
Digital Circuit Evolution Using SAT Solver

(Evolvable Hardware)

By

MUMTAZ ALI

2010-NUST-MS-EE-30

A thesis submitted in partial fulfillment of the requirements for the degree of Masters of

Science in Electrical Engineering

School of Electical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(August 2012)

i

c⃝Copyright

by

Mumtaz Ali

2012

ii

to my

FAMILY

iii

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Dr. Osman Hasan for

the continuous support of my M.Sc study and research, for his patience, motivation, and

immense knowledge. His guidance helped me in all the process of research and writing of

this thesis.

Besides my advisor, I would like to thank the rest of my thesis committee: Dr. Awais

Kamboh, Dr. Rehan Hafiz, and Mr. Nasir Mahmood, for their encouragement, insightful

comments, and hard questions.

My sincere thanks also goes Dr. Syed Irfan Ahmed for his constant support during my

thesis research.

I would like to thank my fellow Umer Kakli who always helped me in the documentation

of my thesis.

Last but not the least, I would like to thank my family: my parents , my brothers and

sister for their constant support and patience.

iv

Abstract

Evolutionary computation uses Darwinian principles to find solutions from a given search

space and forms the basis for evolving digital circuits. One of the most computationally

expensive steps in evolutionary computation is the comparison of the candidate circuit

(chromosome) with the target truth table. We propose to use SAT (satisfiability) solvers

to improve upon the efficiency of this process, which is traditionally done using exhaustive

simulation. However, traditional SAT solvers, which return the satisfiability of a boolean

expression in Yes/No format, cannot be used in this context since we need the percent-

age (score) of equivalence between two circuits. This thesis presents a SAT solver that

fulfills this requirement. We use this novel SAT solver to develop a digital circuit evolu-

tion methodology based on the principles of Cartesian Genetic Programming (CGP). The

proposed methodology performs exceptionally well for circuits whose behavior can be ex-

pressed compactly in terms of CNF (Conjunctive Normal Form) clauses. For illustration

purposes, the proposed methodology has been used to evolve digital circuits exhibiting the

behaviors of adders, multipliers, muxes, encoders, even parity circuits and a few LGSynth91

benchmarks.

v

Table of Contents

Page

Acknowledgements . iv

Abstract . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Chapter

1 Introduction . 1

1.1 Evolvable Hardware . 1

1.1.1 Motivation . 1

1.1.2 Scalability of Evaluation Time . 3

1.2 Preliminaries . 4

1.2.1 Digital Circuit Evolution . 4

1.2.2 Functional Equivalence Checking using SAT Solving 8

1.3 Proposed Methodology . 9

1.4 Thesis Organization . 12

2 Related Work . 13

2.1 Scalability of Representation . 13

2.2 Scalability of Evaluation Time . 14

2.3 SAT Based Formal Verification . 15

3 SAT Based Fitness Scoring . 16

3.1 CNF Conversion . 16

3.2 Proposed SAT Solver . 18

4 Experimental Results . 22

4.1 Full Adder . 22

vi

4.2 8x1 Mux . 24

4.3 8 Bit Parity . 25

4.3.1 LGSynth91 c17 . 26

4.4 Discussions . 28

5 Conclusions . 30

vii

List of Figures

1.1 Genetic Algorithms based Evolutionary Computing 2

1.2 A Candidate Circuit . 6

1.3 Fitness Function of Conventional CGP . 7

1.4 An example of Parallel Simulation . 8

1.5 Proposed Methodology . 10

3.1 Three Overlapping Sets and their Union 20

4.1 Full Adder obtained by Conventional CGP 23

4.2 Full Adder obtained by Proposed CGP . 23

4.3 8x1 Mux obtained by Conventional CGP 24

4.4 8x1 Mux obtained by Proposed CGP . 25

4.5 8 Bit Parity Circuit obtained by Conventional CGP 26

4.6 8 Bit Parity Circuit obtained by Proposed CGP 26

4.7 c17 Circuit obtained by Conventional CGP 27

4.8 c17 Circuit obtained by Proposed CGP . 27

viii

List of Tables

1.1 List of Available Functions in CGP . 5

3.1 Resolution Rules for Some Common Gates 18

3.2 Fitness Calculation Example . 20

4.1 Mean Evaluation Time Per Chromosome for Conventional CGP tcgp and

SAT-Based CGP tmcgp . 29

ix

Chapter 1

Introduction

1.1 Evolvable Hardware

Evolvable Hardware is a domain in which evolutionary computation or other bio-inspired

algorithms are used for automated hardware design, dynamic adaptive hardware, self repli-

cation or self repair [2, 16, 5, 1, 17, 11]. This makes evolvable hardware a very interesting

multidisciplinary research domain involving biology, computer science and engineering. The

focus of this thesis is on using the foundations of evolvable hardware in the context of auto-

mated combinational digital circuit design, i.e, a scenario in which evolutionary algorithms

are used to evolve combinational digital circuits. This approach is known for providing

better synthesis results than the traditional methods [12, 19].

1.1.1 Motivation

Genetic algorithm based evolutionary computing [46], depicted in Figure 1.1, is one of the

most commonly used methods for digital circuit evolution. The main strength of genetic

algorithms is the ability to automatically search the required solution from a given search

space without any prior knowledge about the problem. The input to the genetic algorithm

based evolutionary computing is a target truth table and its goal is to find a solution cir-

cuit, or chromosome, whose truth table matches with the truth table of the target function.

Initially, the algorithm starts with a population of random chromosomes. The algorithm

has access to a fitness function that measures the closeness level of a candidate chromosome

and the target function. This fitness function is used to evaluate each chromosome of the

1

Select Best
Chromosome

Decode
Chromosome

Random
Chromosome

Gen==0

Max Score
Achieved or Max

iterations Reached

End

Next Generation
Mutation

Cross Over

Target Truth Table

Circuit Simulator

Fitness Function

 No

Yes

Figure 1.1: Genetic Algorithms based Evolutionary Computing

present generation and assign a fitness score to it. Chromosomes with the best fitness score

are selected to produce the next generation of population by recombination/crossover or

random mutation. A number of selection strategies have been reported in the open liter-

ature. For example, in the tournament selection strategy [26], chromosomes are randomly

divided into groups and the chromosomes with the best fitness score from each group are

selected to produce the new generation. The genetic algorithm keeps on running until

the target solution is achieved, or the maximum number of allowed iterations is reached.

A number of genetic algorithm based evolutionary techniques for evolving digital circuits

have been reported in the literature. Some promising ones include Koza’s genetic program-

ming [3] and Cartesian genetic programming (CGP) [21]. Cartesian genetic programming

2

is more popular mainly because it is more efficient in terms computation time and required

resources [23, 30, 31] than the other biologically-inspired methods.

1.1.2 Scalability of Evaluation Time

Traditionally, the fitness scores are calculated using exhaustive simulation in digital circuit

evolution. The main idea is to compare the output of the given chromosome and the target

function using all the possible input patterns. This kind of exhaustive simulation consumes

a significant amount of computation time, which grows exponentially with an increase

in the number of inputs or functional complexity of the target function. This enormous

computation time requirement is one of the major factors that limits the scope of digital

circuit evolution [25].

In this thesis, we propose to solve the above mentioned computation time problem by

using SAT solvers [52] to assess the fitness scores in digital circuit evolution. SAT solvers

are known to be computationally faster than simulation in the task of equivalence checking

[18, 14, 10, 24]. To the best of our knowledge, SAT solvers have never been used for fitness

scoring in digital circuit evolution before.

This thesis presents a complete methodology for using SAT solvers to assess the fit-

ness scores in digital circuit evolution. The proposed methodology is primarily based on

the Cartesian Genetic Programming(CGP) [20] technique. We have developed a variant

of CGP in which chromosomes are evaluated using SAT solving. Since, traditional SAT

solvers do not provide a comparison score between the circuits that are being checked for

equivalence, so we also implemented our own SAT solver in the reported work. The main

principle is to convert the target function behavior and the given chromosome into a CNF

and then evaluate their fitness based on the number of inputs assignments for which the

CNF is unsatisfiable. The complete code is written in C++. For illustrating the effec-

tiveness of the proposed methodology and our development, we utilize it to evolve digital

circuits exhibiting the behavior of adders, multipliers, multiplexers, even parity circuits,

encoders and a few LGSynth91 benchmarks. It is worth mentioning that a significant time

3

gain was observed for circuits in which the number of CNF clauses in the CNF representa-

tion is a linear of the number of inputs.

1.2 Preliminaries

In this section, we describe some foundational concepts about digital circuit evolution

and SAT based equivalence checking along with some commonly used terminology. The

information is expected to be helpful in understanding the main contributions of the thesis

that are described later.

1.2.1 Digital Circuit Evolution

The main principle of digital circuit evolution is based on the genetic algorithms based

evolutionary computing as illustrated in Figure 1.1. The target specification is the func-

tionality of the desired circuit in this case and the chromosomes represent digital circuits

in coded form. The fitness scores are usually computed by comparing each chromosome

with the target circuit using exhaustive simulation.

Cartesian Genetic Programming (CGP), developed by Miller and Thomson, is the most

widely used technique of the digital circuit evolution [23, 21, 29, 30, 31]. In CGP, we

represent a candidate circuit as a two dimensional (nr x nc) grid of programmable nodes

where nc represents the number of columns and nr represents the number of rows. Each

node in this 2D grid is programmable and can acquire any one of the 20 available functions,

given in Table 1.1. The function acquired by a node is identified by a unique identifier as

listed in Table 1.1.

We illustrate the CGP based evolution of digital circuits by considering an example of

a candidate circuit given in Figure 1.2. This circuit is composed of a 2x2 grid with four

nodes and three inputs and two outputs. In CGP, the inputs and outputs of the nodes

are represented by distinct integers such that the inputs are labeled first, starting from the

integer 0 and then the output of each node is labeled in a column wise fashion. Thus, in

4

Table 1.1: List of Available Functions in CGP

Function Function Function Function
Number Number

0 0 10 xor(a,b)
1 1 11 xor(a,!b)
2 a 12 or(a,b)f
3 b 13 or(a,!b)
4 !a 14 or(!a,b)
5 !b 15 or(!a,!b)
6 and(a,b) 16 mux(a,b)
7 and(a,!b) 17 mux(a,!b)
8 and(!a.b) 18 mux(!a,b)
9 and(!a,!b) 19 mux(!a,!b)

our example circuit of Figure 1.2, numbers 0,1 and 2 represent the inputs and 3,4,5 and

6 represent the outputs of nodes, respectively. Node inputs can be connected either to a

node output from one of the previous ℓ columns or to one of the inputs of the circuit. This

way feedback loops are restricted. The factor ℓ denotes level-back which is used to limit the

design space by not allowing a node input to be connected to any column which is behind

ℓ allowed columns.

A chromosome representation of the candidate circuit of Figure 1.2 is also provided

below it in the form of an integer string. A node in the chromosome is represented by four

integers. First three integers show the input connectivity of the node and the last integer

identifies its functionality, as given in Table 1.1. The last set of integers in the chromosome

shows the output connectivity and thus contains integers equal to the number of outputs.

This entry, in the case of our example, is 623, which corresponds to the three outputs of the

candidate circuit. In this way, the chromosome captures the complete behavior, including

the functionality and structure, of the candidate circuit.

5

Figure 1.2: A Candidate Circuit

Initially CGP starts with a population of randomly chosen chromosomes, which is usu-

ally referred to as the first generation. Fitness function evaluates each chromosome and

assigns a fitness score to it. The chromosome with the best fitness score is selected as the

parent for the next generation. The selected chromosome is then randomly mutated to

produce the next generation. Random mutation is a process in which connectivity of the

node input or output is randomly changed. Mutation rate is determined by the user. The

parameter λ, which is a user defined term, defines the size of the population in one gen-

eration. Each new generation includes the best chromosome from the previous generation

and its λ mutated versions. CGP keeps evolving new generations until the solution circuit

is acquired or the maximum number of iterations is reached.

The fitness function plays the most important role in the evolution of digital circuits as

it is the fitness score that guides the selection of the next generation. In CGP, fitness of

a chromosome is calculated using exhaustive simulation as illustrated in Figure 1.3. The

main idea is to apply all possible inputs to the candidate circuit and compute the hamming

distance between each one of its outputs with the corresponding output of the truth table

6

of the target circuit. The hamming distance is then used to assess the fitness score of the

candidate circuit. This process involves testing for all possible inputs and thus can be quite

expensive in terms of computation time. This fact is one of the main limiting factors in

the domain of digital circuit evolution.

�������

��	�
���
�
�
�����	

�������������������

����

��	�
���
� �����������

 !!�"�����!���#���

$!���

%�

$��

����$��������	����

�	������#��

&��!���

'�$�������	�

Figure 1.3: Fitness Function of Conventional CGP

Parallel simulation is a technique that can be used to improve the fitness score calcu-

lation time for standard CGP [21]. The main principle of parallel simulation is to leverage

upon the bitwise logical operations supported by languages like C. This allows us to perform

more than one evaluation of a circuit by a single instruction. For example, an integer in C

has a width of 32-bits so 32 logical operations for a gate can be executed by one instruction.

For example, we can simulate a circuit with up to 5 inputs (25=32) by applying a single

32 bit vector at each input as illustrated in Figure 1.4. The current thesis is also targeted

towards the same goal, i.e., improving the fitness scoring time. However, we propose to

use SAT solver based scoring instead of exhaustive simulation. The proposed method per-

forms better than the parallel simulation based fitness scoring, which is the state-of-the-art

technique, for a wide range of circuits, as will be demonstrated in Chapter 4 of this thesis.

7

119=01110111

85=01010101

51=00110011

15=00001111

51=00110011

3=00000011

119=01110111

119=01110111

Figure 1.4: An example of Parallel Simulation

1.2.2 Functional Equivalence Checking using SAT Solving

Functional equivalence checking [18, 14, 10] is a method in which two different structures

are verified to be functionally equivalent. Functional equivalence checking is a common

practice in logic synthesis in which a synthesized netlist is functionally verified against the

reference circuit.

A SAT solver [53, 52] is an algorithm that automatically determines if the given boolean

expression is true atleast for one particular assignment of its variables. This algorithm has

found an enormous application in equivalence checking of boolean circuits because it can

handle many interesting equivalence checking problems automatically. The main idea is

to form the XOR function of the two boolean expressions of the digital circuits, whose

equivalence needs to be verified, in the conjunctive normal form (CNF), i.e., a Boolean

formula composed of a conjunction of clauses where each clause is formed by a disjunction

of literals (Boolean variables). A SAT solver is used to check the satisfiability of the

resulting CNF and the two circuits are termed functionally equivalent if and only if the

CNF is unsatisfiable, i.e, the XOR of the two outputs is never true for any input variable

assignment. Algorithm 1 briefly explains the usage of SAT solvers for functional equivalence

checking. A mitter, used on the line 2 of Algorithm 1, represents the bit-wise XOR operation

between the outputs of the two circuits and thus is false in case the circuits are equivalent.

Each mitter is then converted to its CNF format and is then passed to the SAT solver to

check if it is satisfiable for any assignment of input variables. In case a mitter is found to

be satisfiable, circuits are not equivalent to one another and the satisfying assignment can

8

be used for debugging. A modern SAT solver provides a more efficient way to search for a

satisfying assignment than exhaustive simulation and therefore outperforms it [15, 45].

Algorithm 1 SAT Based Equivalence Checking.
Inputs:
CircuitA: a set of functions {y1, y2, ...yN}
CircuitB: a set of functions {f1, f2, ...fN}
Output:
A satisfiable assignment

1: for 1 = 1→ N do
2: Mi ← (yi ⊕ fi) ◃ Mi is a mitter
3: CNFi ← boolean logic to CNF (Mi)
4: end for
5: x← 0
6: for i = 1→ N do
7: {sat, assignment} ← satsolver(CNFi)
8: if sat is true then
9: x← 1
10: break
11: end if
12: end for
13: if x is 1 then
14: Print(”circuits are not equal for assignment:”)
15: Print(assignment)
16: else
17: Print(”CircuitA and CircuitB are functionally equivalent”)
18: end if

Traditional SAT based algorithms work in Yes/No fashion, i.e., they can merely inform

us if a logical formula is satisfiable or not. They lack the ability to find the closeness of

two circuits (fitness scores), which is the main requirement in the case of digital circuit

evolution. Therefore, traditional SAT solvers cannot be used in this context as is and in

order to leverage upon their efficiency compared to exhaustive simulation, we propose a

variant of traditional SAT solvers that is capable of fitness scoring.

1.3 Proposed Methodology

Figure 1.5 presents a general block diagram of the proposed methodology, which is primarily

based on CGP and SAT solving.

9

���

�����	
���	���
�

����������

���
����	���

���
������ ����	���

���
������	���
��

������
��	�	���

�����������	��
�

�����	
���	���

����

!��	���
������	���

Figure 1.5: Proposed Methodology

The first step is to transform the boolean expression of the target function to its cor-

responding CNF, which is used in every iteration of the the digital circuit evolution. The

next step is to form a combined CNF of the XOR operation of the boolean expression of

the chromosomes of the current population and the target function. The combined CNF

is reduced as much as possible to minimize the computation overhead and is then given to

the SAT solver so that its fitness score can be calculated. It is important to note that the

context in which the SAT solver is being used here is different from its traditional usage

since the desired output is not a Yes/No kind of an answer to a satisfiability problem but

is a number that measures the degree of satisfiability of the given CNF. Traditional SAT

solvers do not support this capability and thus, in this work, we developed our own SAT

solver that can measure the degree of satisfiability of the given CNF clauses. Chromosome

with the best fitness score along with some of its mutated version form the new population

for the next generation. This process iterates until a chromosome which is functionally

equal to the target function is found or the maximum number of iterations is reached.

10

We accept the target function and the initial population of chromosomes in the form of

minimized minterms and maxterms as the input.

Algorithm 2 Proposed Methodology
Inputs:
target function: target function
nr: number of rows
nc: number of columns
seed: a seed value for chromosome
λ: population size
ℓ: level back
µ: mutation rate
Output:
best chromosome: chromosome with the best fitness score

1: for i=1 to λ+1 do
2: if seed=0 then
3: chromosomei ←RANDOM CHR(seed,nr, nc, ℓ)
4: else
5: chromosomei ←seed
6: end if
7: end for
8: while target chromosome found or max iterations reached do
9: Initialize best score with zero
10: for i=1 to λ+1 do
11: score←FITNESS FUNCTION(chromosomei)
12: if score>best score then
13: index←i
14: best score←score
15: end if
16: end for
17: best chromosome← chromosomeindex
18: if best score=max score or max iteration reached then
19: break loop
20: end if
21: chromosome1 ←best chromosome
22: for i=2 to λ+1 do
23: chromosomei ←MUTATE(best chromosome,µ, ℓ)
24: end for
25: end while
26: Print report for best chromosome

Algorithm 2 provides the implementation details corresponding to the proposed method-

ology outlined above. The algorithm accepts the target function and its number of rows nr

and columns nc, the seed value for the chromosomes and the digital circuit evolution param-

eters λ, ℓ and µ. The body of Algorithm 2 is primarily composed of the functions: RAN-

11

DOM CHR, FITNESS FUNCTION and MUTATE. RANDOM CHR returns a randomly

generated chromosome using parameters ℓ, nc and nr. FITNESS FUNCTION accepts a

chromosome and returns its fitness score by using our proposed SAT solving. Whereas, the

function MUTATE accepts a chromosome and returns its mutated version using parameters

µ and ℓ. The proposed methodology algorithm returns the chromosome that is found to be

closest to the target function in the given number of iterations. In Chapter 3, we present

the implementation details associated with the FITNESS FUNCTION, i.e., the SAT solver

that returns the fitness score between the target function and a given chromosome.

1.4 Thesis Organization

The rest of the thesis is organized as follows: Chapter 2 provides a brief literature survey

regarding the existing digital circuit evolution techniques. The algorithm for the novel SAT

solver is described in Chapter 3. The experimental results are presented in Chapter 4 and

finally Chapter 5 concludes the thesis.

12

Chapter 2

Related Work

Scalability is one of the major issues faced by researchers in the domain of digital circuit

evolution [25, 16]. The problem of scalability is two-fold. Firstly, the evaluation of the

closeness of a candidate solution with the target solution is not scalable. Secondly, the

search space grows exponentially with respect to the size of the problem and thus is not

easy to handle with the given computation and memory constraints. Various methods have

been proposed to tackle these scalability issues and this chapter summarizes them besides

providing some related work for SAT solving based equivalence checking.

2.1 Scalability of Representation

A search space in circuit evolution is the space of all possible representations of circuits

in a chromosome. Thus, the size of the search space is directly related to the length of

the chromosome, which is chosen by the designer based on the size of the circuit. As

the circuit size grows, the chromosome size has to grow accordingly, which results in an

exponential grown in the size of the search space. This in turn increases the computation

requirements for finding the solution circuit. Numerous researchers have tried to alleviate

this problem. The authors in [33, 16] have proposed to perform digital circuit evolution at

the functional level and thus use large building blocks instead of gates as basic components.

Some limitations of this approach include the manual definition of such blocks for every

design by the designer and the inefficiency of digital circuit evolution algorithms at this

higher abstraction level with more complex functionality. Incremental evolution [37, 38, 39]

is another option in which a problem is first divided into sub modules or units. First,

13

evolution is performed to individually evolve these units and then these units act as building

blocks for evolution of more complex circuits. In the modular approach, the modules are

automatically defined to be reused in the evolution process [4, 8]. Combination of modular

and incremental evolution has also been used [13, 41]. Computational developments [34,

35, 32, 6, 9, 7] have brought a new direction to this field with promising theoretical as well

as practical results but the issue of scalability is still an open challenge because all the

above mentioned techniques compromise on the diversity of the search space.

2.2 Scalability of Evaluation Time

Fitness evaluation time also grows exponentially with an increase in the size of circuit. Tra-

ditionally, fitness score is calculated using exhaustive simulation where all possible inputs

are tested. There are a number of strategies reported so far to tackle this issue. In some

cases such as filters, classifiers or robot controllers, where a circuit is required to work only

for a subset of inputs, fitness scoring is done by partial simulation. However, this approach

is not applicable to circuits where a correct response is required for all possible inputs [42].

If a target system is linear, it is possible to completely evaluate a candidate circuit using

only one input vector [44]. Z. Vasicek et al. proposed to verify a candidate circuit against

the target solution using a SAT based equivalence checking algorithm. Due to limitation of

traditional SAT solvers (which work in yes/no fashion), the method only works for the post

synthesis optimization phase where a circuit is initially synthesized using a conventional

synthesis tool first and then it is further optimized in evolutionary framework using SAT

solvers [45]. In the current thesis, we overcome this restriction by proposing a SAT solver

based fitness scoring.

14

2.3 SAT Based Formal Verification

The main focus of SAT solving is to optimize the search for a satisfying assignment of the

variables of a given boolean function in terms of time taken and resources utilized. Growing

demand for more efficient and scalable verification solutions have fueled the research in SAT

based verification techniques in the last two decades [18, 14, 10, 24, 47, 48, 49, 50]. MiniSAT

[52] and Picosat [53] are two of the most popular SAT solvers these days.

Converting the boolean expression into their corresponding CNF format is an important

step in SAT based equivalence checking algorithms. The main challenge here is to obtain the

most compact CNF form, i.e., with the least number of clauses since the number of clauses

not only effects the memory consumption but also the performance of a SAT solver in terms

of computation time. Tseitin [27] proposed a very promising algorithm for this purpose.

It uses new variables for all intermediate nodes of the circuit instead of resolving them.

The addition of new variables keeps the number of clauses linear with the size of circuit.

Many extensions of Tsetin’s classical algorithm have been proposed in the literature, e.g.

[28]. However, in our case we cannot use Tseitin’s algorithm because we need to calculate

all possible assignments in terms of primary inputs and the new variables for intermediate

nodes do not allow this. We therefore use the basic method of CNF conversion in the

proposed methodology.

15

Chapter 3

SAT Based Fitness Scoring

The following notation is used to explain the CNF conversion process and the proposed SAT

solver implementation. Let T be the target function with M inputs and N outputs, which are

form the set Y={y1, y2, ...yN}. A chromosome (candidate circuit) is denoted by C and also

has M inputs and N outputs. Let F={f1, f2, ...fN} denote the set of variables corresponding

to the outputs of C and Z={z1, z2, ...znr×nc} denote the set of variables corresponding to

the outputs of the intermediate nodes of C. Both T and C are circuits with an identical set

of inputs and let the set of input variables be denoted by X={x1, x2, ...xM}.

3.1 CNF Conversion

The CNF conversion algorithm is given in Algorithm 3. It accepts the target and candidate

circuits as inputs and returns their combined CNF. The function ENCODE CNF encodes

the CNF as a disjunction (logical OR) of XOR’s between the respective outputs from the

target function and the chromosome, i.e., the CNF for an N-output circuit will be encoded

as E = (y1 ⊕ f1) ∨ (y2 ⊕ f2) ∨ (y3 ⊕ f3) ∨(yN ⊕ fN). This way, E will be false if and

only if all the corresponding outputs from target function and chromosome are equal. The

first step in the CNF conversion process is to express y′is and f ′
is in terms of x′

is in order

to obtain an expression of E in terms of inputs x′
is only. The function RESOLVE Y finds

the CNF expression for E by representing the y′is in terms of their corresponding x′
is and

returns the resulting simplified CNF in a variable CNFinput. This is done by using the

proposition resolution rules given in Table 3.1. The outputs y′is remain the same through

out the evolution process since they represent the target function whereas the outputs f ′
is

16

alter in every iteration of the evolution process. In order to minimize the computation

cost, we obtain the CNFinput only once and reuse it along with the current f ′
is to find the

net CNF expression for every iteration. The function RESOLVE F accepts CNFinput and

returns the net CNF expression by representing the f ′
is in terms of their corresponding x′

is.

Algorithm 3 CNF Conversion
Inputs:
target function: representation of the target truth table
chromosome: a candidate circuit
Output:
CNF: combined CNF of target function and chromosome

1: E←ENCODE CNF(N)
2: CNFinput ←RESOLVE Y(E,target function)
3: CNF←RESOLVE F(CNFinput,chromosome)
4: function encode cnf(N)
5: Initialize E as empty set
6: for i=1 to N do
7: E←E∨(yi ⊕ fi)
8: end for
9: return E
10: end function
11: function resolve y(E,target function)
12: for all clauses of E do
13: for all literals do
14: resolve y′is in terms of its corresponding x′

is
15: end for
16: end for
17: return E
18: end function
19: function resolve f(CNFinput,chromosome)
20: CNF← CNFinput

21: for all clauses of CNF do
22: for all literals do
23: resolve f ′

is in terms of its corresponding x′
is

24: end for
25: end for
26: return CNF
27: end function

The next step is to reduce the CNF in order to minimize the computation overhead

of the SAT solver. CNF reduction routine is shown in Algorithm 4. Ψ denotes a CNF

clause and J denotes the number of CNF clauses. The reduction algorithm is based on the

following rules.

17

Table 3.1: Resolution Rules for Some Common Gates

Clause Resulting Clause
(AND(A,B)∨Y∨Z) (A∨Y∨Z) ∧(B∨Y∨Z)
(NAND(A,B)∨Y∨Z) (¬A∨¬B∨Y∨Z)
(AND(A,¬B)∨Y∨Z) (A∨Y∨Z) ∧(¬B∨Y∨Z)
(NAND(A,¬B)∨Y∨Z) (¬A∨B∨Y∨Z)

(OR(A,B)∨Y∨Z) (A∨B∨Y∨Z)
(NOR(A,B)∨Y∨Z) (¬A∨Y∨Z) ∧(¬B∨Y∨Z)
(XOR(A,B)∨Y∨Z) (A∨B∨Y∨Z) ∧(¬A∨¬B∨Y∨Z)
(XNOR(A,B)∨Y∨Z) (A∨¬B∨Y∨Z) ∧(¬A∨B∨Y∨Z)

1. All duplicate CNF clauses are removed.

2. Subset clauses are removed. For example, the clause (x1 ∨ x2 ∨ x5) is a subset of

(x1 ∨ x2) so it does not provide any new information as long as (x1 ∨ x2) is present

and thus can be safely removed.

3. Always true clauses are removed. For example, the clause (x1 ∨ x2 ∨ ¬x2) is always

true and does not affect the overall behavior of the net CNF and thus can be safely

removed.

It has been observed through our experimental results, presented in Chapter 4, that the

CNF reduction algorithm significantly reduces the CNF size in most of the digital circuit

evolution problems and thus significantly minimizes the SAT solver based scoring time.

3.2 Proposed SAT Solver

We need a SAT solver that can calculate the number of assignments for which the given

CNF is unsatisfiable. It is to note that we are interested only in the number of unsatisfying

assignments without specifically knowing them.

The proposed SAT solver algorithm is given in Algorithm 5. A clause is termed as

unsatisfiable if and only if all of its literals are false. let K denote the number of literals

appearing in a given CNF clause. There is only one possible assignment of K variables

18

Algorithm 4 CNF Reduction
Input:
CNF: before reduction
Output:
CNF: in reduced form

1: for i=1 to J do
2: if Ψi is always true then
3: Remove Ψi from CNF
4: else
5: for k=i to J do
6: if Ψi ⊂ Ψk then
7: Remove Ψi form CNF
8: else if Ψk ⊂ Ψi then
9: Remove Ψk from CNF
10: end if
11: end for
12: end if
13: end for

for which a clause may be unsatisfiable. However, since the total number of inputs is

M, which is greater than or equal to K, the upper bound on the total number of input

variable assignments for which the given clause is unsatisfiable is 2M−K . The function

WEIGHT, used on line 4 of Algorithm 5, accepts a CNF clause and calculates the number

of its unsatisfying assignments by using its width, i.e., K. Each clause is unsatisfiable for a

unique set of input assignments i and let us denote this set as Φi. For fitness scoring, we

are interested to find the union of all Φ′
is as given in Equation (3.1).

∪
i=1:J

Φi (3.1)

Different clauses may share the same unsatisfiable input variable assignments and thus

the above mentioned union must be treated like the problem of overlapping sets. Figure

3.1 provides the equation for tackling this problem using an example of three overlapping

sets. In a similar way, the function OVERLAP WEIGHT, used on line 5 of Algorithm 5,

calculates the union of Equation 3.1 for any number of clauses.

19

Table 3.2: Fitness Calculation Example

Target Function y1 = x1 ∧ x2

Candidate Circuit

x1

x2
y1

CNF Encoding

Target Function

Chromosome
Netlist

y1

f1

x1

x2

x1

x2

Encoded CNF (y1 ∨ f1) ∧ (¬y1 ∨ ¬f1)
(x1 ∨ f1) ∧ (x2 ∨ f1)

CNFinput ∧(¬x1 ∨ ¬x2 ∨ ¬f1)
(x1 ∨ x2) ∧ (x1 ∨ x2)

CNF ∧(¬x1 ∨ ¬x2) ∧ (¬x1 ∨ ¬x2)
CNF after reduction (x1 ∨ x2) ∧ (¬x1 ∨ ¬x2)

Fitness Score 2

� �

�

���

��� ���

��� ��

������������������� 	���
�� 	���
�� 	���
���	�����

Figure 3.1: Three Overlapping Sets and their Union

We have used this net number of unsatisfying assignments as a measure of closeness

(fitness score) between the target function and the chromosome. For illustration purposes,

we present the whole fitness calculation process of a simple single gate circuit in Table 3.2.

20

Algorithm 5 Proposed SAT Solver
Input:
CNF: combined CNF of target function and chromosome
Output:
fitness score: measure of closeness between target function and chromosome

1: function SAT solver(CNF)
2: initialize score to zero
3: for i=1 to J do
4: weight←WEIGHT(Φi,1)
5: overlap weight←OVERLAP WEIGHT(Φi,J)
6: net weight←weight-overlap weight
7: score←score+net weight
8: end for
9: return score
10: end function
11: function overlap weight(CL,J)
12: pn←1
13: for i=J-1 to 1 do
14: tmppn ← CL∨Φi

15: if tmppn is a valid clause then
16: signpn=-1
17: pn←pn+1
18: temp←pn-2
19: for j=1 to temp and temp 0 do
20: tmppn ← tmpj ∨ Φi

21: if tmppn is a valid clause then
22: signpn = −1× signj

23: pn←pn+1
24: end if
25: end for
26: end if
27: end for
28: for i=1 to pn-1 do
29: overlap weight=overlap weight+WEIGHT(tmpi, signi)
30: end for
31: return overlap weight
32: end function
33: function weight(Φ,sign)
34: K←number of literals in Φ
35: weight← 2M−K

36: return sign×weight
37: end function

21

Chapter 4

Experimental Results

We used the proposed method, described in previous chapters, to evolve circuits that

exhibit the behaviour of adders, multipliers, multiplexers, even parity circuits, encoders,

and a couple of LGSynth91 benchmarks. Moreover, we evolved the same circuits using

state-of-the-art parallel simulation based CGP technique as discussed in Chapter 1, in

order to compare the chromosome evaluation time of the two methods. The experimental

results are obtained by implementing the proposed methodology using Visual C++ ver. 6

and running on an Intel Duo core 1.86 Ghz processor based machine using the following

parameters: i) The digital circuit evolution process has access to a subset of all possible

functions, i.e., Γ=6,7,10,12, described in Table 1.1, to simplify the evolution process. ii) A

mutation rate µ = 4% is chosen as it is known to give better convergence, iii) The level

back variable ℓ is chosen to be equal to nc in order to keep the search space larger.

In this chapter, we first present some of the evolved digital circuits using the proposed

methodology. These circuits have been chosen because they highlight some unique charac-

teristics of the proposed approach. Finally, we present a comparison table summarizing the

mean evaluation times per chromosome for all the above mentioned circuits using conven-

tional CGP and the proposed SAT-Based CGP for comparison purposes along with some

discussions.

4.1 Full Adder

A full adder circuit has three inputs and two outputs. It provides the result of adding the

three input bits as a sum and a carry bit in the output. We evolved the full adder circuit

22

using the conventional CGP [21] and the proposed SAT solving based CGP and the finally

evolved circuits are given in Figures 4.1 and 4.2, respectively. Both circuits are structurally

different but functionality wise they serve the same purpose, i.e, they behave as the full

adder circuit. Interestingly, both the circuits are different from the full adder circuit that

is usually found in the text books or are designed using the conventional design rules based

technique. This clearly indicates the value that digital circuit evolution can bring to the

conventional digital design. Interestingly, the full adder circuit obtained via the proposed

technique is found to be more efficient than the one obtained via the conventional CGP in

terms of both area and speed.

 sum

a

cin

b

a

cin

b

cin

carry

Figure 4.1: Full Adder obtained by Conventional CGP

a

b

b

cin

cin
sum

carry

Figure 4.2: Full Adder obtained by Proposed CGP

The conventional simulation based CGP technique took 998 generations and a mean

evaluation time of 0.102 milliseconds per chromosome while the proposed SAT solving

23

based technique took 168 generations and a mean evaluation time of 0.035 milliseconds per

chromosome. This difference clearly demonstrates the effectiveness of the proposed SAT

based scoring mechanism.

4.2 8x1 Mux

An 8x1 Mux selects one of the eight inputs to be passed to the output depending upon the

status of three select lines. Hence, it has 11 inputs and 1 output. The large number of inputs

makes it susceptible to the heavy computation requirement in the case of conventional

simulation based CGP. Figures 4.3 and 4.4 show the circuits of 8 line Mux evolved using the

conventional simulation and the proposed SAT solving based CGP techniques, respectively.

I0

I6

I1

I0

I5

I4

I0

I1

I3

I0

I2

I1

I0

I7

S3

I2

I1

I1

S2

I2

I1

S1

Out

Figure 4.3: 8x1 Mux obtained by Conventional CGP

24

49

44

40

37

36

35

31

28

27

26

24

22

21

20

18

19

17

16

15

14

13

12

11
I2

I6

I0

S3

I1

I4

I5

I7

I1

S1

I3
I1

S2

I1

I1
I0

I2
I0

Figure 4.4: 8x1 Mux obtained by Proposed CGP

In terms of computation time, the conventional simulation based CGP took about 850k

generations and a mean evaluation time of 0.102 milliseconds per chromosome while the

proposed SAT solving based technique took about 100k generations and a mean evaluation

time of 0.035 milliseconds per chromosome. This difference is mainly due to the effectiveness

of the proposed SAT solving based scoring method for circuits where the number of CNF

clauses have a linear relationship with the number of inputs.

4.3 8 Bit Parity

The output of an 8 bit parity circuit is true if the number of ones in its input vector is

odd. The CNF representation of parity circuits is known to be large and its size grows

exponentially with the increase in the number of inputs. Figures 4.5 and 4.6 show the

evolved circuits of 8 bit parity using the conventional simulation and the proposed SAT

solving based CGP techniques, respectively.

25

I4

I1

I2

I5

I4

I2

I7

I0

I3

I7

I1

I6
I0

I6

OUT

Figure 4.5: 8 Bit Parity Circuit obtained by Conventional CGP

I2

I4

I6

I3

I5

I7

I0

I1
OUT

Figure 4.6: 8 Bit Parity Circuit obtained by Proposed CGP

In this case, the conventional simulation based CGP took about 36k generations and a

mean evaluation time of 0.32 milliseconds per chromosome while the proposed SAT solving

based technique took about 2k generations and a mean evaluation time of 0.7 milliseconds

per chromosome. The proposed SAT solving based CGP took more time in the fitness

calculation process than the conventional simulation based CGP technique mainly because

of the larger CNF representation of the circuit (256 clauses).

4.3.1 LGSynth91 c17

c17 is an LGSynth91 benchmark circuit [54] with 5 inputs and 2 outputs. Figures 4.7

and 4.8 show the c17 circuits evolved using conventional simulation based CGP and our

proposed SAT solving based CGP techniques, respectively.

26

I1
I1

I4

I4

I0

I2

I3

I5 OUT1

OUT2

Figure 4.7: c17 Circuit obtained by Conventional CGP

I1

I4

I2

I3
I2

I3

I0

I2

OUT1

OUT2

Figure 4.8: c17 Circuit obtained by Proposed CGP

The conventional simulation based CGP took about 29k generations and a mean eval-

uation time of 0.12 milliseconds per chromosome while the proposed SAT solving based

technique took about 66k generations and the a evaluation time of 0.009 milliseconds per

chromosome. We observed the maximum time gain for the c17 circuit and this is mainly

due to the fact that it has a relatively low number (12) of CNF clauses in its CNF repre-

sentation.

27

4.4 Discussions

The primary goal of presenting the above case studies was two-fold. Firstly, we wanted to

illustrate the correctness of the proposed technique, i.e., it can evolve all kinds of circuits

with the desired functionality. All the four examples demonstrate this point. The second

purpose was to illustrate the effectiveness of the proposed technique in terms of fitness

calculation time for cases where the number of CNF clauses does not grow exponentially

with the number of inputs.

Apart from the above case studies, we evolved some other circuits and the results

are summarized in Table 4.1. We chose all the major circuits that have been evolved

using various digital circuit evolution techniques and the proposed technique was able to

successfully evolve all of them. In terms of evolution time, it can be observed that the

fitness calculation time is lower for most cases (the highlighted ones are the rest) when

compared with the traditional CGP with parallel simulation, which is known to have the

fastest evolution time so far [21]. The circuits for which the proposed technique did not

perform well (the highlighted cases) are the ones in which the number of CNF clauses grows

exponentially with the number of inputs. This restriction was kind of expected since such

circuits are known to have problems with SAT solver based equivalence checking as well.

In summary, the experimental results show that the proposed technique is able to evolve

all kinds of digital circuits and improves the evolution time significantly for most of them

as well.

28

Table 4.1: Mean Evaluation Time Per Chromosome for Conventional CGP tcgp and SAT-
Based CGP tmcgp

29

Chapter 5

Conclusions

This thesis presents a novel digital circuit evolution approach based on the principles of

SAT solving. The main idea is to leverage upon the computational efficiency of SAT solvers

to expedite the process of fitness scoring, which is traditionally done using exhaustive simu-

lations.We proposed a CGP based digital circuit evolution technique where the equivalence

problem of the target function and the given chromosome is represented in terms of a CNF

and then the number of input assignments for which this CNF is unsatisfiable is found us-

ing SAT solving algorithms. This number is used to judge the fitness of the chromosomes

and the digital circuit evolution is carried out using the traditional genetic algorithm based

approach. We implemented the proposed methodology in C++. The experimental results

illustrate the effectiveness of the proposed approach as we are able to correctly evolve all

the state-of-the-art evolved digital circuits. Moreover, using the proposed approach, sig-

nificant reduction in evolution time was observed for circuits in which the number of CNF

clauses is a linear function of the number of inputs.

To the best of our knowledge, SAT-based method has never been used in the domain of

digital circuit evolution to measure the degree of closeness between two circuits. Thus, this

thesis opens the doors to a new area of research in both of these domains. The proposed

idea pushes the boundaries of digital circuit evolution and thus can be used to evolve

more complex digital circuits in terms of gate count and inputs. Whereas, smarter fitness

scoring criterion than the ones reported in this thesis can be explored by the SAT solving

community to further reduce the computational times and optimize the evolved circuits.

Finding a smarter CNF conversion that results in a more compact CNF representation will

help to improve the time efficiency proposed methodology. A worth investigation direction

30

in this regard would be to use SMT solvers [50] instead of SAT solvers for fitness scoring.

The current methods are limited to combinational digital circuits, so in future we would

look to find ways to evolve sequential circuits using evolutionary approach.

31

References

[1] G. Greenwood and A.M. Tyrrell, Introduction to Evolvable Hardware, New York:IEEE

Press, 2007.

[2] T. Higuchi et al., ”Real-World Applications of Analog and Digital Evolvable Hard-

ware”, IEEE Trans. Evol. Comput., vol.3, no.3, pp. 220–235, 1999.

[3] J.R. Koza, ”Genetic Programming”, On the Programming of Computers by Means of

Natural Selection, Cambridge:MIT Press, 1992.

[4] P. Kaufmann and M. Platzner, ”Advanced Techniques for the Creation and Propaga-

tion of Modules in Cartesian Genetic Programming”, in Proc. of Genetic and Evolu-

tionary Computation Conf., GECCO. 2008, pp. 1219–1226.

[5] T. Higuchi et al., Evolvable Hardware. Berlin:Springer, 2006.

[6] D. Mange et al., ”Towards Robust Integrated Circuits: The Embryonics Approach”,

Proc. IEEE, vol.88, no.4, pp. 516-541, 2000.

[7] S. Zhan et al., ”A Developmental Gene Regulation Network for Con-structing Elec-

tronic Circuits”, in Int. Conf. on Evolvable Systems: From Biology to Hardware, ICES,

LNCS, vol. 5216, Springer, Berlin, 2008, pp. 177-188.

[8] J.A. Walker and J.F. Miller, ”The Automatic Acquisition, Evolution and Reuse of

Modules in Cartesian Genetic Programming”, IEEE Trans. Evol. Comput., vol.12,

no.4, pp. 397-417, 2008.

[9] J.R. Koza et al., Genetic Programming III: Darwinian Invention and Problem Solving.

San Francisco, CA:Morgan Kaufmann Publishers, 1999.

32

[10] F.V. Andrade et al., ”Improving SAT-based Combinational Equivalence Checking

Through Circuit Preprocessing”, in 26th Int. Conf. on Computer Design, ICCD, 2008,

pp 40-45.

[11] J.R. Koza et al., Genetic Programming IV: Routine Human-Competitive Machine In-

telligence. Dordrecht:Kluwer, 2003.

[12] J. Cong and K. Minkovich, ”Optimality Study of Logic Synthesis for LUT-based FP-

GAs”, IEEE Trans. Comput. Aided Des. Integ. Circuits Syst., vol.26, no.2, pp. 230-239,

2007.

[13] A.P. Shanthi and R. Parthasarathi, ”Practical and Scalable Evolution of Digital Cir-

cuits”, Appl. Soft Comput., vol.9, no.2, pp. 618-624, 2009.

[14] Berkley Logic Synthesis and Verification Group: ABC: A System for Sequential Syn-

thesis and Verification. http://www.eecs.berkeley.edu/*alanmi/abc/

[15] S.Z. Shazli and M.B. Tahoori, ” Soft Error Rate Computation in Early Design Stages

Using Boolean Satisfiability”, in proc. of the 19th ACM Great Lakes symposium on

VLSI, GLSVLSI’09, NY, USA, 2009, pp. 101–104.

[16] L. Sekanina, Evolvable Components: From Theory to Hardware Implementations, Nat-

ural Computing Series, Berlin:Springer, 2004.

[17] X. Yao and T. Higuchi, ”Promises and Challenges of Evolvable Hardware”, IEEE

Trans. Syst. Man Cybernet. Part C, vol.29 no.1, pp. 87-97, 1999.

[18] S. Disch and C. Schollm, ”Combinational Equivalence Checking Using Incremental

SAT Solving, Output Ordering, and Resets”, in Asia and South Pacific Design Au-

tomation Conf., 2007, pp. 938-943.

[19] Z. Gajda and L. Sekanina, ”When Does Cartesian Genetic Programming Minimize the

Phenotype Size Implicitly?”, in Genetic and Evolutionary Computation Conf., ACM,

New York, 2010, pp. 983–984.

33

[20] J.F. Miller and P. Thomson, ”Cartesian Genetic Programming”, in Proc. of the 3rd

European Conf. on Genetic Programming, EuroGP, LNCS, vol. 1802, Springer, 2000,

pp. 121-132.

[21] . J.F. Miller et al., ”Principles in the Evolutionary Design of Digital Circuitspart I”,

Genetic Programm. Evol. Mach., vol.1, no.1, pp. 8-35. 2000.

[22] R. Zebulum et al., Evolutionary ElectronicsAutomatic Design of Electronic Circuits

and Systems by Genetic Algorithms. Boca Raton:The CRC Press International Series

on Computational Intelligence, 2000.

[23] E.I. Parez and C.C. Coello, ”Extracting and Re-using Design Patterns from Genetic

Algorithms Using Case-based Reasoning”, Engineering Optimization vol.35, no.2, pp.

121-141, 2003.

[24] E. Goldberg et al., ”Using SAT for Combinational Equivalence Checking”, in DATE

01: Proc. of the Conf. on Design, Automation and Test in Europe,IEEE Press, Pis-

cataway, NJ, USA, 2001, pp. 114-121.

[25] V.K. Vassilev and J.E. Miller, ”Scalability Problems of Digital Circuit Evolution Evolv-

ability and Efficient Designs”, Evolvable Hardware 2000. Proc., 2000, pp.55–64.

[26] D.E. Goldberg and K. Deb, ”A Comparative Analysis of Selection Schemes Used in

Genetic Algorithms”, in G.J.E. Rawlins (Ed.), Foundations of Genetic Algorithms,

Morgan Kaufmann, Los Altos, 1991, pp. 69-93.

[27] G.S. Tseitin, ”On the Complexity of Derivation in Propositional Calculus”, in Studies

in Constructive Mathematics and Mathematical Logic, Part II, 1968, pp. 115-125

[28] M.N. Velev, ”Efficient translation of Boolean Formulas to CNF in Formal Verification

of Microprocessors”, in proc. of 2004 Asia and South Pacific Design Automation Conf.,

NJ, USA, 2004, pp. 310–315.

34

[29] J.F. Miller et al., ”Designing Electronic Circuits Using Evolutionary Algorithms”, in

Quagliarella, D., Periaux, J., Poloni, C., Winter, G. (eds.), Chichester:Wiley, 1997,

pp. 105-131.

[30] J.F. Miller and S.L Smith, ”Redundancy and Computational Efficiency in Cartesian

Genetic Programming”, IEEE Trans. on Evolutionary Computation, vol.10, pp. 167-

174, 2006.

[31] L. Sekanina, ”Evolutionary Design of Digital Circuits: Where Are Current Limits?”,

in Proc. of the First NASA/ESA Conf. on Adaptive Hardware and Systems, AHS,

IEEE CS, Los Alamitos, 2006, pp. 171-178.

[32] S. Harding, J.F. Miller, W. Banzhaf, in 2009 IEEE Congress on Evolutionary Com-

putation. Self Modifying Cartesian Genetic Programming: Parity (IEEE Press, New

York, 2009), pp. 285-292

[33] M. Murakawa et al., ”Evolvable Hardware at Function Level”, in Parallel Problem

Solving from Nature, PPSN IV, LNCS , vol. 1141, Springer, 1996, pp. 62-71.

[34] T.G.W. Gordon and P.J. Bentley, ”Towards Development in Evolvable Hardware”, in

Proc. of the 2002 NASA/DoD Conf. on Evolvable Hardware, IEEE Computer Society

Press, Washington, DC, US, 2002, pp. 241-250.

[35] P.C. Haddow et al., ”Shrinking the Genotype: Linear Systems for EHW?” in Proc. of

the 4th Int. Conf. on Evolvable Systems: From Biology to Hardware, LNCS , vol.2210,

Springer, Berlin, 2001, pp. 128-139.

[36] G. Hornby et al., ”Automated Antenna Design with Evolutionary Algorithms”, in

Proc. 2006 AIAA Space Conf., AIAA, San Jose, CA, 2006.

[37] E. Stomeo et al., ”Generalized Disjunction Decomposition for Evolvable Hardware”,

IEEE Trans. Syst. Man Cybernet. Part B, vol.36, no.5, pp. 1024-1043, 2006.

35

[38] J. Torresen, ”A Divide-and-Conquer Approach to Evolvable Hardware”, in Proceedings

of the 2nd Int. Conf. on Evolvable Systems: From Biology to Hardware, ICES98, LNCS

, vol. 1478, Springer, Lausanne, Switzerland, 1998, pp. 57-65.

[39] J. Torresen, ”A Scalable Approach to Evolvable Hardware”. Genetic Programm. Evol.

Mach., vol.3, no.3, pp. 259-282, 2002.

[40] S. Yanushkevich et al., Decision Diagram Techniques for Micro and Nanoelectronic

Design Handbook, Boca Raton:CRC, 2006.

[41] K. Glette et al., ”An Online EHW Pattern Recognition System Applied to Face Image

Recognition”, in Applications of Evolutinary Computing, EvoWorkshops 2007, LNCS,

vol. 4448, Springer, 2007, pp. 271-280.

[42] K. Imamura et al., ”The Test Vector Problem and Limitations to Evolving Digital

Circuits”, in Proc. of the 2nd NASA/DoD Workshop on Evolvable Hardware, IEEE

Computer Society Press, 2000, pp. 75-79.

[43] T. Pecenka et al., ”Evolution of Synthetic RTL Benchmark Circuits with Predefined

Testability”, ACM Trans. Des. Autom. Electron. Syst. vol.13, no.3, pp. 1-21 2008.

[44] Z. Vasicek et al., ”On Evolutionary Synthesis of Linear Transforms in FPGA”, in Proc.

of the 8th Conf. on Evolvable Systems: From Biology to Hardware, LNCS, vol. 5216,

Springer, Berlin, 2008, pp. 141-152.

[45] Z. Vasicek and L. Sekanina, ”Formal Verification of Candidate Solutions for Post-

synthesis Evolutionary Optimization in Evolvable Hardware”, Genetic Programm.

Evol. Mach., vol.12, no.3, pp. 305-327, 2011.

[46] Goldberg and E. David, Genetic Algorithms in Search Optimization and Machine

Learning, Boston, MA:Addison Wesley, 1989.

36

[47] F. Lu et al, ”A signal correlation guided ATPG solver and its applications for solving

difficult industrial cases”, in Proc. of the 40th conf. on design automation, DAC, 2003,

pp. 436-441.

[48] S. Kemper, ”SAT-based Verification for Timed Component Connectors”, Science of

Computer Programming, vol.77, no.(7–8), pp. 779–798, 2012.

[49] K. Kanazawa and T. Maruyama, ”An FPGA Solver for SAT-Encoded Formal Verifi-

cation Problems”, International Conference on Field Programmable Logic and Appli-

cations, FPL, 2011, pp. 38–43.

[50] T. Liu et al., ”Bounded Program Verification Using an SMT Solver: A Case

Study,Software Testing”, IEEE Fifth Int. Conf. on Verification and Validation, ICST,

2012, pp. 101–110.

[51] M. Buro and H. K. Buning, ”Report on a SAT Competition”. Bulletin of The European

Association for Theoretical Computer Science, vol.49, pp. 143–151, 1993.

[52] N. Een and N. Sorensson, MiniSAT, http://minisat.se

[53] A. Biere, ”PicoSAT Essentials”, Journal of Satisfaibility, Boolean Modeling and Com-

putation, vol.4, no.(2-4), pp. 75–97, 2008.

[54] http://www.cbl.ncsu.edu:16080/benchmarks/LGSynth91/cmlexamples/C17.slif

37

