
 

 
 

       Data Acquisition System Using FPGA Kit and Microblaze 

 

 

                                   

 

 

 

                                                                    By 

Maliha Safdar, Muhammad Hamza, Amir Jehangir and Muhammad Saad Bin Afzal 

                 Submitted to the Faculty of Department of Electrical Engineering, 

Military College of Signals, National University of Science and Technology, Islamabad 

                       in partial fulfillment for the requirement of a B.E Degree in 

                                                          Telecom Engineering 

                                                                 JUNE 2017 

 

 

 

 



 

 
 

                                                  ABSTRACT 

 

Project Name: 

 

 Data Acquisition System Using FPGA. 

 

Skills Required: 

 

1. Embedded Systems Design. 

2. C/Verilog Programming. 

 

Description:  

 

The system shall acquire data from the USB devices, convert the data to IP packet and 

send it to PCs over Ethernet network. Data from the USB devices are to be streamed 

continuously over LAN cable. All interactionsare controlled with the help of Micro blaze 

soft microprocessor core implemented in FPGA. Block diagram of the system is given 

below: 

 

Project Deliverables: 

1. Design of the Data Acquisition System. 

2. Hardware implementation. 

3. Source code. 

4. Project report. 

 

 

 

 

 

 

 

 

 



 

 
 

                                               CERTIFICATE 
 
This is to certify that this Thesis Report entitled “Data Acquisition System using FPGA 

Kit and Microblaze” by Maliha  Safdar, Muhammad Hamza, Amir Jehangir and 

Muhammad Saad Bin Afzal is submitted in partial fulfillment of the requirement for the 

degree of BETE in Military College of Siganls (NUST) during the academic  year 2016-

2017, is a bona fide record work carried out under my guidance and supervision. 

 

 

 

 

 

 

 

 

 

 

Name (Supervisor):                           Asst. Prof. Mian Muhammad Waseem Iqbal 

Signature:                                           ______________________________________ 

Date:                                                    ______________________________________ 

 

 
 
 
 

 

 

 



 

 
 

                                            DECLARATION 

Noaportionaof the workapresented in thisadissertation has beenasubmitted inasupport of 

anotheraaward oraqualification eitheraat this institutionaoraelsewhere 

 

 

 

 

 

 

 

 



 

v 
 

 

                                              DEDICATIONS 

We dedicate this to our family, friends and above all our amazing teachers, without their 

prayers, support, encouragement, guidance and appreciation we couldn’t have achieved 

such a milestone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

                                                  ACKNOWLEDGEMENTS 

Due extension of our humble gratitude to the most magnificent Allah Almighty, without 

His will it would never have been possible to have this attainment. We thank Him for 

providing us with all the knowledge, intelligence, sagacity and understanding which was 

needed for the successful completion of this thesis research work. 

We thank our project supervisor Asst. Prof. Mian Muhammad Waseem Iqbal, who 

supported us whole heartedly and stimulated our intellect during our work. Without his 

interest, involvement and assistance it wouldn’t have been possible to carry out the 

research and complete the project work. 

We are also thankful to our mentors and colleagues for helping us in the development of 

this project and rendering us their support whenever it was needed. 

Last but not the least, we are more than thankful to our parents for all the prayers, 

understanding and massive support. Their encouragement helped us a lot in achieving all 

our project tasks and their words  kept us motivated and dedicated throughout our project 

work. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

vii 
 

                                        TABLE OF CONTENTS    

 
 

Introduction:.…………………………………………………………………….……………….1 

1.1  Overview: .............................................................................................................................. 1 

1.2Problem Statement: ................................................................................................................. 1 

1.3 Approach: ............................................................................................................................... 3 

1.4 Objective: ............................................................................................................................... 4 

1.5 Additional Objective: ............................................................................................................. 4 

Background Study: …………………………………………………………................................8 

2.1 Existing Literature: ................................................................................................................ 5 

2.1.2 Types of Data Acquisition System: .................................................................................... 5 

2.2 Data Acquisition System Using FPGA: ..................................................................................... 6 

2.3 Problem Formulation: ............................................................................................................ 6 

Design Specification: ……………………………………………………………..……………....8 

3.1 Technical specifications: ........................................................................................................ 8 

3.2 Design Requirements: .......................................................................................................... 11 

3.3 Design Specifications: ......................................................................................................... 11 

3.4   Detailed Design with justification : ................................................................................... 12 

Design Procedure: ………………………………………………………………………………16 

4.1     Create Hardware Design on Vivado Xilinx Platform Studios (XPS): ................................. 13 

4.2      Implementing logic on Hardware Design using SDK Coding:………………………………………..14 

 4.2.1 USB Module: ……………………………………………..……………………………………………………….…………24 

    4.2.2 Ethernet Module: ……………………………………………………………………………………………..………...25 

4.2.3 Logic Deployed: ………………………………………………….…………………………………………………..…..…26 

 4.3 IP Packet: ………………………………………………………..……………………………………………………..………..27 

 4.4 Ethernet TCP/IP Frame:…………………………………………………………………………...……….………………27 

 

Simulation: …………………………………………………………………………………...…30 



 

viii 
 

5.1 Creating USB Test Bench for Simulation: ............................................................................... 18 

5.2 Creating Ethernet Test Bench for Simulation: ........................................................................31 

Implementation: …………………………………………………………………...……………32 

6.1 Physical Interface: ………………………………………………………………………………………………………………32 

6.2 Microblaze Core: ………………………………………………………………………………………………………………..33 

6.3 Tri- mode Ethernet MAC Core: ……………………………………………………………………………………………34 

  6.3.1 Core Overview: ………………………………………………………………………………………………………………35 

Results: …………………………………………………………………………………………..36 

7.1   Ethernet Packets on “WireShark”: ......................................................................................... 25 

Bibliography: ……………………………………………………………………………………39 

8.1 List of similar projects done at MCS: ...................................................................................... 30 

8.2 List of similar projects elsewhere: ........................................................................................... 30 

8.3 Online Help: ............................................................................................................................. 30 

Project Research Work: ………………………………………..………………………………41 

Appendix A: ……………………………………………………………………….…………….42 

Appendix B: ……………………………………………………………………………………..45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 
 

                                             TABLE OF FIGURES 

 

 
 

Figure 1: Proposed Model of Data Acquisition System .................................................................. 2 

Figure 2: Data Acquisition System using FPGA implementation ................................................... 3 

Figure 3: Data Acquisition System using FPGA schematic ............................................................ 4 

Figure 4: Block Diagram of Data Acquisition System .................................................................... 5 

Figure 5: Data Acquisition System using FPGA ............................................................................. 6 

Figure 6: Virtex-7 Evaluation Kit .................................................................................................... 8 

Figure 7: Virtex-7 Specifications ..................................................................................................... 9 

Figure 8: Requirement for Design ................................................................................................. 11 

Figure 9: Hardware Design created in Xilinx Vivado Suite .......................................................... 14 

Figure 10: IP Packet Header .......................................................................................................... 17 

Figure 11: Ethernet TCP/IP Frame structure ................................................................................. 17 

Figure 12: USB Reset .................................................................................................................... 18 

Figure 13: USB Set ........................................................................................................................ 19 

Figure 14: TEMAC Transmitter Module ....................................................................................... 19 

Figure 15: TEMAC Receiver Module ........................................................................................... 20 

Figure 16: Typical 1000BASE-X controller. ................................................................................. 21 

Figure 17: IP Configurable modes. ................................................................................................ 22 

Figure 18: Tri-mode Ethernet MAC core. ..................................................................................... 23 

Figure 19: Ping of device with PC ................................................................................................. 25 

Figure 20: Ping Request Packet. .................................................................................................... 26 

Figure 21: Ping Reply Packet. ....................................................................................................... 26 

Figure 22: DHCP Layer ................................................................................................................. 27 

Figure 23: ARP Request ................................................................................................................ 27 

Figure 24: IGMP Layer .................................................................................................................. 28 

Figure 25: LLMNR Protocol Layer ............................................................................................... 29 

Figure 26: MDNS Protocol Layer .................................................................................................. 29 

 

 



 

1 
 

                                                         Chapter 1 

 

                                                    INTRODUCTION: 

 

 

1.1  Overview: 

 

Universal Serial Bus (USB) is technology is widely spreading all around the world. Many 

mobile peripherals, web cameras, keyboards and printers come with USB connection. It 

is because of the fact that this type of connection is very simple and have characteristics 

like play and plug features, hot plug support and most important of them is possibilityaof 

supplyingapower to peripheral devices. USB also offersagood noiseaimmunity due to its 

differentialatype signalatransmission.USB provides high data transferarate so it is best to 

use it for data acquisition and processing purposes. Data Acquisition System for 

Universal Serial Bus (USB) devices is basically a very fast communication system which 

acquires data from USB using micro-blaze processer of FPGA and transmit it on Ethernet 

at a speed of 1gb/s. This system can be introduced in any communication system just 

doing minor changes like introducing FPGA kit at receiver or transmitter end based on 

system requirement. 

 

1.2 Problem Statement: 

 

Telecommunication irrespective of mode is like oxygen for human beings of modern era 

where  use of internet calling , data transfer and social networking is a basic necessity of 

everyone and not only that  business, banking and defense all are dependent on  it. In 

such situation where all of us are depending on internet, mobile and telephone speed is 

the basic issue for telecommunication companies because of following problems. 

 

 Shared resources 

 Low through put 

 Less processing speed of router or PC as Compared to internet 



 

2 
 

 Unsecure data 

 

On the contrary, Data Acquisition System Using FPGA has many advantages which include: 

 High throughput 

 High processing Speed  

 Multiple task can be done at the same time(Parallel Processing) 

 Data securing will not cause any delay 

 Easier to maintain and ideal for large organizations  

 

 

1.3 Proposed Model: 

The proposed architecture model is shown in Figure 1. It will take data from multiple 

USB devices and after converting data into Ethernet packet format i-e IP packets throw it 

to PCs via LAN.Dataa from theaUSB will be streamedacontinuouslyaover Cat-5 copper 

LANacableaat 1Gb/s. The system will provide access to all the devices that follow the 

USB 2.0 standard. 

 

                             

                                                        Figure 1: Proposed Model of Data Acquisition System 



 

3 
 

 

 

1.4Approach: 

As mentioned above this system will gather data from USB devices at a speed of 483 

Mb/s and sends it over Ethernet at a speed of 1 Gb/s. When from data is acquired from 

USB using microblaze  processor it is converted into IP packets. These IP packets are 

then continuously streamed on Ethernet .While this processor data can displayed on 

screen using RS232 UART peripheral of FPGA also Data can be stored using FPGA 

internal or external memory         

 

 

                                                     Figure 2: Data Acquisition System using FPGA implementation 

 



 

4 
 

      

                                                     Figure 3: Data Acquisition System using FPGA schematic 

 

1.5 Objective: 

The basic aims behind this project are: 

 To design a Data Acquisition system which will ensure very fast communication 

 This particular project will intake data from any source having output connection in the 

form of USB 

 The project will read data from Micro-blaze processor core and convert it into IP packets 

 IP packets will transmit at a speed of 1 GB/s using Temac core  

 Data will be visualize using UART peripheral 

 Data will also be stored using FPGA internal or external memory 

 

1.6 Additional Objective: 

Other than basic aims we have one additional aim 

 To secure IP packets using modern encryption techniques. 

 

The main part of project will be built using Xilinx Platform Studio.A processor based 

embedded system with real-time operating system will be used to achieve high speed and 

TEMAC core will be used to transmit data on Ethernet. To secure IP packets Xilinx ISE 

suit will be used and Verilog Hardware Description Language will be used.    

 



 

5 
 

                                                      Chapter 2 

                                        BACKGROUND  STUDY: 

 

2.1 Existing Literature: 

 

Data Acquisition is the procedure in which the physical values of signals are sampled and 

then these samples are converted it to digital values which can then be analyzed by the 

computer. Analogue waveforms are converted to digital numeric values and similarly 

digital waveforms can be converted to analog values which can then further be processed. 

 Physical parameters to Analog Conversion: Sensorsa 

 Conversion of sensor signals into a form that can be converted to digital values: 

SignalaConditioning Circuitsa 

 Conversion of sensor signal to digital values: Analog to Digitalaconvertora 

 

 

2.1.2 Types of Data Acquisition System: 

 

 Analogainput/output signals 

 Digitalainput/output signals 

 Countersa 

 Other signalsaincludingaserialaandabus-based signals 

         

                         

                                                   Figure 4: Block Diagram of Data Acquisition System 



 

6 
 

 

 

2.2  Data Acquisition System Using FPGA: 

 

These type of system use Field Programmable Gate Array as a DAQ device as shown in 

fig.4. FPGA has many application as DAQ device because it has capability do multiple 

task at the same time (parallel processing).It has multiple processors and many internal or 

external peripherals which can be used in many ways. Also it has capability to store and 

display data. Its  most important applications are  

 Packet processing 

 USB to Ethernet 

 Ethernet to Ethernet 

 

 

                 

 

                                              Figure 5: Data Acquisition System using FPGA 

 

 

2.3 Problem Formulation: 

 

Some work has already been done for the Data Acquisition System using FPGA for USB 

devices. Almost all DAQ's  require  FPGAs’ because flexibility and architecture to design 

systems with fast processing speed and use of optimized silicon area but in our case it is 

necessary because we are designing a system which need  fast processing  . We are using  

Xilinx Virtex-7 Evaluation  Board is most recent FPGA by Xilinx .It has 200MHz fixed 



 

7 
 

oscillator and up to 400MHz programmable clock generator. Furthermore, it has GTX 

transceiver, which can provide complete 1000 Base-X implementation on-chip. It is our 

aim to make a device that will provide fastest communication and the flexibility to 

provide a faster and efficient solution to secure any network from any malware 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

8 
 

                                                     Chapter 3: 

 

                                              DESIGN SPECIFICATIONS: 

 

3.1 Technical specifications: 

 

We are using FPGA virtex-7(VC-707) Evaluation kit for our project. 

 

 

 

 

 

          
 

                                                               Figure 6: Virtex-7 Evaluation Kit 

 

 

 



 

9 
 

                
 

                                                                      Figure 7: Virtex-7 Specifications 

 

The Hardware Specifications of VC707 board are:  

 1aGBDDR3amemoryaSODIMM 

 128aMBaLinearabyteaperipheralainterfacea(BPI)aFlashamemorya 

 USBa2.0a ULPITransceiver 

 Secure Digital (SD) connector, 

 USBaJTAGathroughaDigilentamodule 

 ClockaGeneration 

 Fixeda200MHzaLVDSaoscillator, 

 I2C programmable LVDS oscillator 

 SMAaconnectorsa 

 SMAaconnectorsaforaGTXatransceiveraclocking 

 GTXatransceivers, 

 FMC1aHPCaconnectora 

 FMC2aHPCaconnectora 

 SMAaconnectors, 

 PCIaExpressa 

 Small form-factor pluggableaplus (SFP+) connectora 

 EthernetaPHYaSGMII interface, 

 PCIaExpress endpointaconnectivity, 

 Gen1a8-lane (x8), 

 Gen2a8-lane (x8) 

 SFP+a Connectora 



 

10 
 

 10/100/1000atri-speedaEthernetaPHYa 

 USB-to-UARTabridgea 

 HDMI™acodec, 

 I2Cabusa 

 I2CaMUXa 

 I2CaEEPROMa 

 USERaI2CaprogrammableaLVDSaoscillatora 

 DDR3aSODIMM socketa 

 HDMIacodeca 

 FMC1aHPCaconnector 

 FMC2aHPCaconnector; 

 SFP+aconnector 

 I2Cprogrammableajitter-attenuatingaprecisionaclockamultipliera 

 StatusaLEDsa 

 Ethernetastatusa 

 Poweragooda 

 FPGAaINITa 

 FPGAaDONEa 

 User Input/Outputa 

 User LEDsa 

 User pushbuttonsa 

 CPUaresetapushbuttona 

 UseraDIPaswitch (8- GPIO)a 

 UseraSMAaGPIOaconnectorsa 

 LCDacharacteradisplaya(16x2)a 

 Switchesa 

 Poweraon/offaslideaswitch 

 FPGA_PROB_Bapushbuttona 

 ConfigurationamodeaDIPaswitcha 

 VITA 57.1aFMC1aHPCaConnectora 

 VITA 57.1aFMC2aHPCaConnectora 

 Poweramanagementa 

 PM-Busavoltageaandacurrentamonitoringathrough TIapoweracontrollera 

 XADCaheader 

 LinearaBPIaFlashamemory 

 USBaJTAGaconfigurationaport 

 PlatformacableaheaderaJTAGaconfigurationaport 

 

 

 

 

 



 

11 
 

 

3.2 Design Requirements: 

 

          

 

                                                                 Figure 8: Requirement for Design 

 

 

3.3 Design Specifications: 

 

We will design the Project Using Xilinx Platform Studio 

 

First of all we will add following peripheral in our project 

 Micro-blaze processor 

 DDR3-SD  RAM   

 RS-232 UART 

We will then add following IP's to our project 

 

 AXI-USB 2.0 device 



 

12 
 

 AXI -Ethernet TEMAC (1GB/s)  

 

We will use following buses for interconnection of IP's and peripherals  

 

 AXI 

 LMB 

 

 

3.4   Detailed Design with justification :  

The project is basically divided into two parts: 

 

1. Master Panel:  

This panel basically consists of  micro-blaze Processor  it receives data from USB at a 

speed of 483 MB/s through AXI  bus convert it into IP packets and it hold them 

temporarily in micro-blaze local memory through LMB  bus and then transfer it to temac 

using AXI bus at a speed of 1 GB/s. 

 

2. Slave Panel:  

It consists of USB 2.0 IP, Ethernet IP And RS 232 and all peripherals except micro-blaze 

.It receives /transmit data from to micro-blaze also provides function like display and 

external memory to micro-blaze through AXI bus. 

 

 

 

 

 

 



 

13 
 

                                                              CHAPTER 4: 

 

                                       DESIGN PROCEDURE: 

 

4.1 Create Hardware Design on Vivado Xilinx Platform Studios(XPS): 

    

Hardware design for the project is created by adding peripherals, modules and IPs to the 

project that are mentioned in the Design Specifications. 

 

After the addition of module IPs are added in IP integrator. The bus interfacing has been 

done. Ports and Addresses are automatically assigned 

 

 

After completing the above steps the following XPS hardware design for the project is              

generated. 

 



 

14 
 

                       

                    

                                                  Figure 9: Hardware Design created in Xilinx Vivado Suite 

 

 

 

4.2 Implementing logic on Hardware Design using SDK Coding: 

The following modules are created in Software development kit to implement our logic. 

These modules are 

 USB module (Code in Appendix A) 

 Ethernet module (Code in Appendix B) 

Ethernet module further consist following modules 

 Echo module 

 i2c_accessmodule  

 platform_config module 

 platform_mbmodule 

 platform_ppc module 



 

15 
 

 platform_zynq module 

 platform module 

 sfp module  

 si5324 module 

There are basically two main modules other are device driver based modules so, we will 

discuss only two modules.  

4.2.1  USB module  

This module is for USB. It takes data from to the USB. It has following Libraries. Each libraries 

has different function theses are: 

 

 xusb.h 

It basically deals with the functions of USB. It driver codes and functions which are 

called in main function according to their use. 

 xintc.h 

It basically contains functions to controlls the interrupt function of USB 

 stdio.h 

It has functions to deals with standard input output functions 

 xenv_standalone.h 

It has drivers  related to specific function of USB 

 xil_exception.h 

It has drivers  related to specific function of USB 

 

 xil_cache.h 

It has drivers  related to specific function of USB 

 

Code attached in Appendix A. 

  

 

 

4.2.2  Ethernet module 

Uses LWIP libraries to set a TCP/IP server. Following are the required                        

Libraries used 

 stdio.h 

It has functions to deals with standard input output functions 

 xparameters.h 

Contains all parameter of device (VC-707) as per included in hardware design 

 netif/xadapter.h 

It has drivers  related to specific function of  Ethernet 



 

16 
 

 platform.h 

Contains all driver of device (VC-707) as per included in hardware design 

  platform_config.h 

Contains all configuration driver of device (VC-707) as per included in hardware design 

 xil_printf.h 

It has functions deals with UART output functions 

 lwip/tcp.h 

Contain all functions for data transfer  through TCP/IP protocol  

 lwip/dhcp.h 

Contain all functions for dhcp protocol for connectivity and other operations 

 

 Code attached in Appendix B 

 

4.2.3  Logic deployed 
 

First of all data is being read from USB device through driver and then it added to 32 bit 

read register, a logic is being set when read register value became non-zero it switches 

Ethernet function and read register value is given to Ethernet function which in turn 

triggers TCP-write function for converting this data into TCP/IP packets and then data is 

sent over Ethernet using standard function and drivers of Ethernet core. Similarly, if TCP 

read function receives a packet it adds its value to 32 bit write register which in turn 

writes it to USB in the same way. Alternately, USB mass-storage can also be used to 

perform the function 

 

4.3  IP Packet: 

 

 

 



 

17 
 

                                                               Figure 10: IP Packet Header 

 

 

 

 

4.4 Ethernet TCP/IP Frame: 

 

 

           
           

                                                   Figure 11: Ethernet TCP/IP Frame structure 

 

 

 

 

 

 

 

 

 

 



 

18 
 

                                                        Chapter 5: 

 

                                                   SIMULATION: 

 

5.1 Creating USBTest Bench for Simulation: 

 

Following are the simulation results: 

 

              

 

                                                                   Figure 12: USB Reset 

 

 

 



 

19 
 

             

                                                                    Figure 13: USB Set 

 

5.2  Creating Ethernet Test bench for Simulation: 

 

             

 

                        Figure 14: TEMAC Transmitter Module 

 

 

 

 



 

20 
 

                 

 

                                              Figure 15: TEMAC Receiver Module 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

21 
 

                                                     Chapter 6 

 

                                           IMPLEMENTATION: 

 

6.1 Physical Interface: 

 

This interface connects theaphysicalainterfaceaofatheaEthernetaMACaBlockatoathe 

input/output of theaFPGA. It has 1000 BASE-X PCS/PMA, SGMII and Temac wrapper. 

1000BASE-X is represented in Figure 16 

 

                      

                                                Figure 16: Typical 1000BASE-X controller. 

 

 

6.2  Microblaze core: 

Microblaze core is highly configurable IP core and it supports 70+ configurations. 

It provides the flexibility to choose the number of interfaces, memories and peripherals in 

order to achieve the required optimized system. The IP can be configured to operate in 

different modes mentioned in the Figure  

 



 

22 
 

                

 

                                                         Figure 17: IP Configurable modes. 

 

6.3 Tri-mode Ethernet MAC Core: 

 

For the connection of Ethernet Physical to FPGA Tri-mode Ethernet Media Access 

Controller has been used. This core performs the Base-T standard at 10/100/1000 Mbps 

speeds. It is highly configurable core that supports both half and full duplexamodes of 

operationa as specifieda inaIEEE 802.3astandard. 

 

6.3.1Core Overview: 

 

The TEMAC Core is shown in the Figure 9. Itconsists of Client Interface, Transmit 

engine, Receive engine, Flow control and SGMII/MII (Gigabit media independent 

interface/ media independent interface) block. 

 

 



 

23 
 

                             

 

                                                               Figure 18: Tri-mode Ethernet MAC core. 

 

 

a) Transmit Engine: 

The transmit engine accepts data i-e Ethernet frames from client interface 

addsapreamblea to theastart ofaframe and then adding paddingabytesato ensureathe 

minimum frame length requirement and then appends CRC( frame check sequence), 

basically converting it to format that comply with GMII. It also transmits the Pause 

frames generated by Flow Control Module. 

 

b) Receive Engine: 

It provides the receive statistics vector for the received packets. It will take the data from 

GMII/MII interface and checks it if it comply with IEEE 802.3. It will remove the 

preamble, paddingabytesaand CRC( frame check sequence). Receiver side will check for 

errors in the frame that has been received. 

 

c) Flow Control: 

The flow control will send the pauseaframes and will act uponatheir receptiona during 

full duplexa mode of aoperation. It is designed according to IEEE 802.3 specifications. 



 

24 
 

 

d) SGMII/MII: 

The SGMII/ MII block converts data from the transmitter to MII format if the speed of 

operation is less than 1Gb/s.  

The received data can also be converted to SGMII format if it is to be passed through 

1Gb/s. 

 

e) Client Interface: 

It has Client Side Transmitter and Client Side Receiver interface. 

Client Side Transmitter: Used in the data transmission from the Core to the Client. 

ClientaSide Receiver: In data reception from the Client to the Core. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                      

 



 

25 
 

                                                          Chapter 7 

                      

                                                      RESULTS: 

First of all we’ll ping our device with the PC. The following are the results. 

              

                                                          Figure 19: Ping of device with PC 

Then Packets will be observed via Software Wireshark. Wireshark is a networkaprotocol 

and openasourceaPacket analyzer for sniffing the packets and analyzing them. 

7.1  Ethernet Packets on “WireShark”: 

The following Ethernet packets have been analyzed using the software. 

       



 

26 
 

                                                          Figure 20: Ping Request Packet. 

 

      

                                                            Figure 21: Ping Reply Packet. 

 

 

 

The following are the protocol layers: 

1. DHCP: 

DynamicaHostaConfigurationaProtocol (DHCP) is aaclient/serveraprotocol that 

automaticallyaprovidesaanaInternetaProtocol (IP) host withaits IPaaddress and other 

relatedaconfigurationainformationasuch as the subnetamask andadefaultagateway. 



 

27 
 

 

                                                                             Figure 22: DHCP Layer 

2. ARP : 

AddressaResolutionaProtocol, a networkalayeraprotocolausedatoaconvert anaIP 

addressainto a physicalaaddress (calledaaaDLCa Address), such as 

anaEthernetaaddress.. 

 

                                                                             Figure 23: ARP Request 



 

28 
 

3. IGMP: 

TheaInternetaGroupaManagementaProtocol (IGMP) is anaInternetaprotocol providing 

way for anaInternetqcomputer toareport itsamulticastgroupamembership to 

adjacentarouters. By Multicasting one computer can send data to number of computers. 

 

                                                             Figure 24: IGMP Layer 

 

4. LLMNR : 

The LinkaLocalaMulticastaNameaResolution (LLMNR) is a protocolabasedaonathe 

DomainaNameaSystem (DNS) protocolathataallows computers toaperformaname 

resolutionaforaaddresses onsthe sameslocal networkdwithout theaneed for aacentrally 

coordinatingaDNSaserver. 



 

29 
 

 

                                                            Figure 25: LLMNR Protocol Layer 

 

5. MDNS : 

MulticastaDNS (mDNS)aprovides theaability toaperformaDNS-likeaoperationsaon 

the local linkainatheaabsence of anyaconventionalaUnicastaDNS servera 

 

 

                                                          Figure 26: MDNS Protocol Layer 

 

 

 

 



 

30 
 

                                                 Chapter 8: 

 

              BIBLIOGRAPHY: 

 

8.1 List of similar projects done at MCS: 

 

Nosuch project is done in Military College of Signals before. 

 

8.2 List of similar projects elsewhere: 

 

 FPGA-basedamultiaprotocol data acquisitiona system with high speedaUSB 

interfacea 

ByS. Thaneea  , S. Somkuarnpanita  and  K. Saetanga , Hong kong 

 

 Designaof a Data AcquisitionaSystem for USBaDevices over GigabitaEthernet 

By  Ansiyag  Eshackh Department of Electronics & Communication KMEAs 

Engineering College aErnakulam, India and by Jagadeesh Kumar Department of 

Electronics Engineering Govt. Model Engineering College Ernakulam, India 

 

 High Speed USB 2.0 Interface for FPGA Based Embedded Systems 

By  Fatemeh ArbabaJolfaei , NedaaMohammadizadeh , MohammadaSadegh Sadri and 

Fatemeh FaniSani IsfahanaUniversity of Technology, Department of Electrical & 

ComputeraEngineering. 

 

8.3Online Help: 

 

 www.xilinx.com  

 http://www.asic-world.com/verilog/veritut.html  

 www.fpga4fun.com  

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.4283&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.302.4283&rep=rep1&type=pdf


 

31 
 

 http://www.xilinx.com/training/free-video-courses.htm  

 http://www.ni.com/swf/presentation/us/labview/lvfpga/  

 http://www.xilinx.com/csi/training/how-to-configure-an-fpga.htm  

 http://www.xilinx.com/support/index.html/content/xilinx/en/supportNav/silicon_d

evices/fpga/virtex-7.html  

 http://hardforum.com/showthread.php?t=1074301  

 http://www.xilinx.com/products/ipcenter/V5_Embedded_TEMAC_Wrapper.htm  

 

 https://www.xilinx.com/products/boards-and-kits/ek-v7-vc707-g.html 

 

 https://forums.xilinx.com/ 

 

 https://www.xilinx.com/products/design-tools/xps.html 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.xilinx.com/products/design-tools/xps.html


 

32 
 

                                                                 Chapter 9: 

 

                                                PROJECT RESEARCH WORK: 

 

 XILINX SUPPORT DOCUMENTATION, "Virtex 7 FPGA  User Guide, UG885 

(v1.7.1)”, August 12, 2016. 

 SMSC DOCUMENTATION, “ULPI Design Guide, AN19.17".  

 XILINX SUPPORT DOCUMENTATION, “Virtex 7 Getting Started Guide, 

UG848(v1.4.1)”, October 14, 2015 

 XILINX SUPPORT DOCUMENTATION, “Using Micro-blaze in EDK, UG758”, 

Decemeber 18, 2012. 

 

 XILINX SUPPORT DOCUMENTATION, “IP AXI Ethernet, ds759”,  July 25, 2012. 

 

 XILINX SUPPORT DOCUMENTATION, “IP AXI USB 2.0 , ds785”, October 16, 2012. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

33 
 

                                                           Appendix A: 

 

#include "xusba.h" // 

#includee "xintc.h" 

#includee "stdio.h"/ 

#includee "xenv_standalone.h;" 

#includee "xil_exception.h;"// 

#includee "xil_cache.h;"// 

 

 

XUsb UsbInstance; . /* The instancesaof athe USB device */ 

XUsb_Config.. *UsbConfigPtr;. /* Instance of the USB config structure */ 

 

XIntc InterruptControlle..r; /* Instance of the Interrupt Controller */ 

 

volatile u8 PhyAccessDone. = 0; 

void. ethernet(u32 ReadRegData); 

void UsbIfPhyIntrHandleraa(void *CallBackRef, u32 IntrStatus); 

static int SetupInterruptSystemsd(XUsb * InstancePtr); 

 

/*****************************************************************************//// 

/** 

 

 * 

 

 * @paramm,. None. 

 * 

 * @returnnn 

 *  - XST_SUCCESSa., ifa successfullll 

 *  - XST_FAILUREaifa test fails; 

 * @note None... 

 

 *****************************************************************************/// 

intamain(),, 

{ 

 int Statusss; 

 u32 ReadRegData, = 0; 

 /* 

  * Initialize. thee USB. driver. 

  */ 

 UsbConfigPtr. = XUsb_LookupConfig(USB_DEVICE_ID.); 

 if (NULL == Usb.ConfigPtra) { 

  returnnn XST_FAILUREa; 

 } 

#ifdef __PPCa__ 

 

 Xil_ICacheEnableRegiona(0x80000001); 

 Xil_DCacheEnableRegiona(0x80000001); 

#endif 

#ifdef __MICROBLAZEa__ 

 Xil_ICacheInvalidatea(); 

 Xil_ICacheEnablea(); 

 

 

 Xil_DCacheInvalidatea(); 

 Xil_DCacheEnablea(); 

#endifaa 

 

 /* 

  * argument needs to be the virtualaabase address//. 



 

34 
 

  */ 

 Status = XUsb_CfgInitialize(&UsbInstance.., 

        Usb.ConfigPtr, Usb.ConfigPtr->BaseAddress); 

 if (XST_SUCCESS!!= Status.) { 

  return XST_FAILURE; 

 } 

 

 XUsb_UlpiIntrSetHandler (&Usb.Instance, (void *) UsbIfPhyIntrHandler, 

   &UsbInstance); 

 /* 

  * Setup the interruptaasystema. 

  */ 

 Status = SetupInterruptSystem(&UsbInstance); 

 if (Status != XST_SUCCESSa) { 

  return XST_FAILURE; 

 } 

 

 /* 

  * Enableatheainterrupts. 

  */ 

 XUsb_IntrEnablea(&UsbInstancea, XUSB_STATUS_GLOBAL_INTR_MASK | 

   XUSB_STATUS_PHY_ACCESS_MASK); 

 

 XUsb_Starta(&UsbInstance,); 

 

 

 /* 

  * Initiateaa ULPIaregister write transactiona. 

  */ 

 XUsb_UlpiPhyWriteRegister,,(&UsbInstancce, ULPI_SCRATCH_REGISTER,, 

     WRITE_REG_DATA); 

 

 while (!PhyAccessDone); 

 

 /* 

  * Read the PHY readaregister.  We do notaawait foratransaction 

  * complete interrupt inathis case. The API internallyapolls for the 

  * completionaand thenareturns the registeravalue read. 

  */ 

 ReadRegDataa = XUsb_UlpiPhyReadRegister(&UsbInstance,, 

     ULPIa_SCRATCH_REGISTER); 

 

 

 /* Compare the Writtenaadata and readaadata*/ 

 if (ReadRegData != 0).. { 

 

  xil_printf("DATA TO ETHERNET\n\r"); 

  ethernet(ReadRegData); 

  return XST_SUCCESS.; 

 

 

 } 

 

 return XST_FAILURE.; 

 

} 

 

/*****************************************************************************// 

 * Thisafunction is the ULPI PHY* interrupt handlera 

 * 

 * 

 * @param     CallBackRef is theacallback reference 



 

35 
 

 * 

 * @return    None. 

 * 

 * @note        None. 

 * 

 ******************************************************************************/ 

void UsbIfPhyIntrHandler(void *CallBackRef, u32 IntrStatus) 

{ 

 

 XUsb *InstancePtr; 

 

 InstancePtr = (XUsb *) CallBackRef; 

 

 

 if (IntraaStatus & XUSB._STATUS_PHY_ACCESS_MASK..) { 

 

  PhyAccessDonea= 1.; 

 } 

 

} 

 

/******************************************************************************/// 

/** 

* 

* This function. sets up the interruptasystem such that interruptsacan occur 

* forathe USB. Thisafunction is applicationaspecific since the actual 

* system may or may not haveaan interruptacontroller. The USB could be 

* directlc.connectedg to a processorawithout an interruptacontroller.  The 

* user shouldamodify thisafunction to fit theaapplication. 

* 

*  

* @return 

*  - XST_SUCCESS if successful:l. 

*  - XST_FAILURE. if it fails:. 

* 

* @note  None: 

 

static int Setup_Interrupt_System(XUsb * InstancePtr) 

{ 

 intaStatus:; 

 

 /* 

  * Initialize the interruptacontroller driver;. 

  */ 

 Status = XIntc_Initialize(&InterruptController, INTC_DEVICE_ID); 

 if (Status != XST_SUCCESS) { 

  return XST_FAILUREa; 

 } 

 

 

 /* 

  * Connect adevice driverhandler that will be calledwhen anainterrupt 

  * for the USBdevice occurs. 

  */ 

 Status = XIntc_Connect(&InterruptController, USB_INTR, 

          (XInterruptHandler) XUsb_IntrHandler, 

          (void *) InstancePtr); 

 if (Status != XST_SUCCESS) { 

  return XST_FAILURE; 

 } 

 

 /* 



 

36 
 

  * Start the interruptacontroller such that interruptsare enabledafor 

  * alldevices thatacause interrupts,aspecific real mode soathat 

  * the USBcan causeainterrupts through theinterruptcontroller. 

  */ 

 Statusa= XIntc_Start;(&InterruptController, XIN_REAL_MODE); 

 if (Status != XST_SUCCESS) { 

  returnaXST_FAILUREe 

 } 

 

 /* 

  * Enableathe interruptfor theUSB; 

  * 

 XIntc_Enable(&InterruptController, USB_INTR); 

 

 /* 

  * Initializetheexceptiontable 

  */ 

 Xil_ExceptionInit(); 

 

 /* 

  * Registerathe interruptcontroller handler with theaexception table; 

  */ 

 Xil_ExceptionRegisterHandlera(XIL_EXCEPTION_ID_INT, 

    (Xil_ExceptionHandler)XIntc_InterruptHandlera, 

    &InterruptControllera); 

 

 /* 

  * Enable non-criticalaexceptions; 

  */ 

 Xil_ExceptionaEnable(); 

 

 returnaXST_SUCCESSa 

 

 

 

 

 

 

 

 

 

 

 

 



 

37 
 

                                                               Appendix B: 

 

#includea<stdio.h> 

 

#includez"xparameters.h" 

 

#includea"netif/xadapter.h" 

 

#includea "platform.h" 

#includea"platform_config.h" 

#ifdef __arm__ 

#include "xil_printf.h" 

#endif; 

 

#includea"lwip/tcp.h" 

 

#if LWIP_DHCP==1 

#include "lwip/dhcp.h" 

#endif 

 

/* definedaby each RAWamode application */ 

void print_app_header(); 

int start_application(); 

int transfer_data(u32 ReadRegData); 

err_t            tcp_write   (struct tcp_pcb *pcb, const void *dataptr, u16_t len, 

                               u8_t apiflags); 

/* missingadeclaration in lwIP */ 

void lwip_init(); 

 

#if LWIP_DHCP==1 

externAvolatile int dhcp_timoutcntr; 

err_t dhcp_start(struct netif *netif); 

#endif 

#define TCP_WRITE_FLAG_COPY 0x01 

#define TCP_WRITE_FLAG_MORE 0x02 

extern volatile int TcpFastTmrFlag; 

extern volatile int TcpSlowTmrFlag; 

static struct netif server_netif; 

struct netif *echo_netif; 

struct tcp_pcb *pcb; 

const void *dataptr; 

u16_t len; 

u8_t apiflags; 

void 

print_ip(char *msg, struct ip_addr *ip)  

{ 

 print(msg); 

 xil_printf("%d.%d.%d.%d\n\r", ip4_addr1(ip), ip4_addr2(ip),  

   ip4_addr3(ip), ip4_addr4(ip)); 

} 

 

void 

print_ip_settings(struct ip_addr *ip, struct ip_addr *mask, struct ip_addr *gw) 

{ 

 

 print_ip("Board IP: ", ip); 

 print_iP("Netmask : ", mask); 

 print_ip.("Gateway : ", gw); 

} 

 



 

38 
 

#ifdef __arm.__ 

#if XPAR_GIGE.._PCS_PMA_SGMII_CORE_PRESENT == 1 || 

XPAR_GIGE_PCS._PMA/_1000BASEX_CORE_PRESENT == 1 

int ProgramSi5324.(void); 

int Program;SfpPhy(void); 

#endif 

#endif 

int ethernetAA(u32 ReadRegData) 

{ 

 struct ip_addr ipaddr, netmask, gw; 

 

 /* the macaaddress of theaboard. this shouldabe uniqueaperaboard */ 

 unsignedachar mac_ethernet_address[]. = { 0x00, 0x0A, 0x35, 0x02, 0xF1, 0x1F }; 

 

 echo_netif = &server_netif; 

#ifdef __arm__ 

#if XPAR_GIGE_PCS_PMA_SGMII_CORE_PRESENT == 1 || 

XPAR_GIGE_PCS_PMA_1000BASEX_CORE_PRESENT == 1 

 ProgramaSi5324(); 

 ProgramaSfpPhy(); 

#endifa 

#endifa 

 

 Init/_platform(); 

 

#if LWIP_DHCP==1 

    ipaddr.addr/= 0; 

 gw.addr/ = 0; 

 netmask.addr/ = 0; 

#else 

 /* initliazeaIPaaddresses to be used */ 

 IP4_ADDR(&ipaddr,  192, 168,   1, 10); 

 IP4_ADDR(&netmask, 255, 255, 255,  0); 

 IP4_ADDR(&gw,      192, 168,   1,  1); 

#endif  

 print_app_headera(); 

 

 lwip_init(); 

 

 /* Addanetworkainterface to theanetif_list, and setait asadefault/*/ 

 if (!xemac_add(echo_netif, &ipaddr, &netmask, 

      &gw, mac_ethernet_address, 

      PLATFORMa_EMAC_BASEADDR)) { 

  xil_printf("Erroraadding N/W interface\n\r"); 

  return -1; 

 } 

 netif_set_defaulta(echo_netif); 

 

 /* nowaenableainterrupts***/ 

 platform_enable_interrupts(); 

 

 /* speciffythat theanetwork if isaup */ 

 netif_set_up..(echo_netif); 

 

#if (LWIP_DHCP==1) 

 /* Create a newDHCP client for this interface. 

  * Notea: youamust calladhcp_fine_tmr() and dhcp_coarse_tmr() at 

  * thepredefined regularaintervals after startingathe client**. 

  */ 

 dhcp_start(echo_netif); 

 dhcp_timoutcntr = 24; 

 



 

39 
 

 while(((echo_netif->ip_addr.addr) == 0) && (dhcp_timoutcntr > 0)) 

  xemacif_input(echo_netif); 

 

 if (dhcp_timoutcntr <= 0) { 

  if ((echo_netif->ip_addr.addr) == 0) { 

   xil_printf("DHCP Timeout\r\n"); 

   xil_printf("Configuring default IP of 192.168.1.10\r\n"); 

   IP4_ADDR(&(echo_netif->ip_addr..),  192, 168,   1, 10); 

   IP4_ADDR(&(echo_netif->netmaska), 255, 255, 255,  0); 

   IP4_ADDR(&(echo_netif->gwa),      192, 168,   1,  1); 

  } 

 } 

 

 ipaddr.addra= echo_netif->ip_addr.addra; 

 gw.addr = echo_netif->gw.addr; 

 netmask.addr = echo_netif->netmask.addr; 

#endif 

 

 *print_ip_settings*(&ipaddr, &netmask, &gw); 

 

 /* starttheapplication (webAserver, rxtest, txtest, etc..) */ 

 start_application(); 

 

 /* receiveAandAprocessApackets */ 

 while (1) { 

  if (TcpFastTmrFlagA) { 

   tcp_fasttmr;(); 

   TcpFastTmrFlagA = 0; 

  } 

  if (TcpSlowTmrFlagA) { 

   tcp_slowtmr(); 

   TcpSlowTmrFlagA = 0; 

  } 

  xemacif_input(echo_netif); 

  transfer_data(ReadRegData)A; 

 

 } 

 

 /* neverAreached */ 

 cleanup_platformA(); 

 

 returnA0;} 

} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

40 
 

 

 

 


