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Introduction
• Brain Computer Interface (BCI) 

– device that permit brain signals to interact with the 
environment. 

• BCI has been divided into two groups 
– Invasive BCI

• electrodes are mounted in to the brain skin

– Non-Invasive BCI 
• electrodes are mounted on the surface

• BCI system used 
– Disabled Persons
– Non-disable Individuals [2]. 

• BCI system 
– also used in robotics and biomedical technologies etc. [1], 

[2]. 
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Introduction
• Sources to measure brain activities for BCI.

– Invasive BCIs
• electrocorticograpy (ECoG)
• single micro-electrode (ME)
• micro-electrode array (MEA)
• local field potentials (LFPs) 

– Non-invasive BCIs
• electroencephalography (EEG) 
• magneto encephalography (MEG)
• Functional Magnetic Resonance Imaging (fMRI)
• Near Infrared Spectroscopy (NIRS)

• Mostly EEG signal is used 
– the non-invasive EEG electrodes 
– Availability
– low hardware cost and transferability
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Introduction

• Electroencephalogram (EEG) 
– Fluctuations in the voltage caused by the flow of ionic current in the 

neurons.
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Introduction

• Motor Imagery (MI) 

– EEG signals related to motor movements. 

– External environments [4].

• To convert the MI based EEG signals to BCI 
input decision and control signals 

1. Signal Enhancement

2. Feature Extraction

3. Classification
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Introduction

• Frequency bands
– δ (0.4 – 4 Hz)

– θ (4 – 8 Hz)

– α (8 - 12 Hz)

– β (12 – 30 Hz)

Frequency bands of interest

Images: Courtesy of “http://brain.bio.msu.ru/papers/chp2000/7.htm”
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Contribution

• Deep learning 
– classify motor imagery based EEG signals

• Signal Enhancement 
– Band-Pass Filter

– Median filter 

• Features Extraction
– Wavelet Transform (WT) 

– Power Spectral Density 

– Aggregated Signal
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Cont.

• Classification Results has been compared

– Support Vector Machines (SVM), 

– k- Nearest Neighbor (k-NN), 

– Linear Discriminant Analysis (LDA), 

– Quadrature Discriminant Analysis (QDA)

– Self Organizing Maps (SOM) based Neural Networks

– Deep Belief Networks (Deep Learning)

• Database 

– BCI Competition III named Graz database.
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Classification Steps
• Feature Extraction

– Wavelet Transform (bi-orthogonal 6.8 )

– Power Spectral Density

– Aggregated Signal

• Feature Reduction

– Principal Component Analysis

• Classification

– Support Vector Machine

– Self Organizing Map 

– Deep Belief Networks
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Dataset
• Dataset Details

– BCI Competition 2003 named Graz data. 

– Collected from a usual subject 

• reaction sitting 

– subject was comforting on chair with supports to its arms. 

• goal is to move a block 

– left and right movement. 

– The electrodes are placed on scalp as on the location as shown 
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Cont.

• The database contain 280 trails 
– each of 9 seconds 

– Three electrodes Cz, C4 and C3, 

– 140 correspond to training set 

– 140 correspond to testing signals

• The sampling rate is of 128Hz. 

• Brain signals are of frequency range of 0.3-40Hz. 

• Therefore 0.5-30 Hz band is extracted through a 
band-pass filter
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Feature Extraction

• For Self Organizing Map (SOM) based neural 
network, the best suited features were

– Wavelet Transform

– Power Spectral Density

• For Deep Belief Network, the following 
features has been compared

– Fourier transform

– Wavelet transform

– Aggregated absolute signal
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Method for SOM
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Wavelet Coefficients
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Power Spectral Density
• Power Spectral density (PSD) 

– knowledge of frequency vs. power spreading. 
– autocorrelation of Fourier transform (FT).

• The Welch PSD estimate 
– Hamming window of 64. 

• The PSD estimates 8-25 Hz has been extracted 
[13]. 
– 8-12Hz correspond to α band 
– 18-25Hz correspond to the β band.

• Mean power has also been computed for each 
band. 
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• Features extraction is from t = 3s to 9s. 

– Frequency range 0.5-30Hz. 

• The feature vector consist of 

– wavelet coefficients

– PSD estimates for both bands i.e. (8-12Hz and 18-25Hz)

• The data size 871x 140 has been termed as non-reduce feature set. 

• Reduce Feature Vector

– Principal Component Analysis (PCA) 

– Reduced feature Vector 91×140 
• Contains 98 % of the variance 

Feature vector set

Features Dimension (Features ×
samples)

Bior6.8 Wavelet 
Coefficient

102 ×140

PSD estimate 768 ×140

Mean Power of signal 1 ×140

Total Data Size 871 ×140 17



• Final step 

– classify the signal maximum accuracy. 

• Different classifiers and compared the results 

– Linear Discriminant Analysis (LDA)

– Quadratic Discriminant Analysis (QDA)

– Linear Support Vector Machine (SVM) 

– k-nearest neighbor (kNN) 

– SOM based neural networks

– Deep Belief Net

Classification

18



• MATLAB has been used 

• Results of both reduced and non-reduced 
feature vectors has recorded 

Performance Analysis of SOM based 
Classification

No. Classification Algorithms Accuracy (original) % Accuracy( reduced) % Reference

1 LDA 80.30 82.64 [13]

2 QDA 80.50 81.70 [13]

3 KNN 77.50 82.90 [12]

4 SVM (Linear) 81.42 81.42 [12]

5 SOM 83.45 84.17 Mine
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Deep Learning
• Deep learning is very lose simulation of brain. 
• The algorithms uses several levels and layers of 

raw data 
– to learn automatically by using a deep structure of 

neural networks make up of many hidden layers. 

• It automatically mine features that are more 
related to classification 

• Involves meaningful information which is not 
depend upon other features. 

• The DBN model is based on a number of 
Restricted Boltzmann Machine (RBM) which uses 
unsupervised learning technique [7].
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Deep Belief Net (DBN)

• Every single hidden layer in DBN has a Restricted Boltzmann 
Machine (RBM)

• RBM is trained and weights are assigned to each units. 

• The RBM structure is shown in Fig :
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Method for Deep Belief Net
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Experimental Parameters for DBN

• From 140 total samples 70 samples has been used for 
training and 70 for testing purpose. 

• Each node has been initialized with a random weight.

• The turning parameters were set as: 
– Learning rate for weight and biases = 0.07

– Momentum=0.5

– Weight decay = 0.002. 

• Range of hidden layers for DBN has been set from 4 to 
20 [15]

• The unit size is fixed for every layer
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Results

Hidden 
layers

Epoch

1 4 6 7 8 10 Error

4 0.32365 0.22715 0.19225 0.10380 0.05547 0.02137 7%

6 0.49859 0.49618 0.40745 0.26631 0.25521 0.26630 29%

7 0.30189 0.29237 0.20115 0.10559 0.05974 0.01370 8%

9 0.36111 0.2511 0.24729 0.17114 0.14391 0.05030 11%

10 0.38963 0.37796 0.23674 0.21644 0.18168 0.08136 16%

12 0.37125 0.25995 0.19381 0.18716 0.13798 0.07046 11%

14 0.39381 0.27904 0.24590 0.23087 0.21993 0.14084 17%

15 0.35488 0.22000 0.11820 0.11339 0.07837 0.02874 6%

17 0.30835 0.25203 0.21098 0.19075 0.17331 0.07226 11%

18 0.28049 0.25334 0.25358 0.25196 0.23529 0.16987 14%

19 0.27582 0.24876 0.15606 0.14082 0.10631 0.03305 8%

20 0.31849 0.26069 0.24548 0.24479 0.25184 0.21088 16%

Epoch wise 30% 23% 17% 13% 10% 4% 7%

Table 1 Mini Batch Mean Square error using aggregated absolute value
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Results
Hidden 
layers

Epoch

1 4 6 7 8 10 Error

4 0.328874 0.186094 0.127025 0.055325 0.032907 0.010847 6%

5 0.303948 0.250407 0.211553 0.251637 0.123172 0.040178 11%

6 0.498398 0.494803 0.264515 0.256402 0.254118 0.222160 28%

7 0.260469 0.229944 0.100652 0.055693 0.041782 0.012354 6%

9 0.279942 0.233898 0.164947 0.198849 0.100792 0.025755 8%

10 0.375353 0.353728 0.192056 0.174571 0.112999 0.050374 14%

12 0.249831 0.244736 0.175301 0.140486 0.101412 0.045612 8%

14 0.399336 0.280878 0.238957 0.242188 0.224081 0.114004 15%

15 0.238821 0.204236 0.087956 0.130813 0.035063 0.035500 4%

16 0.412291 0.238595 0.162861 0.115279 0.067042 0.023590 7%

18 0.249528 0.253878 0.240352 0.221536 0.210868 0.127481 12%

19 0.285597 0.206465 0.125359 0.103638 0.066685 0.019502 5%

20 0.253958 0.273584 0.243070 0.248365 0.228325 0.184926 15%

Epoch wise 27% 21% 13% 12% 7% 2% 5%

Table 2 Full Batch Mean square Error using Aggregated Absolute Value with different number of 

hidden layers
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Results

Hidden 
Layers

Epoch

1 3 5 6 8 10 Error

4 0.158124 0.197538 0.171107 0.151335 0.150454 0.155412 17%

5 0.276637 0.161026 0.152534 0.166176 0.18365 0.149961 18%

8 0.151637 0.157858 0.16407 0.159322 0.194539 0.151622 17%

9 0.299362 0.275149 0.286839 0.152936 0.151099 0.161565 23%

10 0.156181 0.150529 0.153986 0.150587 0.15969 0.153361 16%

13 0.150986 0.150162 0.156962 0.178769 0.151577 0.150494 15%

14 0.297748 0.189421 0.150261 0.169156 0.150458 0.153936 18%

15 0.396984 0.165612 0.158541 0.183391 0.156187 0.15078 21%

16 0.301985 0.229711 0.168155 0.155346 0.162087 0.155824 19%

17 0.240276 0.201087 0.173229 0.161217 0.204058 0.159594 18%

18 0.386699 0.167499 0.162614 0.153515 0.179621 0.159482 20%

20 0.239277 0.161283 0.160649 0.156961 0.156937 0.217208 18%

Epoch 
Wise

25% 18% 18% 16% 17% 16% 18%

Table 3 Full Batch Classification Error Using PSD
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Comparison of Classification
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Comparison of three different features 
set
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Overall Comparison
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• In this thesis
– An efficient and relatively new classification technique 

• Two Learning Techniques has been implemented
– SOM based Neural Networks
– Deep Belief Nets (DBN)

• For SOM
– The best features set include Bior 6.8 Wavelet 

transform, PSD approximation and mean power. 
– SOM gave the highest classification efficiency 

compared to LDA, QDA and SVM.
– reduced feature set by applying PCA has increased as 

compare to the non-reduced feature sets.
– The bi-orthognal wavelet transform has also increased 

the classification accuracy.

Conclusion
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Conclusion

• For DBN
– The result are very impressive

– The average minimum classification errors are
• 5% in Full Batch Classification

• 8% in Mini Batch Classification

– The result of Deep Learning Algorithms are quite 
well as compare to others

– The main problem with deep learning is 
complexity and difficult to optimize on stand 
alone platforms.
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Future Direction
• Our future plan 

– Design a system that has the ability to online 
classify motor imagery EEG signals and able to 
control a mobile robot in a real environment.

– Development of optimized deep learning 
algorithm for low end devices.

– Develop an algorithm that has the capability of 
Adaptive feature selection
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