
i

Traffic Violation Detection and Notification System

By

 Muhammad Hamza Cheema

 Samar Ali Khan

Ahmad Usman

Submitted to the Faculty of Electrical Engineering, Military College of Signals, National

University of Sciences and Technology in fulfillment for the requirements of a B.E Degree in

Telecommunication Engineering

JUNE 2015

ii

ABSTRACT

Traffic violations are a serious problem now days; they make our roads a danger to not only

the violators themselves, but also to anyone around them. Recent surveys show a rapid

increase in road accidents leading to loss of hundreds of valuable lives.

We have tried to solve this problem by developing a Traffic Violation Detection and

Notification System which will monitor the traffic 24/7. The system will measure the speed

of the moving vehicles, in case of Over-speeding, image of the violating vehicle will be

captured, and violator will then be notified using Short-Service Message (SMS) and record

of the driver will be maintained at the database until the fine has been paid.

This report contains description about the project along with design details; both software

and hardware, project analysis and evaluation, results of rigorous testing and their analysis,

problems faced while development of the project, a demonstration outline and

recommendations for future work.

iii

CERTIFICATE

It is certified that work contained in this thesis “Traffic Violation Detection and

Notification” was carried out by Samar Ali Khan, Ahmad Usman and Muhammad

Hamza Cheema under the supervision of Lt Col Dr. Adil Masood Siddique for partial

fulfillment of Degree of Bachelors of Telecommunication Engineering, is correct and

approved.

Supervisor:

Lt Col Dr. Adil Masood Siddiqui

HOD, CS Dept.

MCS, NUST

iv

DECLARATION

We hereby declare that no content of work presented in this thesis has been submitted in

support of another award of qualification or degree either in this institution or anywhere

else.

v

COPYRIGTHS

Copyright © 2015 by Lt Col Dr. Adil Masood Siddique

All rights reserved. No part of this publication may be reproduced, distributed, or transmitted

in any form or by any means, including photocopying, recording, or other electronic or

mechanical methods, without the prior written permission of the publisher, except in the case

of brief quotations embodied in critical reviews and certain other noncommercial uses

permitted by copyright law. For permission requests, write to the publisher, addressed

“Attention: Permissions Coordinator,” at the address below.

Military College of Signals

National University of Science and Technology

Humayun Road

Rawalpindi

vi

DEDICATED TO

Almighty Allah,

Faculty for their help

And our parents for their support

vii

ACKNOWLEDGEMENT

Nothing happens without the will of Allah Almighty. We thank Allah Almighty for giving

us knowledge and strength to accomplish this task successfully.

We would also like to thank our project supervisor Lt Col Dr. Adil Masood Siddiqui whose

constant support and guidance made it possible for us to complete this project.

We would like to express our special gratitude and thanks to Dr. Muqeem Sherry, Asst Prof.

Attiya Obaid and Lec. Aimen Aakif for extending help to us during our hour of need.

We also thanks and appreciate to our colleague for helping in developing the project and

people who have willingly helped us with their abilities.

Last but not the least, we are very thankful to our parents, who bore with us in times of

difficulty and hardship. Without their consistent support and encouragement, we could not

have accomplished our targets successfully.

viii

PREFACE

This dissertation is an original intellectual product of the authors Samar Ali Khan, Ahmad

Usman and Muhammad Hamza Cheema. None of the text of the dissertation is taken directly

from previously published or collaborative articles.

Samar Ali Khan was responsible for defining and finalizing the algorithms and approach

mentioned in Chapter 3. Hamza Cheema completed the hardware design and integration

which is explained in Chapter 3, while Ahmad Usman completed the Database and

Notification part.

Defining feature of any new technology is how well it holds up against the existing

technology which it tries to replace. After the completion of this project is was rigorously

tested within MCS as well as outside of MCS. This project was tested with the Motorways

Police, where the results were compared with the equipment they are currently using. The

results were more than satisfactory. An appreciation letter the motorway police has been

attached in appendix.

ix

Table of Contents

Chapter 1: INTRODUCTION ... 1

1.1 Background/Motivation ... 2

1.2 Problem Statement ... 2

1.3 Project Description ... 3

1.4 Salient Features .. 3

1.5 System Model .. 4

1.6 Scope, Objectives and Specifications .. 5

1.7 Deliverables ... 6

Chapter 2: LITERATURE REVIEW ... 7

Chapter 3: SYSTEM DESIGN AND DEVELOPMENT ... 12

3.1 Approaches ... 13

3.2 Software Design ... 14

3.2.1 Calibration ... 14

3.2.2 Background Detection ... 15

3.2.3 Vehicle Tracking and Calculating Speed .. 16

3.2.4 Live Stream ... 19

3.3 Hardware Design .. 20

3.3.1 Camera .. 21

3.3.2 BeagleBone Black ... 22

3.4 Hardware Interface ... 25

3.5 Database and Notification System ... 26

3.5.1 Database .. 26

3.5.2 Notification ... 27

Chapter 4: PROJECT ANALYSIS AND EVALUATION .. 29

4.1 Speed Testing ... 30

4.1.1 Testing in DSP LAB ... 30

x

4.1.2 Testing in MCS ... 31

4.1.3 Testing in DHA ... 31

4.1.4 Testing on Motorway M2 (Location 343 – Thallian Camp) 32

4.2 Final Outlook ... 33

4.3 Registration Number Extraction .. 33

4.4 Database and Notification .. 34

4.5 Beaglebone Black .. 37

4.6 Problems Faced .. 38

Chapter 5: FUTURE WORK AND CONCLUSION ... 40

5.1 Recommendations for Future Work ... 41

5.2 Conclusion ... 41

5.2.1 Overview ... 41

5.2.2 Objectives Achieved ... 42

5.2.3 Achievements .. 42

Chapter 6: REFERENCES .. 43

APPENDIX A: MATLAB CODES .. 45

Code of Background Detection .. 46

Calibration Function .. 48

Tracking and Speed Calculation Code ... 50

Function Calls .. 53

APPENDIX B: BEAGLEBONE WEBSITE ... 54

APPENDIX C: TIMELINE.. 56

APPENDIX D: COST BREAKDOWN ... 58

APPENDIX E: LETTER OF APPRECIATION FROM MOTORWAY POLICE 60

xi

List of Figures

Figure 1 Calibration of the Camera .. 15

Figure 2 Background Subtraction as Car Enters .. 18

Figure 3 Background Subtraction as Car Travels .. 18

Figure 4 Background Subtraction as Car Leaves ... 18

Figure 5 Working Environment of Frame Grabber ... 20

Figure 6 Logitech Camera B525 .. 21

Figure 7 Beagle Board Black Isometric View ... 22

Figure 8 Tethering with PC .. 23

Figure 9 Beagle Board Black Port Labels .. 23

Figure 10 Hardware Interface .. 26

Figure 11 Working Environment of php Server .. 27

Figure 12 The SMS Script Code in PHP .. 28

Figure 13 Testing on Toy Car .. 30

Figure 14 Testing in front of Trg bn MCS ... 31

Figure 15 Testing in DHA-I ... 31

Figure 16 Installation of Camera on Motorway ... 32

Figure 17 Results Obtained on Motorway ... 32

Figure 18 Final Outlook of Project .. 33

Figure 19 Number Plate Extraction from Vehicle ... 33

Figure 20 Number Plate Reading ... 34

Figure 21 Database Front End ... 34

Figure 22 After Searching for Required Registration No. ... 35

Figure 23 Notification Panel .. 35

xii

Figure 24 Notification via Email ... 36

Figure 25 Notification via SMS ... 36

Figure 26 BeagleBone Cloud9 Interface .. 37

Figure 27 BeagleBone VNC Server Interface .. 37

Figure 28 Interface of CamShift .. 38

Figure 29 Tracking of Specified Object on BeagleBone ... 38

xiii

List of Tables

Table 1 Specifications of Camera .. 22

Table 2 Specifications of BEAGLEBONE BLACK .. 24

xiv

List of Abbreviations

SMS: Short Message Service

MATLAB: Matrix Laboratory

RGB: Red Green Blue

PN: Part Number

RAM: Random Access Memory

USB: Universal Serial Bus

HD: High Definition

CRT: Cathode Ray Tube

eMMC: Embedded Multimedia Card

HDMI: High-Definition Multimedia Interface

I/O: Input/output

API: Application Programming Interface

RF: Radio Frequency

TBD: To be Defined

PMIC: Power Management Integrated Circuit

Chapter 1

INTRODUCTION

2

Traffic violation is a serious problem that we are facing now days; our roads are becoming

more dangerous not only to the violators themselves, but also to anyone around them. Recent

surveys show a rapid increase in road accidents leading to loss of thousands of valuable lives

worldwide. We have tried to address this problem by developing a Traffic Violation

Detection and Notification System which will monitor traffic 24/7.

Transportation is one of the vital components of today’s society. It is the key to economic

growth and development. Due to recent increase in traffic volume, unfortunately rate of road

accidents has increased; therefore research and studies are being carried out worldwide to

enforce traffic regulation so that roads can be made safer for everyone.

1.1 Background/Motivation

Road accidents have become a serious problem of modern times. Over 40% of the accidents

are caused due to driving over the speed limit. In this project we focus on developing a

system that will not only detect the violation but also capture an image of the violating car,

notify the violator and maintain record at the database until fine is paid.

1.2 Problem Statement

To control this problem several technologies have been developed and implemented. Radar

technology is most commonly used for this purpose. This technology has been used for a

long time however there are a lot of loop holes in this system that needs to be addressed. Due

to development of jammers accuracy of Radars has decreased. Since Radar can focus on a

single vehicle at a time, therefore when traffic is too much the system is not very effective.

Another major problem that this system has is that it always need a person to operate it.

Accuracy of Radar speed traps deteriorates highly with bad weather condition.

3

To overcome these problems we have used a camera to detect speed. This system is able to

detect, track and calculate speed of multiple objects simultaneously to cope up with the

increased traffic. This system can monitor traffic without constant supervision.

 1.3 Project Description

To detect traffic violation a camera is used. Live stream from the camera is fed to the

processing unit where each moving vehicle will be detected, tracked and speed of each

vehicle will be calculated. Once the speed is calculated it is compared against the set speed

limit and if the speed is above the speed limit; then that vehicle is over-speeding. From that

captured image of violating car, number plate is detected and that registration number of

the vehicle is extracted. That registration number is used to get information of the owner.

On that contact information a message through SMS will be send notifying the user about

details of violation and fine.

This project is most suitable for motorways and highways where roads are straight and

chances of over-speeding are more. Although this system can be deployed within cities

however to achieve best possible results it should be used over straight stretches of road.

1.4 Salient Features

This is an application based project that can be developed to make a system that can work in

real world scenario.

 This project is set to work for real time scenario, therefore real-time processing is

really important. This project capture frames, detect and track moving vehicle and

calculate speed all in real-time

4

 Selecting the resolution of the images is also very important. Pixel density of the

frames is neither too high due to which efficiency is compromised, nor it is so low

that accuracy is affected.

 Algorithm working to detect, track and calculate speed of the moving vehicle is

efficient, precise and accurate so that any error in calculation of speed are minimized.

Database needs to maintain a constant record of the violators until dues are paid.

1.5 System Model

Monitoring Traffic

Violation detected

Trigger camera to
capture image

Send captured image
to main server

Image processing to
extract registration

number

Send a messeage
notifying the driver

Maintain Record
until fine paid

5

1.6 Scope, Objectives and Specifications

 This project is an application based project. Efficiency, accuracy and precision are

the standards on bases of which these project was developed. These three parameters

hold great importance when it comes to calculating speed if a moving vehicle.

 Scope of this project is to be as efficient as possible, so that no vehicle is missed.

For this the system works in real time scenario. For the system to work in real time

first live video feed is fed to the processor, secondly processing speed is enough to

meet the demand of incoming data.

 Calibration of camera will has a major impact on the value of speed; since value of

distance is estimated with the help of calibration. Calibration affects accuracy of the

system, therefore algorithm for calibration is made to be as accurate as possible.

 For this project to be precise the actual algorithm for detection, tracking and

calculating speed of vehicle is very important.

 Keeping these specifications in mind the hardware is designed. The processing

board is efficient enough to handle the incoming data. While deciding camera we

needed to find the best case scenario. Camera needed to have good enough

resolution and frame rate that the video feed is clear and that there is minimum noise,

but we also kept in mind that higher resolution and frame rate means more data size

which means more processing which will cause delay, hence slowing down the

system.

6

1.7 Deliverables

This project will try to meet the specifications mentioned above. The final form of project

consists of a camera interfaced with the Beagle-bone Black board. System works in real time

with minimum time lag. This project will detect a moving vehicle, track it and use the

tracking information to calculate speed of the moving car. Each car will be assigned a tag in

order to identify it, and then image of the violating car will be taken to extract registration

number of the violating car. Once the registration number has been identified it will be used

to get the contact information of the owner of that car and a message will be send on the

contact number of the owner, informing him about his violation. Until the fine is paid his

record will be maintained at the database.

The final form of the project consists of a camera by Logitech (B525) interfaced with a

processing board; Beagle-bone Black, a PC to perform the function of the main server and a

wireless communication device to dispatch messages.

7

Chapter 2

LITERATURE REVIEW

8

Since road accidents are increasing day by day, a lot of work is being carried out in various

universities around the world, try to address this problem. Quite a lot of systems are under

development, while some have already been completed and have already been deployed.

A paper by Suzhou Vocational University was published by IEEE [1]. The paper focused

on mapping of image domain to real world domain and a comprehensive algorithm for

automatic calibration was also provided. These techniques were used to monitor speed of

vehicles.

University of California, Berkeley issued a paper titled: “A real-time computer vision system

for vehicle tracking and traffic surveillance” [2]. The main focus of this paper was to address

problems that occur in already existing systems. The document provides detailed algorithms

for detection of moving object and short-comings of those algorithms and then comparison

is done amongst the detection algorithms and the best one is suggested. Details of tracking

algorithm and speed detection are also mentioned. In this document feature based tracking

is done which improves accuracy and the camera is able to distinguish between two vehicles

that are side by side; however this also increases computational complexity.

A research paper published in International Journal of Computer and Electrical Engineering,

Vol. 3, No. 6, puts forward a new system for detecting vehicle speed which can also be used

as an alternative to radar gun [3]. This research paper tells us about the draw backs of

existing radar related speed detection systems. Keeping in view the underperformance of

current speed detection systems a new more robust algorithm is put forward which uses the

technique of image processing to detect speed of moving vehicles from a video sequence.

This paper discusses different algorithms and there drawbacks. Only after detailed

comparison and rigorous testing a new algorithm is presented in this paper which is a hybrid

9

of adaptive background subtraction and three phase differencing. This combination helps to

ratify one major drawback that is generation of false alarms.

Another research paper published by V R Siddhartha Engineering College introduces a

method which detects speed of violating vehicles using image processing technique [4].

Digital signal processing chip is used to implement image processing technique over the

video sequence netted from a video camera. The vehicles are detected by examining the

binary image sequence that is constructed from captured frames by employing interface

difference or the background subtraction algorithm. The system also detects the position of

the moving vehicle in the scene and the position of the reference points and calculates the

speed of each static image frame from the detected positions.

An article published by the name of “Image Processing in Road Traffic Analysis”, authored

by E. Atkociunas, R. Blake, A. Juozapavicius, M. Kazimianec put forward a new system

whose capabilities include vehicle tracking, speed measurement without the use of any

sensors, and recognition of license plate number of moving vehicle [5]. The system that we

aim to develop as our final year project will also include these capabilities. This article uses

computer vision method to monitor the traffic. The algorithmic processing of the system is

in the following order:

a) Video Stream input to the computer.

b) Video conversion to a sequence of single frames.

c) Lane masking.

d) Background removal, noise and blob filtering, linking and labeling, contour

parameter estimation.

e) Vehicle Tracking.

10

f) Vehicle speed calculation.

g) Number plate recognition.

A research paper by the name of “Vehicle speed detection in video image sequences using

CVS method” and written by Arash Gholami Rad, Abbas Dehghani and Mohamed Rehan

Karimshows us a new algorithm that makes use of digital video, image processing and

computer vision to detect vehicle speed [6]. In view of our final year project this research

paper proved invaluable to us since the final aim of this project was converging with ours

that is to calculate speed of moving vehicle through a video camera. The project is divided

in to the following parts:

1. Camera Calibration:

Camera placed directly above the surface of the road with its optical axis inclined

downward towards the road way. Camera calibration is an important aspect in our

project as it will help us in determining the actual distance on the ground that appears

in an image. Results obtained from camera calibration will then be used for mapping

and speed calculation.

2. Background update and removal unit:

 There is 2 type of data in a video sequence:

a) Background data: Static objects like buildings, road surface, parked

vehicles.

b) Foreground data: Moving objects.

In order to detect speed of vehicles we have to extract and remove the background.

11

3. Vehicle detection unit

 Background extraction and removal is one of the important part of vehicle

extraction. Different algorithms are used for this purpose such as:

a) Adaptive background estimation.

b) Foreground detection using Kalman filter.

c) Background estimation with Gaussian distribution.

d) Adaptive mean filter for background estimation.

 In our case we are using background estimation using Gaussian mixtures and

object tracking using Kalman filter.

4. Speed Measurement Unit:

 Speed of the vehicle is calculated using the position of the vehicle in each

frame. For this purpose blob bounding box and centroid is found. Blob

centroid helps in determining the distance vehicle has moved in the

consecutive frames.

5. Result analysis

12

Chapter 3

 SYSTEM DESIGN AND DEVELOPMENT

13

3.1 Approaches

One way to detect violations is by the use of RADAR technology. It works on Doppler Effect

that calculates the time of transmitted pulse and received pulse and from that time distance

of vehicles is calculated. Pulses of Radio frequency are sent at regular intervals to calculate

speed of car. This method is currently being used however this method has many short falls.

Radar can only focus on one vehicle at a time so in rush hours the systems’ reliability

decreases. In different weather conditions such as rain and humidity results not as accurate.

Radar can also be jammed. Radar also needs to be used on the line of sight; otherwise results

are not as accurate.

Another way is by the help of LiDAR. LiDAR suffers from the same problems as RADAR

technology.

Electro-strips are embedded on road surface at a fixed distance when vehicles cross each

strip pulse are sent to the processing unit which calculates time. Since distance is fixed speed

is calculated. In case of too much traffic results are not accurate.

Signal processing and image processing is an evolving field. Due to increased processing

power of processors this technology can not only produce more accurate and precise results,

but this approach can be used to monitor multiple lanes and these systems can further be

modified for traffic surveillance and security.

The basic design of this project can be broken down into three major parts:

 Detection

 Speed Calculations

 Notification

Each three of these parts consist of a Hardware and Software part.

14

3.2 Software Design

Software part will contain details of different algorithms implemented in this project.

3.2.1 Calibration

The input to tracking algorithm is an image acquired from the camera. In order to use the

image pixels to compute real world distances and speeds, we must calibrate the camera.

Following assumptions are made for calibration [1]:

 The road is flat (all points lie along a single plane)

 The road is straight (traffic motion is parallel to some axis)

 Occlusions are minimized (background images separate individual cars)

The transformation from screen space to road space is a projective transformation. This is

performed by representing points in screen space as 2d homogenous coordinates (3

individual components), where (u, v) maps to (u', v', 1) in homogenous representation, and

(u', v', w) maps to (u'/w v'/w) in non-homogenous representation. A 3x3 matrix is used for

both translation and projection. Results of the calibration can be seen in the figure below.

Once the camera has been calibrated, location of lanes in road space and screen space is

identified by clicking on center of each lane. For each point (Xs, Ys), the system maps this

to the road space points (Xr and Yr), and represents the lane in road space as the line X=Xr,

this is shown in the figure below. Then beginning and ending regions are defined. This is

to ensure that cars in far distance do not distort statistics. Now screen-space points are

transformed into road space.

15

Figure 1 Calibration of the Camera

3.2.2 Background Detection

Car is located in a frame by looking for pixels that differ by some minimum amount from

a standard background image.

History-based adaptive background detection method is used. This maintains a mean for

each pixel. However, the mean over a fixed-size history is used instead of all the previously

seen frames. This makes the algorithm more efficient. If the variance of the pixel over that

history is below a conservative threshold, the pixel is considered stable. Only stable pixels

are added to the background image. [2]

This method converges to an accurate background image rapidly. At the same time, it is

much more stable than the RGB statistical learning method with a high learning rate; new

cars do not affect the existing background as they rarely remain in the same place long

16

enough to be considered part of the background. We expect that more global, longer term

changes such as changes in lighting would eventually reflect in the background. [3]

3.2.3 Vehicle Tracking and Calculating Speed

The goal of the tracking system will be to generate per-lane traffic statistics at real-time

speeds, as would be used on a major highway to report traffic flow information. As such, it

was reasonable to assume a couple things about the input footage. First, we require that the

camera be fixed in location. A camera strictly dedicated to analyzing traffic of a road would

probably be fixed on a pole or overpass in one direction, making this a reasonable

requirement. Second, we required an overhead view of the traffic. This second requirement

was made in order to prevent the need for tracking multiple layers of traffic. With an

overhead view, a system can simply analyze one area of the frame and know that this area

belongs to only one lane of traffic. With side views, cars may be occluded by other cars or

foreign objects [5].

To analyze the traffic subtract the background from an input frame and create a mask based

on some error threshold. This mask needs to be analyzed to track moving objects along the

road. The key observation is made that almost all of the movement along the road is done

in the same direction. With this in mind, we can reduce the two-dimensional motion

problem to the one-dimensional problem of tracking a vehicle within its lane. All of this is

done to improve efficiency and reduce complexity.

In order to make this simplification, we define a region of interest in our input frames, one

region for each traffic lane. The region of interest defines the center line of a lane as well

as the beginning and end of the observation window. Once we subtract the background and

17

generate our mask, we are left with a line of 0's and 1's, where 0's indicate background and

1's indicate the presence of a car. Then, from one frame to the next we only need to follow

patches of 1's along the line in a consistent manner [7].

By tracking the bottom of these patches and calculating the differences between them, we

can determine how many pixels each car moved along the line between each frame. Using

the calibration data, we can map these pixels to a virtual road space and determine the

distance in feet. Simple calculation leads to a speed for a car in miles per hour, and in the

aggregate case, an average speed for the lane.

The implementation of the above system is straightforward. For each region of interest

(each traffic lane being analyzed), we store its coordinates in pixel space, the number of

cars it has seen, the average speed of the lane, and an array of car structures with an entry

for each car currently in the lane. In an initialization step, we extract the background image

of the line by pulling corresponding entries out of the input background image.

For each lane in each frame, we extract the pixels on the line of interest for the lane and

subtract our background information. We then compare the sum of squared differences with

a threshold, and generate a mask based on this comparison. The threshold is a parameter of

the system and depends on the noise sensitivity of the camera. We perform a median filter

on this vector to remove noise in the form of small chunks of black or white that might

disrupt the algorithm.

The images below show the tracking process for 3 frames. The first 2 frames are

consecutive. Adjacent to the frames are images of the lines of interest for the middle lane

18

before thresholding, before using the median filter, and after the median filter. White pixels

indicate the presence of a car, and black pixels indicate the background.

Figure 2 Background Subtraction as Car Enters

Figure 3 Background Subtraction as Car Travels

Figure 4 Background Subtraction as Car Leaves

19

We then examine the beginning of our line of interest and if we check for the case where

we saw a positive error in the previous frame and see no error now. This suggests that a

new car may have just completely entered the region of interest. The algorithm proceeds up

from the bottom to find the next positive error and thus locate the bottom of the new car. A

check is made to find the top of the positive error chunk to determine the length of the car.

Cars that do not meet a minimum length requirement are rejected as noise, and are usually

due to visual aberrations in the input image near the beginning of the lane. If a new car is

indeed found, it is added to the cars array of the lane.

For each existing car in the lane's car array, we start at the last known position of the bottom

of the car and look forward along the line to find the next positive error chunk in the current

frame. We take this as the new bottom of the car and calculate the distance between the two

cars in road space, using the transformation from the calibration procedure. This distance

in feet is converted to miles per hour and appended to the car's existing speed information.

If a search for a new bottom of a car reaches the end of the line, the car has exited the region

of interest. In this case, we increment the lane statistics and calculate the average speed of

the car as the average of the entries in its speed array. This average speed is used to update

the average traffic speed of the lane.

3.2.4 Live Stream

There is no such thing as a continuous video stream in computers and embedded systems

just like there is no such thing as continuous data. If we get continuous data we need to

sample it at specific time intervals and quantize it at certain levels, similarly when we get a

constant video stream we sample it after some time intervals. This is done by selecting

20

individual frames after a fixed period of time, then processing is done on these individual

frames according to our requirement.

We are using a free firmware webcam grabber developed by SoftPerk to grab frames from

our webcam.

Figure 5 Working Environment of Frame Grabber

3.3 Hardware Design

Hardware consists of a camera and beagle board which will be attached to the camera.

21

3.3.1 Camera

Figure 6 Logitech Camera B525

3.3.1.1 Specifications [8]

What you need:

Windows Vista®, Windows® 7 (32-bit or 64-bit) or

Windows® 8

Basic requirements:

 1 GHz

 512 MB RAM or more

 200 MB hard drive space

 Internet connection

 USB 1.1 port (2.0 recommended)

Part Number
 PN 960-000715

22

Technical Specifications

 HD video calling (1280 x 720 pixels) with

recommended system

 Video capture: Up to 1280 x 720 pixels

 Logitech Fluid Crystal™ Technology

 Photos: Up to 8 megapixels (software enhanced)

 Hi-Speed USB 2.0 certified (recommended)

 Universal clip fits laptops, LCD or CRT monitors

 Autofocus

 Built-in microphone with Logitech Right Sound™

technology

Logitech webcam software:

 Pan, tilt, and zoom controls

 Video and photo capture

 Face tracking

 Motion detection

Table 1 Specifications of Camera

3.3.2 BeagleBone Black

Figure 7 Beagle Board Black Isometric View

23

Figure 8 Tethering with PC

 Figure 9 Beagle Board Black Port Labels

24

3.3.2.1 Specifications [9]

Table 2 Specifications of BEAGLEBONE BLACK

25

3.4 Hardware Interface

Beagle-bone black is a development board that harbors an Arm Cortex A8 processor with

a Linux kernel. Firstly the operating system of the board is updated by getting the latest

image of Linux Debian. Image of the latest operating system was burned into a micro-SD

card and when the card was plugged into the board, board itself updated its operating

system.

Once the operating system was updated, a network was created between the Beagle-bone

Black and PC. Since Beagle-bone Black has a Linux kernel; that is the operating system

used in this board is Linux so whatever process is to be performed at the Beagle-bone it is

performed using Linux. With the help of newly established network between the board and

PC, new drivers can now be installed over the internet.

Once appropriate drivers were installed to the board Camera was connected using the on-

board USB port. USB port provide serial communication between the I/O devices. Just by

connecting the device it cannot be ensured whether the device has interfaced properly or

not, so using a simple command of “lsusb” all the input and output devices can be viewed.

When the camera appeared as an I/O device on the board it was checked if video input is

enable using the command “ls -al”. When it was discovered that the video input is enable

we used the appropriated code to capture frames at a fixed rate and time interval.

These frames are stored in eMMC, which is an on-board memory storage they can be easily

accessed for further processing.

26

Figure 10 Hardware Interface

3.5 Database and Notification System

Database and Notification is the part that is used to inform the owner of the car that a

violation has been made and a fine need to be paid.

3.5.1 Database

Databases are very common these days. Almost every website, Blog, E-mail services, E-

commerce sites, and Cloud storage system needs a database to store data. We are also using

a database in this project to store the data of violating vehicles and their respective users.

We are using PhpMyAdmin to create a MySQL database on a WAMPserver. WAMPserver

is a windows web development environment .It allows you to create web applications with

Apache2, PHP, and a MySQL database. Alongside, PhpMyAdim is used to manage

database.

27

Figure 11 Working Environment of php Server

3.5.2 Notification

The following three methods can be used to notify the violator:

 GSM module

 API (Application Programming Interface)

 E-mail

3.5.2.1 GSM Module

A GSM modem is a specialized type of modem which accepts a SIM card and operates over

a subscription to a mobile operator, just like a mobile phone. When connected to a

computer, this allows the computer to communicate over the mobile network. These

modems can be used for sending and receiving SMS and MMS messages.

28

3.5.2.2 API (Application Program Interface)

API, an abbreviation of application program interface, is a set of routines, protocols, and

tools for building software applications. The API specifies how software components

should interact and are used when programming graphical user interface (GUI)

components.

Since our projects require sending of bulk SMS we are using the PHP rest API for sending

SMS to the violator.

Figure 12 The SMS Script Code in PHP

29

Chapter 4

 PROJECT ANALYSIS AND

EVALUATION

30

Last 10 years has seen an uncontrolled population growth worldwide which has given rise

to urban congestion. One of the fallout has been increased traffic congestion on existing

road networks. This project is relatively new and in this project image processing is even

more recent and underdeveloped. Research is still being done throughout the world therefore

not a lot of material is available over the internet. However given the resources available

and considering that this is the first time this technology is being implemented in Pakistan

we tried our best to fulfill our objectives and the results have been quite satisfactory.

4.1 Speed Testing

This project has been tested rigorously within MCS as well as outside MCS. During

development of this project it was tested in DHA and MCS. Once it was completed, on 15th

May 2015 Friday; we tested this project with Motorway Police on Motorway M2, location

343 Thallian Camp (FWO), and compared the results against already existing technology

that is the radar gun. The results came out to be satisfactory and also appreciated by the

Motorway Police officials.

4.1.1 Testing in DSP LAB

Figure 13 Testing on Toy Car

31

4.1.2 Testing in MCS

Figure 14 Testing in front of Trg bn MCS

4.1.3 Testing in DHA

Figure 15 Testing in DHA-I

32

4.1.4 Testing on Motorway M2 (Location 343 – Thallian Camp)

Figure 16 Installation of Camera on Motorway

Figure 17 Results Obtained on Motorway

33

4.2 Final Outlook

Figure 18 Final Outlook of Project

4.3 Registration Number Extraction

Figure 19 Number Plate Extraction from Vehicle

34

Figure 20 Number Plate Reading

4.4 Database and Notification

Figure 21 Database Front End

35

Figure 22 After Searching for Required Registration No.

Figure 23 Notification Panel

36

Figure 24 Notification via Email

Figure 25 Notification via SMS

37

4.5 Beaglebone Black

Figure 26 BeagleBone Cloud9 Interface

Figure 27 BeagleBone VNC Server Interface

38

Figure 28 Interface of CamShift

Figure 29 Tracking of Specified Object on BeagleBone

4.6 Problems Faced

While testing of this project following were the major problems faced:

39

 The first and the most serious problem faced is that camera needs to stay still. Since

calculation of speed mainly depends on background subtraction, whenever there is a

slight movement of camera the whole background changes which results in various

object to be specified as moving. To solve this problem it must be ensured that camera

is secured tightly to one place and it does not move at all.

 Second problem faced is that if car jumps lanes (i.e. it changes lane in that case) or

the car is in between two different lanes then it is not detected. Since lanes are defined

and if any car does not fall within a specified region then it is taken as noise. This is

because of an assumption that all cars move within lanes.

 Results of this project are better if the road is straight. If the road has bends then an

assumption made earlier about the one dimensional motion of car becomes wrong

due to which results are not very accurate.

One major problem we faced in using a GSM module was that in light of the current security

situation of Pakistan, government of Pakistan has placed a ban on purchase of GSM

modules therefore we are using a different approach. Now instead of using a GSM or 3G

module we are using SMS API (sending SMS via internet).

40

Chapter 5

 FUTURE WORK AND

CONCLUSION

41

5.1 Recommendations for Future Work

Since this technology is still under the process of development there are a lot of prospects

for future work.

 This system can be modified for security as well. This way cost of installing both

security cameras and speed cameras will reduce, only one equipment will be required.

 A complete network can be made between different system points with a main server.

This way there will be a centralized point for checking security footage as well as all

the data will be in one place.

 This system can be made more compact, more robust and more efficient.

 At this moment this project gives best results over straight stretches of road,

algorithm can be modified to work on bends as well.

 This system can also be modified to include other traffic violations as well.

 Another modification that can be done is implement is using IR camera which can

give better results during night and rainy weather.

5.2 Conclusion

Traffic Violation Detection and Notification is an application based project, which works

in real time to capture, analyze and process real life scenarios. This technology is the way

forward in Traffic Management and Control. In UK during 2014 British Government issued

order to replace all the previous speed cameras with this technology.

5.2.1 Overview

The basic purpose behind undertaking this project was that over speeding has become a real

problem that is actually costing thousands of lives each year. This, very real, problem

42

needed immediate addressing and a system was required that is efficient, accurate and

robust.

5.2.2 Objectives Achieved

We achieved most of the objectives we set out to achieve. The system is able to detect, track

and tag a fast moving vehicle accurately and efficiently. It is also able to calculate the speed

of that vehicle precisely and accurately and violator is notified immediately.

5.2.3 Achievements

This project was tested rigorously and repeatedly in different environment. The results were

compared against a Radar gun, which is a slightly outdated, but still highly accurate device.

The results were more than satisfactory as there was minimum difference between the two

readings. Our achievements were acknowledged by Motorway police.

43

Chapter 6

REFERENCES

44

REFERENCES

[1] Z. Zhang, "A Flexible New Technique for Camera Calibration," Microsoft Research, [Online].

Available: http://robots.stanford.edu/cs223b04/JeanYvesCalib/htmls/links.html.

[2] D. B. P. M. Benjamin Coifmana, "A real-time computer vision system for vehicle tracking and traffic

surveillance," University of California, Berkeley, 1998.

[3] J. Zhang and Like Zhang and Heng-Ming Tai, "Efficient Video Object Segmentation Using Adaptive

Background Registration," 2004.

[4] H. E. A. M. E. Osman Ibrahim, "Speed Detection Camera System using Image Processing,"

International Journal of Computer and Electrical Engineering, Vol. 3, No. 6, 2011.

[5] P. Getreuer, "Image Processing with MATLAB," [Online]. Available:

http://www.getreuer.info/tutorials/matlabimaging.

[6] logitech, "logitech Webcams," [Online]. Available: http://www.logitech.com/en-us/webcam-

communications/webcams.

[7] BeagleBoard.org, "BeagleBoard Black Reference Manual," 2013.

45

 APPENDIX A

MATLAB CODES

46

Code of Background Detection

%function bgimage = BackgroundDetect(dataset, start_frame, end_frame,
%history, thresh, asap, display)
%
% dataset - name of the directory with sequential image files
% start_frame - number of first frame to use in directory
% end_frame
% history - number of frames to use, default: 10
% thresh - default: .01
% asap - stops background estimation once background model is stable
% display - shows a side-by-side of the evolution of bg model
%
% bgimage = computed background image
%
% Example: bgimage = BackgroundDetect('speedtrap_data', 0, 1000, 10, .1,

true, true);
%
function bgimage = BackgroundDetect(dataset, start_frame, end_frame,

history, thresh, asap, display)

if nargin < 7
 display = true;
end

if nargin < 6
 asap = true;
end

if nargin < 5
 thresh = .01;
end

if nargin < 4
 history = 10;
end

num_frames = end_frame - start_frame + 1;

history_index = 1;

init_color = [1 0 0];

thresh = thresh * history;

for i = 1 : history,
 data(:, :, :, i) = double(imread(sprintf('%s/%06d.bmp', dataset,

start_frame + i - 1))) / 255;
end

for i = 1 : history - 1,
 error(:, :, :, i) = data(:, :, :, i + 1) - data(:, :, :, i);
 error(:, :, :, i) = error(:, :, :, i) .* error(:, :, :, i);

47

end

error_sum = sum(sum(error, 4), 3);
error_mask = error_sum < 0.01;

stable = false;
stable_mask = error_mask;

mean_image = mean(data, 4);

for k = 1 : 3,
 bgimage(:, :, k) = init_color(k) * ~error_mask + mean_image(:, :, k)

.* error_mask;
end

if display
 figure(1);
 imtable([2 1], 1, data(:, :, :, history));
 imtable([2 1], 2, bgimage);
 truesize;
 drawnow;
end

for i = history + 1 : num_frames,
 history_index = mod(i - 1, history) + 1;
 history_prev = mod(i - 2, history) + 1;

 data(:, :, :, history_index) = double(imread(sprintf('%s/%06d.bmp',

dataset, start_frame + i - 1))) / 255;
 error(:, :, :, history_prev) = data(:, :, :, history_index) - data(:,

:, :, history_prev);
 error(:, :, :, history_prev) = error(:, :, :, history_prev) .*

error(:, :, :, history_prev);

 error_sum = sum(sum(error, 4), 3);
 error_mask = error_sum < 0.01;

 mean_image = mean(data, 4);

 for k = 1 : 3,
 if stable
 bgimage(:, :, k) = error_mask .* (bgimage(:, :, k) +

mean_image(:, :, k)) / 2 + ~error_mask .* bgimage(:, :, k);
 else
 bgimage(:, :, k) = (error_mask & stable_mask) .* (bgimage(:,

:, k) + mean_image(:, :, k)) / 2 + (error_mask & ~stable_mask) .*

mean_image(:, :, k) + ~error_mask .* bgimage(:, :, k);
 end
 end

 stable_mask = stable_mask | error_mask;
 stable = ~sum(~stable_mask(:));

 if display

48

 imtable([2 1], 1, data(:, :, :, history_index));
 imtable([2 1], 2, bgimage);
 truesize;
 drawnow;
 end

 if asap && stable
 disp(sprintf('Used %d frames to find stable background', i));
 break;
 end
end

return;

Calibration Function

%Calibrate.m - calibrates the image, prompting user for input
%
% M - background image from BackgroundDetect.m
% w - world space width in feet of the quad
% h - world space height of the quad
%
% returns calibrated parameters that map screen to world coordinates
%
% Example [TM, lane_x, lane_start, lane_end] = CalibrateFunction(bgimage,

% 5, 13);
%
% It will prompt you to click on the four points of that you know a

%priori
% correspond to a world-space quad, for which you know the width and
% height. Start with the lower-left side, then the lower-right, then
% upper-right, and finally upper left. (By Lower, I mean the side of the
% quad that the vehicles will enter first).
%
% Then you click on the center of each lane, and press enter when done.
%
% Finally, for each lane, click once on the start of the lane to track,

%and
% once on the end.
%
function [A, lane, lane_start, lane_end] = CalibrateFunction(M, w, h)

hold off;
figure()
image(M);
fprintf('Click on four points of quad, counter-cw from lower left\n');
[x y] = ginput(4); %REMOVE THIS LINE TO USE THE LAST POINTS

u = [0; w; w; 0];
v = [0; 0; h; h];

%x0 = eye(3);
x0 = [u, v, [1 1 1 1]']' / [x, y, [1 1 1 1]']';
%x0(3,1) = 0.001;

49

hold on;
UV1 = inv(x0) * [u, v, [1 1 1 1]']';
plot([UV1(1,:) UV1(1,1)], [UV1(2,:) UV1(2,1)]);

x0 = x0(1:8);

options = optimset('LargeScale', 'off', 'MaxFunEvals', 800000, 'TolFun',

1e-20, 'TolX', 1e-20, 'display', 'iter');

%[A, fval, exitflag, output] = fminunc(@calibobjfun, x0, options, x, y,

u, v);
%[A, fval, exitflag, output] = fminsearch(@calibobjfun, x0, options, x,

y, u, v);
%x0
%A = reshape([A(:); 1], 3, 3);
A = homography2d([x, y, [1 1 1 1]']', [u, v, [1 1 1 1]']');

hold on;
UV2 = inv(A) * [u, v, [1 1 1 1]']';
for i=1:4, UV2(:,i) = UV2(:,i) ./ UV2(3,i); end;
plot([UV2(1,:) UV2(1,1)], [UV2(2,:) UV2(2,1)], 'r')

%fval
%exitflag
%output

%Get the lane dividers
fprintf('Click once on each lane from left to right. Press enter when

finished\n');

lane = [];
[lx ly] = ginput;
for i =1:length(lx),
 S = A*[lx(i); ly(i); 1];
 [minX, minY, maxX, maxY] = ScreenPixelRange(A, S(1)/S(3), size(M,2),

size(M,1));
 plot([minX maxX], [minY maxY], 'g');
 lane = [lane; S(1)/S(3)];
end;

%Get the start and the end of the road
fprintf('For each lane, click on the beginning and the end of the region

to be tracked\n');

lane_start = [];
lane_end = [];
for i = 1:length(lx),
 [lx ly] = ginput(1);
 road_coord = ScreenToRoad(A, [lx; ly]);
 lane_start = [lane_start; road_coord(2)];
 screen_coord = RoadToScreen(A, [lane(i); road_coord(2)]);
 plot(screen_coord(1), screen_coord(2), '*');

50

 [lx ly] = ginput(1);
 road_coord = ScreenToRoad(A, [lx; ly]);
 lane_end = [lane_end; road_coord(2)];
 screen_coord = RoadToScreen(A, [lane(i); road_coord(2)]);
 plot(screen_coord(1), screen_coord(2), '*');
end;

Tracking and Speed Calculation Code

function TrackCars(dataset, start_frame, end_frame, bgimage, camera_fps,

min_car_length, threshold, median, delay, lane_x, lane_start, lane_end,

TM)
%TrackCars(dataset, start_frame, end_frame, bgimage, camera_fps,

min_car_length, threshold, median, delay, lane_x, lane_start, lane_end,

TM)
%dataset = 'speedtrap_data1';
%start_frame = 0;
%end_frame = 2565;
%camera_fps = 15;
%min_car_length = 5;
%threshold = 0.0015;
%median = 15;

lane = struct('points', [], 'length', [], 'line', [], 'tracked_line', [],

'bg', [], 'num_cars', [], 'done_cars', [], 'flow', [], 'new_car', [],

'cars', [], 'text', []);

num_lanes = length(lane_x);

for i = 1 : num_lanes
 lane(i).points = round(RoadToScreen(TM, [lane_x(i) lane_x(i);

lane_start(i) lane_end(i)]));
 lane(i).length = max(abs(lane(i).points(:, 1) - lane(i).points(:,

2))) + 1;
 lane(i).line(1, :) = round(linspace(lane(i).points(1, 1),

lane(i).points(1, 2), lane(i).length));
 lane(i).line(2, :) = round(linspace(lane(i).points(2, 1),

lane(i).points(2, 2), lane(i).length));
 for k = 1 : 3,
 lane(i).bg(:, k) = bgimage(sub2ind(size(bgimage), lane(i).line(2,

:), lane(i).line(1, :), repmat(k, [1 lane(i).length])))';
 end
 lane(i).num_cars = 0;
 lane(i).done_cars = 0;
 lane(i).flow = 0;
 lane(i).saw_car = true;
 lane(i).cars = struct('id', [], 'bottom', [], 'speed', []);
end

update_stats = false;

fig_im = figure;
set(fig_im, 'DoubleBuffer', 'on');
subplot('position', [0 0 1 1]);
image(bgimage);

51

axis off;
truesize;

fig_stats = figure;
axis off;
for j = 1 : num_lanes
 lane(j).text = text((2 * j - 1) / (2 * num_lanes), 0.5, '');
 set(lane(j).text, 'HorizontalAlignment', 'center', 'FontSize', 24);
 set(text((2 * j - 1) / (2 * num_lanes), 0.9, sprintf('Lane %d', j)),

'HorizontalAlignment', 'center', 'FontSize', 24, 'FontWeight', 'bold');
end

for i = start_frame:end_frame,
 data = double(imread(sprintf('%s/%06d.bmp', dataset, i))) / 255;

 figure(fig_im);
%The following two lines will capture output to files
 capture = getframe(fig_im);
 imwrite(capture.cdata, sprintf('%s/out%06d.bmp', dataset, i));
 hold off;
 subplot('position', [0 0 1 1]);
 image(data);
 axis off;
 hold on;

 for j = 1 : num_lanes,
 cars = struct('id', [], 'bottom', [], 'speed', []);

 clear error_line;
 for k = 1 : 3,
 error_line(:, k) = data(sub2ind(size(data), lane(j).line(2,

:), lane(j).line(1, :), repmat(k, [1 lane(j).length])))';
 end
 error_line = error_line - lane(j).bg;
 error_line = error_line .* error_line;
 error_line = sum(error_line, 2);
 lane(j).tracked_line = error_line < threshold;
 lane(j).tracked_line = medfilt1(im2double(lane(j).tracked_line),

median);

 cars_index = 1;

 if lane(j).tracked_line(3)
 if ~lane(j).saw_car
% disp(sprintf('Found new car in lane %d: [%02d, %02d,

%02d]', j, lane(1).num_cars, lane(2).num_cars, lane(3).num_cars));
 lane(j).saw_car = true;

 tracked_offset = 3 + 1;
 car_indices = find(~lane(j).tracked_line(tracked_offset :

end));

 if car_indices
 lane(j).num_cars = lane(j).num_cars + 1;
 car_bottom = tracked_offset + car_indices(1) - 1;

52

 tracked_offset = tracked_offset + car_indices(1) + 1;
 car_indices =

find(lane(j).tracked_line(tracked_offset : end));

 if car_indices
 car_top = tracked_offset + car_indices(1) - 2;
 else
 car_top = length(lane(j).tracked_line);
 end

 road_coords = ScreenToRoad(TM, [lane(j).line(:,

car_top) lane(j).line(:, car_bottom)]);
 road_distance = road_coords(:, 1) - road_coords(:,

2);
 road_distance = sqrt(sum(road_distance .*

road_distance));

 if road_distance > min_car_length
 cars(1).id = lane(j).num_cars;
 cars(1).bottom = car_bottom;
 line(lane(j).line(1, [car_bottom car_top]),

lane(j).line(2, [car_bottom car_top]));
 cars_index = 2;
 end
 end
 end
 else
 if lane(j).saw_car
 lane(j).saw_car = false;
 end
 end

 if lane(j).cars(1).id
 for k = 1 : length(lane(j).cars),
 tracked_offset = lane(j).cars(k).bottom;
 car_indices = find(~lane(j).tracked_line(tracked_offset :

end));

 if (car_indices)
 cars(cars_index).id = lane(j).cars(k).id;
 cars(cars_index).bottom = tracked_offset +

car_indices(1) - 1;

 road_coords = ScreenToRoad(TM, [lane(j).line(:,

cars(cars_index).bottom) lane(j).line(:, lane(j).cars(k).bottom)]);
 road_distance = road_coords(:, 1) - road_coords(:,

2);
 road_distance = sqrt(sum(road_distance .*

road_distance));

 speed = road_distance * camera_fps / 3280.84 * 3600;
 cars(cars_index).speed = [speed

lane(j).cars(k).speed];

53

 set(text(lane(j).line(1, cars(cars_index).bottom),

lane(j).line(2, cars(cars_index).bottom), sprintf('(%d)',

cars(cars_index).id)), 'Color', [1 0 0], 'HorizontalAlignment',

'center');
 set(text(lane(j).line(1, cars(cars_index).bottom),

lane(j).line(2, cars(cars_index).bottom) + 18, sprintf('%.0f KPH',

mean(cars(cars_index).speed))), 'Color', [0 1 0], 'HorizontalAlignment',

'center');
 cars_index = cars_index + 1;
 else
% disp('Car disappeared');
 lane(j).flow = lane(j).flow +

mean(lane(j).cars(k).speed);
 lane(j).done_cars = lane(j).done_cars + 1;
 update_stats = true;
 end
 end
 end

 lane(j).cars = cars;
 end

 if update_stats
 for j = 1 : num_lanes,
 if lane(j).done_cars > 0
 set(lane(j).text, 'String', {sprintf('%d cars',

lane(j).done_cars), '', sprintf('%.1f', lane(j).flow /

lane(j).done_cars), 'KPH'});
 end
 end
 end

 pause(delay);
end

Function Calls

bgimage = BackgroundDetect('data', 0, 1000, 10, .1, true, true);

world_quad_width=15;

world_quad_height=40;

[TM, lane_x, lane_start, lane_end] = CalibrateFunction(bgimage, 15, 40);

TrackCars('ready3', 0, 1000, bgimage, 10, 15, .001, 20, 0, lane_x,

lane_start, lane_end, TM)

54

APPENDIX B

BEAGLEBONE WEBSITE

55

56

APPENDIX C

TIMELINE

57

Timeline

Task

Start
Date

End
Date

Description Duration (Days)

20-Mar 25-Mar Project Synopsis 5

25-Mar 13-May Proposal Defense 49

13-May 5-Jul Background Study 53

5-Jul 16-Aug Algorithm and Approach 42

16-Aug 15-Oct First Interim Report 30

15-Oct 27-Oct Testing of Algorithm 14

27-Oct 17-Nov Testing and Simulations 21

17-Nov 8-Dec Hardware Design 21

8-Dec 29-Dec Second Interim Report 21

29-Dec 31-Jan Hardware Design Complete 28

31-Jan 22-Feb Implementation 21

22-Feb 15-Mar Debugging 21

02-Mar 21-Apr 10-Jun 30-Jul 18-Sep 07-Nov 27-Dec 15-Feb 06-Apr

Project Synopsis

Proposal Defence

Background Study

Algorithm and Approach

First Interim Report

Testing of Algorithm

Testing and Simulations

Hardware Design

Second Interim Report

Hardware Design Complete

Implementation

Debugging

58

APPENDIX D

COST BREAKDOWN

59

Cost Breakdown

Items Cost

Beagle-bone Black 10000

Logitech B525 5000

HDMI cable 800

Printouts 4000

USB Hub 500

USB Extension 500

Miscellaneous 5000

Total 25800

60

APPENDIX E

LETTER OF APPRECIATION FROM MOTORWAY POLICE

61

