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ABSTRACT 

Swarm Robotics is the study of swarms of small simple locally behaving mobile robots 

and their emergent behaviors as a swarm of intelligent species. The inspiration of these studies 

comes from nature swarms of ants, fish and birds colonies. Many areas of swarms including 

sensing, localization, mapping, path planning, interference and behavior modeling are being 

studied currently.  

Path planning being one of the old areas of researches has already been studied in great 

details for static and moving obstacles. The introduction to intelligent obstacles that react to the 

robots motion are new addition to the research areas. Swarms of robots are numbers of robot trying 

to accomplish collective or individual tasks. Hence the area of path planning has taken a new 

dimension. “Reciprocal Velocity Obstacles” is one of the approaches addressing the same 

problem. It though lacks a mechanism for decision symmetry breaking and biasing. Biases RVO 

is one attempt to do so, yet the attempt is more of an inspirational concept as it is not much generic 

in nature and must be modeled for every different scenario.  

Getting inspiration from swarm congestion control techniques and ant foraging models, 

two approaches we tried for implementation for asymmetric biasing and fast solutions to swarm 

problems. The first one is a much global behavior technique in which the robots try to avoid the 

center of mass of the whole swarm weighted by inverse of the radius of gyration of the point 

masses of the robots. It worked well for simulations possible congestion at one point but lacked 

better results in situations of multiple congestion zones. The second one is a much local approach. 

In this approach the robots try to follow their most friendly neighbors, weighted by the distance 

from their respective goal positions. In this way, it was observed that the robots followed a much 

humble path when they were away from their goals and became ruder as the goals came nearer. 

The technique proved results in both local and global congestion zones. The efficiency 

benchmarking for different scenarios varied from 30% in mobile robot pick and place situations 

to 50% in a symmetric circle antipodal goals problem.  
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1.1 Background of Robotics 

The history of the concept of robotics dates back centuries. People from the earliest of times 

have tried to produce machines, mechanism that would produce appraisable actions on their own. 

People as historic as Da Vinci and even older were fascinated by the idea of mechanical human 

beings and other machines that could automatically work without much human intervention 

needed. But the mentionable robotics dates back only few decades. In 1942, a paint-sprayer was 

designed that could be programmed to perform certain tasks by W. Pollard and H. Roselund for 

the DeVilbiss Company [1]. In 1946, a general purpose playback device was patented by G. Devol. 

It was designed for controlling machines using magnetic recordings. In 1951 R. Goertz designed 

the first tele-operated articulated arm. Generally, this is regarded as a major milestone in force 

feedback (haptic) technology [2]. In 1954 G. Devol designed the first truly programmable robot 

called UNIMATE "Universal Automation." [3]. Later, in 1956, G. Devol and J. Engelberger 

formed the world's first robot company “Unimation” for “universal automation”. Engelberger has 

been called the 'father of robotics’. One of the first industrial robots became operational in North 

America in the early 1960’s in a candy producing factory in Ontario. In 1964 MIT, Stanford 

University and the University of Edinburgh establish Artificial intelligence research laboratories. 

In 1965, the Robotics Institute is established at Carnegie Mellon. In 1968 Mcgee and Frank created 

the first computer controlled walking machine at the University of South Carolina. In 1968, SRI 

built a mobile robot that was equipped with a vision system. In 1969 Ichiro Kato designed WAP-

1 that became history’s first biped robot. Air bags connected to the frame were used to stimulate 

artificial muscles. Later, WAP-3 was designed that could walk on flat surfaces and climb up and 

down stairs or slopes. In 1977, Dr. Devjanin created a six-legged walking machine with his 

colleagues at the Russian academy of Science. In 1988, the first service robot was deployed at 

Danbury Hospital Connecticut. In 1996, P2 was created at HONDA. This was the first step towards 

creating ASIMO. In 1997 PathFinder robot landed on Mars. The wheeled rover was sent to send 

images and other data about Mars to Earth. In 1998, LEGO released MINDSTORMS, a 

development product for robotics. MINDSTORMS is designed for inventing robots using a 

modular design and LEGO plastic bricks. In 2001, iRobot Packbots searched through the rubble 

of the world Trade Center. The subsequent versions of the Packbot robots were used in Afghanistan 

and Iraq. In 2002, iRobot released the first generation of Roomba robotic vacuum cleaners. In 

2005, The Korean Institute of Science and Technology (KIST), created HUBO, and claims it is 
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the smartest mobile robot in the world. This robot is linked to a computer via a high-speed wireless 

connection; the computer does all of the thinking for the robot. 2008 brings the popular Roomba 

robotic vacuum cleaner over 2.5 million units sale, proving that there is a strong demand for this 

type of domestic robotic technology.  

1.2 Types of robots 

There are many classification criteria that are used to classify robots into different categories. 

There is not one single generic criterion that would classify all robots strictly into distinct useful 

classes. Yet we mention here some of the commonly known classification criteria and the 

categories of robots according to these criteria. 

 Arm configuration 

 Shape of workspace 

 Operating method 

 Type of controller 

 Type of power 

 Size 

 Type and number of joints 

 Type of technology 

 Tasks being performed 

 Generation of design 

 Type of motion 
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Different robot classes under these criteria are discussed as under 

1.2.1 Classification by Arm Configuration 

 Rectangular coordinates robots 

 Cylindrical coordinates robots 

 SCARA robots 

 Polar coordinates robots 

 Jointed arm Robots 

1.2.2 Classification by Controller 

 Limited Sequence Robots 

These use mechanical stops to limit their movement 

 Point to Point Robots 

These robots have sensory feedback and they hold memory of coordinates of each axis 

 Continuous Path Robots 

They have greater memories than point to point robots and can record many coordinates  

1.2.3 Classification by power supply 

 Electric Powered 

 Pneumatic Powered 

 Hydraulic Powered 

1.2.4 Classification by level of technology 

 Low-tech level 

They are used for material handling, pick and place, loading unloading operations 

 Medium Tech level 

They are used sorting operations and other medium tech operations 

 High-tech 

They are used in intelligent operations and sophisticated tasks 
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1.2.5 Classification by design 

 First generation 

These robots were fixed sequence robots with no sensors on board 

 Second generation 

These robots can adapt to situations by use of sensors and a closed loop control 

 Third generation 

These robots are intelligent and can react to situations instantaneously 

1.2.6 Classification by joint configuration 

 Cartesian only 

 Cylindrical 

 Polar 

 SCARA 

 Revolute 

1.2.7 Classification according to mobility 

 Fixed robots 

Suitable for industrial applications 

 Flexible robots 

Suitable for delicate light payload applications 

 Mobile robots 

Suitable for applications involving land navigation 

 Flying robots 

Suitable for aerial applications 

 Underwater robots 

Suitable for underwater applications 
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1.3 Introduction to robot kinematics 

Robot kinematics discusses the geometry of motion of robots, it addresses all possible 

orientations of robots. We try to create a workspace description of a robot and then see if we can 

solve given problems with provided link configurations. DH notation is commonly used in solving 

kinematic problems. 

1.4 Introduction to robot dynamics 

The robots are modeled for real world applications. Without the knowledge of dynamics, we 

are unable to predict whether a certain task can be accomplished at a certain speed or not. Robot 

dynamics studies address the problem of perform ability of tasks and provides feasible workspaces 

and path plans. Jacobians are usually used to calculate robot dynamics. 

1.5 Introduction to Artificial Intelligence 

In order to understand Artificial Intelligence, we must try to understand Intelligence itself. 

According to Webster’s dictionary, it is the capacity to learn and solve problems. The word 

artificial intelligence on the other hand can be defined my four categories [33] 

 

Thinking 

Humanly 

 

Thinking 

Rationally 

Acting 

Humanly 

Acting 

Rationally 

Table 1: Four Approaches to AI 
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1.5.1 Thinking Humanly 

This approach involves actually trying to understand our brain and try to replicate that on 

machines and computers. 

1.5.2 Acting Humanly 

This approach involves the machines trying to act like humans without having the 

knowledge of the logical explanation behind an act 

1.5.3 Thinking Rationally 

This approach is based upon logical serial contact formation and solving logical problems 

with rational thinking approach. With given constraints and functions, a robot should be able to 

think rationally for the solution based on logical reasoning. 

1.5.4 Acting rationally 

This approach expects the Intelligent agents to perform rationally even in cases where the 

agents don’t have any idea as to why were these decisions made. The only thing that counts in this 

approach is that to what extent a robot was able to make rational action decisions. 

In order to describe Artificial Intelligence, we can say that it is the combination of 

Philosophy, Mathematics, Neuroscience and Psychology inside an artificial brain called a 

computer or a machine these days.  

1.5.5 Agents 

Agents can be defined as anything that can perceive its environment using sensors and act 

upon it using its actuators. This broad definition puts all living organisms under the hood of agents. 

But in robotics, we discuss agents as artificially produced species that can sense the environment 

and act upon it following mathematical principles. 

Agents are usually categorized using the following four criteria 

 Performance Measure 

What exactly is the above mentioned agent supposed to do? 
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 Environment 

What environment is it put in? 

 Actuators 

What tasks can it perform using its actuators? 

 Sensors 

What information can it get from the given above stated environment using its sensors? 

 

In general, agents can also be classified as to the level of complexity they possess. Some 

agents are simple, they react as reflexes to the changes in the environment that they perceived 

through on board sensors. Others are model based, that react to the environment if it changes 

according to their model of understanding it. Some others try to optimize their own goals. Yet 

others try to learn from the general trends of a normal environment and try to figure out whenever 

something goes wrong and take necessary decisions. 

1.5.6 Environments 

We as humans live in the world and we perceive it in a continuous fashion. We can detect 

minute changes to our environments and react to them to either rectify the problems or to enjoy 

the perks. Robots on the other hand must be designed for multiple types of environments discreetly. 

In order to describe the environments, we need to develop some criteria to present the model to 

the robot. Some criteria are mentioned below 

 

Observability (full or partial) 

It describes as to what extent the environment can be observed by the agent 

 

Number of Agents (Single or Multi Agent) 

It describes as to whether the agent is alone in the near vicinity or are other agents also 

around 

 

Deterministic (Deterministic or Stochastic) 

It describes as to whether the environment is Deterministic i.e. can be predicted in the near 

future or it is stochastic or unpredictable 
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Episodic (Episodic or Sequential) 

It describes whether the environment moves in discrete episodes or does it move 

sequentially with respect to previous states as in a game of chess 

 

Static or Dynamic 

Whether the states of objects / concepts around the agent remain stationary with time 

without agent’s intervention or do they change due to other factors as well with time. 

 

Discrete or Continuous 

Whether the environment consists of finite number of discrete states or does it exist as 

infinite and continuous domain of events 

 

1.5.7 Introduction to state space searching 

For humans, the world is full of infinite possibilities and we have learned to make decisions 

as to what tasks to perform and what not to do. The robots on the other hand must develop a state 

space and then search for a feasible solution to maximize their performance criteria. The state 

space can be discrete or it can be continuous thus practically expanding the possible orientations 

and combinations to infinity. The robots must learn to find out a feasible solution within a rational 

time span so that the action that must be taken within time may not get delayed. Many strategies 

have been developed to search faster within the state space of the agents. The state space searching 

problem consists of the following attributes 

 All the states 

 Initial State 

 Goal State 

 Possible actions 

 Costs of actions 

 Heuristics to goals 
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After inputting this information, the nodes are created, the trees and graphs are created and 

then a suitable search algorithm is deployed to search for a solution. 

 Breadth first search BFS 

Searches for node expansion with breadth priority 

 Depth first search DFS 

Expands nodes with depth priority 

 Iterative deepening search IDS 

Iteratively deepens the DFS 

 Best first search 

Searches for the past best solution 

 A* search  

Searches for the past as well as future expected heuristic best solution 

 Genetic algorithms 

This family of algorithms try to solve problems using laws of genetics 

 

“Some of the grand challenges in science and technology are that we are still understanding the 

brain such as how does the brain do reasoning, cognition, creativity etc. and we want to be 

creating intelligent machines. Arguably AI poses the most interesting challenges and questions in 

computer science today.”  

 

1.6 Introduction to Swarm Robotics 

Swarm robotics is defined as the study of coordinating large groups of relatively simple 

robots by using local rules. Swarm robotics is inspired by insects’ societies that are able to perform 

tasks that may be beyond the capabilities of individual robots. Reference [4] explains this kind of 

robots’ coordination as follows: 
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“The group of robots is not just a group. It has some special characteristics, which are 

found in swarms of insects, that is, decentralized control, lack of synchronization, simple and 

(quasi) identical members.” 

1.6.1 Social Insect Motivation and Inspiration  
The social insects’ collective behaviors, such as the dance of the honeybee, the nest 

building of the wasp, the termite mound’s construction, or the ants’ trail following, have been 

considered for a long time strange and mysterious aspects of biology. In recent decades, 

Researchers have showed that individual agents do not need any representation or sophisticated 

knowledge to produce such complex behaviors [5]. In socially active insects, the individuals are 

not informed about the global status of the colony. There exists no leader that guides all the other 

individuals in order to accomplish their goals. The knowledge of the swarm is distributed 

throughout all the agents, when an individual is not able to accomplish its task without the rest of 

the swarm. Social insects are able to exchange information, and for instance, communicate the 

location of a food source, a favorable foraging zone or the presence of danger to their mates. This 

interaction between the individuals is based on the concept of locality, where there is no knowledge 

about the overall situation. The implicit communication through changes made in the environment 

is called Stigmergy [6, 4]. Insects modify their behaviors because of the previous changes made 

by their mates in the environment. This can be seen in the nest construction of termites, where the 

changes in the behaviors of the workers are determined by the structure of the nest [7]. 

Organization emerges from the interactions between the individuals and between individuals and 

the environment. These interactions are propagated throughout the colony and therefore the colony 

can solve tasks that could not be solved by a sole individual. These collective behaviors are defined 

as self-organizing behaviors. Self-organization theories, borrowed from physics and chemistry 

domains, can be used to explain how social insects exhibit complex collective behavior that 

emerges from interactions of individuals behaving simply [7]. Self-organization relies on the 

combination of the following four basic rules: positive feedback, negative feedback, randomness, 

and multiple interactions [7]. Şahin [8] lists some properties seen in social insects as desirable in 

multi-robotic systems: robustness, the robot swarm must be able to work even if some of the 

individuals fail, or there are disturbances in the environment; flexibility, the swarm must be able 

to create different solutions for different tasks, and be able to change each robot role depending on 
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the needs of the moment; scalability, the robot swarm should be able to work in different group 

sizes, from few individuals to thousands of them. 

1.6.2 Swarm intelligence 
As it is an emerging area of research, many researchers have been attracted to the swarm 

intelligence. The concept was introduced in 1980s. It now has become a frontier for 

interdisciplinary studies and many disciplines focus on it such as artificial intelligence, sociology, 

economics, biology, etc. It has been observed that some species survive in nature taking the 

advantage of the potential power of swarms, rather the wisdom of individuals. The individuals in 

swarms are not much intelligent, but they can complete complex tasks by cooperating and division 

of labor. Therefore showing high intelligence as a whole swarm which is highly self-organized 

and self-adaptive. Swarm intelligence is a soft bionic of the nature swarms, i.e. it simulates the 

social structures and interactions of the swarm rather than the structure of an individual in 

traditional artificial intelligence. The individuals can be regarded as agents with simple and single 

abilities. Some of them have the ability to evolve themselves when dealing with certain problems 

to make better compatibility [9]. A swarm intelligence system usually consists of a group of simple 

individuals autonomously controlled by a plain set of rules and local interactions. These 

individuals are not necessarily unwise, but are relatively simple compared to the global intelligence 

achieved through the system. Some intelligent behaviors never observed in a single individual will 

soon emerge when several individuals begin cooperate or compete. The swarm can complete the 

tasks that a complex individual can do while having high robustness and flexibility and low cost. 

Swarm intelligence takes the full advantage of the swarm without the need of centralized control 

and global model, and provides a great solution for large-scale sophisticated problems. 
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1.6.3 Main Characteristics 

In order to understand what swarm robotics is, a definition taken from Sahin [8] is given: 

“Swarm robotics is the study of how large number of relatively simple physically embodied 

agents can be designed such that a desired collective behavior emerges from the local interactions 

among agents and between the agents and the environment.” 

This definition is complemented with a set of criteria in order to have a better understanding 

and be able to differentiate it from other multi-robot types of systems [8].  

i. The robots of the swarm must be autonomous robots, able to sense and actuate in a real 

environment. 

ii. The number of robots in the swarm must be large or at least the control rules allow it. 

iii. Robots must be homogeneous. There can exist different types of robots in the swarm, but 

these groups must not be too many.  

iv. The robots must be incapable or inefficient respect to the main task they have to solve, this 

is, they need to collaborate in order to succeed or to improve the performance. 

v. Robots have only local communication and sensing capabilities. It ensures the coordination 

is distributed, so scalability becomes one of the properties of the system. 

1.6.4 Swarm Robotics and Multi-Robotic Systems 
There exist several research areas inspired from the nature swarm, which are often 

confused with swarm robotics, such as multi-agent system and sensor network. These research 

areas also utilize the cooperative behavior emerged from the multiple agents in the group for 

specialized tasks. However, there are several differences between these systems, which can 

distinguish these systems fundamentally, as shown in Table 2. 

From Table 2, it can be easily deduced that the main differences among swarm robotics 

and other systems are population, control, homogeneity and functional extension. Multi-agent and 

sensor network systems mainly focus on the behaviors of multiple static agents in the known 

environments while the robots in the multi-robot systems are quite small, usually heterogeneous 

and are externally controlled.  
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Table 2: Comparison of Swarm robotics to other multi agents systems 

Comparison of swarm robotics and other systems. 

 Swarm robotics  Multi-robot system  Sensor network  Multi-agent system 

Population Size  Variation in great range  Small  Fixed In a small range 

Control  Decentralized and autonomous  Centralized or remote  Centralized or remote  Centralized, hierarchical or network 

Homogeneity  Homogeneous  Usually heterogeneous  Homogeneous  Homogeneous or heterogeneous 

Flexibility  High  Low  Low  Medium 

Scalability  High  Low  Medium  Medium 

Environment  Unknown  Known or unknown  Known  Known 

Motion  Yes  Yes  No  Rare 

Typical 

applications  

Post-disaster relief Transportation Surveillance Net resources  

management 

Military application Sensing Medical care Distributed control 

Dangerous application Robot football Environmental protection  

  

 

 

Since homogeneity and scalability are considered at the beginning of the system design, 

the swarm robotics shows great flexibility and adaptability compared with other systems. The 

multi-robot systems usually involve the heterogeneous robots, and may achieve better performance 

on specialized tasks at the cost of flexibility, reusability and scalability. Besides scalability which 

is introduced in previous section, the characteristics of swarm robotics among other three 

cooperative systems are listed in Table 1.  

 Autonomous 

 The individuals in swarm robotics systems must be autonomous, i.e. capable of interacting and 

motioning in the environment. With these key functions, the cooperative mechanisms inspired 

from the nature swarms can be introduced into the swarm robotics. Although the systems, like 

sensor networks, are far different from the swarm robotics from such point of view, but the research 

on the area can indeed throw some lights on swarm robotics research.  

 Decentralization 

With a good set of cooperative rules, the individuals can complete the task without 

centralized controls which promises the scalability and flexibility of the swarm. At the same time, 
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the swarm can benefit more in the environments when communication is interrupted or lagged and 

improves the reaction speed and precision of the swarm.  

 Local sensing and communications 

Due to the restriction of hardware and cost, the robots in the swarm usually have a limited 

range of sensing and communicating and thus the whole swarm is distributed in the environment. 

Actually, the use of global communications will lead to a significant decline in scalability and 

flexibility, as the communication cost is explode exponentially as the population grows. 

Nevertheless, certain controlling global communications are acceptable, for instance, updating the 

controlling strategies or sending the terminal signals, so long as it’s not used in the interaction 

between individuals.  

 Homogenous 

In a swarm robotics system, the robots should be divided into the roles as few as possible 

and the number of robots acting as each role should be as large as possible. The role here indicates 

the physical structure of the robot or other states that cannot be changed into one another 

dynamically during the task. A state in a finite state machine does not count in our definition. This 

definition indicates a swarm, no matter how large it is, is not considered as swarm robotics if the 

roles of robots are divided meticulously. For instance, the robots football usually is not considered 

as swarm robotics, since each individual in the team is assigned a special role during the game.  

 Flexibility 

A swarm with high flexibility can deal with different tasks with the same hardware and 

minor changes in the software, as the nature swarms can finish various tasks in the same swarm. 

The individuals in the swarm show different abilities and cooperation strategy when they deal with 

different tasks. The swarm robotics should provide such flexibility, especially in similar tasks, 

such as foraging, flocking or searching. The swarm can switch to different strategies according to 

the environment. The robots can adapt to the environment through machine learning from the past 

moves and can change to a better strategy.  
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1.6.5 Common areas of research in swarms 
 

 Flocking 

Flocking is observed in many social animals including humans. Insects, birds, fish try to 

move around and navigate in flocks. The numbers tend to be enormous yet it can be seen that the 

even the birds at the most inner core of the flock do not experience interference from other birds 

around. In this area, researchers are trying to simulate the same using mathematical models 

 Directed flocking 

With the above mentioned flocking strategies, there emerges another problem in swarms. 

It becomes difficult for the robots to keep attached to the flock, yet lead the flock in the right 

direction. Many researchers have tried to address the problem and proposed different methods of 

solving it. 

 Position and navigation 

In flocking and migration, the positioning of goal, nearby robots and various obstacles in 

the fields is also an important task. In the application taking place in the large outdoor 

environments, the global positioning is expensive and requires more hardware, which is 

unaffordable for swarm robotics. Thus, the local positioning in flocking should be specially 

focused 

 Obstacle avoidance 

Since obstacle avoidance is key to mobile robotics in particular and to robotics in general, 

swarm robotics also focuses on obstacle avoidance. Many researchers have tried to bring older 

obstacle avoidance methods to swarms, yet many others have tried to devise newer methods for 

swarm obstacle avoidance owing to the fact that they now face different environment conditions 

as compared to simple mobile robot navigation and path planning problems. 
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2.1 Obstacle Avoidance 
The ability of mobile robots to navigate safely and avoid obstacles static and mobile is 

necessary for many applications in the real world. Path planning in a dynamic and changing 

environment is still one of the most difficult and important problems in the field of mobile robotics. 

The literature that addresses this problem is rapidly growing. Some of the work relating mobile 

robot obstacle avoidance is discussed in this chapter. Firstly we shall discuss techniques that were 

originally designed for static obstacle avoidance for mobile robots but later imported to solve for 

dynamic environments. Then we will discuss the work of people that designed techniques that 

were specifically modeled, considering the dynamic and changing nature of the environment. Then 

we will discuss the techniques that were designed for the obstacle avoidance considering the 

presence of other intelligent agents within the environment. We also intend to discuss the problems 

related to the above mentioned techniques. 

2.1.1 Types of obstacles 
According to the dynamic nature of the obstacles, we categorize the obstacles into the 

following categories 

 Static obstacles 

These obstacles are objects in the environment that do not move. Stationary obstacles limit 

the workspace of the robot in 3D or 2D space and does not have any effect on changing the path 

planning approach due to their inherent stationary nature. 

 Dynamic obstacles 

These obstacles are dynamic in nature. Any obstacle that can possible change its position 

in the world is generally brought under this category 

 Dumb dynamic obstacles 

These obstacles are dynamic in nature but they keep following their path no matter what 

else happens in the environment. The following two classes can be brought under dumb moving 

obstacles 

 Mathematically modeled obstacles 

These obstacles can be modeled mathematically and predicted in future time. These may 

include obstacles with constant rectilinear or angular velocity or acceleration. For example an 
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asteroid moving with constant velocity in free space, or an asteroid falling towards the surface of 

the earth with changing acceleration following the laws of gravitation and friction.  

 Stochastically moving obstacles 

These include obstacles with no predictable mathematical model. Although for all motion 

that happens within the universe, there exists a mathematical model. But we, in this category bring 

all the stochastic objects that we do not know the model of. For example a broken (software or 

hardware) robot acting weird. 

 Intelligent obstacles 

These obstacles are actually other species in the environment that would react to a change 

in their environment as well. All living organisms are included in this category 

 Artificially intelligent obstacles 

These include other agents in the environment. They can further be divided into two 

categories as whether they are cooperative or competitive but as we study swarms of robots, we 

talk about cooperative fellow agents. 

 Really intelligent obstacles 

These include humans, animals, insects and birds. All naturally occurring intelligent 

species. Of course they all have different level of intelligence and different reaction speeds but one 

must consider that these species are robust and react to a change in much different way than 

artificially intelligent ones. 
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2.2 Modified classic approaches for dynamic environments 
We now present the approaches that were initially created to avoid static or stationary 

obstacles. These approaches are the modified versions of the classic approaches to incorporate 

dynamic nature of the environment. 

2.2.1 Roadmap based dynamic path planning 
Roadmaps are possible paths for robot motion. In roadmap based path planning, a search 

tree is expanded with discrete space locations as its states and the goal node is found by searching 

the whole tree. The robot’s motion constraints determine the roadmap’s possible actions. In [10], 

van den Berg et al. presented a roadmap based solution to dynamic environments. The state space 

also involved time as a variable as the obstacles changed their locations with respect to time as 

well. 

 

Figure 1: Showing state space with 1D space 

 

 

Figure 2: Obstacle avoidance in space time graph 
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The tree is to be expanded considering the fact that there are obstacles that move around in 

space and all their possible future positions must be avoided as described in Figure 2. 

First of all, this technique lacked the sophistication of models that cannot be predicted for 

in the future. Also, it created problems like heavy interference of obstacles and subsequent long 

paths before reaching the goal. One of the results have been shown below for two obstacles 

moving. First obstacle ‘A’ in an H shape trajectory and the second ‘B’ in a rectangular shaped 

trajectory. The robot is to move from‘s’ the start state to ‘g’ the goal state. The results show the 

heavy interference in Figure 3. 

 

Figure 3: The roadmap technique took a very long route to goal 

2.2.2 Dynamic potential field function  
The dynamic potential field [11] is a dynamic incarnation of the classic potential field 

technique. In this technique the potential field of the static objects has been changed to incorporate 

the velocities of the obstacles as well. The obstacles hold a higher field lift in the direction of their 

motion hence making the possible collision detectable. But it also carries with it the problem of 

local minimum. This problem itself is also inherited from the technique of potential fields. 

Figure 4 shows the local minimum problem in static potentials with free path to goal. 

 

Figure 4: Local minimum problem in static obstacles 
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Figure 5 shows the local minima problem in dynamic potential fields. The technique 

originally was not designed to cater for the velocity of the obstacles and had no mechanism of 

predicting the local minima so it inherited the same problem in the modification as well 

 

 

Figure 5: Showing dynamic local minima 

 

2.2.3 Dynamic window approach 
DW approach [12] was originally built for static obstacles. It considered the dynamics of 

the robot itself and calculates all possible paths traversable with the given kino-dynamic 

constraints. The robot senses a collision if an obstacle comes too close to its dynamically 

obstructed area. The new approach also includes the trajectories of moving cells that represent 

obstacle boundaries. The colliding paths are avoided and the motion is optimized to the shortest 

path to goal. This technique lacks any reactive nature of the obstacles, and cannot plan its path on 

real time as it being computationally heavy. Figure 6 shows the dynamic window trajectories and 

subsequent colliding moving cell trajectories.  

 

Figure 6: DW and MC trajectories colliding 
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2.2.4 Path velocity decomposition 
This approach deals with the dynamic nature of the environment by 

1. Avoiding all the static obstacles to generate a path 

2. Adjusting the velocity of the robot to avoid all dynamic obstacles that are supposed to 

cross the path in a space-time graph 

The problem with this kind of approach is that if an obstacles stops somewhere or changes 

its trajectory on its way, the re-planning of path is not being done online. The reactive nature of 

this algorithm is limited to the assumption that the environment is free of sudden changes. Another 

modification to this classic technique is presented in [13]. It uses an Occupancy Grid Map to avoid 

moving obstacles and tries to predict the motion of obstacles with a probabilistic approach. But 

this method also is not reactive in nature so it also fails in case of a change in the dynamic 

environment while execution. 

 

Figure 7: The OGM and a robot trying to move with fast velocity 
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2.3 Kinematic approaches 
These approaches were developed to react to instantaneous collision paths. The following 

approaches consider the possible collision within a small interval of time ‘t’. The reactive nature 

requires simpler algorithms that could compute collision free paths for a small time in the future 

so that the whole path to the goal is the final sequence of the small intervals of the decisions.  

2.3.1 The collision cone approach 
This approach [14] was introduced to cater for the collision cone that is created by a point 

robot trying to avoid a circular obstacle. The collision cone that has been developed to avoid the 

object has been created by two tangents to the circle. The approach is then extended to cater for 

the collision between a point and a circular obstacle, between a point and an irregular obstacle, 

between two circular robots, and between two irregularly shaped agents. The approach computes 

tangents to differentiate between collision course and free available area. 

2.3.2 The Velocity Obstacle approach 
The velocity obstacle approach [15] considers an agent trying to avoid a linear moving 

obstacle for a small time interval ‘t’. The time interval is infinitesimal so the observed velocity can 

be taken as constant over the interval. The collision cones are created by using the above approach 

and areas for obstacle avoidance are created. This approach also considers the mobile nature of the 

obstacle and shifts the origin of the collision cone. It then maps the collision cones over the set of 

admissible accelerations that are provided from the dynamic constraints of the robot. By 

superimposing the above two, an optimization problem is created. Now based upon the information 

of the goal location, the optimization problem is solved to maximize speed, avoiding all obstacles 

and reaching the goal as fast as possible. Figure 8 shows what the optimization problem looks like 

 

Figure 8: Classification of the reachable avoidance velocities 
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2.3.3 The Reciprocal Velocity Obstacles 
The velocity obstacles approach is reactive in nature and contains all the necessary obstacle 

avoidance measures considering the kino-dynamic constraints. The VO has an inherent problem. 

It does not consider the reactive nature of the obstacles. It considers the obstacles to be dumb 

moving obstacles in the environment. In multi-agent systems, the obstacles are artificially 

intelligent. Moreover, if the robot is deployed in a human or animal interaction workspace, the 

environment also has real intelligent species in it. 

The problem that was created due to such negligence is that the robots tried to optimize 

their path to goal on every time-step. So at time ‘t’, the robot A avoids robot B and B avoids A to 

completely alter their path and go into optimally non colliding directions. But as soon as the next 

cycle of perception is completed, both the robots see that their original path plan is clear to move 

and they simultaneously come back to the collision path again. This created robotic dances, the 

kind of dances that are even common in really intelligent species like humans as a result of poor 

perception of the path plan of the oncoming. The RVO [16] was designed to reduce robotic dances 

due to this flaw.   

  

 

Figure 9: Two robots deploying VO (left) and RVO (right) 

RVO plans by calculating the VOs and then each robot tries half the responsibility to avoid 

the oncoming. In this way, the previous path plan never becomes feasible again and the robots 

navigate without dancing. Figure 10 shows the VO and the RVO cones with agents A and B. 
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Figure 10: The VO and the RVO collision cones 

 

2.3.4 Optimal Reciprocal Collision Avoidance 
The RVO is extended to cater for many robots at a time and create an optimization problem 

in 2D space in ORCA [17]. It computes the best possible action to be taken as a reaction to number 

of robots obstructing the traversable immediate environment. Figure 11 shows ORCA in action. 

 

Figure 11: ORCA with a number of immediate neighbors 
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2.3.5 Biased Reciprocal Velocity Obstacles 
Although RVO is a good reactive path planning approach, it lacks a mechanism of breaking 

the symmetry that is inherent with the collision cones. The perfectly symmetric cones create 

decision making problems as to how to solve situations where n number of robots try to solve a 

perfectly circular formation. Biasing of robots is discussed in this approach [18] and criteria for 

explicitly developing the biasing are discussed 

 

Figure 12: The effects of introducing an explicit biasing scheme 

 

2.3.6 The Hybrid Reciprocal Velocity Obstacle 
In this approach [19], the symmetry breaking is made possible by making the collision cone 

asymmetric and the effects are proven to get better. 

 

Figure 13: The VO, RVO and HRVO collision cones for robots A and B 

The HRVO approach shifts its cone by considering RVO cone on one side of the triangle 

and VO on the other side. Since both the schemes guarantee obstacle avoidance, the path is 

collision free in general. But added advantage is of oscillation free plans. 
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3.1 Inspirational approaches 
We now present some bio inspired techniques that are used in literature for mimicking 

natural swarm behavior and their effects on general performance of the swarm are studied. We 

also present the bio inspired biasing criteria that are generic in nature and their workability is 

discussed 

3.1.1 Interference as a major problem 
In [20], the authors discuss the problem of interference in an ant foraging task. The obstacle 

avoidance, or it may be called as reciprocal collision avoidance is one of the major hindrances in 

efficient foraging task. Figure 14 shows a general picture of possible foraging interference 

occurrences.  

 

Figure 14: General ant foraging work cycle 

The performance of foraging is also mapped by increasing the number of agents to the 

simulation. As we increase the number of agents in the simulation, the overall efficiency of the 

swarm gets high as there increases the probability of finding food. But the efficiency per robot gets 

low due to interference involved. Figure 15 shows the effects of reduced time in avoiding on 

scaling and efficiency of the swarm and the individual agents. 
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Figure 15: Efficiency of the swarm and agents within the swarm 

 

3.1.2 Bucket brigading 
To solve the problem of interference, one approach [21] is to pass on the resources to other 

robots in a mobile robot pick and place operation. The technique has proven its applicability in 

narrow passages but has also failed to perform in open spaces. 

 

Figure 16: Better results in narrow passages (left) and worse in open fields (right) 
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3.1.3 Congestion control 
Many attempts have also been made to control the congestion of swarm agents on 

workstations. One of them is [22] that describes an explicit criterion for each simulation and then 

discusses the effects of different strategies on different scenarios. 

 

Figure 17: Showing successful congestion control using pipe method and wall method 

 

3.1.4 Waypoint detection with a smaller field of view 
This technique [23] reduces interference in robots by using smaller field of view for 

pheromone detection in robots. This creates multiple local routes with relatively smaller path 

lengths, yet not a single path with high interference for the agents. Figure 18 shows the paths 

formed in one simulation. 

 

Figure 18: Multiple path creation due to local pheromone detection 
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3.2 Generic Biasing Criteria 
The following is my work in biasing the robots using generic criteria. The ideas are inspired 

from the approaches mentioned above, yet the need of explicitly defining a criterion for each 

simulation has been eliminated. RVO has been used as the obstacle avoidance scheme here, but 

the preferred velocity vector is modified in the following approaches. 

3.2.1 Centre of mass avoidance for congestion control 
In this work [34], I have devised a generic method of congestion control based on two 

major attributes of large masses of robots considering all agents as point masses. 

 The center of mass of the swarm  

 The radius of gyration of the swarm  

CMA uses a goal vector modification approach by changing the goal vector of each robot. 

Firstly, the center of mass of the swarm is calculated as 

 

𝐶𝑀 =
1

𝑁
 ∑(𝑥𝑖, 𝑦𝑖)

𝑖=𝑁

𝑖=1

 

Where: 

 CM = Coordinates of mass centre of the swarm 

 N = Number of robots in the simulation  

 (𝑥𝑖, 𝑦𝑖) = The coordinates of ith robot 

Then the radius of gyration of the swarm is calculated as 

𝑅𝐺
2 =  

 ∑ 𝑚𝑖𝑟𝑖
2𝑖=𝑁

𝑖=1

 ∑ 𝑚𝑖
𝑖=𝑁
𝑖=1

 

 

 𝑚𝑖 = mass of ith robot 

 𝑟𝑖 = distance of robot ith robot from CM 
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A congestion circle is defined with its center as the center of mass of the swarm and it 

radius directly proportional to the number of agents in the simulation and inversely proportional 

to the radius of gyration. 

 

𝑅𝐶 ∝  
𝑁

𝑅𝐺
 

 

𝑅𝐶 =  
𝐶 × 𝑁

𝑅𝐺
 

Where 

 𝑅𝐶 = Radius of circle of congestion 

 N = Number of robots in swarm 

 𝐶 = Sensitivity constant of the planner 

 𝑅𝐺  = Radius of Gyration defined as follows 

 

 

Figure 19: Agents outside the congestion circle can freely follow their path to goal 
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3.2.2 Cluster Planned Approach 
This approach is inspired with the limited FOV approach mentioned above. In this 

approach, I limited the congestion avoidance to only local congestion avoidance strategy. The 

robot does not avoid congestion unless it enters a congestion region defined by its limited field of 

view. As soon as the robot enters a congestion zone, it tries to find friendlier robots that may have 

velocity vector nearest to its own. It then follows a weighted velocity optimization vector. The 

vector is weighted by the relative distance from the agent to its goal as compared to its distance 

from the friendly neighbor. 

 

Figure 20: A robot choosing its friendliest neighbor 

In case the robot does not find any friendly neighbor, it detours the local congestion zone 

with a weighted perpendicular velocity to the oncoming, thus creating a natural selection like the 

evolution of survival of the fittest. This creates bubbles of robots following each other and result 

in better task accomplishments. 
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4.1 Tests and benchmark situations 
The tests were intended to create maximum possible interference to check for extreme 

conditions of interference. One such scenario is robots standing in a circle with antipodal goal 

locations, another is a robot pick and place scenario. These two were selected so as to compare 

their results with available literature. All tests were performed using RVO2 [32] an open source 

available C++ library for RVO. The visualizations are made in Processing 2.1.1, an open source 

java API. And the graphs are made with the help of Office Libre. 

4.1.1 Circle with antipodal goals 
In this scenario, I have tried to scale the simulation from as low as 2 robots to 150 robots 

to check for possible trends of the techniques. 

 

Figure 21: Initial configuration of agents standing in a circle 
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 RVO vs CPA 

The agents are colored according to their velocities. Pink shows maximum velocity and 

blue represents minimum velocity. Black is to represent robots on a halt. 

 

Time Step 100 500 1000 

Without 

Planning 

 

 

 

 

With Planning 

 

 

 

 

 

Table 3: Results for RVO as compared with CPA 

 

The figure clearly shows RVO getting stuck at the middle whereas CPA is showing higher 

solution speed. Also, the velocity of the swarms remains high during the congestion region due to 

neighbor following strategy. 

Figure 22 shows the scaling comparison of RVO and CPA  
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Figure 22: Scaling agents from 10 to 110 CPA vs RVO 

As can be seen, RVO fails to solve for less number of agents. The reason being less 

perturbation in lower number of symmetrically aligned agents. Whereas CPA can solve for lower 

number of agents as well. Also the variation in solution times lower the predictability of RVO and 

CPA performs with a higher confidence. 

We also present predictable solution profiles with CPA. The following figure shows how 

CPA solves 70, 100 and 130 robots in an antipodal goal circle formation problem with better 

predictability and RVO fails to provide a predictable robot reaching time profile 

 

Figure 23: Agents reach their respective goals with predictable times with CPA 
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 RVO vs CMA 

 

Owing to the stagnant nature of RVO, we also added some perturbation to the simulation 

and monitored its effects against CMA.  The spike for 3-5 robots is an emergent anomaly that is 

yet to be solved 

 

Figure 24: CMA vs RVO and RVO with perturbation 

4.1.2 Package transportation problem  
We now present the pick and place problem of mobile robots. Possible congestion zones 

are at the source and sink locations 

 

Figure 25: Showing Package transportation problem 
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 RVO vs CMA 

The package transportation is being done on a higher gradient than RVO which shows the 

trends that can be extrapolated to as longer a time span as we wish. Although CMA is not a good 

approach for situations where there are multiple centers of masses, yet it has proven to work better 

than RVO itself. Figure 26 shows CMA creating a less functional congestion zone 

 

Figure 26: Package transport problem with source, sink center of mass and congestion circle 

 

 

Figure 27: Package Transportation RVO vs CMA 
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 RVO vs CPA 

Figure below shows the transportation of packages on a higher rate. The simulation time 

can be extended to establish the results and is obvious 

 

Figure 28: Package Transportation RVO vs CPA 
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5 Chapter 5 
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5.1 Conclusions 
Reactive path planning and obstacle avoidance is key to navigating swarms of robots safely 

to their goals. It may not produce globally optimum solutions or best path plans but it makes the 

swarm robust to immediate changes in dynamic environments. 

RVO stands as one of the fastest, reactive and swarm-applicable obstacle avoidance 

approach. It inherits the simplicity of VO approach, yet it also considers the presence of intelligent 

fellow agents without putting much computation burden on the machine. 

RVO requires a symmetry breaking mechanism for dense robotic populations. Swarms are 

supposed to be dense populations so the implementation of RVO in swarms require inspirations 

from natural swarms.  

The applications of swarms require symmetry breaking mechanisms that are generic in 

nature and implicit schemes are required for fast problem solving. 

Inspiration from nature is most likely to produce better results for swarm obstacle 

avoidance algorithms as the concept of swarms itself is a nature inspired concept. 

The two modifications to RVO done have proven results in two different ways. So we 

discuss each strategy differently and comment upon both independently. 

The CMA approach works better in problems where there is a global center of mass and 

congestion is most likely to take place on one and only one location. It yet lacks the possibility of 

as simple as two congestion zones. Although, if the parameters of congestion constant be tweaked 

well enough, it performs relatively good in situations where it is not even supposed to produce any 

results 

The CPA approach is more swarm friendly as it involves the sensing of local neighbors 

only. The agents are not supposed to predict major congestion zones. We also witness congestion 

occurrences in apparently large numbers of robots but due to friendly nature of the algorithm itself, 

it manages to solve the congestion in a quicker way than RVO itself. 
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5.2 Future recommendations and directions 
We discuss CPA and CMA independently for future needs and directions to follow 

 CMA 

o It needs to be localized and should be modified to sense and avoid local congestion zones.  

o It should be optimized for the local FOV radius.  

o The radius of gyration should be experimented upon for powers other than 1 to search 

relevant dependence for efficient solution. 

o The center of mass should be experimented upon to care for Gaussian distribution instead 

of linear distribution of agents 

 CPA 

o The friendliest neighbor should be calculated in a more sophisticated way 

o The weighted following should be experimented upon to find the optimum weights 

o The oncoming zones should be predicted using general perception patterns 
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