
Improving Flow Completion Times in
Data Center Networks

By
Ali Munir

2009-NUST-MS-EE-29

Supervisor
Dr. Saad Qaisar
NUST-SEECS

A thesis submitted in partial fulfillment of the requirements for the degree
of Masters of Science in Electrical Engineering (MS EE)

In
School of Electrical Engineering and Computer Science,
National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(March 2012)

Approval

It is certified that the contents and form of thesis entitled “Improving Flow
Completion Times in Data Center Networks” submitted by Mr. Ali
Munir have been found satisfactory for the requirement of the degree.

Advisor: Dr. Saad Qaisar

Signature:
Date:

Committee Member: Dr. Ihsan Ayyub Qazi

Signature:
Date:

Committee Member: Dr. Syed Ali Khayyam

Signature:
Date:

Committee Member: Dr. Junaid Qadir

Signature:
Date:

i

To my parents.

ii

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my
knowledge it contains no materials previously published or written by an-
other person, nor material which to a substantial extent has been accepted
for the award of any degree or diploma at NUST SEECS or at any other
educational institute, except where due acknowledgement has been made in
the thesis. Any contribution made to the research by others, with whom I
have worked at NUST SEECS or elsewhere, is explicitly acknowledged in the
thesis.

I also declare that the intellectual content of this thesis is the product of
my own work, except for the assistance from others in the project’s design
and conception or in style, presentation and linguistics which has been ac-
knowledged.

Author Name: Ali Munir

Signature:

iii

Acknowledgments

First and foremost, I am immensely thankful to Almighty Allah for letting
me pursue and fulfill my dreams. Nothing could have been possible without
His blessings.

I feel proud the way my parents and younger siblings have shown patience
and confidence in my abilities. They were always there to provide me with
their full support in the difficult of times. This thesis may not have been
possible without the sacrifices made by them.

My heartfelt thanks to my advisor Dr. Saad Qaisar for his kind support
and guidance. I am also grateful to Dr. Andrew Lachlan for his useful feed-
back to improve quality of this work. I would also like to thank everyone
at CoNNekt Lab, especially Haroon, Jaweria and Waqar for providing me a
window outside of work and making my time at SEECS pleasant.

Lastly, this thesis would not have been possible without the expert guid-
ance of Dr. Ihsan Ayyub Qazi, who has been a great source of inspiration
for me during these years of research. I feel thoroughly indebted to him, his
research vision has helped all along this strenuous path, right from the start
to the completion of MS thesis.

Ali Munir

iv

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Data Center Transport Requirements 3
1.3 Transport Mechanism Design Choices 5
1.4 Thesis Statement . 6
1.5 Thesis Contribution . 7
1.6 Thesis Organization . 8

2 Related Work 9
2.1 TCP & Size-based Scheduling 9
2.2 Data Center Transport Protocols 10

2.2.1 Incast TCP (ICTCP) 10
2.2.2 Data Center TCP (DCTCP) 10
2.2.3 D3 Congestion Control 11

3 Size Aware Delivery Control (SDC) 12
3.1 A Simple Illustration . 12
3.2 Protocol . 12

3.2.1 Sender . 13
3.2.2 Router . 15
3.2.3 Receiver . 15

3.3 Design Challenges . 15
3.4 Analysis . 17

3.4.1 Model . 17
3.4.2 Average Throughput 18
3.4.3 Application Throughput 19
3.4.4 Approximating SRPT 20
3.4.5 Class Based Analysis 20

3.5 Evaluation . 25
3.5.1 Basic Testing . 26
3.5.2 Data Center Specific Impairments 27

v

TABLE OF CONTENTS vi

3.5.3 Benchmark Traffic . 31
3.6 Summary . 32

4 Router Assisted Capacity Sharing (RACS) 33
4.1 Protocol . 33

4.1.1 Sender . 34
4.1.2 Receiver . 34
4.1.3 Router . 35

4.2 Design Challenges . 35
4.3 Evaluation . 37

4.3.1 Basic Testing . 37
4.3.2 Data Center Specific Impairments 38
4.3.3 Benchmark Traffic . 43

4.4 Summary . 44

5 Conclusion 46
5.1 Conclusion . 46
5.2 Future Work . 47

List of Figures

3.1 Basic Protocol . 13
3.2 Network Behavior for Class A Gain 22
3.3 Network Behavior for Class B Gain 23
3.4 Impact of Class A Threshold 24
3.5 Class A Threshold vs Beta of Class B and C 25
3.6 Network Diagram . 26
3.7 Long Flows Only: Average Throughput 27
3.8 Long Flows Only: Queue Length 28
3.9 Incast: AFCT Comparison . 29
3.10 Incast: Loss Behavior . 30
3.11 Mix Flows: AFCT and Loss Rate 30
3.12 Mix Flows: Queue Size (Packets) 31
3.13 Benchmark Traffic: AFCT . 32

4.1 Basic Protocol . 33
4.2 Rate Request Format . 35
4.3 Network Diagram . 38
4.4 Long Flows Only: Average Throughput 39
4.5 Long Flows Only: Queue Length 39
4.6 Incast: AFCT Comparison . 41
4.7 Incast: Loss Behavior . 41
4.8 Mix Flows: AFCT and Loss Rate 42
4.9 Mix Flows: Queue Size (Packets) 42
4.10 Benchmark Traffic: AFCT . 43
4.11 Benchmark Traffic: Performance Regions 44
4.12 Percentage of Flows Completing before Time ‘t’ 45
4.13 Percentage of Flows Completing before Time ‘t’ II 45

vii

List of Tables

1.1 Traffic Types and Typical Workloads [1] 2

3.1 SDC Parameters . 14
3.2 Varying Class A Gain . 21
3.3 Varying Class B Gain. 23
3.4 SDC Comparison with TCP 31

4.1 RACS Parameters . 34
4.2 RACS vs RCP & SDC . 43

viii

Abstract

The popularity of online services such as web search, advertisement, social
networking, and recommendation systems has lead to a proliferation of data
center networks in the last few years. These services share a few common
themes. First, they are soft real time nature. Consequently, the response
time of tasks determines the quality of results, which in turn impacts oper-
ators revenue. Second, data centers typically employ a Partition/Aggregate
workflow pattern, in which user requests are partitioned amongst layers of
workers whose results are then aggregated. The returned responses from
workers are often synchronized, leading to the Incast problem. In addition,
data center applications generate a mix of traffic workloads. While most flows
are short (<100KB), a few long flows can saturate the path. Consequently,
such flows can lead to large queueing delays and thus affect delay-sensitive
traffic.

In this work, we leverage the above characteristics to design a protocol
that seeks to reduce average flow completion time (AFCT) within data cen-
ters. To this end, first, we explore the efficacy of flow size awareness for
reducing flow completion times in data centers. Second, we present the de-
sign, analysis and evaluation of a size aware delivery control protocol (SDC)
which incorporates these features to to achieve small flow completion times
while maintaining high network throughput and small queues. Third, we
present evaluation of a router assisted capacity sharing (RACS) framework.
Detailed performance analysis shows that RACS can improve AFCT of ap-
plications significantly, hence improve application throughput. Performance
comparison with existing schemes like rate control protocol (RCP) and TCP-
SACK shows that DC network performance can be significantly improved by
leveraging flow size information at transport layer.

ix

Chapter 1

Introduction

1.1 Motivation

The popularity of online services such as web search, advertisement, social
networking, and recommendation systems has increased immensely in the
last few years. Many of these services are hosted on data centers. Thus,
besides Internet, data center infrastructure plays a major role in the quality
of these services. Such services, constitute significant portion of traffic and
is expected to increase in future [2, 3]. One of the key performance metric of
such systems is average flow completion time (AFCT). Users care less about
system efficiency and throughput or the latency of individual packets; they
only care about their own flows.

Short FCTs also reduce the control loop delay of distributed applications
interacting over the network. So it is perhaps surprising that almost all work
on congestion control focuses on metrics such as throughput, bottleneck uti-
lization and fairness. While these metrics are interesting - particularly for the
network operator - they are not very interesting to the user. One of the most
important building block of providing these services is the resource sharing
and congestion control mechanisms employed within and outside data center
networks. Currently, TCP is the most widely used congestion control proto-
col within and outside data centers [1, 4, 5].

Since its inception, congestion control over Internet has gained significant
attention and as a result many new protocols have been proposed [5, 6, 7, 8].
However, when these protocols are applied within a data center network,
a significant performance limitation is observed [9, 10]. This incapability
has arisen due to diverse applications found inside a data center, high link

1

CHAPTER 1. INTRODUCTION 2

capacity, low latencies and data center architecture. Below we discuss char-
acteristics of today’s data centers, with a focus on aspects that influence the
design of transport protocol.

Partition/Aggregate

Large scale web applications such as search and social networks achieve hori-
zontal scalability by partitioning the task of responding to users amongst
several worker machines [4]. In addition, services like MapReduce [11],
Dryad[12], and Memcache [13] also follow this structure.

A consequence of the partition/aggregate workflow pattern is that re-
sponses from several servers frequently get synchronized at a router. This
can cause large queue build and burst losses at a router that can lead to
throughput collapse. This is known as the Incast problem [9]. Incast occurs
frequently and has been observed in several data centers.

Mix of flow sizes

In addition, data center applications generate a mix of traffic workloads.
While most flows are short (<100KB), a few long flows can saturate the
path, which suggests that flow sizes follow a heavy-tailed distribution (see
Table 1.1). Consequently, long flows can lead to large queuing delays and
thus affect delay-sensitive traffic. While long flows are delay insensitive, they
require high throughput because these stem from the need to update internal
data structures which can affect the quality of results returned [4], e.g., the
PageRank algorithm requires updating the ranks of pages by continuously
solving a Markov Chain).

Note: Background traffic (doesn’t include query traffic) which comprises
of short, medium, and long flows follow a heavy-tailed distribution. This is a
very important point for size-based differentiation because benefits are high
with heavy-tailed distribution.

Traffic Type Size
Query traffic (short flows) 2KB-20KB
Delay-sensitive messages (medium flows) 100KB-1MB
Throughput-sensitive flows (long flows) 1MB-100MB

Table 1.1: Traffic Types and Typical Workloads [1]

CHAPTER 1. INTRODUCTION 3

Near Real-Time/Soft deadlines

Many web applications are interactive in nature, which means that response
time is a key metric. The target response times are typically guided by cus-
tomer studies after accounting for network latency and other intrinsic delays.
These targets typically have soft-deadlines, [1], which in turn translate into
deadlines for worker machines. Additional latency affect has a significant
impact on operator revenue. For instance, an added latency of 100ms costs
Amazon 1% sales [14].

High capacity, low latency links

Data centers typically have high capacity links, however, RTTs within a data
center are only as high as a few 100 us. This suggests that typical BDPs
within a data center may not be too large. Note that TCP throughput is
related to the buffer size. To maintain high throughput while sustaining
low buffer occupancy, the backoff factor should be smaller than in TCP.
Consequently, the buffer size as well as the average queue occupancy can
significantly contribute to the overall response time.

Knowledge of flow size information

When incorporating flow-size awareness into a congestion control protocol, it
is useful to have a-priori knowledge of the flow size. For almost all interactive
web applications today, size of flows initiated by aggregators and workers is
known in advance [11]. For instance, in case of web search, queries sent
by aggregators to the workers are fixed in size, whereas, the responses from
workers include the topmmatching index records, wherem is specified in the
query. Consequently, the size of the response is known to the application even
before the worker begins processing. The same hold for other services such as
key-value stores [15, 16] and data processing [11, 12]. For applications where
this condition does not hold, the application designer can typically provide a
good estimate of the expected flow sizes. In the absence of such information,
a policy, such as Least-Attained Service (LAS), can also be used, which can
provide similar performance [17].

1.2 Data Center Transport Requirements

Based on the characteristics of data center environments, any transport pro-
tocol designed for data center should consider following design requirements.

CHAPTER 1. INTRODUCTION 4

High Burst Tolerance

Application workflow patterns often lead to synchronized bursts, therefore,
a protocol should be able to provide high burst tolerance to avoid incast.

Those connections are called as barrier synchronized since the final per-
formance is determined by the slowest TCP connection that suffers timeout
due to packet losses. The performance collapse of those many-to-one TCP
connections is called TCP incast congestion [10].

The traffic and network condition in data center networks create the three
preconditions for incast congestion as summarized in [9]. First, data center
networks are well structured and layered to achieve high bandwidth and low
latency, and the buffer size of ToR (top-of-rack) Ethernet switches is usually
small. Second, recent measurement study showed that barrier synchronized
many-to-one traffic pattern is common in data center networks [18], mainly
caused by MapReduce [11] alike applications in data center. Third, the
transmission data volume for such traffic pattern is usually small.

Minimize Flow Completion Times
(or Maximize Application Throughput)

The completion time (or response time) of a flow depends on three protocol
factors:

� Startup latency,

� Average queue length at the routers, and

� Bandwidth allocation policy.

A protocol should have low startup latency, maintain low queues, and appor-
tion bandwidth among flows as to minimize average flow completion times.
In data center the key to reduce average flow completion time is to maintain
small queues, because queuing delay can be significant portion of the RTT.
Small completion times for small flows/ queries mean increased application
throughput.

High Network Utilization

Given enough offered load, a protocol should achieve high network through-
put at all times. Achieving high network utilization while ensuring low queue
occupancy becomes challenging. Thus, suitable strategy should be adopted
to ensure high throughput.

CHAPTER 1. INTRODUCTION 5

Mechanisms for Speculative Scheduling

Since some flows may have soft deadlines, mechanisms should be in place to
pro-actively terminate flows that are likely to miss the deadlines so as to save
network bandwidth.

1.3 Transport Mechanism Design Choices

We now discuss the important design choices that help us achieve the goals
stated earlier.

Congestion Signal

In order to achieve high burst tolerance, it is important to inform senders
about incipient congestion so that they can react early and adjust their send-
ing rates before losses occur.

Congestion control protocols that rely on packet loss as a primary con-
gestion signal find it hard to obtain early congestion information because
when packet losses occur router queues are already full. While Active Queue
Management (AQM) schemes, such as RED [19] and REM [20], can provide
early congestion information, it is challenging for such scheme to simultane-
ously achieve high throughput and low delay, especially when there is low
statistical multiplexing which is common in data center environments. This
happens because traditional AQM schemes rely on binary congestion signals.

A multi-bit signal can allow both low delay and high throughput [1]. De-
lay is a multi-bit signal that can potentially be used for this purpose. How-
ever, round-trip times within data centers are typically very small (≈ 300µs),
the signal can be quite noisy. Moreover, detecting small changes in delay re-
quires high resolution timers. [1] uses a queue-threshold based AQM scheme
to adapt the sending rate based on the fraction of marked packets. While
this yields a multi-bit signal, it is coupled with the number of packets sent
by a flow. Consequently, flows with smaller congestion window sizes observe
higher level of congestion. This can increase the convergence time for newly
arriving flows and hence AFCT.

CHAPTER 1. INTRODUCTION 6

Bandwidth Allocation Policy

To maximize the number of flow completions per unit time, one can use in-
sights from scheduling theory, which informs us that the Shortest Remaining
Processing Time (SRPT) [21, 22] scheduling policy minimizes flow comple-
tion times in a single-server system [23]. SRPT can provide unbounded gains
in response times over the Processor Sharing (PS) policy under heavy load
when the flow size distribution is heavy-tailed [24]. SRPT assumes that when
a new flow (or a job in the terminology of queuing theory) arrives, the entire
flow‘s packets are present at the bottleneck queue and the router knows the
flow-size.

Our approach is to identify practical and close approximations to SRPT,
and create a congestion control algorithm that comes close to minimizing
FCT. For example, consider the Foreground Background (FB) policy [25],
proposed as an approximation to SRPT in the absence of flow size informa-
tion. FB gives service to the flow with the least attained service at any time
instant. If more than one flow has the least attained service, they get served
equally. FB policy has a bias towards small flows, and attempts to complete
the short jobs as quickly as possible. The upside of FB is it minimizes mean
flow completion time (among disciplines which have no knowledge of remain-
ing sizes), for a certain class of heavy-tailed flow-size distributions (such as
the Pareto distribution) [26]. The downside is routers still need information
on the so-far-completed flow length.

1.4 Thesis Statement

The thesis of this work is that “by introducing flow size awareness, data
center traffic characteristics can be leveraged to improve the average flow
completion times within data centers”.

Achieving such a goal raises several research challenges. The most impor-
tant one is: If we were to design a transport mechanism for data center, that
uses flow size information to apportion bandwidth with flows, from scratch,
how would we design it? This challenge leads us to the following questions:

1. How should flow size information be used?

2. What bandwidth sharing mechanism should be used? How does per-
formance of flows of different sizes vary with bandwidth sharing mech-
anism?

CHAPTER 1. INTRODUCTION 7

3. Where should bandwidth sharing mechanism be employed, at end-hosts
or routers? If employed at routers, how should the capacity share be
conveyed to end-hosts?

4. What congestion signal should be used to mitigate congestion and
maintain low queue occupancy?

1.5 Thesis Contribution

To address above mentioned questions and challenges, we make following
contributions.

We propose a mechanism of sharing network capacity between file trans-
fers of markedly different sizes. We perform this allocation at transport layer.
TCP does not differentiate on the basis of file size. We believe using flow size
info at transport layer can provide significant advantages. Thus, we leverage
heavy-tailed nature of DC traffic size [1]. Below, we present two cases for
utilizing flow size information to apportion bandwidth in data centers.

As a first case, we propose an end host based mechanism named as size
aware delivery control protocol (SDC), that applies different AIMD rules to
a flow based on its residual size. The traffic is divided in various classes,
based on its size, which have their own α, β parameters. This way, we pri-
oritize short flows by using larger α, β pair than long flows. We capture
protocol performance, using positive systems model, analyticaly. We also
implemented SDC in ns-2 to test protocol performance. Detailed description
is provided in chapter 3.

Secondly, we propose, router assisted capacity sharing (RACS), a network
assisted congestion control protocol. It uses rate feedback from routers to
control transmission rate of the flows. Another main difference from SDC is
absence of classes. Instead of discretized classes it provide a better aproxi-
mation to SRPT, than SDC. We implemented this scheme in ns-2 [27] and
compare its performance with RCP and SDC in different DC like settings.
Detailed description is provided in chapter 4.

CHAPTER 1. INTRODUCTION 8

1.6 Thesis Organization

The rest of the work is organized as follows:

Chapter 2 provides a background on data center congestion control pro-
tocols and discusses the size-based congestion control related work. Chapter
3, then presents SDC with its performance evaluation and its analytical anal-
ysis. This is followed by Chapter 4, which presents the design and simulation
study of the RACS protocol. In Chapter 5, we summarize our contributions
and discuss limitations of proposed protocols. Finally, we conclude with
possible future extensions.

Chapter 2

Related Work

Size based differentiation has been coupled with different TCP versions [24,
28, 29], to improve average flow completion time (AFCT) of the system. Most
of these studies have been done analytically with a very little emphasis on
implementation in real networks. Below we discuss few such efforts. We also
discuss few protocols specifically designed for DC environment and highlight
their pros and cons.

2.1 TCP & Size-based Scheduling

Yang et. al [28] proposed TCP SAReno, which adapts AIMD parameters
based on the residual flow size. This protocol faces following challenges when
used in a DC environment: First, TCP SAReno parameters do not depend
on which classes are active in the network. Consequently, long flows can
achieve very low throughput even in the absence of short transfers. Second,
TCP SAReno builds on TCP Reno and therefore, doesn’t address issues like
Incast. Finally, since the proposal was a proof of concept, a class-based anal-
ysis was conducted.

Zieglar et al. [29] proposed to modulate congestion control parameters
to improve the startup latency of short flows. In their scheme, a short flow
achieves no higher throughput than that of long flows, in order for the pro-
tocol to be incentive-compatible with existing TCP flows. Note that since
data centers are under a single administrative control, issues of incentives are
much less important than on the Internet. Moreover, like TCP SAReno, it
doesn’t address issues like Incast.

Balter et al. [24] proposed to improve the performance of web-servers

9

CHAPTER 2. RELATED WORK 10

servicing static HTTP requests by giving priority to short flows by control-
ling socket buffers. They also studied TCP doing SRPT approximation via
processor sharing.

Schrage et al. [23] emphasize the use of scheduling systems in single server
systems. Using analytical tools authors shows that SRPT based scheduling
can provide unbounded gains over simple PS scheme. Some other scheduling
schemes like least attained service (LAS) [17], earliest deadline first (EDF)
[30] also highlight the gains introduced in the performance by simple yet in-
telligent scheduling schemes.

With all the above proposals, long flows can significantly under-utilize the
network because they use fixed parameters irrespective of the load and/or the
presence of other flows in the network. These works are the basic foundations
behind our application of SRPT like scheme in data center networks.

2.2 Data Center Transport Protocols

Recently, keeping in view the challenges imposed by DC, few protocols [1,
9, 10, 31] have been proposed to improve the performance of DC transport.
Below, we discuss pros and cons of these schemes.

2.2.1 Incast TCP (ICTCP)

Some application-level solutions to mitigate Incast problems include jittering
responses or batching responses in small groups. These solutions mitigate
Incast, but increase the median response time. Recently, researchers have
shown [9, 10] that lowering the RTOmin to 1ms, and using high-resolution
retransmission timers can help alleviate the impact of Incast induced time-
outs. But this does not prevent queue buildup; and hence does not address
latency issues.

2.2.2 Data Center TCP (DCTCP)

DCTCP [1] achieves low queue occupancy and addresses Incast by trading off
the convergence time of new flows which includes latency critical, short flows.
This happens because DCTCP couples the backoff factor with the window
size of flows. Since the backoff factor is based on the fraction of marked
packets, flows with small congestion window sizes, such as new flows, get a
larger fraction of their packets marked. DCTP reduces the convergence time

CHAPTER 2. RELATED WORK 11

of new flows when competing with existing flows that have a larger window
size. The reason is that DCTCP sources compute the backoff factor based on
the fraction of marked packets. Since new flows have shorter windows when
their packets get marked, they backoff by a greater amount. The authors
report that DCTCP can increase convergence times by a factor of 2-3 over
TCP. In particular, the AFCT of short flows can be elongated.

2.2.3 D3 Congestion Control

Recently [31] proposed a protocol, named D3, that exploits flow deadlines and
size information to assign transmission rate to flows. D3 sets its transmission
rate based on the rate feedback from the network. Their main goal is to
improve application throughput, which is defined as the number of flows
that meet their deadlines. D3 faces two main issues that limit its gains
when applied in a real network. First, it does not necessarily reduce flow
completion times since deadline-driven flows may not be short. Second, it
focuses on hard deadlines that are hard to predict because of queuing delays
and congestion in DC network. However, soft deadlines are common in data
centers,

Summary

In this chapter, we discussed common approaches followed to aproximate
SRPT in computer networks. We also discussed few recents works specific
to the DC environment and stated their limitations. In next two chapters,
we present our proposed protocols to improve AFCT within DC network.

Chapter 3

Size Aware Delivery Control
(SDC)

3.1 A Simple Illustration

Figure (3.1) shows the basic ingredients of our protocol. Traditional TCP
schemes assign same level of aggressiveness to all flows. At routers, AQM
or ECN based mechanism is employed to control congestion in the network.
These schemes give rise to the issues discussed in chapter (1).

Our protocol uses load information at routers to quantify congestion level
in the network and adapt congestion window accordingly. Use of load factor
allows us to maintain small queues at the routers. Besides, we use different
classes to control the behavior of flows with different sizes. This allows us
to assign higher throughput to short flows and hence improve application
throughput. To make sure long flows do not suffer performance degradation
in the absence of short flows, routers provide information about the highest
priority flow in the network to end hosts. Benefit is that lower priority
class can use parameters of higher class in the absence of higher class, hence
improve network throughput.

3.2 Protocol

In this section, we describe different components of the protocol. Some im-
portant notations used are listed in Table 3.1:

12

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 13

Class L

Class M

Class H

Amount of data a
class sends per
unit time in the

network

1Gbps, 100usec

Load info and
highest priority

class index
Client Server

1Gbps, 100usec

Amount of data a
class sends per
unit time in the

network

1Gbps, 100usec

AQM / ECN Server

1Gbps, 100usec

Client

Traditional Congestion Control

Proposed Protocol

Figure 3.1: Basic Protocol

3.2.1 Sender

The protocol sender maintains three classes: {High, Medium, Low} denoted
by A, B, and C, respectively. Each class has an associated (γc, αc, βc, rc) tuple
that defines the priority of class c ∈ {A,B,C}, where γc is the multiplicative
increase parameter, αc the additive increase parameter, βc the multiplicative
decrease parameter, and rc the maximum remaining flow size belonging to
class c when all classes are active.

In particular, we have the following relationship between parameters
across different classes

� (γA, αA, βA) ≥ (γB, αB, βB) ≥ (γC , αC , βC)

� rA ≤ rB ≤ rC

where (u, v, w) ≥ (x, y, z) means that u ≥ x, v ≥ y, and w ≥ z.
A flow initially applies multiplicative increase (MI) until the first overload

event as
w(t+ T) = w(t)× (1 + γc) (3.1)

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 14

Protocol Description
Sender

γc Multiplicative increase parameter
αc Additive increase parameter
βc Multiplicative decrease parameter
rc Maximum remaining flow size

Router
f Load factor on router
C Link capacity
tp Measurement interval
λ Total bytes arrived in tp
qav Average queue maintained at a router

Table 3.1: SDC Parameters

When f < 1, a flow applies additive increase (AI) as follows:

w(t+ T) = w(t) + αc (3.2)

When f ≥ 1, flows apply multiplicative decrease (MD) to the congestion
window size as

w(t+ δt) = βc × w(t) (3.3)

where T is the round-trip time, δt → 0, γc > 0, αc > 0, and 0 < βc < 1.

Flow-to-Class Mapping: Since the goal of protocol is to approximate
SRPT at sender, each flow n ∈ {1, 2, .., N} is initially mapped to a class
based on its remaining flow size rn as follows:

� Class A if rn ∈ [1, rA]

� Class B if rn ∈ [rA, rB]

� Class C if rn ∈ [rB,∞]

As rn of flow decreases, they graduate to higher priority classes.

Since the goal of the protocol is to reach a steady state where the system
is near full link utilization, this mapping changes dynamically according to
the following rules:

� When all classes are active, flows use parameters based on their class.

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 15

� When only two classes are active, specifically, B and C, flows use pa-
rameters of class A and C, respectively. When classes A and B or A
and C are the only classes present, their behavior remains unchanged.

� When only one class is active, it behaves as class A.

Dynamic mapping of flows to classes is useful in ensuring high network
throughput at all times. For instance, suppose there are only long flows
in the network that start in class C. Since class C uses conservative param-
eters, this is likely to lead to under-utilization. However, since it is the only
class, it should be able to use more aggressive parameters.

3.2.2 Router

The router performs two functions: (a) it computes the f periodically and
(b) it maintains the index of the highest class that is currently active. The
load factor is computed as follows [32]:

f =
λ+ qav
Ctp

(3.4)

where tp is the measurement interval, C is the link capacity, λ is the total
bytes arrived in tp, and qav is the average queue length.

To achive (b), a counter for three classes is maintained at the routers.
When a SYN packet of a flow from a particular class is received counter is
incremented and is then decremented on receiving FIN packet.

The load factor is conveyed, using ECN bits, to the receiver which sends
it to sender using TCP options field. The highest priority class info is com-
municated using ToS field in IP header.

3.2.3 Receiver

The protocol receiver is the same as that of TCP with the exception that it
copies f as well as the index of the highest priority class that is currently
active in the acknowledgement packets sent to the sources.

3.3 Design Challenges

Our main goal is to approximate SRPT behavior at End-hosts using minimal
information from the network. To achieve so, we use size based bandwidth

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 16

allocation policy at end-hosts. This approximation arises many questions
that need to be addressed.

How to Approximate SRPT From The End-hosts?

To approximate SRPT at end-hosts we use residual flow size based window
adaptation. This is achieved by having (α, β) parameters dependent on re-
maining size of flow. We distribute flows in class based on their size and
assign a (α, β) to that class. It is to be noted that all the flows within a class
use same (α, β) parameters. This mechanism gives priority to short flows
and helps us improve AFCT.

What (α, β) Parameters to Choose for Each Class?

α and β play a major role in avoiding Incast and achieving high throughput.
In data center networks we have very small BDPs, thus α, β needs to be
controlled intelligently.

1. For α we may not have too much room above 1, as it would increase
burstiness and create Incast problem. Which as a consequence may
also result in increased AFCT of short flows. Therefore, we have α < 1
in our case.

2. For β, we have a wide range of options that can be used. We can vary
it from 0.1 to 0.9 depending on the network load at bottleneck link and
flow size.

SRPT Approximation: Can Classes be Avoided?

We use SRPT for flow size based control laws, i.e., adapt our control laws
so that long flows are less aggressive than short flows. One way to achieve
it is by having control laws as a function of flow size as done in [29, 28]. In
DC environment we believe this can reduce throughput of a long flow. As a
worst case scenario if we have only one long flow, as we maintain small buffer
occupancy and use less aggressive parameters (control laws), we may not use
link fully.

To achieve full link utilization: a) A long flow may use aggressive pa-
rameters (same as that of short flow) or b) Another approach can be to
dynamically adapt size of buffers at routers, such that in the presence of

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 17

long flows only we have higher buffer occupancy, otherwise low buffer occu-
pancy.

To achieve, a), the end hosts must have information regarding current
highest priority flow in the network. Using b), we can achieve higher through-
put for long flows as well. But it has a downside that latency of short flows
increases. We need to identify queue thresholds and which packets to be
dropped when a short flow joins the network. As DC traffic is largely com-
prised of short flows so we may also have frequent oscillations in buffer size
requirements at routers. Therefore, it is necessary to have classes to reduce
burden of such signaling mechanisms.

3.4 Analysis

In this section, we analyze the impact of different parameters on the perfor-
mance of SDC using a model. In particular, we study how the choice of class
parameters allows us to achieve different performance tradeoffs in terms of
throughput and AFCT.

3.4.1 Model

Consider N flows, indexed by i = 1, . . . , N , sharing a single bottleneck link.
We model this as an AIMD system in which each flow can use different αi

and βi parameters, similarly to the models of [33, 34].

Let R+ = [0,∞) and let (·)′ denote transpose. The state of the system
is a vector w(k) ∈ RN

+ of window sizes indexed by a discrete time variable
k. All amounts of data will be measured in units of packets (assumed to be
equal for all flows) and all times will be measured in units of the slot, tp.

Flows are assumed to be synchronized and for ease of presentation, we
ignore the connection setup time, which can be easily incorporated into the
model. We assume that a flow spends most of its time in the AIMD phase,
which is true when the flow size is large relative to the per-flow BDP of the
path; which largely holds in data center environments [1].

We assume flows to have homogeneous RTTs equal to T = tp and that
each source is informed of congestion one RTT after the overload event.
Define a backoff event to be a slot in which f exceeds 100%. We model the

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 18

total traffic arrived as

N∑
i=1

wi(k) = P +
N∑
i=1

αi, ∀k > 0 (3.5)

where wi(k) ≥ 0,∀i, k ≥ 0, P = ClTd is the maximum number of packets
that can be in transit in the network at any time, Cl is the link capacity in
packets per second and Td is the round-trip time when the queue is empty.

At the (k + 1)th backoff event, we have

wi(k + 1) = βiwi(k) +
αi∑N
j=1 αj

[
N∑
i=1

(1− βi)wi(k)

]
. (3.6)

Then the dynamics of the entire network of sources are described by [33]

W (k + 1) = A(k)W (k), (3.7)

where

A(k) = diag(β) +
1∑N

j=1 αi

α(e′ − β′), (3.8)

W (k) = [w1(k), . . . , wN(k)], β(k) = [β1, . . . , βN], α = [α1, . . . , αN], and
e = (1, . . . , 1)′ ∈ RN×1.

3.4.2 Average Throughput

We now use the above model to determine the average throughput of flows
when AIMD sources using αi and βi parameters co-exist. By [33], the network
described by the model (3.5)−(3.8) converges to a unique stationary point
Wss = θxp, where xp is

xT
p =

[
α1

1− β1

,
α2

1− β2

, . . . ,
αN

1− βN

]
(3.9)

and θ is a positive constant such that constraint (3.5) is satisfied. Therefore,

θ =
P +

∑N
i=1 αi∑N

i=1
αi

1−βi

(3.10)

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 19

Note that the vector Wss provides the maximum congestion window of
flows i.e. the window size at a backoff event once the network has converged.
Therefore, the maximum throughput Si,max of a flow i is then given by:

Si,max =
θ · αi

T (1− βi)
. (3.11)

In steady state, the window size of each flow varies between βiθαi

1−βi
and

θαi

1−βi
. Consequently, the long-term average throughput of flow i is given by

Si,av =
θ · αi

T (1− βi)

(
1 + βi

2

)
. (3.12)

The average network throughput is then given by:

S =
1

T
Wssβ

′
av (3.13)

where βav =
1
2
[1 + β1, 1 + β2, . . . , 1 + βN].

If a flow spends most of its time in the AIMD phase, then the flow com-
pletion time can be approximated by

T = d/Si,av (3.14)

where d is the flow size in packets.

3.4.3 Application Throughput

An important metric that most operators are interested in is number of flows
completed per unit time in their network. It is important to compare the
performance of proposed protocol under different class settings. Let’s say T
is the reference period to compare different protocol settings. Then, for c
number of classes we can estimate the total number of flows completed as
follows:

Ftotal =
c∑

i=1

TNi

AFCTi

(3.15)

.
Where Ni is the number of flows completed in class c.

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 20

3.4.4 Approximating SRPT

The analysis in the previous section allows us to determine the throughput
and AFCT of AIMD sources using different but fixed parameters. This can
be viewed as a Weighted Processor Sharing (WPS) system where each queue
has a priority defined by the AIMD parameters. However, with SDC, which
aims at approximating SRPT, a flow may traverse one or more classes dur-
ing its transfer and hence may change its parameters as a function of the
remaining flow size.

To capture this behavior, we change αi and βi parameters of each source
depending on its size as well as the class thresholds, which together impact
the time a flow spends in each class. For instance, a flow which sends most
of its packets in class C uses class C parameters for a large fraction of its
packets. Therefore, for the jth class, where j ∈ {2, .., c} we have

α′
j = αj ·

dj − d(j−1)T

dj
+

j−1∑
i=1

αi ·
diT − d(i−1)T

dj
, (3.16)

β′
j = βj ·

dj − d(j−1)T

dj
+

j−1∑
i=1

βi ·
diT − d(i−1)T

dj
(3.17)

where dj is the size of a flow starting in class j, djT is the class thresh-
old/maximum size of class j, and d0 = d0T = 0. Since j = 1 refers to the
highest priority class, the parameters used by flows starting in this class do
not vary over their lifetime.

Example. As an example, consider the following scenario: Suppose a
single flow with size 1000 packets starts in class C. Let the thresholds of
class A and B be 50 and 100 packets, respectively. Then a flow employs the
following average AIMD parameters:

α′ = 0.9αC + 0.05αB + 0.05αA

β′ = 0.9βC + 0.05βB + 0.05βA

The above analysis shows that the performance of the network can entirely
be controlled by the operator based on the suitable choice of class sizes and
α, β values of that class.

3.4.5 Class Based Analysis

In this section, we perform analysis based on the model presented in the
previous section to help guide the choice of key protocol parameters. To aid

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 21

Class A Class B Class C
GAC=2 GBC=2 (0.5, 0.5)
GAC=5 GBC=2 (0.5, 0.5)
GAC=10 GBC=2 (0.5, 0.5)
GAC=50 GBC=2 (0.5, 0.5)
GAC=100 GBC=2 (0.5, 0.5)

Table 3.2: Varying Class A Gain

analysis, we define the throughput gain of one class over the other as,

Gain = G12 = S1/S2 =
α′
1(1− β′

2)(1 + β′
1)

α′
2(1− β′

1)(1 + β′
2)

(3.18)

where Sj, α
′
j, and β′

j, j ∈ {1, 2} is the throughput, additive increase, and
multiplicative decrease parameters for flow j, respectively. This ratio also
helps us estimate α, β tupple for one class based on the knowledge of gain
and α, β tuple of another class.

Here, for simplicity of analysis we assume that load in the network is
constant. For ease of tractability, we use three classes (A, B and C) to
approximate the behavior of SRPT. While more classes can allow more closer
approximation, it can complicate the choice of parameters. Note that the
model is applicable to any number of classes. The class thresholds are taken
as da = 50, db = 100 and dc = 100000 packets. These thresholds are based
on flow sizes observed in real data centers [1, 4]. These can be varied in
accordance with the observed flow patterns. Unless stated otherwise, in each
of the classes, we set number of flows as Na = 15, Nb = 5, Nc = 1 to reflect
a heavy-tail distribution [1], and RTT = 300µ s, which reflects a typical RTT
within a data center.

Impact of the Degree of Priority on Performance

In this section, we analyze the tradeoff between the improvement in AFCT of
higher priority traffic and the throughput degradation of low priority traffic.
We capture this tradeoff by adjusting the throughput gain Gij. We pick one
class, vary its gain over other classes and analyze the impact on AFCT and
throughput of different classes.

In the first scenario, we vary the gain of class A with respect to class C
while using fixed parameters for class C and class B (see Table 3.2). Figure

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 22

45

55

65

75

85

40

60

80

100

120

A
F

C
T

 (
m

se
c)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

25

35

45

0

20

40

1 2 5 10 50 100

A
F

C
T

T
h

ro
u

g

Gain (Class A)

Throughput (Class A) Throughput Class(B)

Throughput (Class C) AFCT (Class A)

Figure 3.2: Network Behavior for Class A Gain

(3.2) shows the AFCT of class A flows and the throughput of class B and
class C flows as function of GAC . Observe that as the gain of class A increases
from 2 to 100, its AFCT improves by ≈30ms, whereas, the throughput of
class B and C reduces to ≈5Mbps and 1Mbps, respectively. The results also
show that beyond a gain of 10, we get diminishing returns for class A at the
cost of a significant throughput degradation for class B and C. Gain setting
of 1 shows that all classes get fair share of the bandwidth when using same
parameters.

Next, we set GAC =10 based on the observations from the previous sce-
nario and vary GBC . Table (3.3) shows the corresponding settings. Figure
(3.3) shows that as the gain of class B increases, its AFCT improves signif-
icantly. This happens because with the increase in gain, the aggressiveness
of class B approaches that of class A. We can see that throughput of class B
increases at the cost of drop in gain of class A. This behavior is dependent
on the effective α, β values that it gets depending on the class thresholds
and gain over other classes. Thus, it is important to analyze the effect of
class thresholds on the algorithm performance, which is the subject of next
section.

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 23

Class A Class B Class C
GAC=10 GBC=1 (0.5, 0.5)
GAC=10 GBC=2 (0.5, 0.5)
GAC=10 GBC=5 (0.5, 0.5)
GAC=10 GBC=10 (0.5, 0.5)

Table 3.3: Varying Class B Gain.

55
65
75
85
95
105
115

30
40
50
60
70
80
90

A
F

C
T

 (
m

se
c)

T
h

ro
u

g
h

p
u

t
(M

b
p

s)

25
35
45
55

0
10
20
30

1 2 5 10

A
F

T
h

ro
u

g

Gain (Class B)

Throughput (Class A) Throughput Class(B)

Throughput (Class C) AFCT (Class B)

Figure 3.3: Network Behavior for Class B Gain

Impact of Class Thresholds

The AFCT of a flow depends on the time a flow spends in each class, which
in turn depends on the throughput it achieves in each class. This is closely
tied with the size of a flow as well as the size threshold for the class. As
shown above, in class based system the performance of a flow is determined
by the share of the bandwidth it gets during its lifetime. To capture this
effect, we set db = 100, dc = 1000000 packets and vary da to show the effect
on throughput of class A and B.

Figure (3.4) shows that as the class threshold of class A increases, its
throughput decreases. But, we get significant gains in throughput of class
B. This holds true for flow size in the range of class B threshold only. In
addition, class C get diminishing performance improvements. One of the

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 24

15

20

25

30

35

40

60

80

100

120

F
C

T
 (

m
se

c)

u
g

h
p

u
t

(M
b

p
s)

0

5

10

0

20

40

10 30 50 70 90

A
F

C

T
h

ro
u

g

Class A Threshold (Packets)

Throughput (Class A) Throughput (Class B)

AFCT (Class A) AFCT (Class B)

Figure 3.4: Impact of Class A Threshold

key take away from this is that, if we have too many classes and they do not
have significant difference in gains, we get minimal advantage in performance.
Thus, having too many classes is not optimal from protocol management per-
spective. This happens because the effective α, β parameters used in a class
depend on their size thresholds. And if there are many classes without much
difference in their gains, we have to control many variables at the cost of
minimal performance improvement.

Next, we study the impact of varying the class A threshold on the β
parameter1. Figure (3.5) shows that when the class A threshold increases,
sources starting in class B become more aggressive and as a result experience
throughput increase. But as the total number of flows increases, small flows
share bandwidth with more flows, hence throughput of small flows starts de-
grading.

Above analysis, shows that our model captures the SRPT behavior effec-
tively. Variation in class threshold here captures the bandwidth share a class
gets, which indirectly captures the time a flow spend in each class.

1Note that the effective α does not change since both class A and class B use the same
values.

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 25

10 20 30 40 50 60 70 80 90

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

SizeThreshold Class A

B
et

a

Class B
Class C

Figure 3.5: Class A Threshold vs Beta of Class B and C

3.5 Evaluation

In this chapter, we evaluate and compare the performance of Size Aware De-
livery Control Protocol (SDC) with TCP SACK and TCP SACK+RED/ECN
in DC environment. The main goal is to check working of SDC as a conges-
tion control protcol and then test its performance based on the insights from
Section (3.4) in chapter (3).

First, we evaluate the basic properties of the SDC algorithm, as a con-
gestion control protcol. We examine its throughput and queuing behavior
in single and multi-hop environment. Second, we show a series of micro-
benchmarks that explain how SDC ameliorates the data center specific per-
formance impairments, such as Incast and large queue build-ups and provides
us benefits in AFCT. Finally, we evaluate SDC using a benchmark generated
from the traffic measurements in [1, 31].

We use the topology shown in Figure 3.6 with 1Gbps, 300µsec links. We
use static buffer size of 100 packets at the routers as in [1], unless otherwise
mentioned. Here only three servers in each rack are shown but in some
scenarios, we assume that there are more than three servers within a Rack.

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 26

1 32 4 65 7 98

Rack A Rack B Rack C

`

TOR Switch

Root Switch

S1 S2
S3

S4

Figure 3.6: Network Diagram

3.5.1 Basic Testing

Our main goal here is to test whether SDC achieves the same throughput as
TCP on long-lived flows. Below we discuss two scenarios.

Single Bottleneck Scenario

In this scenario, we assume multiple hosts are connected within one Rack
with ToR switch S1, Figure 3.6. One host acts as a receiver and all other
hosts send data to this machine, through ToR Switch (S1). Long-lived flows
are started between senders and the receiver. We repeat experiment with
different number of senders sending data to the receiver.

Figure 3.7 shows that SDC maintains at least 95% link utilization. This
behavior remains same as the number of senders is increased. This shows
that with SDC, long flows can maintain high throughput in the absence of
short flows while maintaining small queues (see Figure 3.8),

On the other hand, SACK-Droptail achieves about ∼3% higher through-
put but maintains large average queue length as shown in Figure 3.8. While

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 27

 80

 85

 90

 95

 100

 5 10 15 20

A
ve

ra
ge

 U
til

iz
at

io
n

(%
)

Number of Senders

SDC
SACK Droptail

SACK-RED ECN

Figure 3.7: Long Flows Only: Average Throughput

SACK+RED/ECN maintains smaller queues, its average throughput de-
grades as the number of senders is increased.

Multi-hop Networks

To evaluate SDC performance in a multi-hop, multi-bottleneck environment,
we use a three hop topology, using Rack A, S1, S4, S2 and Rack B, Figure
3.6. A total of 4 flows, 1 → 2, 2 → 3, 4 → 3 and 4 → 5are generated. First
three flows share a bottleneck switch S1, and the last flow shares link from
host 4 to S2. In this multi-bottleneck, multi-hop scenario, first three flows
achieve an average throughput of 298 Mbps each, and last flow an average
throughput of 604 Mbps. This shows that SDC protocol performs well in
bottleneck scenarios.

3.5.2 Data Center Specific Impairments

In this section, we compare the performance of protocols under typical data
center like environment. First, we consider the Incast scenario. Second,
we consider the case when only short queries and long flows co-exist. This
scenario help us capture the improvements, SDC brings, in terms of AFCT,

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 28

 0

 10

 20

 30

 40

 50

 10 12 14 16 18 20

Q
ue

ue
 (

P
ac

ke
ts

)

time (sec)

SDC
SACK-RED ECN

SACK Droptail

Figure 3.8: Long Flows Only: Queue Length

small queue build-ups and high link utilization.

Incast Scenario

In SDC, we make short flows more aggressive to increase their network share
of bandwidth. It may cause Incast problems in small BDP environments like
DC. Thus, to predict SDC behavior in sudden flash crowd scenario, we use
topology similar to the long lived flows scenario. Each client requests 25KB
queries from n different servers, and each server responds with the requested
amount of data. This pattern is repeated 500 times.

Figure 3.9 shows the AFCT of different protocols in this scenario. We
can see that using RTOmin ≈ 10msec, helps TCP mitigate Incast, as shown
by very small few losses in Figure(3.10). Observe that all protocols achieve
roughly similar AFCT performance when the number of servers is small.
However, as the number of servers increase SDC shows improvement in
AFCT. With TCP, loss rate increases with the number of servers as shown
in Figure 3.10.

While, this is not the case with SDC, it avoids incast by having zero losses

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 29

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 5 10 15 20 25 30 35 40

A
F

C
T

 (
m

se
c)

Number of Servers

SDC
SACK-RED ECN

SACK Droptail

Figure 3.9: Incast: AFCT Comparison

and also maintains small queues, which results in overall AFCT improvement.

Mix of Short and Long Flows

Performance analysis of SDC in a scenario, where flows from Class A and
Class C co-exist in the network is of significant importance. In such a sce-
nario, long flows may occupy buffer space and as a result performance of
short queries degrades. To test this scenario we connect four hosts to a
switch S3, Figure3.6. Two hosts generate long-lived background traffic. One
host acts as a receiver and one host generates the response flow lengths uni-
formly distributed across [2KB, 50KB]. This, represents the 75th percentile
traffic multiplexing in data center networks [1].

Figure (3.11), shows the comparison of SDC and SACK under above con-
ditions. All the protocols maintain high throughput TCP ≈ 99% and SDC
≈ 98%, but there is a significant difference in the AFCT of flows across pro-
tocols. There are three reasons for this: First, SDC assigns higher priority to
short flows, maintains small queues (see Figure 3.12), and introduces negligi-
ble loss rate. On the other hand, TCP SACK maintains large queues, which
considerably increases the latency of short flows.

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 30

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 5 10 15 20 25 30 35 40

F
ra

ct
io

n
of

 p
ac

ke
ts

 lo
st

Number of Servers

SDC
SACK-RED ECN

SACK Droptail

Figure 3.10: Incast: Loss Behavior

2.6
0

12 13.2

42.4

13.4

0
5

10
15
20
25
30
35
40
45
50

AFCT (msec) Loss (%)

SDC SACK-DropTail SACK-RED

Figure 3.11: Mix Flows: AFCT and Loss Rate

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 31

SDC SACK SACK w ECN
AFCT (msec) 2.6 12 42.4
Utilization(%) 98.11 99.99 99.99
Loss Rate 0 0.134 0.132

Table 3.4: SDC Comparison with TCP

 0

 10

 20

 30

 40

 50

 60

 70

 10 15 20 25 30

Q
ue

ue
 (

P
ac

ke
ts

)

time (sec)

OUR
SACK Droptail

Figure 3.12: Mix Flows: Queue Size (Packets)

3.5.3 Benchmark Traffic

In case of mix of short and long flows we observed that SDC improves AFCT
performance significantly. In this section we discuss SDC performance under
more general settings common in most data center networks. We generate
Pareto distributed traffic with shape parameter 1.2 and average response size
of 25KB. To have all mixes of flows we generate two long flows in the back-
ground. Figure 3.13 shows that three protocols show comparable behavior
at low loads, but as the arrival rate of flow increases, AFCT of TCP flows
increases significantly, largely because of large queue buildups and increased
loss rate. On the other hand, performance of SDC largely remains same even
at arrival rate of 2000 flows/sec.

CHAPTER 3. SIZE AWARE DELIVERY CONTROL (SDC) 32

0

2

4

6

8

10

12

100 1000 1300 2000

A
F

C
T

(m
se

c)

Flow Arrival rate (flows/sec)

SDC
SACK-DropTail
SACK-RED

Figure 3.13: Benchmark Traffic: AFCT

3.6 Summary

In this chapter, we proposed SDC, with a design goal, to improve AFCT
in data center. Through analysis and ns-2 simulations we show that SDC
provides significant advantages when compared to TCP SACK w/o ECN.
SDC is a class based protocol, which limits its capacity to approximate SRPT.
So we ask ourselves a question, is it possible to approximate SRPT in a better
way? Can we do it without classes? This resulted in RACS, that we discuss
in next chapter!

Chapter 4

Router Assisted Capacity
Sharing (RACS)

Figure (4.1) shows the basic ingredients of routed assisted capacity sharing
(RACS) protocol. RACS needs applications to share flow size information.
The source endhost uses this information to compute the weights to control
the behavior of flows with different sizes. The weight wt is computed as
follows:

wt = wmin + wmax ∗ exp(−afr(t)) (4.1)

where wmin, wmax and a are system parameters and fr is the remaining
flow size. Routers quantify share of capacity based on this weight and inform
sources about transmission rate.

4.1 Protocol

Next, we describe different components of the protocol. Some important
notations used are listed in Table 4.1:

Figure 4.1: Basic Protocol

33

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 34

Protocol Description
Sender

wp Weight based on previous remaining size
wc Weight based on current remaining size
ttrans Length of transmission round

Router
R Rate assigned to a flow
C Link capacity
tp Measurement interval

Table 4.1: RACS Parameters

4.1.1 Sender

The protocol sender maintains flow weight information, that it shares with
the network, once every transmission round, ttrans. Sender estimates, using
equation 4.1, the weights wc, based upon remaining size of the flow.

Sender updates routers with its weight by sending a rate request packet,
RR, every ttrans. A RR packet, shown in figure 4.2, carries wc, wp, Rate,
RTT , & ttrans fields. Each flow starts by sending a SYNC packet with
wp = 0 and wc calculated based on flows’ initial size. In next round a packet
with rate request is sent with wp = wc. In every round wp & wc are updated.
At the end of transmission, sender sends a FIN packet with RR as , wc = 0.
Transmission round length, ttrans, is adjusted based on feedback from the
receiver, which is the smallest measurement interval (tp) across the path.
Source gets a feedback from the network about transmission rate, calculated
using equation 4.2 according to its weight. The source sends data at allocated
rate for a time ttrans while piggybacking a rate request on one of the data
packets.

4.1.2 Receiver

The protocol receiver is the same as that of TCP with the exception that it
copies R and ttrans in the acknowledgement packets sent to the sources.

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 35

Figure 4.2: Rate Request Format

4.1.3 Router

For a link with capacity C, the rate R allocated to ith flow is given as follows:

Ri =
wi ∗ C
W

(4.2)

where wi is the weight of flow andW is the sum of weights of flows travers-
ing that link. The rate allocated to a flow is valid for the next ttrans ≈ RTT ,
after which the flow must request again.

Thus, a rate request at time t serves two purposes: (1). It requires the
router to update W estimate, and (2). It requires router to allocate rate R(t)
for the next transmission round.

4.2 Design Challenges

The foregoing design raises some questions, which are now addressed.

Slotted rate allocation

The rate allocation description above assumes the router has the rate re-
quests for all flows at the same point in time. In reality, the router needs
to make allocation decisions in an online, dynamic setting, i.e., rate requests
are spread over time, and flows start and finish.

Performing both the actions in a single slot is not possible. Thus, the
rate allocation operates in a slotted fashion (from the perspective of the end-
hosts). We call this slot, tp, measurement interval. In one time slot router

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 36

calculates W based on the wc of all the flows passing through it. In next slot
it assigns rate to the flow based on this estimate.

To achieve (1), the router needs to know the weight of the flow, which
is conveyed through probe packets. To achieve (2), the router must know
the previous weight which was used to estimate W , otherwise capacity esti-
mate will be wrong. For this, a router could maintain weights of each active
flow passing through it. However, since most flows are very short, such an
approach is too heavy-weight, not to mention router memory intensive. We
avoid the need for per-flow state on routers by relying on endhosts to convey
wp of each flow. Specifically, each rate request packet, apart from the future
weight wc, contains the weight, wp, used to estimate W in the previous in-
terval.

Given this, we can now describe how packets are processed by routers.
Packets without rate request headers are forwarded just as today. The router
first uses the packet header information to perform bookkeeping. The router
performs two functions: (a) it computes the W and avgRTT periodically
and (b) For each RR, it copies rate R(t) and tp, if its estimate is lower than
current values in packet header.

For every incoming RR, W is updated as follows:

W = W + wc − wp (4.3)

Note: Router sets tp = avgRTT . At sender we have round length, ttrans,
which is the minimum of this value along the flow path.

Incast & initial rate assignment

Bursts of flows are common in data centers. Such bursts are particularly
challenging because of tiny RTTs in the data center. With a typical RTT of
300µ s, a new flow sending even just one 1500-byte packet per RTT equates
to a send rate of 40Mbps! Most TCP implementations shipping today start
with a send window of two packets and hence, a mere 12-13 new flows can
cause queuing and packet loss on a 1Gbps link.

With RACS, a new flow starts with a rate request packet with the SYN
flag set. This adds the flow in the network and updates W . Next we send a
rate request packet which gets the rate allocation for that flow. Thus, a flow
is first admitted in the network and then assigned a transmission rate. This

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 37

implies that a new flow does not make progress for an extra ttrans ≈ RTT
at startup. But, RTTs are minimal, and this approach trades-off a minor
overhead in bandwidth and latency (one RTT) for burst tolerance. Our
evaluation shows that this vastly improves RACS‘s ability to cope with flow
bursts over the state of the art. This is the case only if router buffers are
allocated in bytes. If router buffers are calculated in terms of packets then
we do not see much of a gain.

Rate probing

In above rate assignment policy, it is also possible that a flow might get rate
of less than one packet per ttrans. In this case we can either reduce packet size
or send packets less frequently. To ensure a flow do not starve completely,
we use second approach, flows are assigned a base rate that allows them to
send a header-only packet per ttrans. Our protocol also has the flexibility to
adjust rate in terms of packets per ttrans, which help avoiding starvation of
long flows.

4.3 Evaluation

In this section, we evaluate and compare the performance of Router Assisted
Capacity Sharing (RACS) with RCP and SDC in DC environment. We
use same simulation topologies and scenarios for performance evaluation as
chapter 3.

4.3.1 Basic Testing

Our main goal here is to test whether RACS achieves the same throughput
as RCP & TCP on long-lived flows. Below we discuss two scenarios.

Single Bottleneck Scenario

In this scenario, we assume multiple hosts are connected within one Rack
with ToR switch S1, Figure 4.3. One host acts as a receiver and all other
hosts send data to this machine, through ToR Switch (S1). Long-lived flows
are started between senders and the receiver. We repeat experiment with
different number of senders sending data to the receiver.

Figure 4.4 shows that RACS maintains 100% link utilization. This be-
havior remains same as the number of senders is increased. This shows that

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 38

1 32 4 65 7 98

Rack A Rack B Rack C

`

TOR Switch

Root Switch

S1 S2
S3

S4

Figure 4.3: Network Diagram

with RACS, long flows can maintain high throughput in the absence of short
flows while maintaining small queues (see Figure 4.5). On the other hand,
throughput of RCP is low for small number of flows as RCP follows a con-
servative approach while updating window size.

Multi-hop networks

To evaluate RACS performance in a multi-hop, multi-bottleneck environ-
ment, we use a three hop topology, using Rack A, S1, S4, S2 and Rack B,
Figure 4.3. A total of 4 flows, 1 → 2, 2 → 3, 4 → 3 and 4 → 5are generated.
First three flows share a bottleneck switch S1, and the last flow shares link
from host 4 to S2. In this multi-bottleneck, multi-hop scenario, first three
flows achieve an average throughput of 300 Mbps each, and last flow an aver-
age throughput of 600 Mbps. This shows that RACS protocol performs well
in bottleneck scenarios.

4.3.2 Data Center Specific Impairments

In this section, we compare the performance of protocols under typical data
center like environment. First, we consider the Incast scenario. Second,

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 39

 90

 92

 94

 96

 98

 100

 102

 5 10 15 20

A
ve

ra
ge

 U
til

iz
at

io
n

(%
)

Number of Senders

SDC
RACS

RCP

Figure 4.4: Long Flows Only: Average Throughput

 0

 1

 2

 3

 4

 5

 10 12 14 16 18 20

Q
ue

ue
 (

P
ac

ke
ts

)

time (sec)

SDC
RCP

RACS

Figure 4.5: Long Flows Only: Queue Length

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 40

we consider the case when only short queries and long flows co-exist. This
scenario help us capture the improvements, RACS brings, in terms of AFCT,
small queue build-ups and high link utilization.

Incast Scenario

In RACS, we make short flows more aggressive to increase their network share
of bandwidth. It may cause Incast problems in small BDP environments like
DC. Thus, to predict RACS behavior in sudden flash crowd scenario, we use
topology similar to the long lived flows scenario. Each client requests 25KB
queries from n different servers, and each server responds with the requested
amount of data. This pattern is repeated 500 times.

Figure (4.6) shows the AFCT of different protocols in this scenario. Ob-
serve that SDC & RACS achieve roughly similar AFCT performance. How-
ever, as the number of servers increase RACS shows improvement in loss
rate, Figure(4.7). With SDC & RCP, loss rate increases with the number of
servers as shown in Figure 4.7. While, this is not the case with RACS, it
avoids incast by having zero losses and also maintains small queues, which
results in overall AFCT improvement. Reason being the slotted rate update
mechanism of RACS.

Mix of Short and long flows

Performance analysis of RACS in a scenario, where short and long flows
co-exist in the network is of significant importance. In such a scenario, long
flows may occupy buffer space and as a result performance of short queries de-
grades. To test this scenario we connect four hosts to a switch S3, Figure4.3.
Two hosts generate long-lived background traffic. One host acts as a receiver
and one host generates the response flow lengths uniformly distributed across
[2KB, 50KB]. This, represents the 75th percentile traffic multiplexing in data
center networks [1].

Figure (4.8), shows the comparison of RACS, RCP and SDC under above
conditions. All the protocols maintain high throughput, as shown in Table
(4.2), but there is a difference in the AFCT of flows across protocols. We can
see, Figure (4.8), that RACS outperforms RCP & SDC in terms of AFCT.
This gain can be increased by increasing the gain of short flows over long
flows. Also, all the protocols maintain small queues, Figure (4.9).

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 41

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20 25 30 35 40

A
F

C
T

 (
m

se
c)

Number of Servers

SDC
RACS

RCP

Figure 4.6: Incast: AFCT Comparison

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20 25 30 35 40

F
ra

ct
io

n
of

 p
ac

ke
ts

 lo
st

Number of Servers

SDC
RACS

RCP

Figure 4.7: Incast: Loss Behavior

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 42

Figure 4.8: Mix Flows: AFCT and Loss Rate

 0

 2

 4

 6

 8

 10

 10 15 20 25 30

Q
ue

ue
 (

P
ac

ke
ts

)

time (sec)

SDC
RACS

RCP

Figure 4.9: Mix Flows: Queue Size (Packets)

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 43

SDC RACS RCP
AFCT (msec) 2.6 2 2.67
Utilization(%) 98.11 98.77 98.13
Loss Rate 0 0 0

Table 4.2: RACS vs RCP & SDC

Figure 4.10: Benchmark Traffic: AFCT

4.3.3 Benchmark Traffic

In case of mix of short and long flows we observed that RACS improves
AFCT performance significantly. In this section we discuss RACS perfor-
mance under more general settings common in most data center networks.
We generate Pareto distributed traffic with shape parameter 1.2 and average
response size of 25KB. To have all mixes of flows, we generate two long flows
in the background. Figure 4.10 shows that three protocols show comparable
behavior at low loads, but as the arrival rate of flow increases, AFCT of RCP
flows increases significantly, largely because of large queue buildups and in-
creased loss rate. On the other hand, performance of RACS largely remains
same even at arrival rate of 2000 flows/sec.

It is very important to know the performance improvement regions of
RACS over other protocols. For this purpose we compare RCP and RACS,

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 44

Figure 4.11: Benchmark Traffic: Performance Regions

as RCP is the lower bound on the achieveable gains by other protocols. Fig-
ure (4.11), shows that RACS outperforms RCP over a large set of flow size
that represent major portion of DC traffic. But for long flows > 1MB we
observe throughput degradation in case of RACS. But as our main goal is to
improve AFCT of the system, thus we have to compromise on this small price.

To highlight the gains in-terms of how many flows complete before a cer-
tain time, we present Figure(4.12) & Figure (4.13). We can see, Figure(4.12),
that ≈ 98% flows complete within 10 ms in case of RACS and ≈ 84% in case
of RCP, thus improving application throughput by ≈ 20%.

4.4 Summary

In this chapter, we presented design and evaluation of a network assisted con-
gestion control protocol, RACS, designed specifically for the DC networks.
Results show that using weighted processor sharing at the routers and in-
sights from scheduling theory can significantly enhance the performance of
the network.

CHAPTER 4. ROUTER ASSISTED CAPACITY SHARING (RACS) 45

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.002 0.004 0.006 0.008 0.01

P
er

ce
nt

ag
e

of
 F

lo
w

s
(C

D
F

)

Flow Completion Time (sec)

RCP-10
RACS-10

RCP-20
RACS-20

Figure 4.12: Percentage of Flows Completing before Time ‘t’

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.01 0.02 0.03 0.04 0.05

P
er

ce
nt

ag
e

of
 F

lo
w

s
(C

D
F

)

Flow Completion Time (sec)

RCP-10
RACS-10

RCP-20
RACS-20

Figure 4.13: Percentage of Flows Completing before Time ‘t’ II

Chapter 5

Conclusion

5.1 Conclusion

The main aim of this thesis was to provide a framework that minimizes the
average flow completion time (AFCT) within a data center (DC) network.
In this regard we made two contributions, summarized below:

First, we presented the design, analysis and evaluation of a size aware
delivery control protocol (SDC). SDC uses flow size information to assign
different priorities to the flows. Flows with smaller size are assigned a class
with higher α, β parameters, in other words higher priiority. This makes
short flows more aggressive than long flows. At routers we use load factor as
a congestion signal, which helps us achieve low queue occupation and high
link utilization in DC networks. Using analytical modeling, we show that
using only three classes can provide significant gains in terms of AFCT over
other TCP based protocols [1, 31]. We also observe that benefits of SDC can
be improved by using large number of classes with higher α, β parameters,
but it also increases the complexity of system as we have to manage more
classes and their parameters. Another challange with SDC is that it does
not approximate SRPT in a better way, because we use fix α, β parameters
within a class which is against SRPT notion. Thus, it is important to explore
other approaches that better approximate SRPT.

Second, keeping in view above concern we presented the design and eval-
uation of a router assisted capacity sharing mechanism (RACS). At sender,
RACS assigns a weight to the flow based on its residual size. RACS, employs
weighted processor sharing at routers to share capacity between flows. We
show that RACS can improve the AFCT of DC network significantly and

46

CHAPTER 5. CONCLUSION 47

it also shows that SDC performance can be improved by using a better ap-
proximation of SRPT. We test RACS & SDC under various settings similar
to a DC environment. RACS’ rate selection mechanism mitigates incast sig-
nificantly as compared to traditional schemes. Also, being a rate feedback
protocol, its convergence time is better than SDC, DCTCP [1] and other
TCP variants.

5.2 Future Work

As part of the future work, it would be useful to evaluate the performance
of RACS using a real implementation. RACS end-host functionality can be
implemented as a loadable kernel module. New congestion control protocols
are often implemented as kernel modules to avoid the need to patch the kernel
and the subsequent kernel recompilation. The RACS router functionality can
be implemented in Linux, NetFPGAs, etc. The control plane can be used to
estimate sum of weights and data path can be used to allocate rates based
on the weight of a flow.

Bibliography

[1] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, P. Patel, B. Prab-
hakar, S. Sengupta, and M. Sridharan. Data center tcp (dctcp). In
Proceedings of the ACM SIGCOMM 2010 conference on SIGCOMM,
pages 63–74. ACM, 2010.

[2] A. Odlyzko. The internet and other networks: Utilization rates and
their implications. Information Economics and Policy, 12(4):341–365,
2000.

[3] A.M. Odlyzko. Internet tv: Implications for the long distance net-
work. Internet Television, E. Noam, J. Groebel, and D. Gerbarg, eds.,
Lawrence Erlbaum Associates, pages 9–18, 2003.

[4] T. Benson, A. Akella, and D.A. Maltz. Network traffic characteristics
of data centers in the wild. In Proceedings of the 10th annual conference
on Internet measurement, pages 267–280. ACM, 2010.

[5] Van Jacobson. Congestion avoidance and control. In ACM SIGCOMM,
Aug 1988.

[6] I. Rhee and L. Xu. CUBIC: A new TCP-friendly high-speed TCP vari-
ant. In PFLDNet’05, February 2005.

[7] D. Katabi, M. Handley, and C. Rohrs. Internet congestion control for
high bandwidth-delay product networks. In ACM SIGCOMM, Aug
2002.

[8] Nandita Dukkipati, Masayoshi Kobayashi, Rui Zhang-Shen, and Nick
McKeown. Procesor sharing flows in the internet. In IWQoS, Jun 2005.

[9] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D.G. Andersen,
G.R. Ganger, G.A. Gibson, and B. Mueller. Safe and effective fine-
grained tcp retransmissions for datacenter communication. ACM SIG-
COMM Computer Communication Review, 39(4):303–314, 2009.

48

BIBLIOGRAPHY 49

[10] Y. Chen, R. Griffith, J. Liu, R.H. Katz, and A.D. Joseph. Understanding
tcp incast throughput collapse in datacenter networks. In Proceedings
of the 1st ACM workshop on Research on enterprise networking, pages
73–82. ACM, 2009.

[11] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. Communications of the ACM, 51(1):107–113, 2008.

[12] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: dis-
tributed data-parallel programs from sequential building blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007, pages 59–72. ACM, 2007.

[13] B. Fitzpatrick. Distributed caching with memcached. Linux journal,
2004(124):5, 2004.

[14] T. Hoff. Latency is everywhere and it costs you sales how to crush
it, July 2009. http://highscalability.com/blog/2009/7/25/latency-is-
everywhere-and-it-costs-you-sales-how-to-crush-it.html.

[15] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
amazon’s highly available key-value store. ACM SIGOPS Operating
Systems Review, 41(6):205–220, 2007.

[16] D. Beaver, S. Kumar, H.C. Li, J. Sobel, and P. Vajgel. Finding a needle
in haystack: Facebooks photo storage. In Proceedings of the 9th USENIX
conference on Operating systems design and implementation, pages 1–8.
USENIX Association, 2010.

[17] I.A. Rai, G. Urvoy-Keller, and E.W. Biersack. Analysis of las schedul-
ing for job size distributions with high variance. In Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and
modeling of computer systems, pages 218–228. ACM, 2003.

[18] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken. The
nature of data center traffic: measurements & analysis. In Proceedings
of the 9th ACM SIGCOMM conference on Internet measurement con-
ference, pages 202–208. ACM, 2009.

[19] S. Floyd and V. Jacobson. Random early detection gateways for conges-
tion avoidance. In IEEE/ACM Trans. Networking, 1(4):397-413, Aug
1993.

BIBLIOGRAPHY 50

[20] S. Athuraliya, V. Li, S. Low, and Q. Yin. REM: Active queue manage-
ment. In IEEE Network, 15(3):48-53, May 2001.

[21] L.E. Schrage and L.W. Miller. The queue m/g/1 with the shortest
remaining processing time discipline. Operations Research, pages 670–
684, 1966.

[22] M. Harchol-Balter, N. Bansal, B. Schroeder, and M. Agrawal. Srpt
scheduling for web servers. In Job Scheduling Strategies for Parallel
Processing, pages 11–20. Springer, 2001.

[23] L. Schrage. A proof of the optimality of the shortest remaining process-
ing time discipline. Operations Research, 16(3):687–690, 1968.

[24] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: Inves-
tigating unfairness, volume 29. ACM, 2001.

[25] R.W. Wolff. Stochastic modeling and the theory of queues, volume 14.
Prentice hall Englewood Cliffs, NJ, 1989.

[26] M. Nuyens and A. Wierman. The foreground–background queue: a
survey. Performance evaluation, 65(3):286–307, 2008.

[27] ns-2 Network Simulator. http://www.isi.edu/nsnam/ns/.

[28] S.J. Yang and G. De Veciana. Enhancing both network and user
performance for networks supporting best effort traffic. Networking,
IEEE/ACM Transactions on, 12(2):349–360, 2004.

[29] T. Ziegler, H.T. Tran, and E. Hasenleithner. Improving perceived web
performance by size based congestion control. NETWORKING 2004,
Networking Technologies, Services, and Protocols; Performance of Com-
puter and Communication Networks; Mobile and Wireless Communica-
tions, pages 687–698, 2004.

[30] B. Doytchinov, J. Lehoczky, and S. Shreve. Real-time queues in heavy
traffic with earliest-deadline-first queue discipline. Annals of Applied
Probability, pages 332–378, 2001.

[31] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowstron. Better never
than late: Meeting deadlines in datacenter networks. Technical report,
Technical Report MSR-TR-2011-66, Microsoft Research, 2011.

BIBLIOGRAPHY 51

[32] I.A. Qazi, T. Znati, and L.L.H. Andrew. Congestion control using effi-
cient explicit feedback. In INFOCOM 2009, IEEE, pages 10–18. IEEE,
2009.

[33] Robert Shorten, Fabian Wirth, and Douglas Leith. A positive systems
model of TCP-like congestion control: Asymptotic results. IEEE/ACM
Trans. Networking, 14:616–629, 2006.

[34] Martin Corless and Robert Shorten. Deterministic and stochastic con-
vergence properties of aimd algorithms with nonlinear back-off functions.
Automatica, 2011.

