
HARDWARE ENCRYPTED USB USING AES-256

By

Amir Abbas

Marvi Waheed

Kamran Anwar

Submitted to Department of Electrical Engineering, Military

College of Signals National University of Sciences and
Technology, Rawalpindi in partial fulfillment for the

requirements of a B.E Degree in Electrical (Telecom)
Engineering

June 2015

iv

ABSTRACT

This paper provides a detailed documentation of the design and

implementation of a hardware encrypted USB 2.0 device on an Arduino

Mega 2560 board using 256 bit AES encryption/decryption algorithm.

This USB is a plug and play device that is compatible with most new

generation computers and operating systems. It provides the highest

level of security to all the data stored and transferred through this

device. The USB device includes a built in keypad which is used to

enter the PIN code to access data which cannot be accessed otherwise.

The data stored in the device is encrypted in the real time by the

encryption algorithm stored within the device. The device is fully

hardware encrypted and provides more efficient protection mechanism

against malicious threats.

v

CERTIFICATE OF CORRECTNESS AND APPROVAL

It is hereby certified that the contents and form of the project report

entitled ”Hardware Encrypted USB Using AES-256” submitted by

1) Amir Abbas 2) Marvi Waheed 3) Kamran Anwar have been found

satisfactory as per the requirement of the B.E. Degree in Electrical

(Telecom) Engineering.

Supervisor:

Col. Imran Rashid, PhD

Head of EE Department

Military College of Signals, NUST

 Date: _________________

vi

DEDICATION

Allah, the Omnipotent

Faculty for its insightful help

And our parents for their support

vii

ACKNOWLEDGEMENTS

This project would not have been accomplished without Allah

Almighty’s will. We humbly thank Him for His blessings and giving us

the wisdom, knowledge and understanding, without which we would

not have been able to complete this thesis research work.

Due extension of gratitude to our project supervisor, Col. Dr. Imran

Rashid, without whose support and encouragement; it would not have

been possible to complete this project.

We also thank our colleagues for helping us in developing the project

and appreciate the people who have willingly helped us with their

abilities.

Last but not the least; we are very thankful to our parents, who bore

with us in times of difficulty and helped us overcoming obstacles.

Without their consistent support and encouragement, we could not

have accomplished our targets successfully.

viii

TABLE OF CONTENTS

Page No.
LIST OF FIGURES ... x

LIST OF TABLES .. xi

LIST OF ABBREVIATIONS .. xii

CHAPTER 1... 1

1.1 BACKGROUND OVERVIEW: .. 2

1.2 PROJECT DESCRIPTION ... 3

1.3 SALIENT FEATURES: .. 4

1.4 PROJECT SCOPE .. 5

1.5 OBJECTIVES: .. 5

1.6 DELIVERABLES .. 6

1.7 FINALIZED APPROACH .. 6

CHAPTER 2... 9

LITERATURE REVIEW ... 10

2.1 FULL DISK ENCRYPTION: ... 10

2.2 ADVANCE ENCRYPTION STANDARD: .. 11

2.2.1 SUB-BYTES TRANSFORMATION: ... 13

2.2.2 SHIFT ROW TRANSFORMATION: ... 14

2.2.3 MIX COLOUMNS TRANSFORMATION: .. 14

2.2.4 ADD ROUND KEY TRANSFORMATION: .. 15

CHAPTER 3... 17

3.1 TECHNICAL SPECIFICATIONS: ... 18

3.2 DESIGN REQUIREMENTS: ... 20

3.3 DESIGN SPECIFICATIONS: ... 21

ix

3.4 DETAILED DESIGN WITH JUSTIFICATIONS: ... 21

3.4.1 ARDUINO TO SD CARD READER INTERFACE: .. 22

3.4.2 ARDUINO TO LCD INTERFACE: ... 23

3.4.3 ARDUINO TO KEYPAD INTERFACE: .. 24

CHAPTER 4... 25

CHAPTER 5... 28

5.1 OVERVIEW: ... 29

5.2 OBJECTIVES ACHIEVED: .. 29

5.3 LIMITATIONS: ... 29

5.4 FUTURE RECOMMENDATIONS: ... 30

CHAPTER 6... 31

6.1 LIST OF SIMILAR PROJECTS DONE AT MCS: .. 32

6.2 BIBLIOGRAPHY: ... 32

6.3 ONLINE HELP: ... 33

CHAPTER 7... 34

Appendix A .. 35

CODES FOR ARDUINO: ... 35

CODES VISUAL STUDIO APP:.. 44

x

LIST OF FIGURES

Page No.

Figure 1: System Model .. 9

Figure 2: Finalized Approach of the Project 10

Figure 3: The Encryption Process…………………………………………………….... 13

Figure 4: Arduino Mega 2560……………………………………………………..........16

Figure 5: Design Requirements .. 21

Figure 6:Implementation Procedure .. 23

Figure 7: Detailed Design .. 25

Figure 8: PCB Layout .. 26

Figure 9: Arduino to LCD interface .. 28

Figure 10: Application evaluation ... 31

xi

LIST OF TABLES

TABLE 1: Software vs. Hardware Encryption Page 14

TABLE 2: Specifications of Arduino Mega 2560 Page 22

xii

LIST OF ABBREVIATIONS

AES: Advanced Encryption Standard

FDE: Full Disk Encryption

HDD: Hard Disk Drive

LED: Light Emitting Diode

SD: Secure Digital

SPI: Serial Peripheral Interface

USB: Universal Serial Bus

1

CHAPTER 1

2

INTRODUCTION

A brief overview of development and implementation Hardware

encrypted USB using AES 256 will be given in this chapter.

1.1 BACKGROUND OVERVIEW:

Nowadays, USB drives are frequently used today for data storage and

transfer of data in offices and large organizations. Similarly, USB

storage devices are also required for personal use. There is a high

probability of data loss due to theft or loss of devices and security

hack attacks in these devices. These effects are the main factors that

make device highly inefficient for secure data transfer where integrity

and security are of main concern. The importance of confidential data

stored on hard disks cannot be ignored as data privacy is quite an

issue in the modern world. Unfortunately, only few hard disk drives

nowadays do include data security system to protect confidential data

that may be critical for individuals and mandatory for business. There

could be various security hazards, such as the pernicious data

alteration, data leakage and lost hard-disk. Events may cause

inestimable loss to some organizations such as military, governments

and enterprises. Regarding the secured data importance, several risk

protection schemes have been implemented. Those may vary in terms

of:

 Strength of Security

 User friendliness

 Cost of implementation.

3

One of the major techniques used to achieve data security is

encryption i.e. any data stored in the USB drive must be in encrypted

form (software/hardware). Hardware encrypted USBs are safer and

tend to be more cost effective.

1.2 PROJECT DESCRIPTION

The project aims at the design and implementation of a hardware

encrypted USB device on an Arduino Mega 2560 board using 256 bit

AES encryption algorithm. This USB is a plug and play device that

provides the highest level of security provided by hardware encryption

using the AES 256 encryption/decryption algorithm to all the data

stored and transferred through this device. A numeric keypad is used

to enter the code and the data can only be accessed if the code is

correct. The data stored in the device is encrypted in the real time by

the encryption algorithm stored within the device. The hardware

encryption permits better protection against unauthorized access and

malevolent threats in comparison to software encryption.

The device will be cost sufficient, hack immune and will provide secure

data storage to keep confidential data safe, secure, portable and on

the go. It basically involves the design of a hardware architecture, for

a particular user, that will not only ensure the security of all the data

present in the hard disk through hardware encryption of the data and

secure login password access by an combined keypad but will also aim

at overcoming the limitations in the processing power of the software

based Full Disk Encryption systems. Development will be done using

Arduino Mega 2560 kit which will be programmed in C language. The

device at the user end will contain completely encrypted confidential

data that shall be decrypted from the cipher text into its original form

only upon providing the access password manually.

4

1.3 SALIENT FEATURES:

High capacity, compact USB storage drives enable workers to

transport large amounts of classified company data anywhere. There

are significant security hazards that could impact the organization if

these drives are lost or stolen. Secure USB drives are the best way to

stop the regeneration and insecure propagation of data against

security breaches that have afflicted corporations and government

agencies ever since unsecured flash drives became available.

For this reason we propose to target the following application areas to

keep portable data safe, secure and on the go.

• Keep Data Safe, Secure and Portable:

All the information copied onto the Encrypted USB device will be

encrypted and can only be read by authorized individuals. Built-in user

access control and strong hardware data encryption keeps sensitive

• Strong Hardware Encryption:

All data on the USB device will be encrypted using AES-256 which is

the strongest encryption algorithm available. Encryption keys are

completely secure due to built-in hardware encryption and key

generation. The key never leaves the USB drive and as a result, it

cannot be obtained or copied.

• Customized Solution:

To access data on the USB users must authenticate themselves using

a password via the number keys preventing unauthorized access to

data.

5

• High Performance and Compatibility:

We target to provide a High Speed USB 2.0 Device that is compatible

with any computer through the USB port.

• Drive Reset Feature:

The keypad is also used to perform other administrative actions, such

as changing the PIN. After 10 failed login attempts, the drive resets

erasing all data and PIN, but the AES 256-bit encrypting electronics

remain intact.

• Cost Effective Solution:

Minimum computer and financial resources are utilized to provide a

trustworthy solution to data leakage and confidentiality issues.

1.4 PROJECT SCOPE

A hardware encrypted USB device based on ARDUINO—AES system

will be designed and implemented. Hardware will be programmed

through C language. It is a plug and play device that encrypts 100% of

your data in real-time and keeps your data safe even if the hard drive

is removed from the enclosure.

1.5 OBJECTIVES:

The main goal of this project is to create a stand-alone device for

providing secure communication technology for manual data transfer.

This project has the following highlighted objectives:

 100% Hardware Platform

 Hardware Based Encryption/Decryption Methodology

 Hack Resistant

6

 Less Computer Utility Requirement

 Higher Security Safe Guard As Compared To Software Encryption

 Custom Solution (Limited User(s), Personalized Password

Access)

 Easily Configurable

 Cost Effective Solution

 High Speed USB 2.0 Device

 High Compatibility with Any Computer through USB Flash Drive.

1.6 DELIVERABLES

This hardware encrypted USB device will provide secure storage and

transfer of classified data with user friendly and portable on the go

features. It is an excellent product for government, hospitals,

insurance corporations, fiscal institutions, HR departments and

management with sensitive data that needs the highest level of

security and confidentiality.

1.7 FINALIZED APPROACH

The finalized approach shall be executed using Arduino Mega 2560 Kit.

These are reconfigurable digital integrated circuits that in the past

have proven to provide high performance and low cost for

cryptographic applications. To achieve better speed, inbuilt parallelism

is used in any algorithm put into operation. Also since the design is

purely hardware based so it will relatively be immune to any hacking

attacks. Once the password is entered, the data is transmitted from

the PC to the Arduino board, encrypted at real-time and stored in the

external memory interfaced with the kit.

7

Figure 1 below depicts the system model of our project:

Figure 1: System Mode

Above diagram shows the modules of the project i.e.

1. Encryption/Decryption module

2. Flash memory module

3. Keypad interface module

4. USB to host computer link

8

Figure below shows the finalized approach of the project:

Figure 2: Finalized Approach of the Project

9

CHAPTER 2

10

LITERATURE REVIEW

Progress in information technology brings us the ease and competence

together with new challenges on information security. Only by

ensuring the safekeeping of information transmission, people can

make better use of information services. Through the breakdown of

the current situation and its existing problems, we understand the

value of information security problem in the electronic document.

2.1 FULL DISK ENCRYPTION:

The significance of cryptography applied to security in electronic data

communication has required a crucial relevance during the last few

years. In cryptography, we deal with the protection of information

from adverse individuals by changing it into an unfamiliar form while it

is being saved and passed on. In a nutshell, data cryptography is the

jumbling of the gist of data, such as text, audio, image, video and so

forth to make the data incomprehensible, undetectable or unclear

during communication or storage. This process of achieving data

security is known as encryption. [1]

Several threat protection methods have been employed regarding the

secured data importance.

 BIOS and operating system passwords are usually utilized but these

efforts often provide inadequate security. Amateur attackers can easily

remove these security passwords and access private information. It is

a bit difficult to crack or remove the hard drive protection password

but the security level is still not strong enough.

Every bit of data is encrypted that goes through the disk either by

hardware encryption or software encryption mechanisms using Full

disk encryption (FDE or whole disk encryption. The FDE is appreciably

stronger than the first two methods mentioned above. Cryptographic

11

algorithm determines the security strength. Computer’s CPU is used

for encryption/decryption for software-based FDE method. This

method has shown some disadvantages:

 A Trojan program can be easily used to scrutinize the

encryption/decryption software.

 The instructions of the encryption/decryption are executed by

the CPU. Obviously the processes consume more computer

means.

 It is a very tough job to transfer the software used for

encryption/decryption among different operating systems.

The advantage of hardware encryption is high speed while the

advantage of software encryption is low cost. Less time is taken to

encrypt, even when handing out large amounts of data. Hardware-

based encryption is more secure, more concurring, and less time-

consuming despite its higher cost. The highest level of data protection,

hardware encryption will definitely fulfill the security requirements.

Table 1: Software vs. Hardware Encryption

12

2.2 ADVANCE ENCRYPTION STANDARD:

On January 2, 1997 the National Institute of Standards and

Technology (NIST) held a contest for a new encryption standard. The

previous standard, DES, had been in use since November 23, 1976

and was no longer sufficient for security. Due to an increase in the

computing power, the algorithm was no longer considered safe. In

1998, a specially made computer called the DES cracker was used to

crack DES in less than three days. The contest went on for three years

and NIST opted for an algorithm designed by two Belgian scientists,

Joan Daemen and Vincent Rijmen. The name Rijndael was chosen for

their algorithm. On November 26, 2001 the Federal Information

Processing Standards Publication 197 declared a standardized form of

the Rijndael algorithm as the new standard for encryption and named

it as Advanced Encryption Standard. This standard is at present still

the standard for encryption.

The AES Rijndael is a block cipher, which operates on different keys

and block lengths: 128 bits, 192 bits, or 256 bits. The input to each

round consists of a block of message called the state and the round

key. It has to be noted that the round key changes in every round.

The state can be represented as a rectangular array of bytes. This

array has four rows; the number of columns is denoted by Nb and is

equal to the block length divided by 32. The same could be applied to

the cipher key. The number of columns of the cipher key is denoted by

Nk and is equal to the key length divided by 32. The cipher consists of

a number of rounds - that is denoted by Nr - which depends on both

block and key lengths. Each round of Rijndael encryption function

consists mainly of four different transformations: SubByte, ShiftRow,

MixColumn and key addition. On the other hand, each round of

13

Rijndael decryption function consists mainly of four different

transformations: InvSubByte, InvShiftRow, InvMixColumn, and key

addition.[2]

Figure 3: The Encryption Process

AES encryption/decryption algorithm consists of four steps:

2.2.1 SUB-BYTES TRANSFORMATION:

The Sub-Bytes transformation operates on each state byte

independently in a non-linear byte substitution method. This

transformation is done using a substitution table called S-box that is

14

pre calculated. 256 numbers (from 0 to 255) are contained in the

S-Box with corresponding resulting values.

The Sub-Bytes substitution is represented in the figure:

2.2.2 SHIFT ROW TRANSFORMATION:

Through cyclic left shift over different offsets, the rows of the state are

transformed in ShiftRows Transformation round. Row 0 doesn’t shift;

row 1 is shifted over one byte; row 2 and row 3 are shifted over two

and three bytes respectively. The ShiftRows mechanism is shown in

the figure below:

2.2.3 MIX COLOUMNS TRANSFORMATION:

MixColoumns Transformation is a mixing operation which operates on

the columns of the state, combining the four bytes in each column.

15

2.2.4 ADD ROUND KEY TRANSFORMATION:

AddRoundKey (AK) performs an addition (bitwise XOR) of the State

with the RoundKey:

The key expansions all utilize a few operations in Rijndael's Galois

field. The operations are:

 An 8-bit circular rotate on a 32-bit word

 An Rcon operation that is simply 2 exponentiated in the

Galois field.

 Rijndael's S-box operation

 A key schedule routine

The key expansion algorithm for AES 128 bit and AES 192 bit are

same but AES 192 includes an extra application of the S-box.

Key length difference in terms of bits is the only difference between

AES 128 bit and AES 256, in all the four steps before the data is fully

gone through the encryption/decryption cycle and the key expansion

algorithm. Repetitions of 10 and 14 cycles are followed orderly in AES

128 and AES 256 respectively. Hence the conversion of AES 128 to

AES 256 occurs.

Counter (CTR) block mode operation also known as integer counter

mode and segmented counter mode shall be used in our encryption

algorithm. A block cipher is turned into a stream cipher in this mode.

Generation of next keystream block by encrypting successive values of

a "counter" is the key operation of this mode. A function which

produces a sequence which is guaranteed not to repeat for a long time

http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Stream_cipher
http://en.wikipedia.org/wiki/Keystream

16

can be used as a counter. CTR mode has similar characteristics to

Output feedback, but also allows a random access property during

decryption.

17

CHAPTER 3

18

SYSTEM DESING AND DEVEPLOPMENT

3.1 TECHNICAL SPECIFICATIONS:

The Arduino Mega is a microcontroller board based on the

ATmega2560. It has 54 digital input/output pins (of which 14 can be

used as PWM outputs), 16 analog inputs, 4 UARTs (hardware serial

ports), a 16 MHz crystal oscillator, a USB connection, a power jack, an

ICSP header, and a reset button.

Figure4: Arduino Mega 2560

19

Other technical specifications of Arduino Mega 2560 include the

following:

Microcontroller ATmega2560

Operating Voltage 5V

Input Voltage (recommended) 7-12V

Input Voltage (limit) 6-20V

Digital I/O Pins 54

PWM Digital I/O Pins 14

Analog Input Pins 16

DC Current per I/O Pin 40 mA

DC Current for 3.3V Pin 50 mA

Flash Memory 256 KB

Flash Memory for Bootloader 8 KB

SRAM 8 KB

EEPROM 4 KB

Clock Speed 16 MHz

Length 101.52 mm

Width 53.3 mm

Weight 37 g

Table 2: Specifications of Arduino Mega 2560

20

3.2 DESIGN REQUIREMENTS:

Figure 5: Design Requirements

The figure above shows the hardware interfaces, software used and

the modules in the project

Figure 6: Implementation Procedure

The figure above shows our finalized approach towards the project and

the implementation procedure that will be followed.

21

3.3 DESIGN SPECIFICATIONS:

 Hardware will be programmed using C Language.

 Real time data shall be used as an input from the user

through a computer and stored in flash memory after the

encryption/decryption process by the Arduino processor.

 Hardware implementation AES-256 bit with 14 cycles of

repetitions of transformation rounds that convert the

plaintext, into the final output, called the cipher text.

 User defined PIN required to access the flash memory in order

to encrypt/decrypt data.

3.4 DETAILED DESIGN WITH JUSTIFICATIONS:

The figure below shows the detailed design of our project:

Figure 7: Detailed Design

22

Figure 8: PCB Layout

Above diagrams show the implementation and PCB layout of the

project. An Arduino Mega2560 board is interfaced to an SD Card

reader module, a 16x2 LCD and a 4x4 keypad. A variable voltage

regulator 7805 is used to control the voltage in the circuit. The details

of the interfaces are given below:

3.4.1 ARDUINO TO SD CARD READER INTERFACE:

The SD Card Reader communicates with the Arduino using the SPI

protocol. Serial Peripheral Interface (SPI) is a synchronous serial data

protocol used by microcontrollers for communicating with one or more

peripheral devices quickly over short distances. With an SPI connection

there is always one master device (usually a microcontroller) which

23

controls the peripheral devices. The pins of the SD card reader are

connected to the following pins of Arduino:

 53(SS) to CS

 51 (MOSI) to D1

 50(MISO) to D0

 52(SCK) to CLK

3.4.2 ARDUINO TO LCD INTERFACE:

A 16x2 LCD is used for display purposes and consists of 16 pins. The pin configuration

is as follows:

Pin 1 : Vss : Function: GND.

Pin 2 : Vdd : Function: +3V to +5V.

Pin 3 : Vo : Function: Contrast/Brightness adjustment.

Pin 4 : RS : Function: H/L Register Select Signal.

Pin 5 : R/W : Function: Read/Write Signal.

Pin 6 : EN : Function: H->L Enable Signal.

Pin 7 : DB0 : Function: H/L Data Bus Line.

Pin 8 : DB1 : Function: H/L Data Bus Line.

Pin 9 : DB2 : Function: H/L Data Bus Line.

Pin 10 : DB3 : Function: H/L Data Bus Line.

Pin 11 : DB4 : Function: H/L Data Bus Line.

Pin 12 : DB5 : Function: H/L Data Bus Line.

Pin 13 : DB6 : Function: H/L Data Bus Line.

Pin 14 : DB7 : Function: H/L Data Bus Line.

Pin 15 : A/Vee : Function: 4.2V

Pin 16 : K : Function: Power Supply for B/L

24

Figure 9: Arduino to LCD Interface

Data Pins DB4 to DB7 are used only and are connected to the pins 4,

5, 6 and 7 of the Arduino board. Pins 1,6 and 16 are grounded

whereas Pin 2 and Pin 15 are connected to voltage supply of the

Arduino board.

3.4.3 ARDUINO TO KEYPAD INTERFACE:

For getting access to the data inside the memory, a 4x4 keypad is

used for entering the pin code. If the pin code is correct, Arduino

allows access to the data stored. The rows of the keypad are

connected to the pins 43, 45, 47 and 49 of the Arduino board. The

columns of the keypad are connected to the pins 35, 37, 39 and 41 of

the Arduino board.

25

CHAPTER 4

26

PROJECT ANALYSIS AND EVALUATION

Our aim of the project was to design a device that could be used as a

safe data travelling mass storage device with all the data stored in the

flash memory being in the encrypted form. The project was tested

different types of text based files including notepad, MS excel and MS

word files and the results of encrypted and decrypted data was

correct.

Below is a screenshot of the application designed to access the

contents of flash memory and encrypt/decrypt data:

Figure 10: Application Evaluation

27

The functions of the buttons shown in the diagram are:

Show files:

Show the contents of flash memory.

Change password:

Change the user defined pin code which is used to access data.

Load file:

To save a file from computer to the flash memory.

Save file:

To create and save a file directly using the application

Encrypt:

To encrypt/decrypt data.

Text:

To open a file in notepad and to create a notepad file using the app.

MS Word:

To open a file in MS word and to create a Word file using the app.

MS Excel:

To open a file in MS Excel and to create an Excel file using the app.

28

CHAPTER 5

29

FUTURE WORK AND CONCLUSION

5.1 OVERVIEW:

The project aims at providing a secure way of using data travelers or

mass storage devices using the highest standards of encryption i.e.

AES 256. This project is a prototype of a hardware encrypted USB

device for data travelling and mass storage using a keypad for user

generated pin for more security. All the data stored in the device is in

encrypted form and cannot be accessed without proper authentication

that means the data is safe even in the case of theft or stolen devices.

5.2 OBJECTIVES ACHIEVED:

The objective of this project was to provide a safer way of travelling

data using mass storage devise which is achieved using hardware

encryption along with the AES 256 encryption standard. The project

was thoroughly tested and it gives the required the required results

satisfactorily. Objectives achieved regarding this project include

complete implementation (software) of AES 256 algorithm and circuit

design for interfacing Arduino with different modules of the project.

5.3 LIMITATIONS:

Due to hardware limitation of the Arduino Kit there are several

limitations of the project regarding file handling of different types. As

the processing power of the ATmega processor used in Ardunio is

limited it is unable to handle to large size files that include media files

and other application files.

30

5.4 FUTURE RECOMMENDATIONS:

Following are the recommendations made to be catered in the future

projects:

 Overcoming of limitations regarding the handling of different file

types to be encrypted. Media (Audio & Video) files to be

encrypted.

 Incorporating different modes of encryption like Electronic

codeback, Cipher-block chaining, Propagating cipher-block

chaining, Cipher feedback and Output feedback other than the

currently used CTR mode in the Cryptic application made.

 Handling of large sized files with faster and better speed and by

allocating less computer resources.

31

CHAPTER 6

32

REFERENCES

6.1 LIST OF SIMILAR PROJECTS DONE AT MCS:

[1] Maj Babar Nawaz, Capt Muhammad Bilal, CaptKhurramRiaz, “AES

Encryptor/ Decryptor on FPGA”, Military College of Signals, Aug 2013.

[2] Capt Muhammad Umair, Capt Muhammad Umar, Capt Ehtesham-

ul-Haq, “Secure SD CardReader”, Military College of Signals, June

2014.

6.2 BIBLIOGRAPHY:

[1] Adnan Mohsin Abdulazeez, Farah Shleemon Khamo, “A Proposed

Data Security Algorithm Based on Cipher Feedback Mode and its

Simulink Implementation”from Polytechnic University-Duhok City-

Kurdistan Region of Iraq

[2] Samir El Adib and Naoufal Raissouni, “AES Encryption Algorithm

Hardware Implementation: Throughput and Area Comparison of 128,

192 and 256-bits Key” from National School for Applied Sciences of

Tetuan, University Abdelmalek Essaadi.

[3] Arduino-ArduinoBoardMega2560. (n.d.) Retrieved from

http://arduino.cc/en/Main/arduinoBoardMega2560

http://arduino.cc/en/Main/arduinoBoardMega2560

33

[4] How to Interface SD Card with Arduino: “Arduino SD Card Project

with Circuit Diagram”. (n.d.) Retrieved from

http://www.engineersgarage.com/embedded/arduino/arduino/how-to-

interface-sd-card-with-arduino-project-circuit

6.3 ONLINE HELP:

 http://arduino.cc/en/Main/ArduinoUSBHostShield

 http://www.circuitsathome.com/arduino_usb_host_shield_projec

ts

 https://github.com/felis/USB_Host_Shield_2.0/tree/master/exa

mples/testusbhostFAT

 https://github.com/felis/USB_Host_Shield_2.0/tree/master/

 http://www.atmel.com/Images/doc7631.pdf

 https://www.sparkfun.com/products/10155

 http://forum.arduino.cc/index.php?topic=88890.0

 https://github.com/qistoph/ArduinoAES256

 https://www.rivier.edu/journal/ROAJ-Fall-2010/J455-Selent-

AES.pdf

http://www.engineersgarage.com/embedded/arduino/arduino/how-to-interface-sd-card-with-arduino-project-circuit
http://www.engineersgarage.com/embedded/arduino/arduino/how-to-interface-sd-card-with-arduino-project-circuit
https://www.sparkfun.com/products/10155
https://github.com/qistoph/ArduinoAES256
https://www.rivier.edu/journal/ROAJ-Fall-2010/J455-Selent-AES.pdf
https://www.rivier.edu/journal/ROAJ-Fall-2010/J455-Selent-AES.pdf

34

CHAPTER 7

35

Appendix A
CODES

CODES FOR ARDUINO:

#include <Keypad.h>

#include<AESLib.h>

#include<SPI.h>

#include<SD.h>

#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins

LiquidCrystallcd(2, 3, 4, 5, 6, 7);

File myfile, list;

boolean complete = false;

uint8_t key[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,

30, 31};

uint8_tvari = 0, len = 0;

char encrypted[] = "";

char enc[] = "";

intcnt = 0 , a = 0;

String check = "", val = "", final = "" ,encr = "", new_val = ""

, file = "", filename = "" , password = "", check_pass = "1234",

pass_send = "";

int i = 0 , inc = 0 , counter = 0;;

charvalu[] = "";

const byte ROWS = 4; //four rows

const byte COLS = 4; //three columns

char keys[ROWS][COLS] = {

 {'1', '2', '3', 'A'},

 {'4', '5', '6', 'B'},

 {'7', '8', '9', 'C'},

 {'*', '0', '#', 'D'}

};

//byte rowPins[ROWS] = {22, 24, 26, 28}; //connect to the row

pinouts of the keypad

//byte colPins[COLS] = {30, 32, 34 , 36}; //connect to the column

pinouts of the keypad

byterowPins[ROWS] = {49, 47, 45, 43}; //connect to the row

pinouts of the keypad

bytecolPins[COLS] = {41, 39, 37, 35};

Keypad keypad = Keypad(makeKeymap(keys), rowPins, colPins, ROWS,

COLS);

void setup()

{

Serial.begin(9600);

 lcd.begin(16, 2);

36

 lcd.setCursor(0, 0);

 lcd.print("Please Wait.....");

 lcd.setCursor(0, 1);

 lcd.print("Initializing.");

 if (!SD.begin(33)) {

 Serial.println("initialization failed!");

 return;

 }

Serial.println("initialization done.");

vari = 50;

delay(2000);

}

void loop()

{

 // if (Serial.available())

 // { //check = "";

 //

 // while (Serial.available())

 // {

 // char a = Serial.read();

 // check += a;

 // }

 // //int le = check.length();

 //

 // }

char key1 = keypad.getKey();

if (key1)

 {

if (inc == 0)

 {

lcd.clear();

 }

lcd.setCursor(0, 0);

lcd.print("Password:");

lcd.setCursor(9 + inc, 0);

lcd.print(key1);

delay(250);

lcd.setCursor(9 + inc, 0);

lcd.print("*");

inc = inc + 1;

if (key1 != '*' && key1 != '#')

 {

pass_send += key1;

 }

if (key1 == '*')

{ if (check_pass == pass_send)

 {

lcd.clear();

lcd.setCursor(0, 0);

lcd.print("Correct Password");

37

vari = 50;

 }

else if (check_pass != pass_send)

 {

lcd.clear();

lcd.setCursor(3, 0);

lcd.print("Incorrect");

lcd.setCursor(2, 1);

lcd.print("Password...");

counter += 1;

 //Serial.println(counter);

if (counter == 10)

 {

format();

 }

 }

delay(1000);

Serial.print("^");

Serial.print(pass_send);

pass_send = "";

inc = 0;

vari = 50;

 }

else if (key1 == '#')

{ inc = 0;

pass_send = "";

Serial.print(pass_send);

lcd.clear();

lcd.setCursor(0, 0);

lcd.print("Password:");

 }

 }

len = check.length();

if (complete == true)

{ complete = false;

if (len> 0)

{ int i = 0;

for (i = 0; i <len ; i++)

 {

if (check[i] == '!')

 {

vari = 1;

 //check = "";

 }

else if (check[i] == '$')

 {

vari = 2;

 //check[i] = ' ';

 }

else if (check[i] == '*')

 {

vari = 3;

38

 }

else if (check[i] == '%')

{ Serial.println(check);

vari = 4;

 }

else if (check[i] == '?')

 {

vari = 5;

Serial.print(check);

 }

 }

 }

 }

if (vari == 50)

 {

lcd.clear();

lcd.setCursor(4, 0);

lcd.print("Welcome..!");

vari = 100;

 }

if (vari == 1)

{ lcd.clear();

lcd.setCursor(0, 0);

lcd.print("Showing Files!");

 //lcd.setCursor(2,1);

 //lcd.print("PassWord..");

delay(1000);

vari = 50;

 a = 0;

file = "";

check = "";

Serial.println("Files:");

list = SD.open("/");

printfiles(list, 0);

Serial.println("done!");

 }

else if (vari == 2)

{ lcd.clear();

lcd.setCursor(0 , 0);

lcd.print("DE-CRYPTING..!");

delay(1000);

encr = "";

vari = 50;

int i = 0 , j = 0;

for (i = 0 ; i <len - 2 ; i++)

 {

if (check[i] == '@')

 {

39

 j = 1;

 }

if (j == 0)

 {

filename += check[i];

 }

else if (j == 2)

 {

password += check[i];

 }

if (j == 1) {

 j = 2;

 }

 }

charfile_name[] = "";

 //Serial.println(filename);

 //Serial.println(password);

intlen_file = filename.length();

intpass_file = password.length();

check.toCharArray(file_name, len_file + 1);

check = "";

val = "";

 File open_file = SD.open(file_name);

 //Serial.print(":");Serial.print(filename);Serial.print(":");

if (password == check_pass)

{ //Serial.print("opening:");

pass_send = "";

int k = 0;

if (open_file)

 {//Serial.print("opened:");

while (open_file.available())

 {

char a = open_file.read();

val += a;

 }

open_file.close();

 }

final = "";

encr = "";

 k = 0 ;

 String aa = "";

int j = 0;

for (i = 0 ; i <val.length(); i++)

 {

final += val[i];

 k = k + 1;

if (k == 16 || i == val.length() - 1)

 {

final.toCharArray(enc , 17);

 aes256_dec_single(key , enc);

40

encr += enc;

final = "";

 k = 0;

 }

if (i > 127)

 {

aa += val[i];

 }

 }

Serial.print(encr);

 }

else

{ pass_send = "";

if (open_file)

 {

 //Serial.print("Opened");

while (open_file.available())

{ char re = open_file.read();

Serial.write(re);

 }

 }

open_file.close();

 }

Serial.println("");

filename = "";

password = "";

 }

else if (vari == 3)

{ lcd.clear();

lcd.setCursor(0, 0);

lcd.print("Password");

lcd.print(" Changed");

delay(1000);

Serial.print(check_pass);

vari = 50;

check = "";

 }

else if (vari == 4)

 {

vari = 50;

int le = check.length();

 String code = "";

 //Serial.println(le);

int i = 0;

for (i = 0 ; i < le - 2 ; i++)

 {

code += check[i];

 }

check_pass = "";

check_pass = code;

Serial.println("Changed");

41

check = "";

 }

else if (vari == 5)

{ lcd.clear();

lcd.setCursor(0, 0);

lcd.print("File");

lcd.print(" Saved.");

delay(1000);

encr = "";

int le = check.length();

int i = 0 , k = 0;

 String data = "";

 String filename = "";

for (i = 0 ; i <len - 2 ; i++)

 {

if (check[i] == '>')

 {

 k = 1;

 }

if (k == 0)

 {

data += check[i];

 }

else if (k == 1)

 {

filename += check[i + 1];

 }

 }

Serial.println(filename);

val = data;

 k = 0 ;

for (i = 0 ; i <val.length(); i++)

 {

final += val[i];

 k = k + 1;

if (k == 16 || i == val.length() - 1)

 {

final.toCharArray(enc , 17);

 aes256_enc_single(key , enc);

encr += enc;

final = "";

 k = 0;

 }

 //final.toCharArray(enc,17);

 }

val = "";

 //delay(1000);

charfinal_name[] = "";

intfil_len = filename.length();

filename.toCharArray(final_name, fil_len);

SD.remove(final_name);

 File my = SD.open(final_name, FILE_WRITE);

42

if (my)

 {

my.print(encr);

my.close();

Serial.print("done");

 }

check = "";

vari = 50;

 }

 //Serial.println("end");

 //delay(10);

}

voidprintfiles(File file , intnum)

{

while (true)

 {

 File valu = file.openNextFile();

delay(100);

if (! valu)

 {

break;

 }

for (uint8_t i = 0 ; i <num ; i++)

 {

Serial.print('\t');

 }

Serial.print(valu.name());

if (valu.isDirectory())

 {

Serial.println("/");

printfiles(valu , num + 1);

 }

else

 {

 //Serial.print("\t\t");

 //Serial.println(val.size(), DEC);

Serial.println("");

 }

valu.close();

 }

}

void format(void)

{ list = SD.open("/");

while (true)

 {

 File valu = list.openNextFile();

delay(100);

if (! valu)

 {

break;

 }

43

SD.remove(valu.name());

valu.close();

 }

}

voidserialEvent() {

while (Serial.available()) {

 // get the new byte:

charinChar = (char)Serial.read();

 // add it to the inputString:

check += inChar;

 // if the incoming character is a newline, set a flag

 // so the main loop can do something about it:

if (inChar == ')') {

complete = true;

 }

 }

}

44

CODES FOR VISUAL STUDIO APPLICATION:

Imports System.IO.Ports
Imports Microsoft.Office.Interop.Word

Public Class main

 Shared _continue As Boolean
 Shared _serialPort As SerialPort
 Dim WithEvents SP As New SerialPort
 Dim check As Integer = Nothing

 Dim open As Integer = Nothing
 Dim richtext As String = ""
 Dim val As Integer = 0
 Private Sub Form1_FormClosing(sender As Object, e As FormClosingEventArgs) Handles
Me.FormClosing
 If SP.IsOpen Then
 MsgBox("Disconnect before Closing")

 End If
 End Sub
 Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load
 check = 0
 GroupBox4.Enabled = False
 GroupBox3.Enabled = False
 GroupBox5.Enabled = False
 GroupBox2.Enabled = False
 btndisconnect.Enabled = False
 btnload.Enabled = False
 txtsend.Enabled = False
 Label8.Enabled = False

 Dim buadrate() As String = {"300", "1200", "2400", "4800", "9600", "14400", "19200",
"28800", "38400", "57600", "115200"}
 cmbbuad.Items.AddRange(buadrate)
 cmbbuad.SelectedIndex = 4

 Try
 GetSerialport()
 cmbport.SelectedIndex = 0
 Catch ex As Exception
 MsgBox("No Port Connected")
 End Try
 End Sub
 Private Sub GetSerialport()
 For Each spt As String In My.Computer.Ports.SerialPortNames

45

 cmbport.Items.Add(spt)

 Next
 End Sub
 Sub showstring(ByVal mystring As String)

 If mystring.Contains("^") = True Then
 check = 20
 txtpass.Text = ""
 richtext = ""
 Timer1.Enabled = True
 End If

 'txtIN.AppendText(mystring)
 richtext += mystring
 txtsend.Text = richtext

 End Sub
 Delegate Sub myMethodDelegate(ByVal [text] As String)
 Dim mydelegate As New myMethodDelegate(AddressOf showstring)

 Private Sub btnconnect_Click(sender As Object, e As EventArgs) Handles btnconnect.Click
 If (cmbport.Text.Length() > 0) Then

 GroupBox4.Enabled = True
 GroupBox3.Enabled = True
 GroupBox5.Enabled = True
 GroupBox2.Enabled = True
 Label8.Enabled = True
 txtsend.Enabled = True
 btnload.Enabled = True
 Try
 SP.PortName = cmbport.SelectedItem.ToString
 SP.BaudRate = cmbbuad.SelectedItem.ToString
 SP.Open()
 If (SP.IsOpen) Then
 btnconnect.Enabled = False
 cmbbuad.Enabled = False
 cmbport.Enabled = False
 btndisconnect.Enabled = True

 End If

46

 Catch ex As Exception
 SP.Close()
 End Try
 Else
 MsgBox("No Port Connected")
 End If

 End Sub

 Private Sub btndisconnect_Click(sender As Object, e As EventArgs) Handles
btndisconnect.Click
 GroupBox4.Enabled = False
 GroupBox3.Enabled = False
 GroupBox5.Enabled = False
 GroupBox2.Enabled = False
 txtsend.Enabled = False
 Label8.Enabled = False
 btnload.Enabled = False
 Try
 SP.Close()
 btnconnect.Enabled = True
 cmbbuad.Enabled = True
 cmbport.Enabled = True
 btndisconnect.Enabled = False
 Exit Sub

 Catch ex As Exception
 MsgBox("error while closing the prot!")
 End Try
 End Sub

 Private Sub SerialPort_DataReceived(ByVal sender As Object, ByVal e As
System.IO.Ports.SerialDataReceivedEventArgs) Handles SP.DataReceived
 Dim str As String = SP.ReadExisting()
 Invoke(mydelegate, str)

 End Sub

 Private Sub GroupBox2_Enter(sender As Object, e As EventArgs)

 End Sub

 Private Sub btfile_Click(sender As Object, e As EventArgs) Handles btfile.Click
 If SP.IsOpen() Then

47

 SP.WriteLine("!)")
 Timer1.Enabled = True
 richtext = ""
 txtIN.Text = ""
 check = 1

 End If
 End Sub

 Private Sub btnopen_Click(sender As Object, e As EventArgs) Handles btnopen.Click
 If SP.IsOpen Then
 Timer1.Enabled = True
 richtext = ""
 txtIN.Text = ""
 SP.Write("@")
 SP.Write(txtpass.Text)
 SP.Write("$)")
 SP.Write(TextBox1.Text)
 check = 2
 txtpass.Text = ""
 End If
 End Sub

 Private Sub Timer1_Tick(sender As Object, e As EventArgs) Handles Timer1.Tick
 If check = 20 Then
 Dim num As Integer = 1
 For num = 1 To richtext.Length() - 1 Step 1
 txtpass.Text += richtext(num)
 Next
 check = 0
 richtext = ""
 Timer1.Enabled = False
 End If
 If check = 1 Then
 txtpass.Text = ""
 txtIN.Text = txtsend.Text
 check = 0
 Timer1.Enabled = False
 TextBox1.Text = ""
 End If

48

 If check = 2 Then
 Timer1.Enabled = False
 If My.Computer.FileSystem.FileExists(TextBox1.Text) Then
 My.Computer.FileSystem.DeleteFile(TextBox1.Text)
 End If
 Dim file As System.IO.StreamWriter
 'richtext = ""
 file = My.Computer.FileSystem.OpenTextFileWriter(TextBox1.Text, True)
 file.Write(richtext)
 file.Close()
 txtpass.Text = ""
 'TextBox1.Text = ""
 check = 0

 End If

 If check = 3 Then
 txtsend.Text = richtext
 Timer1.Enabled = False
 If (txtoldpass.Text = richtext) Then

 If txtcnfirmpass.Text = txtpassnew.Text Then
 If SP.IsOpen Then
 txtpass.Text = ""
 SP.Write(txtcnfirmpass.Text)
 SP.Write("%)")
 txtcnfirmpass.Text = ""
 txtpassnew.Text = ""
 txtoldpass.Text = ""
 TextBox1.Text = ""
 check = 0
 End If
 Else
 MsgBox("Password Doesn't Match!", MsgBoxStyle.Exclamation, "Error")
 End If
 Else
 MsgBox("Old Password is Incorrect!", MsgBoxStyle.Exclamation, "Error")
 End If

 End If

 If check = 4 Then
 check = 0
 Timer1.Enabled = False
 Dim txt As String = ""
 If SP.IsOpen Then
 Dim valu As Integer = txtload.Text.LastIndexOf("\")

49

 Dim str As String = txtload.Text.Substring(valu + 1)

 If System.IO.File.Exists(txtload.Text) = True Then

 Dim read As New System.IO.StreamReader(txtload.Text)
 Do While read.Peek() <> -1
 txt = txt & read.ReadLine

 'txtsend.Text = txtsend.Text & read.ReadLine & vbNewLine
 'SP.Write(txtsend.Text)
 Loop
 TextBox1.Text = ""
 txtsend.Text = txt
 txtpass.Text = ""
 SP.Write(txt)
 SP.Write(">")
 SP.Write(str)
 SP.Write("?)")

 Else
 MsgBox("File opening Error", MsgBoxStyle.Exclamation, "Error")
 End If
 End If
 End If

 End Sub

 Private Sub btnCreate_Click(sender As Object, e As EventArgs) Handles btnCreate.Click
 Process.Start("notepad", TextBox1.Text)
 'txtpass.Enabled = True
 End Sub

 Private Sub btnpassword_Click(sender As Object, e As EventArgs) Handles btnpassword.Click
 check = 3
 richtext = ""
 If SP.IsOpen Then
 SP.Write("*)")
 Timer1.Enabled = True
 End If
 End Sub

 Private Sub btnload_Click(sender As Object, e As EventArgs) Handles btnload.Click
 OpenFileDialog1.ShowDialog()

50

 txtload.Text = OpenFileDialog1.FileName
 Dim val As Integer = txtload.Text.IndexOf(".txt")
 '// If (val > 0) Then
 check = 4
 Timer1.Enabled = True

 '//Else
 'MsgBox("Please select a Text file!", MsgBoxStyle.Exclamation, "Error")
 'End If

 End Sub

 Private Sub Button2_Click(sender As Object, e As EventArgs) Handles Button2.Click
 Process.Start("winword", TextBox1.Text)
 End Sub

 Private Sub Button3_Click(sender As Object, e As EventArgs) Handles Button3.Click
 Process.Start("excel", TextBox1.Text)

 End Sub

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click
 If (TextBox1.Text.Length() > 0) Then

 txtload.Text = ""
 SaveFileDialog1.ShowDialog()
 txtload.Text = SaveFileDialog1.FileName()
 FileCopy(TextBox1.Text, txtload.Text)
 txtload.Text = ""
 Else
 MsgBox("Please Select a File to Copy",MsgBoxStyle.Question,"Warning")
 End If
 End Sub

End Class

