
i

FPGA Based Visual Object Tracking

By

GC Obaid Ullah Khan

GC Mehmood Ahmad

GC Usama Bin Sana

FC Saleh Abdullah Kaifi

Submitted to the Faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and

Technology, Islamabad in partial fulfillment for the requirements of a B.E

Degree in Telecom Engineering

May 2015

ii

Abstract

In Contemporary technological world, high speed computers and economical and low

cost video cameras are easily accessible. Therefore, a great interest has been placed in

the field of object tracking due to the requirement of analyzing the automated videos.

In visual object tracking the target of interest is tracked in consecutive video frames.

It has enormous applications in security and surveillance systems, medical imaging,

robotics, and traffic control.

The current thesis illustrates the implementation of visual object tracking algorithms

on Field programmable gate arrays (FPGA). FPGAs are the most proficient, high

speed and inexpensive devices, provides fast execution of IP algorithms which is not

achievable with the serial microcontrollers. Verilog Spartan 3E board is used to

execute the project logic and the visual object tracking algorithms.

iii

It is hereby certified that the contents of the project report entitled “FPGA based

Visual Object tracking”, submitted by the syndicate of

1. GC Obaid Ullah Khan

2. GC Usama bin Sana

3. GC Mehmood Ahmad

4. FC Saleh Kaifi

have been found satisfactory as per the requirement of the B.E. Degree in Electrical

(Telecom) Engineering.

Supervisor:

Lecturer Moiz Ahmad Pirkani

MCS, NUST

iv

DECLARATION

We hereby declare that no content of work presented in this thesis has been submitted

in support of another award of qualification or degree either in this institution or

anywhere else.

v

DEDICATED TO

Almighty Allah,

Faculty for their help

And our parents for their support

vi

ACKNOWLEDGEMENT

Nothing happens without the will of Allah Almighty. We thank Allah Almighty for

giving us knowledge and strength to accomplish this task successfully.

We would like to thank our project supervisor, Lecturer Moiz Ahmed Pirkani.

Without his support and encouragement, it would not have been possible to complete

this project.

We would like to express our special gratitude and thanks to Lec Moiz Ahmed

Pirkani for his unflinching support in truly testing times.

We would also like to thank our colleagues for helping us in developing the project

and people who have willingly helped us with their abilities.

Last but not least, we are very thankful to our parents, who bore with us in times of

difficulty and hardship. Without their consistent support and encouragement we could

not have accomplished our targets successfully.

vii

Table of Contents

CONTENTS PAGE NUMBER

LIST OF FIGURES .. X

LIST OF TABLES ... XII

ACRONYMS ... XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 STATEMENT OF NEED ... 1

1.2 VISUAL OBJECT TRACKING .. 2

1.3 FIELD PROGRAMMABLE GATE ARRAYS .. 2

1.3.1 FPGA Programming ... 2

1.4 PROJECT APPLICATIONS .. 2

1.5 PROJECT SCOPE .. 3

CHAPTER 2 SPARTAN-3E FPGA STARTER KIT BOARD ... 4

2.1 SPARTAN 3E (XC3S500E) FPGA .. 4

2.1.1 Overview of architecture and features .. 4

2.2 KEY COMPONENTS AND FEATURES .. 6

2.3 WHY FPGA? .. 7

CHAPTER 3 IMAGE PROCESSING .. 9

3.1 A SURVEY ON VISUAL OBJECT TRACKING .. 9

3.2 STEPS INVOLVED ... 9

3.2.1 Object Detection ... 10

3.2.2 Tracking.. 11

CHAPTER 4 ... 13

SOFTWARE SIMULATIONS USING MATLAB .. 13

4.1 BASIC IMAGE PROCESSING ALGORITHMS ... 13

4.1.1 Grayscale Conversion ... 13

4.1.2 Thresh holding .. 14

4.1.3 Image Enhancement using Arithmetic Operations ... 14

4.1.4 Edge Detection: .. 15

4.1.5 Image Dilation .. 15

4.1.6 Image Erosion ... 16

4.1.7 Image closing ... 17

4.1.8 2D Histogram ... 17

4.1.9 Histogram Equalizer ... 18

4.2 OBJECT TRACKING USING MATLAB ... 18

4.2.1 Normalized Cross Correlation .. 18

4.2.2 Steps Involved in Object Detection: ... 19

CHAPTER 5 VGA DISPLAY .. 21

5.1 VGA DISPLAY PORT ... 21

viii

5.2 VGA SIGNAL TIMINGS .. 23

5.3 IMPLEMENTATION OF THE VGA DISPLAY ... 25

CHAPTER 6 HARDWARE BASED IMPLEMENTATION .. 26

6.1 BLOCK DIAGRAM OF THE PROPOSED APPROACH .. 26

6.2 IMAGE TO RAW DATA CONVERSION .. 26

6.2.1 Raw Data .. 26

6.2.2 Implementation ... 26

6.3 DIGITAL CLOCK MANAGER (DCM) .. 27

6.3.1 Introduction .. 27

6.3.2 DCM Module I/O Signals... 28

6.3.3 Functional Description ... 29

6.3.4 25MHz Clock Generation ... 29

6.4 SINGLE PORT BRAM USING IP-CORES ... 30

6.4.1 BRAMs in SPARTAN 3E .. 30

6.4.2 Single-port BRAM Module I/O Signals ... 31

6.4.3 IP-Core Generator block ... 31

6.4.4 Content Initialization .. 32

6.5 .COE FILE GENERATION .. 32

6.5.1 Using IP-CORE Generator ... 33

6.5.2 Writing .Coe File .. 33

6.6 VGA DISPLAY .. 33

CHAPTER 7 ... 35

MICROBLAZE AND EMBEDDED DEVELOPMENT KIT .. 35

7.1 MICROBLAZE ARCHITECTURE .. 35

7.1.1 Features .. 35

7.1.2 Data Types and Endianness .. 36

7.1.3 Instructions ... 36

7.1.4 Registers ... 36

7.1.5 Pipeline Architecture .. 36

7.1.6 Memory Architecture ... 37

7.1.7 Floating Point Unit (FPU) .. 38

7.1.8 Fast Simplex Link (FSL) .. 38

7.2 EMBEDDED DEVELOPMENT KIT (EDK) .. 38

7.2.1 Xilinx Platform Studio (XPS) ... 39

7.2.2 Xilinx Software Development Kit (SDK) .. 40

7.2.3 Experiment done on EDK... 40

CHAPTER 8 CONCLUSIONS AND RECOMMENDATIONS ... 42

8.1 TASKS COMPLETED .. 42

8.2 RESULTS ... 42

8.2.1 FPGA Design Utilization Summary in our Project .. 42

ix

8.2.2 BRAM Utilization .. 43

8.2.3 Processing time comparison ... 43

8.3 FUTURE WORK ... 43

REFERENCES ... 45

APPENDIX ... 46

A.1 CODE FOR TRACKING AND DISPLAY(MAIN MODULE) .. 46

A.2 VGA DISPLAY ... 50

A.3 CODE FOR IMAGE TO RAW DATA CONVERSION .. 60

A.4 (.COE FILE GENERATION IN MATLAB .. 61

A.5 C CODE FOR MICROBLAZE ... 62

x

List of Figures

FIGURE 1-1 BASIC BLOCK DIAGRAM .. 1

FIGURE 2-2 SPARTAN 3E STARTER KIT ... 4

FIGURE 3-1 OBJECT REPRESENTATION.. 10

FIGURE 3-2 TYPES OF TRACKING .. 112

FIGURE 4-1 TEST IMAGE ... 13

FIGURE 4-2 GRAY SCALED IMAGE .. 13

FIGURE 4-3THRESHOLDED IMAGE... 14

FIGURE 4-4 ARITHMETICALLY ENHANCED IMAGE .. 15

FIGURE 4-5 EDGE DETECTION OF THE IMAGE ... 15

FIGURE 4-6 DILATED IMAGE ... 16

FIGURE 4-7 ERODED IMAGE .. 16

FIGURE 4-8 CLOSED IMAGE .. 17

FIGURE 4-9 2-D HISTOGRAM ... 17

FIGURE 4-10 HISTOGRAM EQUALIZER .. 18

FIGURE 4-11 OBJECT DETECTION ... 19

FIGURE 4-12 THE ORIGINAL IMAGE, THRESHOLDED IMAGE AND EDGE DETECTION. 19

FIGURE 4-13 OBJECT BEING TRACKED .. 20

FIGURE 5-1 DB15 CONNECTOR .. 21

FIGURE 5-2 VGA CONNECTOR ON FPGA ... 21

FIGURE 5-3VGA SIGNALS .. 22

FIGURE 5-4 CRT DISPLAY TIMINGS .. 23

FIGURE 5-5 VGA CONTROL TIMINGS ... 24

FIGURE 6-1STEPS INVOLVED IN HARDWARE BASED IMPLEMENTATION OF VOT 26

FIGURE 6-2 IMAGE TO RAW DATA CONVERSION.. 27

FIGURE 6-3 FUNCTION DIAGRAM OF DCM ... 29

FIGURE 6-4 ARWZ SETTINGS FOR DCM .. 30

FIGURE 6-5 ATTRIBUTES OF THE GENERATED CLOCK .. 30

FIGURE 6-6 SINGLE PORT BRAM ... 31

FIGURE 6-7 BRAM WIDTH AND DEPTH .. 32

FIGURE 6-8 IMAGE CONTENT INITIALIZATION ... 32

file:///Z:\FYP_thesis.docx%23_Toc388006222
file:///Z:\FYP_thesis.docx%23_Toc388006225

xi

FIGURE 6-9 VGA TEST RESULTS ... 33

FIGURE 6-10 VGA IMAGE DISPLAY .. 34

FIGURE 6-11SETUP FOR VGA IMAGE DISPLAY ... 34

FIGURE 7-1 MICROBLAZE BLOCK DIAGRAM .. 35

FIGURE 7-2 STAGES OF PIPELINING ... 37

FIGURE 7-3 TOOLS WITHIN EDK SOFTWARE ... 39

FIGURE 8-1 COMPARISON ... 43

xii

List of Tables

TABLE 5-1 3-BIT DISPLAY COLOR CODES ... 22

TABLE 5-2 VGA TIMING .. 24

TABLE 6-1 DCM I/O SIGNAL .. 28

TABLE 6-2 XC3S500E BRAM SPECIFICATIONS ... 30

TABLE 6-3 BRAM I/O SIGNALS ... 31

TABLE 8-1 DESIGN UTILIZATION SUMMARY ... 42

TABLE 8-2 BRAM UTILIZATION ... 43

xiii

Acronyms

VOT Visual Object Tracking

FPGA Field Programmable Gate Array

IOBs Input output blocks

RAM Random Access Memory

USB Universal Serial Bus

UART Universal Asynchronous Receiver/Transmitter

IP Image Processing

IP Core Intellectual property core

LSI Large scale integration

DSP Digital Signal Processing

DCM Digital Clock Manager

ARWZ Architecture Wizard

VGA Visual Graphics Array

.coe Coefficient File

.bit Bitstream File

1

Chapter 1

Introduction

The fundamental idea of this project is to design such a system that tracks the object

of interest in consecutive frames of a video. Image processing algorithms is used to do

this. First the images are stored in memory of FPGA and afterward by using Verilog

the image processing algorithms are implemented in FPGA and finally displayed on

VGA. The basic block diagram of the project is shown in the Figure 1-1-1.

 Read Write

Figure 1-‎1 Basic Block Diagram

1.1 Statement of Need

In present world the need of flexible and high speed image processing is greatly

growing. While data of image is incredibly large therefore this cannot be done using

the conventional microprocessors. This is because the image pixel is scanned one by

one by microprocessor and the data is processed successively. This method of image

processing is excessively slow for real time because the processing speed becomes

low.

As a result, reconfigurable hardware in the form of FPGAs has been proposed to

acquire high performance for computationally intensive DSP application. FPGAs

have programmable logic blocks with the small width and the programmable

interconnections provide an immense flexibility for the real time, parallel processing

design.

Image

Frames

Computer

FPGA

VGA

Display

Memory

Image

Processing

MATLAB

Xilinx ISE

2

1.2 Visual Object Tracking

To mark the position of a target of interest in consecutive image frames of a video is

called visual object tracking. After the reception of video, different algorithms of

image processing are implemented to analyze the frame. These algorithms not only

find the location of the desired object but also give much more information about it.

This information can be the object‟s shape, size, average speed and directions. These

algorithms involve real time processing at high rates.

1.3 Field Programmable Gate Arrays

Field programmable means that the function of FPGA is explained by the programmer

not the manufacturer. Therefore its functioning is carried out by scripting some

program depending on the particular application. This is how FPGAs provide

flexibility to the users. FPGAs are prefabricated chips that contains logic block that

are interrelated and interconnected. These interconnections are programmable wires.

Complex functions can be completed on the logic blocks. There are a number of

IOBs. These fast and bidirectional IOBs communicate and correspond with the

outside environment of the FPGA. FPGA‟s have their built in on-chip memory.

1.3.1 FPGA Programming

To program the FPGA specific software is needed. In the current project we used the

Xilinx ISE 14.2 to write, compile and synthesize the codes. It translates the code and

then places and routes to generate the final programming file which is the .bit file.

This software is also used to burn these files onto the FPGA.

1.4 Project Applications

Applications of object tacking are escalating day by day. A list of few applications is

given below

 Surveillance systems

 Traffic control

 Medical Imaging

 Mobile Robotics

 Human Computer interaction

 Sports Analytics

3

1.5 Project Scope

The following tasks are to be performed in this project:

 Studying the basic image processing algorithms

 Writing image processing algorithms in MATLAB

 Software based Visual Object Tracking by using MATLAB

 Checking the compatibility of the proposed design for the kit

 Investigating features of the Spartan 3E starter board

 Executing UART and SDRAM through Verilog

 Initializing BRAM and implementing DCM through IP Cores

 Transferring image data to FPGA

 Implementing IP algorithms through Verilog coding

 Studying VGA and exhibiting the data on VGA monitor

 Study Architecture of MicroBlaze soft core processor

4

Chapter 2

Spartan-3E FPGA Starter Kit Board

2.1 SPARTAN 3E (XC3S500E) FPGA

SPARTAN 3E is used for the execution and completion of image processing

algorithms. The Spartan-3E FPGA is entrenched with the 90nm technology. Spartan-

3E FPGAs deliver up to 1.6 million system gates, up to 232 IOBs, and versatile

platform FPGA architecture with the lowest cost per-logic in the industry.

Figure 2-1Spartan 3E Starter Kit

2.1.1 Overview of architecture and features

FPGAs have integrated blocks of generally used functionality such as RAM, clock

management, and DSP. The following are the vital mechanism in an FPGA.

5

2.1.1.1 Configurable Logic Blocks (CLBs)

The CLB is the basic logic unit in a FPGA. It gives the basic logic and storage

functionality for a target application design. Every CLB comprises of a configurable

switch matrix with 4 or 6 inputs, a number of selection circuitry (MUX, etc), and flip-

flops. The switch matrix is extremely flexible and can be configured to handle

combinatorial logic, shift registers or RAM.

2.1.1.2 Configurable IO blocks (IOBs)

A Configurable input/output (I/O) Block helps in conducting signals onto the chip and

dispatching them back off again. The polarity of the output can generally be

programmed for active high or active low output, and frequently the slow rate of the

output can be programmed for fast or slow rise and fall times. There are

characteristically flip-flops on outputs so that clocked signals can be output instantly

to the pins without encountering significant delay, more easily meeting the setup time

requirement for external devices. In the same way, flip-flops on the inputs decrease

delay on a signal before reaching a flip-flop, consequently dropping the hold time

requirement of the FPGA.

2.1.1.3 Interconnect

While the CLB imparts the logic capability, flexible interconnect routing routes the

signals between CLBs and to and from I/Os. Routing comes in a number of flavors,

from that designed to be linked between CLBs to fast horizontal and vertical long

lines spanning the device to global low-skew routing for Clocking and other global

signals.

2.1.1.4 Memory

Distributed RAM, Embedded Block RAM, SRAM, DDR RAM is accessible in nearly

all FPGAs, which permits for on-chip memory for design. In addition there is single

and dual port RAMs.

6

2.1.1.5 Digital clock management

Digital clock management is produced by mainly FPGAs that give precision clock

synthesis essential for many designs.

2.2 Key Components and Features

The key features of the Spartan-3E Starter Kit board are:

• Xilinx XC3S500E Spartan-3E FPGA

• Up to 232 user-I/O pins

• 320-pin FBGA package

• Over 10,000 logic cells

• Xilinx 4 Mbit Platform Flash configuration PROM

• Xilinx 64-macrocell XC2C64A CoolRunner™ CPLD

• 64 MByte (512 Mbit) of DDR SDRAM, x16 data interface, 100+ MHz

• 16 MByte (128 Mbit) of parallel NOR Flash (Intel StrataFlash)

• FPGA configuration storage

• MicroBlaze code storage/shadowing

• 16 Mbits of SPI serial Flash (STMicro)

• FPGA configuration storage

• MicroBlaze code shadowing

• 2-line, 16-character LCD screen

• PS/2 mouse or keyboard port

• VGA display port

• 10/100 Ethernet PHY (requires Ethernet MAC in FPGA)

• Two 9-pin RS-232 ports (DTE- and DCE-style)

7

• On-board USB-based FPGA/CPLD download/debug interface

• 50 MHz clock oscillator

• SHA-1 1-wire serial EEPROM for bitstream copy protection

• Hirose FX2 expansion connector

• Three Digilent 6-pin expansion connectors

• Four-output, SPI-based Digital-to-Analog Converter (DAC)

• Two-input, SPI-based Analog-to-Digital Converter (ADC) with programmable-

gain pre-amplifier

• ChipScope™ SoftTouch debugging port

• Rotary-encoder with push-button shaft

• Eight discrete LEDs

• Four slide switches

• Four push-button switches

• SMA clock input

• 8-pin DIP socket for auxiliary clock oscillator

2.3 Why FPGA?

When the number of objects to be detected (tracked) enhance, processing becomes

hard and complicated by a digital processor such as a PC. The reason is because a

great number of operations are to be performed on each frame. Such a great number

of operations per second could be accomplished efficiently with the help of FPGA

(Field Programmable Gate Arrays). The FPGA‟s offer high level of parallelism

which formulates processing of the video frames rapid and proficient. FGPA‟s

comprises of reprogrammable logic blocks. These logic blocks are interconnected and

8

permit application particular hardware implementation. Thus they propose a high

level of flexibility.

FPGA‟s are a cooperation between a processor based system and the application

specific IC‟s (ASIC). There are a great number of benefits of using FPGA. Some of

them are listed below:

 Parallelism

 Time to market

 Flexibility

 Reliability

 Low Power Consumption

 Performance Speed

9

Chapter 3

Image Processing

3.1 A survey on Visual Object Tracking

Visual object tracking has developed into a considerable technique in the past few

years. A great number of papers have been published in this field in the past decade.

One major cause behind the immense attraction of people in this field is that it is a

contemporary challenging scientific problem. Secondly, visual object tracking is an

element of a lot of high level problems such as mobile robotics, human computer

interaction, surveillance systems, traffic control, sports analytics, medical imaging etc.

They include problem like motion detection, activity understanding and event

detection etc. Other major reason behind the development of this field is the higher

obligation and advancement of HW/SW technology. With the advancement of this

technology new tracking algorithms are being developed. The main constraint in the

field is the performance of the system, as a large data set is mandatory to perform the

complex operation on the image. As the algorithms being used turn out to be more

complex and advance, it is required that the processing of these algorithms is high-

speed and is less prone to error. To address this issue, the processing has been

comprehensive for the serial processor used in the computer to another substitute that

can carry out several operations on every pixel of the image consequential in greater

number of operations per second. This is entirely accomplished by the use of FPGA.

In our experimental results, we will show that there is a considerable enhancement

and improvement in performance that can be attained as compared to processor based

design.

3.2 Steps involved

A lot of work has been done in the field and various algorithms for object tracking

have been proposed. Object tracking is mainly completed in two steps.

1. Object detection

2. Tracking of the detected object

There are various algorithms to perform the above mentioned tasks. We look at the

overview of these.

10

3.2.1 Object Detection

Different methodologies used in object tracking are briefly described one by one in

the section below.

3.2.1.1 Object Representation:

When an object of interest is to be tracked from the scene, it is required to be

characterized and represented in some form. Different algorithms used for object

tracking involve different representation and it is generally based on application.

Shape based tracking is possible by the shape information of the moving region of

object. It is possible by representing object shape by points, geometric shapes, Object

silhouette and contour, articulated shape models and skeletal models etc.

Figure ‎3-1 Object Representation

Object can also be showed on the basis of other than shape, or other features are

joined with the shape representation. Some feature representations are probability

densities of object‟s appearance; templates formed by taking help of shapes, joining

shape and appearance of object or multi-view appearance models.

3.2.1.2 Object features:

Features of an object comprise of its color, boundaries, texture and optical flow. On

the basis of particular application, the features for tracking are being selected. This is

possible by visualizing that how the targeted object is unlike from the background. A

11

variety of methods are used for feature selection. Higher the prominence of the feature

higher would its discrimination.

3.2.1.3 Strategies for detection of object:

An important step in tracking is object detection; once a detecting scheme has been

applied the focus of attention is then only on the moving region. Only these regions

are then measured for further processes. A number of the approaches for object

detection are briefly described below.

Point detectors: in this technique the interested points are detected. These points

should be clear, well positioned, significant texture in its localities and or view-point

changes. These are useful in image identical and recognition.

Background subtraction: this technique is generally used for relatively static

background. In it the difference between two consecutive frames of the video is made

and then the thresholding is completed to extract the moving segment. As it uses pixel

by pixel difference of the current image with the reference, therefore it is

exceptionally sensitive to the changes in environment.

Image Segmentation:

This technique partitions image into small regions to identify objects. Different

techniques have been used for segmentation by different people. Some of them are:

 Color based segmentation e.g. K-means clustering and Mean shift clustering.

 Transform methods e.g. watershed segmentation

 Texture methods e.g. texture filters

 Thresh holding methods e.g. Otsu‟s method.

3.2.2 Tracking

The purpose of tracking is to create trajectory of object in the frame. Classification of

object tracking algorithms is given below.

12

Figure ‎3-2 Types of Tracking

3.2.2.1 Point tracking:

Once the object is spotted the function of point tracking is to show it in the form of

points, preceding object state is then taken as a reference. Subsequently these points

are connected to make the object trajectory. Different approaches can be applied e.g.

multi point correspondence, parametric transformation or contour evaluation. MCE

tracker, GOA tracker, Kalman filter JPDAF, PMHT are the most common point

tracking algorithms that have been used.

3.2.2.2 Kernel tracking

This is the tracking that depends on the object features, shape and appearance. Kernel

of any shape can be selected to track the object; motion of the kernel represents the

motion of the object in successive frames. The algorithms for kernel tracking are,

mean-shift, KTL, layering.

3.2.2.3 Silhouette tracking

The object region is tracked by matching or contour evaluation by using the

information of the object like its volume, surface density by its shape models. A

silhouette is shaped in the object region. The representative work for silhouette

tracking are state space models, vibrational models, heuristic models, Hausdorff,

histogram.

In our project we used the kernel tracking algorithms to track the object in software

implementation. While for the hardware implementation on FPGA we had to use

relatively simpler technique. So the technique of background subtraction has been

used in FPGA.

Visual Object
Tracking

Point Tracking

Deterministic Probalistic

kernel
tracking

Multi View
based

Template
based

silhouette
trackking

Contour
Evolution

Shape
Matching

13

Chapter 4

Software Simulations using MATLAB

4.1 Basic Image Processing Algorithms

Following are the several fundamental image processing algorithms required for

Visual object tracking in our project. We choose a simple image and demonstrate

various operations, learned in the Image Processing, on MATLAB.

Figure 4-1 Test Image

4.1.1 Grayscale Conversion

Grayscale or intensity image is an image where each pixel is a sample that holds

intensity information. The value of each pixel ranges from 0-255 and each pixel is of

8-bits or 1 Byte.

Figure 4-2 Gray Scaled Image

Original image

Original Image

14

4.1.2 Thresh holding

Images thresh holding means transforming a grayscale image to a binary image i.e.

the pixel values are either 1 or 0. We set a specific pixel value i.e. X for thresh

holding and describe that values above X will be measured 1 and that below X would

be considered 0.

Output = 0 if Image<=X; Output = 255 if Image>X

The below image is a thresholded image which has either black or white pixel values.

Figure 4-3 Thresholded Image

4.1.3 Image Enhancement using Arithmetic Operations

Image Enhancement is a technique used to operate and transform an image to our

need by different operations on the image. It may be Spatial Transformations

(directly dealing with image pixels) or Frequency Domain Transformations

(dealing with the Fourier transform of the image). The best way to improve an image

is by addition, subtraction, multiplication and division. Subtraction and multiplication

is used to improve the image below:

Thresholded Image

15

Figure 4-4Arithmetically Enhanced Image

4.1.4 Edge Detection:

The process of identifying the points in an image where intensity of an image changes

abruptly or jumps is called Edge Detection. Edge Detection is best performed on a

grayscale image.

Figure 4-5 Edge Detection of the Image

4.1.5 Image Dilation

Image Dilation is one of the fundamental operations of Image processing on which

other operations are based. It can be most simply stated as to probe and expand higher

pixel values in a grayscale image or the bright area in the image.

16

Figure 4-6 Dilated Image

4.1.6 Image Erosion

Image Erosion is another of the essential operations of Image processing on which

other operations are based. Opposite to Image Dilation it expands lower pixel values

in a gray scale image or the darker area in the image.

Figure 4-7 Eroded Image

Dilated Image

Eroded Image

17

4.1.7 Image closing

Image Closing contrary to image opening can plainly be explained as the Erosion of

the Dilation of an Image. It is one more of the image enhancement techniques.

Figure 4-8 Closed Image

4.1.8 2D Histogram

Image Histogram is graphical representation of the intensity distribution in an image.

It plots number of pixels on the y-axis and intensity values on the x-axis. By

knowledge of the histogram of an image, viewer is able to know the whole intensity

distribution in the image.

Figure 4-9 2-D Histogram

Original image Closed image

-0.2 0 0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

18

4.1.9 Histogram Equalizer

Histogram Equalization is a technique of image enhancement using contrast

adjustment. The contrast of the below image is increased to get the better image.

Figure 4-10 Histogram Equalizer

4.2 Object Tracking Using MATLAB

Our video was simple with only one black object, a ball on a white background.

Kernel Tracking

The method used to track the object was Normalized 2D cross Correlation. This type

of tracking is called Kernel Tracking.

4.2.1 Normalized Cross Correlation

Cross Correlation is a measure of resemblance of two images which are spaced in

time. The idea is to chose the target object and cross correlate it with the image

samples. The tracking is done on the basis of the maximization of similarity in the

image.

Normalized Cross Correlation function is depicted by the command normxcorr2.

The command uses following algorithm in its processing:

1. It computes the cross correlation in the spatial or frequency domain.

2. Calculates local sums by pre-computing running sums.

3. Uses the local sums to normalize the cross-correlation to get correlation

coefficients.

19

4.2.2 Steps Involved in Object Detection:

Following steps were involved in software based Object Tracking:

Figure 4-11 Object Detection

First of all the video is converted to frames. MATALAB generates 15 frames per

second; this rate can be adjusted to the desired frame rate. The next steps involve

Grayscale Conversion, thresh holding, image enhancement, edge detection, object

identification and finally object tracking using normalized cross correlation.

The algorithms in this section have already been discussed in the previous section.

4.2.2.1 Target Object

Given below is the target object:

Figure 4-11 1 is the original image, 2 is thresholded image and 3 uses edge

detection.

Grayscale

Conversion
Thresholding

Image
Enhancement/
Noise Filtering

Edge

Detection

Object
Identification

Window
Tracking

20

4.2.2.2 Object Tracking original Video Frames:

Figure 4-12 Object being Tracked

21

Chapter 5

VGA Display

5.1 VGA Display Port

The Spartan 3E board includes a VGA exhibit port via DB15 connector. The Spartan

3E FPGA drives five signals to show the respective data on the screen. The signal are

the red, blue and green, one that show colors on the screen. Combination of theses

three signals give eight colors as shown in the table 5.1. The other two signal are the

horizontal synchornisation signal and the vertical synchronization signal written as

hsync and vsync respectively. These two signal assist to show the pixel data on the

screen in a correct manner.

\

Figure ‎5-1 DB15 Connector

Figure ‎5-2 VGA Connector on FPGA

22

The figure below shows the pins of the VGA port and their connections. The FPGA

pin numbers are also shown in the figure.

Figure ‎5-3VGA Signals

The three color pins of the VGA port are used to present 8 different colors in the

screen. Table 5-1 shows the 3 bit color codes.

Table ‎5-1 3-bit display color codes

VGA_RED VGA_GREEN VGA_BLUE Resulting Color

0 0 0 Black

0 0 1 Blue

0 1 0 Green

0 1 1 Cyan

1 0 0 Red

1 0 1 Magenta

1 1 0 Yellow

1 1 1 White

23

5.2 VGA signal timings

In our project we used the CRT based monitor that applies an electron beam that has

been modulated and the information of images is exhibited on the phosphor screen.

The electron beams are redirected by a strong magnetic field in top to bottom and left

to right direction. The beam returns back in some time. As shown in the figure 6-4 the

information is shown on the screen during the time when the beam is moving forward.

The resolution of the exhibited data depends on the size and frequency of the beams.

As shown in Figure 6-4, the VGA controller produces the horizontal sync (HS) and

vertical sync (VS) timings signals and the data is displayed on each pixel clock. The

time to show one pixel on the screen defines the pixel clock. The VS signal explains

the refresh frequency of the display, or the frequency at which all information on the

display is redrawn. The minimum practical refresh frequency is 60 Hz and can go up

to 120Hz.

Figure ‎5-4 CRT Display Timings

24

The signal timings in Table 6-2 are derived for a 640-pixel by 480-row display using

a 25 MHz pixel clock and 60 Hz ± 1 refresh. Figure 6-4 shows the relation between

each of the timing symbols. The timing for the sync pulse width (TPW) and front and

back porch intervals (TFP and TBP) are based on observations from various VGA

displays. The front and back porch intervals are the pre- and post-sync pulse times.

Information cannot be shown during these times.

Table ‎5-2 VGA Timing

 Figure ‎5-5 VGA Control Timing

Two separate counters are used that are clocked by the pixel clock. The horizontal

counter controls the horizontal timings and the vertical counter controls the vertical

timings of the pixel data. The source code used for VGA display is shown in the

Appendix.

Symbol

Parameter

Vertical Sync Horizontal Sync

Time Clocks Lines Time Clocks

TS Sync pulse time 16.7ms 416,800 521 32 μs 800

TDISP Display time 15.36ms 384,000 480 25.6μs 640

TPW Pulse width 64 μs 1,600 2 3.84μs 96

TF

P

Front porch 320μs 8,000 10 640ns 16

TBP Back porch 928μs 23,200 29 1.92μs 48

25

5.3 Implementation of the VGA display

The VGA timing was first set for 640x480 display screen. The first step was to

display the eight colors on the screen vertically. This was successfully achieved. The

display that was seen on the monitor is shown in the figure 6-6.

The next step was to display an image. The image data was stored in Bram and was

read from there.

Finally tracking of the target Object was achieved and then displayed on the VGA

monitor.

26

Chapter 6

Hardware Based Implementation

6.1 Block Diagram of the Proposed Approach

In order to achieve the task of successful tracking of an object, following series of

steps was observed in our specific approach towards VOT.

Figure ‎6-1Steps involved in hardware based implementation of VOT

6.2 Image to RAW Data Conversion

6.2.1 Raw Data

Raw data of an image is the digital value of each pixel in the image, initiating from

the pixel at top left corner to the pixel at the bottom right corner. The range of pixel

data may fluctuate depending on the bits of data of each image pixel. For gray scale

image each pixel can have a value between 0~255. For monochrome image the data is

single bit so only 2 values are possible. i.e. „0‟ or „1‟.

In a digital camera when the imaging chip is exposed to capture the image, it records

the amount of light that has hit each pixel. This is recorded as a voltage level. The

camera's analog to digital converter circuitry changes the analog voltage signal to a

digital value. Depending on the camera's circuitry if 8 bits of data are recorded then

each pixel can handle 255 brightness levels.

6.2.2 Implementation

We took out images from a short video and each of these images was reduced to

the pixel size of 200x150. From these images firstly a text file was produced using

M
AT

LA
B

Image to
RAW Data
Conversion

in text file.

X
ili

n
x

A
R

W
Z 25MHz

Clock
Generation
(DCM)
using
IPCORES

X
ili

n
x

A
R

W
Z Single-Port

BRAM
Generation

using
IPCORES

M
AT

LA
B

X
ili

n
x

V
er

ilo
g

VGA

DISPLAY

.COE FILE

GENERATION

27

MATLAB which contained the raw data of the image i.e. the values of each pixel

without any header or extreme information. The code for writing raw data of an image

to text file is in the appendix.

6.3 Digital Clock Manager (DCM)

6.3.1 Introduction

The Digital Clock Manager (DCM) primitive in Xilinx FPGA parts is used to execute

the following:

 Delay locked loop (DLL)

 Digital frequency synthesizer (DFS)

 Digital phase shifter (DPS)

 Digital spread spectrum (DSS)

Spartan 3E Starters Board has 8 internal global clock buses, and 4 Digital Clock

Managers. Out of these 4 DCM‟s a single DCM is used in this project.

The Digital Clock Manger allows:

 Multiplying of an external clock

 Division of an external clock

 Clock skew compensation by phase difference correction.

 Phase shifting of clock signals

Images in Video

Format

Video Frames

extraction

(MATLAB)

Image format

conversion to

text file format

Figure ‎6-2 Image to Raw data conversion

28

6.3.2 DCM Module I/O Signals

A single DCM has following main input output signals:

Table ‎6-1 DCM I/O Signal

Signal I/O Description

RST I If C_EXT_RESET_HIGH = 0, an inverter is inserted. Then three

DFFs are inserted before this signal is connected to the equivalent

pin of DCM.

CLKIN I If C_CLKIN_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLKFB I If C_CLKIN_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLK0 O If C_CLKIN_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLK90 O If C_CLK90_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLK180 O If C_CLK180_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLK270 O If C_CLK270_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLK2X O If C_CLKFX_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLK2X180 O If C_CLK2X180_BUF = true, a BUFG is inserted; otherwise,

this signal is connected to the equivalent pin of DCM directly.

CLKDV O If C_CLKDV_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLKFX O If C_CLKFX_BUF = true, a BUFG is inserted; otherwise, this

signal is connected to the equivalent pin of DCM directly.

CLKFX180 O If C_CLKFX180_BUF = true, a BUFG is inserted; otherwise,

this signal is connected to the equivalent pin of DCM directly.

LOCKED O Connect to the equivalent pin of DCM directly

29

6.3.3 Functional Description

Functional Description of a variety of signals is used in the figure below:

Figure ‎6-3 Function Diagram of DCM

6.3.4 25MHz Clock Generation

Since VGA and BRAM both work on a clock frequency of 25MHz. Hence a clock of

25MHz was generated from external FPGA clock of 50MHZ using a single DCM

block. This single DCM block was generated using IP-Cores Xilinx Architecture

Wizard (ARWZ) in Xilinx Design Suite. The DCM module had the RST checked but

the output of the clock was not “Locked”. DFS is enabled

Signals used in out generated DCM include:

 RST: reset for the DCM

 CLKIN: external clock of 50MHz

 CLKFB: internal feedback of DCM

 CLK0: buffered input clock (dived by 2 for this particular case)

30

Figure ‎6-4 ARWZ settings for DCM

Attributes in the particular Application:

The CLK0 signal was provided as clock to the BRAM and VGA blocks.

6.4 Single Port BRAM using IP-CORES

6.4.1 BRAMs in SPARTAN 3E

Spartan 3E has a total of 20 BRAMS available out of which we used 18 BRAMS for

our project.

Table ‎6-2 XC3S500E BRAM Specifications

Device RAM

Columns

RAM

Blocks per

Columns

Total

RAM

Blocks

Total

RAM bits

Total

RAM

Kbits

XC3S500E 2 10 20 368640 360

Figure ‎6-5Attributes of the generated clock

31

6.4.2 Single-port BRAM Module I/O Signals

A single-port BRAM module has following main input output signals:

Figure ‎6-6 Single Port BRAM

Table ‎6-3 BRAM I/O Signals

Signal I/O Description

DI I Data Input bus

DIP I Parity Data Input Bus (available only for byte-wide and

wider organizations)

ADDR I Address Bus

CLK I Clock

SSR I Synchronous Set/Reset

EN I Clock Enable

WE I Write Enable

DO O Data Output Bus.

DOP O Parity Data Output (available only for byte-wide and

wider organizations)

6.4.3 IP-Core Generator block

It specifies the depth and width of the data in the core generator block. In our design

we needed only a single pixel in 1 row of memory for convenience in our VGA

Display process as a result the width and depth were specified as demonstrated in the

figure. The depth was 30000 for images of 200x150 pixels each which took our

memory space of 6 BRAMs.

32

Figure ‎6-7 BRAM width and Depth

6.4.4 Content Initialization

It is used to specify the initial RAM contents for a CORE Generator block RAM

function, generate a coefficients (.coe) file. A simple example of a coefficients file

appears in Figure 7. At a minimum, define the radix for the initialization data—i.e.,

base 2, 10, or 16—and then indicate the RAM contents starting with the data at

location 0, followed by data at subsequent locations. To include the coefficients file,

locate the appropriate section in the CORE Generator wizard and check Load Init

File, as shown in Figure 8. Then, click Load File and select the coefficients file.

Figure ‎6-8 Image content Initialization

6.5 .coe File Generation

There are mainly two main methods of generating a .coe file.

1) Using IP core generators for generation the .coe file.

2) Writing a .coe file

33

6.5.1 Using IP-CORE Generator

IP-Core generators have a wizard that guides through the .coe file generation process

and through it you can manually write desired data values into the BRAM. This is a

good procedure to be followed when data to be stored is small.

6.5.2 Writing .Coe File

The problem with the above technique was that image data is enormous and it was not

possible for us to manually write all the data to create the .Coe file so we switched to

the 2
nd

 approach.

In this approach we generated a MATLAB code that would write the data in a text file

in the format same as that of a .Coe file and then the extension was changed to .txt to

.Coe. This generated .Coe file was used in the BRAM for data of pixels up to

(300x300) pixels which utilized about 15/20 BRAMs. MATLAB code is attached in

the Appendix.

6.6 VGA Display

VGA was primarily tested and 8 colors were exhibited on it in order to ensure that it

works.

Figure ‎6-9 VGA test results

For display, an image of 320x240 was chosen and shown on the VGA as out test

image which used about 15 BRAMs.

34

Figure ‎6-10 VGA Image Display

FPGA was linked with the laptop for storing image data and burning the code in the

FPGA and FPGA was attached to another monitor through DB-15 connector to show

the image.

Figure ‎6-11Setup for VGA Image display

35

Chapter 7

MicroBlaze and Embedded Development Kit

7.1 MicroBlaze Architecture

MicroBlaze is an embedded and fixed soft core processor. It is an optimized version

of a reduced instruction set computer (RISC) designed by Xilinx, Inc. It is executed in

many Xilinx FPGAs. Fig shows the block diagram of MicroBlaze

Figure 7- 1: MicroBlaze Block Diagram

7.1.1 Features

Some of the features of MicroBlaze are given below

 32 bit general purpose registers

 32 bit instruction word

 32 bit address bus

 LMB BRAM memory

 Instruction and Data Caches

 Single issue pipeline stages

36

7.1.2 Data Types and Endianness

MicroBlaze make use of Big-Endian, bit-reversed format to symbolize data. The data

types which the hardware supports for MicroBlaze are word, half word and byte.

7.1.3 Instructions

All MicroBlaze instructions are 32 bits wide. Instructions are of 2 types, Type A or

Type B. Type A instructions have up to two source register operands and one

destination register operand. Type B instructions have one source register; a 16-bit

immediate operand and a single destination register operand.

7.1.4 Registers

MicroBlaze has an orthogonal instruction set architecture. It has 32-bit general

purpose registers and up to seven 32-bit special purposes registers, depending on

configured options.

7.1.5 Pipeline Architecture

MicroBlaze uses pipeline architecture for the execution of instructions. The pipeline is

divided into five stages: Fetch (IF), Decode (OF), Execute (EX), Access Memory

(MEM), and Write back (WB).

 For the majority of instructions, every stage takes one clock cycle to complete. A

particular instruction takes five clock cycles to complete, and one instruction is

completed on every cycle. A few instructions entail multiple clock cycles in the

execute stage to complete. This is accomplished by stalling the pipeline.

37

Figure 7- 2: Stages of Pipelining

7.1.6 Memory Architecture

MicroBlaze is implemented with Harvard memory architecture, i.e. instruction and

data accesses are done in separate storage and signal conduits. Each address space

hasa 32 bit range which can handle up to 4GByte of instructions and data memory.

Both instruction and data an interface of MicroBlaze is 32 bit wide.

Data and instruction accesses must be aligned, unless the processor is configured to

support unaligned exceptions.

 MicroBlaze uses memory mapped I/O. The processor has up to three interfaces for

memory accesses:

 Local Memory Bus (LMB)

It provides on chip access to dual port block RAM.

 On-Chip Peripheral Bus(OPB)

It provides access to on- chip and off-chip peripherals.

 Xilinx Cache Link

It is used with the external memory controllers.

The LMB memory address range must not overlap with OPB or XCL ranges.

38

7.1.7 Floating Point Unit (FPU)

The MicroBlaze floating point unit uses IEEE 754 single precision floating point

format, which includes definitions for infinity, not-a-number (NaN) and zero. It also

supports addition, subtraction, multiplication, division, and comparison instructions,

implements round-to-nearest mode, generate sticky status bits for: underflow,

overflow, and invalid operation.

7.1.8 Fast Simplex Link (FSL)

MicroBlaze can be configured with Fast Simplex Link (FSL) interfaces, each

comprises of one input and one output port. The FSL channels are dedicated

unidirectional point to-point data streaming interfaces. Each FSL gives a low latency

dedicated interface to the processor pipeline. Thus they are ideal for extending the

processors execution unit with custom hardware accelerators.

7.2 Embedded Development Kit (EDK)

EDK is software available in ISE design suite. It facilitates the user to build processor

based system.

The software has a good graphical design and many wizards existing to configure the

embedded processor and peripherals.

The tools provided with EDK are designed to help in all phases of the surrounded

design process, as demonstrated in the following figure.

39

Figure 7- 3: Tools within EDK software

 Xilinx Platform Studio (XPS)

 Software Development Kit (SDK)

7.2.1 Xilinx Platform Studio (XPS)

XPS presents an environment for creating software and hardware specification flows

for embedded processor systems. It gives a graphical system editor for connection of

processors, peripherals, and buses. It is applied to add cores, edit core parameters, and

makes bus and signal connections to make an MHS file, create and modify MSS file,

produce and view system block diagrams. By using XPS the following peripherals

can easily be connected to the embedded processor.

 Quad SPI/SRAM/NOR/NAND Flash

 Gigabit Ethernet

 UART

40

 I2C

 SPI

 CAN

 GPIO

7.2.2 Xilinx Software Development Kit (SDK)

The Xilinx SDK is a GUI which provides a development environment for software

application projects. SDK is based on the Eclipse open-source standard. It has C/C++

code editor, compilation environment; application build configuration and automatic

make file generation

7.2.3 Experiment done on EDK

Firstly, image data is transformed to text file. Image data is sent to MicroBlaze by

using UART. MicroBlaze stored the image data in DDR SDRAM. The data is read

with the help of DDR SDRAM and exhibited on hyper terminal of PC.

Fig illustrates the block diagram of the overall hardware system.

41

The functionality code of the above hardware is written in C language using SDK.

42

Chapter 8

Conclusions and Recommendations

8.1 Tasks Completed

In summing up, we have learnt a lot from this project. We have got deep

understanding of embedded system (Spartan 3e) and related software‟s (Xilinx ISE,

EDK).

The tasks we completed in this project are:

 Implementation of BRAM (using ip core)

 VGA display.

 Implementation of Digital clock manager (using ip core)

 Object tracking in images stored in BRAM.

 MicroBlaze hardware and software design.

8.2 Results

8.2.1 FPGA Design Utilization Summary in our Project

Table ‎8-1 Design Summary of the project

Logic Utilization Used Available Utilization:

Number of Slice Flip Flops 42 9,312 1%

Number of 4 input LUTs 144 9,312 1%

Number of occupied Slices 87 4,656 1%

 Number of Slices containing only

related logic

87 87 100%

 Number of Slices containing unrelated

logic

0 87 0%

Total no. of 4 input LUTs 158 9,312 1%

 Number used as logic 144

 Numbers used as route-thru 14

Number of bonded IOBs 31 232 13%

DCM 1 4 25%

43

Number of RAMB16s 18 20 90%

Number of BUFGMUXs 2 24 8%

Average Fanout of Non-Clock Nets 3.79

8.2.2 BRAM Utilization

Table ‎8-2 BRAM utilized

Image Size Chosen 120x90 (8-bit gray scale image)

No. of BRAM used for a single Image 6

Memory Consumed per Frame 86.4 Kbits

Total RAM Kbits used in the project 259.2 Kbits

8.2.3 Processing time comparison

The comparison of the timing of the software and hardware implementations

illustrates that the performance of FPGA is approximately 600 times better than the

MATLAB simulations. As data increases so does the effectiveness comparison of the

two approaches.

Figure ‎8-1 Comparison

8.3 Future Work

In this project we have done tracking on few images because of the constraints on the

availability of BRAMs in Spartan 3E. So the future tasks are to:

 Use FPGA with better image processing platforms like the Cyclone® III

FPGAs and Zynq series. These FPGAs have more memory; more IOBs and

FPGA takes 5ms to process 3 frames

MATLAB takes 3 seconds to process 3
frames

44

can perform extensive differentiation and integration on system level. In

addition they also have enhanced cost, performance and productivity.

 Perform more advance image processing algorithm for object tracking.

 Camera interfacing

 Implement 8 bit VGA.

45

References

[1]. Xilinx, MicroBlaze Processor Reference Guide, Embedded Development Kit
EDK 14.1

URL: http://www.xilinx.com/support/documentation/sw_manuals/

xilinx14_1/mb_ref_guide.pdf

[2]. Xilinx, Embedded System Tools, Reference Manual, Embedded Development

Kit
URL: https://www.xilinx.com/support/documentation/sw_manuals/edk10_est _rm.pdf

[3]. Xilinx, Application Note, “Using Block RAM in Spartan-3 Generation

FPGAs”, XAPP463 (v2.0) March 1, 2005.

[4]. Xilinx, Application Note, “Digital Clock Manager (DCM) Module”, DS485

April 24, 2009.

[5]. Xilinx, “Spartan-3E FPGA Starter Kit Board User Guide”, UG230 (v1.2)

January 20, 2011.

[6]. EE3810, “Advanced Features of Xilinx FPGA”, dcm_module.

[7]. Alper Yilmaz, “Object tracking: A survey”, University of Central Florida,
ACM Computing Surveys (CSUR) Surveys Homepage archive Volume 38
Issue 4, 2006

[8]. Rafael C. Gonzalez, Richard Eugene Woods, 2
nd

 edition, “Digital Image
processing”.

[9]. Radi H.R., Caleb W.W.K., M.N.Shah Zainudin., M.Muzafar Ismail., “The

Design and Implementation of VGA Controller on FPGA”, University
Teknikal Malaysia Melaka Hang Tuah Jaya 76100 Durian Tunggal, Melaka,
Malaysia.

[10]. ZAHEERUDDIN SYED, MUNWAR SHAIK, “FPGA IMPLEMENTATION

OF VGA CONTROLLER”, KITS warangal, Kakatiya University,
Hasanparthy, Warangal -506015,Andhara Pradesh.

http://www.xilinx.com/support/documentation/sw_manuals/
https://www.xilinx.com/support/documentation/sw_manuals/edk10_est

46

Appendix

A.1 Code for tracking and display(main module)

module vga_top(

 input wire clk, //master clock = 50MHz

 input wire clr, //right-most pushbutton for reset BTN east

 output wire red, //red vga output

 output wire green, //green vga output

 output wire blue, //blue vga output

 output wire hsync, //horizontal sync out

 output wire vsync, //vertical sync out

 output wire [2:0]douta,

 output wire [2:0]douta2,

 //input [5:0]addra,

 input wea

);

// VGA display clock interconnect

wire dclk;

wire [14:0]addra;

//wire [13:0]addra1;

wire [2:0]douta3;

wire [2:0]douta4;

47

wire [2:0]douta5;

// generate display clock

clockdiv U1 (

 .CLKIN_IN(clk),

 .RST_IN(RST_IN),

 .CLKIN_IBUFG_OUT(CLKIN_IBUFG_OUT),

 .CLK0_OUT(dclk)

);

//----------- Begin Cut here for INSTANTIATION Template ---// INST_TAG

bram100 foo(

 .clka(dclk), // input clka

 .wea(wea), // input [0 : 0] wea

 .addra(addra), // input [13 : 0] addra

 .dina(), // input [2 : 0] dina

 .douta(douta) // output [2 : 0] douta

);

// INST_TAG_END ------ End INSTANTIATION Template ---------

48

//----------- Begin Cut here for INSTANTIATION Template ---// INST_TAG

bram100_2 foo1(

 .clka(dclk), // input clka

 .wea(wea), // input [0 : 0] wea

 .addra(addra), // input [13 : 0] addra

 .dina(), // input [2 : 0] dina

 .douta(douta2) // output [2 : 0] douta

);

// INST_TAG_END ------ End INSTANTIATION Template ---------

//----------- Begin Cut here for INSTANTIATION Template ---// INST_TAG

bram100_3 foo2(

 .clka(dclk), // input clka

 .wea(wea), // input [0 : 0] wea

 .addra(addra), // input [13 : 0] addra

 .dina(), // input [2 : 0] dina

 .douta(douta4) // output [2 : 0] douta

);

// INST_TAG_END ------ End INSTANTIATION Template ---------

assign douta3=douta~^douta2;

49

assign douta5=douta4~^douta2;

// VGA controller

vga640x480 U3(

 .dclk(dclk),

 .clr(clr),

 .hsync(hsync),

 .vsync(vsync),

 .red(red),

 .green(green),

 .blue(blue),

 .douta(douta),

 .douta2(douta2),

 .douta3(douta3),

 .douta4(douta4),

 .douta5(douta5),

 .addra(addra)

 //.addra1(addra1)

);

50

A.2 VGA display

module vga640x480(

 input wire dclk, //pixel clock: 25MHz

 input wire clr, //asynchronous reset

 output wire hsync, //horizontal sync out

 output wire vsync, //vertical sync out

 output reg red, //red vga output

 output reg green, //green vga output

 output reg blue, //blue vga output

 input [2:0]douta,

 input [2:0]douta2,

 input [2:0]douta3,

 input [2:0]douta4,

 input [2:0]douta5,

 output reg [14:0]addra

 //output reg [13:0]addra1

// output [2:0]LED

);

//reg [11:0]j;

//parameter jlimit=4000;

parameter address=29999;

//parameter address2=16383;

51

// video structure constants

parameter hpixels = 800;// horizontal pixels per line

parameter vlines = 521; // vertical lines per frame

parameter hpulse = 96; // hsync pulse length

parameter vpulse = 2; // vsync pulse length

parameter hbp = 144; // end of horizontal back porch

parameter hfp = 784; // beginning of horizontal front porch

parameter vbp = 31; // end of vertical back porch

parameter vfp = 511; // beginning of vertical front porch

// active horizontal video is therefore: 784 - 144 = 640

// active vertical video is therefore: 511 - 31 = 480

// registers for storing the horizontal & vertical counters

reg [9:0] hc;

reg [9:0] vc;

// Horizontal & vertical counters --

// this is how we keep track of where we are on the screen.

// ------------------------

// Sequential "always block", which is a block that is

// only triggered on signal transitions or "edges".

// posedge = rising edge & negedge = falling edge

52

// Assignment statements can only be used on type "reg" and need to be of the "non-

blocking" type: <=

always @(posedge dclk or posedge clr)

begin

 // reset condition

 if (clr == 1)

 begin

 //addra<=17'b0;

 hc<= 0;

 vc<= 0;

 end

 else

 begin

 // keep counting until the end of the line

 if (hc < hpixels - 1)

 hc<= hc + 1;

 else

 // When we hit the end of the line, reset the horizontal

 // counter and increment the vertical counter.

 // If vertical counter is at the end of the frame, then

 // reset that one too.

 begin

53

 hc<= 0;

 if (vc < vlines - 1)

 vc<= vc + 1;

 else

 vc<= 0;

 end

 end

end

// generate sync pulses (active low)

// ----------------

// "assign" statements are a quick way to

// give values to variables of type: wire

assign hsync = (hc < hpulse) ? 0:1;

assign vsync = (vc < vpulse) ? 0:1;

// display 100% saturation colorbars

// ------------------------

// Combinational "always block", which is a block that is

// triggered when anything in the "sensitivity list" changes.

// The asterisk implies that everything that is capable of triggering the block

54

// is automatically included in the sensitivty list. In this case, it would be

// equivalent to the following: always @(hc, vc)

// Assignment statements can only be used on type "reg" and should be of the

"blocking" type: =

always @(posedge dclk)

begin

 if((vc < vbp)&&(hc < hbp))

 begin

 addra<=15'b0;

 //addra1<=14'b0;

 //j<=12'b0;

 end

 // first check if we're within vertical active video range

// else if(addra!=address)

// begin

 // now display different colors every 80 pixels

 // while we're within the active horizontal range

 // -----------------

 // display white bar

 else if (vc >= vbp+10 && vc < (vbp+160))

 begin

55

 if (hc >= hbp+100 && hc <

(hbp+300)&&(addra!=address))

 begin

 //{red,green,blue} = douta;

 addra<=addra+1'b1;

if(({red,green,blue}==3'b111)&&(douta == 3'b000))

{red,green,blue} = 3'b011;

else if(({red,green,blue}==3'b000)&&(douta3 == 3'b111))

{red,green,blue} = 3'b010;

else

{red,green,blue} = douta;

end

 else

 begin

 red = 0;

 green = 0;

 blue = 0;

 end

 end

 // we're outside active vertical range so display black

 else if(vc >= vbp+160 && vc < (vbp+170))

56

 begin

 red = 0;

 green = 0;

 blue = 0;

 addra<=13'b0;

 end

 else if (vc >= vbp+170 && vc < (vbp+320))

 begin

 if (hc >= hbp+100 && hc <

(hbp+300)&&(addra!=address))

 begin

 addra<=addra+1'b1;

 //if((hc>=hbp+130)&&(hc<=hbp+150)&&({red,green,blue}==3'b111)&&(vc

>= vbp+130) && (vc < vbp+150))

 if(({red,green,blue}==3'b111)&&(douta3 == 3'b000))

 {red,green,blue} = 3'b110;

 else

if(({red,green,blue}==3'b000)&&(douta3 == 3'b000))

 {red,green,blue} = 3'b011;

 else

if(({red,green,blue}==3'b000)&&(douta3 == 3'b111))

 {red,green,blue} = 3'b010;

57

 else

 {red,green,blue} = douta2;

 //end

 end

 else

 begin

 red = 0;

 green = 0;

 blue = 0;

 end

 end

 else if(vc >= vbp+320 && vc < (vbp+330))

 begin

 red = 0;

 green = 0;

 blue = 0;

 addra<=13'b0;

 end

58

 else if (vc >= vbp+330 && vc < (vbp+480))

 begin

 if (hc >= hbp+100 && hc <

(hbp+300)&&(addra!=address))

 begin

 //{red,green,blue} = douta;

 addra<=addra+1'b1;

 //if((hc>=hbp+130)&&(hc<=hbp+150)&&({red,green,blue}==3'b111)&&(vc

>= vbp+130) && (vc < vbp+150))

 if(({red,green,blue}==3'b111)&&(douta5 == 3'b000))

 {red,green,blue} = 3'b110;

 else

if(({red,green,blue}==3'b000)&&(douta5 == 3'b000))

 {red,green,blue} = 3'b011;

 else

if(({red,green,blue}==3'b000)&&(douta5 == 3'b111))

 {red,green,blue} = 3'b010;

 else

 {red,green,blue} = douta4;

 //end

59

 end

 else

 begin

 red = 0;

 green = 0;

 blue = 0;

 end

 end

 else

 {red,green,blue}=3'b000;

 end

endmodule

60

A.3 Code for Image to RAW data Conversion

clc;

clf;

clear all;

hautothresh =

video.Autothresholder('ThresholdOutputPort',true,'ThresholdScaleFactor',1);

Image=imread('C:\Users\Maham\Desktop\paint.jpg');

ImageG=rgb2gray(Image);

z1 = step(hautothresh,ImageG);

%Gray=rgb2gray(Image);

%Image2=not(Image);

F=double(Image);

%save File3.txt -ascii F

dlmwrite('C:\Users\Maham\Desktop\test_file.txt',z1,'delimiter',' ');

k = dlmread('C:\Users\Maham\Desktop\test_file.txt');

imshow(k)

61

A.4 .coe File Generation in MATLAB

img = imread('C:\Users\Maham\Desktop\paint video\myim3.jpg');

height = size(img, 1);

width = size(img, 2);

img2=rgb2gray(img);

BW = im2bw(img2,0.7);

imshow(BW);

fid = fopen('C:\Users\Maham\Desktop\paint video\myim3.txt','w');

fprintf(fid,'MEMORY_INITIALIZATION_RADIX=2;\r\n');

 %fprintf(fid,'Coefficient_Width = 3;\r\n');

fprintf(fid,'MEMORY_INITIALIZATION_VECTOR=\r\n');

for r=1:height

for c=1:width

 %cnt = cnt + 1;

 R = BW(r,c,1);

 G = BW(r,c,1);

 B = BW(r,c,1);

 y = [R;G;B];

62

fprintf(fid,'%X%X%X,\r\n',y);

 % fprintf(fid,',\n');

end

end

fclose(fid);

A.5 C code for MicroBlaze

#include <stdio.h>

#include "platform.h"

#include "xparameters.h"

#include "xutil.h"

#include "xuartlite_l.h"

void print(char *str);

int main()

{

 init_platform();

int uch;

int memory_word, value;

int count;

int* SDRAM_address = (int*)(XPAR_DDR_SDRAM_MPMC_BASEADDR);

print("I am in program \n\r");

63

 memory_word = 0;

 // reading from the com port

for(count = 0; count <4; count++)

 {

uch = XUartLite_RecvByte(STDIN_BASEADDRESS);

 xil_printf("-- input value %c --\r\n", uch);

 // combining 4 digits in 32 bit word

 memory_word = (memory_word << 8)| (0xff & uch);

 xil_printf("-- input value %c --\r\n", memory_word);

 }

 xil_printf("-- input value %c --\r\n", memory_word);

 // putting 32 bit word in SDRAM

 *SDRAM_address = memory_word;

 // reading from SDRAM

value = *SDRAM_address;

 xil_printf("-- Value = %c --\r\n", value);

print("End of program \n\r");

 cleanup_platform();

return 0;

}

