Biometric Caller Identification

By
CSUO Usman Saeed
GC Shan Ul Hassan
GC Abeer Ansari

FC Muhammad Ramadan

Submitted to the Faculty of Department of Electrical Engineering,
Military College of Signals, National University of Sciences and
Technology, Islamabad in partial fulfillment for the requirements of a
B.E Degree in Telecom Engineering
May 2015

Abstract

This project is aimed at developing a voice based caller identification system, which
will identify the caller from a GSM call on the smart phone using a GSM Module and
the VR module interfaced with Arduino UNO.

The incoming call will be received by the GSM module interfaced with Arduino
module. The cal is then transferred to the speaker. A mic is installed near the speaker
which takes the voice speech as the input to the VR module. The input voice is recorded
in the VR module. When the same caller will call again his voice signal is then
compared with the previous call data and the result is shown as the positive result. If
someone will call the system whose voice is not saved in the data base, the system will
tell as an unidentified user.

This project will be useful in identifying the prank calls. Further improvements in the
future can be made for accessing individual’s bio data with NADRA cooperation. Bank
transactions can be made more secure with the help of voice identification. Another
advantage of this project is that spontaneous conversation systems which are able to
both recognize the spoken material accurately and understand the meaning of the
spoken material. Such systems, which are currently beyond the limits of the existing
technology, will enable new services such as ‘Conversation Summarization’, and
ultimately even language translation services between any pair of existing languages.
Moreover a new generation of voice-enabled service offerings emerging including
intelligent agents, customer care wizards, and Call Centre automated attendants,
unconstrained dictation capability, and finally unconstrained language translation
capability can be employed using this project.

It is hereby certified that the contents and form of the project report entitled “Biometric
Caller Identification”, submitted by the syndicate of

1. CSUO Usman Saeed
2. GC Shan Ul Hassan
3. GC Abeer Ansari
4,

FC Muhammad Ramadan

have been found satisfactory as per the requirement of the B.E. Degree in Electrical
(Telecom) Engineering.

Supervisor:
Lt Col Dr. Tayyab ALI

MCS, NUST

DECLARATION

We hereby declare that no content of work presented in this thesis has been submitted
in support of another award of qualification or degree either in this institution or

anywhere else.

ACKNOWLEDGEMENT

Nothing happens without the will of Allah Almighty. We thank Allah Almighty for
giving us knowledge and strength to accomplish this task successfully.

We would like to thank our project supervisor, Lt Col Dr. Tayyab Ali, without his
support and encouragement; it would not have been possible to complete this project.

We would also like to thank and our colleagues for helping in developing the project
and people who have willingly helped us with their abilities.

Last but not least, we are very thankful to our parents, who bore with us in times of
difficulty and hardship. Without their consistent support and encouragement we could
not have accomplished our targets successfully.

10

DEDICATED TO

Almighty Allah,
Faculty for their help

And our parents for their support

11

Table of Contents

Contents
List of ADDreviations: ... 14
LISt OF FIQUIES ..ot 15
I O T T o =T il OSSR 16
00 A 1 8 o [¥ od o] [EH SRR PRTRRR 16
111 BaCKGroUNd ..o 16
1.1.2 Problem StateMeNT..........ccooviiiiii i e 16
1.2 Project DESCHIPTION........ccooiiiiiiiiesiesii et 16
1.3 Prospective APPHCAtiON ArCa.........coviiiiieiiieie e 16
1.4 Scope, Objectives, Deliverables and Specifications:c.ccccoecevveieinennn, 17
1.4.1 Scope and ODJECHIVE: ...ccovci e e 17
1.4.2 DelIVEFADIES: ..ot 18
1.4.3 SPECITICALIONS:oitiiie e be e es 18
I 0 T R AN o 11T [0 I] SR 18
1432 GSM KIT..oiiiiiiiiiiieees sttt 19
1.43.3 Voice Recognition MOAUIE...........ccoviiiiiiiiii s 20
1434 SPEAKELS.....ccui ettt sttt be e r e re et ares 21
L1435 MGttt et e be e teesteearae s 22
R T I O I £ T PP P USRI 22
L4377 AMPLTIEE oo st re e 23
2. CAPLEr 2. s 24
2.1 LIterature REVIBW:oc.eiiieie ettt nne e ee e nneas 24
2.1.1 Overview oOf existing [Ierature: ... 24
2.2 Problem FOrmulation:cooviioiiie e 25
2.3 Background STUAY:coooiiiiiiicce e 26
3. CNAPLEN 3. s 28
3.1 Detailed DESION:cciieciie ettt 28
3.1.1 Text dependent Speaker Identification SyStem...........cccocoiviviiiniiiin i 28
3.1.2 Text-Independent Speaker Identification System:cccccvvvevviviie v seneens 28
Bi2 DBSION ..ottt bbb bbbt 29

12

3.3 AIGOTTEAM L. e 31

3.3.1.SigNal Pre — ProOCESSING: . .c.veieiiiiiiesieitesieiee et 31
B.3.2 THUNCALION: ...ttt 31
3.3.3 Frame BIOCKING:ccvoiieiieeee e 32
KT R VAT s o (oL o USRS 32
3.3.5 FeatUre EXEIraCtiON:........coviiiiiiiiiiiiie st 32
3.3.6 Cepstral COfFICIENTS:coviiiiiiier e 32
3.3.7 Mel-Frequency WIrapPing:.......cccooeeieeieiieeieieseese st se e e e sre e aesne s 33
338 IMOTEIIING: ... 33
3.3.9 VeCtor QUANTIZATION: ...c.eecveiieecie ettt ettt be e sbe e sbe e sre e e e saaesnras 34
O g -1 o] (= g SRRSO 35
4.1 Project Simulation and ReSUITS ...t 35
411 SIMUIBTION ...ttt 35
1. CRAPLer 5. s 39
5.1 Recommendations for future WorkK...........ccocooeiiiieiiniieceeeee, 39
5.1.1 Lack Of POrtability:......cccoeiiiiiiiiiiie e 39
5.1.2 LOW SENSITIVITY: ..ooviciiiie ittt st be e sresteeaenne s 39
5.1.3 Simple words instead Of SENTENCES:.........ccoeveiiiiireree e 40
5.1.4 TIME DUFATION:viiiiiiiiteieciste ettt 40
5.1.5 GSM COVEIaAgE NECESSAIY . .cveiieereerreeresreeseesresseessesreeresre e sresreesnesresseesresseesnesneas 40
5.1.6 ONly fOr SMart PRONES: ..ot et 40
5.1.7 ENVIFONMENT: Looiiiiiiee et 40
OO g F=1 0 (=T G ISR 41
6.1 CONCIUSION ...ttt bbb 41
O 4 =1 =T USSR 42
7.1 Demonstration OULHNE ..o 42
8. RETEIENCES.....ceiiiiiiiicee e 44
9. APPENAIX A ...ttt 45
10. APPENAIX Bt 47
N o] o T o | G SR R 51
12, APPENAIX Dt 113

13

List of Abbreviations:

VR MODULE
GSM KIT

GMM
PIN
NADRA

LCDs
HI-FI

NUST

DSP
IEEE

MFCC
FSK
DCT

DTW

VOICE RECOGNITION MODULE

GLOBAL SYSTEM FOR MOBILE COMMUNICATION
MODULE

GAUSSIAN MIXTURE MODEL

PERSONAL IDENTIFICATION NUMBER

NATIONAL DATABASE AND REGISTRATION
AUTHORITY

LIQUID CRYSTAL DISPLAY

HIGH FIEDALITY

NATIONAL UNIVERSITY OF SCIENCES AND
TECHNOLOGY

DIGITAL SIGNAL PROCESSING

INSTITUTE OF ELECTRICAL AND ELECTRONICS
ENGINEERS

MEL — FREQUENCY CEPTRUM COEFFICIENT
FREQUENCY SHIFT KEYING

DISCRETE COSINE TRANSFORM

DYNAMIC TIME DISTORTION

14

List of Figures

FIUIE L L. ceiniiniiiiiiiiieiieeeieeeeeeeereeenceecasencnsnsassesansnssssasansnsammamsssssssnsnsnnsnsanns 8
FIUNE L 2. teiiiiniiiieiiiinieiiaieiiaterssesssontssonsosonsssssonsssonsnnmemmmmemnsensememeesessensesseeseees 9
T 0 0 10
FIUIE LA riniiniiiiiiiiiiiiteeieeeeeeeeeneeteesesansesascnsnssasssnsnsansesansnsansesansnssesnnnes 11
FIUIE LD criiiiiiiiiiiiieiieetinteereerencnteesesencnsnsansasansssessasansnsssansessnsensnsansnsnns 12
FIUIE LB tuiiiiniiiiniiininiiaieiiatesesersasntsssnsssonssssnsessnssssssessssssssonsssonsssssonssnsnss 12
FIUIE 2. L. ceiiiiiiiiiiiitiieteeiaeeeeeeeaaeneeesesansesesensnssasassnsnsensesansnsansesansnsnnnnsans 14
I UIE 2. 2. ceiiiniiiieiiiiteieteeeteeeeeeeneeeaensnenmnitiate it aeeteatesteesrestestesseestestesresteentesreas 14
FIUNE 3. L. teiiiiniiiieiiiinieiietetintesesessnsetsssnssssnsstssssssnssssssessnsssssonssssnssssssnssnsnse 19
T T 0 19
FUIE 3.3: ceiiiiiiiiiiiiiieiieteteneeeeeensencnceesasoncnsnsansesansnsessasansnsnsensassnsnsnnsnsannne 20
T8 0 T 21
T S 25
I UIE 4. 2. ceiiiiiiiiiiiieiieeeeeteeeeeneenenceeeasencncsassnsencnsessasassnsnsensassnsnsnssnsnnnne 25
0[] = B SRS TPTPRROSN 26
FIQUIE 447 o eieininiiiiiiiiiieiiiiiiitiiiieiatatatutttttetessasasasesstssssssssssasasnsssasnssssnns 26
FIUIE 4.5 eiiiiiiiiiiiiiietieeteeeeeeenteacaeeesncancncsassnsencnsessasessnsnsensssnsnsnssnsannns 27
T 18 G 27
FIQUIE 4.7 ettt ittt ttetaeassatasesnsssosmeniiitite ettt sttt ebe et nneeenes 28
FIUIE 4.8 ceineiniiiiiiiiitiieeeeeaeeeeeeneencaeeesasencncsansnsanceseasasansnsnsensassnsnsnnsnsansnns 28
FIUEE 7. L. ceiiiiiiiiiiiiteieeeeenteeeeenceacceeensancncnsessasencnsessnsessnsnsensssnsnsnssnsannne 32
T 1 33
T 18 0 33
FIQUIE 7,47 ettt ittt ettt etecasasasatatsesssesssasasasasasnsnsnsns 33

15

Chapter 1

1.1 Introduction:

1.1.1 Background

Speaker Identification is the process of automatically recognizing who is speaking on
the basis of individual information included in speech waves. This technique makes it
possible to use the speaker's voice to verify their identity and control access to services
such as caller identification, voice dialing, banking by telephone, telephone shopping,
database access services, information services, voice mail, security control for

confidential information areas and remote access to computers.

1.1.2 Problem Statement

“Preliminary Design and Prototype Development of Biometric Caller Identification of

callers for the user using the system.”

1.2 Project Description

Previous implementations of this project were on the basis of voice recognition on the
microcontrollers. We have implemented the project on Arduino kits. One Arduino kit
is attached with the GSM kit. The GSM kit acts as the mobile phone in which we have
to identify the callers. As any caller calls to the sim inserted in the GSM kit, the Arduino
kit enables us to attend the call. A speaker is attached with the Arduino kit to amplify
the voice of the caller. The other Arduino is attached with the Voice Recognition
Module v3. The VR module records the incoming call, tests with the sample voice with
its previous database and on that is provides the results. The results are displayed on

the screen attached with the Arduino Kit.

1.3 Prospective Application Area

16

Users have to speak a PIN (Personal Identification Number) in order to gain
access to the laboratory door.

Users have to speak their credit card number over the telephone line to verify
their identity.

The project can be used wherever the Biometric Identification of person is
required.

The presence of an individual is not necessary, only the voice of a person from
the mobile can work.

On the National level, with the cooperation of NADRA this project can be used
to identify the individuals.

1.4 Scope, Objectives, Deliverables and Specifications:

1.4.1 Scope and Objective:

The basic scope of the project is to achieve the following objectives:

S A

Understanding and designing of the caller identification
Simulation of various blocks in different software
Implementation with help of arduino module
Interfacing different blocks efficiently

Text-Independent Speaker Identification

Following are the goals of the project:

1.

o gk~ w N

Maximizing the security level

Using human voice as a biometric tool

Eliminating the presence of human for the identification at a curtain spot
Innovative product

Power efficient

Efficient identification under different environmental conditions

17

1.4.2 Deliverables:

Arduino Kits

GSM kit

Voice Recognition Module
Speakers

Mic

LCDs

Amplifier

N o a s w b oE

1.4.3 Specifications:

1.4.3.1 Arduino Kits:

We are using two Arduino Kits for this project. The first Arduino kit is interfaced with
the GSM kit to attend and listen to the caller. It also amplifies the voice of the caller via
speakers provided on its output pins. It also displays the number of the caller in the first
LCD interfaced with it. The job of second Arduino is to manage the VR module. The
result from the VR module is provided to the second Arduino which displays the result
on the second LCD.

Figure 1.1: The Arduino Uno top view

18

1.4.3.1.1 Technical Specifications:

Microcontroller
Operating Voltage

Input Voltage
(recommended)

Input VVoltage (limits)
Digital 1/0 Pins
Analog Input Pins

DC Current per 1/0O Pin
DC Current for 3.3V
Pin

Flash Memory

ATmega328
5V
7-12V

6-20V

14 (of which 6 provide PWM output)
6

40 Ma

50 mA

32 KB (ATmega328) of which 0.5 KB
used by boot loader

SRAM 2 KB (ATmega328)
EEPROM 1 KB (ATmega328)
Clock Speed 16 MHz
Length 68.6 mm
Width 53.4 mm
Weight 25

1.4.3.2 GSM kit:

As it has been mentioned earlier, we are not using a proper mobile handset for our
project. Instead we are using GSM kit compatible with the Arduino kit. The GSM kit
provides the same purpose of mobile phone. The GSM is interfaced with the Arduino
kit and a sim card is inserted in the GSM kit. When we call the number from our mobile
phone, the GSM kit gives the signal to Arduino kit, and hence we can attend the call.

Figure 1.2: The GSM kit top view

1.4.3.2.1 Technical Specifications:

19

1. Requires an Arduino kit
2. Operating voltage 5v
3. Uses radio modem M10 by Quectel

1.4.3.3 Voice Recognition Module:

The voice recognition module is used to identify the voice of the caller. In this module
we have used the Text Independent algorithms to serve our purpose better. First we
have to train our VR module to save the voices as the database. Once the voices are
saved in the VR module, it can be used as the tool to identify the voices. The VR can
have 80 commands in its storage which is the only limitation in our project. The purpose
of using this module is that it’s the best available module specifically designed for the
voice identification. If we implement the same algorithms and techniques on any other
module we may not get as good results as we are getting here. A mic is also attached

with the VR module to provide it the necessary voice signals as the input.

Figure 1.3: The Voice Recognition Module top view

20

1.4.3.3.1 Technical Specifications:
1. Requires an Arduino kit

2. Voltage: 4.5-5.5V
3. Current: <40mA
4. Analog Interface: 3.5mm mono-channel microphone connector + microphone

pin interface

o

Size: 31mm x 50mm

6. Recognition accuracy: 99% (under ideal environment)

1.4.3.4 Speakers:

We are using speakers to listen the voice of the caller via GSM kit. The output of the
first Arduino kit gives signals to the amplifier and the amplified signal comes to the
speaker. The speaker also serves the purpose of giving input to the mic attached with
the VR Module.

Figure 1.4: The Speaker

21

1.4.3.5 Mic:

A mic is attached with the VR module to give the input to VR. It takes the input for

itself from the speaker placed in the system near it to provide a hi-fi sound to the VR

module.

Figure 1.5: The Mic

1.4.3.6 LCDs:

Two LCDs are used for the project. One shows the incoming call status. It shows the
mobile phone number with which a user is calling. This LCD is attached with the first
Arduino kit. The second LCD shows the name of the caller once it is verified. This LCD
is attached with the other Arduino Kkit.

|

>~
s

- g
2 5
CA: -
S =
z
=
z

Figure 1.6: The LCD

22

1.4.3.7 Amplifier:

The main purpose of amplifier is to amplify the voice signals before transmitting it to
the speaker. The amplifier is also attached with the first Arduino kit and get a seperate

power supply from the source.

23

Chapter 2

2.1 Literature Review:

2.1.1 Overview of existing literature:

To identify the caller biometrically, there are two main phases, the Training phase and
the Testing phase. The training phase include the training of the system. To train the
system, first we have to call and record our voice as the screen shows the message
‘Talking’. The speaker is supposed to speaker for some time. Once the voice is
processed and recorded successfully stored in the system, we can proceed for the other

phase of the system i.e. the testing phase.

In the testing phase we can test and identify the same person. When the same person
call the voice is processed and is compared with the data base already stored in the
system. If the same speaker call, whose voice has already been stored in the system, the

result is shown positive else negative.

Speech data
from a given ——|
speaker

Speech parameterization Speech parameters | staristical modeling Speaker
module module model

Figure 2.1: The testing phase of the project

Speech data _ . Soeech parameters
from an unknown Speech parameterization | Speech parameters
speaker module
Scoring Accept
normalization [———> 0OF
decision reject
Speaker Background
Claimed model model
identity Statistical models

Figure 2.2: The Testing Phase of the project

24

There are different methods to identify the caller. The two main basic principles are:

1. Text— Dependent Identification system
2. Text— Independent Identification system

As we are using Text — Independent identification system. There are many algorithm
and techniques available for the systems implementation. The basic components which

are used for the required purpose are:

Speech Parameterization
Statistical Modeling
Normalization

Evaluation

o > W N e

Extensions of speaker verification

There are many techniques which can be used for the above mentioned processes. The
main parts are Speech Parameterization, Statistical Modeling and Normalization

because they are used in both the phases of the system.

2.2 Problem Formulation:

Now a days in times of eminent threat of terrorism, the need for rapidly and successfully
identifying the caller is very important. Therefore alongside conventional systems of
thumb impression, eye retina detection, using human voice as biometric tool for
identifying the caller is also considered important. The use of this system will ensure
rapid response and make the verification of the caller more efficient. Such a speaker

identification system has potential in many security applications.

We can see that most of the existing implementations make use of the Independent
Component Analysis techniques. However we are using the project mainly for smart
phone users. As the voice recording is sent to the VR module, using different algorithms
and methods the recording is verified and the result is sent to Arduino Kit. The result is

displayed on the screen. The GSM kit over here is used as a mobile phone. It is

25

interfaced with the Arduino kit which enables the GSM kit to attend the call and keep
the record of calls. The Arduino kit also displays the caller number on the screen. It
also amplifies the voice of the caller using the speaker. The voice from the speaker is
received by the mic which transmits the voice signal to Voice Recording Module. The
VR module receives the voice as sample and tests it with the previous data stored in it.
The VR module compares the characteristics of the voice and if the voice matches with
any of its previous data it transfers the result to the second Arduino Kit. The second
Arduino kit here is responsible for managing the VR module as well as the LCD display
of the result. When the voice is matched the caller identity is displayed on the LCD.

The caller name is shown on the LCD which confirms the identity of the caller.

2.3 Background Study:

This project was not done in Military College of Signals, NUST before. However a few
projects on the same were done earlier with entirely different techniques. One project
of NED Karachi was done but that was all software based. No hardware implementation
was done before. The voices are stored on the device where the software is installed
and the text dependent mechanism is adapted to trace the caller. However we found
ample amount of research papers on this topics from the other foreign universities.

In Chinese University of Hong Kong, some work has been done, submitted by YUAN
MENG for the degree of Master of Philosophy in Electronic Engineering. It describes
the exploitation of state of art automatic speech recognition for DSP based embedded
applications. Implementation of speech recognition algorithms generally involves a lot
of floating point arithmetic operations and manipulation of complex functions which
are not desirable for low cost DSP hardware which is one reason for its limitation.

IEEE research paper was published under title of ‘Suppression of acoustic noise in
speech using spectral subtraction’. This paper presents some advanced facilities and
services related to the use of everyday telephones. It is based on potential use of 8- bit
microcontroller. The decoding circuit has been designed for decoding the FSK modem
tone with the limitation that it uses a separate call data circuit. In Nirma University,
Ahmedabad India a project has been done using Matlab. In this project UG students

have used the MFCC and Vector Quantization Model for the speaker recognition.

26

The MFCC and Vector Quantization techniques are the most latest and the most
efficient techniques used for the caller identification. MFCC technique is used for the
Feature Extraction of the speech signal. And Vector Quantization is used for the
normalization of the speech signal. It is one the challenging step towards the topic due

to the multi-dimensional integration.

27

Chapter 3

3.1 Detailed Design:

The project consists of different modules that must be implemented individually and
then these modules must be interfaced together in order to achieve a complete and

integrated unit that identifies the caller.

The project design can be achieved via two different ways.

1. Text— Dependent Identification system
2. Text— Independent Identification system

3.1.1 Text dependent Speaker Identification System:

Text-dependent speaker recognition seeks to associate an unknown speaker with a
member from a registered population, given a textual transcription of the phrases
uttered by the speaker. Typically, speaker-dependent word or sub-word models are built
for each speaker. Given a labeled utterance from an unknown speaker, the system
makes its speakers recognition decision based on the likelihood scores of the

appropriate speaker-dependent models.

3.1.2 Text-Independent Speaker Identification System:

Its task is to identify the person who speaks regardless of what is saying. At the highest
level, all speaker recognition systems contain two main modules feature
extraction and feature matching. ‘Feature extraction’ is the process that extracts a small
amount of data from the voice signal that can later be used to represent each
speaker. ‘Feature matching’ involves the actual procedure to identify the unknown
speaker by comparing extracted features from his/her voice input with the ones from a

set of known speakers.

28

Figure 3.1: The Basic Techniques of Caller Identification System

3.2 Design

We approached the project by first designing the project in the Matlab software. A
simulation of this project was implemented and was working successfully. The logics
and algorithms we used in this simulations were further used in the hardware

implementations.

The basic design of our project is shown in the figure below:

l liGinz 46 the g Call controlled by > Call amplified and
3 8 Arduino, amplified can be heard via
inssrted ihcan d displ. d thi speakers
hieid an splayed on the P!
screen

Figure 3.2: Block Diagram of the first part of the project. Received call via GSM kit
interfaced with Arduino kit, the call info displayed on LCD and the voice of caller

amplified on the speaker

29

The result from VR is
The voice is VR Module checks the received on Arduino

transmitted to mic sample voice with the voice and it displays on LCD
attached with VR data stored earlier and
Module v3 deduces the result

Figure 3.3: Block Diagram of the second part of the project. Mic receives the voice
from speaker and gives input to the VR module, interfaced with Arduino kit. The

compared result is shown on LCD via same Arduino kit

In the above mentioned Figure 3.2, the first part of the process is shown. When the
caller calls on the system, GSM Kit receives the call. GSM kit is interfaced with Arduino
kit. As the call comes in, the Arduino kit displays the caller name on the LCD. When
we attend the call, the voice signal is amplified on the speaker attached to the same
Arduino. In the figure 3.3, the mic receives the audio signals from the speaker. The mic
in interfaced with the VR Module which basically processes the voice identification
system. The VR module compares the sample voice with the previously present voice
data. If the sample voice matches with any previous data it informs the Arduino with
the result. The Arduino displays the result with the second LCD.

30

3.3 Algorithm

Signal
Preprocessing

Input Voice

: Short- time
Truncation .
spectral Analysis

Windowing Frame Blocking

Feature
extraction

Cepstral
Coefficients

Mel- Frequency
Wraping

Pattern Matching Modelling

Vector
Quantization

Figure 3.4: Basic algorithm of VVoice Recognition System

In the above mentioned figure, the algorithm of our voice recognition system is
explained. When the voice of caller is taken as an input to the VR module the many
processes takes place. All the process above mentioned in the figure are discussed

below.

3.3.1 Signal Pre — Processing:

Before extricating elements of different undertakings before the sign handling must be
performed. Discourse flag needs to experience different sign molding strides before
being subjected to highlight extraction systems.

3.3.2 Truncation:

Taking default recurrence tests wavread summon is 44100 Hz. At the point when
recording a voice clasp, say for 2 seconds, the subsequent number of tests will be around
90,000 and that is a lot to handle. Thus we can flag truncated by determining a certain
edge esteem.

31

3.3.3 Frame blocking:

In this stride is part into consistent discourse sign examples N edges, outlines with
neighboring isolating them with tests M is not as much as that of the first edge N. worth
comprises of the first N tests. The second casing starts M tests after the first edge, and
the obstruction by N - M tests et cetera. This procedure proceeds until it is checking all
the discussion of the utilization of one or more casings. We have picked the estimations
of M and N to be N = 256 and M = 128 separately.

3.3.4 Windowing:

The following step is a window for every casing independently to lessen the sign
intrusions toward the starting and end of every edge. The idea connected here is to
lessen otherworldly bending by utilizing the window sign to decrease to zero toward
the starting and end of every casing. On the off chance that we discover that the

structure as w (n), 0 < n < N —1, where N is the length of the edge, the outcome is a sign
from the windows

y(n) =x(n)w(n),0<n<N-1.

We have used the Hamming window in our project.

3.3.5 Feature Extraction:

Highlight extraction is the fundamental piece of the task. To focus the voice highlight
extraction is utilized. Extraction is important to prepare and in addition the testing stage
highlight.

3.3.6 Cepstral Coefficients:

Before sign preparing diminishes the computational unpredictability while taking a shot
at discourse signal. We decrease the quantity of tests of the procedure. As opposed to
taking a shot at an extensive variety of tests to bind our operations under the sufficiently
low along. After the discourse sign molding after the preparade the following step is to

32

concentrate the components of the preparation signal. We have profited from the 2
routes for himself. The primary strategy is to figure Cepstral coefficients of signs
utilizing the DCT (discrete cosine change). Cepstral coefficients are figured utilizing
the accompanying recipe:

CEPS =DCT (log (ABS (FFT (ywindowed)))

3.3.7 Mel-Frequency Wrapping:

Human view of the recurrence substance of the hints of discourse signs does not take
after a straight scale. Per tone and with the genuine recurrence, the pitch is an individual
measure on the scale and the purported "mi" scale. Gives a measure of the recurrence
mile straight recurrence dispersing of under 1 kHz separating and logarithmic higher
than 1 KHz. As a result of the recurrence size of a mile some time recently:

Fmel = (1000 / log (2)) * log (1+ and / 1000)

One way to deal with recreate the range is the utilization of an individual bank, which
competitor separated consistently on a scale miles. Bank hopeful has a triangular band
pass recurrence reaction. A persistent inclination is resolved separating and data
transmission by time interim. We pick K, and the quantity of miles range exchanges to
be 20. This channel bank being connected in the field of recurrence adds up to only a
Windows application shape a pleasant triangle. .

3.3.8 Modelling:

Utilizing Cepstral and MFCC coefficients, talking segment can speak to an arrangement
of highlight vectors. A man express the same word yet in an alternate time have a
comparable still distinctive component vector succession. The motivation behind
demonstrating voice lies in building a model that can catch these distinctions in an
arrangement of extricated elements of a specific head. There are normally two sorts of
models that are utilized on an expansive scale as a part of the distinguishing proof of
amplifier frameworks:

1. Stochastic models

2. Template models

33

Stochastic model adventures exploit the likelihood hypothesis by managing discourse
creation handle as a procedure of arbitrary outskirt. It expect that the parameters of the
hidden stochastic procedure can be evaluated exactly, obvious way. Layout model (non-
parametric technique) is attempting to produce a model for discourse generation
procedure of a specific client in a non-parametric. It does as such by utilizing numerous
vectors extricated from the discourse highlight of the same word grouping by the same
individual. The format utilized models to control the work in the early acknowledgment
of the speaker in light of the fact that it meets expectations with no suspicion about how
they are shaping a component vector. Subsequently format model is naturally more
sensible. Nonetheless, late research in stochastic models has uncovered her to be more
adaptable, considering the era of the best models of the procedure to recognize the
speaker. Cutting edge in highlight coordinating procedures used to recognize the
speaker incorporates element time mutilation (DTW), Gaussian blend displaying
(GMM), and vector quantization (VQ).

3.3.9 Vector Quantization:

Vector quantization (VQ short) includes taking a vast gathering of tankers procedure
normal for a specific client and the creation highlights a littler gathering of highlight
vectors that speak to centroids dispersion, any focuses separated in order to decrease
the normal separation to each other point. Vector quantization is utilized in light of the
fact that it would be excessively unreasonable, making it impossible to speak to every
one element vectors in highlight space that we are conceived of discourse speaker
preparing meeting. While the VQ calculation does not take eventually to produce
centroids, it spares a great deal of time amid the test stage and we simply look a couple
highlight vectors rather than limit space normal for a specific client characteristics. So
is the monetary trade off we can live with him. A vector amounts vectors k-dimensional
maps in space tankers "R" to a constrained arrangement of vectors

Y={Yi:i=1,2,...N}.

Here k measurement alludes to any component of all exchanges in the element vectors.
Furthermore, it called all tankers Yi vector code or a term and an arrangement of all
code words called codebook. Also, in this way a specific number of clients, is made
books are accessible to every speaker amid the preparation utilizing the VQ stage. Per
the expressions "Yi", and there closest neighbor related range called the locale VVoronoi,
it was characterized by the

Vi={X8 Rk I x=yvill L1l x=vyill, forallj;f:i}

34

Chapter 4

4.1 Project Simulation and Results

All the results and simulations related to the Caller identification have been
demonstrated below.

4.1.1 Simulation

Basic Technigues implemented in Matlab Simulation Code

Speech Spectral Cepstral

signal Pre- Vectors | Cepstral | Vectors

— - 2 Windowing [—>| FFT [—>{ | | > Filterbank —|20* Log —
emphasis transform

Figure 4.1: Basic Techniques in Matlab code

Main Interface of Simulation

SPEAKER RECOGNITION SYSTEM

Load a new sound file from disk
FPlay a sound file from disk
Display a sound wavefarm from disk
Display a sound waveform from database
Display all sound waveforms in datahase at the same time
Speaker recognition
Display sound power spectrum
Display sound with and without windowing
Sound database information
Delete sound database

Euxit

Figure 4.2: Main Interface of the Matlab Code

35

Sample Voices for the Testing and Training of the Simulation

d\ Select a new sound file o T | S
Look in: | | test j = £ E-
e Mame . # Title Contributing art
e
sl
Recent Places wav
s wav
! e s3owav
Diesktop o s owaw
— wF showav
=] o showaw
Libraries sl owav
5 L e sBowav
b —
Computer
Y
Metwark

4 T

I
File name: | ﬂ Open |

Files of type: | (" wav) ﬂ

Cancel

Figure 4.3: Sample voices for the testing and training of the simulation

Image of Recorded Signal

0.8~

0.6~

0.4~

Amplitude

-0.2+

-0.6

_0.8 r r r r r
0 0.2 0.4 0.6 0.8 1 1.2

Time(secs)

Figure 4.4: Recorded Signal on VR Module

1.4

36

Samples collected from the Recorded Signal

Amplitude

51 wav

i
o] [}
[I R |

Amplitude

=
P2

.1
Time(secs)

53 wav

=

—>—

i
—

.1
Time(secs)

L]

Amplitude

Time(secs)

Figure 4.5: Sampled voices from the Recorded signals

.m File: Main file of Matlab Simulation Code

Editor - EASTUDY STUFR\FYP\projct\mini_dsp_projectymain.m

File Edit Text Go Cell Tools Debug Desktop Window Help N A X
DNEH| sRR2C |- AdAanfi B -BX-BRE B | sekces: | BOEI O
BB -0 [+ | 21 |x |80
1 % main -—% ~ =
2
3 Fomm = training--——-———-———-—- %
4 — [v Fe]=wavread('tr sl.wav');
3= train vecl=feature_extract(y,Fs):
6 - [v Fs]l=wavread('train/=s2.wav'):
7= train vec2=feature_extract(y,Fs):
B — [v Fe]l=wavread('train/s3.wav');
9 — train vec3=feature_extract(y,Fs):
I = [v Fs]=wavread('train/s4.wav');
ali b= train_vec4=feature_ extract(y,Fs):;
12 — [v Fs]=wavread('train/sS.wav');
izl= train vec5=feature_extract(y,Fs):
14 = [v Fel=wavread('train/=s6.wav'):
Al train vecé=feature_extract(y,Fs):
16 — [v Fs]l=wavread('train/s7.wav');
17 |= train vec7=feature_extract(y,Fs):
|18 — [v Fs]l=wavread('train/s8.wav');
150 train_vec8=feature_extract(y,Fs); o
main.m % | feature_extractm %
script Ln 11 Col 34 |OVR

Figure 4.6: .m File of Matlab Simulation Code

37

.m File: Feature Extraction file of Matlab Simulation Code:

Editor - ENSTUDY STUFR\FYP\projct\mini_dsp_project\feature_extractm -

File Edit Text Go Cell Tools Debug Desktop Window Help

=

L]

A X

NEH|$BRIC (LD -Aedr|[B-2R0BRE BB |5k v| s BOEFO

BB -0 [+ | =11 x|k | @

1 |% ——————————— framing---——————-—- % A g
2 function [feature_vec]= feature_ extract (v, Fs)
3 %[y Fs]l=wavread('sl.wav');
&= [v_size c]= size(y):
5
6 — sample_size=Fs*0.025;
= sample size=round (sample size);
8- y_size=round(y_size);
= sa.mples=y_sizefsa.mp1e_size:
10
11 = prev=0;
33 = curr=0;
13 = sig_samp=zeros (samples, sample_size);
14 — £=1:
15 = for i=l:samples
16 — if (i»1)
17 |[= f=prewv+125;
18 - curr=f;
al e end o
main.m % || feature_extract.m =
feature_extract Ln 1 Col 1 OVR

Figure 4.7: .m file of Feature Extraction in Matlab Simulation Code

Code of Arduino UNO on Arduino Software

' vr_sample_train | Arduino 1.6.4 - o MAT

2 File Edit Sketch To-l- Ll=i=

: sketch_may19c | Arduino 1.6.4 = =
= wr_sample_tra

File Edit Sketch Tools Help

GSM | Arduino 1.6.4 = =
File Edit Sketch Tools Help

1 -
wr | Arduino 1.6.4 - B
1 File Edit Sketch Tools Help

we pins

#include <TimerOne.h>
#include <SoftwareSerial.h>
1 #include "VoiceRecognitionVi.h"™

10 an CORA

Figure 4.8: Code of Arduino UNO Hardware on Arduino software

38

Chapter 5

5.1 Recommendations for future work

This project has not been performed in Military College of Signals before. It was the
first of its own kind. Therefore many difficulties were faced during the completion of
this project. However in the near future this project can be further be improved. The
main idea of this project was to develop a prototype of a biometric caller identification
system, which can be carried by the user anywhere he wants. As told earlier, due to
very rare practical development on this project, we were not able to make a complete
portable system. The following points will show the limitations of the project and which

can be further improved in the near future.

5.1.1 Lack of Portability:

The hardware implementation of this project does not allow the user for its free and
handy use. For further improvements the following suggestions are:

1. Interfacing of the Arduino modules with the Bluetooth headphones; this will
allow the user to identify the caller wherever he is using the phone.

2. Integration of the current model of the hardware with Zigbee module can
help to build an Identification hub. This will allow user to use the system
for multipurpose.

3. With the cooperation of NADRA; wherever the need of biometric
identification is required, voice can be used and the presence of the human
body is not required.

5.1.2 Low Sensitivity:

The VR module is very low sensitive in case of training phase. Once we are training
the module, we have to make sure that the module must collect the same voice twice to
store in its data base. We don’t have much liberty while training the module to change
our voice in a slightest way. Similarly in case of testing we have to speak in a very
similar manner so that the system may detects us. Further work and research can

overcome this problem.

39

5.1.3 Simple words instead of sentences:

One of the basic limitation is our project is we cannot train or test the module in a simple
way as we speak in our daily lives. We have faced this problem in the final stages of
our project when all the hardware was interfaced. To record our voices, we have to

speak simple words instead of a complete sentence.

5.1.4 Time Duration:

The time duration of recording is also very less. Most of the time one misses the

recording window available and user does not get the required results.

5.1.5 GSM Coverage necessary:

GSM coverage is necessary for the project to run. As the primary function of our project
is to identify the caller, we cannot use the system where the GSM coverage is not
available. However with further modifications using the ZigBee module we can switch

it to the internet as well.

5.1.6 Only for Smart Phones:

Currently our project is restricted to smart phones only. As the smart phones now
contain the feature of noise cancelation we get better quality of voice from them.

5.1.7 Environment:

The environment and surroundings of the caller matters a lot in our project. Our
project is based on human voice using a mobile phone. When a caller calls from a
noisy place it get difficult for the VR module to identify the voice of the caller
because of which we may get the required results.

40

Chapter 6

6.1 Conclusion

The biometric caller identification is a unique project as for the first time we have tried
to use human voice as a biometric tool for identification. In the current scenario of
research and development, big companies like Google, Apple and Microsoft are
working on the topic of voice. However despite this project was a success as we were
getting result accurate up to 90%. A few more improvements on the hardware
implementation can improve its efficiency and can further be used on the commercial

scale for the identification purposes.

Following objectives are being achieved:

1. Understanding and designing of the biometric caller identification system

2. Use of MFCC and VQ techniques in the voice identification

3. Development of an efficient caller identification system which can work
under a little harsh environment.

4. The system can be used, in its current form, on a commercial scale. For that
purpose memory of the VR module is needed to be enhanced.

The limitations of the project have been discussed in Chapter 5. These limitations can
be overcome by using additional module with the Arduino Kits. These redundancies are

not permanent and the system is providing its core goal i.e. identification of the caller.

The objective of portability could be achieved this time. For that purpose, the
fabrication of mobile headphones with the VR module is required and is another vast
topic to research on.

41

Chapter 7

7.1 Demonstration Outline

All the result and simulation related to the Biometric Caller Identification have been

demonstrated in the report. These are the basic outline of demonstration:

GSM kit with First Arduino kit

Speaker interfaced with First Arduino kit

First LCD interfaced with First Arduino kit

VR module interfaced with Second Arduino kit

Mic integrated with the VR module

Second LCD interfaced with Second Arduino kit

First LCD showing the status of system being ready

First LCD showing the status of call received and attended

Second LCD showing the identification of Caller
9.1 If the caller is identified the name of the caller is displayed
9.2 If the caller is unidentified, the LCS shows the status

As ‘UNID CALLER’

©oNoe R WDNRE

The final Hardware: Outside View

Figure 7.1: The Hardware of Biometric Caller Identification

42

The final Hardware: Inside View

Figure 7.2: The Hardware, Inside View

When a known Caller Calls: Name Displayed

Figure 7.3: Name Display on the LCD for the known Caller

When an Unknown Caller Calls: UNID Displayed

Figure 7.4: UNID displayed when the unknown Caller Calls

43

References

Many institutions and companies working on the satellite projects have done this type

of work. Some references of these works are as follows:

[1] ‘Speech Recognition on DSP’ by YUAN Meng in Chinese University of Hong

Kong as the Thesis for the Maters in Electronic Engineering in 2004.

[2] ‘Voice Recognition Software’ made in NED Karachi. The software was made

by the undergraduate students of NED in 2011.

[3] ‘Suppression of acoustic noise in speech using spectral subtraction’ by Boll,
S.F., 1979. IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP 27
(2), 113-120.1

[4] ‘Speaker Recognition Using MFCC and Vector Quantization Model’ by
Darshan Mandalia, Pravin Gareta for the Bachelor of Technology in Electronics &

Communication Engineering in Nirma University, Ahmedabad

[5] > Decoding speech in the presence of other sources. Speech Communication’
by Barker, J.P., Cooke, M.P., Ellis, D.P.W., 2005.

[6] ‘Auditory Scene Analysis’ by Bregman, A.S., 1990. Published by the MIT

Press.

[7] ‘A neural oscillator sound separator for missing data speech recognition’ by
Brown, G.J., Barker, J., Wang, D.L., 2001 was presented in the Proceedings of the
International Joint Conference on Neural Networks *01, pp. 2907-2912.

[8] ‘Robust automatic speech recognition with missing and unreliable acoustic
data’ by Cooke, M.P., Green, P., Josifovski, L., Vizinho, A., 2001.
[9] ‘Speaker recognition using universal background model on YOHO database’

by Alexandre Majetniak, Aalborg University, 2011.

44

Appendix A

Biometric Caller Identification

Extended Title:
« V\oice Based Caller Identification from GSM and Arduino.

Brief Description of The Project/ Thesis with Salient Specs:

¢ Incoming call will be received by the GSM shield mounted on arduino module. The
voice of caller will be amplified via amplifier and transmitted to the speaker attached.
Microphone is attached to the voice of caller with its database. As the match is found
sigal is given to arduino kit, corresponding speaker is identified and his/her
identification is displayed on lcd.

Scope of Work :

« Incoming caller's voice will be cross matched withVoice templates of 5-10 users, stored
in the voice recognition module to identify speaker. Arduino based processing is
envisioned to be implemented by a speaker/amplifier and Mic providing voice based
biometric caller identification capability

Academic Objectives :
e Learning/practical implementation of algorithms on Arduino Kit.
« Integration of arduino kit with wireless networking modules
e Learning GSM based application development
« Understanding/implementation of voice recognition tools.

Application / End Goal Objectives :

o Near real time identification of caller will be achieved through integration of GSM
and VR modules with arduino kit .Incidents of fraudulent activities and security
issues can be served using this product. The concept/product can be extended
further by integrating it with NADRA data base in future.

Previous Work Done on The Subject :
s No related project has been undertakenin the pastwithin NUST.
« Inthe CHINESE UNIVERSITY OF HONG KONG, some work has been done with the
title 'Speech Recognition on DSP’.
« Voice Recognition software made in NED.

« |EEE research paper published in March, 2005 with title ‘Caller ID: an opportunity to
teach DSP-based demodulation’.

« 'Speaker Identification and Verification' by Dan Burnett from Nuance Communication in
58" Internet Engineering Task Force meeting.

Material Resources Required :
e Arduino Kit.
e GSM Application Developing Tools.
e Speaker and Mic
« Voice recognition module

No of Students Required :
« FOUR

Special Skills Required :
« Understanding of Arduino algorithms related to speaker identification, GSM
communication protocol is required.
« Programming Skills for Adruino and hardware handling

o \\\..\A 1\

45

Approval Status:

Supervisor Name:

Supervisor Signature:

Assigned to:

HoD Signature:

Coordinator Signature:

Lt. Col. Muhammad Tayyab Ali (MCS R&D Wing)

R

g

GC UsmanSaeed

GC Shan UlHasan

GC Hafiz M. Abeer Ansari

FC Muhammad Ramadan

N A

T t

I\ \I\A:\ \[

LTl

Uty

46

Appendix B

Code used for the project

Matlab Code for Simulation

)

S——— training----------—--- 3
[y Fsl=wavread('train/sl.wav');
train vecl=feature extract(y,Fs);
[y Fsl=wavread('train/s2.wav');
train vec2=feature extract(y,Fs);
[y Fsl=wavread('train/s3.wav');
train vec3=feature extract(y,Fs);
[y Fsl=wavread('train/s4.wav');
train vecéd4=feature extract(y,Fs);
[y Fsl=wavread('train/s5.wav');
train vecb=feature extract(y,Fs);
[y Fsl=wavread('train/s6.wav');
train vecé6=feature extract(y,Fs);
[y Fsl=wavread('train/s7.wav');
train vec7=feature extract(y,Fs);
[y Fsl=wavread('train/s8.wav');
train vec8=feature extract(y,Fs);

gm—m—mmm—mmm - testing----——-----—- g
[y Fsl=wavread('test/s4.wav');

test vecl=feature extract(y,Fs);
Gm——m—m—— - Euclidean distance------------ %
[r cl=size(test_vecl);

EU=sqrt (sum(sum(test vecl-train vec8)."2));
EUl=sqgrt (sum(sum(test vecl-train vec7)."2));
EU2=sqrt (sum(sum(test_vecl-train vec6)."2));
EU3=sqrt (sum(sum(test_vecl-train vec5)."2));

EU4=sqrt (sum(sum(test _vecl-train vecd)."2));
EUS=sqrt (sum(sum(test_vecl-train vec3)."2));
EU6=sqgrt (sum(sum(test _vecl-train vec2)."2));

EU7=sqgrt (sum(sum(test_vecl-train vecl)."2));
%$8,3,1

if EU<EUl && EU<EU2 && EU<EU3 && EU<EU4 && EU<EUS

disp('matached with speaker no .8');

elseif EUL<EU && EUL<EU2 && EUL<EU3 && EUI<EU4 &&

disp('matched with speaker no . 7');

elseif EU2<EUl && EU2<EU && EU2<EU3 && EU2<EU4

disp('matched with speaker no . 6');

elseif EU3<EUl && EU3<EU2 && EU3<EU && EU3<EU4

disp('matched with speaker no . 5');

elseif EU4<EUl && EU4<EU && EU4<EU3 && EU4<EU2

disp('matched with speaker no . 4');

elseif EU5S<EUl && EUS<EU2 && EUS<EU && EUS<EU4

disp('matched with speaker no . 3');

elseif EU6<EUl && EU6<EU && EU6<EU3 && EU6<EU4

disp('matched with speaker no . 2');

elseif EU7<EUl && EUT<EU2 && EUT7<EU && EU7>EU4

disp('matched with speaker no . 1');

&&

&&

&&

&&

&&

&&

&& EU<EU6 && EU<EU7Y

EUL<EUS

EU2<EUS

EU3<EU5

EU4<EUS

EUS<EU3

EU6<EU5

EU7<EU5

&& EUI<EUG6 &&

&&

&&

&&

&&

&&

&&

EU2<EU6

EU3<EU6

EU4<EU6

EUS<EU6

EU6<EU2

EU7<EU6

&&

&&

&&

&&

&&

&&

EUL<EU7

EU2<EU7

EU3<EU7

EU4>EU7

EUS<EU7

EU6G<EU7

EU7<EU3

47

end

Fm—————— framing------------ %

function [feature vec]= feature extract(y,Fs)
%[y Fsl=wavread('sl.wav');
[y size cl]= size(y):;

sample size=Fs*0.025;
sample_size=round(sample_size);
y_size=round(y size);

samples=y size/sample size;

prev=0;

curr=0;

sig samp=zeros (samples, sample size);
f=1;

for i=l:samples

if (i>1)
f=prev+125;
curr=£f;

end

for j=l:sample size
sig samp(i,J)=y(£,1);

f=f+1;
end
if (i>=2)
prev=curr;
end
end

z=zeros (313,1);
for k=1:313
z (k,1)=sig samp(1,k);

end

% {

zj=zeros (626,1);

for kj=1:626
zj(kj,)=y (kj,1);

end

figure();

plot(z);

figure();

plot(zj)

o

°

’

o o

g m——— e — periodigram---------%
sig=zeros (sample size,1);

$sig four=abs (fft2(sig_samp, 512));
sig four=zeros (samples, 512);

for il=l:samples
for j1=1:313

sig(jl,1)=sig samp(il,j1);
end
x=sig;
xf=fft(x,512);
for j2=1:512

sig four(il,j2)=x£f(32,1);
end

end

sig fourl=abs(sig_ four)."2;

48

sig_fourl=sig fourl./sample_size;

fj=zeros (313,1);
for kj=1:313
£j(kj,1)=sig fourl(30,kj);

)

S —— e —— freqg points--------------—-—-¢ g

fs=Fs/2;

fs_h=fs;

fs 1=300;
pointf=(fs h-fs 1)/11;

o freq points=zeros(12,1);
o _freq points(l,1)=fs_1;

o freq points(12,1)=fs h;
b=fs 1;

for zj=2:11

b=b+pointf;

o freq points(zj,1)=floor(b);
= mel freqg points--—--—------—---————-¢ 3
mel _h=floor (1125*1log (1+ (fs_ h/700)
mel 1=floor(1125*log(1+(fs_1/700)

tri=(mel h-mel 1)/11;
freq points=zeros(12,1);
freq points(l,1)=mel 1;
freq points(12,1)=mel h;
point=mel 1;
Fmmmmm mel freq points---------———-—-—-——- %
for ik=2:11

point=point+tri;

freq points(ik,1)=floor (point);
end
fll _point=zeros(12,1);

————————————— freq points converting to size of the array-----------—---—--—--—-——-

for Jk=1:12
fil point(jk,1)=floor ((513* (o freq points(jk,1)))/Fs);

F————————————= generation of filter banks---------- %
filter l1=[triang(fil point(2,1))."',zeros(1,478)];
filter 2=[zeros(l,fil point(1,1)),triang(fil _point(3,1)-
fil p01nt(1 1)).',zeros(1,456)];

filter 3=[zeros(l,fil point(2,1)),triang(fil point(4,1)-
fil point(2,1))."',zeros(1,434)];

filter 4=[zeros(l,fil point(3,1)),triang(fil point(5,1)-
fil point(3,1))."',zeros(1,411)];

filter 5=[zeros(l,fil point(4,1)),triang(fil point(6,1)-
fil point(4,1))."',zeros(1,389)];

filter 6=[zeros(l,fil point(5,1)),triang(fil point(7,1)-
fil point(5,1))."',zeros(1,367)];

filter 7=[zeros(l,fil point(6,1)),triang(fil point(8,1)-
fil point(6,1))."',zeros(1,345)];

filter 8=[zeros(l,fil point(7,1)),triang(fil point(9,1)-
fil point(7,1)).',zeros(1,323)];

filter 9=[zeros(l,fil point(8,1)),triang(fil point(10,1)-
fil point(8,1))."',zeros(1,300)];

filter 10=[zeros(l,fil point(9,1)),triang(fil point (11,1)-

fil point(9,1)).',zeros(1,278)];

filter 1l=[zeros(l,fil point(10,1)),triang(fil point(12,1)-

fil point(10,1))."',zeros(1,256)];

G- applying filter banks and extracting values-----

filter vec=zeros(11,512);
filter vec(l,:)=filter 1;

(
filter vec(2,:)=filter 2;
filter vec(3,:)=filter 3;
filter vec(4,:)=filter 4;
filter vec(5,:)=filter 5;
filter vec(6,:)=filter 6;
filter vec(7,:)=filter 7;
filter vec(8,:)=filter 8;
filter_vec(9)=filter 9;

(1

filter vec :)=filter 10;
filterivec(ll,.)=filter711;
feature vec=zeros(40,11);

]

for sk=1:40

for dk=1:11
l=sum(sig fourl (sk,:).*filter vec(dk,:));
feature vec(sk,dk)=1log(l);

end

end
feature vec=dct (feature vec);
end

50

Appendix C

Arduino Code for the Hardware Implementation

/I Include the GSM library

#include <GSM.h>

/I PIN Number

#define PINNUMBER "

/l'initialize the library instance
GSM gsmAccess;

GSMVoiceCall vcs;

/I Array to hold the number for the incoming call
char numtel[20];

#include <LiquidCrystal.h>

/I initialize the library with the numbers of the interface pins

LiquidCrystal Icd(12, 11, 7, 6, 5, 4);

void setup()

{
Icd.begin(16, 2);
/[initialize serial communications and wait for port to open:

Serial.begin(9600);

51

Icd.clear();
while (1Serial) {

; [/ wait for serial port to connect. Needed for Leonardo only

Serial.printIn(**Receive Voice Call");
lcd.print(*'Receive V. Call™);
/l connection state

boolean notConnected = true;

/I Start GSM kit
/I 1f your SIM has PIN, pass it as a parameter of begin() in quotes
while (notConnected)
{
if (gsmAccess.begin(PINNUMBER) == GSM_READY)
notConnected = false;
else
{
Serial.printIn(**"Not connected");
Icd.print(**Not connected™);
delay(1000);
}
}

/I This makes sure the modem correctly reports incoming events

ves.hangCall();

Serial.printIn(*"Waiting for a call');
Icd.setCursor(0, 1);

lcd.print(**Waiting for call™);

52

}

void usman(){

Icd.clear();
while ('Serial) {

; I/ wait for serial port to connect. Needed for Leonardo only

Serial.printin(*'Receive Voice Call™);

lcd.print(*'Receive V. Call™);

/I connection state

boolean notConnected = true;

/I Start GSM kit
/[If your SIM has PIN, pass it as a parameter of begin() in quotes
while (notConnected)
{
if (gsmAccess.begin(PINNUMBER) == GSM_READY)
notConnected = false;
else
{
Serial.printIn(**Not connected"");
lcd.print(**Not connected"');
delay(1000);
}
}

/I This makes sure the modem correctly reports incoming events

vcs.hangCall();

Serial.printin(**"Waiting for a call");

53

Icd.setCursor(0, 1);

lcd.print(**Waiting for call™);

}

int i=2;
void loop()
{

/I Check the status of the voice call
switch (vcs.getvoiceCallStatus())

{

case IDLE_CALL: // Nothing is happening

break;

case RECEIVINGCALL: // Yes! Someone is calling us

Serial.printin("RECEIVING CALL"™);

/l led.print("RECEIVING CALL");

/I Retrieve the calling number

vcs.retrieveCallingNumber(numtel, 20);

/I Print the calling number

Icd.clear();

Serial.print(*"Number:™);

Serial.printin(numtel);

lcd.print(*"No.:"");

Icd.setCursor(5, 0);
Icd.print(numtel);

/I Answer the call, establish the call

vcs.answerCall();

54

break;

case TALKING: // In this case the call would be established

Serial.printin(""TALKING. Press enter to hang up.");
Icd.setCursor(0, 1);

lcd.print("TALKING. ");

/l while (Serial.read() '="\n")
delay(100000);
vcs.hangCall();

Serial.printIn(**Hanging up and waiting for the next call."");
usman();

break;

delay(1000);

/**
*khkhkkkhkhkkhkhkkhkhkkhkhkkhkkhhkhhkhkkhkhkkhkhkhkkhhkhkhhkhhkhhkhkkhhhhkhkkhkhkhkhkhhhhhhkhhhhhkhkhhkhkhhhhhhkhhhhkhkhhhhhhikikkx
* @file vr_sample_control_led.ino
* @author JiapengL.i
* @brief This file provides a demostration on

how to control led by using VoiceRecognitionModule

Fhkkhkhkhhkhrhkhhkhkdhkihkhkrhkhhkhkkhkhrhkrhkrhhkrhkhhhkrhkhdhrdhhdhrhhrhhhhihhirhrhhirhihhirhihhiirdx

* @note:

voice control led

55

R R R R R R o o R R R R R R R AR R R R R R R R R R R AR R R R S R R R R R R R R R R R AR R R R R R R R AR R R AR A R XA

* @section HISTORY

2013/06/13 Initial version.
*/

#include <TimerOne.h>
#include <SoftwareSerial.h>

#include ""VoiceRecognitionV3.h"

/**

Connection

Arduino VoiceRecognitionModule

*/

VR myVR(2,3); [//2:RX 3:TX, you can choose your favourite pins.

uint8_t records[7]; // save record

uint8_t buf[64];

int led = 13;

#define onRecord (0)

#define on1Record (1)
#define on2Record (2)
#define on3Record (3)
#define on4Record (4)
#define on5Record (5)
#define on6Record (6)

#define on7Record (7)

56

[Hx
@brief Print signature, if the character is invisible,
print hexible value instead.
@param buf -->command length
len -->number of parameters
*/
void printSignature(uint8_t *buf, int len)
{
inti;
for(i=0; i<len; i++){
if(buf[i]>0x19 && buf[i]<0x7F){
Serial.write(buf[i]);
}
else{
Serial.print(*'["");
Serial.print(buffi], HEX);
Serial.print("']"");
}
}
}

[k
@brief Print signature, if the character is invisible,
print hexible value instead.
@param buf --> VR module return value when voice is recognized.
buf[0] --> Group mode(FF: None Group, 0x8n: User, 0x0n:System
buf[1] --> number of record which is recognized.

buf[2] --> Recognizer index(position) value of the recognized record.

57

buf[3] --> Signature length

buf[4]~buf[n] --> Signature

*/

void printVR(uint8_t *buf)

{

Serial.printIn(""VR Index\tGroup\tRecordNum\tSignature');

Serial.print(buf[2], DEC);

Serial.print("\t\t"");

if(buf[0] == OXFF){
Serial.print(""NONE");

}

else if(buf[0]&0x80){
Serial.print(""UG ");
Serial.print(buf[0]&(~0x80), DEC);

}

else{
Serial.print(*'SG "");
Serial.print(buf[0], DEC);

}

Serial.print(*'\t"");

Serial.print(buf[1], DEC);

Serial.print(*"\t\t"");

if(buf[3]>0)1{
printSignature(buf+4, buf[3]);

}

else{

Serial.print(""NONE");

58

}

Serial.printIn(*\r\n*");

}

#include <LiquidCrystal.h>

/I initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 7, 6);
int freqStep = 100;
void setup()
{
[** initialize */
myVR.begin(4800);
Icd.begin(16, 2);
[** initialize */
/l'lcd.clear();

lcd.print("WELLCOME TO VR..");

Serial.begin(115200);

Serial.printin(**Elechouse Voice Recognition V3 Module\r\nControl LED sample™);

pinMode(led, OUTPUT);

if(myVR.clear() == 0){
Serial.printIn(**"Recognizer cleared.");

Jelse{
Serial.printIn(*"Not find VoiceRecognitionModule.");
Serial.printIn(*'Please check connection and restart Arduino.");
while(1);

}

if(myVR.load((uint8_t)onRecord) >= 0){
Serial.printIn(*"'onRecord loaded™);
/I lcd.print(""Usman CALL");
}
if(myVR.load((uint8_t)on1Record) >= 0){
Serial.printIn(*"'on1Record loaded");
/I lcd.print(""Usman CALL");
}
if(myVR.load((uint8_t)on2Record) >= 0){
Serial.printin(*"on2Record loaded");
/I lcd.print(**Usman CALL"™);
}
if(myVR.load((uint8_t)on3Record) >= 0){
Serial.printIn(*"on3Record loaded");
/I lcd.print(**Usman CALL"™);
}
if(myVR.load((uint8_t)on4Record) >= 0){
Serial.printin(*"on4Record loaded");
/I lcd.print(""Usman CALL");
}
if(myVR.load((uint8_t)on5Record) >= 0){
Serial.printin(*"on5Record loaded");
/I lcd.print(""Usman CALL");
}
if(myVR.load((uint8_t)on6Record) >= 0){
Serial.printin(*"on6Record loaded");
/I lcd.print(""Usman CALL");
}
if(myVR.load((uint8_t)on7Record) >= 0){

Serial.printin(*'on7Record loaded™);

60

/I lcd.print(""Usman CALL");

}

}
void dim_check() {

delay(3000);
Icd.setCursor(0, 1);

led.print("™ ");

void loop()

{

int ret;
ret = myVR.recognize(buf, 50);
if(ret>0){

switch(buf[1]){

case onRecord:
/** turn on LED */
digitalWrite(led, HIGH);
Icd.setCursor(0, 1);

Icd.print(**Usman CALLING™);

break;

case onlRecord:
/** turn on LED */
digitalWrite(led, HIGH);

Icd.setCursor(0, 1);

61

lcd.print(**Usman CALLING™);

break;

case on2Record:

/** turn on LED */

digitalWrite(led, HIGH);
Icd.setCursor(0, 1);

Icd.print(**Usman CALLING™);

break;

case on3Record:

/** turn on LED */

digitalWrite(led, HIGH);
Icd.setCursor(0, 1);

Icd.print(**Usman CALLING™);

break;

case on4Record:
[** turn off LED*/
digitalWrite(led, LOW);
Icd.setCursor(0, 1);
Icd.print(**Abeer CALLING");
I led.print(""ABEER CALLING");
break;
case on5Record:

/** turn off LED*/

62

digitalWrite(led, LOW);
Icd.setCursor(0, 1);
Icd.print("*Abeer CALLING™);
// lcd.print(""ABEER CALLING™);
break;
case on6Record:
/** turn off LED*/
digitalWrite(led, LOW);
Icd.setCursor(0, 1);
Icd.print(**Abeer CALLING");
/l'lcd.print("ABEER CALLING™);
break;
case on7Record:
[** turn off LED*/
digitalWrite(led, LOW);
Icd.setCursor(0, 1);
lcd.print(**Abeer CALLING™);
[/ lcd.print(""ABEER CALLING");
break;
default:

Serial.printIn(**"Record function undefined™);

break;

}

/** voice recognized */

printVR(buf);

dim_check();
/I if (led==HIGH) {Icd.setCursor(0, 1); lcd.print(""Usman CALLING");}

/I else if (led==LOW) {lcd.setCursor(0, 1); lcd.print(**Abeer CALLING");}

Il else {lcd.setCursor(0, 1); lcd.print(** ")}

/**
AR AR KRR AA AR A A AR A AR AR A AR AR AR A AR AR AR A A AR R AR A R A AAR A AR A A AARAAAAA AR AR A AR AR AAA A hhhhkhkx
* @file vr_sample_control_led.ino
* @author JiapengLi
* @brief This file provides a demostration on
how to control led by using VoiceRecognitionModule
*khkhkkkhkhkkhkhkkhkhkhkhkkkhhkkhhkhkkhkhkkhkhkhkhhkhkhhkkhhkhhkhkkhhhhkhkkhkhhkhhkhhkhhhkkhhhhkhkkhkhhkhkhkhhhkhhhhhkhkhkkihhkhhiiikx
* @note:
voice control led

B R e R S R S S S S S S S S S S S 2

* @section HISTORY

2013/06/13 Initial version.
*/

#include <TimerOne.h>
#include <SoftwareSerial.h>

#include ""VoiceRecognitionV3.h""

/**

Connection

Arduino VoiceRecognitionModule

*/

VR myVR(2,3); //2:RX 3:TX, you can choose your favourite pins.

uint8_t records[7]; // save record

uint8_t buf[64];

int led = 13;

#define onRecord (0)

#define on1Record (1)
#define on2Record (2)
#define on3Record (3)
#define on4Record (4)
#define on5Record (5)
#define on6Record (6)

#define on7Record (7)

/**

@brief Print signature, if the character is invisible,

print hexible value instead.
@param buf -->command length
len -->number of parameters
*/
void printSignature(uint8_t *buf, int len)
{
inti;
for(i=0; i<len; i++){
if(buf[i]>0x19 && buf[i]<0x7F){
Serial.write(buffi]);
}
else{
Serial.print(*'['");

Serial.print(buffi], HEX);

65

serial.print("]");
}
}
}

Jx
@brief Print signature, if the character is invisible,
print hexible value instead.
@param buf --> VR module return value when voice is recognized.
buf[0] --> Group mode(FF: None Group, 0x8n: User, 0x0n:System

buf[1] --> number of record which is recognized.

buf[2] --> Recognizer index(position) value of the recognized record.

buf[3] --> Signature length
buf[4]~buf[n] --> Signature
*/
void printVR(uint8_t *buf)
{

Serial.printin(""VR Index\tGroup\tRecordNum\tSignature');

Serial.print(buf[2], DEC);

Serial.print(*"\t\t"");

if(buf[0] == OXFF){
Serial.print(""NONE"");

}

else if(buf[0]&0x80){
Serial print("UG ");
Serial.print(buf[0]&(~0x80), DEC);

}

else{

66

Serial.print(**'SG *");
Serial.print(buf[0], DEC);

}

Serial.print(*"\t");

Serial.print(buf[1], DEC);
Serial.print(""\t\t"");
if(buf[3]>0)1{
printSignature(buf+4, buf[3]);
}
else{
Serial.print(""NONE");
}
Serial.printin(*\r\n*");

}

#include <LiquidCrystal.h>

/I initialize the library with the numbers of the interface pins
LiquidCrystal Icd(A1, A0, 5, 4, 7, 6);

int freqStep = 100;

constintinl =8;//32 //the number of the input pin
constintin2=29; // 33

const int in3 = 10; /34

constintind = 11; // 35

int buttonStatel = 0; /[variable for reading the pushbutton status
int buttonState? = 0;

int buttonState3 = 0;

int buttonState4 = 0;

void setup()

{
pinMode(inl, INPUT);
pinMode(in2, INPUT);
pinMode(in3, INPUT);

pinMode(in4, INPUT);

[** initialize */
myVR.begin(4800);
Icd.begin(16, 2);
[** initialize */
/l'lcd.clear();

lcd.print(""WELLCOME TO VR..");

Serial.begin(115200);

Serial.printIn(**Elechouse Voice Recognition V3 Module\r\nControl LED sample™);

pinMode(led, OUTPUT);

if(myVR.clear() == 0){
Serial.printIn(**"Recognizer cleared.");

Yelse{
Serial.printin(**Not find VoiceRecognitionModule.");
Serial.printIn(**Please check connection and restart Arduino.");
while(1);

}

if(myVR.load((uint8_t)onRecord) >= 0){
Serial.printIn(*'onRecord loaded™);

/I lcd.print(""Usman CALL");

68

}

if(myVR.load((uint8_t)on1Record) >= 0){
Serial.printin(*'on1Record loaded");

/I lcd.print(""Usman CALL");

}

if(myVR.load((uint8_t)on2Record) >= 0){
Serial.printin(*"'on2Record loaded");

/I lcd.print(""Usman CALL");

}

if(myVR.load((uint8_t)on3Record) >= 0){
Serial.printIn(**on3Record loaded™);

/I lcd.print(**Usman CALL"™);

}

if(myVR.load((uint8_t)on4Record) >= 0){
Serial.printIn(**on4Record loaded™);

/I lcd.print(**Usman CALL"™);

}

if(myVR.load((uint8_t)on5Record) >= 0){
Serial.printin(*"on5Record loaded");

/I lcd.print(**Usman CALL");

}

if(myVR.load((uint8_t)on6Record) >= 0){
Serial.printin(*"on6Record loaded");

/I lcd.print(**Usman CALL");

}

if(myVR.load((uint8_t)on7Record) >= 0){
Serial.printin(*"on7Record loaded");

/I lcd.print(""Usman CALL");

}

}

void dim_check() {

delay(3000);
Icd.setCursor(0, 1);

led.print("™ ... ");

void loop()

{

buttonStatel = digitalRead(inl);//b
buttonState2 = digitalRead(in2);//d
buttonState3 = digitalRead(in3);//a

buttonState4 = digitalRead(in4);//c

if(buttonState3==1)

{
Icd.setCursor(0, 1);
lcd.print(**Usman CALLING");
dim_check();

}

else if (buttonStatel==1)

{
Icd.setCursor(0, 1);
lcd.print(**Abeer CALLING");
dim_check();

}

else if (buttonState4==1)

{

Icd.setCursor(0, 1);

70

Icd.print(*'Shan CALLING");
dim_check();

}

else if (buttonState2==1)

{
Icd.setCursor(0, 1);
lcd.print("NO CALLING");

dim_check();

int ret;
ret = myVR.recognize(buf, 50);
if(ret>0){

switch(buf[1]){

case onRecord:
/** turn on LED */
digitalWrite(led, HIGH);
Icd.setCursor(0, 1);

Icd.print(*"Usman CALLING");

break;

case onlRecord:

/** turn on LED */

digitalWrite(led, HIGH);
Icd.setCursor(0, 1);

lcd.print(**Usman CALLING™);

71

break;

case on2Record:

/** turn on LED */

digitalWrite(led, HIGH);
Icd.setCursor(0, 1);

lcd.print(*"Usman CALLING™);

break;

case on3Record:

/** turn on LED */

digitalWrite(led, HIGH);
Icd.setCursor(0, 1);

Icd.print(**Usman CALLING™);

break;

case on4Record:
/** turn off LED*/
digitalWrite(led, LOW);
Icd.setCursor(0, 1);
lcd.print(**Abeer CALLING™);
/' lcd.print("ABEER CALLING™);
break;
case on5Record:
[** turn off LED*/
digitalWrite(led, LOW);

Icd.setCursor(0, 1);

72

lcd.print(**Abeer CALLING™);
Il'lcd.print(""ABEER CALLING");
break;
case on6Record:
[** turn off LED*/
digitalWrite(led, LOW);
Icd.setCursor(0, 1);
Icd.print("*Abeer CALLING™);
Il'lcd.print(""ABEER CALLING");
break;
case on7Record:
/** turn off LED*/
digitalWrite(led, LOW);
Icd.setCursor(0, 1);
lcd.print(**Abeer CALLING™);
/l'lcd.print("ABEER CALLING™);
break;
default:

Serial.printin(*"Record function undefined");

break;

}

/** voice recognized */

printVR(buf);

dim_check();
Il if (led==HIGH) {lcd.setCursor(0, 1); lcd.print(**"Usman CALLING");}

/I else if (led==LOW) {lcd.setCursor(0, 1); lcd.print(**Abeer CALLING");}
I/ else {lcd.setCursor(0, 1); lcd.print(** ")}

}
}

/**

* @file vr_sample_train.ino
* @author JiapengLi
* @brief This file provides a demostration on

* how to train VoiceRecognitionModule to record your voice

*k*k * %%k *k*k * *kk * % * % *k*k * % *kk *k*k

* @note:
* Use serial command to control VoiceRecognitionModule. *

* All commands are case insensitive. Default serial baud rate 115200.

*

* COMMAND FORMAT EXAMPLE Comment

*

*train train (r0) (rl)... train 0 2 45 Train records

* load load (r0) (rl) ... load05123 Load records

* clear clear clear remove all records in Recognizer

* record record / record (r0) (rl)... record/record079 Check record train status
*vr vr vr Check recognizer status

* getsig getsig (r) getsig 0 Get signature of record (r)

*sigtrain sigtrain (r) (sig) sigtrain 0 ZERO Train one record(r) with

signature(sig)
*settings settings settings Check current system settings

B R L L e S S R 2 S 2 S S S 2 o 2 S 2 S S 2 2 2

* @section HISTORY

*

*2013/06/13 Initial version.
*/

#include <SoftwareSerial.h>

#include ""VoiceRecognitionVV3.h"

74

/**

* Connection

* Arduino VoiceRecognitionModule

L J— > TX
L J— > RX
*/

VR myVR(2,3); //2:RX 3:TX, you can choose your favourite pins.

/***/

/** declare print functions */

void printSeperator();

void printSignature(uint8_t *buf, int len);

void printVR(uint8_t *buf);

void printLoad(uint8_t *buf, uint8_t len);

void printTrain(uint8_t *buf, uint8_t len);
void printCheckRecognizer(uint8_t *buf);

void printUserGroup(uint8_t *buf, int len);
void printCheckRecord(uint8_t *buf, int num);
void printCheckRecordAll(uint8_t *buf, int num);
void printSigTrain(uint8_t *buf, uint8_t len);
void printSystemSettings(uint8_t *buf, int len);

void printHelp(void);

/***/

/l command analyze part

#define CMD_BUF_LEN 64+1
#define CMD_NUM 10

typedef int (*cmd_function_t)(int, int);

uint8_t cmd[CMD_BUF_LEN];

75

uint8_tcmd_cnt;

uint8_t *paraAddr;

int receiveCMD();

int checkCMD(int len);

int checkParaNum(int len);

int findPara(int len, int paraNum, uint8_t **addr);

int compareCMD(uint8_t *paral , uint8_t *para2, int len);

int cmdTrain(int len, int paraNum);

int cmdLoad(int len, int paraNum);

int cmdTest(int len, int paraNum);

int cmdVR(int len, int paraNum);

int cmdClear(int len, int paraNum);

int cmdRecord(int len, int paraNum);

int cmdSigTrain(int len, int paraNum);

int cmdGetSig(int len, int paraNum);

int cmdSettings(int len, int paraNum);

int cmdHelp(int len, int paraNum);

/** cmdList, cmdLen, cmdFunction has correspondence */
const char cmdListfCMD_NUM][10] ={ // command list table

{

"train" }

"load" }

"clear" }

76

"vr'' }

"record" }

“sigtrain™ }

"getsig" }

"Settings" }

“test" }

"help" }

b

const char cmdLen[CMD_NUM]={ // command length
5, /I {"train"},

4, Il {"'load"},

5, /I {""clear"},

2, Il {"'vr},

6, // {"record"},

8, /I {"sigtrain™},

o

Il {""getsig"'},

Il {""Settings™'},

oo

4, /I {"'test"},
4, /I {""help"'}
3

cmd_function_t cmdFunction[CMD_NUM]={ // command handle fuction(function pointer
table)

cmdTrain,
cmdLoad,
cmdClear,
cmdVR,
cmdRecord,
cmdSigTrain,
cmdGetSig,
cmdSettings,
cmdTest,

cmdHelp,

b

/***/
/** temprory data */
uint8_t buf[255];

uint8_t records[7]; // save record

void setup(void)

{
myVR.begin(9600);

/** initialize */
Serial.begin(115200);

Serial.printin(F(*'"Elechouse Voice Recognition V3 Module \"'train\'* sample.""));

78

printSeperator(),
Serial.printIn(F(*'"Usage:""));
printSeperator();
printHelp();
printSeperator();

cmd_cnt =0;

void loop(void)

{

int len, paraNum, paralen, i;

[** receive Serial command */
len = receiveCMD();
if(len>0){
/** check if the received command is valid */

if('checkCMD(len)){

/** check parameter number of the received command */

paraNum = checkParaNum(len);

/** display the receved command back */

Serial.write(cmd, len);

/** find the first parameter */

paraLen = findPara(len, 1, ¶Addr);

/** compare the received command with command in the list */
for(i=0; i<CMD_NUM; i++){

/** compare command length */

79

if(paraLen == cmdLen[i]){

[** compare command content */

if(compareCMD(paraAddr, (uint8_t *)cmdList[i], paraLen) == 0){

/** call command function */

if(cmdFunction[i](len, paraNum) != 0){
printSeperator();
Serial.printIn(F(**"Command Format Error!"));
printSeperator();

}

break;

/** command is not supported*/
if(i == CMD_NUMX
printSeperator();
Serial.printIn(F(**"Unkonwn command™));
printSeperator();
}
}

else{
/** received command is invalid */
printSeperator();
Serial.printIn(F(*"Command format error"));

printSeperator();

/** try to receive recognize result */

80

int ret;
ret = myVR.recognize(buf, 50);
if(ret>0){
/** voice recognized, print result */
printVR(buf);
}
}

Jx
* @brief receive command from Serial.
* @param NONE.
* @retval command length, if no command receive return -1.
*/
int receiveCMD()
{
int ret;
int len;
unsigned long start_millis;
start_millis = millis();
while(1){
ret = Serial.read();
if(ret>0){
start_millis = millis();
cmd[cmd_cnt] = ret;
if(cmd[cmd_cnt] == "\n"){
len =cmd_cnt+1;
cmd_cnt =0;
return len;

}

cmd_cnt++;

81

if(cmd_cnt == CMD_BUF_LEN){
cmd_cnt =0;

return -1;

if(millis() - start_millis > 100){
cmd_cnt =0;

return -1;

Jx
* @brief compare two commands, case insensitive.
* @param paral --> command buffer 1
* para2 --> command buffer 2
*len --> buffer length
* @retval 0 -->equal
*-1 -->unequal
*/
int compareCMD(uint8_t *paral , uint8_t *para2, int len)
{
inti;
uint8_t res;
for(i=0; i<len; i++){
res = para2|[i] - paral[i];
if(res =0 && res 1= 0x20){
res = paralli] - para2[i];

if(res 1= 0 && res 1= 0x20){

82

return -1;

}
}

return O;

[Hx
* @brief Check command format.

* @param len --> command length
* @retval 0 --> command is valid
*-1 --> command is invalid

*/

int checkCMD(int len)

{

inti;

for(i=0; i<len; i++){

if(cmd[i] > Ox1F && cmdl[i] < 0X7F){

}

else if(cmd[i] == "\t' || cmd[i] =="" || cmd[i] == "\r" || cmd[i] == "\n"{

}

else{
return -1;
}
}

return O;

83

[k
* @brief Check the number of parameters in the command
* @param len --> command length
* @retval number of parameters
*/
int checkParaNum(int len)
{
int cnt=0, i;
for(i=0; i<len; {
if(cmd[i]'="t' && cmd[i]!=" "' && cmd[i] I= "\r' && cmd[i] != "\n"){
cnt++;
while(cmd[i] '="\t' && cmd[i] ="' && cmd]i] '="\r' && cmd[i] !="\n"){

i++;

i++;

}

return cnt;

[
* @brief Find the specified parameter.

* @param len --> command length

* paralndex --> parameter index

*addr --> return value. position of the parameter

* @retval length of specified parameter

*/

int findPara(int len, int paralndex, uint8_t **addr)

{

int cnt=0, i, paralLen;

84

uint8_t dt;
for(i=0; i<len; {
dt = cmdli];
if(dt!="\t' && dt!=""){
cnt++;
if(paralndex == cnt){
*addr = cmd+i;
paraLen =0;
while(cmd[i] '= "\t' && cmd[i] ="' && cmd[i] != "\r' && cmd[i] = "\n"){
i++;

paraLen++;

}

return paralLen;
}
else{
while(cmd[i] '="\t' && cmd[i] =" " && cmd]i] '="\r' && cmd[i] '="\n"}{

i++;

else{
i+
}
}

return -1;

int cmdHelp(int len, int paraNum)

{

if(paraNum != 1){

85

return -1;
}
printSeperator();
printHelp();
printSeperator();

return O;

JHx
* @brief Handle "'train" command
* @param len -->command length
* paraNum --> number of parameters
* @retval 0 -->success
* -1 --> Command format error
*/
int cmdTrain(int len, int paraNum)
{
inti, ret;
if(paraNum < 2 || paraNum > 8){

return -1;

for(i=2; i<=paraNum; i++){
findPara(len, i, ¶Addr);
records[i-2] = atoi((char *)paraAddr);
if(records[i-2] == 0 && *paraAddr !'="'0"){
return -1;
}
}

printSeperator();

ret = myVR.train(records, paraNum-1, buf);
/I ret = myVR.train(records, paraNum-1);
if(ret >= 0){
printTrain(buf, ret);
}
else if(ret == -1){
Serial.printin(F(*"Train failed."));
}
else if(ret == -2){
Serial.printin(F(*'Train Timeout."));
}
printSeperator();

return O;

[
* @brief Handle ""load™ command
* @param len -->command length
* paraNum --> number of parameters
* @retval 0 -->success
* -1 --> Command format error
*/
int cmdLoad(int len, int paraNum)
{
inti, ret;
if(paraNum < 2 || paraNum > 8){

return -1;

for(i=2; i<=paraNum; i++){

87

findPara(len, i, ¶Addr);
records[i-2] = atoi((char *)paraAddr);
if(records[i-2] == 0 && *paraAddr !'="0"){
return -1;
}
}

/I myVR.writehex(records, paraNum-1);
ret = myVR.load(records, paraNum-1, buf);
printSeperator();
if(ret >= 0){

printLoad(buf, ret);

}

else{

Serial.printin(F(*'Load failed or timeout."));

}

printSeperator();

return O;

[
* @brief Handle ""clear" command
* @param len -->command length
* paraNum --> number of parameters
* @retval 0 -->success

* -1 --> Command format error

*/
int cmdClear(int len, int paraNum)
{

if(paraNum != 1){

return -1;

88

}

if(myVR.clear() == 0){
printSeperator();
Serial.printin(F("'Recognizer cleared."));
printSeperator();

}

else{
printSeperator();
Serial.printIn(F(**Clear recognizer failed or timeout."));
printSeperator();

}

return O;

[Hx
* @brief Handle "vr'* command
* @param len -->command length
* paraNum --> number of parameters
* @retval 0 -->success
* -1 --> Command format error
*/
int cmdVR(int len, int paraNum)
{

int ret;

if(paraNum = 1){

return -1;

}

ret = myVR.checkRecognizer(buf);

if(ret<=0){

printSeperator();

89

Serial.printin(F(*'Check recognizer failed or timeout."));
printSeperator();
return O;

}

printSeperator();

printCheckRecognizer(buf);

printSeperator();

return O;

[Hx
* @brief Handle "record' command
* @param len -->command length
* paraNum --> number of parameters
* @retval 0 -->success
* -1 --> Command format error
*/
int cmdRecord(int len, int paraNum)
{
int ret;
if(paraNum == 1){
ret = myVR.checkRecord(buf);
printSeperator();
if(ret>=0){
printCheckRecordAll(buf, ret);
}
else{
Serial.printIn(F(**Check record failed or timeout."));

}

printSeperator();

}

else if(paraNum < 9){
for(int i=2; i<=paraNum; i++){
findPara(len, i, ¶Addr);
records[i-2] = atoi((char *)paraAddr);
if(records[i-2] == 0 && *paraAddr !'="0"){

return -1;

ret = myVR.checkRecord(buf, records, paraNum-1);
printSeperator();
if(ret>=0){
printCheckRecord(buf, ret);
}
else{
Serial.printIn(F(**Check record failed or timeout.™));
}
printSeperator();
}
else{
return -1;

}

return O;

/**
* @brief Handle "sigtrain’ command

* @param len -->command length

* paraNum --> number of parameters

/I auto clean duplicate records

91

* @retval 0 -->success

* -1 --> Command format error

*/

int cmdSigTrain(int len, int paraNum)

{

int ret, sig_len;
uint8_t *lastAddr;
if(paraNum < 2){

return -1;

findPara(len, 2, ¶Addr);
records[0] = atoi((char *)paraAddr);
if(records[0] == 0 && *paraAddr !="0")}{

return -1;

findPara(len, 3, ¶Addr);
sig_len = findPara(len, paraNum, &lastAddr);

sig_len +=((unsigned int)lastAddr - (unsigned int)paraAddr);

printSeperator();
ret = myVR.trainWithSignature(records[0], paraAddr, sig_len, buf);
/I ret = myVR.trainWithSignature(records, paraNum-1);
if(ret >= 0){
printSigTrain(buf, ret);
}
else{

Serial.printIn(F(**Train with signature failed or timeout."));

}

92

printSeperator();

return O;

[
* @brief Handle "getsig" command
* @param len -->command length
* paraNum --> number of parameters
* @retval 0 -->success
* -1 --> Command format error
*/
int cmdGetSig(int len, int paraNum)

{

int ret;
if(paraNum 1= 2){

return -1;

findPara(len, 2, ¶Addr);
records[0] = atoi((char *)paraAddr);
if(records[0] == 0 && *paraAddr !="'0")}{

return -1;

ret = myVR.checkSignature(records[0], buf);

printSeperator();

if(ret == 0){

Serial.printin(F(*'Signature isn't set."));

93

}
else if(ret > 0){
Serial.print(F(*'Signature:™));
printSignature(buf, ret);
Serial.printin();
}
else{
Serial.printin(F(*'Get sig error or timeout."));

}

printSeperator();

return O;

[Hx
* @brief Handle "test™ command
* @param len -->command length
* paraNum --> number of parameters
* @retval 0 -->success
* -1 --> Command format error
*/
int cmdTest(int len, int paraNum)
{
printSeperator();
Serial.printin(F(""TEST is not supported.'));
printSeperator();

return O;

int cmdSettings(int len, int paraNum)

94

int ret;

if(paraNum != 1){
return -1,

}

ret = myVR.checkSystemSettings(buf);

if(ret>0){
printSeperator();
printSystemSettings(buf, ret);
printSeperator();

}

else{
printSeperator();
Serial.printin(F(**Check system settings error or timeout™));
printSeperator();

}

return O;

/***/
/**
* @brief Print signature, if the character is invisible,
* print hexible value instead.
* @param buf -->command length
*len -->number of parameters
*/
void printSignature(uint8_t *buf, int len)
{
inti;

for(i=0; i<len; i++){

if(buf[i]>0x19 && buf[i]<0X7F){
Serial.write(buf[i]);
}
elsef
Serial.print(F("["));
Serial.print(buf[i], HEX);
Serial.print(F("1™));
}
}
}

/**

* @brief Print signature, if the character is invisible,

* print hexible value instead.

* @param buf --> VR module return value when voice is recognized.

* buf[0] --> Group mode(FF: None Group, 0x8n: User, 0xOn:System

* buf[1] --> number of record which is recognized.

* buf[2] --> Recognizer index(position) value of the recognized record.

* puf[3] --> Signature length
* buf[4]~buf[n] --> Signature
*/

void printVR(uint8_t *buf)

{

Serial.printin(F(""VR Index\tGroup\tRecordNum\tSignature™));

Serial.print(buf[2], DEC);

Serial.print(F(""\t\t"));

if(buf[0] == OXFF){

Serial.print(F(""NONE"));

96

}

else if(buf[0]&0x80){
Serial.print(F("UG "));
Serial.print(buf[0]&(~0x80), DEC);

}

else{
Serial.print(F("SG));
Serial.print(buf{0], DEC);

}

Serial.print(F(""\t'));

Serial.print(buf[1], DEC);
Serial.print(F(""\t\t"));
if(buf[3]>0){
printSignature(buf+4, buf[3]);
}
else{
Serial.print(F(""NONE"));
}

Serial.printin(F(""\r\n""));

}

/**

* @brief Print seperator. Print 80 *-'.

*/
void printSeperator()
{
for(int i=0; i<80; i++){
Serial.write(*-");

}

97

Serial.printin();

}

/**

* @brief Print recoginizer status.
* @param buf --> VR module return value when voice is recognized.
* buf[0] --> Number of valid voice records in recognizer

* buf[i+1] --> Record number.(0XFF: Not loaded(Nongroup mode), or not set (Group mode))
(i=0,1,..6)

*buf[8] --> Number of all voice records in recognizer
*buf[9] --> Valid records position indicate.
* buf[10] --> Group mode indicate(FF: None Group, 0x8n: User, 0x0n:System)
*/
void printCheckRecognizer(uint8_t *buf)
{
Serial.print(F("*All voice records in recognizer: '));
Serial.printin(buf[8], DEC);
Serial.print(F(**Valid voice records in recognizer: '));
Serial.printin(buf[0], DEC);
if(buf[10] == OxFF){
Serial.printin(F(""VR is not in group mode.™));
}
else if(buf[10]&0x80){
Serial.print(F(""VR is in user group mode:"));
Serial.printin(buf[10]&0x7F, DEC);
}
else{
Serial.print(F(*"VR is in system group mode:"));
Serial.printin(buf[10], DEC);

}

98

Serial.printIn(F("'VR Index\tRecord\t\tComment'));
for(int i=0; i<7; i++){
Serial.print(i, DEC);
Serial.print(F("\t\t'));
if(buf[i+1] == OXFF){
if(buf[10] == OXFF){
Serial.print(F(*"Unloaded\tNONE"™));
}
else{
Serial.print(F(*'Not Set\t(\tNONE""));
}
}
else{
Serial.print(buf[i+1], DEC);
Serial.print(F(""\t\t"));
if(buf[9]&(1<<i)){
Serial.print(F(*"Valid));
}
else{
Serial.print(F("'Untrained™));
}
}

Serial.printin();

}
}

/**

* @brief Print record train status.

* @param buf --> Check record command return value

* buf[0] --> Number of checked records
* buf[2i+1] --> Record number.
* buf[2i+2] --> Record train status. (00: untrained, 01: trained, FF: record value out of range)
*(i=0~buf[0]-1)
*num --> Number of trained records
*/
void printCheckRecord(uint8_t *buf, int num)
{
Serial.print(F(**Check '));
Serial.print(buf[0], DEC);

Serial.printin(F("* records."));

Serial.print(num, DEC);
if(num>1){
Serial.printin(F(** records trained."));
}
else{

Serial.printin(F(** record trained."));

}

for(int i=0; i<buf[0]*2; i += 2){
Serial.print(buf[i+1], DEC);
Serial.print(F(""\t-->\t""));
switch(buf[i+2]){
case 0x01:
Serial.print(F(*"Trained"));
break;

case 0x00:
Serial.print(F(""Untrained"));

break;

100

case OxFF:
Serial.print(F(*'Record value out of range™));
break;

default:
Serial.print(F(*'Unknown Stauts'));
break;

}

Serial.printin();

}
}

[
* @brief Print record train status.
* @param buf --> Check record command return value
*pbuf[0] --> Number of checked records
* puf[2i+1] --> Record number.
* buf[2i+2] --> Record train status. (00: untrained, 01: trained, FF: record value out of range)
*(i=0~buf[0]-1)
*num --> Number of trained records
*/
void printCheckRecordAll(uint8_t *buf, int num)
{
Serial.print(F("*Check 255™));

Serial.printIn(F("* records."));

Serial.print(num, DEC);
if(num>1){
Serial.printIn(F(** records trained."));

}

else{

101

Serial.printIn(F(** record trained.™));
}
myVR.writehex(buf, 255);
for(int i=0; i<255; i++){
if(bufli] == OxFO)X{
continue;
}
Serial.print(i, DEC);
Serial.print(F(""\t-->\t"));
switch(buf[i]){
case 0x01:
Serial.print(F(""Trained™));
break;
case 0x00:
Serial.print(F(*"Untrained™));
break;
case OxFF:
Serial.print(F(""Record value out of range));
break;
default:
Serial.print(F(""Unknown Stauts"));
break;

}

Serial.printin();

/**

* @brief Print check user group result.

* @param buf --> Check record command return value

102

* buf[8i] --> group number.

* buf[8i+1] --> group position 0 status.

* buf[8i+2] --> group position 1 status.

*

* buf[8i+6] --> group position 5 status.

* buf[8i+7] --> group position 6 status.

*({=0~len)
*len --> number of checked groups

*/

void printUserGroup(uint8_t *buf, int len)

{

inti, j:

Serial.printin(F(**Check User Group:"));

for(i=0; i<len; i++){
Serial.print(F("'Group:"));
Serial.printin(buf[8*i]);
for(j=0; j<7; j++){
if(buf[8*i+1+j] == OXFF){
Serial.print(F(""NONE\M"));
}
else{
Serial.print(buf[8*i+1+j], DEC);
Serial.print(F(""\t'"));
}
}
Serial.printin();
}
}

/**

103

* @brief Print "load" command return value.

* @param buf --> "load" command return value
* buf[0] --> number of records which are load successfully.
* buf[2i+1] --> record number

* buf[2i+2] --> record load status.

* 00 --> Loaded

* FC --> Record already in recognizer

* FD --> Recognizer full

* FE --> Record untrained

* FF --> Value out of range"

*(i=0~(len-1)/2)

*len --> length of buf

*/

void printLoad(uint8_t *buf, uint8_t len)

{
if(len == 0){
Serial.printin(F(*'Load Successfully."));
return;
}
else{

Serial.print(F(*'Load success:));
Serial.printin(buf[0], DEC);

}

for(int i=0; i<len-1; i += 2){
Serial.print(F(""Record '));
Serial.print(buf[i+1], DEC);
Serial.print(F(""\t'"));
switch(bufli+2]){
case 0:

Serial.printin(F(*'Loaded"));

104

break;

case OxFC:
Serial.printin(F(*'Record already in recognizer"));
break;

case OxFD:
Serial.printIn(F(*'Recognizer full'"));
break;

case OXFE:
Serial.printin(F(*'Record untrained"));
break;

case OxFF:
Serial.printin(F(*"Value out of range™));
break;

default:
Serial.printin(F(*"Unknown status"));

break;

/**

* @brief Print ""train" command return value.

* @param buf --> "train" command return value

* pbuf[0] --> number of records which are trained successfully.

* puf[2i+1] --> record number

* buf[2i+2] --> record train status.
* 00 --> Trained

* FE --> Train Time Out

* FF --> Value out of range™

*({i=0~len-1)

105

*len --> length of buf
*/

void printTrain(uint8_t *buf, uint8_t len)

{
if(len == 0){
Serial.printin(F(""Train Finish."));
return;
}
else{

Serial.print(F(**Train success: "));
Serial.printin(buf[0], DEC);
}
for(int i=0; i<len-1; i += 2){
Serial.print(F(*'Record '));
Serial.print(buf[i+1], DEC);
Serial.print(F(""\t"));
switch(bufli+2]){
case 0:
Serial.printin(F(*'Trained™));
break;
case OXFE:
Serial.printIn(F(*'Train Time Out"));
break;
case OxFF:
Serial.printIn(F(*"Value out of range™));
break;
default:
Serial.print(F(*"Unknown status "));
Serial.printin(buf[i+2], HEX);

break;

106

/**

* @brief Print "'sigtrain' command return value.
* @param buf --> "'sigtrain' command return value
* buf[0] --> number of records which are trained successfully.
* buf[1] --> record number
* buf[2] --> record train status.
*00 --> Trained
* FO --> Trained, signature truncate
* FE --> Train Time Out
* FF --> Value out of range"
* buf[3] ~ buf[len-1] --> Signature.
*len --> length of buf
*/
void printSigTrain(uint8_t *buf, uint8_t len)
{
if(len == 0){
Serial.printin(F(**Train With Signature Finish."));
return;
}
else{
Serial.print(F(**Success: '"));
Serial.printin(buf[0], DEC);
}
Serial.print(F(**Record '));
Serial.print(buf[1], DEC);

Serial.print(F(""\t""));

107

switch(buf[2]){
case 0:
Serial.printin(F("'Trained"));
break;
case OxFO:
Serial.printin(F(**Trained, signature truncate'));
break;
case OXFE:
Serial.printin(F("*Train Time Out™));
break;
case OxFF:
Serial.printin(F(*"Value out of range™));
break;
default:
Serial.print(F(""Unknown status "));
Serial.printin(buf[2], HEX);
break;
}
Serial.print(F("'SIG: "));
Serial.write(buf+3, len-3);

Serial.printin();

/**

* @brief Print "settings™ command return value.

* @param buf --> "settings' command return value

* buf[0] --> number of records which are trained successfully.

* buf[1] --> record number
* buf[2] --> record train status.

* 00 --> Trained

108

* FO --> Trained, signature truncate
* FE --> Train Time Out

* FF --> Value out of range™

* buf[3] ~ buf[len-1] --> Signature.
*len --> length of buf

*/

const unsigned int io_pw_tab[16]={
10, 15, 20, 25, 30, 35, 40, 45,
50, 75, 100, 200, 300, 400, 500, 1000

b

void printSystemSettings(uint8_t *buf, int len)

{

switch(buf[0]){

case 0:

case 3:
Serial.printin(F(*'Baud rate: 9600"));
break;

case 1:
Serial.printin(F(*'Baud rate: 2400"));
break;

case 2:
Serial.printin(F(*'Baud rate: 4800"));
break;

case 4:
Serial.printin(F(*'Baud rate: 19200"));
break;

case b5:

109

Serial.printin(F(*'Baud rate: 38400™));
break;
default:
Serial.printin(F(*'Baud rate: UNKONOWN"));

break;

switch(buf[1]){
case 0:
case OxFF:
Serial.printin(F(**Outpu 10 Mode: Pulse™));
break;
case 1:
Serial.printin(F(**Outpu 10 Mode: Toggle™));
break;
case 2:
Serial.printin(F(**Outpu 10 Mode: Clear(When recognized) *));
break;
case 3:
Serial.printin(F(**Outpu 10 Mode: Set(When recognized)™));
break;
default:
Serial.printin(F(**Output 10 Mode: UNKONOWN™));

break;

if(buf[2] > 15){
Serial.printin(F(*'Pulse width: UNKONOWN"));

}

else{

110

Serial.print(F(**"Pulse Width: ™));
Serial.print(io_pw_tab[buf[2]], DEC);
Serial.printin(F("'ms"));

}

if(buf[3] == 0 || buf[3] == OXFF){
Serial.printin(F(*'Auto Load: disable™));
}
else{
Serial.printIn(F("'Auto Load: enable™));

}

switch(buf[4]){
case 0:
case OxFF:
Serial.printIn(F(**Group control by external 10: disabled™));
break;
case 1:
Serial.printin(F("'Group control by external 10: system group selected™));
break;
case 2:
Serial.printIn(F(*'Group control by external 10: user group selected™));
break;
default:
Serial.printin(F(*"Group control by external 10: UNKNOWN STATUS™));

break;

void printHelp(void)

111

{

Serial.printin(F(""COMMAND FORMAT EXAMPLE
Comment"));

printSeperator();

/I Serial.printin(F("

----------- ")
Serial.printin(F(*'train train (r0) (rl)... train 02 45 Train records™));
Serial.printin(F(*'load load (r0) (r1) ... load05123 Load records"));
Serial.printIn(F(*'clear clear clear remove all records in

Recognizer™));

Serial.printIn(F(**record record / record (r0) (rl)... record/record 0 79 Check record
train status'));

Serial.printin(F(*'vr vr vr Check recognizer status™));

Serial.printIn(F(**getsig getsig (r) getsig 0 Get signature of record
(nN™);

Serial.printin(F(*'sigtrain sigtrain (r) (sig) sigtrain 0 ZERO Train one record(r)

with signature(sig)™));

Serial.printIn(F(*'settings settings settings Check current system
settings'"));

Serial.printin(F(**help help help print this message"));

}

112

Timeline

MONTHS

JUNE 2014

JULY 2014

AUGUST 2014

SEPTEMBER 2014

OCTOBER 2014

NOVEMBER 2014

DECEMBER 2014

MONTHS

JAN 2015

FEB 2015

MARCH 2015

APRIL 2015

MAY 2015

Appendix D

PROJECT APPROVED

B _
LITERATURE STUDYING

LEARNING OF SOUND

PROCESSING TECHNIQUES

SIMULATION DESIGNING
(IMPLEMENING ALGORITHMS)

SIMULATION DESIGNING
(IMPLEMENING ALGORITHMS)

SIMULATION DESIGNING
(IMPLEMENING ALGORITHMS)

STATUS

INTERFACING THE GSM KIT
AND VR MODULE WITH
ARDUINO KIT

IMPLEMENTING THE CODE ON
HARDWARE

IMPLEMENTING THE CODE ON
HARDWARE

IMPLEMENTING THE CODE ON
HARDWARE

FINAL TESTING

113

