
i

ii

 FILE FOX

 By

Sardar Waqas Umar

Nasira Hasnain

Samar Abbas

Asad Tariq Qureshi

Supervisor Name:

Dr. Rabia Latif

Submitted to the Faculty of Department of Electrical Engineering,

Military College of Signals, National University of Sciences and Technology, Islamabad

in partial fulfillment for the requirements of a B.E Degree in

Telecom Engineering

JUNE 2019

iii

CERTIFICATE FOR CORRECTNESS AND APPROVAL

 It is certified that work contained in the thesis

 “ File Fox ”

 is carried out by

 Sardar Waqas Umar, Nasira Hasnain, Samar Abbas and Asad Tariq Qureshi

 under my Supervision and in my Judgement. It is generous in scope and excellence, for

the degree of Bachelors of Electrical (Telecomm) Engineering from Military College of

Signals ,National University of Sciences and Technology (NUST). Plagiarism in document

is 16%.

 Approved by:

 Asst Prof Dr. Rabia Latif

 Electrical Engineering Dept.

 MCS, NUST

iv

ABSTRACT

 FILE FOX

Cloud Computing is next generation enterprise architecture. It is demand of modern era.

Due to any technical error, we may lose our important data on PC. Cloud is providing back

up to our data. We can access cloud at anytime and anywhere. Public and Private cloud are

two main types of cloud. There are numerous security and data issues on cloud. Therefore,

a need exists to secure and manage our important data and files. FILE FOX is aimed at

providing a solution to file security issues and data management on cloud. Security is great

necessity for the World due to its increasing demand day by day. Through File Fox, we

have been able to Manage data/files on cloud. GUI will provide user friendly environment

which makes its use easier. There are numerous issues on Public Cloud that’s why we are

deploying private Cloud. Data on cloud is in plain text. In FILE FOX, data on cloud will

be encrypted. Key is generated by Diffie-Hellman and shared through socket

Programming. Both Software and Hardware implementations are the part of this project.

v

 Copyright Notice

Sardar Waqas Umar

Nasira Hasnain

Samar Abbas

Asad Tariq Qureshi

vi

DECLARATION

 No portion of the work presented in this dissertation has been submitted has been

submitted earlier or qualification either at Military College of Signals, NUST or

elsewhere.

vii

 DEDICATION

 In the name of Allah, the Most Beneficent, the Most Merciful.

To our respected teachers whose guidance and support made this Project possible

and to our parents whose prayers gave us power to complete our Final year project.

viii

ACKNOWLEDGEMENTS

Despite the fact that only our name appears on the cover of this thesis, many people have

contributed in our FYP. We are grateful to all those people who made all this possible.

Above of all, ALMIGHTY ALLAH who has always been there throughout this venture.

To our respected Supervisor Dr. Rabia Latif whose guidance and support made this project

possible. She has been the main driving force that backing us morally. We are highly

thankful to all of our teachers and staff of MCS who supported and guided us throughout

our course work. Their knowledge, guidance and training enabled us to carry out this whole

work.

To our parents, without whose firm support and unsparing cooperation, mammoth work

would not have been possible.

Finally, we are grateful to the faculty of Electrical (Telecom) Department of the Military

College of Signals, NUST.

ix

TABLE OF CONTENTS

List of Figures ………………………………………………………………………..xi

List of Abbreviation ………………………………………………………………....xii
CHAPTER 1: Introduction

1.1- Background:…………………………………………………………………………….…1

1.2- Problem Statment:………………………………………………………………………....2

1.3- Proposed Solution:………………………………………………………………………...2

1.4 - Approach:…………………………………………………………………………………2

1.5 – Project Scope……………………………………………………………………………..2

1.6 – Aims and Objectives:…………………………………………………………………….3

1. 7- Limitations:……………………………………………………………………………….4

1. 8- Organization of Thesis:…………………………………………………………………...4

CHAPTER 2 : Literature Review

2.1-Existing Literature:………………………………………………………………………...5

 2.1.1- Encryption Algorithm……………..………………………………………………….5

 2.1.1.1- Twofish: ………………………..……………………………………….……….5

 2.1.1.2- AES: ………………………….………………………………….………………7

 2.1.2- Cloud Computing: ……………………………………………………..…………….12

CHAPTER 3 : Design and Development

3.1 – Approach:…………………………………………………………………………….….15

3.2 – Preliminary design:………………………………………………………………………15

 3.2.1 – Hardware Specification:…………………………………………………………….15

 3.2.1.1 – Raspberry Pi:………………………………………………………………...…16

 3.2.1.2 – Rechargeable Battery:…………………………………………………………..17

 3.2.1.3 - PC:……………………………………………………………………………….18

 3.2.2 – Software Specification:……………………………………………………………...19

3.3– Cloud Deployment::……………………………………………………………………....19

3.4 – Methodology:…………………………..……………………………………………….. 22

x

3.4 .1-Lookup table:……………………………………………………………………...….23

3.4.2 –GUI:………………………..…………………………………………….…..23

3.4.3 – Socket Programming:……..……………………….………………………..26

3.5 – Special Skills Required:………………..……………………………………………….. 26

3.6 – Deliverables:…………………………..………………………………………………... 26

CHAPTER 4 : Applications and Resources used

4.1 - Applications:……………………………………………………………………………...27

4.2 – Resources Used ………….………………………………………………………………28

CHAPTER 5 : Future Work and Conclusion

5.1 – Future Work:……………………………………………………………………………...29

5.2 – Conclusion:…………………………………………………………………………….....29

CHAPTER 6 : Refrences

6.1 - Refrences:………………………………………………………………………………...30

CHAPTER 7 : Appendices

7.1 – Appendix A: ...…………………………………………………………………………...32

7.2 – Appendix B: ……………………………………………………………………………..34

xi

List of Figures

 Figure 1.1: Sending and receiving of file in cloud…………………………………1

 Figure 2.1: AES Schematic Diagram………………………………….……………7

 Figure 2.2: AES sub-byte step……………………………………………….……..8

 Figure 2.3:AES shift row step……………………………………………………..10

 Figure 2.4:AES Mix Column step……………………………………...………….11

 Figure 2.5: Openstack Deployment Model………………………………..………13

 Figure 3.1: Raspberry pi working model………………………………….………16

 Figure 3.2: Raspberry Pi…………………………………………………………..17

 Figure 3.3: File Fox Block Diagram………………………………………………22

 Figure 3.4: GUI……………………………………………………………………24

 Figure 3.5: Selection of Encryption method………………………………………24

 Figure 3.6: Browsing file……………………………………………….…………25

 Figure 3.7: Entering key value ……………………………………………………25

xii

Key Symbols or Abbreviations

GUI Graphical Use Interface

NIST National Institute of Standards and technology

USB Universal Serial Bus

CSP Cloud service Provider

AES Advanced Encryption Standard

GPU Graphics Processing unit

CPU Central Processing Unit

RAM Random Access Memory

VPC Visual Private Cloud

I/O Input/Output

Fab Frequency Allocation Bureau

FIA Federal Investigation Agency

PIA Pakistan International Airline

NADRA National Data base and registration authority

DES Data Encryption Standard

IP Internet Protocol

1

CHAPTER 1

INTRODUCTION

1.1 Background

Cloudacomputing ais emerged from alarge-scale adistributed computing atechnology.

NIST states acloud computing as “a model for enabling convenient, on demand network

access to a shared pool of configurable computing resources (e.g. networks, storage,

applications and services) that can be rapidly provisioned and released with minimal

management effort or service provider interaction”. Due to any technical errors, we may

lose precious data on PC. That’s why, cloud is necessary to provide secure backup to our

data. In it, both files, data aand software eare not on auser’s computer. sSecurity issues

become apparent xbecause wuser’s application, xprogram is in provider site.

Sending and receiving of file on cloud is shown in figure 1.1. Owner of file uploads his file

on cloud. Encryption is done on cloud . When Client wants that file. He will request owner

for key exchange. After entering key, file is decrypted on cloud. He will download this file.

Figure 1.1: Sending and receiving of file in Cloud

Key sharing

2

1.2 Problem Statement

 In cloud, adata and files are sshared among all servers, uusers and rindividuals. So, it gis

difficult hfor the cloud yprovider to make sure hfile ysecurity. Consequently, fit becomes

gvery easy for han invader to naccess and then misuse and hdestroy ythe integrity tof

important data. Cloud will be fof no use if we compromise on these problems. There are

authentication and authorization issues and there is no data integrity. Once a person

uploads a file on cloud, he will lose control on its file. Control will be shifted to Cloud

Service Provider(CSP).Any unauthenticated and unauthorized user can access important

data.

1.3 Proposed Solution

File Fox is providing a solution that secures and manages data on cloud. We are sending

encrypted data to cloud so that if hacker gets the file then he doesn’t have any key so

he/she can’t decrypt the text .Hashing is used to check integrity of file. We are deploying

Private cloud so that there will be less security issues. Only authorized users can access

data and files. Our objective is to keep control of file owner on it’s file.

1.4 Project Scope

The proposed system will secure important data and files deployed on cloud. It fulfils

security needs of data centre of cloud with minimum time with maximum throughput. It

facilitates authorization of user for file/data and files will be infeasible to get breached. It

is demand of data centres. It facilitates authorization of user for file. In countries, like

Pakistan where security is an untouched topic, this system can be helpful in protecting data

of NADRA, PIA, FAB, FIA, Telephone Companies, Ministries etc.

3

1.5 Aim and Objectives

1.5.1 Research Objectives

Study of different encryption algorithms, key sharing protocols, Public and Private cloud.

1.5.2 Academic Objectives

During this project we have developed sound knowledge and technical skills in the fields

of:

• Working in the field of Cryptography

• GUI Development

• Implementation of different encryption algorithms, GUI in Python

• Programming Skills on Raspberry Pi (Practice on Python language)

• Cloud Deployment

• Key generation by Hashing

• Key sharing by Diffie-Hellman

• Synchronization of GUI with Cloud

• Use of Raspberry pi for alarm generation

The developed skills are both hardware and software in nature.

1.5.3 Other Objectives

• To support legislature and privately-owned businesses.

So, through this venture, we wish to coordinate our hypothetical

information with reasonableness to increase further understanding and

refine our abilities in all the fields referenced above.

4

1.6 Limitations

File Fox have certain limitations:

• Resources are fixed. When traffic is more than resources, we can’t manage it.

• Within network

• Internet Connection

1.7 Organization of thesis:

For clear understanding, thesis is comprised of 8 sections, short description of

each section is as follows:

Chapter 1 It has covered a brief overview of File Fox. The problem statement

and its solution, approach that File Fox has come up with.

Chapter 2 It deals with the brief overview of existing literature of this project

which tells about algorithms, Cloud Computing.

Chapter 3 Hardware and Software requirements of project. A brief overview

of design and explain methodology of project.

 Deliverables of project are discussed in it.

Chapter 4 Various applications and fields in which it can be used and

resources used in doing project.

Chapter 5 Shows the future work and conclusion.

Chapter 6 Shows the references used.

Chapter 7 Appendix is given in which synopsis is also attached.

5

CHAPTER 2

LITERATURE REVIEW

2.1 Existing Literature

In this asection, aa short areview aof existing information with this venture is given. A

basic knowledge regarding the Cryptography (Twofish, Rijndael) was a prerequisite

before starting this project, hence various research papers and articles were studied.

A brief description of all the topics that were studied for the File Fox is given below.

2.1.1 Encryption Algorithms

2.1.1.1 Twofish:

Twofish is a well-known encryption algorithm generally used in cryptography. It is derived

from Blowfish . aTwofish is a 1128-bit block cipher 1that acknowledges avariable key

length up to 1256 bits. It has aFeistel network and have a 16 rounds with a abijective

function made up of 4 akey-subordinate S-boxes.

For secure and safe data, we should consider following parameters:

Imperceptibility: It is the property in which one is unable to separate between the original

and the fixed information.

Robustness: It alludes to proportion of work required to end implanted data without

ending spread information.

Embedding Capacity: It alludes to all clandestine data that can be implanted without

foulness to nature of information.

Encryption: aOne portion of n-bit key ais utilized as athe genuine aencryption key and

the aother portion of athe n-bit key ais utilized ato change the aencryption calculation.

6

Twofish Building Blocks

• Feistel Network It is a wide-ranging strategy for changing over capacity (normally

called F network) into a stage. F does not change straightly and perhaps non surjective. In

each round input to F is “source block” and yield ais XORed awith “bijective block” after

awhich two ablocks exchange for following around.

• S-Boxes An as-box is a atable decided non direct asubstitution operation autilized in

most ablock ciphers. aS-boxes changes aboth input aand yield measure and acan be made

either discretionarily or aalgorithmically. These s-boxes are made utilizing two fixed (8x8)

bit apermutations and key amaterial.

• MDS Matrices It is a acode over a afield. It is a adirect mapping afrom a field

components ato be field acomponents, creating a acomposite vector of aa + b components.

The separation between two vectors created by aMDS mappinga is at any rate b + 1. It can

without much strength be demonstrated that no mapping can have bigger most extreme

separation between two vectors, subsequently the term MDS. Mapping can be signified by

an MDS amatrix acomprise ofa (a x b) components.

• Whitening The method of XOR-ing key material before first round and after last round.

It considerably expands athe trouble of key persist assaults against athe rest of the cipher.

• Key Schedule It is way aby which the akey bits are abent into round keys that athe

cipher can autilize. Twofish needs aa ton of key amaterial, and has a aconfounded key

schedule. aThe key schedule autilizes the same acrude as the round afunction.

• Pseudo – Hadamard Transforms (PHT) It is a simple blending task that keeps running

in programming giving two sources, a and b.

7

Features It has strong keys. Extra key length can be utilized on a awide assorted variety

of platforms and aapplications and abe reasonable afor a stream acipher, hash function. To

encourage simplicity of examination and usage twofish has simple design. A completely

improved usage of aTwofish scrambles on a aPentium Pro at a17.8 clock cycles aper byte,

and an a8-bit smart card aimplementation encrypts at a1660 clock cycles aper byte. By

cryptanalyzing, we saw that aour best assault abreaks 5 rounds with a222.5 picked

plaintexts and 251 exertion.

2.1.1.2 AES (Rijndael):

AES represents Advanced Encryption Standard, known by its unique name Rijndael. It is

a detail for the encryption of electronic information set up by the NIST in 2001.AES is a

subset of the Rijndael block cipher created by two Belgian cryptographers, Vincent Rijmen

and Joan Daemen, who presented a proposition to NIST amid the AES determination

process. Rijndael is a group of ciphers with various key and block sizes.

 For AES, NIST choose three individuals from Rijndael family, each with a block size of

128 bits, however three diverse key lengths: 128, 192 and 256 bits as shown in figure 2.3.

 Figure 2.1: Rijndael Schematic Diagram

 AES is presently utilized around world. It replaces the Data Encryption Standard (DES),

which was distributed in 1977. The algorithm depicted by AES is a symmetric-key

algorithm (same key is used for both scrambling and decoding the information).

8

It has four steps:

Step 1: Sub-Bytes step

Each byte in the state is replaced with its entry in a fixed 8-bit lookup table, S; bij = S(aij).

In the Sub-Bytes step, each byte in the state array is replaced with a Sub Byte using an 8-

bit substitution box as shown in figure below. It provides non-linearity in the cipher. The

S-box used is derived from the multiplicative inverse over GF (2^8), known to have good

nonlinearity properties.

To maintain strategic distance from assaults dependent on straightforward algebraic

properties, the S-box is developed by joining the inverse function with an invertible affine

transformation. While decoding, the Inverse of Sub-Bytes step is utilized. It requires first

taking the inverse of the affine transformation after that finding the multiplicative inverse.

 Figure 2.2: AES Sub-byte step

Step 2: Shift Rows step

Bytes in each line of the state are moved consistently to the left as shown in figure below.

Number of places every byte is moved contrasts for each line. Shift Rows step works on

https://en.wikipedia.org/wiki/File:AES-SubBytes.svg

9

the rows of the state; it consistently moves the bytes in each row by specific balance.

For AES:

• The first row is left unaltered.

• Each byte of the second row is moved one to the left.

• The third row is moved by counterbalances of two.

• The fourth row is moved by balances of three respectively.

 Thus, each column of the yield state of the Shift Rows step is made out of bytes from

each column of the information source.

The significance of this progression is to stay away from columns being scrambled freely,

in which case AES deteriorates into four autonomous block ciphers.

Figure 2.3: Shift row step

https://en.wikipedia.org/wiki/File:AES-ShiftRows.svg

10

Step 3: The Mix-Columns step

Each column of the state is multiplied with a fixed polynomial as shown in figure below.

The four bytes of each column of the state are combined using an invertible linear

transformation. The Mix Columns function takes four bytes as input and outputs four

bytes, where each input byte affects all four output bytes. Together with Shift Rows, Mix

Columns provides diffusion in the cipher. During this operation, each column is

transformed using a fixed matrix (matrix left-multiplied by column gives new value of

column in the state): Matrix multiplication is composed of multiplication and addition of

the entries. Addition is simply XOR. Multiplication is modulo irreducible polynomial. If

processed bit by bit, then, after shifting, a conditional XOR with 1B16 should be performed

if the shifted value is larger than FF16 (overflow must be corrected by subtraction of

generating polynomial).

 Figure 2.4: MixColumn step

https://en.wikipedia.org/wiki/Rijndael_MixColumns
https://en.wikipedia.org/wiki/File:AES-MixColumns.svg

11

Step 4: Add Round Key step

The subkey is combined with the state. For each round, a subkey is derived from the main

key using AES's key schedule; each subkey is the same size as the state. The subkey is

added by combining each byte of the state with the corresponding byte of the subkey using

bitwise XOR.

2.1.2 Cloud aComputing

It is asort of aweb-based acomputing which agives shared aPC handling, aassets and

information to aPCs and different agadgets. In order to access cloud services, we need

active internet connection. Cloud computing gives following facilities:

• IaaS (Infrastructure as a service)

It helps in virtualization so that we can create instances and build up infrastructure the

way user wants. Infrastructure as a service are online services that provide high-level

APIs used to dereference various low-level details of underlying network

infrastructure like physical computing resources, location, data partitioning, scaling,

security, backup etc.

• PaaS (Platform aas a aservice)

It gives aplatform aso as to create aapplications. It is a cloud computing model in

which a third-party provider delivers hardware and software tools (usually those

needed for application development) to users over the internet. A PaaS provider hosts

the hardware and software on its own infrastructure.

• SaaS (Software as a service)

Software is available in cloud and we can place data(information) into it. Google,

Gmail are examples of it. It is a software licensing and delivery model in which

software is licensed on a subscription basis and is centrally hosted. It is sometimes

referred to as "on-demand software", and was formerly referred to as "software plus

services" by Microsoft.

12

Openstack lies in category of IaaS. IaaS and PaaS are quite similar. In IaaS we have a type

of platform in which we can create our application. In PaaS, platform like operating is

already present while in IaaS platform is of user’s choice. Openstack is an open source

programming that gives cloud environment (Public as well as Private cloud). It is overseen

by Openstack foundation. Openstack is fate of cloud computing. It was created in 2010 by

NASA. Openstack community is huge. IBM, suse, hp, CISCO, DELL, redhat, VMware are

contributors of openstack.

Features of openstack:

• It is opensource. We can get it free.

• We can modify anything we need based upon infrastructure that we want to

create.

There are five deployment models of openstack as shown in figure 2.12.

Figure 2.5: Openstack Deployment Models

• Openstack based Public cloud It supports aall users who awant to make ause

of a acomputing resource, asuch as hardware (OS, aCPU, memory, storage) aor

software (application server, adatabase) on a subscriptiona basis. Most common

uses of apublic clouds are for application adevelopment and testing, non-mission-

criticala tasks such as file-sharing,a and e-mail aservice.

https://www.sciencedirect.com/topics/computer-science/public-cloud

13

• Hosted Openstack Private cloud It is typically ainfrastructure used by

a single aorganization. Such infrastructure amay be managed by thea organization

itself to support avarious user groups, ora it could be managed aby a service

provider thata takes care of it either on-site or aoff-site. Private clouds are more

expensive than public aclouds due to the capital expenditure involved in aacquiring

and maintaining them.aHowever, private clouds are abetter able to aaddress

the security aand privacy concerns aof organizations atoday.

• Hybrid cloud In a hybrid cloud,aan organization amakes use of interconnected

private aand public cloud infrastructure.aMany organizations make use aof this

model when they aneed to scale up theira IT infrastructure rapidly, asuch as when

leveraging apublic clouds to supplement athe capacity available within a aprivate

cloud. For example, if an aonline retailer needs morea computing resources toa run

its Web aapplications during the holiday aseason it may attain thosea resources via

public aclouds.

• Community cloud It supports multiple aorganizations sharing computing

resources athat are part of a community; aexamples include universitiesa

cooperating in certain areas aof research, or police departments awithin a county or

state sharinga computing resources. Access toa a community cloud environmenta is

typically restricted to the members aof the community.

We are using Private cloud model in project. In private cloud, seller has openstack based

private cloud including fundamental equipment based and openstack programming.

Servers support this and data and application that we are implementing on cloud is

managed by us.

14

➢ Architecture
Components that make up openstack are as follows:

• Horizon (Dashboard)

• Nova (Compute domain)

• Glance (Service for launching instances)

• Swift (Object store service)

• Neutron (Networking service)

• Cinder (Block stockpiling administration)

• Heat (Orchestration purposes)

• Ceilometer (Billing administration)

• Keystone (Authentication and authorization purposes)

15

CHAPTER 3

DESIGN AND DEVELOPMENT

In this chapter we discuss about the design of system and briefly explain every depended part to

produce end deliverable, followed by this go through each part in detail with discussing

methodology. Besides this working of each part is theoretically analyze in this chapter.

pter.

3.1 - Approach:

• Study about different encryption algorithms

• Selection of algorithms

• Study about key sharing

• Selection of protocols for key sharing

• Selection of Hash for Key generation

• Study about GUI (Graphical User Interface)

• Research about Public cloud and Private cloud

• Storage of files/data on cloud

• Synchronization of GUI with Cloud and with other component

• Bug Testing

3.2 – Preliminary Design:

The details of design are given below:

3.2.1 Hardware Specification

 The project consists of the following modules:

➢ Raspberry Pi

➢ Rechargeable Battery

➢ PC

16

3.2.1.1 Raspberry Pi:

It is also known as RPi and is released on 29 February 2012.It is intended for industrial

application. It’s introductory price was $35.It’s Model B is a small credit card size PC and

also has a keyboard, mouse, display, power supply, micro SD card with installed Linux

Distribution. We can run applications from word processors and spreadsheets to games.

It is a progression of tiny single-board PC created in UK by Raspberry Pi Foundation. The

first model ended up unquestionably more mainstream than evaluated selling outside

its objective market for utilizations, for example robotics. In any case, a few accessories

have been incorporated into official and unofficial bundles.

It works on Linux, FreeBSD, NetBSD, OpenBSD, Plan 9, RISC OS, Windows 10 IoT

Core, Windows 10 ARM64.

 Figure 3.1: Raspberry Pi Working Model

Working of raspberry pi is shown in figure 3.1.We give input to raspberry pi and input is

stored in RAM of pi.We connect pi through internet to our system.

Raspberry Pi may be operated with USB computer, keyboard and mouse. It may be

likewise utilized with USB storage, USB to MIDI converters, and virtually any other

gadget/component with USB capabilities.

Different peripherals can be joined through the various pins and connectors on the outside

of Raspberry Pi.

I/O CPU/GPU USB hub

Ethernet 2 x USB

 RAM

https://en.wikipedia.org/wiki/Linux

17

Applications of Raspberry pi:

• Use in aeducation

• Use in home aautomation

• Use in aindustrial automation

• Use inacommercial products

 Figure 3.2: Raspberry Pi

Working:

Log files of our data will be stored in Neutron. Our raspberry pi will continuously monitor

those log files. Whenever there is any change in the log files, it means invader is trying to

destroy integrity. At that instant, raspberry pi will generate an alarm; alerting the admin to

have a look on it’s data. In this way we will secure our data.

3.2.1.2 Rechargeable Battery:

It is sort of delectrical battery dwhich can be dcharged, discharged, dand revived

ordinarily. It is also known as secondary cell or accumulator. The dterm "accumulator" dis

18

used das it gathers and dstores energy dthrough reversible delectrochemical response.It is

made up of at least one electrochemical cells.

 It is used in

• automobile sstarters

• portable sconsumer sgadgets

• light svehicles (smechanized wheelchairs, selectrical bikes)

• uninterruptible power supplies

• battery capacity control stations.

3.2.1.3 PC

It is a multi-purpose computer whose size, capacities, and value make it plausible for

individual use. These are planned to be worked straightforwardly by an end client, rather

than by a computer expert or technician. In contrast to huge expensive minicomputers and

centralized computers, time-sharing by numerous individualism the mean time is not

utilized with PCs.

Institutional or corporate PC proprietors during 1960s needed to compose their own

projects to do any helpful work with the machines. While PC clients may build up their

very own applications, more often than not these systems run business programming, free-

of-charge software ("freeware") or free and open-source programming, which is given in

ready-to-run structure. Programming for PC is commonly created and disseminated freely

from the hardware or operating system producers.

Requirement for cloud deployment is 8th Generation PC .1TB of Hard disk is required for

it. We need 2x2 processor.

19

3.2.2 Software Specifications:

Software used in File Fox is as follows:

• Openstack (It is open source platform that provides complete public as well as private

cloud environment and mostly configured as IaaS)

• Ubuntu (Operating system for cloud deployment)

• Visual studio (Implementation of AES, Twofish, GUI is done in it)

 Code is available in Appendix A.

3.3 Cloud Deployment:

Requirements for Installation of Openstack:

• Memory 4GB

• Hard disk 45 GB

• Ubuntu 16.04.2 LTS

• Processor 4 (2x2)

Steps for installation:

1. Login into ubuntu using account with super user. You may also login with sudo

privilages.

2. To update and upgrade operating fsystem, drun these ecommands:

$ sudo apt-get update

$ sudo apt-get upgrade/ sudo apt-get distro upgrade

3. Add user stack using command given below:

 $ sudo adduser stack

4. To get into root mode, run commands given below:

$ sudo –i

$ echo "stack ALL=(ALL) NOPASSWD: ALL" >> /etc/sudoers

5. In order dto verify rthe command has been run and added into /etc/sudoers, run the

following command :

$ more /etc/sudoers

20

Line has been added what we have echo’ed above.

6. Sign in and out again with user “stack” which we have created.

7. Install git by following rcommand:

$ sudo apt-get install git

8. rClone fdevstack files using given commands:

$ git clone https://git.openstack.org/openstack-dev/devstack

9. Enter into fdevstack directory and fcreate file “ local.conf ” using these command:

$ cd devstack

$ nano local.conf

Add given lines into above created file. It includes passwords which will be used

during installation and login.

 [[local|localrc]]

 ADMIN_PASSWORD=secret

 DATABASE_PASSWORD=$ADMIN_PASSWORD

 RABBIT_PASSWORD=$ADMIN_PASSWORD

 SERVICE_PASSWORD=$ADMIN_PASSWORD

10. Run shell script by following command:

$./stack.sh

We will get host IP address of openstack that will be used in browser to access

openstack dashboard after execution of this script successfully.

11. IP address that we got is used to openstack dashboard terminal. Use username “Admin”

and password “secret” to login.

 Configuration:

 To configure Iaas, we have to configure network, computing and storage facility for users.

Steps:

• IP address which we got in installation is used to open Openstack dashboard terminal.

Use username “ Admin ” and password “ secret” to login.

• Click on Project>>System>>Hypervisor to launch instances by nova computing

21

services.

• Unlaunch the instances in openstack. Create the volume. Cirros operating system is

also mounted in it. In this step, required steps are Volume name, size and type.

• Create network. For it, use neutron service. We have to configure virtual router and IP

subnets.

• Click on Create Network and type Network type and state should be configured to up.

• For external network, Create virtual router. External network is used as public network

from list. Configure Router name and router working state. Also configure Network

topology.

Also configure Network topology.

• Configure instances. Configure instances name, flavor, network and all other necessary

options which are required for it.

In Network tab, configure stack network and launch instances. Instances page will

appear.

• Allocate floating Ip address.

• Configure Security group to apply security rules or filtration on set of IP’s. Edit

 existing group specific for ingress traffic for TCP port 22. It permits aSSH from ahost

machine on awhich openstack is ainstalled.

A keypair ais created that is used on private network. It is generated by clicking on

key pair option.

Download the key into the /home/devstack .

To use the cirros virtual machine remotely, use following command:

$sh –i name-keypair.pemcirros@192.168.187.149.

mailto:name-keypair.pemcirros@192.168.187.149

22

3.4 Methodology

Owner of file encrypts his file by using AES or Twofish as shown in figure 3.5 and then

he uploads his encrypted file on cloud. When another user wants this file, he will request

owner for key exchange. Look-up table helps to determine whether that user is authorized

user or not. If he is authorized user then 128 bit session key is generated by Diffie-Hellman

and is sent to other user by socket programming. User will download requested file and

decrypt it with key provided as shown in figure 3.7. If he is unauthorized/unregistered user

then raspberry pi will generate an alarm to tell owner that it is unauthorized user and request

of user will be declined.

Complete methodology is shown in figure 3.3.

Figure 3.3: File Fox Block diagram

23

3.4.1 Lookup Tables:

Keystone is a component in our dashboard of cloud that provides us authentication and

authorization. It manages look up table which has MAC addresses of users and their

authority rules. Whenever any user tries to access our data, keystone will check which files

that user can access and then authorize user accordingly.

 Table 1: Lookup table

File

Name

Data

Owner

 Hash

IP

Encryption

method

 File1 X XXXXXXXX 192.168.10.2 AES

 File2 Y XXXXXXX 192.168.10.3 TWOFISH

 File3 Z XXXXXXX 192.168.10.4 AES

3.4.2 GUI:

We have made GUI in python 3.7 on Visual studio. We have used tkinter library while

coding. Then we binded encryption codes with it. When we run the code, GUI will ask

whether fuser rwants dto dencrypt eor rdecrypt edata.

24

 Figure 3.4: GUI

 If suser rwants to rencrypt data, he will click on encrypt option on GUI.

Then GUI will ask about encryption algorithm (AES, Twofish) as shown in figure 3.5.

 Figure 3.5: Selection of encryption method

25

After selecting encryption algorithm, user will browse the file that he wants to encrypt

and user will add 16-byte key.

 Figure 3.6: Browsing file

 Figure 3.7: Entering Key

File will be encrypted and be stored on Cloud. If user wants to decrypt file, he will open

GUI. He will select decrypt option. He will select decryption method (AES, Twofish). He

will browse the encrypted file to decrypt and add a 16-byte key to decrypt key.

26

3.4.3 Socket Programming

In socket programming, we have two clients, client 1 and client 2. If clients 1 want the key

then he will establish a session with client 2 through socket programming. After

establishing the connection, client 1 will request for the exchange of parameters.Then

client 2 will listen the request and as a result he will exchange the parameters.

3.5 Special Skills Required

• Python

• HTML

• SQL

• Raspberry pi coding

• Cloud Computing knowledge

3.6 Deliverables

• The stored file is completely secured.

• The key is also safe.

• The system is very secure and robust in nature.

• Developed a system which is easy to use.

• User authentication and authorization.

• Deployed Private Cloud

27

CHAPTER 4

APPLICATIONS AND RESOURCES REQUIRED

4.1- Applications
Following are the applications of our project:

4.1.1 Industry

 In industrial sector, there are important files like Product sheets, Repairing and

Maintenance data, Progress reports are secured on cloud.

4.1.2 Military

 In Military, in order to secure our Intelligence reports, Military data about different

missiles and weapons, different military plans on cloud, we use this technique.

4.1.3 Media

Web based life channels, corporate structures and individual purchasers are for most part

changing to heavenly universe of distributed computing.

4.1.4 Academics

In academics, universities can store and secure student’s personal and academic records on

cloud.

4.1.5 Government

In Government sector, offices like:

• NADRA (They have huge amount of important data e.g. Biometric records, refugee

records, incoming and outgoing records.)

• PIA (Data about flights, Details of passengers on a flight is on cloud.)

• FAB (There is important data like details of Allocation of frequency spectrum to

28

different telecommunication or broadcast service providers; that should be secured.)

• FIA (Important data like Criminal reports, investigation reports, intelligence reports of

different operations.)

• Telephone Companies (They have contacts, package and subscription details of all

their customers.)

• Shopkeeper (Financial details, business correspondence details, customer order

details)

• Ministries

• Legislative reports

4.1.6 Business
 In business, we use it to store and secure business reports, planning, company details

on cloud. Only authorized person like company’s employers can access these files and data.

4.2 Resources Required

List of all resources used is given below :

Table 2: List of Resources

Serial #

 Items

 Quantity

 Cost (Rs)

 1

 PC

 1

86,500

 2

Raspberry pi

 1

5,500

 Total

92,000

29

aCHAPTER 5

aCONCLUSION AND FUTURE WORK

5.1 Future aWork

• Resources can be enhanced so that more people may use it.

• We have done work on private cloud. In future. data can be managed on Public

cloud that would benefit much people.

5.2 Conclusion

File Fox is security need of data centers of Cloud.It facilitates authorization of valid user

for accessing a file. As data sent to Cloud is encrypted so it is infeasible to get breached.

Hence it is concluded that it is demand of modern era to store files on cloud as it is

providing backup to our files on PC.

30

CHAPTER 6

REFERENCES

 [1] C. Burwick, D. Coppersmith, E. D‟Avignon, R. Gennaro, S. Halevi, C. Jutla, S. M.

Matyas, L. O‟Connor, M. Peyravian, D. Safford and N. Zunic, MARS – a candidate cipher

for AES, NIST AES Proposal, Jun 98. http://csrc.nist.gov/encryption/aes/round2/AESAlgs

/MARS/mars.pdf, Aug. 1999.

 [2] Schneier, J. Kelsey, D. Whiting, D. Wagner,C. Hall, and N. Ferguson, “TwoFish: A

128-bit Block Cipher", AES submission, june 1998.

 [3] Dr. S.A.M Rizvi, Dr. Syed Zeeshan Hussain et.al “Performance Analysis of AES and

TwoFish Encryption Schemes”, International Conference on Communication Systems and

Network Technologies 2011

 [4] Shun-Lung Su, Lih-Chyau Wuu, and Jhih-Wei Jhang, “A New 256-bits Block Cipher

–Twofish256”

 [5] Shiho Moriai, Yiqun Lisa Yin. “Cryptanalysis of Twofish (II)”.Technical Report,

IEICE, ISEC2000-38, 2000

 [6] S. Hesham and Klaus Hofmann , “High Throughput Architecture for the Advanced

Encryption Standard Algorithm” IEEE,International Symposium on Design and

Diagnostics of Electronic Circuits & Systems, pages 167- 170,April 2014.

 [7] M. Nagle, D. Nilesh, “The New Cryptography Algorithm with High

Throughput”,IEEE, ICCCI ,pages 1-5,January 2014.

 [8] N. Sharma ,A.Hasan, “A New Method Towards Encryption Schemes (Name-Based-

Encryption Algorithm)”,IEEE, International Conference on Reliability, Optimization and

Information Technology,pages 310-313,Feb 2014.

 [9] Inder Singh, M. Prateek,” “Data Encryption and Decryption Algorithms using Key

Rotations N. Sharma ,A.Hasan, “A New Method Towards Encryption Schemes (Name-

Based-Encryption Algorithm)”,IEEE, International Conference on Reliability,

31

Optimization and Information Technology,pages 310-313,Feb 2014.

[10]] S. Munjal1, S. Garg, “Enhancing Data Security and Storage in Cloud Computing

Environment”, IJCSIT, Vol. 6, ISSN 0975- 9646, pages 2623-2626,2015

[11] P. Kanchan, “ Use of Digital Signature with Diffie Hellman Key Exchange ”, Volume

5, Issue 6, ISSN 2250- 3153 ,pp 1-4, June 2015

32

CHAPTER 7

APPENDICES

7.1 Appendix A

Synopsis

Extended Title: Secure file storage on Cloud

Brief Description of The Project /Thesis with Salient Specifications: In this

project, we have introduced security mechanism in which symmetric key

cryptography algorithm are used to encrypt our data, this cipher text will be sent to

cloud where it will be stored. Only authentic user can access this data. If an

unauthentic user wants to fetch data, Pie will generate the alarm.

Scope of Work: Aim of this project is to secure our data from unauthorized people.

As we will deploy our own private cloud which will work within network therefore

only authorized user can access the data. Data will be secured and remains under the

control of user.

Academic Objectives:

• Study of cloud and its applications

• Data security on cloud

• Study of different techniques of encryption/decryption

• GUI

Application / End Goal / Objectives:

• The stored file is completely secured.

• The key is also safe.

• The system is very secure and robust in nature.

• Develop a system which is easy to use.

33

Material / Resources Required:

• Software Requirements:

1. Visual Studio

2. Ubuntu

3. Openstack

• Hardware Components:

1. Raspberry Pi

2. PC

No of Students Required: 04

Group Members: NC Sardar Waqas Umar (Group Leader)

 NC Nasira Hasnain

 NC Samar Abbas

 NC Asad Tariq Qureshi

Special Skills Required:

• Python

• Cloud computing knowledge

• HTML

• SQL

34

7.2 Appendix B

7.2.1 Twofish code

Spyder Editor

"""

import chilkat

import sys

Create two instances

dhA = chilkat.CkDh()

dhB = chilkat.CkDh()

Unlock the component once at program startup...

success = dhB.UnlockComponent("Anything for 30-day trial")

if (success != True):

 print(dhB.lastErrorText())

 sys.exit()

Prime P, and a generator, G.

These are Public and may be sent over insecure channel.

G < P and it might be 2 or 5

dhB.UseKnownPrime(2)

Shared secret will be equal to the size of the prime (in bits).

Bob will send P and G to Alice.

35

p = dhB.p()

g = dhB.get_G()

Alice calls SetPG to set P and G. SetPG checks

the values to make sure it's a safe prime and will

return False if not.

success = dhA.SetPG(p,g)

if (success != True):

 print("P is not a safe prime")

 sys.exit()

E should be set to twice the size of the number of bits

in the session key.

Bob generates a random E (which has the mathematical

properties required for DH).

eB = dhB.createE(256)

Alice does the same:

eA = dhA.createE(256)

The "E" values are sent over the insecure channel.

Bob sends his "E" to Alice, and Alice sends her "E" to Bob.

"K" is the shared-secret.

Bob computes the shared secret from Alice's "E":

kB = dhB.findK(eA)

36

Alice computes the shared secret from Bob's "E":

kA = dhA.findK(eB)

kBob should be equal to kAlice and the expected

length (260 characters). The strings contain the hex encoded bytes of

our shared secret:

print("Bob's shared secret:")

print(kB)

print("Alice's shared secret (should be equal to Bob's)")

print(kA)

For 128-bit session key for encryption, Bob and Alice should

both transform the raw shared secret using a hash algorithm (MD5) that produces

the size of session key desired

 crypt = chilkat.CkCrypt2()

success = crypt.UnlockComponent("Anything for 30-day trial.")

if (success != True):

 print(crypt.lastErrorText())

 sys.exit()

crypt.put_EncodingMode("hex")

crypt.put_HashAlgorithm("md5")

sessionKey = crypt.hashStringENC(kB)

print(" Session Key:")

print(sessionKey)

37

Encrypt something...

crypt.put_CryptAlgorithm("Twofish")

crypt.put_KeyLength(128)

crypt.put_CipherMode("cbc")

iv = crypt.hashStringENC(sessionKey)

print("Initialization Vector:")

print(iv)

crypt.SetEncodedKey(sessionKey,"hex")

crypt.SetEncodedIV(iv,"hex")

Encrypt some text:

crypt.put_EncodingMode("base64")

cipherText64 = crypt.encryptStringENC("The quick brown fox jumps over the lazy dog")

print("Encrypted text")

print(cipherText64)

Decrypt some text:

crypt.put_EncodingMode("base64")

plain text = crypt.decryptStringENC(cipherText64)

print("Decrypted text")

print(plain text)

38

7.2.2 Diffie-Hellman code

import sys

import chilkat

import os

import random

Create two separate instances of the DH object.

dhBob = chilkat.CkDh()

dhAlice = chilkat.CkDh()

Unlock the component once at program startup...

success = dhBob.UnlockComponent("Anything for 30-day trial")

if (success != True):

 print(dhBob.lastErrorText())

 sys.exit()

The DH algorithm begins with a large prime, P, and a generator, G.

These don't have to be secret, and they may be transmitted over an insecure channel.

The generator is a small integer and typically has the value 2 or 5.

The Chilkat DH component provides the ability to use known

"safe" primes, as well as a method to generate new safe primes.

This example will use a known safe prime. Generating

new safe primes is a time-consuming CPU intensive task

and is normally done offline.

Bob will choose to use the 2nd of our 8 pre-chosen safe primes.

It is the Prime for the 2nd Oakley Group (RFC 2409) --

1024-bit MODP Group. Generator is 2.

39

The prime is: 2^1024 - 2^960 - 1 + 2^64 * { [2^894 pi] + 129093 }

dhBob.UseKnownPrime(2)

The computed shared secret will be equal to the size of the prime (in bits).

In this case the prime is 1024 bits, so the shared secret will be 128 bytes (128 * 8 =

1024).

However, the result is returned as an SSH1-encoded bignum in hex string format.

The SSH1-encoding prepends a 2-byte count, so the result is going to be 2 bytes

longer: 130 bytes. This results in a hex string that is 260 characters long (two chars

per byte for the hex encoding).

Bob will now send P and G to Alice.

p = dhBob.p()

g = dhBob.get_G()

Alice calls SetPG to set P and G. SetPG checks

the values to make sure it's a safe prime and will

return False if not.

success = dhAlice.SetPG(p,g)

if (success != True):

 print("P is not a safe prime")

 sys.exit()

Each side begins by generating an "E"

value. The CreateE method has one argument: numBits.

It should be set to twice the size of the number of bits

in the session key.

40

Let's say we want to generate a 128-bit session key

for AES encryption. The shared secret generated by the Diffie-Hellman

algorithm will be longer, so we'll hash the result to arrive at the

desired session key length. However, the length of the session

key we'll utlimately produce determines the value that should be

passed to the CreateE method.

In this case, we'll be creating a 128-bit session key, so pass 256 to CreateE.

This setting is for security purposes only -- the value

passed to CreateE does not change the length of the shared secret

that is produced by Diffie-Hellman.

Also, there is no need to pass in a value larger

than 2 times the expected session key length. It suffices to

pass exactly 2 times the session key length.

Bob generates a random E (which has the mathematical

properties required for DH).

eBob = dhBob.createE(128)

Alice does the same:

eAlice = dhAlice.createE(128)

The "E" values are sent over the insecure channel.

Bob sends his "E" to Alice, and Alice sends her "E" to Bob.

Each side computes the shared secret by calling FindK.

"K" is the shared-secret.

41

Bob computes the shared secret from Alice's "E":

kBob = dhBob.findK(eAlice)

Alice computes the shared secret from Bob's "E":

kAlice = dhAlice.findK(eBob)

Amazingly, kBob and kAlice are identical and the expected

length (260 characters). The strings contain the hex encoded bytes of

our shared secret:

print("Bob's shared secret:")

print(kBob)

print("Alice's shared secret (should be equal to Bob's)")

print(kAlice)

To arrive at a 128-bit session key for AES encryption, Bob and Alice should

both transform the raw shared secret using a hash algorithm that produces

the size of session key desired. MD5 produces a 16-byte (128-bit) result, so

this is a good choice for 128-bit AES.

Here's how you would use Chilkat Crypt (a separate Chilkat component) to

produce the session key:

crypt = chilkat.CkCrypt2()

success = crypt.UnlockComponent("Anything for 30-day trial.")

if (success != True):

 print(crypt.lastErrorText())

42

 sys.exit()

crypt.put_EncodingMode("hex")

crypt.put_HashAlgorithm("md5")

#sessionKey = crypt.hashStringENC(kBob)

#key= random.getrandbits(52)

x=chilkat.CkPrng()

key=x.genRandom(8,"hex")

print("128-bit session Key:")

print(key)

7.2.3 AES code

from Crypto.Cipher import blockalgo

from Crypto.Cipher import _AES

class AESCipher (blockalgo.BlockAlgo):

 def __init__(self, key, *args, **kwargs)

 blockalgo.BlockAlgo.__init__(self, _AES, key, *args, **kwargs)

def new(key, *args, **kwargs):.

 return AESCipher(key, *args, **kwargs)

#: Electronic Code Book (ECB). See `blockalgo.MODE_ECB`.

MODE_ECB = 1

#: Cipher-Block Chaining (CBC). See `blockalgo.MODE_CBC`.

MODE_CBC = 2

43

#: Cipher FeedBack (CFB). See `blockalgo.MODE_CFB`.

MODE_CFB = 3

#: This mode should not be used.

MODE_PGP = 4

#: Output FeedBack (OFB). See `blockalgo.MODE_OFB`.

MODE_OFB = 5

#: CounTer Mode (CTR). See `blockalgo.MODE_CTR`.

MODE_CTR = 6

#: OpenPGP Mode. See `blockalgo.MODE_OPENPGP`.

MODE_OPENPGP = 7

#: Size of a data block (in bytes)

block_size = 16

#: Size of a key (in bytes)

key_size = (16, 24, 32)

