

Smart Helmet for

Accident Detection

 &

Reporting

“SHADR”

By

Muneeb Naveed

Talha Usman

Saad Bin Khalid

M. Suleman Mazhar

Submitted to the Faculty of Department of Electrical(telecommunications) Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad

in partial fulfillment for the requirements of B.E Degree in

Electrical(telecommunications) Engineering

JUNE 2019

CERTIFICATE OF CORRECTNESS AND APPROVAL

This is to officially state that the thesis work contained in this report

“Smart Helmet for Accident Detection and Reporting”

is carried out by

Muneeb Naveed, Talha Usman, Saad Bin Khalid, M. Suleman Mazhar

under my supervision and that in my judgement, it is fully ample, in scope and excellence,

for the degree of Bachelor of Electrical Engineering from National University of Sciences

and Technology (NUST), Islamabad.

 Approved By:

Signature:

 Supervisor: Asst. Prof. Mir Yasir

 MCS, Rawalpindi

ABSTRACT

Our project is based on creating an accident detection and reporting platform. An

alarming number of deaths are caused by delayed arrival of emergency services at the

location of accident. The project was aimed with designing a solution that can mitigate the

delay in response time from user end and introduce a smart solution in that regard.

A prototype was designed for motorcyclists with an accelerometer and gyroscope

sensor; to get raw values regarding orientation and sudden changes in speed. These values

were fed into a Raspberry Pi 0W, microcontroller that determines whether an accident has

occurred or not. In case of an accident, microcontroller communicates with android

application on the phone via Bluetooth where user information is stored. The smartphone

is used for intimating emergency services and contacts. Machine Learning has been

implemented to reduce false positives.

This project aims at designing a scalable and economical accident detection

platform with the ability to add additional features as per user requirement.

DECLARATION OF ORIGINALITY

We hereby declare that no content of work presented in this report has been submitted in

support of another award of qualification or degree either in this institution or anywhere

else.

v

“It is better to be unhappy and know the worst, than to be happy in

a fool’s paradise”

-

Fyodor Dostoyevsky

vi

ACKNOWLEDGEMENTS

Allah Subhan’Wa’Taala is the sole guidance in all domains.

Our parents, colleagues and most of all supervisor, Dr. Mir Yasir, this could not have been

possible without your input.

The group members, despite all adversities worked steadfastly.

vii

 Table of Contents

List of Figures ... x

Abbreviations ……… xi

Section - I

Chapter 1: Introduction .. 1

1.1 Problem Statement ... 2

1.2 Solution ... 2

1.3 Scope and limitations ... 3

1.5 Objectives ... 3

1.6 Organization.. 4

Chapter 2: Literature Review.. 5

2.1 Scholarly Articles ... 5

2.2 Market Research ... 10

2.3 Components Used .. 11

2.4 Raspberry Pi Zero W ... 11

2.4.1 Hardware overview of Raspberry Pi Zero W .. 13

2.4.2 Operating System of Raspberry Pi .. 13

2.4.3 Pin Configuration .. 14

2.5 IC MPU – 6050 Six-Axis (Accelerometer + Gyroscope) .. 14

2.5.1 MPU – 6050 features .. 15

2.5.2 MPU – 6050 working ... 16

2.5.3 Pin Configuration .. 19

Section - II

Chapter 3: Interfacing and Accident Detection ... 20

3.1 Communication between MPU – 6050 with Raspberry Pi ... 20

3.2 Accident Detection Mechanism using threshold value .. 21

3.3 Use of ML for Accident Detection (Random Forest classifier) 25

Chapter 4: Application Development & Interfacing with Raspberry Pi 27

4.1 Interfacing Options ... 28

viii

4.2 Android Application: ... 30

4.2.1 Linux Kernel: .. 31

4.2.2 Libraries: .. 31

4.2.3 Android Core Libraries: .. 31

4.2.4 Android Runtime: ... 32

4.2.5 Application-Framework: .. 32

4.2.6 Applications: ... 32

4.3 SHADR APP ... 33

4.3.1 Permissions/Manifest File .. 33

4.3.2 Activities ... 33

Section - III

Chapter 5: Conclusion .. 36

5.1 Overview & Objectives Achieved .. 36

5.2 Applications .. 36

5.2.1 General Public ... 37

5.2.2 Corporate Clientele ... 37

5.2.3 Government Departments .. 38

5.3 Future Work ... 38

5.3.1 Communication .. 39

5.3.2 Data Gathering and Analysis for ML .. 40

5.3.3 Additional Features .. 40

5.3.4 Product Development .. 41

Appendix A .. 42

 MPU – 6050 (Accelerometer and Gyroscope) - Python Script ... 42

 Update Valon Apache ... 46

Appendix B .. 47

 Login activity App .. 47

 Main Activity (speed, long, lat., location change) .. 66

Appendix C .. 76

ix

 MainifestsXml .. 76

Appendix D .. 78

 Random Forest Classifier .. 78

Appendix E .. 81

 Accident Statistics ... 81

 Registered Motorbikes ... 82

References & Works Cited ... 84

x

List of Figures

FIGURE 1 PROJECT ARCHITECTURE .. 5

FIGURE 2 BLDC FAN ... 6

FIGURE 3 FORCE SENSOR .. 7

FIGURE 4 SKULLY HELMET.. 10

FIGURE 5 RASPBERRY PI ZERO W ... 12

FIGURE 6 PIN CONFIGURATION PI ZERO W .. 14

FIGURE 7 MPU 6050 ARCHITECTURE .. 15

FIGURE 8 GYROSCOPE AXIS .. 16

FIGURE 9 ACCELEROMETER AXIS .. 17

FIGURE 10 PIN CONFIGURATION MPU 6050 .. 19

FIGURE 11 RASPBERRY PI ZERO .. 20

FIGURE 12 SCREENSHOT APPENDIX A ... 22

FIGURE 13 DECISION TREE OBTAINED AFTER TRAINING .. 26

FIGURE 14 RANDOM FOREST ENSEMBLE ... 27

FIGURE 15 ANDROID ARCHITECTURE .. 30

FIGURE 16 NAVIGATION SYSTEM ... 39

file:///E:/FYP/UG%20Thesis%20SHADR%20final.docx%23_Toc9168571

xi

List of Abbreviations

SPDT – Sing Pole, Double Throw

GSM – Global System for Mobile Communication

GPS – Global Positioning System

MEMS – Microelectromechanical System

ADC – Analog to Digital Converter

DMP – Digital Motion Processor

GPIO – General Purpose Input Output

BLE – Bluetooth Low Energy

UI – User Interface

ML – Machine Learning

PBS – Pakistan Bureau of Statistics

ERT – Emergency Response Teams

QRF – Quick Reaction Force

WHO – World Health Organization

GHO – Global Health Observatory

1

CHAPTER - 1

Introduction

The team has designed a smart helmet for motor cyclists which has two main features:

• Accident Detection

• Accident Reporting (To emergency contacts with the live accident location)

This project can be divided into three main parts. The first unit consists of the sensor circuitry.

We have used a combination of accelerometer (for measuring change in velocity) and a gyroscope

(for measuring change in orientation) covering 6-axis to get readings for accident detection. The

second unit contains a Raspberry Pi microcontroller which will be used as the main processing

unit, taking raw values from the sensors through a wired medium, scaling them and finally

evaluating whether an accident has occurred or not. The third platform is an android application

which will be communicating with the Raspberry Pi via Bluetooth. In case of an accident, the

microcontroller will intimate the application and an SMS will be generated and sent to the

Emergency contacts. Smart Helmet application provides additional features like Navigation and

live Speed Check. In addition, several features can be integrated inside the helmet to assist the

motor cyclist like voice and sound assistance, brake and indicator lights, rear view camera etc.

Keeping in mind, that the price of the helmet will increase relatively if we add more feature, we

developed the prototype with just the basic accident detection and reporting feature.

2

1.1 Problem Statement

A 2014 World Health Organization report indicates that 20 people out of every 100,000 die in

a road accidents per year [1-4]. More than 50% accidents involve motor bikes and 75% of the

registered vehicles are motor cycles according to Pakistan Bureau of Statistics [3]. Therefore,

inadequate safety and untimely first aid of those involved in accidents is evident from research.

As most injuries in motorcycle accidents result in neural and head injuries as well as blood

loss, therefore it is of primary importance that emergency response teams arrive at the incident as

soon as possible. These injuries can increase chances of life-threatening consequences for those

involved with each passing moment. Survival rate may increase by prompt medical attention at

the scene of accident.

1.2 Solution

The goal of the project is to introduce a smart helmet with sensors for accident detection and a

solid reporting platform. This helmet will aid the rider as well as emergency response teams and

his emergency contacts in case of an accident by notifying about the location of incident as well

as the riders health information through SMS. Unavailability of a similar product in Pakistani

market is also a motivation as motor cycles are the primary mode of transportation for a large

percentage of the population in Pakistan. There are many types of disabilities. Advanced

technology has been used in helping people overcome such impairments. However, developing

such an advanced technology is expensive, making their selling price higher as we add more

features.

3

1.3 Scope and limitations

This project uses modern day tech to design a helmet with the following scope:

• Using Raspberry-Pi and sensors (IC-MPU 5060) to improve a traditional motor cycle

helmet.

• The Smart Helmet is more than just safety equipment with introduction of smart features.

• Remote monitoring of the motor cyclist’s whereabouts and other details like live speed.

• User friendly android application.

• Wireless (via Bluetooth) integration of android application and Raspberry Pi improves

interfacing.

1.5 Objectives

We have the following objectives for the design of our project:

• Our focus is on developing an accident detection and reporting platform.

• Additional features that can be added in android application are:

• Navigation.

• Speed check.

• Audio functionality.

• Application where client data can be stored and analyzed safely.

Also, this project aims to provide a ‘cost-effective’ smart helmet for motorcycle riders

keeping in mind the financial constraints of a common biker owner in Pakistan. This will not only

introduce a smart helmet accessible to the public but also equipped with an array of sensors to

support the emergency services. It would introduce smart features like Bluetooth audio

4

connectivity for navigation purposes as well as a mobile application for a customized user

experience.

1.6 Organization

This Thesis is divided into three main sections.

The first section contains the Introduction and Literature Review, chapters 1 and 2. The chapter

on introduction includes the Problem Statement and the proposed Solution. Literary review will

give you a brief idea on the research we conducted and the hardware equipment that was used for

developing the project.

The second section contains the 3rd and 4th chapters. The third chapter focuses on the

communication between the sensors and Raspberry Pi and “Accident Detection Mechanisms”.

The fourth chapter encompasses the “Reporting Mechanism” using an Android Application.

The third and the last section includes our conclusions and future works with the limitations

faced, composed of the 5th chapter.

After that are references and works cited throughout the thesis and appendices.

5

CHAPTER - 2

Literature Review

This section provides an overview of the research carried out by various scholars,

companies and engineering students which helped us in getting a sense of direction as well as aided

us in formulating a strategy to achieve our desired goals.

2.1 Scholarly Articles

Before choosing the equipment to be used, we consulted several IEEE Articles related to

our project. These research papers gave us rough idea of the design approach that was most viable

in terms of cost and efficiency. The base design model we opted was based on the following

diagram:

Figure 1 project architecture

In the light of this model, information from IEEE research papers will be explained.

6

1. Circuit

Accident detection is the fundamental part of our project. Choosing the appropriate sensor

to detect the accident and microcontroller that can compute the raw values efficiently was

considered in this section. There have been various methods used by researchers from India

and Europe like:

• Brushless Direct Current (BLDC) Fan – It is a speed sensor that constantly

measures speed against wind resistance [5]. This seemed somewhat irrelevant to

our design parameters of keeping the project as minimal as possible because we

introduced speed check with the help of android application.

Figure 2 BLDC fan [5]

• Force Sensor Resistor (FSR) – A flexible resistor that changes resistance directly

proportional to the applied force [5]. This sensor is used to assure whether the

motorcyclist is wearing the helmet or not. The issue we had in this case was to

install FSR in an appropriate position inside the helmet without compromising

integrity of helmet and calibrating it properly.

7

Figure 3 force sensor [5]

• Timer & Comparator IC – These were used with physical sensors for accident

detection and aided in serially interpreting values from them [5]. This triggered the

actual accident detection flag. We deduced that we could remove them with the

use of a smart microcontroller like Raspberry Pi or Arduino.

• SPDT Switch – It is a normal 3-way switch that has been used to assure the rider

clips on the helmet or not [5]. This was important to implement as clipping in the

helmet i.e. important but since market research revealed that such a switch with

specific dimensions to be attached with motorbike helmet were not available. So,

software checks were introduced.

• Peripheral Interface Controller (PIC) 16F84A – It is a Reduced Instruction Set

Computer (RISC) based microcontroller [5] that is used for interfacing between

detection sensors and reporting transmitters. This requires coding in assembly that

is very specific and cannot be connected with multiple sensors. Therefore, we

8

decided to choose a smart microcontroller with inbuilt wireless transmission

capability.

• Impact Sensor – It is used in the automobile industry to detect impacts [6] like in

airbags, but market research revealed that such sensors are not available in

Pakistani market and importing variants of it from China was not feasible as they

were vendor specific, not running on open source protocols and could be ordered

only in bulk.

• Accelerometer ADXL355 – It is a 3-axis sensor [6]. We decided that using this

sensor for accident detection would be most feasible as we can use raw values

obtained from test drives and use trial and error method to develop an accurate

accident detection model. We opted to use MPU6050 in the end, as software

support for it was readily available for Raspberry Pi and it had an inbuilt gyroscope

sensor as well, 6-axis sensor in total with which we had more room for

improvement.

2. Interface

In this section we thoroughly researched about the approaches to communicate between

sensors, microcontroller and android application.

9

• RF Transmitter/Receiver – This has been introduced for communication between

the microcontroller and accident reporting mechanism [5]. This approach seemed

redundant as already microcontrollers like Raspberry Pi are available with inbuilt

protocols for Bluetooth communication. Therefore, the need for dedicated

component only for this purpose was removed using, one in all microcontroller.

• GSM-GPS Module – This sensor was used by researchers for accurate location

coordinates in case of an accident [6] and then intimation to emergency services as

well as contacts. Introducing it into our project was not feasible as we could utilize

an android application on smartphone for both of the earlier mentioned reasons and

keep the cost constraints as low as possible removing redundancy.

• Bluetooth Module – This could be used in case of an independent microcontroller

with no means of communicating with the android application [6], so we can keep

the costs as low as possible. However, we opted to go with a microcontroller with

inbuilt Bluetooth and WIFI capability because programming an analog

microcontroller and coding Bluetooth protocol at our level was too complex.

3. Software

This section covers the aspects of how to approach the intimation of an accident, after it

has been detected.

• Android Application – This is the appropriate software platform we used.

An android application with all the user information and that intimates as

10

well in case of an accident [6], removing the need for a dedicated

GPS/GSM module. Additionally, we introduced speed checks via this app.

An application utilized for the advantage of the masses already using

smartphones and designed as simple as possible for most of the users.

• Cloud Based Platform - It was based on communicating directly with a

cloud server that will process live data from sensors and intimate on your

behalf [7-9]. While using this approach, we discovered that it was expensive

and required funding as well as training to develop such a platform.

However, this option could be explored more in the future for making a

product for corporate/government clientele.

2.2 Market Research

A survey of the market revealed that some companies have been working rigorously on

developing smart helmets to make a rider’s experience both safe and enjoyable. Once the stuff of

science fiction, smart helmets are now a very real product bringing built in accident detection

capabilities, speakers and microphone allowing the rider to

make and receive calls, audio multitasking, rear facing

cameras, GPS directions and a heads-up display. Skully

Technologies (USA) and Sena (South Korea) being the most

prominent of all, have developed several helmets with

Figure 4 Skully Helmet [10]

11

accident detection capabilities as well as various added features to assist and aid the motorbike

driver.

2.3 Components Used

 After a month of research which included understanding concepts used by several

individuals (students and professionals) in IEEE research papers for developing accidents

detection and reporting platforms, online research and consulting with our professors, we decided

to use the following equipment for designing our own accident detection and reporting platform:

• Raspberry Pi Zero W microcontroller

• IC MPU – 6050 (6-axis accelerometer and gyroscope)

2.4 Raspberry Pi Zero W

 The Pi Zero is a full computer packed onto a single board which is popularly known as a

single board computer. The introduction of Pi zero allowed embeding an entire computer onto a

tiny integrated circuit. We used the latest model of “Pi Zero” product line, the Raspberry Pi Zero

- Wireless. It provides features like onboard Wi-Fi module, with built-in Wi-fi and Bluetooth

functionality. At the heart of the Pi zero W is a 1GHz BCM-2835 Single-Core Processor, the same

as the B plus and A plus, with 512 Mega Byte RAM [11]. No matter how you want to use your Pi

zero W, you will need a Micro-SD card with an OS and a high-quality 5V power supply to keep

the SBC running.

https://www.sparkfun.com/products/14277
https://www.sparkfun.com/products/14277

12

Figure 5 Raspberry Pi Zero W [11]

The following equipment is necessary to use a Raspberry Pi:

• Micro-SD Card (for OS and memory)

• Monitor

• Keyboard

• Mouse

• USB and HDMI hub

13

2.4.1 Hardware Overview of Raspberry Pi Zero W

Pi Zero W has the following features:

• Mini – HDMI Port

• USB on-the-go Connection

• Micro-SD Card Slot

• 20 General Purpose Input Output Ports

2.4.2 Operating System of Raspberry Pi

The Raspberry Pi Foundation has developed Raspbian, a “Debian-based” Linux [12]

distribution for download, as well as third-party “ubuntu”, Microsoft Windows 10 IOT

core, RISC Operating System and specialized Media Centered Distributions. It

promotes Python and Scratch as the primary programming languages alongside the support of

many other languages. The default firm-ware is “Closed Source”, whereas an unofficial “Open

Source” is also available.

https://en.wikipedia.org/wiki/Raspbian
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Linux_distribution
https://en.wikipedia.org/wiki/Ubuntu_(operating_system)
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/Windows_10_IoT_Core
https://en.wikipedia.org/wiki/RISC_OS
https://en.wikipedia.org/wiki/OpenELEC
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Scratch_(programming_language)
https://en.wikipedia.org/wiki/Firmware
https://en.wikipedia.org/wiki/Closed_source
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Open_source

14

2.4.3 Pin Configuration

Figure 6 Pin Configuration Pi Zero W [12]

2.5 IC MPU – 6050 Six-Axis (Accelerometer + Gyroscope)

The MPU – 6050 is the world’s first motion tracking devices designed for the low power,

low cost and high-performance [13]. It is frequently used in Smartphones, Tablets and wearables.

The MPU-6050 incorporates Motion Fusion and Run-Time calibration firmware that

enables manufacturers to eliminate the costly and complex selection and system level integration

of devices in Motion-Enabled products delivering optimal performance for consumers.

The MPU-6050 consists of a 3-axis Gyroscope and Accelerometer on the same silicon die,

together with an on board DMP, which processes complex 6-axis Motion Fusion Algorithms. The

device can access external magneto-meters or other sensors through an Inter Integrated Circuit

15

bus, allowing the devices to gather a full set of sensor data without intervention from the system

processor. The devices are offered in a 4 mm x 4 mm x 0.9 mm QFN package.

Figure 7 MPU 6050 architecture [13]

2.5.1 MPU – 6050 Features

• Micro Electro Mechanical System combines 3-axis Accelerometer and 3-axis Gyroscope raw

values.

• The IC is supplied power at around 3-5 Volts.

• IC can communicate using the Inter Integrated Circuit bus protocol.

• It has a built in 16 bits Analogue to Digital Convector which provides high accuracy.

• A built in DMP helps the IC to provide a High Computational Power.

• Interface with other IIC devices like Magnetometer is also possible.

• The IC provides a configurable IIC – Address.

16

2.5.2 MPU – 6050 Working

A. The MPU – 6050 consists of a three-axis gyroscope with Micro-Electro-Mechanical

System (MEMS) technology [13]. It is used for the detection of rotational velocity along the x, y,

z axes as shown in the figure:

Figure 8 Gyroscope Axis [13]

• Whenever the Gyros are rotated about any of the axes, the “Coriolis Effect” causes a

vibration which is detected using Micro Electro Mechanical System inside the MPU-

6050.

• This resulting signal is then amplified, demodulated, and filtered to produce a voltage that

is proportional to the Angular-Rate.

• This voltage is digitalized using a sixteen bit Analogue to Digital Convertor to sample

each axis.

• The full-scale range of output are 250, 500, 1000 and 2000.

17

• It measures the angular velocity along each axis in degree per second unit.

B. The MPU – 6050 consists of a three-axis accelerometer with Micro-Electro-Mechanical

system (MEMs) Technology. It measures the angle of tilt or inclination along the x, y and z axes

as shown in the figure:

Figure 9 Accelerometer Axis [13]

• Acceleration along the axes deflects the movable mass.

• This displacement of moving plate (mass) unbalances the differential capacitor which

results in sensor output. Output amplitude is proportional to acceleration.

• 16-bit ADC is used to get digitized output.

• The full-scale range of acceleration are +/- 2g, +/- 4g, +/- 8g, +/- 16g [13].

18

• It is measured in g (gravity force) unit.

• When device placed on flat surface it will measure 0g on X and Y axis and +1g on Z axis.

C. The embedded Digital-Motion-Processor [13] (DMP) computes Motion Processing

Algorithms. It takes data from the Gyroscope, Accelerometer and additional 3rd party sensor such

as a magneto-meter and processes the data. It provides motion data like Roll, Pitch, Yaw Angles,

Landscape and Portrait sense etc. It minimizes the processes of host in computing Motion Data.

The resulting data can be read from DMP registers.

D. An On-Chip Temperature sensor [13] output is given in a digital format using a built-in

analogue to digital convertor. This reading can be read from sensor’s Data register.

19

2.5.3 Pin Configuration

 The MPU 6050 has 8 external port. Two Prots VCC and GND are used for power supply.

Another port ADO is used by the built-in analogue to digital convertor. Rest of the pins along with

their configurations are shown in the image below:

Figure 10 Pin configuration MPU 6050 [13]

20

CHAPTER - 3

Interfacing & Accident Detection

This section describes how the MPU – 6050 sensors are communicating with the

Raspberry Pi and finally when value from the sensors arrive, how an accident is detected.

3.1 Communication Between MPU – 6050 with Raspberry Pi

For communication between the Pi and MPU – 6050 we used the I2C and SPI serial

interfaces. Numerous Peripherals can be added to a micro-controller chip over the Inter-Integrated-

Circuit bus and Serial Peripheral Interfaces; incorporating various sensors and few kinds of

display. The former interfaces are not enabled by default rather need some additional

configurations before you can fully utilize them.

• Inter Integrated Circuit is a bus that permits information trade among Micro-

controllers and Peripherals with least wiring.

• Serial Peripheral Interfaces is a cousin of Inter Integrated Circuit bus with

comparative applications.

Figure 11 Raspberry Pi Zero [14]

21

The Pi Zero W has three kinds of Serial Interface on the “General Purpose Input Output”

header. The Universal Asynchronous Receiver Transmitter serial port enables you to establish a

remote login session from a Sequential Terminal Application, for example, PuTTY. The other two

sequential interfaces are the “Serial Peripheral Interface” and “Inter Integrated Circuit bus”. Serial

Peripheral Interface on the Pi takes into account up to two joined gadgets, while Inter Integrated

Circuit transport conceivably considers numerous gadgets, until their addresses start conflicting

with each other.

3.2 Accident Detection Mechanism (Using Threshold Value)

After the communication has been established between the Pi Zero W and MPU – 6050

using the above-mentioned libraries, raw values from the sensor (MPU – 6050) can now be read

by the micro-controller and these same values after some working are used for accident detection.

1. Firstly, we import WHTML, SPIDEV, time and SMBUS libraries in the code for

the purpose of reading the raw values sent from the sensor to the Raspberry Pi using

a wired medium.

2. The math library allows us to use built in mathematical functions in python for

molding the required values as per their use.

22

Figure 12 Screenshot Appendix A

For Example:

• math. atan2 function returns the Arctangent in Radians

• math. sqrt is used to give us the square root

3. Finally, after getting raw values and applying mathematical functions, we get six

final values. Three of these are accelerometer_xout, accelerometer_yout and

accelerometer_zout give us the three-axis reading of acceleration or deceleration of

23

the MPU – 6050 sensor IC whereas the gyroscope_xout, gyroscope_yout,

gyroscope_zout provide us with the three-axis values of angular rate. Once the

values have been received by the micro-controller, these are scaled respectively so

they can be used efficiently.

4. Once we have the scaled values, we are just left with one task i.e analyzing,

manipulating and using these values for accident detection. We have inserted

checks at specific points (to be discussed in the next point) in our code to detect the

accident. These checks are based on certain threshold values. If the value is greater

than a certain threshold, the script reports an accident or sends a 1 flag otherwise it

continues its normal operation and the detection flag remains 0. These threshold

values were set after careful experimentation and testing. The helmet was tested by

a rider in these conditions:

• Driving over a smooth road

• Driving over a bumpy road and speed breakers

• Instant braking and acceleration

Additionally, the helmet was dropped, and the sensors values were logged for that

particular instant that helped us to calculate a generic accident detection threshold.

We threw the helmet several times at different speeds and after careful analysis

decided the appropriate triggering values.

24

5. For detecting an accident, we go through the following steps:

• Firstly, define a value “acc_total” which will be the absolute sum of all three

accelerometer values that are accelerometer_xout, accelerometer_yout and

accelerometer_zout.

acc_total = abs(accelerometer_xout) + abs(accelerometer_yout) +

abs(accelerometer_zout)

• Then we use “two” if conditions for the purpose of accident detection that

are:

1. Value of “acc_total” is less than a threshold in our case 40,000.

 if (acc_total > 40000):

ADV.Accvalue1()

print "ACCIDENT DETECTED"

break

2. Using boolean “AND” and “OR” operators between gyroscope and

accelerometer value to detect an accident

if ((accelerometer_xout_scaled < 0) and (accelerometer_yout_scaled

< 0)) and ((gyroscope_xout < 0) or (gyroscope_yout < 0) or

(gyroscope_zout < 0)):

ADV.Accvalue1()

print "ACCIDENT DETECTED"

break

25

3.3 Use of ML for Accident Detection (Random Forest Classifier)

• Accident detection needs to be as accurate as possible to remove false positives. Our

algorithm uses various modes to detect an accident and report it, but it is still susceptible

to false positives. Manufacturing a public safety project, special attention needs to be given

to this short-fall.

• Our detection platform works based on values computed from accelerometer and

gyroscope sensors. These values are updated every second so there is a huge amount of

data that’s coming through. We decided on implementing ‘random forest classifier’ to

reduce false positives.

• It was chosen because of its ability to make a ‘decision tree’ based on a huge volume of

data acquired by the sensors which, according to our research reveals is the appropriate

algorithm for this. The output, true or false case is determined through a decision tree

because of training dataset we provided, and it used accelerometer & gyroscope (3 axis),

total and orientation values.

26

Figure 13 Decision tree Obtained after Training

• With the help of this decision tree, the raw values are classified into different pre-defined

scenarios (in our case an accident).

27

Figure 14 Random Forest Ensemble of test data

• These scenarios are plotted-on graphs and histogram.

• These graphs, when analyzed statistically can reveal patterns.

• The decision tree’s conclusion approaches practicality with greater volume of data

provided to the classifier.

28

CHAPTER - 4

Application Development & Interfacing with Raspberry Pi

4.1 Interfacing Options

1) Personal Hotspot:

The mobile phone can act as hotspot to provide connectivity to the app with

Raspberry Pi. The communication between the app and Raspberry Pi will follow the

common TCP/IP architecture and allow for simple client-server communication. The

Raspberry Pi will be allotted an IP address from the mobile’s DHCP server and then it can

communicate over the network just like a LAN.

In our case, we have set-up an apache server on the Raspberry Pi which serves

HTML pages. These HTML pages contain the sensor values and keeps the flag updated

whether an accident is detected or not. The android application is developed to access this

local web server hosted on the Raspberry Pi and extract the sensor values and the accident

detection flag. If the server reports this flag as 1, then an accident has occurred otherwise

it returns a 0 and normal operation continues.

2) BTNAP:

 One of the shortcomings of personal hotspot is that it is not very energy efficient

and consumes a lot of battery. An alternate energy efficient solution is to keep the

underlying TCP/IP architecture same but use an energy efficient communication medium

such as Bluetooth or Bluetooth Network Access Point in this case. This extends the phones

battery life and at the same time functions as a quick-connected communication protocol.

29

In this Scenario, the Raspberry Pi becomes the Bluetooth Network Access Point

and hosts the DHCP server to allocate IP addresses to the clients.

The phone connects to it as a client, after getting an IP address it retrieves the data such as

sensor values and flags for detection from the hosted server.

3) Bluetooth-Socket:

The Bluetooth-Socket provides a more flexible communication framework as

compared to BTNAP or Personal Hotspot because after being paired or the idle stage it

generates sockets to communicate to services on a need basis. It is not always hosting or

connecting which saves a lot of battery. The Bluetooth-Socket follows the same principle

as client-server architecture. One node becomes the server and the other node becomes

client and the roles can be interchanged. This type of functionality was missing from the

prior mentioned interfacing options. This allows us to make a more optimized application

to support it.

In this scenario the Bluetooth MAC addresses are used instead of the IP addresses

and no network flow is required as in the TCP/IP architecture.

This mode also allows the mobile phone to use its own Data network simultaneously with

the Bluetooth setup. This opens other possibilities to integrate additional features in the

application that require access to the internet such as remote tracking services. Different

API’s (Application Programming Interface) are available, some are paid while others are

open-source and can be integrated with application to provide additional functionality. One

such API is the Google Maps API that can be integrated with the application to provide

30

navigation services via audio to the bike rider. These types of services usually charge a

small amount yearly and are an economical option to provide additional features.

4.2 Android Application:

Android applications are developed in the Java language using the Android Software

Development Kit (Android studio in our case). Once they are developed, Android applications can

be uploaded on Google Play Store or can be transferred through APKS.

 Android powers millions of smart phones around the globe. It is the largest installed

operating system on any smart phone and it is growing exponentially.

The following figure shows the Android Architecture

Figure 15 Android Architecture [15]

31

4.2.1 Linux Kernel:

The first or the bottom layer is Linux kernel. This provides a level of abstraction between

the device hardware and software further controlling all the essential hardware drivers. The

kernel handles all the things such as networking and controlling the drivers.

4.2.2 Libraries:

On top of Linux kernel, there is a combination of open-source libraries that help automate the

OS’s tasks and processes. These include libraries like SQLite, SSL, audio and video networking

libraries, etc.

4.2.3 Android Core Libraries:

These are Java based libraries offered to the developer for designing customized applications.

These include but are not limited to:

• android.App : It provides accessibility to the application model

• android.webkit : It is related to web browsing in applications

• android.Content : It provides content access.

• android.database : SQLite management classes.

• android.OS : It provides accessibility to standard OS services

• android.text : Render and manipulate display.

• android.view : Application UI.

• android.widget : Buttons, list views, labels, layout managers etc.

• android.opengl : Graphics rendering API.

32

4.2.4 Android Runtime:

This is present on the second layer of the architecture. This layer contains a major framework

called Dalvik Virtual Machine. This is a JVM. It is specifically designed for Android. It uses

Linux core features like multi-threading and memory-management. Every Android application

runs in its own instance and this is provided by the Dalvik VM.

4.2.5 Application-Framework:

The Application-Framework is the third layer and provides many higher level services to apps.

Developers make use of these services in their apps.

The Android framework provides the following features:

• Activity Manager: It controls the activity stack and apps lifecycle.

• View System: Create application UI (User Interface).

• Notifications Manager: Display notifications and alerts to the user.

• Resource Manager: Provides access to resources such as color, strings, UI layouts and

settings.

4.2.6 Applications:

All the Android applications are present at the fourth layer. They use all the available resources

from layers beneath and customizes them in a way to work together. Examples of such

applications are Calculator, Browser, Games, Contacts etc.

33

4.3 SHADR APP

4.3.1 Permissions/Manifest File

The core libraries needed for the functioning of the SHADR application are included in the

manifest file as shown in Appendix A. The XML file contains the necessary permissions

required by the application for its proper functioning. This file must be presented to the operating

system prior to running the application.

The main entries in our manifest file are shown below

< android.permission.ACCESS_COARSE_LOCATION/>

< android.permission.ACCESS_FINE_LOCATION/>

< android.permission.INTERNET />

< android.permission.SEND_SMS />

These four entries show that the SHADR app can and will perform functions related to SMS,

Internet and Location.

4.3.2 Activities

Unlike other programming languages, the android system invokes functions by calling out

activities rather than calling them through the main() method. This is a very useful feature and

allows activities to be arranged in a specific order to be executed.

34

The SHADR application comprises of 2 main activities namely:

1) Login/Data Collection Activity

This activity includes the necessary Java code for storing values and its cross

checking with a server. The Login information can be hard-coded into the app as well to

allow custom usernames and passwords. As each app will be specific to one individual,

hard-coding makes it relatively easy to address each user.

This Activity also stores the medical information of the user which is then passed onto

the next activity for further processing. This medical information can include anything

from allergies to blood group and is easily customizable by the user. Every User must do

this before starting the ride.

After entering the medical information, the app will ask for emergency contacts so that it

can transfer all the medical records to that number incase an accident is occurred.

2) Main Activity:

This is the core activity of the application and it handles the accident reporting

framework. It is further sub divided into 3 activities:

1) Location Tracking: This activity monitors for Location Change activity through the

GPS and returns new coordinates at every instance the location is changed. These

function returns LAT/LONG coordinates.

35

2) Sensor Value Acquisition: A Java library known as Beautiful Soup is used to

interpret the values coming from the sensors in the Raspberry Pi by refreshing the

web server and getting new values at every instant. The Web server displays the

values along with the detection flag whereas the application uses the parsing

technique to accumulate the values.

3) Accident Reporting Through SMS: The Beautiful Soup listener is constantly

listening while the rider is riding the bike for the accident detection flag to turn 1.

This means that an accident has occurred and it needs to report the following 3 things

to the emergency contacts provided:

a) Location Coordinates

b) Speed (calculated by taking coordinates relative to time)

c) Blood Group

d) Name, other medical information (Strings)

As soon as the Flag turns 1, the application initiates an SMS sending API to transfer

the above given things to the emergency contacts provided initially.

These are all the major activities and their roles in the SHADR Application.

36

CHAPTER - 5

Conclusion

5.1 Objectives Achieved

The project provides the capability to detect and report accidents by modifying a motor cycle

helmet. This is done using values from accelerometer and gyroscope sensor that are fed into a

microcontroller which intimates the android application via Bluetooth. It was achieved with design

parameters as follows:

a. Economical

b. Efficient

c. Scalability

The android application stores user emergency details and informs emergency contacts in case

of an accident with location and health details eliminating the use of a separate GSM and GPS

module.

5.2 Applications

SHADR provides an accident detection and reporting platform not only applicable to motor

cycle riders specifically but also implementable across a variety of motor vehicles. The scalability

of this project has diverse prospects for the future. This makes a project applicable to a multitude

of clientele.

37

5.2.1 General Public

• A cost-effective solution was the fundamental design parameter that was followed

throughout the design of this project.

• According to Pakistan Bureau of Statistics (PBS), 75% [17] of the Pakistani population

owns motor cycles and through market research it was revealed, majority of this target

market hails from lower middle class to low class. Therefore, this project compromises of

minimal hardware components and is based on the ideology of improving software to

provide a better user experience.

• To further facilitate such people, a smart helmet solution can be introduced via government

and city traffic police incentives to make it more affordable. This would make it more

affordable and a viable smart solution for the masses.

• Much care was taken about making mass deployment possible by keeping the android

application as simple as possible requiring no training as only user health details and

emergency contacts need to be added.

5.2.2 Corporate Clientele

• Ride hailing services like Uber, Careem, Foodpanda, Cheetay & Doodhwala can benefit

from this product. Careem, Cheetay & Doodhwala have been contacted and showed

interest in the product. A fully functional client-server architecture with remote monitoring

not only aids them but also provides a safety perspective with the accident detection and

reporting platform as no similar cost-effective solution is available in the market.

• The project falls within United Nation’s Sustainable Development Goal (SDG) – Public

Health & Well Being. This aligns our project with global corporate and environment goals

of human wellbeing that makes it an attractive solution to implement. This enables

38

introducing our product to a wide spectrum of corporate clientele that have responsible

ethical values.

• The interesting aspect of this project is that it is not a piece of hardware only specific to

motorcyclists but a platform of accident detection and reporting that can be introduced in

the vast automobile industry. The sensors can be installed in any vehicle to detect accidents.

Therefore, we can sell our algorithm and methodology via patents to automobile industry,

so they can develop a product specific to their needs.

5.2.3 Government Departments

• City Traffic Police motorcyclists and 1122 Emergency Response Teams can also be

equipped with this product. It not only ensures safety but also monitoring capability to

provide better service to the public.

• Dolphin Police Force from Lahore was going to introduce a smart helmet costing Rs.

38,000 (pkr), this project failed as it was deemed financially as well as practically unviable.

Our solution can be modified with added features as per their demand and can be a

domestically designed solution, that is substantially cheaper.

• Similarly, military can benefit by using this product for QRF teams as the use of

motorcycles is increasing with the advent urban warfare. Added features like wireless

communication where mobile networks are not available and head cams can be added as

required.

5.3 Future Work

Certain aspects of the project can be further polished to make it more user friendly as we

have so far worked on a prototype. If time is given and work is done on it, a marketable product

can be brought to consumers and clients.

39

5.3.1 Communication

• Bluetooth Personal Area Network is currently being used for communication between

Raspberry Pi 0W and android application. This does not give room for adding a lot of

features on top of the HTML parsed value being used for intimation of accident status on

smart phone.

• Therefore, Bluetooth Low Energy (BLE) enabled sock interface or a WiFi hotspot can be

introduced. This provides room to implement features like personal assistant used in

navigation or wireless audio functionality.

• It is very beneficial as it can be fully implemented on software and requires little to no

hardware addition. Therefore, costs do not increase per unit; rather one-time development

cost to fully implement this communication mode.

Figure 16 Navigation System [16]

• This would enable more energy-efficient and a beneficial to the end user as it would enable

the developer to add more features via software development.

• Battery conservation can be made possible by using any of the above-mentioned

communication modes. This improves usage time in between charges as well as the over-

all user experience.

40

5.3.2 Data Gathering and Analysis for ML

Recognizing and omitting false positive accident reports was one of the major hurdles in

our way. The Random Forest Classifier mentioned above, is according to our research so far, the

most suitable way to detect and thus reduce these false positive reports. Radom Forest Classifier

requires extensive data sets and hours or testing and trials to give practical results.

We gathered some data for two basic scenarios, the true one being that an accident has

occurred and the false case for no accident. We were successful in gathering data for the later i.e.

the false case by driving a motor bike at random speeds and places for hours (on smooth and bumpy

surfaces). The data was collected at an interval of one half of a second. The data for the true case

was collected by throwing the helmet on different surfaces and by dropping the helmet of a

motorbike at different speeds.

So, our research directed us towards a conclusion where a combination of both threshold

values and decision using a Machine Learning algorithm with proper data collection and analysis

can definitely help us improve our accident detection and reporting platform.

5.3.3 Additional Features

• Features like headcam, rear indicators, wireless headphones, sensors for further enhancing

accident detection capability can be added.

• So, the motivation by improving the helmet by the addition of such features would be to

cater for specific clientele like people who can afford an expensive, feature intensive

headphone and government/corporate clients that would want specific features to be

introduced in their variant of smart helmet.

41

• This will enable our product to target a broad clientele not only limited to the base model

but manufacturing variants specific to needs of the consumer.

5.3.4 Product Development

• So far, we have worked on a prototype. This uses Raspberry Pi which is an expensive

microcontroller and whose processing power is not fully utilized. Therefore, it is neither

feasible nor smart to use it on a large scale.

• The prototype also costs a lot because market products like battery pack, helmet and sensor

were used. If this project is to be sold as a marketable product, product design tailored to a

customized helmet with room for sensors and other equipment that needs to be purchased

in bulk. This will reduce product development costs by approximately 50%.

• To achieve that cost reduction of 50%, a custom microcontroller needs to be used with the

sole purpose of interfacing with MPU-6050 and for communicating status with android

application. As Raspberry Pi costs Rs. 3,000, this custom microcontroller will drastically

reduce manufacturing costs. But ample research needs to be put in to make it possible.

• Similarly, as a part of market research, helmet manufacturers and dealers were contacted

from Karachi like Unique & Uneed Helmets. It revealed that helmet manufacturing in

Pakistan is not viable as product quality is not up to international safety standards at all. It

was also revealed that only viable option is to directly contact Chinese helmet

manufacturers to design a helmet according to our design specifications and assemble it

with the required sensors. This removes the need for having an independent Pakistan based

plant as it is not financially viable against a Chinese alternative. Outsourcing is the future!

42

Appendix A

MPU – 6050 (Accelerometer and Gyroscope) - Python Script

#!/usr/bin/python

import whtml as ADV

import spidev

import time

import smbus

import math# Register

power_mgmt_1 = 0x6b

power_mgmt_2 = 0x6c

def IC(): #Define Variables

 delay = 7

 ldr_channel = 0

 x = 1

 spi = spidev.SpiDev() # Create SPI

 spi.open(0, 0)

def gyro():

 def read_byte(reg):

43

 return bus.read_byte_data(address, reg)

def read_word(reg):

 h = bus.read_byte_data(address, reg)

 l = bus.read_byte_data(address, reg + 1)

value = (h << 8) + l

return value

def read_word_2c(reg):

 val = read_word(reg)

if (val >= 0x8000):

 return -((65535 - val) + 1)

else :

 return val

def dist(a, b):

 return math.sqrt((a * a) + (b * b))

def get_x_rotation(x, y, z):

 radians = math.atan2(y, dist(x, z))

 return math.degrees(radians)

44

bus = smbus.SMBus(1) # bus = smbus.SMBus(0) fuer Revision 1

address = 0x68# via i2cdetect

Activate to be able to address the module

bus.write_byte_data(address, power_mgmt_1, 0)

while True:

 ADV.Accvalue1()

 print "Gyroscope"

 print "--------"

gyroscope_zout = read_word_2c(0x43)

gyroscope_xout = read_word_2c(0x45)

gyroscope_yout = read_word_2c(0x47)

print " accelerometer_xout: ", ("%5d" % gyroscope_yout), " scaled: ", (gyroscope_yout / 131)

print " accelerometer_yout: ", ("%5d" % gyroscope_xout), " scaled: ", (gyroscope_xout / 131)

print " accelerometer_zout: ", ("%5d" % gyroscope_zout), " scaled: ", (gyroscope_zout / 131)

print

print "Accelerometer sensor"

45

print "---------------------"

gyroscope_yout = read_word_2c(0x3b)

gyroscope_xout = read_word_2c(0x3d)

gyroscope_zout = read_word_2c(0x3f)

accelerometer_xout_scaled = gyroscope_xout / 16384.0

print "accelerometer_xout: ", ("%6d" % accelerometer_xout), " scaled: ",

accelerometer_xout_scaled

print "accelerometer_yout: ", ("%6d" % accelerometer_yout), " scaled: ",

accelerometer_yout_scaled

print "accelerometer_zout: ", ("%6d" % accelerometer_zout), " scaled: ",

accelerometer_zout_scaled

print "accelerometer_total: ", acc_total

print "X Rotation: ", get_x_rotation(accelerometer_xout_scaled, accelerometer_yout_scaled,

accelerometer_zout_scaled)

print "Y Rotation: ", get_y_rotation(accelerometer_xout_scaled, accelerometer_yout_scaled,

accelerometer_zout_scaled)

time.sleep(0.1)

46

if ((accelerometer_xout_scaled > 0) and(accelerometer_yout_scaled < -74))

and((gyroscope_xout < 1500) or(gyroscope_yout >0) or(gyroscope_zout > 0)):

 ADV.Accvalue0()

print "ACCIDENT DETECTED"

break

IC()

ADV.Accvalue1()

gyro()

Update Valon Apache

def Accvalue1():

 f = open('/var/www/html/index.html','w')

 message = """<html>

 <head></head>

 <title> Accident Detection:1(True)</</title>

 <body><p>1></body>

 </html>"""

 f.write(message)

 f.close()

47

 message = """<html>

 <head></head>

 <title> Accident Detection:0(False)</title>

 <body><p>0></body>

 </html>"""

 f.write(message)

f.delete(message)

 f.close()

Appendix B

Login activity App

package testing.gps_location;

import android.animation.Animator;

import android.content.Intent;

import android.animation.AnimatorListenerAdapter;

import android.annotation.TargetApi;

import android.content.pm.PackageManager;

48

import android.support.annotation.NonNull;

import android.support.design.widget.Snackbar;

import android.support.v7.app.AppCompatActivity;

import android.app.LoaderManager.LoaderCallbacks;

import android.content.ContentResolver;

import android.content.CursorLoader;

import android.content.Loader;

import android.database.Cursor;

import android.net.Uri;

import android.os.AsyncTask;

import android.os.Build.VERSION;

import android.os.Build;

import android.os.Bundle;

import android.provider.ContactsContract;

import android.text.TextUtils;

import android.view.KeyEvent;

import android.view.View;

import android.view.View.OnClickListener;

import android.view.inputmethod.EditorInfo;

import android.widget.ArrayAdapter;

import android.widget.AutoCompleteTextView;

49

import android.widget.Button;

import android.widget.EditText;

import android.widget.TextView;

import java.util.ArrayList;

import java.util.List;

import static android.Manifest.permission.READ_CONTACTS;

/**

 * A login screen that offers login via email/password.

 */

public class LoginActivity extends AppCompatActivity implements LoaderCallbacks < Cursor >

{

 /**

 * Id to identity READ_CONTACTS permission request.

 */

 private static final int REQUEST_READ_CONTACTS = 0;

 /**

50

 * A dummy authentication store containing known user names and passwords.

 * TODO: remove after connecting to a real authentication system.

 */

 private static final String[] DUMMY_CREDENTIALS = new String[]

 {

 "foo@example.com:hello",

 "bar@example.com:world"

 };

 /**

 * Keep track of the login task to ensure we can cancel it if requested.

 */

 private UserLoginTask mAuthTask = null;

 // UI references.

 private AutoCompleteTextView mEmailView;

 private EditText mPasswordView;

 private View mProgressView;

 private View mLoginFormView;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

51

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_login);

 // Set up the login form.

 mEmailView = (AutoCompleteTextView) findViewById(R.id.email);

 populateAutoComplete();

mPasswordView = (EditText) findViewById(R.id.password);

 mPasswordView.setOnEditorActionListener(new TextView.OnEditorActionListener()

 {

 return true;

 }

 return false;

 }

 });

 Button mEmailSignInButton = (Button) findViewById(R.id.email_sign_in_button);

 mEmailSignInButton.setOnClickListener(new OnClickListener() {

 @Override

 public void onClick(View view) {

 String message = mEmailView.getText().toString();

 String Number = mPasswordView.getText().toString();

52

 Intent i = new Intent(LoginActivity.this, MainActivity.class);

 i.putExtra("message", message);

 i.putExtra("Number", Number);

 startActivity(i);

 attemptLogin();

 }

 });

 mLoginFormView = findViewById(R.id.login_form);

 mProgressView = findViewById(R.id.login_progress);

 }

 private void populateAutoComplete() {

 if (!mayRequestContacts()) {

 return;

 }

 if (VERSION.SDK_INT >= 14) {

 // Use ContactsContract.Profile (API 14+)

 getLoaderManager().initLoader(0, null, this);

 }

53

 else if (VERSION.SDK_INT >= 8) {

 // Use AccountManager (API 8+)

 new SetupEmailAutoCompleteTask().execute(null, null);

 }

 }

 private boolean mayRequestContacts() {

 if (Build.VERSION.SDK_INT < Build.VERSION_CODES.M) {

 return true;

 }

 if (checkSelfPermission(READ_CONTACTS) ==

PackageManager.PERMISSION_GRANTED) {

 return true;

 }

 if (shouldShowRequestPermissionRationale(READ_CONTACTS)) {

 @TargetApi(Build.VERSION_CODES.M)

 public void onClick(View v) {

 requestPermissions(new String[]

 {

 READ_CONTACTS

 }, REQUEST_READ_CONTACTS);

54

 }

 });

 } else

 {

 requestPermissions(new String[] {

 READ_CONTACTS

 }, REQUEST_READ_CONTACTS);

 }

 return false;

 }

 /**

 * Callback received when a permissions request has been completed.

 */

 @Override

 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,

@NonNull int[] grantResults) {

 if (requestCode == REQUEST_READ_CONTACTS) {

 if (grantResults.length == 1 && grantResults[0] ==

PackageManager.PERMISSION_GRANTED) {

 populateAutoComplete();

 }

55

 }

 }

 /**

 * Attempts to sign in or register the account specified by the login form.

 * If there are form errors (invalid email, missing fields, etc.), the

 * errors are presented and no actual login attempt is made.

 */

 private void attemptLogin() {

 if (mAuthTask != null) {

 return;

 }

 // Reset errors.

 mEmailView.setError(null);

 mPasswordView.setError(null);

 // Store values at the time of the login attempt.

 String email = mEmailView.getText().toString();

 String password = mPasswordView.getText().toString();

 boolean cancel = false;

 View focusView = null;

56

 // Check for a valid password, if the user entered one.

 if (!TextUtils.isEmpty(password) && !isPasswordValid(password)) {

 mPasswordView.setError(getString(R.string.error_invalid_password));

 focusView = mPasswordView;

 cancel = true;

 }

 // Check for a valid email address.

 if (TextUtils.isEmpty(email))

 }

 else if (!isEmailValid(email)) {

 mEmailView.setError(getString(R.string.error_invalid_email));

 focusView = mEmailView;

 cancel = true;

 }

 if (cancel) {

 // There was an error; don't attempt login and focus the first

 // form field with an error.

 focusView.requestFocus();

57

 }

Else

 {

 // Show a progress spinner, and kick off a background task to

 // perform the user login attempt.

 showProgress(true);

 mAuthTask = new UserLoginTask(email, password);

 mAuthTask.execute((Void) null);

 }

 }

 private boolean isEmailValid(String email) {

 //TODO: Replace this with your own logic

 return email.contains("@");

 }

 private boolean isPasswordValid(String password) {

 //TODO: Replace this with your own logic

 return password.length() > 4;

 }

 /**

58

 * Shows the progress UI and hides the login form.

 */

 @TargetApi(Build.VERSION_CODES.HONEYCOMB_MR2)

 private void showProgress(final boolean show) {

 // On Honeycomb MR2 we have the ViewPropertyAnimator APIs, which allow

 // for very easy animations. If available, use these APIs to fade-in

 // the progress spinner.

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.HONEYCOMB_MR2)

 {

 int shortAnimTime = getResources().getInteger(android.R.integer.config_shortAnimTime);

 mLoginFormView.setVisibility(show ? View.GONE : View.VISIBLE);

 mLoginFormView.animate().setDuration(shortAnimTime).alpha

(

 show ? 0 : 1).setListener(new AnimatorListenerAdapter()

{

 @Override

 public void onAnimationEnd(Animator animation)

{

 mLoginFormView.setVisibility(show ? View.GONE : View.VISIBLE);

 }

59

 });

 public void onAnimationEnd(Animator animation) {

 mProgressView.setVisibility(show ? View.VISIBLE : View.GONE);

 }

 });

 }

else

 {

 // The ViewPropertyAnimator APIs are not available, so simply show

 // and hide the relevant UI components.

 mProgressView.setVisibility(show ? View.VISIBLE : View.GONE);

 mLoginFormView.setVisibility(show ? View.GONE : View.VISIBLE);

 }

 }

 @Override

 public Loader < Cursor > onCreateLoader(int i, Bundle bundle)

 {

 return new CursorLoader(this,

 // Retrieve data rows for the device user's 'profile' contact.

 Uri.withAppendedPath(ContactsContract.Profile.CONTENT_URI,

60

 ContactsContract.Contacts.Data.CONTENT_DIRECTORY), ProfileQuery.PROJECTION,

 // Select only email addresses.

 ContactsContract.Contacts.Data.MIMETYPE +

 " = ?", new String[]

 {

 ContactsContract.CommonDataKinds.Email

 .CONTENT_ITEM_TYPE

 },

 // Show primary email addresses first. Note that there won't be

 // a primary email address if the user hasn't specified one.

 ContactsContract.Contacts.Data.IS_PRIMARY + " DESC");

 }

 @Override

 public void onLoadFinished(Loader < Cursor > cursorLoader, Cursor cursor) {

 List < String > emails = new ArrayList < > ();

 cursor.moveToFirst();

 while (!cursor.isAfterLast())

 {

61

 emails.add(cursor.getString(ProfileQuery.ADDRESS));

 cursor.moveToNext();

 }

 addEmailsToAutoComplete(emails);

 }

 @Override

 public void onLoaderReset(Loader < Cursor > cursorLoader) {

 }

 mEmailView.setAdapter(adapter);

 }

 private interface ProfileQuery {

 String[] PROJECTION = {

 ContactsContract.CommonDataKinds.Email.ADDRESS,

 ContactsContract.CommonDataKinds.Email.IS_PRIMARY,

 };

 int ADDRESS = 0;

 int IS_PRIMARY = 1;

 }

62

 /**

 * Use an AsyncTask to fetch the user's email addresses on a background thread, and update

 * the email text field with results on the main UI thread.

 */

 class SetupEmailAutoCompleteTask extends AsyncTask < Void,

 Void,

 List < String >>

{

 @Override

 protected List < String > doInBackground(Void...voids) {

 ArrayList < String > emailAddressCollection = new ArrayList < > ();

 // Get all emails from the user's contacts and copy them to a list.

 ContentResolver cr = getContentResolver();

 Cursor emailCur = cr.query(ContactsContract.CommonDataKinds.Email.CONTENT_URI,

null,

 null, null, null);

 while (emailCur.moveToNext())

 {

 String email = emailCur.getString(emailCur.getColumnIndex(ContactsContract

 .CommonDataKinds.Email.DATA));

63

 emailAddressCollection.add(email);

 }

 emailCur.close();

 return emailAddressCollection;

 }

 @Override

 protected void onPostExecute(List < String > emailAddressCollection) {

 addEmailsToAutoComplete(emailAddressCollection);

 }

 }

 /**

 * Represents an asynchronous login/registration task used to authenticate

 * the user.

 */

 public class UserLoginTask extends AsyncTask < Void,

 Void,

 Boolean >

 UserLoginTask(String email, String password) {

 mEmail = email;

64

 mPassword = password;

 }

 @Override

 protected Boolean doInBackground(Void...params)

{

 // TODO: attempt authentication against a network service.

 try

{

 // Simulate network access.

 Thread.sleep(2000);

 }

 catch (InterruptedException e)

 {

 return false;

 }

 for (String credential: DUMMY_CREDENTIALS) {

 String[] pieces = credential.split(":");

 if (pieces[0].equals(mEmail)) {

 // Account exists, return true if the password matches.

 return pieces[1].equals(mPassword);

65

 }

 }

 // TODO: register the new account here.

 return true;

 }

 if (success)

{

 finish();

 }

else

 {

 mPasswordView.setError(getString(R.string.error_incorrect_password));

 mPasswordView.requestFocus();

 }

 }

 @Override

 protected void onCancelled() {

 mAuthTask = null;

 showProgress(false);

 } } }

66

Main Activity (speed, long, lat., location change)

package testing.gps_location;

import android.Manifest;

import android.content.Intent;

import android.content.pm.PackageManager;

import android.location.Location;

import android.location.LocationListener;

import android.location.LocationManager;

import android.os.Build;

import android.os.Bundle;

import android.provider.Settings;

import android.support.annotation.NonNull;

import android.support.annotation.Nullable;

import android.support.v4.app.ActivityCompat;

import android.support.v7.app.AppCompatActivity;

import android.view.View;

import android.widget.Button;

import android.widget.TextView;

import android.widget.Toast;

import org.jsoup.Jsoup;

67

import org.jsoup.nodes.Document;

import java.io.IOException;

import java.util.jar.Attributes;

import android.telephony.SmsManager;

public class MainActivity extends AppCompatActivity {

 private Button b;

 private TextView t;

 private LocationManager locationManager;

 private LocationListener listener;

 private Button b2;

 private TextView t2;

 double curTime = 0;

 double oldLat = 0.0;

 double oldLon = 0.0;

 @Override

 protected void onCreate(@Nullable Bundle savedInstanceState)

{

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

68

 Bundle bundle = getIntent().getExtras();

 final String message = bundle.getString("message");

 final String Number = bundle.getString("Number");

 t = (TextView) findViewById(R.id.textView);

 b2.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view)

{

 getWebsite();

 }

 });

 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE);

 listener = new LocationListener() {

 @Override

 public void onLocationChanged(Location location) {

 t.setText("\n " + "Lat:" + location.getLongitude() + " " + " Long:" + location.getLatitude());

 double loc1 = location.getLatitude();

 double loc2 = location.getLongitude();

69

 final String Loc1 = Double.toString(loc2);

 final String Loc2 = Double.toString(loc1);

 final double x = getspeed(location);

 new Thread(new Runnable() {

 @Override

 public void run() {

 final StringBuilder builder = new StringBuilder();

 try {

 Document doc = Jsoup.connect("http://192.168.20.99").get();

 String title = doc.title();

 String a = "1";

 String text = doc.text();

 builder.append(text);

 builder.append("\n" + "\n" + "Speed: " + (x * 3500) + "Km/h" + "\n\n" + message);

 if (title.equals(a))

{

 String Loc = Loc1 + "," + Loc2;

 SmsManager smsManager = SmsManager.getDefault();

 smsManager.sendTextMessage(Number, null, "ALERT!!!\n*************\n" + message + "

Was in an Accident at\n" + "Speed:" + ((x * 3500)) + "km/h\nLocation: " + Loc, null, null);

70

 builder.append(" at\n");

 builder.append(Loc + "\n\nSENDING SMS");

 }

 }

 catch (IOException e)

 {

 builder.append("Error:");

 }

 runOnUiThread(new Runnable() {

 @Override

 public void run()

 {

 t2.setText(builder.toString());

 }

 });

 }

 })

 .start();

 }

 @Override

71

 public void onStatusChanged(String s, int i, Bundle bundle) {

 }

 @Override

 public void onProviderEnabled(String s) {

 }

 @Override

 public void onProviderDisabled(String s) {

 Intent i = new Intent(Settings.ACTION_LOCATION_SOURCE_SETTINGS);

 startActivity(i);

 }

 };

 configure_button();

 }

 private void getWebsite() {

 new Thread(new Runnable() {

 @Override

 public void run() {

 final StringBuilder builder = new StringBuilder();

 try

72

 {

 Document doc = Jsoup.connect("http://192.168.20.99").get();

 String title = doc.title();

 builder.append(title);

 }

 catch (IOException e) {

 builder.append("Error:");

 }

 runOnUiThread(new Runnable() {

 }

 });

 }

 })

.start();

 }

private double getspeed(Location location)

 {

 double newTime = System.currentTime();

 double newLat = location.getLatitude();

 double newLon = location.getLongitude();

73

 if (location.hasSpeed())

 {

 double speed = location.getSpeed();

 Toast.makeText(getApplication(), "SPEED : " + speed * 3500+ "Km/h",

Toast.LENGTH_SHORT).show();

 return speed;

 }

else

 {

 double distance = calculationBydistance(newLat, newLon, oldLat, oldLon);

 double timeDifferent = curTime - newTime ;

 double speed = distance + timeDifferent/ timeDifferent;

 curTime = newTime;

 oldLat = newLat;

 oldLon = newLon;

Toast.makeText(getApplication(), "SPEED 2 : " + String.valueOf(speed * 3500) + "km/h",

Toast.LENGTH_SHORT).show();

 return speed;

 }

 }

 public double calculationBydistance(double lat1, double lon1, double lat2, double lon2) {

 double radius = 6717000;

74

 double dLat = Math.toRadians(lat2 - lat1);

 double dLon = Math.toRadians(lon2 - lon1);

 double a = Math.sin(dLat / 2) * Math.sin(dLat / 2) +

 Math.cos(Math.toRadians(lat1)) * Math.cos(Math.toRadians(lat2)) *

 Math.sin(dLon / 2) * Math.sin(dLon / 2);

 double c = 2 * Math.asin(Math.sqrt(a));

 return radius * c;

 }

 @Override

 public void onRequestPermissionsResult(int requestCode, @NonNull String[] permissions,

@NonNull int[] grantResults) {

 switch (requestCode) {

 case 10:

 configure_button();

 break;

 default:

 break;

 }

 }

void configure_button() {

 // first check for permissions

75

 if (ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_FINE_LOCATION) !=

PackageManager.PERMISSION_GRANTED && ActivityCompat.checkSelfPermission(this,

Manifest.permission.ACCESS_COARSE_LOCATION) !=

PackageManager.PERMISSION_GRANTED) {

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {

 }

 return;

 }

 // this code won't execute IF permissions are not allowed, because in the line above there is

return statement.

 b.setOnClickListener(new View.OnClickListener() {

@Override

 public void onClick(View view) {

 //noinspection MissingPermission

 locationManager.requestLocationUpdates("gps", 5000, 0, listener);

 }

 });

 }

 }

76

Appendix C

MainifestsXml

<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="testing.gps_location">

 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

 <uses-permission android:name="android.permission.INTERNET" />

 <uses-permission android:name="android.permission.SEND_SMS" />

 <!-- To auto-complete the email text field in the login form with the user's emails -->

 <uses-permission android:name="android.permission.GET_ACCOUNTS" />

 <uses-permission android:name="android.permission.READ_PROFILE" />

 <uses-permission android:name="android.permission.READ_CONTACTS" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:supportsRtl="true"

77

 android:theme="@style/AppTheme">

 <activity

 android:name=".LoginActivity"

 android:label="@string/title_activity_login">

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 <activity android:name=".MainActivity">

 </activity>

 </application>

 </manifest>

78

Appendix D

Random Forest Classifier

In[10]:

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()

le.fit(labels)

apply encoding to labels

labels = le.transform(labels)

In[11]:

df.sample(5)

In[12]:

df_selected = df.drop(['TIME', 'Ax','Ay','Az','Gx','Gy','Gz',"STATE"], axis=1)

In[13]:

79

df_features = df_selected.to_dict(orient='records')

df.sample(5)

In[14]:

from sklearn.model_selection import train_test_split

features_train, features_test, labels_train, labels_test = train_test_split(

 features, labels,

 test_size=0.20, random_state=42)

print(labels_train,)

In[37]:

import

from sklearn.ensemble import RandomForestClassifier

initialize

clf = RandomForestClassifier()

train the classifier using the training data

clf.fit(features_train, labels_train)

80

In[38]:

compute accuracy using test data

acc_test = clf.score(features_test, labels_test)

print ("Test Accuracy:", acc_test)

Test Accuracy: 0.98

In[39]:

acc_train = clf.score(features_train, labels_train)

print ("Train Accuracy:", acc_train)

Train Accuracy: 0.98

In[42]:

flower = [[-4,78]]

class_code = clf.predict(flower) # [1]

In[43]:

81

print (clf.predict(flower))

In[44]:

decoded_class = le.inverse_transform(class_code)

print (decoded_class)

In[]:

Appendix E

Accident Statistics [17]

19.4 Traffic Accidents

Year
Total number of

accidents

Accident Persons Total number of

vehicles involved Fatal Non-Fatal Killed Injured

PAKISTAN

2006-07 10466 4535 5931 5465 12875 11481

2007-08 10466 4610 5856 5615 12096 11456

2008-09 9496 4145 5351 4907 11037 10322

2009-10 9747 4378 5369 5280 11173 10496

2010-11 9723 4280 5443 5271 11383 10822

2011-12 9140 3966 5174 4758 10145 9986

2012-13 * 8988 3884 5104 4719 9710 9876

2013-14* 8359 3500 4859 4348 9777 9423
2014-15* 7865 3214 4651 3954 9661 8949

2015-16* 9100 3591 5509 4448 11544 10636

PUNJAB

2006-07 5355 2591 2764 3096 6311 5355

2007-08 5522 2721 2801 3293 6163 5522

2008-09 5240 2471 2769 2912 5790 5240

2009-10 5344 2590 2754 3083 5856 5344

2010-11 5420 2591 2829 3167 5809 5420

2011-12 4990 2361 2629 2888 5071 4990

2012-13 4587 2213 2374 2692 4515 4587

2013-14 3696 1717 1979 2145 3941 3696
2014-15 3054 1435 1619 1750 3652 3054

2015-16 3288 1576 1712 2053 4550 3288

SINDH

2006-07 1618 932 686 1079 1303 1758

2007-08 1561 898 663 1066 1135 1722

82

2008-09 1433 824 609 961 1160 1562

2009-10 1465 883 582 1031 1261 1580

2010-11 1270 758 512 927 1071 1541

2011-12 1054 681 373 756 681 1121

2012-13 935 582 353 696 637 960

2013-14 945 613 332 791 893 1103
2014-15 881 583 298 771 863 1029

2015-16 924 634 290 749 754 1144

KHYBER PAKHTUNKHWA
2006-07 2942 779 2163 1006 4421 3756

2007-08 2893 755 2138 942 3884 3634

2008-09 2392 644 1748 786 3340 2975

2009-10 2559 712 1847 921 3560 3128

2010-11 2722 773 1949 986 4153 3479

2011-12 2772 785 1987 953 3913 3501

2012-13 2968 846 2122 1059 4016 3736

2013-14 3120 877 2243 1033 4257 3934
2014-15 3399 942 2457 1137 4524 4260

2015-16 4287 1083 3204 1299 5527 5490

BALOCHISTAN

2006-07 551 233 318 284 840 612

2007-08 490 236 254 314 914 278

2008-09 431 206 225 248 747 545

2009-10 379 193 186 245 496 444

2010-11 311 158 153 191 350 382

2011-12 324 139 185 161 480 374

2012-13 297 136 161 163 362 381

2013-14 342 173 169 247 480 434
2014-15 315 147 168 178 440 389

2015-16 357 178 179 207 504 470

ISLAMABAD

2012-13 201 107 94 109 180 212

2013-14 256 120 136 132 206 256
2014-15 216 107 109 118 182 217

2015-16 244 120 124 140 209 244

*- Islamabad Included. Source: Provincial Police Department (Crime Branch)& Islamabad

Police

Registered Motorbikes [17]

Year

Motor Cars jeeps

& station wagons

Motor

Cabs/taxis

Buses/Mini-

Buses

Trucks

Motor Cycles

2 wheels

Motor

Cycles/Motor

Rickshaws

Others 3

Wheels

Total

PAKISTAN

2004 1298353 90460 166136 179727 2609442 138153 848688 5330959

2005 1318488 91893 168713 182516 2649910 101058 861851 5374429

2006 1372191 105373 175589 189950 2757842 136394 896014 5633353

2007 1440801 103397 184368 199447 2895734 143215 940851 5907813

2008 1549854 104431 187367 202574 3039815 156068 961646 6201755

2009 1657860 106463 195163 210944 3215583 167910 1005441 6559364

2010 1726347 122882 198790 216119 4305121 201827 1081916 7853002

2011(P) 1881560 124651 202476 225075 5781953 266390 1178890 9660995

2012 2094289 143859 215374 240888 7500182 323189 1270788 11788569

2013 2281083 145234 220347 247197 9064547 377997 1334372 13670777

2014

PUNJAB
2400690 145418 223624 251339 10341326 429319 1376369 15168085

83

2004 580189 20937 99554 62930 1743839 56370 563593 3127412

2005 589187 21292 101098 63907 1770883 27246 572333 3145946

2006 613185 23694 105218 66510 1843012 59577 595020 3306216

2007 643844 23931 110479 69835 1935163 62556 624795 3470603

2008 692576 24171 112276 70930 2031449 68170 638605 3638177

2009 740840 24641 116948 73861 2148912 73343 667688 3846233

2010 807162 24818 118366 76214 3078239 98340 708058 4911197

2011(P) 905240 26511 121306 79656 4153262 124181 767769 6177925

2012 1055975 45519 132270 87153 5342692 153263 825608 7642480

2013 1180078 46894 135691 89632 6608422 183645 868465 9112827

2014

SINDH
1264574 47077 138579 91538 7724642 220807 907638 10394855

2004 536972 46997 25706 29398 719882 54525 160944 1574424

2005 545300 47726 26105 29854 731046 46131 163440 1589602

2006 567510 56186 27169 31070 760822 48009 169919 1660685

2007 595886 53718 28527 32624 798863 50410 178422 1738450

2008 640988 54255 28991 33135 838612 54934 182365 1833280

2009 685657 55311 30198 34504 887102 59102 190671 1942545

2010 686534 71539 31796 35520 1029454 67085 223848 2145776

2011(P) 738767 71556 32275 38107 1351197 101986 235488 2569376

2012 793849 71723 33454 43304 1800006 127468 259048 3128852

2013 848561 71723 33931 44717 2010246 146074 270650 3425902

2014 883635 71723 34317 46823 2169548 160233 273436 3639715

KHYBER PAKHTOON KHWA

2004 147810 21911 34496 50275 93632 23430 79583 451137

2005 150102 22251 35031 51055 95084 23794 80818 458135

2006 156216 24797 36459 53135 98957 24763 84021 478348

2007 164027 25045 38282 55791 103904 26001 88226 501276

2008 176442 25295 38905 56666 109074 28335 90176 524893

2009 188738 25788 40523 59007 115381 30485 94282 554204

2010 188770 25790 40539 59078 121555 31337 95377 562446

2011(P) 193023 25817 40662 61161 188727 34992 103216 647598

2012 199488 25850 41227 63200 248443 36457 112062 726727

2013 206983 25850 42154 65034 327964 42272 120708 830965

2014

BALOCHISTAN
207020 25851 42157 65164 329221 42273 120746 832432

2004 33382 615 6380 37124 52089 3828 44568 177986

2005 33899 624 6479 37700 52897 3887 45260 180746

2006 35280 696 6743 39235 55051 4045 47054 188104

2007 37044 703 7080 41197 57804 4248 49408 197484

2008 39848 710 7195 41843 60680 4629 50500 205405

2009 42625 723 7494 43572 64188 4980 52800 216382

2010 43881 735 8089 45307 75873 5065 54633 233583

2011(P) 44530 767 8233 46151 88767 5231 72417 266096

2012 44977 767 8423 47231 109041 6001 74070 290510

2013 45461 767 8571 47814 117915 6006 74549 301083

2014 45461 767 8571 47814 117915 6006 74549 301083

a= Islamabad, N. Areas and AJK included. Source: Provincial Excise & Taxation Departments, Punjab,
Sindh,

P= Provisional NWFP, Balochistan, AJK and Northern Areas.

84

References & Works Cited

[1] Global Health Observatory (GHO) data, 2013,

Available: https://www.who.int/gho/en/

[Accessed May 3, 2018]

[2] Sharief, Samiullah. “Road Accidents in Pakistan Reach Alarming High: Who's

Responsible?” PakWheels Blog, 16 Sept. 2016,

Available: www.pakwheels.com/blog/alarming-increase-of-road-accidents-in-pakistan/.

[Accessed May 5, 2018]

[3] “Eight Reasons Motorcyclists in Pakistan Are More Prone to Road Accidents.” The

Express Tribune, The Express Tribune, 26 Dec. 2017,

Available: www.tribune.com.pk/story/1584612/4-eight-reasons-motorcyclists-in-

pakistan-are-more-prone-to-road-accidents/.

[Accessed May 5, 2018]

[4] Dogar, Arshad, and Sidrah Roghay. “Disturbing Data on Motorcycle Accidents.” TNS -

The News on Sunday, 21 Dec. 2016,

Available: tns.thenews.com.pk/disturbing-data-motorcycle-accidents-in-lahore-and-

karachi/.

[Accessed May 5, 2018]

[5] Mohid Khairul Afiq Rohd Rasli, Nina Korlina Madzi, Juliana Johari, 2013, “Smart

Helmet with sensors for accident Prevention”

[Accessed June 12, 2018]

https://www.who.int/gho/en/
http://tns.thenews.com.pk/disturbing-data-motorcycle-accidents-in-lahore-and-karachi/
http://tns.thenews.com.pk/disturbing-data-motorcycle-accidents-in-lahore-and-karachi/
http://tns.thenews.com.pk/disturbing-data-motorcycle-accidents-in-lahore-and-karachi/
http://tns.thenews.com.pk/disturbing-data-motorcycle-accidents-in-lahore-and-karachi/
http://tns.thenews.com.pk/disturbing-data-motorcycle-accidents-in-lahore-and-karachi/
http://tns.thenews.com.pk/disturbing-data-motorcycle-accidents-in-lahore-and-karachi/

85

[6] Sayan Tapadar, Arnab Kumar Saha, Dr. Himadri Nath Saha, 2018, “Accident and

Alcohol Detection in Bluetooth enabled Smart Helmets for Motorbikes”

[Accessed June 12, 2018]

[7] Sreenithy Chandran, Sneha Chandrasekar, Edina Lizbeth, 2016, “Konnect: An IOT based

smart helmet for Accident detection and Notification”

[Accessed June 15, 2018]

[8] Elie Nasr, Elie Ffoury, David Khoury, 2016, “An IOT Approach to Vehicle Accident

Detection, Reporting and Navigation”

[Accessed June 15, 2018]

[9] Akriti Singhakl, Sarishma, Ravi Tomar, 2016, “Intelligent Accident Management System

using IOT and Cloud Computing”

[Accessed June 15, 2018]

[10] Skully Helmet, (2018), [image].

Available: https://www.skully.com/shop

[Accessed July 5, 2018]

[11] Raspberry Pi Zero W, (2018), [image].

Available:https://www.raspberrypi.org/products/raspberry-pi-zero-w/

[Accessed July 5, 2018]

[12] AdaFruit Learning Systems, Lady Ada, “Introducing the Raspberry Pi Zero”,

datasheet, (2018).

Available: https://cdn-learn.adafruit.com/downloads/pdf/introducing-the-raspberry-pi-

zero.pdf

[Accessed July 5, 2018]

https://www.skully.com/shop
https://www.raspberrypi.org/products/raspberry-pi-zero-w/

86

[13] InvenSense Inc. [US], “MPU-6000 and MPU-6050 Product Specification

Revision 3.4”, datasheet, (2018).

Available: https://store.invensense.com/datasheets/invensense/MPU-

6050_DataSheet_V3%204.pdf

[Accessed Aug. 20, 2018]

[14] Raspberry Pi Zero, (2019), [image]

Available: https://www.wired.co.uk/article/raspberry-pi-zero-starter-guide

[Accessed May 2, 2019]

[15] Android Architecture, (2019), [image].

Available: https://www.dev2qa.com/android-architecture-components-introduction/

[Accessed May 2, 2019]

[16] Navigation System, (2019), [image].

Available: https://www.vectorstock.com/royalty-free-vector/navigation-map-with-red-

pin-vector-1847055

[Accessed May 2, 2019]

[17] Pakistan Bureau of Statistics, “Pakistan Statistical Year Book 2016”,

 Appendix E.

Available:http://www.pbs.gov.pk/sites/default/files//PAKISTAN%20STATISTICAL%20

YEAR%20BOOK%2C%202016.pdf

[Accessed May 1, 2018]

https://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
https://store.invensense.com/datasheets/invensense/MPU-6050_DataSheet_V3%204.pdf
https://www.wired.co.uk/article/raspberry-pi-zero-starter-guide
https://www.dev2qa.com/android-architecture-components-introduction/
https://www.vectorstock.com/royalty-free-vector/navigation-map-with-red-pin-vector-1847055
https://www.vectorstock.com/royalty-free-vector/navigation-map-with-red-pin-vector-1847055
http://www.pbs.gov.pk/sites/default/files/PAKISTAN%20STATISTICAL%20YEAR%20BOOK%2C%202016.pdf
http://www.pbs.gov.pk/sites/default/files/PAKISTAN%20STATISTICAL%20YEAR%20BOOK%2C%202016.pdf

