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ABSTRACT

Reinforced concrete (RC) beams may not be able to utilize their maximum flexural strength
in the absence of adequate shear reinforcement. While ACI code specifies minimum
amount of shear reinforcement in RC beams, the established formulae do not cover all
parameters associated with shear strength of RC beams and result in conservative design.
Zararis (2003), proposed the empirical formula which incorporates additional factors in
calculation of shear strength. This formula yields less conservative yet equally reliable
results in terms of shear strength in RC beams. In this project, formulae provided by Zararis
(2003) and Kashif (2014) were studied through analytical models using commercial
software ABAQUS®, and validated for experimentally tested concrete slender beams with
varying amounts of shear reinforcement. Non-linear finite element analysis was carried out
to measure the load-displacement behavior and the cracking characteristics in RC beams.
The analysis employed a concrete damage plasticity model in ABAQUS software. The
parametric analysis was carried out by varying the shear span to depth ratio and the
amounts of shear and longitudinal reinforcement in RC beams were kept as same as in the
benchmark analysis. Additionally, the sensitivity of results were investigated against the
minimum shear reinforcement provisions provided by ACI, Zararis and Papadakis (2001),
Zararis (2003) and Kashif (2014).Lastly, an equation for minimum amount of shear

reinforcement to attain full flexure capacity has been proposed.
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CHAPTER 1
INTRODUCTION

1.1 General

Over the decades the phenomena of shear failure in structural members have been a matter
of pure speculation for the concrete specialists. Various attempts that aim to provide a
rigorous solution are either based on deterministic mechanical assumptions which
unfortunately did not take into account many factors of uncertainty or were derived from
empirical tests obtained from extensive lab testing. These methods are meticulously not
accurate but provide a reliable prediction to model the structures within a band of

uncertainty involved.

Behavior of slender beams subjected to various types of loadings has been studied through
a number of experimental and simulation programs. Consensus over a single theory to
predict the response of members under shear does not exist even after extensive research
efforts. Members may fail in shear before attaining its nominal flexural capacity. This is a
highly undesirable phenomenon since the shear failures are generally brittle and
unexpected. This makes it imperative to have an in depth understanding of the shear

behavior of reinforced concrete beams.

Researchers have identified a large number of factors which influence both the shear
behavior and the minimum amount of shear reinforcement required in the beams. However,
it is felt that these factors have not so far been fully incorporated in the ACI code provisions

for shear. As a result, the current provisions are still based on semi empirical considerations



1.2 Developments in Shear Design

The intriguing mechanism of shear and its behavior in reinforced concrete members has
led to many debates and suppositions. This topic paved way to significant amount of
researches particularly the last six decades has witnessed a substantial rise in its in depth

study.

Marsch (1910), one of the early notables, predicted shear behavior over the cross section
of a reinforced concrete beam with flexural cracks. After rigorous study, he concluded
that the shear stress has a constant value from bottom to neutral axis and then varies until
it reaches the top surface fiber. He also stated that shear stresses can be calculated by
using simple equilibrium relationships if the flexural stresses at different longitudinal
sections of a beam are known. Mdérsch (1910) and Ritter (1899) are the pioneers that
introduced the Truss Model which was followed for many years; this model neglected

concrete’s contribution to shear resistance.

Talbot, with his most prominent contribution to experimental study, successfully tested

188 beams under shear loading. In 1907, he stated:

“...with this number of tests, one would expect the understanding of the
problem to be quite complete. However, this is not the case, there is still much to be

learned before the problems may be considered solved”

(Talbot 1909)

Universities across the globe played a vital role and made efforts in understanding the
complex nature of shear. The noteworthy institutes among them were Universities of
Illinois, Toronto and Stuttgart; which were primarily involved in publishing considerable
quantity of research papers on the subject. American Concrete Institute (ACI) drafted its
shear provisions for the ACI 318 Code based on rigorous experiments and research data
but an unfortunate collapse of two US Air Force warehouses in 1955 meant critical



amendments in the ACI Code were absolutely necessary. The beams in these warehouses
failed under dead load only, when subjected to a shear stress of 0.5 MPa, whereas ACI
code allowed a working shear stress of 0.62 MPa. The dramatic incident led to serious
changes in design practice, among them was the provision of minimum web reinforcement.
Moreover, it instigated extensive research in attempts to explain how shear is transmitted
in cracked reinforced concrete beams. MacGregor, Wight et al. (1997), explained shear

force in terms of Beam and Arch Action.

Kani (1964), hailing from University of Toronto, is highly notable for his extensive
experimental research. He was the pioneer who systematically studied shear behavior with
respect to compressive strength (f’.), longitudinal reinforcement (p;) and shear span to
depth ratio (a/d). He experimented with large number of rectangular beams after which
he classified them into very short, short, slender and very slender beams. His famous
contribution named “Kani’s Valley of Shear Failures” incorporated a relationship between
a/d ratio, shear capacity and reinforcement ratio. His highly regarded theory of diagonal
failure stated that it’s influenced by strength and ratio of steel, shape of section, strength of
concrete, shear arm ratio, type and detailing of web reinforcement, pre-stressed conditions

and direction of loading.

Many researchers have considered the span to depth ratio as a significant parameter for
defining shear strength of a beam. This is evident from the Joint ASCE-ACI several
committees and proceeding reports which tries to explain the complex concept by means
of equations and most importantly ACI-318-11 Code specifies equation (11-5) denotes
shear strength of concrete (V) as a functions of a/d ratio and longitudinal reinforcement

ratio (p;).

Zararis and Papadakis (2001), postulated a hypothetical theory based on an in depth study
of the mechanism of critical cracks which leads to failure of beams. His theory has gained
considerable attention for the fact that equations which justify this hypothesis have been
developed and these conform to both, ACI and Eurocode. It has been claimed that the
equations yield results which are reliable and far more accurate in predicting the shear

capacity of slender beams. Zararis (2003) other contribution is the relationship between



shear reinforcement (p,,) longitudinal reinforcement ratio (p;) and shear span to depth ratio

(a/d) for which he has devised an equation for minimum shear reinforcement.

Kashif Shehzad (2014), a post-graduate of NUST, carried out his research which was an
extension to the theory proposed by Zararis and Papadakis (2001) and Zararis (2003). His
experimental research led to not only validating Zararis theory but he proposed a modified
equation by incorporating a new factor; development length (I;) which was missing in
prior work. His experimental results proved that the modified equation is more accurate as

compared to previous work.

1.3 Significance of Shear

Tensile reinforcement makes the beam stronger against flexure and the failure that occurs
is tensile in nature that gives ample amount of time and warning along with the time for
corrective measures before failure (in the form of spalling of concrete and abnormal
deflections). But there are other factors that need to be accounted for the beam design like

shear.

The shear failure whereas is predominantly brittle in nature. It is difficult to predict
accurately and if the beam is overloaded till failure, then this failure occurs suddenly

without any warning causing catastrophic damage.

Economy of design demands, in most cases, that beams must be capable of developing its
full flexure (moment) capacity rather than having its strength limited by premature shear
failure. This reduces the chances of sudden and explosive shear failure, giving warning of
impeding distress. Therefore if a large safety margin relative to available shear strength of
the beam doesn’t exist, special shear reinforcement, known as web reinforcement is used

to increase the strength.



1.4 Scope

The scope of this project is to study the shear behavior of reinforced concrete slender beams
using Finite Element Modeling. The aim is to analyze the formula provided by Zararis and
Papadakis (2001), Zararis (2003), (Kashif Shehzad 2014); which postulates shear failure
by the formation of shear critical cracks. This analysis is performed through analytical
models using a commercial software ABAQUS®, and validating it for experimentally
tested concrete slender beams with varying amounts of shear reinforcement. ACI Code
provisions on shear have been devised based on years of thorough research and extensive
experimental results yet it does not incorporate all the factors which contribute to shear
strength of slender concrete. Zararis’s and Kashif’s equation however takes into account
all important factors which are believed to influence shear strength and yield accurate

results. Yet an equation with closer prediction of minimum shear requirement is proposed.

1.5 Objectives

The objectives of the project are to:-

e Determine the accuracy of prevalent expressions for predicting the ultimate shear
capacity of RC beams.

e Establish minimum shear reinforcement requirement in RC beams incorporating
additional factors which affect the shear behavior.

e Predicting cracking behavior graphically using FEM.



CHAPTER 2
LITERATURE REVIEW

2.1 Basic Shear Concepts

2.1.1 Shear Strength of Concrete

Beams resist loads by means of internal moments (M) and shear (V) as indicated in Figure
(2.1). Shear forces should be considered, as they lead to diagonal cracking, if the moments
are not constant over its length. These cracks can cause an undesired abrupt failure causing
the member to fail prematurely. Therefore, properly calculated quantities longitudinal and

transverse reinforcement must be provided to avoid such failure.

M+dM

Figure 2.1: Resisting Moment and Shear in response to external loads

Determination of flexure strength is based on Hook’s Law whereas for the shear strength,
there are two cases discussed as follows:-

Beams without Shear Reinforcement:

In the absence of shear reinforcement, only shear transfer mechanism provides the requisite
shear resistance, as explained later in Section 2.2. This primarily is the point where codes
of practice lack a theory and use totally empirical procedures. (Collins, Bentz et al. 2008).



Beams with Shear Reinforcement

When stirrups or shear reinforcement is provided to the beams; their shear resistance can

be best ascertained using the truss analogy developed by Ritter and Morsch.

2.1.2 Importance of Shear Reinforcement

The main purpose of shear reinforcement is to seize the development of the diagonal
tension cracking. Generally, the design of shear reinforcement is in a manner so that the
inclined cracks shall cross two stirrups with specified spacing in between. It is pertinent to
mention that the spacing of shear reinforcement design is affected by the change in shear
force as it varies along the length of the beam. It is recommended to use transverse stirrups

over inclined stirrups as shown in Figure (2.2).

T

o

Transverse Stirrups

111171/

Inclined stirrups

Figure 2.2: Transverse and Inclined Stirrups.
Transverse Stirrups perform better in stress reversals



Me+dM
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Figure 2.3: Forces and Moments across a cracked concrete section

It is because the inclined stirrups are not as effective in beams resisting shear reversals i.e.
seismic loads, as the reversals will cause cracking parallel to inclined reinforcement

rendering it ineffective.
2.2 Shear Transfer Mechanism

In RC beams, two load transfer mechanism dictates the transfer of shear; known as the
beam action and arch action. Both these actions depend on shear span to depth ratio (a/d
ratio). In order to mathematically express these shear transfer mechanisms, consider a free

body diagram of the portion of a RC beam between two cracks as shown in Figure (2.3).

Shear force (V) is related to the tensile force in the bar (T) as:

d
V == (T xJd
5 (Tx3d)

d d
V =Jd = (T)+T —(Jd
3 (T+T o (3d)



2.2.1 Beam Action

In slender beams where a/d ratio is greater than 2.5, shear is transferred primarily by beam
action. In this mechanism, the lever arm (Jd) remains constant and the shear force is

transferred in beam action as follows:

X X
d(Jd d
() _ 0 and V= a(r) (Jd)
dx dx
d(T). . :
Where, V, = - is the shear flow across any horizontal plane between the reinforcement

and compression zone. For beam action to exist shear flow must be present.

2.2.2 Arch Action

It is a force transfer mechanism for those beams where shear span to depth ratio a/d ratio
is less than 2.5. Beams in this category are known as deep beams. This generally gives
more strength to the member, which can withstand considerably more load than at shear
cracking

Russo and Zingone (1991), in their study, concluded that shear—compression failure is the

result of arch action and beam action leads to diagonal tension (discussed later).

d(T
On the other hand if the shear flow; % equals zero, then the shear force is transferred
by arch action as follows:
d(Jd
RCL)



It may be argued that the shear span to depth ratio (a/d) is what effects the shear resistance
because the applied shear force may be transmitted directly to the supports by means of
compressive struts (arch action) of the concrete. In this kind of member, compressive force
are formed in the inclined strut and the longitudinal reinforcement transmit tension force T

which are constant over the length of shear span as shown in Figure (2.4).
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Figure 2.4: Arch action mechanism. Figure illustrating Compression diagonal struts, Tension ties
and truss nodes

In this case, the lever arm (jxd) does not remain constant over the length which implies

there is no horizontal shear flow across the section and it may be because of the steel is

unbonded or the shear flow is disrupted by an inclined crack extending from the load to

reactions.

2.2.3 Model for Flexure-Shear Interaction

When beam develops a flexure shear interaction, the shear resistance consists of two
different mechanisms, beam and arch mechanisms as shown in Figure (2.5) governed by

the following equation.
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Figure 2.5: Flexure Shear Interaction

2.3 Primary Mechanisms of Shear Resistance

The primary mechanisms of shear resistance has been explained by rigorous analytical and
experimental research. This mechanism includes three forces provided by concrete in
compression zone, aggregate interlock and the dowel action across the longitudinal steel
reinforcements. Any shear force, which exceeds or is surplus of the above three forces is
resisted by shear reinforcement. The stirrups are generally placed vertically and anchored
in compression zone to avoid slipping. In a cracked reinforced concrete beam with shear
reinforcement, the shear is carried by the vertical component of shear force in compression
zone concrete (), vertical component of aggregate interlock force at the cracked surface

(Vay), the dowel action of longitudinal reinforcement (V;) and the force in the vertical

stirrups (V;). Internal distribution of the forces is shown in Fig 2.6.
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2.4 Classification of Beams

The beams can be classified according to their shear span to depth ratio as:

Deep beamswith0 < a/d < 1

Short beams with 1< a/d < 2.5

Normal beams (Slender Beams) with 2.5 < a/d > 6
Very Slender Beams (a/d > 6)

o bdE

2.5 Prediction of Shear behavior

When the principle tensile stress exceeds the tensile strength of concrete, it cracks.
Moreover, cracks will be normal to the principle stresses. The principle stress direction
coincides with the longitudinal axis of the member and hence cracks will be perpendicular
to that direction (vertical). However, when the beam is subjected to both moments and
shears the inclination of crack does not remain 45° but would depend upon several factors
including the ratio of shear to moment, beam dimensions, presence of various types of
reinforcement and the loading pattern. The principal stress trajectory is depicted in Figure
2.7).

12
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Figure 2.7: Principle Stress Trajectory

The similarity between the plane of maximum principal tensile stress and the initial
cracking pattern can make one think it as a measure of gauging shear failure. However, this
assumption of predicting crack initiation does not hold any significance as in normal RC
structures, as the flexure cracks generally occurs before principal tensile stresses at the mid
height becomes critical. Once, the flexure crack are formed, the tensile stress perpendicular
to the crack drops to zero. To maintain equilibrium a major redistribution of stresses is
necessary. Hence, we cannot predict the onset of inclined cracking from principle tensile
stress unless shear cracking precedes flexural cracking.

2.6 Failure Modes in Shear

Following Modes of failure in beams have been identified in Literature Ziara (1993):

— Diagonal Tension Failure
— Shear Tension Failure

— Shear Compression Failure
— Flexural Failure

— Anchorage Failure

— Bearing Failure

13



TYPE OF

Table 2.1: Failure Modes in Shear

FAILURE

FIGURE
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Shear
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(E)

Bearing Failure
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2.6.1 Diagonal Tension Failure

The diagonal crack originates from the previous flexural crack developed. In case of
slender beams (a/d between 2.5 and 6), failure occurs within the shear span. The crack
propagates through the beam and reaches the compression zone and at critical loading, it
is likely to fail as a consequence of concrete splitting there which is expected to happen

suddenly in a brittle manner as shown in Table 2.1 (A). Ziara (1993)

2.6.2 Shear Tension Failure

The difference between diagonal tension failure and this type is that it applies to short
beams. In this case too, the shear crack propagates through the beam but is not likely to
cause the failure at its own. Loss of bond between concrete and longitudinal steel can also
cause failure due to splitting cracks developing in this region .On reaching a critical loading
point, beam fails as a consequence of splitting of the compression concrete as demonstrated
in Table 2.1 (B). Ziara (1993)

2.6.3 Shear Compression Failure

Contrary to shear tension failure, if splitting cracks do not appear and the failure is caused
merely due to diagonal shear crack propagating through the beam, it is termed as a shear
compression failure. This mechanism is applicable on deep beams. In short beams, due to
presence of arch action, the ultimate load causing failure can be much larger. See Table 2.1
(©). Ziara (1993)

2.6.4 Flexural Failure

Moment is basically responsible for initiation and propagation of flexural cracks which
occur in slender beams. At the location where moment in the beam has the largest
magnitude the appearance of cracks is more likely as demonstrated in Table 2.1 (D). Cracks
develop when the concrete’s shear stress reaches its tensile strength. Flexural cracks are

nearly vertical and cause failure in the beam either due to excessive yielding of longitudinal
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reinforcement in case of under reinforced beams, which may cause failure of concrete in
tensile zone or due to concrete’s crushing in compression zone before longitudinal

reinforcement yields. Ziara (1993)

2.6.5 Anchorage Failure

Anchorage failure may be described as a slip or loss of bond of the longitudinal
reinforcement (see Table 2.1 (E)). Dowel action can be linked to it where the splitting of
concrete occurs as a consequence of failure of aggregate interlocking resistance around the

bar.

2.6.6 Bearing Failure

The support fails when the bearing stresses surpass the bearing capacity of the concrete.
This type of failure is referred to as Bearing Failure. The concrete at the support usually
fails if the bearing plate is undersize, as shown in Table 2.1 (F).

2.7 Parameters influencing shear strength

Over the vyears, rigorous research and extensive experimental studies have tried to
understand and predict the shear strength of reinforced concrete beams. Following are the
list of all the parameters known to affect shear are:-
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Table 2.2: Factors affecting Shear Strength

Parameter

Relation to shear

Shear Span to Depth
Ratio (a/d)

Change of shear transfer mechanism.
(Leonhardt, Walther et al. 1964)

Reason: The moment arm (jd) does not remain constant as the

a/d decreases below 2.5 (deep beams)

Depth of Members
or Size Effect

Decrease in shear strength with the increase in effective depth
(Shioya, Hasegawa et al. 1985)
Reason: Increased width of diagonal cracks

Dependent on axial force particularly for members without
transverse reinforcement.
Axial Tension: Shear strength decreases

Axial Force Axial Compression (applied load or pre-stressing): Shear
strength increases
Reason: Confining effect
Amount of minimum shear Longitudinal
reinforcement py Reinforcement pj

Increases Decreases
Longitudinal

Decreases Increases

Reinforcement

Reason: Balance of py and pi required for achieving reserve
strength and deflection

Concrete
Compressive
Strength

Component of Shear resistance provided by concrete
NSC: Aggregate interlocking component enhanced
(irregular cracks due to difference in crushing strength of
concrete and aggregate)

HSC: minimal contribution because of aggregate interlocking
affect.

2.7.1 Shear Span-to-Depth Ratio (a/d)

The shear span-to-depth ratio (a/d) has a pronounced effect on inclined cracking and

ultimate shears in case (a/d) is less than 2. Such shear spans are referred to as deep (D)

regions. In case where (a/d) is greater than 2, Beam action mechanism dominates, and

shear span-to-depth ratio has little effect on the inclined cracking shear.
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2.7.2 Depth of Members or Size Effect

With increasing beam depth, the crack spacing and the crack widths tend to increase, this

hampers the concrete’s capability to transfer shear by aggregate interlocking mechanism.

An increase in the overall depth of a beam with very little or no web reinforcement results
in a decrease in the shear at failure for a given shear span-to-depth ratio Collins and
Kuchma (1999). However, in beams with at least the minimum required web
reinforcement, the stirrups holds the crack faces together so that the shear transfer across
the cracks by aggregate interlock is not lost. As a result, the reduction in shear strength due

to size shown in is not observed in beams with web reinforcement.

2.7.3 Axial Force

Axial compressive force increases the load at which the incline cracking occurs, as the
force is increased, flexural cracking phenomenon is delayed and the flexural cracks do not
spread as far into the beam however axial tension has the opposite effect and decreases the
inclined cracking load at failure. It directly increase the tension stress, and hence the strain,

in the longitudinal reinforcement.

2.7.4 Concrete Tensile Strength

The inclined cracking load is a function of the tensile strength of the concrete. The stress
state in the beam involves biaxial principal tension and compression stresses. When the
tensile stresses on the beam exceed the tensile strength, tensile cracks formation occurs.
Zararis and Papadakis (2001) discusses this phenomena in great detail where he analyzed
the second branch of the critical crack leading to failure, he argued this failure is due to
tensile splitting of concrete. The formula for ultimate shear failure for beams without web

reinforcement is given by:
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v, =[1.2—0.23dJ£ f
d Jd

Where f,; is the tensile splitting strength of concrete.

Some other factors affecting Shear strength are:-

— Load conditions
—  Cross section shape

— Distribution of longitudinal reinforcement
2.8 Shear Theories

2.8.1 Shear Stresses in Un-cracked Beams

The shear stresses, v, on elements of a beam section can be calculated by traditional

theory for homogenous, elastic, un-cracked beams as:-

, Ve
Ib

Where,

V= Shear force on a cross section

Q= First moment about the neutral axis

I = Second moment of area of cross section

b = Width of member where stresses are being calculated.
It should be noticed that equal shearing stresses exist on both the horizontal and vertical
planes through an element. The horizontal shear stresses are of importance in the design of
construction joints, web-to-flange joints, or regions adjacent to the holes in beams. For an
un-cracked rectangular beam, the above equation gives the distribution of shear stresses.
See figure (2.8)
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Figure 2.8: Distribution of Shear Stresses for un-cracked rectangular beam

This equation is an idealization of shearing stresses across a concrete section. However in
reality this does not hold true as:

— Concrete is a heterogeneous material. It does not possess a constant modulus of
elasticity.

— Concrete is subjected to creep therefore, it is not elastic.

— A section may be cracked and un-cracked and its determination is unpredictable,
so that makes the computation of second moment of area and Young’s Modulus far
from being rigorously determined.

— Cracking causes the effective cross section of concrete to be variable along the
length.

2.8.2 Comb Model by Kani

Kani (1964) put forward a comb model for idealizing the load carrying mechanism of RC
beams cracked in flexure and subjected to shear. In this model the un-cracked concrete is
represented by the back bone of the comb and concrete between flexural cracks is

represented by teeth of the comb.
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When the bending moment in a cantilever tooth becomes large enough to “break off” the
tooth at its base diagonal cracking is considered to have occurred. Backbone thus serves as

a tied arch.

Kani’s analogy can help us understand several aspects of the shear behavior of members
without web reinforcement. This analogy also emphasizes the importance of bond on the
shear transfer mechanisms. Kani’s model assumes that no shear stresses are transmitted
across the flexural cracks. Later on several researchers found that even quite close to
failure, the compression zone carried only 15% of the total shear and the remainder is
carried by dowel forces in the flexural reinforcement and aggregate interlocking across the

flexure cracks.
2.9 ACI Prediction of Minimum Shear Reinforcement

To avoid abrupt shear failure, ACI 318 — 11 specifies that minimum amount of shear
reinforcement must be there in reinforced concrete beams. This minimum amount of
transverse steel is intended to restrain the growth of diagonal cracks to avoid abrupt shear
failure. Basing on previous experimental data for beams of normal and high strength
concrete, ACI equation for minimum shear reinforcement has been developed. This
equation is believed to have little consideration for the effects of longitudinal reinforcement
and shear span to depth ratio. When minimum amount of shear reinforcement is provided
in the beams, it holds the two cracked faces together, thus preventing the loss of shear
transfer by aggregate interlock. Where required, the minimum shear reinforcement shall be
computed by the equations (ACI Section 11.4.6.3) reproduced below. Eq 2.4 is new in the
code and was introduced in ACI 318-05 to account for the influence of compressive
strength of concrete.

Aminy =0.75 f'cbfiws

But not less than,
50b,s
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ACI code restricts the spacing between shear reinforcement to half of effective depth or
24 inches for non prestressed members. This condition ensures interception of potential

diagonal crack by at least one vertical stirrup.
2.10 Zararis Theory of Critical Shear Crack

Zararis proposes a theory which determines an expression for ultimate shear capacity of
reinforced concrete slender beams obtained by adding a stirrup contribution to the shear
capacity of beams without transverse reinforcement; and a criterion that must be satisfied
by the minimum amount of shear reinforcement to prevent a brittle failure and restrain the

growth of diagonal cracking.

2.10.1 Shear Strength of Beams without Transverse Reinforcement

The critical crack formation in slender beams without transverse reinforcement
compromises of two branches. The first branch usually extends diagonally till the height
of flexure cracks however second branch originates from its tip and extends through the
compression zone and ultimately meets the point of load. The second branch is the reason

for failure. An expression for nominal shear stress at the diagonal tension cracking is
v, =V, /bd :(C/d) f,

as demonstrated in Table(2.1). To account for the size effect on tensile strength, a

correction factor is introduced to the previous equation
v, =V, /bd =(1.2—0.2§dj§ £ (@)

Where the term in brackets should not be less than 0.65 (d in m) The Shear force V., and

the shear stress v, in Eq. (1) represent the ultimate shear and the ultimate shear stress.
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2.10.2 Shear Failure Mechanism in Beams with Transverse Reinforcement

The pattern of cracking in this case is similar to the beams without stirrups. It is observed
that the effect of stirrups can be considered negligible up till the initiation of the second
branch of the critical crack and only then stirrups come into action. As the crack (second
branch) propagates it gradually opens. This is caused by concrete shear force V., at the
beginning of the second branch to balance the developed force V; of stirrups. Furthermore,
the opening of the second branch of critical crack causes an increase AV, of the shear force
of the longitudinal steel bars. The Shear force V., at the beginning of cracking of the second
branch of the critical crack is equal to the sum(V,; + Vccr). Summing forces in the vertical

direction and its equilibrium condition yield the following equation
V, =V, +V,+ AV, 2)
Where,

V,, = Shear force at shear failure.
V., = Shear force at the beginning of cracking of the second branch.
V; = Force of stirrups along the critical diagonal crack

V; = Shear force of bars of main reinforcement

The force AV, is due to the opening of the second branch of the critical crack, but its
existence is only due to the inclusion of stirrups in the beams. This force appears to be a
new factor, influencing the shear strength in addition to the other two conventional factors.
The shear force V; of longitudinal steel bars brings about a horizontal splitting of concrete
cover along the longitudinal reinforcement. This splitting results in the loss of the shear
force V; and, consequently, the failure of beam. Preventing this splitting hinders the shear

failure. Zararis after examination of various related equation in equilibrium, devised an

expression for this force AV, =0.5p, f, bd Zararis also determined the force of stirrups.

V, = 0.253 p, f,hd

23



These expressions along with Equation 1 when substituted into Equation 2, yields the

final expression for 1, shear force at equilibrium, which is as follows:

v, = [(1.2—0.2§dj§ f +(0.5+0.25§} p.f,Iod )

2.10.3 Zararis’s minimum Shear Reinforcement

Zararis gave an analytical expression for the relationship he postulated between the
required amounts of shear reinforcement to the ratio of the longitudinal reinforcement. As
discussed earlier, the opening of the horizontal splitting crack along the main
reinforcement, which has as consequence a proportional opening of the critical diagonal

crack, is directly related to the value of V; which is related to the amount of main
reinforcement. The shear stress 7, of the longitudinal bars is related to axial stress Oy
through the equation.

7, =0.40,, [tang
which when related to AV, equates to:
aVy =Aaty, =04A a0 / tang

@ = angle between the direction of the second branch (critical crack) and the vertical

direction

Taking approximation of the following values as tan ¢ = a/0.8d and Agsy, = 0.9f,,

the above equation can be expressed as:

plp,

This expression once substituted to Equation 2 takes the form:
plp a
V. =V, +0.25| ——+0.9— |p,f bd 5
y cr ( a/d d )pv W ( )
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Shear force AV, resulting from Eqg. (4) can be much higher than the corresponding force
AVq4 given by AV, = 0.5p,f,, bd. Namely, the force AV, at stirrup yielding can be much
larger than that needed for the horizontal splitting. a large ratio of the longitudinal
reinforcement (or a large ratio p/p,,) brings about a quick and significant increase of the
force AVy, which in turn overcomes the resistance of stirrups and forces them into
premature yielding; and splitting along the main reinforcement occurs in any case when
the force AV,has the value given by AVy; afterwards, the surplus of force AV, (difference
of the values given by Eq. (4) and AV, = 0.5p,f,, bd) causes an extensive and wide
opening of the splitting crack and, consequently, a significant opening of the critical
diagonal crack. According to the above analysis, to avoid an undesirable widening of
critical diagonal crack (as well as that of the horizontal splitting crack), a surplus of the
force AV; must not exist. This occurs when the value of AV, given by Eq. (4) equals the

one given by,

aVy =0.5p, f,, bd (6)
Equating these two equations

plp, <175(ald)

According to this ratio the stirrup yielding comes first and splitting of concrete cover occurs
afterwards. But when the ratio p/p, > 1.75(a/d), the shear failure of a beam is
accompanied by a quick and extensive splitting crack along the reinforcement, as well as

by a significant widening of the critical crack.

2.10.4 Experimental Verification

With 20 sets of test data, 174 test results with various strengths of concrete (high and low),
geometrical sizes, shear reinforcement ratios, shear span-depth (a/d) ratios, and
longitudinal steel ratios have been obtained on slender beams. The test data list includes
the test results of Leonhardt and Walther (1962);Bresler and Scordelis (1963); Placas and
Regan (1971); Swamy and Andriopoulos (1974); Mphonde and Frantz (1985), Elzanaty,
Nilson et al. (1986); (Johnson and Ramirez 1989), Anderson and Ramirez (1989), (Roller
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and Russel 1990), Ahamad, Xie et al. (1994), (Yoon, Cook et al. 1996), Kong and Rangan
(1998), Zararis and Papadakis (2001), Collins and Kuchma (1999) and Angelakos, Bentz
et al. (2001)

Table 2.3: Comparisons of experimental and theoretical results of 174 beams performed by the
above mentioned researchers

ACI 318 Eurocode Zararis Theory

Vexn! Vaci Vexp! Vic Vexp! Vineory
Mean 1.252 1.092 1.004
COV % 16.78 18.26 10.23

*COV = Coefficient of Variation
2.11 Shear behavior of Normal Strength Concrete Slender Beams

Kashif Shehzad (2014) study of shear behavior of slender beams of normal strength
concrete is an extension to the theory proposed by Zararis (2003). Kashif carried out an
experimental study in order to analyze and validate the theory proposed by Zararis. His
study incorparated all factor that contribute towards shear failiure incuding a new
parameter development length (I;)which was also incorparated. Taking into account all
the factors, Kashif proposed a modified equation for minimum shear reinforment provison,
which is claimed to more accurate in determining the adequate amount of shear
reinforement. The proposed amount of shear reinforcemnet also leads to the development
of nomial flexure capicity in RC beams. The experimental study based on the review has
been devised. Eight full scale beams having moderate longitudinal reinforcement were cast

and tested at shear span to depth ratio of 2.5. These samples are described as follows:-

Table 2.4: Kashif (2014) experimental program

Experimental Program No. of Beams Tested
Beams without shear reinforcement 2
Beams with ACI minimum shear reinforcement 2
Beams with minimum amount of shear reinforcement as
e . 2
specified by P.D. Zararis
Beams with minimum amount of shear reinforcement )

estimated after incorporating changes in Zararis equation
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2.12 Fracture Mechanics

In fracture mechanics, concrete is considered as a quasi-brittle material. When concrete is
loaded close to its short term strength, inherent cracks start to extend slowly i.e., sub
critically. These sub-critically growing cracks may reach a critical length for unstable, fast

fracture propagation, resulting in a sudden failure of the specimen.

Following is the brief explanation of the available models.

2.13 Numerical Modeling of Concrete

2.13.1 Discrete Crack Approach

The crack is considered as a geometrical discontinuity. Crack is modelled, in an interface
element that separates two elements, via displacement discontinuity.

Pros:

— Engineering problems exist whereby mechanisms of discrete cracks can be
imagined to occur in a trend similar to yield line mechanisms. For that case the first
2 cons vanish and one may use the simple form of discrete cracks with predefined

orientation.

Cons:

— It implies continuous change in node connectivity that doesn’t fit in the basic
attributes of finite element displacement method.

— Crack is constrained to follow a pre-defined path along element edge.

2.13.2 Smeared Crack Approach

A smeared crack concept visualizes the cracked solid to be a continuum and allows

illustration in terms of stress strain relations. In diffuse crack patterns smeared cracks are
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required for example large shear walls with densely distributed reinforcement.

Propagation is simulated by reduction of strength over the finite element.

Types

e Single (fixed crack orientation in the whole computational process)
e Fixed multidirectional (Intermediate of single fixed and rotating)
e Rotating crack model (rotating allows the orientation of crack with the

rotation of principal axis)

Pros:

e Preserves the topology
e Doesn’t impose restrictions with respect to orientation of the crack planes
e More realistic as considers the “bands of micro-crack™ theory (but not much

applicable)

Cons:

e Underlying assumption of displacement continuity conflicts with the realism

of a discontinuity.

Standard fixed Smeared crack concept
e Mode 1 - Normal to the crack
e Mode 2 - Tangential to the crack

e Fixed Smeared crack concept with strain decomposition

2.13.3 Cohesive crack Model

Models the fracture process of quasi brittle materials. As the crack grows, it predicts the

mechanical behavior of the specimen and crack path. A softening function 6 = f(w) is
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the major constituent of cohesive crack model.

This function, a material property, relates the stress 6 acting across the crack face to the
corresponding crack opening width as shown in figure (2.9).

Cohesive

Stress 6=f(w)

w
Crack Opening Width
Figure 2.9: Relation between Cohesive Stress and Crack Opening Width

The summary of all the crack models is displayed in figure (2.10).(Hofstetter and
Meschke 2011)

Numerical
Models of

Concrete
Cracking

Discrete Crack

Smeared Crack Cohesive
Approach Approach Crack model
L1
| | | | | |

Multi-
directional

Rotating

Standard fixed Fixed Smeared
Crack concept
smeared crack with strain
concept

decomposition

I
| I | 1
L( MODE1 ) L( MODE2 ) MODE 3
T

Figure 2.10: Hierarchy diagram of Concrete Cracking Model
(Hofstetter and Meschke 2011)
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CHAPTER 3
RESEARCH METHODOLGY

3.1 Methodology

The literature review focusing on available research on shear behavior of RC beams has
been carried out. The behavior of 20 beams are studied in total. This research consists of

benchmark and parametric analysis that have been explained separately below.

3.1.1 Benchmark Analysis

The benchmark analysis consisted of modelling 8 beams for calibration purpose. Models
were prepared for different beams having varying amounts of shear reinforcement that
were designed as per the minimum shear reinforcement given by ACI, Zararis, modified
Zararis equation by Kashif and without shear reinforcement.

The results from finite element modelling were calibrated with the experimental values to
validate the material parameters to be taken for the parametric analysis. The compressive
strength of concrete and the amount of longitudinal reinforcement was kept same as of the

experimental.

3.1.2 Parametric Analysis

After the model was calibrated, the research was extended further to varying shear spans
to depth ratios. The depth however was kept constant, varying only the shear spans (by
moving the loading point positions) to give a/d ratios ranging from 2.5 to 4. A total
number of 12 beams were modelled to study the effects of shear span to depth ratio on

beams with shear reinforcement.

After the analysis was done, the effect of shear span to depth ratio (a/d) was studied for
beams. Later a comparison of predicted shear strength by ACI and modified Zararis

equation is made with the experimental results and an equation, that is essentially a
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modification in Zararis Equation for minimum amount of shear reinforcement to attain
nominal flexure capacity, is presented at the end. These results have been systematically
listed in the next chapter. The summary of the total number of beams and their
corresponding parameters have been listed in the table below.

Table 3.1: Summary of the beams modelled in ABAQUS.

BeamNo | f.(MPa) | b(mm) | d(mm) % % Rell nfc;)rf:c()e/oment %
Benchmark Analysis
N1 27.6 254 406.4 | 25| 1.482 0.385 0
N2 27.6 254 406.4 | 25 | 1.482 0.385 0
Al 27.6 254 406.4 | 25 | 1.482 0.385 0.131
A2 27.6 254 406.4 | 25| 1.482 0.385 0.131
Z1 27.6 254 406.4 | 25| 1.482 0.385 0.367
Z2 27.6 254 406.4 | 25 | 1.482 0.385 0.367
M1 27.6 254 406.4 | 25 | 1.482 0.385 0.275
M2 27.6 254 406.4 | 25 | 1.482 0.385 0.275
Parametric Analysis

N3 27.6 254 406.4 | 3.0 | 1.482 0.385 0
A3 27.6 254 406.4 | 3.0 | 1.482 0.385 0.131
Z3 27.6 254 406.4 | 3.0 | 1.482 0.385 0.367
M3 27.6 254 406.4 | 3.0 | 1.482 0.385 0.275
N4 27.6 254 406.4 | 35| 1482 0.385 0
A4 27.6 254 406.4 | 35| 1482 0.385 0.131
Z4 27.6 254 406.4 | 3.5 | 1.482 0.385 0.367
M4 27.6 254 406.4 | 3.5 | 1.482 0.385 0.275
N5 27.6 254 406.4 | 4.0 | 1.482 0.385 0
A5 27.6 254 406.4 | 4.0 | 1.482 0.385 0.131
M5 27.6 254 406.4 | 4.0 | 1.482 0.385 0.275
Z5 27.6 254 406.4 | 4.0 | 1.482 0.385 0.367

While N Series refer to beams without shear reinforcement, A series refer to beams with
minimum shear reinforcement specified by ACI code, while the Z and M refer to beams

with minimum amount of shear reinforcement as proposed by Zararis and Kashif.
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3.2 Simulation Specifications

The beams were modelled in commercial software called ABAQUS® Version 6.13. The

following table represents the general settings chosen for this analysis.

Table 3.2: ABQUS/Standard settings for the analysis

ABAQUS/Standard
Analysis type Non-Linear Static Analysis
Stiffness-based solution technique based on increments
(Newton-Raphson Method)
Element Type Finite Element
Concrete Continuum/Solid
Reinforcement Wire/Truss

Solution Technique

Family

Order of Interpolation/
No of Nodes

Integration Type Reduced Integration

Linear with hourglass control

3.3 Software Model

The spatial finite element model (FEM) of the rectangular cross section beams with
transverse aligned stirrups and distributed longitudinal reinforcement is defined. The

model is analyzed by nonlinear static analysis.

3.3.1 Beam Solid Model

The rectangular beam is modelled using solid 3D deformable body. The cross section is
defined and then extruded to achieve three dimensional body shape. The deformable type
is selected to include meshes and conduct smeared analysis. An 8-noded linear brick
C3D8R, reduced integration elements with inherent hourglass control were assigned for

the beam member.
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3.3.2 Steel Truss model

The steel reinforcement bars are modelled as deformable wire/line truss elements. This
type of element is chosen because of the type and geometry of the reinforcement bars.
Truss element is assigned as steel reinforcement supports loading only along the axis or
the centerline of the element. A 3-node linear 3D truss element (T3D3) for the rebar was
assigned with linear geometric order. It uses quadratic interpolation for position and
displacement so that strain varies linearly. Cross sectional area is defined corresponding to

the truss element.

Embedded element

The steel reinforcement bar elements are defined as embedded elements. The embedded
element technique is used to specify that element is embedded in host element. The
geometric relationship between nodes of embedded and host elements is established. The
translational degrees of freedom of the embedded nodes are eliminated and constrained to
interpolated values of degrees of freedom of nodes of host element. Rotational degrees of
freedom of the embedded nodes are nor constrained. Three dimensional truss element in
beam element type of embedded model is assigned to demonstrate reinforced beam model.
Tolerance according to weight factors adjusts the nodes of embedded element to lie close

to element face or edge to increase computational efficiency.

3.3.3 Displacement control deflection

A general static step using displacement control is defined in the model. The reference
point/node is established at loading points and displacement control boundary conditions
are applied at these points/node. The displacement was ramped linearly over the step time.
Newton Raphson Method was employed for the mentioned analysis step and the conjugate
loads (reaction force) were determined to generate the load vs. deflection curves. Newton
Raphson Method utilizes quadratic convergence and gives accurate results. Few iterations

are needed as adaptive tangent technique is adopted. The adaptive tangent technique is
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applicable up to peak curve stress value. Hence large computational cost within one

iteration is required.

3.3.4 Analytical rigid node/ surface

A rigid body is collection of nodes, elements or surfaces whose behavior and motion is
governed by motion of single node called as rigid body reference node. Analytical rigid
surface is used to define loading and supporting surfaces. This is done as analytical rigid
surface does not need to be meshed and is described by analytical function. This helps to
decrease the element number and hence the computational effort during analysis. The
surfaces (not under scope of study), such as supports and loading plates, are modelled as
rigid analytical surfaces so that computational effort is minimized.

3.3.5 Material Model

The reinforced beam was assigned material when defining the model. Both concrete for
beam and steel for reinforcement were modelled. Different models are available in finite

element software that portray material behavior and properties.

3.3.5.1 Steel

The steel is modelled according to the provided test results of stress strain curve. The
density of the steel is mentioned in model. The elastic part of the stress strain curve of steel
is modelled by inputting Young’s Modulus and the Poisson’s ratio. For the plastic part of
stress strain curve the yielding stress and the corresponding plastic strains are entered in
the model to define steel plasticity. The experimental stress strain curve is used to
determine the mentioned parameters. In our case, the yield stress and plastic strain were
fed in the form of x-y data extracted from the excel sheets provided by the Fazal Steel

Mills, Industrial Area 1-9 ,Islamabad.
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3.3.5.2 Concrete

The concrete can be modelled in finite element model software by various provided
models. The concrete is modelled in ABAQUS FEM software using concrete damaged
plasticity model (CDP model). The concrete damaged plasticity model uses the concept of
isotropic damaged elasticity along with isotopic compressive and tensile plasticity which
represents the inelastic behavior of concrete. This model is usually used for reinforced

concrete structures and is based on the smeared crack approach.

The linear elastic part of stress strain curve is modelled using the Young’s Modulus of the
concrete attained by ACI code formula. The strength of the concrete is 4000 psi as
determined from cylindrical crushing tests performed in the laboratory. The plastic non-
linear part of the stress strain curve is modelled both for the compressive and tensile part
of the curve. The yield stress in compressive non-linear part of the stress strain curve is
modelled along with its corresponding plastic strain. Similarly the yield stress in tensile
non-linear/plastic part of curve is modelled with corresponding cracking strain.

The damaged states in tension and compression are represented by two hardening variables.
The elastic plastic response of the concrete is described in terms of effective stress and
hardening variables. Increased values of hardening variable indicate micro cracking and
crushing in concrete model. Unloading concrete at any point on strain softening branch of
the stress strain curve leads to the weakening of the unloading response as the elastic
stiffness of concrete material is damaged or degraded. This is due to the plastic behavior
of the concrete post the yielding point on stress strain curve. The degradation and damage
is significantly different for both tension and compression tests but the degradation effect
in stiffness is more pronounced when plastic strain increases. This degradation is
characterized by two damage variables, for compression and tension, which are functions
of plastic strains and other field variables. The uniaxial degradation variables are increasing
functions of plastic strains ranging from zero, for the undamaged material, to one, for the

fully damaged material.
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The constitutive equations developed by Wang and Hsu were used to develop the post
failure stress strain response of concrete for tension stiffening. Similarly to model the
plastic response of the concrete in compression, Compressive Behavior was defined in
concrete damaged plasticity model using the inelastic strain and yield stress calculated
from the stress strain response generated calculated by using the constitutive equation
provided by Carreira and Chu. Special focus was given to their applicability and
limitations, for example the constitutive equation given by Carreira and Chu is only
applicable to beams whose the fc’ is less than 5 ksi and is calculated experimentally by

ASTM C39 which in our case was satisfied.

3.3.6 Concrete Material Input Properties

For concrete compressive behavior the following equations of Carreira and Chu (1985)

were employed.
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3.3.6.1 Tension stiffening

Tension stiffening is the structural property of reinforced concrete that refers to the
contribution of concrete between cracks in the overall stiffness of the member before the
reinforcement yields. Concrete carries tension between cracks and the axial load is carried
by the dowel action of the longitudinal reinforcement. The rigidity of the reinforced
member or beam controls the deflection and crack initiation.

With the development of crack, the concrete loses its stiffness and concrete softening
behavior initiates. Tensile stress in concrete decreases gradually and is counteracted by
tension of the reinforcement bars. Stress variation in concrete near cracks reduces and

increases in reinforcement in cracked region.

3.3.6.2 Bond slip

The bond slip occurs where the bond and interaction is developed between the concrete
and the steel bars. It has three main components; chemical adhesion, mechanical interlock
and friction. Chemical adhesion is the original bond developed between concrete and steel
before any slip occurs. This bond breaks at certain loading after which it cannot provide
adhesion. Relative movement between the steel and the concrete can now occur once the
chemical bond is broken. Now the friction plays its part resisting the slip forces acting

radially around the steel reinforcement.

As the concrete stress increases and reaches the peak value most models do not cater
relationship past this peak value. The post peak tension stiffening of concrete due to
progressive cracking is modelled in the model. The reduction in stresses post peak is
determined and incorporated to determine reduced stresses in the concrete, which in other
models is not applicable. Load interaction between the reinforcement and concrete in
tensile zone is modelled as well. This reduction in post peak stresses is a resultant of bond
slip developed due to friction and mechanical interlocking of concrete and steel

reinforcement or within concrete itself and it increases with crack growth.
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3.4 Simulation in ABAQUS (FEM software)

The simulation program comprised of modelling 20 beams in ABAQUS. By the use of
boundary conditions for symmetry, only quarter beam was modelled. This ensured less
computational time and allowed possibility of using finer mesh to achieve better
represented contouring results in the model.

The beam is modelled using continuum (solid) elements .The truss elements are used to
model the longitudinal and transverse reinforcement. The reinforcement is linked to
adjacent concrete using the embedding technique. The effects of concrete steel interaction

such as bond slip and dowel action are modelled using the tension stiffening.

Concrete damaged plasticity model has been employed to introduce damage inside the

material. Following steps have been followed.
While working in FEM software, care must be ensured in keeping units consistent.

ABAQUS Standard suit is utilized for the modelling and simulation as it is a special
purpose Finite Element analyzer that employs implicit integration to solve highly nonlinear

systems with complex contacts and transient loads.

3.4.1 Parts definition

The ABAQUS FEM software presents module to create individual parts to be included in
the model. The parts are created either in 2D or 3D according to model requirements.
Deformable or rigid bodies can be created for the parts established. Parts can be given their

base feature and shape such as solid (extrusion) or wire element.

3.4.2 Material definition

Different materials can be defined for the parts in the property module. Here general and
mechanical (elastic and plastic) properties can be defined for various materials used in the
model. Partitioning and establishment of reference points on parts can be made to facilitate
assembly and post processing of model.

39



3.4.3 Section assignment

Sections are created in property module which contain information about the properties of
the part or region. The section provides information about the region’s cross sectional
geometry. These sections are assigned to parts and regions which automatically gets

assigned to all instances of the specified part.

3.4.4 Assembly/ Interaction

In the assembly module the orientation of different instances is developed and the mutual
interactions (Interaction module) and constraints established. Boundary conditions are used

to create supports and restrict movement along certain axis to guide model behavior.

3.4.5 Meshing

The parts are meshed using the structured meshing. The seeding size and then meshing is

done in the module. The type of element for the part or surface can be specified here.

Geometric order of the element to be analyzed is specified in this module as well.

3.4.6 Step formation

Steps are created in Step module where procedure type of the analysis is selected.
Procedure types such as static general, dynamic implicit etc. are available to choose from.
In the step the time period of the analysis and the incrimination during the time period is

specified.

3.4.7 Loading/ Boundary Conditions
Loads and boundary conditions can be assigned in the Load module. Type of loading and

its location is specified here, unless displacement control method is used. Displacement

controls can be specified by displacement boundary condition in this module as well.
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3.4.8 Field Output

Field History Output module selects different outputs parameters to be verified during
analyzed. These output parameters are analyzed during the job running or the analysis. The
job is created in the Job module in which different steps defined earlier are run to be

analyzed.

3.4.9 Visualization

In the Visualization module, the analyzed job can be viewed and the output parameters of
the analysis be achieved. The output data is retrieved in the module and different graphic
and visual simulations show output results of the analysis. Graphs (XY Data), charts are

also retrieved to evaluate relationship of different parameters.
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CHAPTER 4
MODELLING RESULTS

4.1 Choice of Mesh Size

The results are extracted in the post-processing module in ABAQUS that enables users to
determine the desired output variables. As established before, the selection of element
size and number is really important for any finite element modelling. An 8 nodded
hexahedral with hourglass control was selected as mentioned earlier. However for the
number of elements that give a stable values of field output variables was determined
through multiple number of analysis. Although the variables gets stable at elements more
than 10,000, the element number was intentionally chosen as 29000 to get narrow crack

bands and hence better visualization of cracking patterns.
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Fig-4.1: Stabilization of U2 with the increase in element number
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4.2 Effect of dilation angle ¥ and Viscosity Coefficient v for material

calibration

The dilation angle primarily affects the plastic region of load-deflection behavior and
results in in the increase in load carrying capacity and displacement at failure. The
converse is true for viscosity parameter where with the decrease the displacement at
failure increase significantly. The analysis of the beams with varying dilation angle and

viscosity parameter is shown in tabular form.

Table 4.1: Error with Dilation angle and Viscosity parameter variance

Varying Parameter
dilation angle ¥ Viscosity coefficient v Percentage Error %
25 0.01 33.2%
31 0.01 23.75%
35 0.01 15.24%
35 0.005 39.77%
38 0.01 17.85%
38 0.005 42.67%

The load-deflection curve corresponding to different values of dilation angle and viscosity
parameter has been shown in the figure below:
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Fig 4.2: Effect of dilation angle and viscosity parameter on the load-displacement characteristics
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4.3 Determination of Shear Strength (V,,) of the concrete beam for all

sections

—4—S12

Shear Stress (MPa)

O T T T T
0 0.2 0.4 0.6 0.8 1

Time Step

Fig 4.3: Shear Stresses along the three planes plotted verses step time

Where,
S12 corresponds to xy plane

S13 corresponds to xz plane

S23 corresponds to yz plane

The shearing stress along the three planes were determined and the nodes corresponding to
the centroid of the material geometry were selected. The stress envelope corresponding to
the all three axes was generated and the value of the shear strength for the whole material
was taken as the minimum shear stress at while the material fails along any of the three

axes is taken as the critical stress.
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4.4 Load-Displacement characteristics of experimental verses the FEM
results

The following figures show the Load-Deflection plots that were calibrated with the

experimental results. The xy data has been attached separately in Appendix.
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Figure 4.5: A1 Beam Load vs. Deflection at quarter points
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Figure 4.6: A2 Beam Load vs. Deflection at midpoint
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CHAPTER 5

ANALYSIS AND INTERPRETATION OF RESULTS

After the results were extracted in the pre-processing module, the interpretation of results
is made and the underlying trends have been discussed in depth in this chapter. The main
aim of varying the amount of shear span was to analyze the effect of increasing shear span
on the value of ultimate shear strength of the beam with constant depth. After the trend is
studied a comparison between ACI predicted strength and that predicted by the Finite

Element Model are tabulated in this chapter. The beams and their details are as follows:

Table 5.1: Specifications of N, A, Z and M series beams

Longitudinal Reinforcement | Shear Reinforcement | a/d d (in)
Beam Bars | REINforcement [ f; Bars fyo
ratio (%) (ksi) (ksi)
N1 3#8 1.48 60 - - 2.5 16
N2 3#8 1.48 60 - - 2.5 16
Al 3#8 1.48 60 |#2@ 7.5"c/lc | 40 2.5 16
A2 3#8 1.48 60 |#2@ 7.5"c/lc | 40 2.5 16
Z1 3#8 1.48 60 #3 @ 6" c/c 40 2.5 16
Z2 3#8 1.48 60 #3 @ 6" c/c 40 2.5 16
M1 3#8 1.48 60 #3 @ 8" clc 40 2.5 16
M2 3#8 1.48 60 #3 @ 8" clc 40 2.5 16
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5.1 Comparison of ultimate shear strength predicted by ACI and FEM

The Comparison of ultimate shear strength predicted by ACI and FEM have been shown in the tables as follows:

Table 5.2: Experimental Comparison of results between (Kashif, 2014) and ABAQUS (FEM) for shear span-to-depth ratio of 2.5

Beam Experimental ACI Predicted FEM Predicted v, (exp) V. (exp) V. (FEM)
a_ 5 Strength, KN Strength, KN Strength, KN V. (Ach V.(FEM) RO a
d Ve | Vs | Vu | Ve | Vs | Vu | Ve | Vs | Vu " " "
N1 123 | 0 123 92 0 92 108 | 0 108 1.33 1.13 1.17 2.4
N2 123 | 0 123 92 0 92 108 | 0 108 1.33 1.13 1.17 2.4
Mean Value | 123 0 123 92 0 92 108 0 108 1.33 1.13 1.17 2.4
Al 166 | 37 203 92 | 37 129 | 111 | 56 167 1.57 1.21 1.29 2.47
A2 171 | 37 209 92 | 37 129 | 111 | 56 167 1.62 1.25 1.29 2.47
Mean Value | 169 | 37 206 92 37 129 111 | 56 167 1.59 1.23 1.29 2.47
Z1 185 | 105 | 290 92 | 105 | 197 | 113 | 122 | 235 1.47 1.23 1.20 2.53
Z2 184 | 105 | 288 92 | 105 | 197 | 113 | 122 | 235 1.47 1.23 1.20 2.53
Mean Value | 185 | 105 289 92 | 105 197 113 | 122 235 1.47 1.23 1.20 2.53
M1 165 | 78 243 92 | 78 170 | 112 | 85 197 1.43 1.23 1.15 2.51
M2 159 | 78 237 92 | 78 170 | 112 | 85 197 1.39 1.2 1.16 2.51
Mean Value | 162 | 78 240 92 78 170 112 | 85 197 1.41 1.22 1.16 2.51
Total Mean 215 147 177 1.45 1.21 1.2 2.475
Variation 45% 21% 20%
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Where o is a factor which is studied in this research and its implication on varying shear

span to depth is studied.

V. =V +V.
V. =a\/fch,d
V. =a.ffchd+V

Table 5.3: Comparison of results between ACI and ABAQUS (FEM) for shear
span-to-depth ratio of 3

Beam ACI Predicted FEM Predicted
(a/d Strength, KN Strength, KN Vu(FEM) a
=3) Ve Vs Vu Ve Vs Vu Vu(ACh
N 92 0 92 106 0 106 1.15 2.37
A 92 37 129 108 56 164 1.27 2.39
Z 92 105 197 109 122 231 1.17 2.42
M 92 78 170 107 85 192 1.12 2.41
Total 147 173 | 118 | 2.39
Mean

Table 5.4: Comparison of results between ACI and ABAQUS (FEM) for shear
span-to-depth ratio of 3.5

Beam ACI Predicted FEM Predicted
(a/d Strength, KN Strength, KN V,.(FEM) o
=3.5) Vc Vs Vu Vc Vs Vu V.(ACI)
N 92 0 92 101 0 101 1.1 2.24
A 92 37 129 102 56 158 1.22 2.27
Z 92 105 197 104 122 226 1.14 2.3
M 92 78 170 103 85 188 1.11 2.28
Total 147 168.25 | 1.143 | 227
Mean
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Table 5.5: Comparison of results between ACI and ABAQUS (FEM) for shear
span-to-depth ratio of 4.0

ACI Predicted Strength, FEM Predicted Strength,
Beam J 9oty (FEMY
KN KN M a
(a/d =4) V.(ACI)
Vc Vs Vu Vc Vs Vu
N 92 0 92 95 0 95 1.03 2.1
A 92 37 129 98 56 158 1.22 2.18
Z 92 105 197 108 122 230 1.16 2.4
M 92 78 170 99 85 184 1.02 2.2
Total Mean 147 166.75 1.1 2.2
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Fig 5.1: Change in RSSV and its trend with increasing a/d ratio

*RSSV = Relative Shear Strength value of the ratio

56

fail

predicted




The values from the graph and table indicates that with the increase in the shear span to
depth ratio between 2.5 to 4 the ultimate strength of beam in shear decreases. As the trend
line shows, there is a drop of around 5% in the values of strength.

Moreover, in comparison with the ACI predicted strength, it can be seen that the values
suggested by numerical modelling are slightly higher than those predicted. This is because
the ACI under predicts the strength due to the fact that all factors have not been fully
incorporated which leads to the conservativeness of the shear design given by ACI.

To address this issue of conservativeness, a new modification in Zararis equation is
presented that incorporates additional factors to predict the shear strength. As established
before, Zararis suggest an additional parameter as splitting length It which depended upon

AV, . He asserted that this splitting length is a function of the depth. However, for this

research, the assumption made by Kashif is considered more rational, as he considers this
splitting length as a function of development length. The next section shows the modified

equation to predict the ultimate shear strength.

_ 0284 1% Iy a
V, _Kl.Z o.zd dj J f°‘+0'21((d j+0.25(dev fw}bd

Using the above proposed equation it is found out that it gives a better strength prediction
and the values are found closer to those of the finite element model as shown in the table
and graph below.

Table 5.6: Comparison of results of Shear Strength predicted between ACI and modified equation

Equation Predicted Strength, ACI Predicted Strength,
(RSSV)*

a/d KN KN _

Ratio
Vu Vu

2.5 161.7 147 1.1
3 157.3 147 1.07
35 154.4 147 1.05
4 152.9 147 1.04
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*RSSV = Relative Shear Strength value of the ratio

predicted

And to conclude this research, an expression for minimum amount of shear reinforcement

for attainment of nominal flexural capacity is also presented and is written below.

1| pf pf
AT (%y)(lufycjaﬁ
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Figure 5.3: The variation in value of a with the increase in a/d ratio

5.2 Cracking Pattern of the modelled beams

The cracking pattern was visualized using the vector plot of plastic strains in ABAQUS
using PEMAG function. Although this is not the most recommended method available,

but it can still give a qualitative idea as to what cracking patterns are expected.

5.2.1 General Cracking Pattern

1. For beams without web reinforcement the presence of inclined cracks is more
prominent compared to the flexure cracks.

2. For beams with shear reinforcement, the presence of flexure cracks was observed
along with some inclined cracking.

3. With the increase in shear span, flexure failure is expected and this is represented

by an increased number of flexure cracks for a/d ratios of 3.5 and 4.0.
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5.3 Beams with Shear Span to Depth Ratio 2.5

ODB: N2 _SMewadb  AbanuséStandard £,13-1 Wed May 27 20:02:37 Pakisten Standard Tima 2015

i Step: Step-l
=+ X oenment 97 StepTime = 03619
Primary Var: PEMAG
Defarmed Var: U Deformation Scale Factor: +1.1742+01

Fig 5.4: Inclined Cracking more prominent for beams
w/o web reinforcement for Beam N1 with a/d = 2.5

FERAG
thvg 75%)

Fig 5.6: Presence of vertical ties addresses some of the

diagonal cracks. However due to shorter moment arm
lesser flexure cracks appear for Beam Al with a/d =
25
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Fig 5.5: Inclined cracking more prominent for beams
w/o web reinforcement for Beam N2 with a/d = 2.5

FEKAG
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Fig 5.7: Presence of vertical ties addresses some of the

diagonal cracks. However due to shorter moment arm
lesser flexure cracks appear for Beam A2 with a/d =
2.5
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Fig 5.8: Both flexure and shear cracks appear for
Beam Z1 with a/d = 2.5
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Fig 5.9: Both flexure and shear cracks appear for
Beam Z2 with a/d = 2.5

Fig 5.10: Lesser Flexure cracks compared to the
inclined cracks for Beam M1 with a/d 2.5. Some
crushing of concrete is also observed at the loading
point.
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Deformed Var, U Oeformaticn Scle Fechar: +4 5242400

Fig 5.11: Lesser Flexure cracks compared to the
inclined cracks for Beam M2 with a/d 2.5. Some
crushing of concrete is also observed at the loading
point



5.4 Beams with Shear Span to Depth Ratio 3.0
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Fig 5.12: As the shear span increases, more flexure Fig 5.13: More flexural cracks compared to Shear
cracks start appearing. Inclined cracks also appear due Span Ratio of 2.5 for beam A3 with a/d ratio of 3.0
to the absence of shear reinforcement for beam N3
with a/d ratio of 3.0
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Fig 5.14: With the increase in Shear Span, the Fig 5.15: Flexure Cracks increase with the increase in

presence of more flexure cracks is justified for Z3 with shear span for Beam M3 with a/d ratio of 3.0
a/d ratio of 3.0
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5.5 Beams with Shear Span to Depth Ratio of 3.5
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Fig 5.16: As the shear span increases further, number  Fig 5.17: More flexure cracks compared to Shear Span
of flexure cracks increase in number. Some flexure of 3.0 for beam A4 with a/d of 3.5
cracks also appear for Beam N4 with a/d of 3.5
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Fig 5.18: With the increase in Shear Span, the Fig 5.19: Flexure Cracks increase with the increase in
presence of more flexure cracks is justified , Beam Z4 shear span, Beam M4 with a/d of 3.5
with a/d of 3.5
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5.6 Beams with Shear Span to Depth Ratio of 4.0
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Fig 5.20: Flexural Crack more dominant that the shear

inclined cracks for the Beam N5 with a/d of 4.0
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Fig 5.22: With the increase in Shear Span, the

presence of more flexure cracks is justified for Z5 with

a/d of
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Fig 5.21: More Flexural cracks compared to Shear
span of 3.5 ,A5 is justified with a/d of 4.0
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Fig 5.23: Flexure Cracks increase with the increase in

shear span for beam M5 with a/d of 4.0



CHAPTER 6
DERIVATION OF MODIFIED EQUATIONS

6.1 Equations for Ultimate Shear Strength and Minimum Shear

Reinforcement

Zararis’s expression for Av, (discussed earlier) is as follows:

AV, =0.5p, f,, bd

Taking into account, a new factor called development length (I;); which previous
researchers believe to influence the Ultimate Shear Strength of RC beams. This factor is
believe to alter the splitting length of concrete along the main horizontal reinforcement.
This horizontal splitting leads to immediate failure in shear as dowel action force drops to
zero. Realizing the factor’s influence, modification to the above expression is as follows

where splitting length is taken as [, = 0.25[,
I
AV, :0.255",0\, f,, bd

Substituting this new expression in following equation
V, =V, +V,+AY,

Results in a final modified equation for ultimate shear strength of RC Slender beams

_ 0284 1% Iy a
V, _Kl.Z o.zd dj J f°‘+0'21((d j+0.25(dD,ov fw}bd
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Taking this concept further, in order to devise another modified equation for minimum

shear provision, AVd is substituted to Eqg.4 (2.10.3) results in an improved equation as

under:

1130895(3]
Py d\d

6.2 Derivation of Minimum Shear Reinforcement which ascertains full

flexure capacity

" a a' represents shear span
Vuxa—ASfy(d—Ej P P
f
W=&yd@~iJ
a' 2d
V — Agfy l— Agfy :|
(a d)_ 1.7f ' xbd
V — Asfy 1_ pfy] - a:AS—fy
Y (a Tf! .
(/é) 1.7f 0.85f xb

Both concrete and steel superposed strengths results in total shear strength,

f f
V, 4V, = y[l—p VJ

Tl 7
At (L pPT,
e

Using ACI-318-(11.13 and 11.15) equations for v_and v_:
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Afd AT (. pf,
e

AToZW bdpzz%){ 1.7¢ j af.

e

And to conclude this research, an expression for minimum amount of shear reinforcement

for attainment of nominal flexural capacity is also presented and is written below.

1| pf pf
% (%y)£1_1.7fycj_aﬁ

140 >
2 N
'S 120 A - L
(48] -
o -,
[ AR
O 100 - ,/9 ..................................
g -
> O -
< 80 A _
LL -~ O  No Shear Reinforcement
< 60 4 - . .
c - O ACI Min Shear Reinforcement
= o ®  Zararis Min Shear Reinforcement
S 40 7 A Kayani Min Shear Reinforcement
‘5 ¢ Proposed Min Shear Reinforcement
o 2010 e Linear (Nominal Flexure Capacity)
S
°© — -+ — Linear (Mean)

0 T T T T T T T
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

Transverse Steel Ratio

Figure 6.1: Relation of %Nominal Capacity to Transverse Reinforcement Ratio.

It can be clearly seen that the proposed equation for minimum reinforcement provides the
best prediction.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATION

7.1 Conclusions

At the end conclusion devised by our team and the conclusions that we reached are as
follows

1. Finite Element Modelling (FEM) is a technique which can be used to better
understand shear failure mechanism.

2. FEM significantly reduces time and effort in comparison to experimental testing

3. The equation devised by Kayani et al. provides a better shear strength prediction
than ACI

4. The proposed equation provides better prediction for full flexure capacity of RC

beams

7.3 Recommendations

1. More experimental work needed to calibrate the material model as per the local
conditions.

2. The effect of shear span to depth ratio in slender beams with stirrups needs to
be validated with further experimental study.

3. Advanced crack detection and evolution techniques such as XFEM, VCCT and
VUMAT can help a better prediction of cracks, unlike the qualitative technique

used in this research.
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APPENDIX

Table 1: Beam N1 Experimental and FEM Model’s Load Deflection Comparison

Experimental Model
L oad Deflections (mm) L oad Deflections (mm)
(Ton) | Quarter | Mid- | Quarter (Ton) | Quarter | Mid- | Quarter

Point Point Point Point Point Point
0.00 0.00 0.00 0 0.00 0.00 0.00 0.00
2.50 0.56 0.66 0.56 2.50 0.45 0.58 0.45
5.00 1.04 1.45 1.07 5.00 0.95 1.15 0.95
7.50 1.57 1.91 1.57 7.50 1.48 1.73 1.48
10.00 2.36 2.79 2.21 10.00 1.98 2.30 1.98
12.50 3.05 3.35 2.67 12.50 2.47 2.90 2.47
15.00 3.45 4.06 3.28 15.00 2.97 3.53 2.97
17.50 4.24 4.90 3.99 17.50 3.47 4.15 3.47
20.00 4.83 551 4.47 20.00 3.98 4.78 3.98
22.50 5.54 6.27 5.03 22.50 4.56 5.48 4.56
25.00 7.32 7.62 5.72 25.00 5.38 6.90 5.38
27.50 7.84 8.21 7.98 27.00 6.35 7.70 6.35
20.00 6.99 8.61 7.22 27.10 6.85 9.56 6.85
16.00 5.91 8.45 6.56 26.40 9.00 12.32 9.00
14.50 5.49 7.75 6.35 25.10 10.10 13.01 10.10
10.00 4.78 7.01 5.97 22.90 12.01 14.50 12.01
6.00 4.03 6.13 5.54
4.00 3.18 5.74 4.86
2.50 2.96 4.97 4.29
0.05 2.33 4.29 351
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Table 2: Beam N2 Experimental and FEM Model’s Load Deflection comparison

Experimental Model
Load Deflectio_ns (mm) Load Deflectiqns (mm)
Quarter | Mid- | Quarter Quarter | Mid- | Quarter

(Ton) . . . (Ton) ) ) .

Point Point Point Point | Point | Point
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.50 0.33 0.55 0.82 2.50 0.45 0.58 0.45
5.00 0.74 1.21 1.80 5.00 0.95 1.15 0.95
7.50 1.23 2.02 2.20 7.50 1.48 1.73 1.48
10.00 1.81 3.00 2.81 10.00 1.98 2.30 1.98
12.50 2.38 3.88 4.04 12.50 2.47 2.90 2.47
15.00 2.89 4.68 5.16 15.00 2.97 3.53 2.97
17.50 3.49 5.56 6.45 17.50 3.47 4.15 3.47
20.00 411 6.46 7.76 20.00 3.98 4,78 3.98
22.50 5.35 7.56 9.46 22.50 4.56 5.48 4.56
25.00 5.69 8.07 10.21 25.00 5.38 6.90 5.38
21.50 6.00 8.98 13.83 27.00 6.35 7.70 6.35
20.00 6.09 9.31 15.22 27.10 6.85 9.56 6.85
17.20 5.75 8.82 14.56 26.40 9.00 12.32 9.00
14.80 5.39 8.25 13.63 25.10 10.10 13.01 10.10
10.75 4.69 7.16 11.82 22.90 12.01 14.50 12.01
8.00 4.17 6.37 10.50
4.00 3.34 5.13 8.39
2.33 2.85 4.44 7.15
0.02 2.13 3.39 5.31
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Table 3: Beam Al Experimental and FEM Model’s Load Deflection comparison

Experimental Modsl

Load Deflections (mm) L oad Deflecti(?ns (mm)
(Ton) | Quarter | Mid- | Quarter (Ton) QFlja_rter Mid- | Quarter
oint | Point Point

Point | Point | Point 0.00 0 0.00 0

0.00 0.00 0.00 0.00 2.50 0.20 0.33 0.20

2.50 0.56 0.66 0.56 5.00 0.40 0.67 0.40

5.00 1.04 1.45 1.07 7.50 0.74 1.17 0.74

750 | 157 | 191 | 157 |1000) 1.09 | 179 | 1.09

1000 | 236 | 279 | 221 | 1250] 160 | 242 1.60

oe0 305 335 | 267 11500 200 | 305 [ 200

17.50 2.52 3.70 2.52
15.00 3.45 4.06 3.28 20.00 > 88 435 > 88

1750 | 424 | 490 | 39 550 315 5.01 3.15

2000 | 4.83 | 551 | 447 [2500| 4.34 6.13 4.34

22.50 5.54 6.27 5.03 27.50 5.11 7.04 5.11

25.00 7.32 7.62 5.72 30.00 5.64 7.76 5.64

27.50 7.84 8.21 7.98 32.50 6.27 8.53 6.27

20.00 | 6.99 8.61 722 13500| 7.26 9.67 7.26

1600 591 1845 | 68 137.50| 800 | 10.60 | 8.00

a0 529 775 | 635 14000 1142 | 1417 [ 1142

1000 478 | 701 | 597 |0l ]| 1100 } 144 | 11.60

39.00 | 12.89 | 15.77 | 12.89
600 | 403 | 613 | 554 [3750 1347 | 16.73 | 13.47

400 | 318 | 574 | 486 |3600| 11.69 | 17.24 | 11.69

2.50 2.96 4.97 429 | 3250 | 1244 | 18.60 12.44

0.05 2.33 4.29 3.51 2750 | 14.11 20.10 1411
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Table 4: Beam A2 Experimental and FEM Model’s Load Deflection comparison

Experimental Model
Deflections (mm i
L oad . (mm) L oad Deflections (mm)
(Ton) |Quarter | Mid- | Quarter | . I'Quarter | Mid- | Quarter
Point | Point | Point Point | Point | Point
0.00 0.00 0.00 000 [ 00 0 0.00 0
2.46 0.10 0.54 039 [ ,e0 | 020 | 033 | 020
4.91 0.40 1.00 081 [ o0 | 040 | 067 | 040
7.46 0.74 1.57 126 |70 | o074 | 117 | 074
9.82 1.26 2.44 1.91
1000 | 109 | 179 | 1.09
1232 | 165 3.05 2.43
1250 | 160 | 242 | 1.60
1478 | 2.12 3.79 3.00 ™ s
17.23 | 259 4.49 357 |20 < 3.05 '
1969 | 302 | 511 | 408 |L750| 292 | 370 | 232
2214 | 368 | 600 | 4gg |2000] 288 |435| 28
2460 | 5.12 7.50 608 [2250] 315 | 501 | 315
27.05 5.42 7.92 6.43 |2500| 434 | 613 | 434
2051 | 6.31 9.22 774 |2750| 511 | 704 | 511
3196 | 6.74 9.85 831 |3000| 564 | 776 | 5.64
3442 | 752 | 1092 | 928 |a250| 627 | 853 | 627
3692 | 810 | 1170 | 996 |g3e00| 726 | 967 | 7.26
3938 | 937 | 1327 | 1140 | 00| 800 | 1060 | 800
4183 | 1031 | 1436 | 1234 [, T 110 | 10 | 1142
4085 | 1057 | 1450 | 1239 ", e T 1160
3228 | 1329 | 1657 | 12.96
39.00 | 1289 |[1577| 12.89
2625 | 1477 | 17.39 | 13.18 - S
13.47 13.47
2549 | 1531 | 1753 | 1318 | o020 16.73
1120 | 1167 | 1464 | 1010 |50:00| 1169 1724 11.69
246 | 7.3 | 1008 | 7.42 |3250| 1244 |1860 | 1244
0.00 6.54 8.34 6.14 |2750| 1411 |2010 | 14.11
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Table 5: Beam Z1 Experimental and FEM Model’s Load Deflection comparison

Experimental Model
Deflections (mm i
Load ( (mm) Load Deflections (mm)
Quarter Mid- Quarter Quarter Mid- Quarter
(Ton) . . . (Ton) - . -
Point Point Point Point Point Point
0.00 0.00 0.00 0.00 0.00 0 0 0
2.50 0.37 0.59 0.47 2.50 0.57 0.58 0.57
?-gg ;’-ii ig? g-ig 5.00 1.03 1.16 1.03
10.00 2.15 2.93 2.21 7.50 1.49 1.73 1.49
15.00 3.26 4.45 3.37 12.50 2.43 2.92 2.43
17.50 3.85 5.11 3.97 15.00 2.91 3.54 2.91
20.00 4.67 6.13 4.81 17.50 3.39 4.18 3.39
;é-gg gg; %é 2% 20.00 3.87 48 3.87
57 50 520 846 e 22.50 4.34 5.74 4.34
30.00 77 9.63 777 25.00 4.82 6.59 4.82
32.50 7.82 10.39 8.31 27.50 5.49 7.45 5.49
35.00 8.31 11.08 8.85 30.00 6.16 8.31 6.16
37.50 9.05 12.10 9.63 32.50 6.84 9.18 6.84
32-28 190.7426 gg; ﬂgé 35.00 7.53 10.08 7.53
45.00 11.18 15.01 11.89 37.50 8.26 10.98 8.26
47.50 1251 | 16.15 12.78 40.00 9.01 11.88 9.01
50.00 13.49 17.56 13.90 42.50 9.88 12.77 9.88
52.50 14.04 18.35 14.47 45.00 10.78 13.67 10.78
55.00 15.43 19.73 15.50 47.50 11.72 14.57 11.72
g;-gg 1??; géég 1%’2 5000 | 12.88 | 1546 | 12.88
e 733 53 31 52.50 14.25 16.67 14.25
59.12 1861 | 24.08 18.41 55.00 16.2 17.87 16.2
57.60 23.41 30.10 21.47 57.50 19.2 18.96 19.2
52.80 24.17 31.68 22.08 58.93 20.3 19.58 20.3
46.89 23.55 31.40 21.47 5912 217 19.67 21.7
41.89 22.80 30.31 20.73 £9.20 224 10.7 294
si25 | s0sT | are0 | is7i |20 | 83 | 2 | 23
28.13 2024 | 2668 18.04 62.80 2341 24.1 2341
23.75 19.30 25.32 17.04 62.70 24.78 25.4 24.78
18.86 18.27 23.83 15.94 62.20 25.86 27.4 25.86
15.16 17.29 22.46 14.92 61.20 26 28.6 26
9.60 16.00 | 20.53 13.47 57.60 2732 | 3088 | 27.32
3.34 14.08 | 17.75 11.26 52.80 2942 | 32.16 29.42
1.07 13.12 16.45 10.25 1689 2002 51 2000
0.25 12.67 15.87 9.81 : : : :
0.04 12.05 15.18 9.14 37.18 31.33 34 31.33
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Table 6: Beam Z2 Experimental and FEM Model’s Load Deflection comparison

Experimental

Model

Deflections (mm)

Deflections (mm)

(I'Tooar% Quarter | Mid- | Quarter ("Tooar?) Quarter | Mid- | Quarter
Point | Point Point Point Point Point
0.00 0.00 0.00 0.00 0.00 0 0 0
2.50 048 | 0.60 046 | 250 0.57 0.58 0.57
?-gg 1-23 ;g; g-ig 5.00 1.03 1.16 1.03
el s T e in 1w
00 | a5 | am | ear | 250|285 | 2w | o
1750 194 T 119 15.00 2.01 3.54 291
20.00 189 5E o1 17.50 3.39 4.18 3.39
22.50 5.64 7.47 566 | 2000 3.87 4.8 3.87
25.00 6.31 8.30 6.32 22.50 4.34 5.74 4.34
27.50 7.27 9.47 7.28 25.00 4.82 6.59 4.82
30.00 7.88 10.33 8.01 27.50 5.49 7.45 5.49
32.50 8.52 11.26 8.85 30.00 6.16 8.31 6.16
35.00 9.19 12.19 9.62 32.50 6.84 9.18 6.84
37.50 10.19 | 1356 10.77 | 35.00 753 10.08 7.53
40.00 1056 | 14.10 1119 | 37.50 8.26 10.98 826
42.50 11.28 14.87 11.83 40.00 0.01 11.88 9.01
45.00 12.00 15.90 12.69 42 50 9.88 12.77 9.88
4750 | 1271 | 1691 | 1354 [4500 | 10.78 1367 | 10.78
50.00 13.94 | 1823 | 1463 [7475) 11.72 1457 11.72
gé'gg iggg ;g?g iggg 50.00 | 12.88 1546 | 12.88
57.50 2013 | 2525 1960 |22 14.25 16.67 14.25
58.93 2099 | 2623 | 2020 |- 162 17.87 16.2
55.00 2206 | 2688 | 2042 | 2/-20 19.2 18.96 19.2
47.00 2958 | 3182 | 2265 | 2893 20.3 19.58 203
42.00 28.87 | 30.63 21.82 | 2912 21.7 19.67 217
36.00 27.75 29.02 20.61 59.20 224 19.7 22.4
27.84 25.99 26.65 18.75 62.10 23.3 22 23.3
25.24 2541 | 25.86 18.14 | 62.80 23.41 24.1 23.41
19.64 2412 | 24.14 1679 | 62.70 24.78 25.4 24.78
16.15 2322 | 2293 1585 | 62.20 25.86 27.4 25.86
13.91 2268 | 2218 1527 | 61.20 26 286 %6
11.91 22.05 21.42 14.66 57.60 27.32 30.88 27.32
7.33 2052 | 19.67 | 1328 | 52.80 29.42 32.16 29.42
5.09 1973 | 1875 | 1257 [ 4689 | 30.02 33.14 | 30.02
276 18.64 | 17.60 11.65
0.09 16.99 | 16.01 1041 | 3718 3133 34 31.33
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Table 7: Beam M1 Experimental and FEM Load’s Deflection comparison

Experimental

Model

Deflections (mm)

Deflections (mm)

Load Load
(Ton) | Quarter | Mid- Quarter | (tones) Qua.rter Mi.d- Qua_rter
Point Point Point Point Point Point
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.50 0.35 0.37 0.35
2.50 0.40 0.66 0.48 500 078 083 078
5.00 0.98 1.47 0.91 7.50 1.16 1.34 1.16
7.50 1.24 2.02 1.57 10.00 1.55 1.94 1.55
10.00 1.84 2.97 2.07 12,50 193 2.75 193
15.00 2.46 3.34 2.46
12.50 2.41 3.88 2.65 1750 3.09 401 3.0
15.00 3.01 4.75 3.16 20.00 3.78 4.75 3.78
1750 | 3.61 5.56 393 | 2350 | 474 5.80 4.74
25.00 5.15 6.28 5.15
20.00 4.39 6.67 4.80 2750 501 08 5ol
23.50 5.14 7.82 5.76 30.00 6.70 7.97 6.70
25.00 5.54 8.39 6.62 32.50 7.95 8.88 7.95
35.00 8.46 10.06 8.46
2750 | 642 9.66 8.69 3750 | 9.5 11.21 9.52
30.00 7.29 10.88 10.45 40.00 10.65 12.53 10.65
39 50 7 82 1162 1151 4250 12.18 14.10 12.18
45.00 13.91 15.82 13.91
35.00 8.59 1271 13.07 4750 15.79 17.43 15.79
37.50 9.11 13.47 14.14 49.50 17.45 18.82 17.45
40.00 9.95 14.68 15.87 50.20 17.57 19.40 17.57
50.40 17.96 20.40 17.96
42.50 11.27 15.85 17.56 c17 189 TRY) 5.9
45.00 11.85 16.92 19.09 52.7 20.4 22.69 20.40
47.50 11.92 17.77 20.35 51.8 215 215 2150
4950 | 11.87 18.35 2121 | 4808 | 2204 23.07 22.54
475 23.2 24.09 23.20
5050 | 1287 | 19.35 2221 74593 | 2387 2431 23.87
51.50 13.87 20.35 23.21 423 24.7 25,54 24.70
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Table 8: Beam M2 Experimental and FEM Model’s Load Deflection comparison

Experimental Model

Load Deflectio'ns (mm) L oad Deflectiqns (mm)
(Ton) Qua'rter Ml_d- Qua.rter (tones) Qua.rter M{d- Qua.rter

Point Point Point Point Point Point
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2.50 0.59 0.60 0.43 2.50 0.35 0.37 0.35
5.00 1.19 1.40 1.00 5.00 0.78 0.83 0.78
7.52 1.85 2.35 1.66 7.50 1.16 1.34 1.16
10.02 2.39 3.14 2.24 10.00 1.55 1.94 1.55
12.50 3.02 4.04 2.90 12.50 1.93 2.75 1.93
15.07 3.60 4.83 3.50 15.00 2.46 3.34 2.46
17.52 4.17 5.64 4.09 17.50 3.09 4.01 3.09
20.08 5.01 6.77 5.02 20.00 3.78 4.75 3.78
22.53 5.84 7.87 5.85 23.50 4.74 5.80 4.74
25.07 6.38 8.66 6.43 25.00 5.15 6.28 5.15
27.51 7.21 9.84 7.38 27.50 5.91 7.08 5.91
30.05 7.94 10.92 8.24 30.00 6.70 7.97 6.70
32.50 8.38 11.54 8.74 32.50 7.55 8.88 7.55
35.08 9.29 12.88 9.84 35.00 8.46 10.06 8.46
37.57 10.10 14.06 10.81 37.50 9.52 11.21 9.52
40.01 10.78 15.02 11.57 40.00 10.65 12.53 10.65
42.52 11.53 16.09 12.46 42.50 12.18 14.10 12.18
45.00 12.39 17.30 13.44 45.00 13.91 15.82 13.91
47.51 13.52 19.14 15.30 47.50 15.79 17.43 15.79
48.41 13.83 19.66 15.84 49.50 17.45 18.82 17.45
48.08 13.84 19.71 15.93 50.20 17.57 19.40 17.57
45.93 13.89 20.08 16.58 50.40 17.96 20.40 17.96
42.44 13.98 20.68 17.73 51.2 18.9 21.32 18.90
40.78 14.01 20.92 18.32 527 20.4 22.69 20.40
36.73 13.43 20.03 17.67 51.8 21.5 21.5 21.50
31.55 12.60 18.75 16.72 48.08 22.54 23.07 22.54
21.79 10.81 16.01 14.67 475 23.2 24.09 23.20
13.25 8.98 13.26 12.48 45,93 23.87 24.31 23.87
6.33 7.23 10.61 10.29 42.3 24.7 25.54 24.70
2.16 5.87 8.58 8.64
0.02 4.86 6.87 7.34

76




BIBLIOGRAPHY

ACI (2008). Building Code Requirements for Structural Concrete (ACI 318-08) and
Commentary, American Concrete Institute.

Ahamad, S. H., et al. (1994). "Shear strength of reinforced lightweight concrete beams of
normal and high strength concrete.” Magazine of Concrete Research 46(166): 57-66.

Anderson, N. S. and J. A. Ramirez (1989). "Detailing of stirrup reinforcement."” ACI
Structural Journal 86(5): 507-515.

Angelakos, D., et al. (2001). "Effect of concrete strength and minimum stirrups on shear
strength of large members.” ACI Structural Journal 98(3).

Bresler, B. and A. C. Scordelis (1963). Shear strength of reinforced concrete beams. ACI
Journal Proceedings, ACI.

Collins, M. P., et al. (2008). "An adequate theory for the shear strength of reinforced
concrete structures." Magazine of Concrete Research 60(9): 635-650.

Collins, M. P. and D. Kuchma (1999). "How safe are our large, lightly reinforced concrete
beams, slabs, and footings?" ACI Structural Journal 96(4).

Elzanaty, A. H., et al. (1986). Shear capacity of reinforced concrete beams using high-
strength concrete. ACI Journal Proceedings, ACI.

Hofstetter, G. and G. Meschke (2011). Numerical Modeling of Concrete Cracking,
Springer.

Johnson, M. K. and J. A. Ramirez (1989). "Minimum shear reinforcement in beams with
higher strength concrete.” ACI Structural Journal 86(4).

Kani, G. (1964). The riddle of shear failure and its solution. ACI Journal Proceedings, ACI.

Kashif Shehzad, W. K., Khalig-Ur-Rasheed Kiani (2014). "Shear Behaviour of Normal
Strength Reinforced Concrete Slender Beams."

Kong, P. Y. and B. V. Rangan (1998). "Shear strength of high-performance concrete
beams.” ACI Structural Journal 95(6).

Leonhardt, F. and R. Walther (1962). "Tests on Single Span Reinforced Concrete Beams
with and without Web Reinforcement.”" Beton-und Stahlbetonbau: 37.

Leonhardt, F., et al. (1964). The Stuttgart shear tests, 1961: contributions to the treatment
of the problems of shear in reinforced concrete construction.

7




MacGregor, J. G., et al. (1997). Reinforced concrete: mechanics and design, Prentice Hall
Upper Saddle River, NJ.

Morsch, E. (1910). Concrete-steel Construction:(Der Eisenbetonbau), Engineering news
publishing Company.

Mphonde, A. G. and G. C. Frantz (1985). "Shear tests of high-and low-strength concrete
beams with stirrups.” ACI Special Publication 87.

Placas, A. and P. E. Regan (1971). Shear failure of reinforced concrete beams. ACI Journal
Proceedings, ACI.

Roller, J. J. and H. G. Russel (1990). "Shear strength of high-strength concrete beams with
web reinforcement.” ACI Structural Journal 87(2).

Russo, G. and G. Zingone (1991). "Flexure-shear interaction model for longitudinally
reinforced beams." ACI Structural Journal 88(1).

Shioya, T, et al. (1985). Size effect on splitting tensile strength of concrete. Proceedings.

Swamy, R. and A. Andriopoulos (1974). "Contribution of aggregate interlock and dowel
forces to the shear resistance of reinforced beams with web reinforcement.” ACI Special
Publication 42.

Talbot, A. N. (1909). "Tests of reinforced concrete beams:: resistance to web stresses."

Yoon, Y.-S., et al. (1996). "Minimum shear reinforcement in normal, medium, and high-
strength concrete beams." ACI Structural Journal 93(5).

Zararis, P. D. (2003). "Shear Strength and Minimum Shear Reinforcement of Reinforced
Concrete Slender Beams." ACI Structural Journal(Title no. 100-S22): 12.

Zararis, P. D. (2003). "Shear strength and minimum shear reinforcement of reinforced
concrete slender beams." ACI Structural Journal 100(2).

Zararis, P. D. and G. C. Papadakis (2001). "Diagonal shear failure and size effect in RC
beams without web reinforcement.” Journal of structural engineering 127(7): 733-742.

Ziara, M. M. (1993). "The influence of confining the compression zone in the design of
structural concrete beams."

78



