IMPLEMENTING FIPS 140-2 (TAMPER
RESISTANCE) STANDARD USING FPGA

By

NC RomailaBagar
PC Sara Farrukh

NC Mamoona Shah
NC Rao Ahmad Rahil

Submitted to the Faculty of Department of Electrical Engineering,
Military College of Signals, National University of Sciences and
Technology, Islamabad
in partial fulfillment for the requirements of a B.E Degree in
Telecom Engineering
JUNE 2015



ABSTRACT

It is an important duty of every IT organization to provide sufficient
security in computer and telecommunication systems thus protecting IP
(intellectual property). Application data is vulnerable during transmission
and storage so solutions for its protection have been developed, however
less consideration has been paid to protect the FPGA configuration data.
This research based project concerns itself mainly with the protection of
the device against all kinds of physical tampering in conformity with the
level 3 of Federal Information Processing Standards (FIPS) 140-2. FIPS
publications are issued by the National Institute of Standards and
Technology (NIST).In order to cover a broad spectrum of possible
applications and environments, this standard proposes four growing
qualitative levels of security. This project implements Level 3 of the FIPS
140-2 standard. It provides certain physical security techniques to avert
any unauthenticated user from accessing the Critical Security Parameters
(CSPs) held within the cryptographic unit. When the detachable covers or
doors of the cryptographic unit are interfered with the intent of an
intrusion, this tamper response technique,zeroize all CSPs. Some of the
implemented techniques use different FPGA features while others are
developed using user logic. The simulations match with the results
observed through ChipScope Pro. All of the modules are implemented on
the Xilinx ML605 Virtex 6 (XC6VLX240T) FPGA Kkit.



CERTIFICATE

It is certified that the work contained in this thesis entitled
“Implementing FIPS 140-2 (Tamper Resistance) standard using
FPGA” carried out by Sara Farrukh, Romaila Bagar, Mamoona Shah
and Rao Ahmad Rahil under the supervision of Asst. Prof. Waseem Igbal
for the partial fulfillment of degree of Bachelors of Telecom (Electrical)

Engineering is correct and approved.

Asst. Prof. Muhammad Waseem Igbal
Project Supervisor

Dated:



DECLARATION

No portion of work presented in this dissertation has been submitted in

support of another award or qualification either at this institution or

elsewhere.



DEDICATION

In the name of Allah, the Most Merciful, the Most Beneficent
To our parents and teachers, without whose support and cooperation, this

project would not have been possible.



ACKNOWLEDGEMENT

There is no success without the will of ALLAH. We are grateful to
ALLAH for giving the strength which enabled us to complete this project.
We are also grateful to our parents, family, teachers and everyone who
supported us through this project. Without their guidance and help we

would not have been able to achieve our goals.

Vi



Table of Contents

1. INEFOAUCTION ...t 2
1.1.Background/MOtIVALION ............ccveiieiieieeie e 2
1.2.Project Description and Salient Features...............ccoooiiiiiiiiiiiiiiie e 2
1.2.1. Project DesCription..........c.ouviuiiiiie e, 2

1.2.2. Prospective Application Area...........c.oovvriiiiniieeiiiiieenees 2

1.2.3. Salient Features. ... .....ooviiiiiiiiii i 3
1.3.Scope, Objectives, Specifications and Deliverables of the project................ 4
1.3.1. SCOPEe/ODJECLIVE........o it 4

1.3.2. Technical Specifications.............cccciiiiiiiiii e 4

1.3.3. DeliVErabIes........cccoiiiiiiiieicee s 4

CHAPTER 2
2. Literature Review/Background Study........ccceevuiuiuinininininiiieceiaann 7
CHAPTER 3

3. Design and developmenTt............cooiiiiiiiiiei e 10
3.1.DeSign DeSCrIPLION. .....uiee it 10
3.2.Explanation of Implemented TeChNIQUES ..........ccooviiiiiieniicece 11
[1] BitStream ENCrYPLiON.......ccccviiiiiiiie e 11

[2] JITAG diSable.......ccviiiee e 14
TSI OO OO 17

[A] GSR oo ees e 18

[D] KEY EFASUIE ...ttt 20

[6] IPROG ..ot ee et eseeee e s s ee s s s es e s s e s eees s 21

[7] OVEIWIITE ...t 23

[8] RAM POWET DIOP ...cviiiiiiiiieiieieieie e 24

[9] Load CT When Needed. ..........ccooueieieieiiiisiesieeee e 24

[10] Physical DeStrUCTION ......cc.eoiuiiiiiiiiiiieie e e 26

vii



CHAPTER 4

4. Project Analysis and Evaluation......cceeeeeeeeiieeieiiinneecrenseeceniiesons 30
4.1. Results generated through iSim..............ooi i 30
(L] G R 30
2] Gl S 32
[B] KEY EraSUIE. ... .ottt e e 33
[A1 IPROG . ... 35
[5] OVEIWIILE. . ..veivvieiericteeeieeee ettt ettt te et ra e 36
4.2.Results generated through ChipSCoOpe pro.........coovvvviiiiiiiiiieeieeneae 38
(L] GO R 38
2] Gl S e 40
[B] KEY EraSUIE. ... .t e e 42
[A1 IPROG . ... 43
[5] OVEIWIILE. .. veeviieieiieeie ettt sttt eareenreenae s 44
CHAPTERS
5. Recommendations for FUtUIre WOrK ...cccieiieiiiiiieiieiiiiiieniecrnmencaens 47
CHAPTER 6
6. CONCIUSION. . tuuieiiiniieirintinteecesenrensessesonssssonsonsessnssnsonsiasessnssnssns 49
B. L OVBIVIBW . ...t 49
6. 2. AChIBVEIMENT. ... 49
6.3.CONTIDULION. ... e 49
6.4 LIMITAtION. ...t e 49
6. 5. APPIICALIONS. ...\ 50
7. RETEIENCES.cutiuiieiieiiiiiiiiaiieriettiiatieteesntsnsosssasssnssnsonssssnssnssnnmnnn 51
8. APPENDIX-A .iiiiiiiiniiieintiettatiessasetossnsessssssmasnssssssnsssssnmasnses 54
9. APPENDIX-B.uuiuiiiieiniieiniiiieraiersesnressesnsesessasssssnsosessisnssossssessns 55
10. APPENDIX-Cuirtiniiieinineintnieesnressasnsessssnssssasnsssnsmesnssssssmiionsssens 58

viii



List of Figures:

Figure 1-1: System Model Diagram of Tamper Response Techniques......................3
Figure 1- 2: Basic response of the device in case of physical tampering.................. 5
Figure 3-1: Bitstream encryption: Steps performed in Xilinx ISE........................ 12
Figure 3-2: Bitstream encryption: Steps performed in Xilinx ISE ....................... 13
Figure 3-3: Bitstream encryption: Steps performed in Xilinx ISE....................... 14
Figure 3-4: JTAG Disable: Steps performed in Xilinx ISE ...................oooeni, 15
Figure 3-5: JTAG Disable: Steps performed in Xilinx ISE ......................o.e. 16
Figure 3-6: JTAG Disable: Steps performed in Xilinx ISE .............................. 16
Figure 3-7: Block RAM generation - Steps to generate Block RAM..................... 23
Figure 3-8: Load CT whenneeded...........ooiiiiiiiiiiii e 25
Figure 3-9: MarxX GENEIALON...........ccveiieiecie et re et sreesre e sneas 28
Figure 4-1: Writing critical data in registers...........oovviviiiiiiiiiiiee e, 30
Figure 4-2: Response once UNAUTHENTICATED USER Iis asserted..............31
Figure 4-3: Startup Primitive Block in Code............coooiiiiiiiiiiiiiiiiieee 31
Figure 4-4: Assertion of UNAUTHENTICATED USER Isignal...................... 32
Figure 4-5: Startup Primitive Block in Code............ooviiiiiiiiiiiiiiiiiien, 33
Figure 4-6: Assertion of UNAUTHENTICATED USER Isignal....................... 33
Figure 4-7: Startup Primitive Block in Code...........ooviiiiiiiiiiiiiiieee, 34
Figure 4-8: Assertion of UNAUTHENTICATED USER TIsignal....................... 34
Figure 4-9: External Shunt Circuits: When switchisopen..................cooviiiiin. 35
Figure 4-10: External Shunt Circuit: When switchis closed.............................. 35
Figure 4-11: ICAP Primitive Block in Code...........cooviiiiiiiiiiiiiii e, 36
Figure 4-12: Sending the IPROG command VIa ICAP............cccooiiiiiiiiiiiennns 36
Figure 4-13: Initial Writing of Memory data................cocoiiiiiiiiiiiiiina, 36
Figure 4-14: Read process after initialization.................cccoeviiiiiiiiiiniiiinennnn. 37
Figure 4-15: OVerwrite ProCess. ... ...oevuiuiiieiii e 37
Figure 4-16: Read Process after OVerwrite............ooovviiiiiiiiiiiieee e 38
Figure 4-17:icon and ila instantiation for chipScope...........c.ovviiiiiiiiiiiiininns 38
Figure 4-18: ChipScope Waveform. ............c.oiiiiiiiiniiiiiiieeee e 39
Figure 4-19: GTS_CFG_B in Status Register............coceviiiiiiiiiiiiiiiieieanns. 39
Figure 4-20: icon and ila instantiation for chipscope..........cccocvviiiiiiiiinnnn, 40
Figure 4-21: ChipScope Waveform ............ooiiiiiiiiiiiiiie e 41
Figure 4-22: icon and ila instantiation for chipscope............ccoeviiiiiiiiiiiiiiennne 41
Figure 4-23: ChipScope Waveform..............cooovuiiiiiiiiiiii i 42
Figure 4-24: icon and ila instantiation for chipscope...........c.cooiviiiiiiiiinninn.n.. 43
Figure 4-25: ChipScope Waveform..............coiiiiiiiiiiiiii e 43
Figure 4-26: icon and ila instantiation for chipscope.............coeviviiiiiiiiiininnns 44
Figure 4-27: ChipScope Waveform .............cooiiiiiiiiiiiiii e 44



List of Tables:

Table 3-1: Tamper Response Techniques..........ooviviiiiiiiiiiiiiieieeee e 11
Table 3-2: GTS: Features of Global 3 state are explained in detail...................... 18
Table 3-3: GSR: Features of Global Set Reset are explained in detalil................... 19
Table 3-4:Key Clear: Features of the KEYCLEAR signal are explained in detail.....20
Table 3-5:IPROG Command SEQUENCE. ...........ovuiriiii e e, 22
Table 3-6:Power Supplies Required for Configuration......................cooeinne. 24



Abbreviations: -

AES: Advanced Encryption Standard

AT: Anti-Tamper

BBRAM: Battery Backed RAM

CSPs: Critical Security Parameters

CT: Critical Technology

DDR3: Double Data Rate type three

DSP: Digital Signal Processing

EMP: Electromagnetic Pulse

FPGA: Field Programmable Gate Array
GSR: Global Set Reset

GTS: Global Tri-state

ICAP: Internal Configuration Access Port

IP: Intellectual Property

ISE: Integrated Synthesis Environment
JTAG: Joint Test Action Group

NIST: National Institute of Standards and Technology
PR: Partial Reconfiguration

RM: Reconfigurable Module

RP: Reconfigurable Partitions

WBSTAR: Warm Boot Start Address Register

XST: Xilinx Synthesis Technology

Xi



CHAPTER 1
INTRODUCTION




1. Introduction:

1.1. Background/Motivation:

The design security is considered in terms of protecting any intellectual
property (IP) from breach, since the impending losses are not just
financial but also pose a threat to any classified information. The
programmable logic has expanded beyond commercial markets and
extended to avionic and military applications, with such confidential
data, design security is obligated to take additional measures for the
protection of any critical information. Protecting application data
during transmission and storage is brought to pass, but lesser attention
has been paid to FPGA design security—that is, protecting the
configuration data of an FPGA.

The aim of this project is to secure this FPGA configuration data using
different tamper resistant techniques, in compliance with FIPS 140-2
standard.

1.2. Project Description and Salient Features:

1.2.1. Project Description:

This project provides physical security to the FPGA by preventing
any adversary from tampering with the equipment through some
attack on the device in which the FPGA kit is installed. When any
unauthorized user tampers with the protective casing of FPGA Kkit,
FPGA will be configured (using Verilog) in such a way that the

CSPs would be erased and the interfaces would be secured.

1.2.2.Prospective Application Area:

It is a research based company project sponsored by Government
Organization. Implemented solution will be useful for any
organization for providing physical security to any device. All of
the modules in this project are implemented on the FPGA kit (as
shown in Figure 1) which will be installed in one of Government
Organization’s device i.e. Security Gateway. After its installation it

will provide physical security to the device.

2



1.2.3. Salient Features:

Active and passive AT features are available in Virtex-6 FPGA.
The features that are built into the FPGA are known as passive AT
features. During the normal life cycle of the FPGA, these features
are executed at different times:

e Pre-configuration (e.g., JTAG Disable)

e During-configuration (e.g., BitStream Encryption)

e Post-configuration (e.g., JTAG disable)

Active security features necessitate the user to develop an
algorithm using FPGA design. These features only become
effective once the FPGA is configured by means of user bitstream
and as a result user design becomes active. For example, asserting
KEYCLEARB to zerioze the battery-backed AES key, GSR, GTS
etc.

JTAG disabled

AES Key after Occurrence of
configuration tamper event
lL ﬁ Key Clear Enabled/
ITAG < — FPGA »| GSR/GTS »| Key Zeroization —p| IPROG
|
. Power Occurrence of
1 .
Configuring ! Failure tamper event
|
FPGA : Memory source l I Key Erase
! via External
! powered by I chunt
! external battery

Figure 1-1: System Model Diagram of Tamper Response Techniques for both

The above flow chart shows how tamper response techniques are executed in a

on/off conditions of FPGA

sequence in case of a tamper event whether FPGA is in on or off condition.




1.3. Scope, Objectives, Specifications and Deliverables

of the project :
1.3.1.Scope/Objectives:

The basic design would include a physical protective casing which

will cover the cryptographic unit as shown in Figure 2. If any
intruder tries to tamper with this casing, the anti-tamper security
measures will come into play. They will lock all the I/O ports so
that no further data flows in or out of the system. They will disable
the JTAG port and the encryption key along with all the memory
stored in the FPGA device will be wiped off completely. Several
different anti-tamper techniques will be implemented to protect the

device.

1.3.2.Technical Specifications:

All work shall be done on the Xilinx ML605 Virtex 6 FPGA board.
The choice of programming language is Verilog. Model SIM and
Xilinx ISE Design Suite are the two simulation environments that
will be used. In Xilinx ISE Design Suite, Impact tool, ChipScope

pro and Isim were used.
1.3.3.Deliverables:

This project would cover the tamper resistance/response techniques

as envisaged by FIPS 140-2 standard. The deliverable would be a
tamper resistant FPGA device/module, which would resist any
physical attack from an intruder. The FPGA would be enclosed in a
casing which, if removed, would result in an instant resistive
response by the FPGA. Any intrusion would result in erasure of
AES key and device memory and locking of all 1/0 ports which
would render the device useless to the intruder as shown in Figure

2. This ensures the foolproof security of the cryptographic module.



AES key and other
memory contents erased

Disabled -+ ITAG Port
'

Basic Response Block Diagram

CASING

MNESCOM SECURITY GATEWAY

1l

FPGA KIT

Figure 1-2: Basic response of the device in case of physical tampering

The above figure shows the basic response of the device in case of physical
tampering. It shows that if any unauthorized activity is detected then JTAG port is
disabled, I/O ports are locked so that no more critical data flows out and secure

parameters like AES key are zeroized.



CHAPTER 2

LITERATURE REVIEW




2. Literature Review/Background Study:

Literature review for this project was done from various application notes and
white papers of Xilinx. Basic source of information for this project was
obtained from twenty-two documents, written by “NIST” [1],“Ed Peterson”
[2,” “Juwayriyah Hussain’[3], “Juju Joyce”[4] ,“Steven McNeil [5],
“Microsemi Application note”’[6] , “Austin Lesea’[7], “Wang Lie”[8], “P.
Sedcole”[9], “Maurice Aarts”[10], “Steve H. Weingart”[11], “Steven J.
Murdoch”[12], “Ross Anderson”[13], “Christopher T. Rathgeb”[14], “James
M. Lewrs”[15], “Virtex-6 Configuration User Guide”[16], “ML605 Hardware
User Guide”[17], “ML605 Reference Design”[18], “Virtex-1l Platform FPGA
User Guide”[19], “Virtex-6 Libraries Guide for HDL Designs User
Guide”[20], “ML605 Block Diagram Schematic”[21], and “Virtex-6 FPGA
Memory Interface Solutions User Guide”[22] respectively.

The first document describes security specifications for cryptographic units. It
provides four growing, qualitative levels of security proposed to cover a broad
spectrum of potential applications and environments. In the second document
author tells about different methods which can be implemented to secure
FPGA. He presented anti-tamper (AT) guidance in order to protect the
intellectual property (IP) and sensitive data from any kind of physical intrusion.
Sensitive data can include the different critical security parameters (CSP’s).
The third and fourth documents describe the four components to creating an
anti-tamper solution namely: Tamper resistance, Tamper evidence, Tamper
detection and Tamper response. They also describe the Anti-Tamper
capabilities present in FPGA Designs. In the fifth document author reviews the
available AT security features in the Virtex family, explains why these features
exist, and gives implementation details for each feature. The sixth document is
an application note explaining a quick FPGA zeriozing algorithm that will
zeroize Microsemi flash based FPGAs in 5 seconds by means of JTAG. The
seventh document is a white paper which overviews the four levels of security
as described by NIST in FIPS 140-2. A high-level explanation regarding
security features of the Xilinx Virtex-4 and Virtex-5 FPGA families is given.
The eighth document gives overview of a simple reconfigurable system and

dynamic partial reconfiguration design flow. The ninth document describes



how modular systems put into practice on FPGAs can take advantage from
being able to load and unload multiple modules at run-time. The tenth
document gives a briefly introduces technologies used to secure embedded
devices like FPGAs against hardware based side channel attacks. In the
eleventh document discusses tamper response methods which are means of
erasing data from RAM containing CSPs. The twelfth document inspects the
security limitations in tamper-proof systems. The thirteenth document describes
a number of attacks that can be mounted by opponents with much shallower
pockets. The fourteenth document describes the dynamic partial FPGA
reconfiguration techniques and tackles the security implications for these
techniques. The fifteenth document describes the self-modifying FPGA system
that includes an FPGA and a configuration memory coupled to the FPGA for
providing the FPGA with configuration data including SAFE configuration
data and dormant configuration data. The sixteenth document describes Virtex-
6 FPGA configuration overview, interfaces and modes. The seventeenth
document provides details of ML605 hardware and software tools. It gives the
detailed description of the hardware of Virtex-6 XC6VLX240T-1FFG1156
FPGA. The eighteenth document introduces numerous designs that exhibit
Virtex-6 FPGA features using the ML605 evaluation board. The nineteenth
document explains the function and operation of Virtex-1l devices. The
twentieth document contains a list of design elements in FPGA architecture,
organized into categories based on their functionality and individual
explanation of each every primitive. The twenty-first document describes the
schematic of the FPGA. The twenty-second document describes the Memory
Interface Generator (MIG) that generates DDRII SRAM, DDR SDRAM,
DDR2 SDRAM interfaces for Virtex-4 FPGAs and generates DDR SDRAM,
DDR2 SDRAM, SRAM interfaces for Virtex-5 FPGAs. It also generates DDR
and DDR2 SDRAM interfaces for Spartan-3, Spartan-3A, Spartan-3E, Virtex-6
and Spartan-3A DSP FPGAs.

These application notes ensure best AT practices are adopted to provide the
highest level of protection to the FPGA design. Our basic design requirements

and specifications are taken from these documents.



CHAPTER 3

DESIGN
AND
DEVELOPMENT




3. Design and Development:

3.1. Design Description:

A high level of confidentiality is achieved when an encrypted bitstream
is stored in an external flash and decrypted while FPGA is being
configured. This makes sure that the bitstream, containing information,
is only available to those who share the same secret key. Bitstream
encryption offers secrecy even when the system is off and during
configuration. It protects the FPGA design content which includes
block RAMS and registers initialization data. The configuration
bitstream is first encrypted with a key provided by the user to carry out
encryption. By using the iMPACT® software this key is loaded into the
FPGA via JTAG port. The key is saved in the volatile BBRAM of the
FPGA. JTAG readback is automatically disabled when we use the
encrypted configuration. Now that the FPGA is configured and the key
is loaded into it as well, it will enter into the normal operation mode
(operational only when Vaux is being supplied). In this mode any
authorized user can gain access to the CSPs. If power failure occurs, a
backup battery will supply power to BBRAM only in order to retain
the AES key (as shown in Figure 1). Once the tamper signal is
asserted (intrusion by unauthorized user) the techniques mentioned in
the table below will come into play. We have categorized all of these

techniques into two major categories (shown in Table 1):

' iMPACT: configures one or more devices

10



Main Sub Categories Techniques Type of AT
Categories Feature
Before FPGA Key Erasure Active
configuration
Physical Destruction Nil
Readback/JTAG Disable Active
V\tlgr‘:]n ;frle During FPGA BitStream Encryption Passive
signgl is configuration Global 3-State Active
asserted Physical Destruction Nil
During Normal Readback/JTAG Disable
Operation Active
Global Reset/Force Reset Active
Load CT Only When Needed | Can be used with
Active Features
RAM Power Drop Nil
RAM Overwrite Active
Physical Destruction Nil
FPGA Configuration Readback/JTAG Disable Active
Data BitStream Encryption Passive
Key Erasure Active
V(;h;;ttg?se Physical Destruction Nil
protected FPGA Settings/Registers | IPROG Active
Data Global Reset/Force Reset Active
Physical Destruction Nil
Other Data from IPROG Active
Memories RAM Power Drop Nil
RAM Overwrite Active
Physical Destruction Nil

Table 3-1: Tamper Response Techniques: Division of techniques into sub-
categories

3.2. Explanation of Implemented Techniques:

[1] Bitstream Encryption:

Bitstream Encryption is one of the techniques that add an

elevated level of protection to the logic design. An

unauthenticated user cannot analyze externally intercepted

bitstream to comprehend or replicate the design, without the

knowledge of the encryption key. This technique provides

discretion/secrecy even as the system is off and for the

duration of configuration. The design contents of FPGA,

11




including block RAMs and registers initialization data, is

protected by this method.

First the Xilinx ISE software does the encryption process by

generating an encrypted bitstream and a corresponding

encryption key. The key is stored within FPGA's devoted

RAM that is powered by an external battery. Through the

JTAG port, this encryption key can be programmed onto the

device. The Virtex6 device carries out the reverse function,

which is the decryption of the encrypted bitstream, during

the configuration. The on-chip AES decryption logic is

dedicated for bitstream decryption and cannot be used for

any other purpose. The following shows the steps in

generating encrypted bitstream:

1. On the Hierarchy panel, select the top module of the

2.

design.
On the process panel,

right click on

""Generate

Programming File™ and select "Process Properties"

as shown in Figure 3.

Help
BRI == m = ~ N2

Waiting for 2 sub-compilation
Compiled 19 VHDL Units
Compiled 3 Verilog Units
Built simulation execucable d B
Fuse Memory Usage: 151192 KB
Fuse CPU Usage: A27T9 ms
Launching ISim simulation =ng
"C:/Userssapho2/sDesktop/NEWJICS

=i

Eile Edit Miew Project Source Process Joels Window Layout
=A==k ¥ = > | o | - B = oD 52
Design = =
[ | Wiews: @ JE5F Implementation Simulation =
= _— 3
=] | H
L= icrarchy 3
[ =] tr_force_reset - =
Z= | B EE xcBvba240t-1fF1156 e
P [ tr_tap (tr_tap.v) =
— ["ee] tr_tap.ucf s a
&l — 2
=] B 10
- g 11
= . 1=
B | #2 Mo Processes Running it 1z
Elg: pes = i3
+ Processes: tr_tap - E— ais
= Design Utilities <] 1e
— User Constraints > | air
- m) [ ] Synthesize - XST — is
— T2 Implement Design = 19
1 Generate Programming File 20
=~y Configure Target Dewvice 54 Run
(= Analyze Design Using ChipScof ReRun
o Start | B2 Desien | UL Files | [ Li Rerun All
Console . Stop
Wiew Text Report

Force Process Up-to-Date

Implement Top Module

4 set Tmp

module tr tap(
input CLKP_I.
input CLEN_I,
inpur RST_I,
input R_BTIMN_TI,
input L _BTH_ I,

WRITE DATA EN,

UNAUTHENTICATED USI

LED WARNING O,

[7:0]1 LED_DATA ©

Admnput
input
ouTput
ouTpuT
» oz
A — Register amu
reg r© button stable:
reg 1I_button_stable:s
reg unauthenticated wusex_1d:
reg unauthenticated_ user_2d;:
eg unauthenticated user 3d;

I tr_

mary Cout of date)

TWIOBS/Ttr_globalresec/ocr_for

Desig -

Process Propertics...

ad=l set/test Tr tap is=sim b

option

Figure 3-1: Bitstream encryption: Steps performed in Xilinx ISE to achieve this

3. A “Process Properties” window will pop up. On the

Category list, click "Encryption Options™ and check

the option for ""Encrypt Bitstream".

12



4. On the Encrypt Key Select, select BBRAM or eFUSE,
for now we select BBRAM as it is the requirement in our
case.

5. Enter 256 bit Encryption key AES key, as shown in
Figure 4.

Bty Switch Name Property Name Value

- General Options
-g Ei it Ei t Bitst

- Configuration Options gEneryp neryprBitstresm

- Startup Options -g EncryptKeySelect: Encrypt Key Select BBRAM E

- o ks 0: AES Key (Hex String) FEDOFED1FED2FED3FED4FEDSFEDGFEDTFEDSFEDIFEDAFEDBFEDCFEDDFEDEFEDF

- Encryption Options
_ HMAC Key (Hex String) 11111171913111113133113133133133331333333333933739333117191111111
-g KeyFile: Input Encryption Key File B
-g startCBC: AES Initial Vector
-g ITAG_SyshMon:  JTAG to System Monitor Connection |Enable [~

Property display level:  Advanced |z| Dizplay =witch names Detault

[ oK ]l Gancsl H fpply ][ Help ]
-_-=—---------

Figure 3-2: Bitstream encryption: Steps performed in Xilinx ISE to achieve this
option
6. Go to step 1, but this time choose "Rerun All", as
shown in Figure 5. After the process the tool will
generate both encrypted bit file and corresponding key
file "".nky"".

13



Design — 0O &8 =

i
[ | Wiew: @ {5 Implementation ) fEE Simulation » 2
R e =]
E flicprchng - module tr_ tap
BEJ 'Fj tr_force_reset . 5 input CLKP_I,
— =} Enf xcBwix240t-1fFf1156 6 input CLEN I,
a2 [ tr_tap (tr_tap.a) = input RST_I,
e [l tr_tap.ucf & ] input R BTN I,
Q; — 9 input L_BTN_I,
b 1o input WRITE_DATA EN,
- i b s input UTHATDTHENTICATED US
= . 1z cutput LED WARNING_ O,
[~ d T2 Mo Processes Running - 13 cutput [T7:0] LED DRTR O
o 14 Y
B | Processes: tr_tap ol | El— as
vl Design Utilities @ 16 A —————————————— Regiscer an
I User Constraints a7 reg r button_stabler
= Synthesize - XST — ie reg 1_button scable:
— Implement Design = ig reg unauthenticated user_1d:
18] F2 Generate Programming File 20 reg unauthenticated usexr Zd:
X Configure Target Device = Run =g unauthenticated usexr 3d:
Analyze Design Using ChipSco S e R
- Start | ENg Design | l||_"| Files I E Iﬁlﬁ“ Mmary {out of date) J tr,
Console : Stop
Waiting for 2 sub-compilacion Ay = e
Compiled 19 VHDL Units Force Process Up-to-Date
Compiled 3 Verilog Units
Built simulation executakle o B Implement Top Module EWJOBS/tr_globalresec/tr for
Fuse Memory Usage: 151132 HEB Design Goals & Strategies...
Fuse CPU Usage: 1279 ms -
Launching ISim =s=imulation eng E-! Process Properties...
"C:/Users/aph02/Deskton/HEWJCOE Tr globalreseL/ b fTorce reset/test tr tap i=sim b

Figure 3-3: Bitstream encryption: Steps performed in Xilinx ISE to achieve this
option

The Virtex-6 FPGA AES encryption system decrypts
segments of 128 bits of data at a time, using a 256-bit
encryption key that was used to encrypt previously. There
are 1.1 x 10777 achievable key combinations for a 256-bit
key as stipulated by NIST. The same key is used for
encryption and decryption by AES. The security of the data
is reliant on the confidentiality of the key. An encrypted
bitstream file (BIT) and an encryption key file (NKY) is
created through the above process and programmed through
IMPACT tool.

[2] J-tag Disable:

JTAG disable prevents an attacker from breaking into the

system. Usually an intruder always starts by accessing the
JTAG, to read possible information from the FPGA. But
once JTAG is disabled, the JTAG chain initialized by the
intruders is broken. There are two ways to do this. One is to
instantiate the Boundaryscan module using HDL. The other
way is by changing a setting on the BitGen process, so that
the produced bit file already has this functionality. We

14



implemented the latter one. Below are the steps needed to do

this :
1.

design.

On the Hierarchy panel, select the top module of the

On the process panel, right click on ""Generate

Programming File™ and select ""Process Properties™

as shown in Figure 6.

- a s astesa awmaes 5 apres
[ View:-@-@Implementation-:- EE Simulation z AT irryrirrrriss
GE' Hierarchy —_— 3 /¢ Forced Reset Implementati
“ module tr_tap|
Eif'il 'l?’j tr_force_reset —. o inpur CLEPF I,
—| = £l xcOwh240t-1ff1156 5 input CLEN I,
s [ tr_tap (tr_tap.v) 5 input RST_T,
— e tr_tap.ucf w 8 input ®R_BTH_T,
g E— o input L BTN I,
3 A i0 input WRITE DATA EM,
- % i1 input UHNATOTHENTICATED US
= iz cutput LED WARNING O,
- c} Mo Processes Runnineg o s 13 outpuat [7:0] LED DATAR O
% 14 yi
l%rt Processes: tr_tap o is
=1 Design Utilities — @ 16 S Register an
User Constraints 2 17 reg r_ burtton_ stable:;
= [ 3] Synthesize - XST is reg 1_button_ stable:
: ta Implement Design = iga reg unauthenticated user 1d;
| 2 Generate Programming File 20 reg unauthenticated user 2Zd:
L Cenfigure Target Device '?t BRun teg unauthenticated user 3d:
S Analyze Design Using ChipScoj ReRun == ‘I"‘" e R
- Start | EE  Design | ll.l_"l File= I E Li Rerun All [nmary {out of datel J tr,
Console L Stop 1

Waiting for 2Z sub-compilation
Compiled 19 VHDL Unitcs=

Compiled 3 Verilog Unitcs=

Built simulation executable o ¥

Fuse Memory Usage:

Fuse CPUO Usage:
Launching ISim simmlation ent
"C:/U=sers/aphi02/Deskton/NEWJCE

i1z2T

View Text Report
Eorce Process Up-to-Date

Implement Top Module

151152 HB
2 ms

Design Goals 8¢ Strategies...

® ®m Process Properties... I

I glolalTIresa

«

EWJOBS/tr_globalreset/tr_foxr

Srce reset,/test Tr tap isim b

Figure 3-4: JTAG Disable: Steps performed in Xilinx ISE to achieve this option

3. A Process Properties window will pop up. On the

Category list, click ""Configuration Options' and check

the option for ""Disable JTAG Connection.”Then click

Apply and close the window, as shown in Figure 7.

15



(% Proces Properses Comtmurstenopiens T e

Category Switch Mame

Property Mame

Value -~

- General Options
- Configuration Options

-g
-g

- Startup Options
-Readback Options
- Encryption Options

-g
-g
-g
-g
-g
-g
-g
-g
-g
-g
-g

ConfigRate:
CelkPin:
MOPin:
MMILPin:
M2Pin:
ProgPin:
DonePin:
InitPin:
CsPin:
DinPin:
BusyPin:
RdWrPin:

HswapenPin:

Configuration
Configuration
Configuration
Configuration
Configuration
Configuration
Configuration
Configuration
Configuration
Configuration
Configuration
Configuration

Configuration

Rate
Clk {Configuration Pins)

[=]

Pin
Pin
Pin
Pin
Pin

PO
rA1
M2
Program

Done

Pin Init

Pin
Pin
Pin
Pin
Pin

Cs

DIn

Busy
RdWr
HSWAPEM

-g TckPin:
-g TdiPin:
-g TdoPin:
-g T

et}

JTAG Pin TCK
JTAG Pin TDI

JTAG Pin TDO
JTAG Pin TMS

-g Disable_ITAG:

| Dable JTAG Connection

-g UnusedPin:

Unused IOB Pins

-g

—r1

UserlD:
T atebdode:

UserlD Code (8 Digit Hexadecimal)

D~ T 1 lncddat

BAod

Pul[~|
Pul[~|
Pul| |
Pul[~|
Pul[~|
Pul| |
Pul[~|
Pul[~|
Pul| |
Pul[~|
Pul[~|
Pul| |
Pul[~|
Pul[~|
Pul| |
Pul[~|

Pul[~|

=FFFFF
gl el 7

Property display level:

Advanced EI Dizplay switch names

(

[a].4

] |

Cancel|

J [

Apply

J [

Help ]

Figure 3-5: JTAG Disable: Steps performed in Xilinx ISE to achieve this option

4. Now, we can generate a bit programming file with JTAG

disable function. Go to step 1, but this time choose

"Rerun All**as shown in Figure 8.

File Edit View Project Source Process Tools Window Layout Help
DPPEP L[ imbhx wal| »[» pxx ~RAIRA =2 Mo Fx
|Design ~+ 0O x - 1 *timescale 1ns S 1ps
i WiEwe @ @Implementatian [ Simulation > e IS5,
g%l Hierarchy = S Forced EReset Implemental
= g module Tr _Ttap(
4] > tr_force_reset — s inpul:_CLI{P I,
— = B xcBwha240t-1ff1156 & inpur CLEN I,
fEr [Mlefte tr_tap (tr_tap.w) 7 input RST I,
— ["ee] tr_tap.uct o 8 input R_BTH I,
% — o imput L BTN I,
A 10 imput WRITE DATHR EMN,
- =4 i1 imput UI\TAUTI{ENTICILTED T
= i1z ocuntput LED WARMNING O,
W | P2 Mo Processes Running o 13 cutput [T7:0] LED DATR O
= =4 14 ) :
54 | Processes: tr_tap == 1s
el lE Design Utilities @ 18 S Register
= User Constraints (S ] a7 reg r button stable;
93: Synthesize - X5T e 18 reo 1_bu1:1:c|n_s1:ab1e H
— Implement Design E a9 reg unauthenticated uasexr 1
il Generate Programming File 20 reg unauthenticated uaser 2
Configure Target Device %"{: Run e lmauthentlcated nm=ser 3
Analyze Design Using ChipSco ReRun Lﬂ' """"" ShomaScnsod seam
-  Start | g Desien rTlD File=s I Iy Rerun All ) mary (out of dated || J
¢ i) 4

Console

WMaiting for 2 sub-—-compilation
Compiled 19 VHDL Units
Compiled 3 Verilog Units
Built simulation executable O
Fuse Memory Usage: 151192 EDB
Fuse CPU Usage: 1279 ms

WView Text Report

Force Process Up-to-Date

- Implement Top Module
Design Goals & Strategies...

Launching ISim simalation eng

® ® Process Properties...

"C:/Users/aph02/Desktopn,/NEWJOES tr globalresets o fTorce reset,/test tr tap isim

IWJOES,/tr_globalreset/tr_H

Figure 3-6: JTAG Disable: Steps performed in Xilinx ISE to achieve this option

16



When trying to break into a system, an invader always
initiates with the JTAG port. The incorporated JTAG
primitive (BSCAN) is instantiated to break the JTAG chain
and to supervise any unauthorized commotion. The user can
take up two different techniques to rupture the JTAG chain
for the FPGA. The first method instantiates a “BSCAN
primitive” in the user logic design and attaches the
DISABLE_JTAG => TRUE characteristic to the user logic
algorithm. The second method often employed to fracture
the JTAG chain is to affix the DISABLE_JTAG option
when running BitGen. Both methods are equally feasible.
The first method makes sure that the chain is ruptured by the
user logic algorithm. The second method puts off this
decision, to break the chain, to an afterward step on the tool
flow. The system designer decides where to make this

decision.
[3] Global Tri-State (GTS):
Global Tri-Sate (GTS) pin is an active-High pin that is an

input from the FPGA fabric. Significant information, which
is highly confidential, can flow out of the external pins of
FPGA. All FPGA outputs, without delay enter a high-Z state
and avert data from flowing outside the FPGA when global
3-state (GTS) input on the STARTUP block is asserted. This
action takes place in response to a tamper event. GTS
immobilizes all the I/O drivers apart from the configuration
pins. This is an instant step prior to IPROG and
KEYCLEAR to ensure that data flow is brought to a
standstill imminently. This pin is kept low for most
applications. Summary of this feature is shown in Table 2.

This  method is done by instantiating the
STARTUP_VIRTEX6 primitive and controlling the GTS
pin.  The global signals are controlled by
STARTUP_VIRTEXG6 primitive. When unauthenticated user

17



Feature

Type

GTS

Input

is detected, asserting the GTS will set all output pins to High
Impedance.

The simulations observed were correct according to the
algorithm. Simulation results are presented in the next part.
Block diagram, port descriptions and Verilog Instantiation

Template for STARTUP primitive is given in Appendix B.

Use case User How To
Outputs enter a high-Z | STARTUP primitive is
state instantiated and user logic is

made to develop  proper
conditions for GTS assertion.

Table 3-2-GTS: Features of Global 3 state are explained in detail.

[4] Global Set Reset (GSR) :

This method can be implemented using two different
approaches i.e. instantiating the GSR in STARTUP primitive
or by setting the registers to their default values during
configuration. Both of these approaches are explained
below.
0 _Using STARTUP Primitive:
GSR is an asynchronous active high global signal from
the FPGA fabric and it is activated at the end of device

configuration. FPGA logic registers store CSPs such as
user key. All FPGA registers (i.e., flip-flops) are restored
to their default states on assertion of GSR (on STARTUP
block) in response to a tamper event. In order to secure
all sensitive data in the FPGA, GSR should occur prior
to IPROG OR KEYCLEAR. This signal has no effect on
internal memory contents of FPGA like shift registers,
look-up table or block RAM; these must be cleared by
developing appropriate user logic or by an IPROG
command. This pin should be tied Low for most
application. GSR has no input pin at the functional level
as it is a global signal from FPGA fabric. A write
operation is not always successful when GSR is in its
active high state.

18



This method is done by instantiating the
STARTUP_VIRTEX6 primitive and controlling the
GSR pin. A fabric interface is provided by this primitive
thus allowing the users to control some of global signals
present in FPGA fabric. STARTUP primitive is
instantiated and user logic is made to develop proper
conditions for GSR assertion. When unauthenticated user
Is detected, asserting the GRS will accomplish the
Global Reset. Summary of this feature is shown in Table
3.

Feature Type Use case User How To
GSR Input Reset flip flops to their | STARTUP primitive is
default state when a | instantiated and user logic is
tamper event occurs. made to develop  proper
conditions for GSR assertion.
Table 3-3-GSR: Features of Global Set Reset are explained in detail.

0 Forced Reset:

We introduce this technique during normal operation.
This function sets back the default value of all flip-flop
and registers of the FPGA when a tamper event is
detected. At the moment that an
UNAUTHENTICATED_USER is detected, all the
registers reset back to its default values.

The forced reset requires every register used in the
design to be defined in the code and it would be a
tedious task to do so as there can be many registers
present. Therefore, the technique using the startup
primitive is more preferred.

The simulations observed in both approaches were
correct according to the algorithm. Simulation results are
presented in the next part. Block diagram, port
descriptions and Verilog Instantiation Template for

STARTUP primitive is given in Appendix B.

19



[5] Key Erasure:

0 Keyclear: -
It is an internal signal, when triggered as result of a

tamper event clears the AES decryption key. The 256-bit
key is stored in battery-backed RAM which constitutes
of on-chip volatile memory cells. This ability comes into
play when a tamper event is detected. The KEYCLEAR
declaration must take place prior to an IPROG
command. The FPGA device is rendered ineffective until
reprogrammed, after KEYCLEAR is asserted. This
internal signal is described in Table 4.

User How-To: This method can be used together with

AES encryption method. Develop FPGA logic to verify
the proper conditions for KEYCLEAR affirmation
before instantiating STARTUP primitive. When
unauthenticated user is detected, asserting the
KEYCLEAR clears the decryption key stored in the
BBRAM. (Note: effuse registers cannot be cleared.)

The simulations were correct according to the algorithm.
Simulation results are presented in the next part. Block
diagram, port descriptions and Verilog Instantiation
Template for STARTUP primitive is given in Appendix
B.

Pin Name Type | Category Description

KEYCLEARB | Input | Response | Clear Key from BBRAM. This is an
input pin. When seized Low for 250
ns, the contents of the BBRAM are
erased.

Table 3-4-Key Clear: Features of the KEYCLEAR signal are explained in detail.

0o Kaey Erase via External Shunt: -
The memory cells of BBRAM, which holds the

encryption key, are volatile and should get uninterrupted
power to keep hold of their contents. During standard

process, BRAM is powered by the Vccaux input. When

20



Vccaux IS detached a separate Vpart power input is
supplied to preserve the key. Vparr requires modest
current; and so a small watch battery is appropriate for
this supply. While Vccaux is being supplied, Vgart does
not require any current and can be detached. Schematic
for Vgarr line is shown in Appendix A.
Another method to erase the BBRAM key when Vccaux
isn't applied is by means of an exterior shunt to ground
on the Vgarr line. If a tamper event is detected in this
condition, the external battery power line to the Vgatr
pin can be untied and the pin is driven to ground with a
transistor shunt. BBRAM supply voltage is in Vgart pin
which is in the N8 pin of VIRTEX-6 FPGA.
[6] IPROG:
It is an internal command equivalent to the assertion of the
external PROGRAM_B pin but it don't reset the dedicated
reconfiguration logic. This command is sent through the
ICAP interface and it effectively zeroizes the FPGA
Configuration memory (configuration data, block RAMs,
and flip-flop state), all flip-flop contents, and key expansion
memory, but not the key itself. It can be combined with the
KEYCLEAR signal in response to an occurrence of a tamper
event. IPROG command should be sent to the ICAP once
KEY CLEAR is asserted. It should not take place before the
assertion of KEYCLEAR.
After the assertion of both these penalties, the FPGA
becomes useless as it can't decrypt the existing bitstream.
Once the device can't be configured with the encrypted
bitstream, it is indicated that some kind of tamper event has
taken place.
The ICAP primitive must be instantiated in the user design
to send an IPROG command as this primitive offers user
design access to the Virtex-6 FPGA configuration interface.

21



An appropriate sequence of commands must be written in it.
Readback can be performed by the user through the ICAP
interface even if bitstream is encrypted. FPGA AES
encryption scheme can't be defeated by the attackers
through this interface.

After configuration, the start address of the next bitstream is
determined by the user logic, and WBSTAR register is set,
and then IPROG command is issued using ICAP. When a
tamper event is detected the system sends the following
sequence of command by the ICAP interface:

1. Sync word is sent.

2. WBSTAR register is programmed for the start address of
next bitstream.

3. IPROG command is sent.

Everything except the dedicated reconfiguration logic is
reset by FPGA, once configuration logic receives the IPROG
command. After all configuration memory is cleared, the
value stored in WBSTAR is used for the starting address of
bitstream. An example bitstream showed in Table 5 is used
to send the commands through a state machine to the ICAP.

ConfigurationData (Hex) Explanation

FFFFFFFF Dummy Word

AA995566 Sync Word

20000000 Type 1 NO OP

30020001 Type 1 Write 1 Words to WBSTAR

00000000 Warm Boot Start Address (Load the Desired Address)
300086D1 Type 1 Write 1 Words to CMD

0000000F IPROG Command

20000900 Type 1 NO OP

Table 3-5-IPROG Command Sequence: An appropriate
example bitstream to send the IPROG command [16].

The simulations were correct according to the algorithm. Simulation results are

presented in the next part. Block diagram, port descriptions and Verilog Instantiation

Template for ICAP primitive is given in Appendix B.

22




):

«clka (CIK I},
rata (RET I,
.ena (1'bl),
Jwea (WriteEnable),
.addra (mem addreas),
«dina (mem in,
.douta (mem put)

[7]Overwrite:

This method is widely accepted in administration due to its
straight forwardness; however in calamitous conditions it is
difficult to guarantee that enough power will be accessible to
activate the over-write circuit. RAM overwrite is a technique
for tamper resistance that overwrites all the addresses of a
Memory with "0000000...." or "1111111111111...." when a
tamper event is detected. The widespread technique is to
over-write the critical with a couple of times with all O's,
then all 1's. However it is more suitable to use random or
pseudo-random data since it would be more efficient. This
can be time consuming since it takes more time to
completely overwrite the data since the data would have to
be generated.

This method had been done and tested, once the
unauthenticated signal has been detected, the system enables
writing to the RAM via the memory interface, and writes
data and then increment the write address until all the data
addresses are written with all “1°s.

In this method block RAM present on the FPGA is
overwritten. Block RAM in our design is generated using the
Xilinx CORE Generator as shown in Figure 9 (a), (b).The
simulations were correct according to the algorithm.

Simulation results are presented in the next part.

AL D RALE: O] s— e DHOLITA 15:20)
DI MAL 1.5 0] s—
ENA —»

VVEA[D: 0]
RSTE —3
CLIGA —

a) Memory Instantiation in code b) Block RAM generated through core generator

Figure 3-7: Block RAM generation - Steps performed to generate Block RAM

23



[8] RAM Power Drop:

This is a clear-cut method to erase the data. In this

techniques the power supply to the RAM modules is
detached which efficiently clears the contents since RAM
modules are volatile. Power supplies required for
configuration of FPGA are mentioned in Table 6 below. A
crow bar circuit can be connected with the Vcore (powers
the internal logic functions such as CLBs, block RAM and
DSP blocks.), and also a supervisory circuit. On the
detection of a tamper event, a voltage level greater than that
of the threshold of the crow bar circuit would cause the
fuse/circuit breaker to trip and thus breaking the circuit and
causing a power drop. This power drop will clear the block
RAM.

To implement this method the RAM voltage supply is
dropped. Note that we can’t apply this to the ML605 since
the RAM has fixed connections to Board supply voltage. We
can directly cut off the main power supply to the board
because due to fix connections of RAM on MLG605 this

method can't be implemented only to clear the block RAM

through Veore.

Pin Name Description
VceInt Internal Core Voltage
VBaTT Encryption Key battery Supply
Vceo o Configuration bank supply voltage
Veeaux Auxiliary power input for configuration logic and other FPGA functions
Vceo 24 Dual mode configuration pin output supply voltage. Standard 1/0 voltage
Vceo levels supported for configuration are 1.8V and 2.5V.

Table 3-6-Power Supplies Required for Configuration [16]

[9] Load CT when needed:

Partial reconfiguration features of the FPGA allow the user

design to be portioned i.e. non-critical and critical
technology. The CT portion of the design is loaded only
when required while non-critical data remains present at all

times. The CT can be erased when it has performed its

24




desired function. Both the PR region and the key for the CT
is erased in response to a tamper event (as shown in Figure
10).

Erase in Response
Memiory IF to a Tamper Event
Encrypted
FW and SW User Other Memory I/F
cT User Encrypted 1
Logic Logic FWand SW = Other
Region cT 805;2
Logic
i
Encrypted 1l
FPGA Bitstream Encrypted
FPGA Bitstream
R
a) Protecting System CT b) Protecting System CT—Tamper Response

Figure 3-8: Load CT when needed [2]

The license for partial re-configuration option in PlanAhead
has not been provided so the PR project can't be created.

A project must not be used for flat ISE implementation, once
it is set as a PR project because all interface and options are
going to work for the PR features. The PlanAhead interface
is modified specifically for a PR design after the selection of
PR option.

A design can have multiple RPs by running the “Ser
Partition” command for each RP in a design. Each RP will
have its own RM by using the “Add Reconfigurable
Module” command. New netlists or constraints must be
brought into PlanAhead if any changes are made to the
source files. After defining all the RM variants of all RPs in
the PlanAhead software, physical layout of the design is
defined by using Floorplanning mode. After the creation of
PR design, to ensure that the design don't violate any basic
premises of PR, design checks should be run from time to
time. Once all modules have been defined, different
configurations can be defined and implemented. To create a

configuration, any grouping of RMs and black boxes can be

25



used and after their creation they can then be implemented.
After implementation these configurations can be controlled
and verified. After verification, full configuration and partial
BIT files for each RM in a chosen configuration can be

generated.
[10] Physical Destruction:

This method of erasing the data is entirely reliable. On the

other hand, this technique is held in reserve for the most
sensitive situations. Implementing this technique practically
isn’t feasible. Some such techniques are mentioned below:

o Electromagnetic Pulse (EMP):

An EMP is an instantaneous burst of high power
energy caused by man-made sources, and occurs as a
radiated field that couples on to
electrical/telecommunication lines etc. In an EMP
event, every piece of unprotected equipment that relies
on integrated circuits for operation could be
immediately disabled or destroyed. EMP protection
has become an essential element for all electronic
equipment.

ICs breakdown; undergo loss of data, thermal runaway,
gate-insulator  breakdown, avalanche breakdown,
tunnel breakdown, and metallization burnout when
exposed to EMP. The energy required is supplied by
the power supply or storage capacitors or other power
resources. ICs when exposed to a few hundred watts of
power for few nano seconds destroy most ICs.
Handheld EMP Device is a device which releases an
Electromagnetic pulse, which breaks an electrical
device within a certain range. Energy provided by the
EMP devices downpour the circuits in electronic

devices. The pulse melts the metal pathways in the

26



circuits. The energy burst can even destroy unplugged
electronics.

Short Circuit:

First illustrated by Erwin Otto Marx in 1924, a Marx

generator is an electrical circuit. Its causes a high-
voltage pulse by means of a low-voltage DC supplies.
The circuit charges numerous capacitors in parallel,
and then connects them in series thus producing a
high-voltage pulse. The capacitors are electrically
charged in parallel to a voltage V by using a DC power
supply through the resistors. The spark gaps behave as
open circuits while the capacitors are being charged, as
they have voltage V across them, however the
breakdown voltage across them is greater than V. The
last gap, if absent, would avert the capacitors form
being charged however it is present and separates the
load from the generator’s output. In order to create the
output pulse, the first gap is broken down which as a
result shorts the gap thus causing the first two
capacitors to be in series. As a result, the second gap is
broken down thus adding the third capacitor; this
process carries on breaking down all of the gaps in
succession. The stack of these capacitors is connected
to the load with the last gap. This outputs a short pulse

as the capacitors are discharged through the load.

27



"
|

|

A=) Charga Voltag
]
5

Tl

L
i
L

“Mhr NN ¢ I N

> B - c | o c| )
Rc Rc

" N

Marx Generator (Discharging)

Figure 3-9: Marx Generator

Above figure shows a Marx generator charging and discharging to produce a high

voltage pulse.

0]

Degaussing:
Degaussing requires machine that generates strong

electromagnetic field to obliterate all data that is
magnetically recorded. It is done in general by a
reducing alternating field. The field is produced by a
standard copper coil. The amplitude is reduced by
pulling the workpiece away from the coil. As the
alternating field reduces the magnetic moments present
inside the workpiece are randomly oriented. Virtually
all magnetic field can be removed with this method.
Magnetically hard materials require a strong magnetic
field to rise above the coercive force. The penetration
depth of the alternating magnetic field is reasonably
reduced by the screening effects of the ferromagnetic
materials. So high field strength boosts the absorption
depth of the alternating field into the ferromagnetic
material. To increase the absorption of the magnetic
field is further enhanced by lower frequencies.
Degaussing machines are costly and care must be taken
to avoid nearby equipment from being destroyed

28



CHAPTER 4

PROJECT ANALYSIS AND
EVALUATION

29



4. Project Analysis and Evaluation:

Analysis and evaluation of results (analyzed using iSim and ChipScope pro) of

all the implemented techniques is given below.
4.1. Results generated through iSim:
[1]GSR:

o Forced Reset:

In forced reset 18 registers are defined in the program. Each
registers has been assigned a default value according to its
respective number. After sometime these registers are
overwritten by critical data that is assumed to be “AA” in the
code. This critical data will be retained by the registers as long
as UNAUTHENTICATED USER I isn’t asserted. The instant
UNAUTHENTICATED_USER_1 is asserted all registers are

reset back to their default value that is their respective number.

1l WRITE_DATA_EN 1
-”; wmem00_en 0
-”; wmem01_en
-”; wmem02_en
-”; wmem03_en
-”; wmem04_en

¢ wmem05_en

' wdata[7:0] 10101010

B reg00[:0 0 0
m reqoirro] ; — momo |
: : — wopmp | |

| 10w ]
1

B req0S[:0]

Figure 4-1: Writing critical data in registers

Critical data is written in each register once its respective write enable i.e.

wmemxx_en is high.

30



1§ WRITE_DATA_EN o

-”;- wmem0d_en s

-”;a wmeml1_en

-”;L; wmem02_en

-”;» wmeml3_en

-”;L; wmem(4_en

-”;» wmemd5_en [

B¢ wdata[7:0] 10101010

10101010

10101010

10101010 )

10101010 ) =_
10101010 | O =

Figure 4-2: Response once UNAUTHENTICATED_USER I is asserted

All registers are reset back to their default value once
UNAUTHENTICATED_USER_I is asserted.
o Using STARTUP Primitive:
In this code GSR is instantiated in the STARTUP PRIMITIVE
Block. GSR is instantiated with the
UNAUTHENTICATED_USER_I signal. In the code a 16X16
block RAM is generated. It set to a default value of “16'h5555”.
After this memory is written with critical data assumed to be

“16’hFFFF”. Once any tamper event occurs
(UNAUTHENTICATED_USER_I) GSR goes high, thereby

restoring all flipflops to their default values.

STARTUP_VIRTEXE #(
-PROG_USR ("FRLSE"™) // RActivate program event security feature

)

S /INstantiation of startup primitive
u_STRRTUP_VIRTEXE |

Flgeneric map

rt map |

-C CLE
-CFGMCLE {
// .DINSPI
S/ .BPREQ —— PROGRAM regquest to FPGA logic output
TCESFI
.CLK {
.GIS { gts_signal,‘l,_:'_-'2-.7;-2: ';;a';:'_’.a:’.:'_ca:ed user is detected al port become ::'_sla.:e
= = —_— = » sert to keyclearb
- PRCE { pack_signal),// —-- PROGRARM acknowledge input (rising edge)
\.USRCCLEC ( 1'k0),
UOSRCCLEIS ( 1"b0).,
\.USRDONEC ( 1'k0),
-UOSRDONETS ( 1"b0)

Figure 4-3: Startup Primitive Block in Code

In the above figure instantiation of GSR in STARTUP primitive is shown.

31



B mem_out[15:0]

0 A 0
-lL . I:I l----_I

Figure 4-4: Writing of critical data and assertion of
UNAUTHENTICATED_USER I signal

In the above figure it is shown that block RAM is written with critical data. Once an
unauthenticated user is detected, all the memory locations are reset back to their
default values as a result of GSR pin assertion.GSR is an input pin on the FPGA
fabric, so it is instantiated in the STARTUP PRIMITIVE block. As GSR isn't an
internal signal defined in the code so its assertion can't be observed in the simulation.
[2]GTS:
In this method GTS pin is instantiated in the STARTUP PRIMITIVE
Block with the UNAUTHENTICATED_USER I signal. So once any
tamper event occurs GTS pin goes high, thereby shutting off all output
ports.
GTS_CFG_B bit in the Status Register, which indicates the value of
numerous global signals, can be observed at run time using ChipScope

pro.

32



STARTUF VIRTEXE #/{
.PROG_USR ("FALSE") // Activate program event security feature

)

//INstantiation of startup primitiwve
u STRRTUP VIRTEXE |

——————

[ open),
cfogmclk signal),
| open),
[ open),
{ preq_signal), //-- PROGRAM request to FPGA logic output
/ { open},
.CLE { 1'k0),
LGSR LT AR T L S T oS M T
.61 [ ONAUTHENTICATED USFR TV //HRen upaprpencicared yeer o detected o1 pore pecomeleristate
.EEYCLEARE ( keyclearb), //When Unauthenticated user is detected, it automatically assert to keyclearb
. PACK { pack_signal),// -- PROGRAM acknowledge input (rising edge)
USRCCLEC ( 1'bO),
.USRCCLETS | 1'kO),
JOSRDCHEC  ( 1'b0O),
.USRDONETS ( 1'bO)

Figure 4-5: Startup Primitive Block in Code

In the above figure instantiation of GTS in STARTUP primitive is shown.

1 LeD_w
B4 (ED D
1§ cep1
1§ cikn

1 RsTI

1 RETHI

1 LBt

1 LOAD_SAMPLE | o
16 UNAUTHENTICH o

Figure 4-6: Assertion of UNAUTHENTICATED_USER I signal

In the above waveform UNAUTHENTICATED_USER | is detected. At the moment
that an unauthenticated user is detected, all the output ports are locked as a result of
GTS pin assertion.GTS is an input pin on the FPGA fabric, so it is instantiated in the
STARTUP PRIMITIVE block. As GTS isn't an internal signal defined in the code so

its assertion can't be observed in the simulation.

[3] Key Erasure:
o Key Clear:
In this method KEY CLEAR pin is instantiated in the
STARTUP PRIMITIVE Block with the
UNAUTHENTICATED_USER_I signal. So once any tamper
event occurs KEY CLEAR pin is asserted, thereby erasing the
AES key.

33



STARTUP_VIRTEXE #|
-PROG_USE ("FALSE") // MActivate program event security feature

)

//INstantiation of startup primitive
u_STARTUP_VIRTEXE |

_____

. { open),
. CFGMCLE ( cfgmclk signal),
{ open),
{ open),
{ preq_signal), //-- PROGRAM request to FPGA logic output
K { open),
.CLE { 1'b0),
.GSR ( gsr_signal),// use for global reset
o T = 1 F F= b L_2 o o 5
I JEEYCLERRE | U'NAETI—IENTICATED_USER_I], //When Unauthenticated user is detected, it a::crr.a:'_call;'_.' assert to keyclearb
. B T ;.EL,J&_ ¢g.EJ.,I,_. Ve i v=10y _K..L..’.’_E._ll:’: IApUC T IIo g E._u::_l
JUSRCCLEC ( 1'bD),
LUSRCCLETS ( 1'b0),
JUSRDCNEC ( 1'bD),
.USRDCNETS ( 1'b0)

Figure 4-7: Startup Primitive Block in Code
In the above figure instantiation of KEYCLEAR in STARTUP primitive is shown.

1l LED_WARNING o
B4 LED_DATA_O[F:
T ke

1 cuen

1 rsTI

Ty RBTNI
"

16 L0AD_SAMPLE | o
16 UNAUTHENTICH o

Figure 4-8:Assertion of UNAUTHENTICATED_USER_I signal

In the above waveform UNAUTHENTICATED_USER | is detected. At the moment
that an unauthenticated user is detected, AES decryption key stored in BBRAM s
erased. KEY CLEAR is an input pin on the FPGA fabric, so it is instantiated in the
STARTUP PRIMITIVE block. As KEY CLEAR isn’t an internal signal defined in the

code so its assertion can't be observed in the simulation.

34



o Key Erase Via External Shunt:

& RL1
§“ o
L

D1 D2 LEDYELL O DS
LED-GREEN LED-BLUE LED-REC

? I RL1
Vi
HH

D4

D1 D2 62 Lsn.vmom. D5
LED-RED

LED-GREEN LED-BLUE

Figure 4-10: External Shunt Circuit: When switch is closed
In the above figures external shunt circuit to erase key from

BBRAM when FPGA power is off is given. In the given circuit
memory is retained until an UNAUTHENTICATED_USER_I

is asserted (i.e. closing of switch). In case of tamper signal
relay switches its connections and memory is no more supplied
with power to retain the key (i.e. key is erased).
[4] 1IPROG:
In this method state machine for sending Iprog command through
ICAP was developed. In the state machine proper logic was developed

to send “lprogsequence_data” corresponding to its respective

“iprog_state”.

35



u_ ICAP VIRTEX&E |

.BUSY (BUSY) , SS 1-bit output: Busy/Readyv output
SO0, {f 32-bit output: Configuration data output bu
CLE(CLK I), JS4 1-bit input: Clock Input

-LSE (Iprog_chipselect), S/ 1-bit input: Active-Low ICAP input Enable
[ (Iprogseqguence_data), ff 32-bit input: Configuration data input bus
. B EE) 77 L-DiC L1lpuc: Read/WIlte oolect input

Figure 4-11: ICAP Primitive Block in Code

In the above figure instantiation of IPROG in ICAP primitive is shown.

i) UNAUTHENTICATED)| 1

B mem_out[15:0]
B mem_in[15:0]
nﬁ Iprogsequence_datif

B w_addressB:0
B r_address3:0]
-|L? Iprog_chipseledt
B iprog_state3:0]

Figure 4-12: Sending the IPROG command via ICAP
In the above waveform IPROG command is sent through ICAP primitive as a result of
assertion of UNAUTHENTICATED_USER_I.
[5] Overwrite:
In this method a block RAM is generated. This block RAM contains

critical data i.e. 16’ h5555 on every memory location. Once the tamper
signal is asserted these memory locations will be overwritten by
16’hFFFF.

m Sl

m RSt
ar batton Habie

When WritsEnzble is High,

Th= memoty 15 i '-vritﬂ Iﬂl}d"

all of its add:esses Oto F.

Figure 4-13: Initial Writing of Memory data

36



In the above waveform sample data used is fixed to 5555h and it is written to all

addresses.

For testmg, this signzl can be assigned to 2 Right
button on FPGA kit that will check output data from
memory and nerement the rezd address for each press.

Smee mitially the memory
iz written with 3335h value
for all memory addresses.
We can see that memory out
15 consistent as 3335h for 2l
the memory addresses (=l
to O0F.

B mem_add

¥ InitalWnte

When_ Ri ble. i
low. mem, zddress gets
the value of r_address
(read address).

Figure 4-14: Read process after initialization.

In the above waveform after initializing the memory with 5555h it is read from the

respective locations.

When UNAUTHENTICATED USER I signal pgoes
High. This starts the overwriting process.

Write Enable poes high apain. Memory address pets
Write Address. It automatically merements and write
1111111111111111 to all addresses n the memory.

Figure 4-15: Overwrite Process

In the above waveform it is shown UNAUTHENTICATED_USER_I input is

asserted. Start of overwrite process is shown.

37



Apam we issue Read
address  merement by
Eight button.

Al the addresses Read

2 oW

111111111111111.

Figure 4-16: Read Process after Overwrite

In the above waveform it is shown that when
UNAUTHENTICATED_USER_I input signal is asserted, 11111111 is

written to all addresses.

4.2. Results generated through ChipScope pro:

wire [35:0] CCONTROLO:
wire [31 : 0] DATHI
wire [T : 0] TRIG:

chipscope icomn|
CONTROLO (CONTROLO)
)z

chipscope ila|
CONTROL (CONTROLO)
CLE (CLE_T),
.DATEL (DATRI) ,
. TRIGOD (TEIG)
¥z

assign TRIG= UTHAUOTHENIICATED TUSER I:

assign DATARI [T:0] = LED DATAHA O
assign DATAI [11:8] = w_address;
assign DATAI [15:12] = r address:;
assign DATRI [1&6] = overwrite_ on;

Figure 4-17: icon and ila instantiation for chipscope

The code above shows that UNAUTHENTICATED_USER_|I signal is used as a
trigger. The values of LED_DATA O, w_address, r_address and overwrite_on are
observed on DATAL port. The icon and ila cores are generated using CORE generator

and instantiated as shown above.

38




Bus/Signal

o 20 40 60 80 100 120 140 160 180

200

DataPort[0]
DataPortc[1l]
DataPortc[2]
DataPort[3]
DataPort[4]
DataPort[5]
DataPort[6]
DataPort[7]
DataPort[8]
DataPFort[9]
DataPFort[10]
DataFort[11l]
DataPort[12]
DataPort[13]
DataPort[14]
DataPort[15]

DataPort[lé&]

OB o8B OB OB OB B EF B E BB

H Do D o KOO OQRRPRHBRBEHRHRPBERR

Figure 4-18: ChipScope Waveform

The X-pointer show the values of DATAL port before trigger is asserted while O-
pointer shows the values after trigger is asserted. The values observed in real time
using ChipScope Pro are in accordance with the simulation observed and evaluated in

the previous portion.

COMMAMND: show_config_status 1

INFO:
Bits [31 .01 0000 0011 1101 0000 00411 1110 1111 1100

IEit 5 1 GTS_CFG B |

Figure 4-19: GTS_CFG_B in Status Register

The above figure shows the value of status register. The fifth bit shows the Status of
GTS_CFG_B. Its value is 0 when all 1/Os behave as configured while 1 when all 1/0s
are placed in High-Z state.

39



[2] GSR:

o Using STARTUP Primitive:

wire [35:0] CONTROLO:
Wwire [31 : 0] DATAI;
wire [T : 0] TRIG:

chipscope icon/|
CONTROLO (CONTROLO)
Y

chipscope ila|
CONTROL (CONTROLO)
LCLE(CLE I),
DATA (DATAL) ,
.TRIGO (TRIG)
)

as=sign TRIG= wesd H

assign DATAL [7:0] = LED DATA O;

assign DATAL [11:8] = w_address;

assign DATR1 [13:12] = r_ address;

assign DATZ1 [16] = overwrite omn;

assign DATAI [17] = UHAUTHENTICATED USER I:

Figure 4-20: icon and ila instantiation for chipscope

The code above shows that west signal is used as a trigger. The values of
LED_DATA O, w_address, r_address, overwrite_on and
UNAUTHENTICATED_USER 1 are observed on DATA1 port. The icon and ila

cores are generated using CORE generator and instantiated as shown above.

40



Figure 4-21: ChipScope Waveform
The X-pointer show the values of DATAL port before trigger is asserted while O-

pointer shows the values after trigger is asserted. The values observed in real time
using ChipScope Pro are in accordance with the simulation observed and evaluated in

the previous portion.

o Forced Reset:

wire [35:0] COWTROCLO:

wire [31:0] DATAIL:;

wire [7:0]1 TRIG:

assign TRIG=UNAUTHENTICATED USER I:
assign DATAI[7:0]=LED DATA OC:
assign DATRAI[11:8]=reg00;

assign DATAI[15:12]=regll;

chipscope icon|

LCONTROLO (CONTROLO) ) /* synthesis syn black box syn noprune=l1l #/;
chipscope_ ila |

. CONTROL (COHNTROLO) .

LCLE (CLE_TI) .,

LDATA (DATAL) .

. TRIGO (TRIG)) /* =synthe=si=s Sy:_b;ack_bcx 3y:_:cpr::e=; ®)

Figure 4-22: icon and ila instantiation for chipscope

The code above shows that UNAUTHENTICATED_USER_|I signal is used as a
trigger. The values of LED_DATA _O, reg00 and reg01 are observed on DATAL port.

41

Busisignal | X | O | @), Lo ol s
DataPort[0] 1 1
DataPort[1] a 1
DataPort[2] 1 1
DataPort[3] a 1
DataPort[4] 1 1
DataPort[5] a 1
DataPort[6] 1 1
DataPort[7] 0 1
DataPort[s] of af JUIUHUUUTUTUTUIH Ui iy i i i i oo
DataPort(9] of f LTy iy e
DataPort [10] ] AN I ) e I
DataPort[11] of o I [ I [ I I I I I I L
DataPort[12] a a
DataPort[13] a a
DataPort[14] a lu]
DataPort[15] a a
DataPort[16] 0 1 i i i i i I



The icon and ila cores are generated using CORE generator and instantiated as shown

above.

Bus/Signal X | 0o | 1|“ 2|“ 3|“ .4|u | 5:1 ﬁlﬂ ?lu .BID | Iglu |
DataPort[0] i i
DataPort[1] 1 ol ]
DataPort[2] a a
DataPort[3] 1 ol T1
DataPortc[4] a a
DataPort[5] 1 ol T
DataPort[6] a a
DataPort[7] 1 ol T
DataPort[8] i i
DataPort[9] il ol T
DataPort[10] i i
DataPort[11] 1 ol ]
DataFort[12] 0 1 L
DataFort[13] 1 ol T1
DataPortc[l4] a a
DataFort[15] 1 ol T

Figure 4-23: ChipScope Waveform
The X-pointer show the values of DATAL port before trigger is asserted while O-

pointer shows the values after which trigger is asserted. The values observed in real
time using ChipScope Pro are in accordance with the simulation observed and

evaluated in the previous portion.

[3] Key Erasure:

Key can be programmed into FPGA using iMPACT tool only and so
this method can’t be analyzed in real time using ChipScope pro.

Hence, the real time operation will be shown on the kit.

42



[4] IPROG:

wire [35:0] CONTROLO;
wire [31:0] DATAIL;
wire [7:0] TRIG:
assign TRIG=UNAUTHENTICATED USER 1;
assign DATAL[7:0]=LED DATA O:
chipscope icon|

-CONTROLO (CONTRCLO} ) /* synthesis syn black box syn noprune=l #/;
chipscope_ila|

.CONTROL (CONTRCLO) ,

.CLE(CLK_TI),

.DATR (DRATRI1) ,

-TRIGO (TRIG)) /* synthesis syn black box syn noprune=l */;

Figure 4-24: icon and ila instantiation for chipscope

The code above shows that UNAUTHENTICATED_USER_I signal is used as a
trigger. The values of LED_DATA _O, reg00 and reg01 are observed on DATAL port.

The icon and ila cores are generated using CORE generator and instantiated as shown

above.
Bus/Signal X | o “I . i El'] 3|“ 4|ﬂ 5|U .ﬁlu. ?lll Blu Q|I] I1||]
DataPort [0] 1 ol T ]
DataPort[l] 0 0
DataPort[2] 1 ol ]
DataPort[3] 0 0
DataPort [4] 1l o T
DataPort[5] 0 0
DataPort [6] il o T
DataPort[7] 0 0

Figure 4-25: ChipScope Waveform
The X-pointer show the values of DATAL port before trigger is asserted while O-

pointer shows the values after trigger is asserted. The values observed in real time
using ChipScope Pro are in accordance with the simulation observed and evaluated in

the previous portion.

43



[5] Overwrite:

wire [35:0] CONTROLO:
wire [31 : 0] DATAI;
wire [T : 0] TRIG:

chipscope_ icon
CONTROLO (CONTROLO)
|-

chipscope_ila(
CONTROL (CONTROLO )
L.CLE(CLKE I),
DATE (DATRI1) ,
.TRIGO [TRIG)
|-

aszsign TRIG-= UHAUTHENTICATED TUSER I;

assign DATARI1 [T7:0] = LED DATR O:
aszsign DATAT [11:8] = w_address;
assign DATAT [15:12] = r address:;
assgign DATAI1 [1le6] = overwrite on;

Figure 4-26: icon and ila instantiation for chipscope

The code above shows that UNAUTHENTICATED_USER_I signal is used as a
trigger. The values of LED_DATA_ O, w_address, r_address and overwrite_on are

observed on DATAL port. The icon and ila cores are generated using CORE generator

and instantiated as shown above.

Bus/Signal x| o|g 3 .2F . 3? ???
DataPort [0] 1 1
DataPort[1] 0 1 ||
DataPort[2] 1 1
DataPort[3] i} il | ]
DataPort[4] 1 1
DataPort[5] ] 1 |
DataPort[&a] 1 1
DataPort [T] ] il |
DataPort (8] of 1| | [ I O R B R R
DataFort[9] a 0 [ | | |
DataPort[10] a a r__________1___________J_________7
DataFort[11] o 0 |
DataPort[12] a a
DataPort[l3] [u] 4]
DataPort[14] a a
DataPort[15] lu] 1]
DataFort[16] ] 1l |

Figure 4-27: ChipScope Waveform

44



The X-pointer show the values of DATAL port before trigger is asserted while O-
pointer shows the values after trigger is asserted. The values observed in real time

using ChipScope Pro are in accordance with the simulation observed and evaluated in
the previous portion.

45



CHAPTERS
FUTURE WORK

46



5. Recommendations for Future Work:

FIPS 140-2 comprises of 4 increasing levels of security. The top most level of
security defined by FIPS 140-2 standard is Security Level 4. At Security Level
4 level cryptographic units are useful to operate in physically vulnerable
environments. Protection against security compromises due to environmental
conditions or fluctuations outside of the unit's normal operating ranges for
voltage and temperature is also given at this level. Cryptographic unit's
protection can be thwarted by a attacker by intentionally operating it beyond
its normal operating ranges.

To add another dimension to this project, tamper status information can be
sent back to the main system (or written to a non-volatile memory) by the user
design, upon occurrence of a tamper event (in addition to asserting an
appropriate response mechanism). The system could then store this data away
for future auditing purposes.

These recommendations can be implemented in the future to further secure the

cryptographic unit.

47



CHAPTER G
CONCLUSION

48



6. Conclusion:

6.1.

6.2.

6.3.

6.4.

Overview:

This project focuses on providing physical security to devices in
conformity with FIPS 140-2 standard in order to achieve level
3(tamper resistance) which prevents any adversary from tampering
with the device and responds to any kind of physical attack on the
device in which the FPGA kit is installed. Federal Information
Processing Standard (FIPS) 140-2 Level 3 is the highest level that most
of the devices have reached globally.

Achievements:

During the course of this project, a thorough study of various anti-
tamper techniques, in compliance with FIPS 140-2, was carried out.
The following were achieved:

e Basic Understanding of ML605 Virtex 6 board

e Learning of Verilog

e Familiarization with Xilinx ISE : Impact Tool, ChipScope pro,

Isim, CORE Generator
e Successful implementation of tamper resistant techniques using

AT features available in the Virtex-6 family.

Contributions:

This project ensures secure environment for cryptographic modules
employed within computer and telecommunication systems. This
project will contribute to field related to the secure design within a
cryptographic unit. The area targets the cryptographic module
specification, cryptographic module ports and interfaces, roles,
services, and authentication, physical security, operational
environment, cryptographic key management, electromagnetic
interference/electromagnetic compatibility (EMI/EMC) and mitigation

of other attacks.

Limitations:

Once the FPGA (inside the Security Gateway) is configured, it will be

deployed into the field. In case of a tamper event, all configuration

49



6.5.

memory and AES key will be zeroized. In order to properly work
again, the device needs to be configured all over again. FIPS 140-2
provides security against physical attacks only. It doesn't provide any
protection against software based intrusions.

Applications:

FPGAs form the core of many systems due to their expanding usage in
applications and sub-systems. The excess use of FPGASs has given rise
to the immense need of protecting the IP held within an FPGA and
countering the adversaries who attempt to do so. The techniques
implemented in this project are used to prevent any outside agent to

gain unauthorized access to any Intellectual property (IP).

50



7. References:

[1] (2001).Security Requirements for Cryptographic Modules.FIPS PUB 140-2,
(Supersedes FIPS PUB 140-1)

[2] Peterson, E. (2013). Developing Tamper Resistant Designs with Xilinx Virtex-
6 and 7 Series FPGAs. Application Note-Xilinx, XAPP1084 (v1.3).

[3] Hussain, J., Quintana, P. (2009). Protecting the FPGA Design from Common
Threats. White paper- ALTERA, ver. 1.0,1-2

[4] Joyce, J., Kenny, J.R.(2008). Anti-Tamper Capabilities in FPGA Designs.
White paper- ALTERA, ver. 1.0,1-3

[5] McNeil, S.(2012). Solving Today's Design Security Concerns. White Paper-
Xilinx, WP365 (v1.2)

[6] Zeroization, Microsemi-Application Note AC382

[7] Lesea, A.(2007). IP Security in FPGAs. Application Note-Xilinx, WP261(v1.0)

[8] Lie,W. ,Feng-yan, W. (2009). Dynamic partial reconfiguration in FPGAS,
Third International Symposium on Intelligent Information Technology
Application, 445-446

[9] Sedcole, P., Blodget, B., Becker, T., Anderson. J., Lysaght, P.(2006).Modular
dynamic reconfiguration in Virtex FPGAs. IEE Proc.-Comput. Digit. Tech.,
Vol. 153, No. 3, 157-159

[10] Aarts, M. Hardware Attacks, Tamper Resistance, Tamper Response
and Tamper Evidence, 8-10

[11] Weingart, S.H. (2008). Physical Security Devices for Computer
Subsystems: A Survey of Attacks and Defenses. Research Paper,3-5,10-14

[12] Drimer, S., Murdoch, S.J., Anderson , R. Thinking inside the box:
system-level failures of tamper proofing

[13] Andersonl, R., Kuhn, M., (1997). Low Cost Attacks on Tamper
Resistant Devices, Protocols, 5th International Workshop, Paris, France,

[14] Rathgeb, C.T. , Peterson, G.D. Secure Processing Using Dynamic
Partial Reconfiguration

[15] Lewis, J.M., Haddock, J.R., Walther, D.R. (2012). SELF-
MODIFYING FPGA FOR ANTI TAMPERAPPLICATIONS.US Patent,
Patent No.: US 8,159,259 B1

51



[16] (2013).Virtex 6 FPGA Configuration. User Guide Xilinx, UG360
(v3.7)

[17] (2012). ML605 Hardware UG. User Guide Xilinx, UG534 (v1.8)

[18] (2009). ML605 Reference Design UG. User Guide Xilinx, UG535
(v1.0)

[19] (2005). Virtex-11 Platform FPGA UG. User Guide Xilinx, UG002
(v2.0),485-8

[20] (2009).Virtex-6 Libraries Guide for HDL Designs UG. User Guide
Xilinx,UG623 (v 11.4), 162-3, 308-311

[21] (2012).ML605 Block Diagram Schematic, Xilinx, (2,34)

[22] (2011). Virtex-6 FPGA Memory Interface Solutions UG, User Guide
Xilinx,UG406, 7

52



APPENDICES

53



APPENDIX A

VCCO 0_¥3
VCCO_0_AE9

VCC2V5

DUT
BANK 0
6vlx240tf£1156
¥8 NC
et poul Boe I a2
TS g [2PB o TS i3
i
e v FOE TCK &
o [acs SYSacE croToT M1s
L 0ACE 5 FDEA CCIK 25
CCIR 0 K8 20 -
DoUT BUSY O Aas (BAB_ NC g
CSI B 0 F8
ROWE_E_0_C8
DIN 0 H8 |50 HC
18 e Roca vearT
VEATT 0 W8 mas
e T g [HLT FP@ DX K
N 34
o [Wis @ DX T E
- 0 W18 T o0 Tesan W
VEEFN 0 U17 2,34
oty T TEST MON VNO g 2
L9 V17 <18 TEST MON VREFD
VEEFT 0 V18 34
e orite U1 TEST MON VO I 3
A oTig [T18 TEST MON &V
34
0 T18 e CHD TES
AVSS 0 T17 Eu m 2,34
M0 0_Us gg FOG gﬂ; 525
PROGRAM B 0 L8 [0 =25
R e Ve O 75
0 V8 w8 FPGA M1 .25
M1 0 We .
DOoNE 0 s (52 =T =31
INIT B 0 P8

VCC2VE FPGA
PA Yo
ARY

jui s

Figure A.1 -Pin Connections for Vgart [21]

FDGA VBATT

03

BAS40-04
40V
2002

{(Bpprox 2_1V)

N

N

gl

;

R1E1
4 . 75K
1%

R151
4. 75K
1%

Figure A.2 - Circuit connected on VeatT [21]

54




APPENDIX B

ICAP_VIRTEXG6:

— o) mam:h

—CLK
—1 G5B

——ROWRB BUSY —

Figure B.1 -ICAP Primitive [20]

Port Type Width Function

BUSY Qutput 1 Busy/Ready output.

CLK Input 1 Clock Input.

5B Input 1 Active-Low ICAP Enable.
1[31:0) Input 32 Configuration data input bus.
O[31:0) Output 32 Configuration data output bus.
RDWEB Input 1 Eead/Write Select.

Table B.1- Port description of ICAP Primitive [20]

ICAP VI RTEXE #(
-ICAP_AUTO SWITCH(“DISAELE"},
.ICAP WIDTH("X8") /f Specifies the input and output data width te be used with the
i II:}'-.F'_‘JIR:'EI-{E 5
}
ICAP VIRTEX -S_il".st [
.BUSY (BUSY) , f// 1=bit Busy/Ready output

oo, /f 32=bit Configuration data output bus
.CLE{CLE}, // 1=bit Clock Input

.CSB(CSB}, f/ 1=bit Rctive=-Low ICAF Enable

JIfT), /f 32-bit Configuration data input bus

.EDWRE (RODWRE) // l=bit Read/Write Select
Vi

// End of ICAP VIRTEXE inst instantiation

Table B.2- Verilog Instantiation of ICAP Primitive [20]

55



STARTUP VIRTEXG6:

—JCLK CFGCLK ——
—1 GSAR

CFGMCLK ——
—yGTS

— ] KEYCLEARE DINSP f—

el PAICH
EQS f——
— USRCCLKO

— A USRCCLKTS PREQ ———
—— USROOMNED

TCKSPl f—
— | USROOMETS

Figure B.3-STARTUP Primitive [20]

Port Type Width Function

CFGCLK Output 1 Configuration main clock output.

CFGMCLEK Output 1 Configuration internal oscillator clock output.

CLEK Input 1 User startup clock.

DINSPIL Output 1 Internal access to the DIN configuration pin when using
S5P1 PROM configuration

EOS Output 1 Active High signal indicates the End Of Configuration.

GSRE Input 1 Active High Global Set/Reset (GSE) signal.

GTs Input 1 Active High Global Tristate (GTS) signal.

KEYCLEARB Input 1 Clear AES Decrypter Key from Battery-Backed RAM

(BBEAM). To erase the batterv-backed-RAM contents, pull
KEYCLEARB Low for more than ~200ns.

PACK Input 1 PFPROGEAM acknowledge.

PREQ Output 1 PROGEAM request to fabric

TCESrL Output 1 Internal access to the TCK configuration pin when using
SPI PROM configuration.

USRCCLEO Input 1 Internal user CCLE.

USRCCLETS Input 1 Internal user CCLEK tristate enable.

USRDONEO Input 1 Internal user DONE pin output control

USRDOMNETS Irput 1 User DOME tristate enable

Table B.2-Port description of STARTUP Primitive [20]

56



STERTUP_‘JIRTEKE #i(

.PROG_USR({"FALSE") // Activate program ewent security feature
}
STERTUP_‘JIRTEKE_iﬂEIt [

.CFGCLE (CFGCLE) , f/ 1=bit Configuration main clock output
.CFGMCLE (CFGMCLE] , f/ 1=bit Configuration internal oscillator clock output
.DINSPI (DINSFI}, /f l=bit Internal access to the DIN configuration pin when using SPI FPROM

/f configuration

.E0S (EOS], ff l=bit Active high signal indicates the End Of Configuration.
.FRE(Q [PREQ) , /f l=bit PROGRAM request to fabric
.TCESPI (TCESPI}, /f l=bit Internal access to the TCE configuration pin when using SPI PROM

/f configuration

.CLE {CLE}, ff l=bit User start=up clock
.GSR({GSR], /f l=bit Active high Global Set/Feset signal
.GTS {GTS), ff l=bit Active high Gleobal 3=-5tate signal

.EEYCLEARE (KEYCLERRE}, // l=bit Clear RES Decrypter Eey from Battery-Backed RAM (BERAM). To erase the
// battery=-backed=-REM contents, pull EEYCLEARE low for more than ~200ns.

.FACK (PACE]) , /f l=bit PROGEAM acknowledge

.USRCCLED (USRCCLEQ) , £/ l=bit Internal user CCLE

.USRCCLETS (USRCCLETS), // l=bit Internal user CCLE 3=state enable
.USRDONED {USRDONEQ) , /7 1=bit Internal user DONE pin output control
.USRDOMETS (USRDOWETS) // l=bhit User DOWE 3=-ztate enable

bi

/f End of STARTUF VIRTEXE inst instantiation

Figure B.4-Verilog Instantiation of ICAP Primitive [20]

57



APPENDIX C

Cost Estimate

Product Vendor: C XI LI NX

Xilimx
ALL PROGRAMMABLE.
Buy Online =
Contact Sales

Price: #+80408 51 705
Part Number: EK-VE-MLE05-G
Lead Time: 2 Weeks

This is a company sponsored project hence all the cost was borne by Government
Organization.

58



