add(Activation('relu'))

model.add(Dense(hidden_units2))

model.add(Activation('relu'))

model.add(Dense(hidden_units3))

model.add(Activation('relu'))

model.add(Dense(hidden_units4))

model.add(Activation('relu'))

model.add(Dense(hidden_units5))

model.add(Activation('relu'))

model.add(Dense(1))

model.add(Activation('sigmoid'))

56

model.summary()

model.compile(loss='binary_crossentropy',

optimizer='adam', metrics=['accuracy'])

direc = os.listdir(path_features)

n = 0

for f in direc:

 n = n + 1

for i in range(1, n):

 i = i + 1

 f = np.load(path_features + r'/features'+ str(i) + r'.npy')

 l = np.load(path_labels + r'/labels'+ str(i) + r'.npy')

 model.fit(f, l, epochs=1, batch_size=100000)

 #scores = model.evaluate(f, l)

 #print("\n", r'---------------------------', "\n", r'Evaluation for ' + str(i) + r' instance:'

,

 "\n" ,r'---------------------------')

 #print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

 model.save(path_model + r'/modeldnn.h5')

f = np.load(path_features + r'/features4.npy')

l = np.load(path_labels + r'/labels4.npy')

57

scores = model.evaluate(f, l)

print("\n%s: %.2f%%" % (model.metrics_names[1], scores[1]*100))

 Prediction Algorithm

 version --2.2

from keras.models import load_model

import numpy as np

import cv2

import h5py

path_features = str(r'/home/darakht/Desktop/detection/dataset/npy/features/')

path_model = str(r'/home/darakht/Desktop/detection/models/')

model = load_model(path_model + r'/modeldnn.h5')

x = np.load(path_features + r'/features5.npy')

p = model.predict(x)

p = p * 255

p = p.reshape([3078, 5472])

print(p)

58

np.save(path_model + r'/pred5.npy', p)

cv2.imwrite(path_model + r'/pred5.png', p)

59

8.3 APPENDIX C

Code for Tree Detection Algorithm

 Binary Classification

import numpy as np

import cv2

import math

image_path = str(r'<<provide path--binary-true multiplied image>>')

exp = cv2.imread(image_path)

gray = cv2.imread(image_path, 0)

height = exp.shape[0]

width = exp.shape[1]

mask = np.zeros((height,width), np.uint8)

gray_blur = cv2.medianBlur(gray, 13)

gray_lap = cv2.Laplacian(gray_blur, cv2.CV_8UC1, ksize=5)

circles = cv2.HoughCircles(gray_lap, cv2.HOUGH_GRADIENT,

1, 180, param1=50,param2=30, minRadius=90, maxRadius=120)

print(circles)

num = len(circles[0,:])

60

def draw_circles(img, circles):

 cimg = cv2.cvtColor(img,cv2.COLOR_GRAY2BGR)

 for i in circles[0,:]:

 cv2.circle(cimg,(i[0],i[1]),i[2],(0,255,0),2)

 return cimg

cimg = draw_circles(gray, circles)

for i, j in zip(circles[0,:], range(num)):

 cv2.circle(mask,(i[0],i[1]),i[2],(255,255,255),thickness=-3)

 masked_data = cv2.bitwise_and(exp, exp, mask=mask)

 x = i[0] - i[2]

 y = i[1] - i[2]

 x = math.ceil(x)

 y = math.ceil(y)

 w = math.ceil(i[2]*2)

 h = math.ceil(i[2]*2)

 crop = masked_data[y:y+h,x:x+w]

 print(x,y,w,h)

 s = 256

 k = abs(s - h)

 l = abs(s - w)

61

 a = np.zeros((s ,s ,3), np.uint8)

 a = np.pad(crop, ((0, k), (0, l), (0, 0)), 'constant')

 print(a.shape)

 cv2.imwrite(r'<<provide path>>//orange_' + str(j) + r'.png', a)

cv2.namedWindow('detected circles', cv2.WINDOW_NORMAL)

cv2.imshow('detected circles',cimg)

cv2.waitKey(0)

 Label Data Accumulator

import numpy as np

import cv2

import os, glob

import pandas as pd

path = str(r'<<provide path>>')

direc = os.listdir(path)

c = 2 # no of classes

i = 0

data = np.zeros([1,256*256])

for f in direc:

 i = i + 1

62

labels = np.zeros([i, c])

def datastack(fy):

 img = cv2.imread(path + str(r'/') + fy, 0)

 x = np.reshape(img,[1, 256*256])

 return x

for f in direc:

 title, ext = os.path.splitext(os.path.basename(f))

 title = title.split(r'_')

 n = int(title[1])

 if title[0] == 'orange':

 dx = datastack(f)

 data = np.vstack((data, dx))

 labels[n,0] = 1 # '0' means for orange

 if title[0] == 'guava':

 dx = datastack(f)

 data = np.vstack((data, dx))

 labels[n,1] = 1 # '1' means for guava

63

data = np.delete(data, 0, 0) # iterative deletion (first axes)

data = data.astype('float32')

labels = labels.astype('float32')

path1 = str(r'<<provide path>>')

np.save(path1 + r'/labels.npy', labels)

np.save(path1 + r'/data.npy', data)

 Binary Multiplication

import numpy as np

import cv2

path = str(r'<<provide path>>')

img = cv2.imread(path + r'\org-truth.png')

lower= np.array([170,100,100])

upper= np.array([179,255,255])

hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

bin0 = cv2.inRange(hsv, lower, upper)

cv2.imwrite(path + r'\bin.png', bin0)

b = cv2.imread(path + r'\bin.png')

64

x = cv2.imread(path + r'\org.jpg')

b = b / 255.0

z = x * b

z = z.astype(np.uint8)

cv2.imwrite(path + r'\binx.png', z)

cv2.waitKey(0)

cv2.destroyAllWindows()

 Convolutional Neural Network Model

Model

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

import numpy as np

from keras.models import Sequential

from keras.layers import Activation, Dense, Dropout

65

from keras.layers import Conv2D, MaxPooling2D, Flatten

from keras.utils import to_categorical, plot_model

import h5py

path = str(r'<<provide path>>')

x = np.load(path + r'/data.npy')

y = np.load(path + r'/labels.npy')

num_labels = 2

par_in_size = 256

x = np.reshape(x, [-1, par_in_size, par_in_size, 1])

x = x.astype('float32') / 255

input_shape = (par_in_size, par_in_size, 1)

batch_size = 100

kernel_size = 3

pool_size = 2

filters = 40

dropout = 0.2

model = Sequential()

model.add(Conv2D(filters=filters,

 kernel_size=kernel_size,

 activation='relu',

 input_shape=input_shape))

66

model.add(MaxPooling2D(pool_size))

model.add(Conv2D(filters=filters,

 kernel_size=kernel_size,

 activation='relu'))

model.add(MaxPooling2D(pool_size))

model.add(Conv2D(filters=filters,

 kernel_size=kernel_size,

 activation='relu'))

model.add(Flatten())

model.add(Dropout(dropout))

model.add(Dense(num_labels))

model.add(Activation('softmax'))

model.compile(loss='categorical_crossentropy',

 optimizer='adam',

 metrics=['accuracy'])

model.fit(x, y, epochs=10, batch_size=batch_size)

loss, acc = model.evaluate(x, y, batch_size=batch_size)

print("\nTest accuracy: %.1f%%" % (100.0 * acc))

model.save(path + r'/modelccn.h5')

67

 Output Prediction Model

from __future__ import absolute_import

from __future__ import division

from __future__ import print_function

from keras.models import load_model

import numpy as np

import cv2

import h5py

path = str(r'<<provide path>>')

model = load_model(path + r'/modelcnn.h5')

data = np.load(path + r'/data.npy')

n = 2 # objects

X = np.reshape(X, [-1, 256, 256, 1])

for i in range(n):

 X = data[i,:]

 p = model.predict(X)

 print(r'ans:',p)

 print(r'labeled: ', np.argmax(p))

