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Abstract

People suffering from neuromuscular disorders such as tetraplegia are left in a locked-

in state with preserved awareness and cognition. Brain-computer interfaces (BCI) can

potentially redefine the quality of life of such individuals by allowing them to com-

municate their intention through modulation of localized brain activity. Near Infrared

Spectroscopy (NIRS), a relatively recent BCI modality, can be used to non-invasively

monitor such an activity by measuring corresponding changes in cerebral blood oxy-

genation. In this study, it was hypothesized that the activation of Broca’s area due

to auditory imagery as conveyed by local hemodynamic activity can be harnessed to

create an intuitive BCI based on NIRS. A 12-channel square template was used to cover

inferior frontal gyrus and changes in hemoglobin concentration corresponding to six

aloud (overtly) and silently (covertly) spoken words were collected from 8 healthy sub-

jects. The features extracted from each of the trials using unsupervised feature learning

were classified with an optimized support vector machine. The results showed large

intra- and inter- subject variability. For all subjects, when considering overt and covert

classes regardless of words, classification accuracy of 95.83% (±5.87%) was achieved

with deoxy-hemoglobin (HHb) and 94.22% (±6.87%) with oxy-hemoglobin (O2Hb) as

a chromophore. For a six-class classification problem of overtly spoken words, 66.48%

(±17.07%) accuracy was achieved for HHb and 58.90% (±27.68%) for O2Hb. Simi-

larly, for a six-class classification problem of covertly spoken words, 70.07% (±12.11%)

accuracy was achieved with HHb and 65.91% (±16.89%) with O2Hb as an absorber.

These results indicate that a control paradigm based on covert speech can be reliably

implemented into future BCIs based on NIRS.

Keywords: Brain computer interface, near infrared spectroscopy, covert speech, unsu-

pervised feature extraction, Broca’s area
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Chapter 1

Introduction

Locked-in syndrome (LIS) is a neuromuscular disorder described as near-complete paral-

ysis with preserved awareness and cognition [5]. Its patients are left with very few degrees

of freedom ranging from restricted eye movement (classic LIS) to complete immobility

(total LIS) [6]. The most common cause of LIS is a stroke or a traumatic brain in-

jury (31%) or a cerebrovascular disease (52%) [7]. According to [8], more than half a

million people worldwide are affected by LIS. Once an LIS patient has become medi-

cally stable, his/her life span can be significantly prolonged. With very minor chances

of motor recovery and so poor quality of life, healthy individuals and medical experts

often find themselves wondering if such a life is worth fighting for [9]. Recent advances

in brain-computer interfaces (BCI) can potentially redefine the quality of life (QoL) for

such patients by providing them with muscle independent communication channel to

communicate and interact with their environment.

When considering a BCI for a speech-deprived patient, one must also take into ac-

count the nature of the patient’s impairment. Interfaces that rely on movement of

non-vocalized articulators or reliable control of muscles for restoration of speech are

not feasible for those suffering from LIS. Non-invasive BCIs currently available for such

patients are mostly limited to those based on Electroencephalographic (EEG) signals

[10]. While EEG based BCIs have been in use for a long time now, their clinical efficacy

has clearly been limited by their technological limitations [11]. For one, such interfaces

require the patients to spend months to train themselves how to consciously modulate

their EEG activity and even then high error rates are not avoidable [12]. An alternative

technique based on Near Infrared Spectroscopy (NIRS) that involves monitoring neu-
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Chapter 1: Introduction

ronal activity based on changes in hemodynamic response can be used to create BCIs

that require very little user training and thus prevent the drawbacks associated with

EEG based BCIs. In this study, it has been investigated if an intuitive BCI based on

NIRS can be created for those suffering from neuromuscular disorders such as LIS to

improve their QoL.

The primary objective of this thesis is to work out the feasibility of detecting user’s

intention by decoding his/her speech. If a small set of overtly/covertly said words can

reliably generate hemodynamic activity discernible with NIRS, then a control paradigm

based on speech may be implemented into future NIRS-BCIs. In order to achieve this

objective, several choices related to signal acquisition and speech classification were

made, among them are

1. As Broca’s area (speech center) plays an important role in speech processing [13]

and as activation within this area is unavoidable during speech [14], it was chosen

to focus on just this area.

2. Since a navigational approach allows an intuitive control for most BCI applications

– selection of letters on a virtual keyboard [15] or navigation of a mouse [16] or

a wheelchair [17] – it was chosen to use six directional words i.e. ‘up’, ‘down’,

‘right’, ‘left’, ‘forward’ and ‘backward’ to make the control as intuitive as possible.

To our best knowledge, exploiting the advantages of NIRS for identification of multiple

distinct outcomes from speech on a relatively localized area – Broca’s area – as a control

scheme for a BCI forms a novel approach.

The following chapter i.e. Chapter 2 presents a brief overview of brain anatomy and

physiology and covers functional areas whose appreciation is fundamental to the under-

standing of this study. A concise review of functional neuroimaging techniques with a

focus on non-invasive BCIs has been given in Chapter 3. Chapter 4 describes the ex-

perimental design including details related to subjects, tasks and protocol for the study.

This brings us to Chapter 5 which presents background material related to artifact re-

moval and feature extraction of NIRS signals. Chapter 6 details the signal processing

and speech classification pipeline that has been followed in order to achieve the best

possible classification performance and finally, Chapter 7 concludes the thesis with a

discussion of results and future prospects.
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Chapter 2

Brain Anatomy and Physiology

2.1 Organization of the Brain

The center of our nervous system – the most sophisticated neural network – the human

brain accounts for about 98% of the body’s neural tissue and weighs about 1.4 kg

with large individual variance [18]. It is an upper, enlarged end of the spinal cord

and can gross anatomically be subdivided into four parts; namely, the brainstem, the

diencephalon, the cerebellum and the cerebrum [19] (Figure 2.1, Figure 2.2a).

Brainstem

Cerebrum

Cerebellum

Figure 2.1: The principle parts of the brain. Retrieved from [1]
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Chapter 2: Brain Anatomy and Physiology

2.1.1 The Brainstem

Connected to the spinal cord, the brainstem is located in the most inferior part of the

brain and consists of medulla oblongata, pons and mesencephalon (Figure 2.2a). The

medulla is considered as the most important part of the brain because of the myriad

of crucial involuntary tasks it performs ranging from regulating blood pressure and

breathing to transfer of neural messages from brain to the spinal cord. Pons refers

to the area that sits directly above the medulla and plays a role of a message center

between several areas of the brain including superior parts of the brainstem and the

cerebellum. The third part of the brainstem, the mesencephalon – also known as mid-

brain – connects pons and cerebellum with cerebral hemispheres, controls auditorily and

visually provoked reflexes and helps maintain consciousness. [20, 21]

Cerebellum

Cerebrum Diencephalon

Mesencephalon
Pons

Medulla oblongata

Occipital

Parietal

Temporal

Frontal

Figure 2.2: (a) The gross anatomy of the brain with a closer look at the brain stem. (b) The

four lobes of the cerebral cortex. Both figures are retrieved from [1]

2.1.2 The Diencephalon

Next higher region of the brain, the diencephalon (Figure 2.2a) is made up of three parts

including thalamus and hypothalamus. While right and left thalamus are responsible

for relaying and processing sensory information, hypothalamus is involved with hormone

production, emotions and autonomic function. [20, 22]

2.1.3 The Cerebellum

The cerebellum (Figure 2.2a), also known as hind-brain, is located at the level of the

mesencephalon and is covered by the cerebellar cortex. It plays an important role in

motor control by subconsciously coordinating repeated advanced somatic motor pat-
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Chapter 2: Brain Anatomy and Physiology

terns in response to the sensory feedback it receives from ligaments, joints, muscles, the

vestibular system of the ears etc. Tumors in this part of the brain can cause loss of

balance, precision and difficulty in coordinating movements. [23, 24]

2.1.4 The Cerebrum

The cerebrum (Figure 2.2a), also known as the fore-brain, is the superior-most region

of the brain and is made up of two highly folded cerebral hemispheres – right and left –

separated by a longitudinal fissure. It controls higher mental functions such as thinking,

memory, emotions, highly complex movements, senses and speech. The superficial layer

of the cerebrum – known as cerebral cortex – may be classified on the basis of gross

topography into four lobes i.e. frontal lobe, parietal lobe, occipital lobe and temporal

lobe (Figure 2.2b). Each of these lobes can be considered to have specific function though

the brain is too complicated and interlinked for such functional lines to be drawn. The

cerebral cortex – also referred to as ‘gray matter’ – consists of several areas including

motor/sensory cortices, association centers and integrative centers. [23, 24]

Cortices

The primary motor cortex – located in the posterior region of the frontal lobe – works in

cooperation with other motor areas such as premotor cortex to plan and direct voluntary

movements. Posterior to this cortex is the primary somatosensory cortex which is located

in the parietal lobe. This cortex allows a conscious perception of touch, pain and

pressure etc. The two cortices are referred to as primary because they have a well-

defined topographic mapping of the body e.g. a specific area of the primary motor

cortex is related to motion of the arm, similarly, the superior end of the two cortices

corresponds to the feet and the inferior accounts for the head. The gustatory cortex,

located in the frontal lobe, is responsible for the sensation of taste. Visual cortex, as its

name would suggest, is responsible for processing of visual information it receives from

eyes. The auditory and olfactory cortices, both located in the temporal lobe, are related

to sound and smell respectively. [19, 23]
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Association Centers

In addition to these cortices, there are association centers that help in interpretation of

sensations and coordination of motor responses. So, if the visual association center is

damaged, the person may be able to look at a cat but not identify/recognize it as one.

In a similar way, while primary motor cortex’s job is to initiate the actual movement,

it is the responsibility of motor association center to relay proper instructions to it in

order to bring about smooth and skilled movement. The somatic sensory association

center is linked to the primary somatosensory cortex and allows recognition of touch.

The same is true for each of the remaining cortices. [19, 22, 23]

Integrative Centers

The cerebral cortex also contains areas that retrieve information from several association

centers in order to perform highly complex motor or analytical activities. One such

center is the prefrontal cortex located in the frontal lobe, which integrates information

from sensory association centers and achieves various intellectual functions. Another

integrative center, Wernicke’s area (Figure 2.3) is located in one of the two hemispheres

and is responsible for integrating sensory information while allowing coordinated access

to visual and auditory memory. So, while words of a sentence might separately be

understood by an association center, it is Wernicke’s area that interconnects them into

a whole meaningful sentence. [19, 23]

2.2 The Speaking Brain

2.2.1 Hemisphere Lateralization

Even though the two hemispheres look identical in terms of structure, each of them

operates in an entirely different way and is responsible for very different activities. This

is known as hemisphere lateralization [19, 22]. In most people, the general interpretive

areas and specialized language areas exist in the left hemisphere. While this holds true

for 97% of right-handed people, 19% of left-handed people have their language centers

in the right hemisphere and nearly 12% of them have bilateral lateralization [25].

6



Chapter 2: Brain Anatomy and Physiology

2.2.2 Broca’s Area

Broca’s area (Figure 2.3) or the speech center, an integrative center located near Wer-

nicke’s area, integrates all the processes needed to vocalize words such as breathing and

muscle control. This region also receives auditory feedback from the auditory associa-

tion center allowing quick adjustments to further vocalization [23].

Broca’s Area Wernicke’s Area

Figure 2.3: The speech areas of the brain. Retrieved from [2]

Damage to this area often results in Broca’s aphasia – a speech disorder described by non-

fluent and slurry vocal communication with relatively preserved language comprehension

[26]. In spite of that, the research evidence regarding the relationship between Broca’s

area and speech-related functions is quite controversial. While a significant number

of studies suggest that lesions in Broca’s area do not always lead to Broca’s aphasia

[27, 28], equally strong research evidence shows that patients with Broca’s aphasia do not

always have a lesion in their Broca’s area [29]. Similarly, whereas numerous functional

neuroimaging studies have reported activation of Broca’s area due to language-related

tasks [30, 31], number of research outcomes supporting activation of Broca’s area by

non-language-related tasks is not insufficient either [32, 33].

In this study, it has been investigated if the activation of Broca’s area due to a set of

overtly/covertly spoken words as conveyed by hemodynamic activity can be harnessed

to create an intuitive BCI based on NIRS.
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Chapter 3

A Review of Functional

Neuroimaging Techniques

Functional neuroimaging refers to the use of neuroimaging technique such as Magnetic

Resonance Imaging (MRI) to measure a facet of brain function in order to understand

the relationship between measurable activity in specific brain areas and corresponding

functions. Among well-known and commonly used functional neuroimaging technologies

are: Functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG)

and Near Infrared Spectroscopy (NIRS).

3.1 Functional Magnetic Resonance Imaging (fMRI)

Functional Magnetic Resonance Imaging (fMRI) makes use of the relationship between

neural activity and local hemodynamics – cerebral blood flow – to non-invasively capture

brain activity [34, 35]. The primary form of fMRI uses Blood-oxygenation Level Depen-

dent (BOLD) [36] response as a measure of neuronal activity. Physiological phenomena

that contribute to BOLD response include:

1. Activation of an area within the brain triggers an increase in local blood flow in

order to compensate for the enhanced metabolic activity,

2. Magnetic properties of oxygenated hemoglobin are such that it gives rise to a

slightly higher MR response than deoxygenated hemoglobin.

8



Chapter 3: A Review of Functional Neuroimaging Techniques

By combining these two effects, it can be assured that the MR response corresponding

to an activated area is relatively higher than that related to an inactive area. [37]

In spite of the fact that BOLD is an indirect measure, the strong correlation between

local neural activity and the corresponding BOLD response as reported in [34, 38] pro-

vides a sufficient basis for its use in BCI studies. Studies that have been reported so

far include those related to: the effect of deliberate control of anterior cingulate cor-

tex1 (ACC) on emotional processing [39], the ability of a person to self-regulate his/her

BOLD response during language processing [40], the binocular rivalry – a phenomenon

of visual perception – in which a face and a house stimulus were presented to different

eyes [41] and many others [42, 43].

Although fMRI-BCI allows non-invasive imaging of brain activity in very specific areas

of cortical and subcortical regions and is harmless, its clinical utility has largely been

limited due to prohibitive costs and complexity of use and development [44].

3.2 Electroencephalography (EEG)

Electroencephalography (EEG), mostly a non-invasive technique, relies on ionic currents

– caused by information exchange of neurons – in order to capture the electrical activity

of the brain [45]. The activation of a single neuron produces too small a current to

be measurable; thus, EEG data always reflects a synchronized electrical activity of

multiple active neurons with similar spatial orientation [46]. The main advantage of

electro-physiological techniques like EEG is that they can detect brain activity with a

very high temporal resolution – an order of magnitude better than fMRI [47]. Spatial

resolution is lower than that of fMRI but source analysis can be used to help localize

various mental activities [48].

Excellent temporal resolution makes EEG an ideal choice for detection of spatio-temporal

distribution of various higher-order cognitive processes such as language functions [49].

Results from BCI studies have shown that people suffering from LIS can learn to mod-

ulate their EEG waves – µ and β – in the absence of any perception and movement

and can exploit this control as far as to move a cursor on a screen [50] or control an
1Located in the medium wall of each hemisphere, this region is connected to the prefrontal cortex,

the parietal cortex as well as the motor and visual systems.
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electro-stimulation device to grasp a glass of water [51]. Though a number of attempts

have been made toward silent speech communication too [52–57], but most of them rely

on the user’s ability to choose letters on a virtual keyboard through electro-physiological

feedback corresponding to ‘yes’/‘no’. That is to say, these techniques expect accurate

visual perception which is an impractical assumption for those with unreliable visual

perceptual abilities.

Since EEG only measures the electrical activity of the brain, no health risk is associated

with it [58]. A set of small metal electrodes with processing hardware including amplifiers

and anti-aliasing filters embedded into an EEG cap make the whole system relatively

portable and cheaper as compared to e.g. fMRI [59]. While such advantages make

EEG very popular in BCI research, its limited bandwidth [60], steep learning curve

[61], susceptibility to electrical interference [62] and performance deterioration over the

course of a session [63] make its clinical utilization quite infeasible.

3.3 Near Infrared Spectroscopy (NIRS)

Near Infrared Spectroscopy (NIRS), a relatively recent non-invasive technique [64, 65],

makes use of electromagnetic radiation in near-infrared region – 650–900 nm [66] – in

order to measure functional activation in cortical areas 1–3 cm beneath the scalp [67].

Among dominant chromophores that also happen to be biologically relevant markers

for brain function are: oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) [68].

A typical NIRS instrument is made up of NIR sources by which a biological tissue of

interest is irradiated and detectors that receive the light after its interaction with the

tissue. Such an interaction between photons and tissue results in three different effects;

namely, reflection, scattering and absorption [69]. While reflectance is highly dependent

on the angle of the beam of photons and the regularity of the tissue surface and scattering

is a function of tissue composition, the amount of absorption is influenced by molecular

properties of tissue within the light path [70]. It is through analysis of the influence of

these interactions on the properties of received light that physiological changes can be

quantified/measured [71].

Currently, there are two distinct classes of methods/data for studying the activity of the

brain i.e. 1) a fast optical response directly arising from a neuronal activity and 2) a slow
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hemodynamic/metabolic response arising from changes in oxygen consumption caused

by a mental activity [72]. Research over the past few years has proven repeatedly that

the fast optical response is not a reliable measure of a neuronal activity owing to the

fact that it is prone to contamination from other physiological artifacts [73, 74]. As for

the slow hemodynamic oscillations, it has been observed that changes in concentration

levels of O2Hb/HHb are strongly related to changes in light absorption associated with

a localized activation of a cortical region and can be calculated from the attenuation of

received light using Modified Beer-Lambert Law [10, 66, 75].

NIRS has emerged during the last decade as a promising non-invasive neuroimaging

technique and has been used to map different areas of the brain including primary

motor cortex [76], visual stimulation [77] as well as cognitive and language functional

areas [65, 78–85]. [86] presents a study conducted on 40 Amyotrophic Lateral Sclerosis

(ALS) patients including 17 in locked-in state in order to investigate the use of high-level

cognitive tasks as a control signal for a BCI. Single-channel measurements were recorded

over the prefrontal cortex while participants performed mental tasks corresponding to

‘yes’/‘no’ in response to a series of questions. Instantaneous amplitude and phase of the

NIRS signal were selected as features and a non-linear discriminant classifier was used

to achieve an average classification accuracy of 80% (for 23 out of 40 subjects). While

EEG-BCIs haven’t succeeded in breaking the silence of Completely Locked-in2 (CLIS)

patients [87], a recent clinical study [88] presents a Class IV case evidence proving that

NIRS-BCIs could significantly improve the QoL of such people by allowing them to

regain basic communication.

Unlike fMRI, NIRS does not constrain users to a restricted range of motion [89] and as

opposed to EEG, it is neither susceptible to electrical interference from surroundings nor

prone to contamination due to muscle artifacts [90]. The ability to measure functional

activation from a series of cognitive tasks opens the door to a range of alternative

control schemes involving less user training and thus avoiding the exhausting learning

process commonly associated with EEG-BCIs [91]. Keeping in view these advantages

of NIRS and the recent success that has accompanied its use in numerous BCI studies

involving LIS patients, this study proposes a BCI control paradigm based on overt/covert

speech for a non-invasive measurement of metabolic signals using NIRS; moreover, it

also investigates if Broca’s area is an optimal recording site for such a BCI.
2Also referred to as ‘total LIS’.
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Experimental Design

In this study, it has been hypothesized that the hemodynamic activity generated in

Broca’s area in response to a small subset of overt/covert speech is discernible with

NIRS and can be harnessed to create a BCI for those suffering from neuromuscular

disorders such as LIS. The details related to the participants and the protocol of an

experiment that has been devised in order to test this hypothesis have been presented

in the following sections.

4.1 Participants

Since the issue of language representation in bilinguals is still a topic of debate [92], it

was chosen to include only those subjects that are monolingual speakers. A total of 8

healthy subjects were selected for the study. These include 6 men and 2 women of mean

age 25 (range: 23–29) with Danish as their native as well as primary language.

As hemispheric language lateralization varies significantly among left-handed people

(refer to § 2.2.1), a quantitative measure known as Edinburgh Inventory Test [93] was

used to assess the handedness of the participants. The analysis indicated 5 of the

subjects to be right-handed with Laterality Quotient (LQ) > 70, 2 to be both-handed

(LQ = 10 and 30) and 1 to be left-handed (LQ = -58).

12
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4.2 Protocol

Since no NIRS study to date has compared the effects of both overt and covert speech

on Broca’s area, it was chosen to use both of these methods. Whereas the use of

fMRI for tasks requiring overt speech [94, 95] has largely been limited due to motion

and magnetic susceptibility artifacts, similar studies based on NIRS [96] have reported

favorable outcomes. Moreover, studies such as [85] have shown NIRS to be useful for

covert speech tasks too.

4.2.1 Instrumentation

The experiment was conducted in a dimly lit room. In order to minimize interference

due to low-frequent Mayer wave (∼ 0.1 Hz) [97], participants were comfortably seated

in a tilted position (40◦ from upright) with their eyes closed. When prompted to open

their eyes, they were able to see the screen. Participants were instructed not to move

throughout the experiment as this might produce motion artifacts and thus undesirably

disturb the blood flow.

A 12-channel square template (6 × 6 cm2) with an interoptode distance of 3 cm was

used to cover left inferior frontal gyrus (IFG). To locate in a specific Broca’s area, the

international 10-20 standard for EEG (Figure 4.1) was used and the template was placed

with T3 on one end and F7 on the other (Figure 4.2). This is done in accordance with

[98] which has shown F7 to cover anterior portion of pars triangularis1 and T3 to be

posterior to IFG. The area of the template was inspired by [99] which has shown the

size of Broca’s area to be below 6 cm.

4.2.2 Task

The experiment (Figure 4.3) was composed of two blocks with a 5 min break between

them so as to collect as many trials as possible while allowing some time for relaxation

too. Each block was composed of a selected set of directional words – ‘up’, ‘down’,

‘right’, ‘left’, ‘forward’ and ‘backward’ in Danish (Table 4.1) – overtly and covertly said

for 30 s, at a frequency of 1 Hz.

Within a block, the order of the sessions as well as words (or events) were randomized.
1It occupies the triangle-shaped part of the IFG and is one of the subregions of Broca’s area.
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Cz T4C4C3T3
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Figure 4.1: The international 10-20 standard for EEG electrode placement as seen from above,

where A stands for auricle, C for central, F for frontal, Fp for frontal-pole, O for

occipital, T for temporal and z – in Fz, Cz and Pz – for mid-line electrodes.

Retrieved from [3].

Danish English

OP UP

NED DOWN

HØJRE RIGHT

VENSTRE LEFT

FREM FORWARD

TILBAGE BACKWARD

Table 4.1: A list of Danish words that were overtly/covertly spoken during each of the sessions

and their English translation

A 1 min break was allowed between words to avoid any carry-over effect; similarly, an

additional pause of 1 min was also added before each overt/covert session. Each block

thus lasted for about 22 min and a complete experiment had a duration of about 49 min

excluding mounting time.
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Receiver
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Figure 4.2: A 12-channel square patch with an interoptode distance of 3 cm was placed with

T3 on one end and F7 on the other. An estimation of the underlying anatomical

structures is also shown with Broca’s area highlighted. Retrieved from [4].

4.2.3 Stimulus

The subjects were guided through the experiment by a low-frequent sound (300 Hz, 0.5

s duration) that instructed them to open their eyes, read the word and either overtly

or covertly say the word. The sound was played at a low volume to avoid shocking

the subjects. The screen also had a 1 Hz counter/indicator to guide the subjects to

maintain a constant pace of one word per second. After each event (30 s interval), the

screen would go black to signal a break and subjects were instructed to close their eyes

and rest. The overt/covert switch and the termination of the block were indicated on

the screen by stating ‘overt’/‘covert’ and ‘block’ respectively after 1 min of black screen.

The procedure based on such an audio-visual instruction was chosen so as to minimize

the activity in the IFG and its surroundings by maximizing the use of the visual cor-
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Figure 4.3: An example of the experiment layout showing the overt/covert sessions (8 min)

alternating with the relaxation periods (2 min) and a zoomed-in view of the speech

events within one session. Note: The figure is not drawn to scale.

tex – in the occipital lobe – and minimizing the use of the auditory cortex – in the

temporal lobe, close to T3. Similarly, during covert speech trials, it was ensured that

the subject does not make mouth movement as this might induce additional changes in

cerebral hemodynamics [100] and thus disturb the response associated with a particular

activation trial. Prior to the experiment, it was also confirmed that the subject could

easily hear the sound and is familiar with the task and the stimulus of the experiment

but is unaware of the true purpose of the study as knowing this much might disturb the

validity of the results.
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Classification of NIRS Signals

The core of a BCI is a classification algorithm that maps brain signals into a space of sig-

nal descriptors, also known as feature vectors and assigns each of them to a class/label.

Given a set of feature vectors and corresponding labels, a supervised classification al-

gorithm splits it into two folds i.e. training and testing. Whereas the training set –

labeled feature vectors – is used to learn decision boundaries that separate one class

from the other, the testing set – unseen/unlabeled feature vectors – is used to evaluate

the performance of the learned model.

Artifact Removal

Feature Extraction

Feature vectors and labels

Raw NIRS signals

Dimensionality Reduction

Classification

Decision boundaries

Figure 5.1: Steps involved in preprocessing and classification of NIRS signals

Algorithms proposed for classification of NIRS signals vary in complexity ranging from

simple thresholding [101] to statistical model-based approaches [67] and are not quanti-
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tatively comparable across studies as every research is based on different control scheme

and experimental design. This chapter presents a brief overview of different processes

that are generally involved in the preprocessing and classification of NIRS signals, these

include artifact removal, feature extraction, feature selection or dimensionality reduction

and classification (Figure 5.1).

5.1 Artifact Removal

Among a number of physiological phenomena that contribute to noise in cerebral hemo-

dynamic response are respiration, cardiac activity and motion artifacts [102, 103]. While

removal of these effects is necessary in order to ensure that the data is well prepared

for further processing, it is impossible to guarantee that it would not cause a loss of

valuable information. Moreover, since the amount of physiological noise has been found

to vary across subjects as well as experimental setups [104], a preprocessing scheme that

works for one study might not be feasible for another one. Nevertheless, over the pas-

sage of time, a number of signal enhancement methods have been proposed for NIRS,

these include spectral filtering, adaptive filtering, linear detrending, wavelet minimum

description length detrending and singular spectrum analysis [105–107].

5.2 Feature Extraction

Feature extraction involves transformation of a signal into such numerical attributes that

are not only non-redundant but also sufficiently informative. Among several features

that can be used to represent changes in hemoglobin concentration within a trial1 are

mean, variance, skewness and kurtosis of a NIRS signal. [108] used a best combination

of these on a specific channel to differentiate between simple and complex imaginary

finger tapping and achieved an average accuracy of 81% across 12 subjects. Similarly,

[83] used a folding average – an average response of four blocks of data constituting

repetitions of language translation tasks – to compare tasks such as translation from

foreign to native language, vice versa and a simple read-aloud across 8 Dutch students.

The between-person variability in timing and amplitude of the hemodynamic response

leaves such time-window based approaches at a disadvantage and calls for an in-depth
1An analysis interval or a time window.
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investigation of other time-domain features. It has also been shown in [109, 110] that

time-frequency domain features can easily be used to separate task-related components

of the signal and thus achieve high classification accuracy.

5.3 Dimensionality Reduction

Even if a combination of 3 features e.g. mean, variance and skewness is used to represent

a single channel, one time-window comprising of 12 channels can yield up to 36 values

(refer to § 4.2.2 and § 4.2.3). Such a high-dimensional feature-space can create a number

of problems related to analysis and organization of data mostly due to sparsity and

redundancy of variables. These nonintuitive issues are often referred to as the curse of

dimensionality and can be prevented by reducing the feature-space to include only the

most relevant and discriminant dimensions without a loss of valuable information.

Among well known dimensionality reduction methods are Principal Component Analysis

(PCA) and Linear Discriminant Analysis (LDA). While both of these statistical proce-

dures can transform a set of possibly correlated features to a lower dimensional space of

uncorrelated variables, they are linear approaches and thus assume the feature-space to

be representable as a linear combination of subspaces [111]. In real-world problems, one

rarely has the luxury of knowing so much about the relationships in data which necessi-

tates the use of methods that are independent of the structure of the feature-space and

are sufficiently reliable at the same time. [112, 113] and [114] propose a number of such

randomized algorithms and also present a few numerical examples so as to demonstrate

the superiority of these methods in terms of accuracy, robustness and speed.

5.4 Classification

Classification, a supervised learning problem, involves predicting the class/label of an

unlabeled signal based on a training set comprising of labeled signals. Once features

have been extracted and dimensionality reduction applied, the whole feature-set is split

into two folds – training set and testing set. While the training set is used to learn

decision boundaries defining the class membership of each of the examples, it is through

classification of unseen test examples that the performance of the classifier is assessed.

Among a number of quantitative measures used to evaluate the performance of the
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classifier are accuracy, recall, precision and f-score.

Accuracy = tp+ tn

tp+ fp+ tn+ fn
Precision = tp

tp+ fp

Recall = tp

tp+ fn
F = precision · recall

precision+ recall

Table 5.1: A few quantitative measures for performance evaluation of classifiers

Table 5.1 presents equations of each of these evaluation metrics for a simplified case of a

2-class (positive and negative) problem, where tp stands for a number of positive exam-

ples (truly) predicted as positive, tn for a number of negative examples (truly) predicted

as negative, fp for a number of negative examples (falsely) predicted as positive and fn

for a number of positive examples (falsely) classified as negative. For visualization and

ease of interpretation, these four outcomes can also be presented in a 2 × 2 contingency

table or confusion matrix form (Figure 5.2).
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Figure 5.2: An example confusion matrix for a binary classifier. In this particular case, the

test set was made up of 92 examples, among them 42 were predicted as ‘positive’

and 50 were predicted as ‘negative’.

Several optimization techniques exist to solve both binary and multi-class classification

problems related to NIRS. [108], for instance, presents a study investigating the activa-

tion of motor cortex during hand motor imagery that used Fisher’s Linear Discriminant

Analysis (FLDA) to compare simple and complex finger-tapping tasks. A similar study

[67] compared two different classifiers i.e. a Support Vector Machine (SVM) and a Hid-

den Markov Model (HMM) based on how accurately does each of them classify right
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and left-hand motor imagery. Another research [86] involving locked-in patients used

non-linear discriminant classifier to differentiate between high-level mental tasks cor-

responding to ‘yes’ and ‘no’. In the same way, [10] has used both FLDA and SVM

to successfully classify visually-cued positively and negatively-valanced emotional in-

duction tasks and [115] has used FLDA to differentiate between neural correlates of

preference evaluation related to two different drinks.
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Solution Approach

In chapter 5, a generic pipeline for pre-processing and classification of NIRS signals

have been presented and recent trends related to each of the building blocks have been

reported. This chapter explains the basis and working principle of the techniques that

have been used in this study to optimize the classification of overt and covert speech

events.

6.1 Data Preparation

When a mental activity is performed, it results in a significant increase in the cerebral

blood flow of the relevant area/s of the brain which then appears in the form of an overall

localized increase in oxygenated hemoglobin (O2Hb) and a relatively smaller decrease in

deoxygenated hemoglobin (HHb). As discussed briefly in § 3.3, in order to convert the

attenuation of the received NIR radiation into changes in concentration of O2Hb/HHb,

the modified Beer-Lambert law is used. This section presents details of the modified

Beer-Lambert relationship and describes a few steps that have been followed so as to

prepare the data for preprocessing and feature extraction.

Recall that one trial for a speech event such as overt UP is represented as 12 light

intensity recordings (12 channels). Each of these recordings can be converted to changes

in optical density as follows:

OD = log
II
ID

(6.1.1)
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where,

OD: optical density

II : incident light intensity

ID: detected light intensity

According to Beer-Lambert relationship, OD is directly proportional to the extinction

coefficient for molar concentration ε of the absorber, the concentration c of the absorber

and the optical path length L of the light through the absorber.

OD = εcL (6.1.2)

In a similar way, changes in optical density i.e. ∆OD can be calculated from a measured

change in light attenuation before and after an activation event as follows:

∆OD = log
IB
IA

(6.1.3)

where,

IB: light intensity measured in baseline condition

IA: light intensity measured in activation condition

For light traveling through a highly scattering medium, the Beer-Lambert relationship

has to be modified to include a term for scattering losses G and a scaling factor so as to

make up for increase in optical path length due to scattering. The optical path length

L is thus expressed as a product of source-detector distance r and a multiplier ζ, known

as the differential path length factor (DPF).

OD = log
II
ID

= εcrζ +G (6.1.4)

Assuming scattering losses to be constant over time [116], changes in optical density

∆OD can be expressed based on a measured change in attenuation of light before and

after an activation condition as follows:

∆OD = log
IB
IA

= εcrζ (6.1.5)

For a medium containing several different absorbers, total change in light attenuation

is expressed as a linear sum of contributions from each of the absorbers. Since the
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absorbers of NIR in cerebral tissue are O2Hb and HHb, eq. 6.1.5 can be further expanded

as follows:

∆OD = {εO2Hb∆[O2Hb] + εHHb∆[HHb]}rζ (6.1.6)

If several absorbers at several different wavelengths are to be tested, modified Beer-

Lambert law can easily be expanded into a series of equations.

∆ODλ1 = {ελ1
O2Hb∆[O2Hb] + ελ1

HHb∆[HHb]}rζλ1 (6.1.7)

∆ODλ2 = {ελ2
O2Hb∆[O2Hb] + ελ2

HHb∆[HHb]}rζλ2 (6.1.8)

Using these simultaneous equations and DPF as calculated by eq. 6.1.9 [117], the

chemical concentration of O2Hb and HHb in the biological tissue can be calculated

as shown in eq. 6.1.10 and 6.1.11.

ζ = 4.99 + 0.067 · age0.814 (6.1.9)

∆[O2Hb] = ελ2
HHb(∆ODλ1/ζλ1)− ελ1

HHb(∆ODλ2/ζλ2)
r(ελ2

HHbε
λ1
O2Hb − ε

λ1
HHbε

λ2
O2Hb)

(6.1.10)

∆[HHb] = ελ2
O2Hb(∆ODλ1/ζλ1)− ελ1

O2Hb(∆ODλ2/ζλ2)
r(ελ1

HHbε
λ2
O2Hb − ε

λ2
HHbε

λ1
O2Hb)

(6.1.11)

Fig. 6.1 shows a representative example of variation in localized HHb as measured using

NIRS from channel # 1 of subject # 1 in response to different overt and covert events.

6.2 Artifact Removal

Each of the NIRS signals was converted into change in concentration of O2Hb and HHb

using a set of steps as presented in detail in section 6.1. Artifact removal involves linear

detrending of these signals so as to remove a linearly increasing baseline as reported in

an earlier study by [97]. A filter was applied to remove linear trends in the metabolic

response by minimizing the least-squares error in each session and subsequently sub-

tracting this trend (see Fig. 6.2).
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Figure 6.1: Variation in HHb as measured using NIRS from 1st channel of the 1st subject

(a)

(b)

Figure 6.2: HHb response corresponding to the 1st channel of the 1st subject (a) before linear

detrending and (b) after linear detrending

6.3 Data Analysis

We are interested in the data analysis of NIRS signals (see Fig. 6.1) of 8 subjects that

they have generated in response to different baseline and activation events. Inferential
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statistics allow us to use the recorded sample trials to make reasoning about the general

trends and tendencies between channels and events. The analysis was performed both

within each subject (intra-subject) and across all subjects (across-subjects) based on

two of the signal characteristics i.e. peak-to-peak value and correlation.

Across subjects, two combinations of two measures were recorded for each of these signal

characteristics. So, for peak-to-peak value, a mean value across all channels (meanch)

was recorded for each of the events and a mean value across all events (meanev) was

recorded for each of the channels. Similarly, a maximum peak-to-peak value across all

channels (maxch) was recoded for each of the events and a maximum value across all

events (meanev) was recorded for each of the channels.

6.3.1 Peak-to-peak Value

The peak-to-peak value refers to a difference between the lowest and the highest value

within an event (see Fig. 6.3) for each channel and thus contains information about the

magnitude of a response during an event. It can be used to determine the channels with

relatively high response and thus find out the cerebral location and relevant event that

elicits the highest response. The absolute difference between the peak-to-peak value of

corresponding events in block one and two (see § 4.2.2) can also be used to test for

similarity of events in terms of magnitude of response.

Overt DOWN RestRest

peak-to-peak

Figure 6.3: Variation in HHb as measured using NIRS for overt DOWN from 1st channel of

the 1st subject
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The intra-subject global peak-to-peak mean value for one representative subject – sub-

ject # 1 – was 2.65 µM (range: 0.65-13.16 µM) for O2Hb and 1.52 µM (range: 0.23-6.88

µM) for HHb. For all subjects, the response for O2Hb turned out to be statistically

significantly higher than that for HHb (p < 0.001) (see Fig. 6.4).

Figure 6.4: Sampling distributions of each of the absorbers – O2Hb and HHb – w.r.t peak-to-

peak values

Difference in Channels:

On channel # 7 (covers Broca’s area the most), the intra-subject mean (across events)

peak-to-peak value for one representative subject – subject # 1 – was 2.74 µM (range:

1.49-5.35 µM) for O2Hb and 1.58 µM (range: 0.53-4.20 µM) for HHb. Discriminating

between channels covering Broca’s area (4, 6, 7 and 8) and the remaining 8 channels of

subject # 1, significant tendencies towards both higher (1 subject, p < 0.05) and lower

(2 subjects, p < 0.01) values were found for both O2Hb and HHb.

Across subjects, meanev and maximumev peak-to-peak value for channel # 7 turned out

to be 2.54 µM (range: 1.14-5.61 µM) and 7.63 µM (range: 2.92-17.94 µM) respectively.

Similar results were obtained for the remaining channels and second block with no

significant differences from channel # 7 (p > 0.05). The channel providing the maximum

value for each event was channel # 8 (see Fig. 6.5), which most frequently represented

the highest value (37% of the time), followed by channel # 12 (13% of the time).
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Subject # 1, oUP (5 samples)

CH-1 CH-2 CH-3

CH-4 CH-5 CH-6

CH-7 CH-8 CH-9

CH-11

Figure 6.5: This figure presents a few topographical maps for HHb response for 5 samples of

overt UP from subject # 1 and a labeled map showing placement of each of the

12 channels. It can be seen that the channel providing maximum value for each of

these samples is channel # 8

Difference in Events:

Considering the intra-subject difference between channels during the same event, the

meanch peak-to-peak value for one representative subject – subject # 1 – during the

event overt UP was 1.77 µM (range: 0.47-4.03 µM). A statistically significant difference

between overt and covert speech was found for both block one and two for all subjects (p

< 0.002 and p < 0.004 respectively) excluding block one for three subjects (p = 0.93 for

one of them, p ≤ 0.07 for the remaining two). For five subjects, the mean peak-to-peak

value was higher during overt speech as compared to covert speech. In the remaining

three subjects, this was only true for one of the two blocks with no unique correlation

to their handedness or the order of the overt and covert sessions during the experiment.

However, a tendency towards a larger distance between the sample means was observed

if overt events precede covert events (0.5 µM) than if it is the other way around (0.3

µM).
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Across subjects, meanch and maximumch peak-to-peak value for block one for one rep-

resentative event – overt UP – was 3.46 µM (range: 1.10-6.63 µM) and 8.91 µM (range:

3.18-19.69 µM) respectively. The mean peak-to-peak value was 2.06 µM (range: 0.73-

6.19 µM) for overt events and 1.14 µM (range: 0.34-3.78 µM) for covert events with a

significant difference between the two groups for block one (p < 0.003) and two (p <

0.001).

The event providing the maximum value for each channel most frequently was overt

RIGHT (20% of time), followed by overt BACKWARD (15%); in general, overt events

accounted for 60% of these cases.

6.3.2 Correlation

The correlation between corresponding events of block one and two, determined by the

R2-value, can be used as a measure for similarity of events in terms of shape for a single

channel. Combined with the information about the peak-to-peak value, the correlation

can be used to test the replicability of the events on the same channels and the suitability

of the channels.

The intra-subject global correlation coefficient (R2) mean value for one representative

subject – subject # 1 – was 0.33 µM (range: 0.00-0.89 µM) for O2Hb and 0.29 µM

(range: 0.00-0.95 µM) for HHb. Statistically significant differences between O2Hb and

HHb were found with both higher (2 subjects, p < 0.02) and lower (1 subject, p = 0.08)

R2-values.

Difference in Channels:

The mean R2 for channel # 7 of one representative subject – subject # 1 – was 0.41

µM (range: 0.04-0.79 µM) for O2Hb which was significantly different from two other

channels (p < 0.03). For HHb, the mean R2-value for the same channel was 0.60 µM

(range: 0.18-0.95 µM) which was significantly different from 8 other channels (p < 0.04).

Similar results could be obtained for the remaining subjects.

Across subjects, the meanev and maximumev R2-value for one representative channel

– channel # 7 – was 0.32 µM (range: 0.18-0.52 µM) and 0.84 µM (range: 0.49-0.93

µM) respectively for O2Hb and 0.33 µM (range: 0.26-0.60 µM) and 0.81 µM (range:

0.60-0.95 µM) respectively for HHb with no significant difference with other channels.
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Looking at which channel provided the best correlation for each event, indicating the

area with the most similar responses, channel # 4 most frequently represented the

highest value (20% of the time for all subjects), followed by channel # 8 (13% of the

time) with large intra-subject variation.

Difference in Events:

The intra-subject mean R2-value for one representative subject – subject # 1 – for one

representative event – overt UP – was 0.54 µM (range: 0.15-0.85 µM) for O2Hb and 0.43

µM (range: 0.00-0.88 µM) for HHb with significant difference with four covert events (p

< 0.05). No such statistically significant difference was found for the remaining subjects.

Across subjects, the meanch and maximumch R2-value for the event overt UP was 0.37

µM (range: 0.10-0.61 µM) and 0.71 µM (range: 0.41-0.92 µM) respectively. Overt

events in general had higher R2-values (R2 = 0.33) than covert events (R2 = 0.31) with

no significant difference (p = 0.74).

Looking at which event provided the maximum value for each channel, covert UP most

frequently represented the highest value (17% of the time for all subjects), followed by

overt UP (11% of the time); in general, overt events accounted for 43% of these cases.

6.4 Unsupervised Feature Extraction

Most of the studies to date have focused on a single channel at a time, [108] used a best

combination of hand-crafted features such as mean, variance, skewness and kurtosis to

differentiate between simple and complex motor imagery finger tapping. For multiple

channels, one-dimensional features like root mean square value of all channels can easily

be used, [118] created a topographical representation based on two dimensional linear

cubic spline interpolation of the rms values of each channel and used ratios such as

relative area (eq. 6.4.1) and relative width (eq. 6.4.2) as features.

relative area = high activity area
total topographical area (6.4.1)

relative width = high activity width
total topographical width (6.4.2)

We don’t know what aspects of the NIRS signals are critical to discrimination of overt

and covert speech. An information theory based approach may allow an insight into the
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information content of the signals. One such unsupervised feature extraction scheme

involves finding principal components of a set of speech trials. These principal compo-

nents are then ordered with each of them accounting for a different level of variation

among speech events. These principal components can be thought of as a set of features

that describe the variation in all speech events. Features learned this way may or may

not be directly related to our hand-crafted features.

Each speech trial can be represented as a combination of principal components and

can also be approximated using only the n best principal components. The proposed

approach for feature extraction goes as follows:

1. Split the whole dataset into train (first 80% of trials of each of the events) and

test sets (last 20% of trials of each of the events)

2. Calculate the principal components from the train set and keep only the first n

components that account for the most variation in the set

3. Calculate the feature vectors for each of the training examples by projecting the

corresponding trials onto the n-dimensional feature space

4. To extract features of a test speech trial, a set of weights based on the trial and

the n-dimensional feature space is calculated by projecting the test trial onto each

of the principal components

To preprocess the raw speech signals so as to remove redundancy in data, whitening

was applied. An algorithm based on randomized singular value decomposition was used

for principal component analysis. This approach, also known as Randomized PCA, is

inspired by [113, 114] and uses random sampling to pick out a subspace that accurately

approximates the input. In many cases, it turns out to be better than its classical

counterparts in terms of accuracy, speed and robustness. It is simple, effective and can

be reorganized for maximum performance in a variety of computational architectures.

6.5 Speech Classification

Each NIRS trial corresponds either to a baseline or an activation event. An inherent

assumption of the classification problem is that the classes are disjoint; hence, the input
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feature space can be divided into many different regions separated by decision bound-

aries. In order to evaluate the performance of the proposed brain-computer interface,

several combinations of classes were investigated for each of the subjects and absorbers.

These include:

• Overt and covert events, regardless of the words, resulting in 2 classes (DiffOvCov)

• All overt events separately, resulting in 6 classes (SepOv)

• All covert events separately, resulting in 6 classes (SepCov)

Support Vector Machine (SVM), a supervised learning algorithm, was used for classifi-

cation in each of these problems. This optimization technique searches for parameter

values that maximize the gap between decision boundaries and neighboring points of

each of the classes. The larger the margin, the lower the generalization error of the

classifier.

Given a training set of feature vectors (x) and corresponding labels (y),

(xi, yi), i = 1, 2, 3, ...,m where xi ∈ Rn and y ∈ {1, 0}m (6.5.1)

SVM seeks the solution of

min
w,b,ξ

1
2w

Tw + C
m∑
i=1

ξi (6.5.2)

such that yi(wTφ(xi) + b) ≥ 1− ξi and ξi ≥ 0.

Here, training feature vectors are mapped to a higher dimensional space using a function

φ and then a separating hyperplane is found while maximizing the margin. C is the

penalty parameter of the error term andK(xi, xj) = φ(xi)Tφ(xj)T is the kernel function.

Among well-known kernels are:

• linear: K(xi, xj) = xTi xj

• polynomial: K(xi, xj) = (γxTi xj + r)d, γ > 0

• radial basis function: K(xi, xj) = exp(−γ ‖xi − xj‖2), γ > 0

where γ, r and d are kernel parameters.

A one-vs-rest classifier based on SVM was fit on 80% of the trials and tested on the

remaining 20%. In training phase, a single classifier per class was trained with feature

32



Chapter 6: Solution Approach

vectors related to that particular class labeled as 1 and those related to remaining classes

labeled as 0. In testing phase, all classifiers were applied to an unlabeled trial and the

label for which the classifier reports the highest confidence score was picked as the best

label of the corresponding feature vector. A Gaussian RBF kernel was selected due to

a number of reasons including:

• Unlike linear kernel, it can also handle the cases where the relationship between

features and labels is non-linear

• It has a fewer hyperparameters than polynomial kernel, and

• It also has a fewer numerical difficulties.

In order to search for the best C and γ, two-dimensional grid-search cross-validation

was implemented. Different pairs of C and γ were tried and the one with the best

cross-validation accuracy was picked. The performance of the trained SVM model was

evaluated based on measures such as accuracy, recall, precision and f1-score (see § 5.4).
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Results

This section presents a few results of the proposed feature extraction and classification

pipeline based on evaluation measures as defined in § 5.4, discussion of these results and

finally, the conclusion of the study.

7.1 Results

The mean and standard deviation of classification accuracy, recall, precision and f1-score

as calculated across all subjects for each of the classification problems – DiffOvCov,

SepOv and SepCov (see § 6.5) – are presented in table 7.1 and 7.2.

Task Accuracy Recall Precision F1-score

DiffOvCov 94.22 ± 6.87 95.26 ± 5.28 93.82 ± 8.59 94.42 ± 6.44

SepOv 58.90 ± 27.68 58.90 ± 27.68 58.77 ± 31.64 56.35 ± 29.61

SepCov 65.91 ± 16.89 65.91 ± 16.89 69.23 ± 17.54 63.51 ± 18.05

Table 7.1: The table shows mean classification accuracy, recall, precision and f1-score across

all subjects for each of the combination of classes with O2Hb as an absorber

Confusion matrices for each of the classification problems and absorbers are presented

in Fig. 7.1, 7.2 and 7.3.
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Task Accuracy Recall Precision F1-score

DiffOvCov 95.83 ± 5.87 97.54 ± 5.24 94.46 ± 6.57 95.95 ± 5.73

SepOv 66.48 ± 17.07 66.48 ± 17.07 71.74 ± 16.71 64.83 ± 18.11

SepCov 70.08 ± 12.11 70.08 ± 12.11 70.44 ± 12.45 67.22 ± 12.37

Table 7.2: The table shows mean classification accuracy, recall, precision and f1-score across

all subjects for each of the combination of classes with HHb as an absorber

(a) (b)

Figure 7.1: Confusion matrix for DiffOvCov with (a) O2Hb (b) HHb as an absorber

(a) (b)

Figure 7.2: Confusion matrix for SepCov with (a) O2Hb (b) HHb as an absorber. cUP here

stands for covert UP.
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(a) (b)

Figure 7.3: Confusion matrix for SepOv with (a) O2Hb (b) HHb as an absorber. oUP here

stands for overt UP.

7.2 Discussion

Throughout the investigation of the problem statement, several important issues became

clear, these are discussed in the following paragraphs.

The analysis of signals showed that the peak-to-peak values are significantly larger for

O2Hb as compared to HHb (see Fig. 6.4), which is similar to findings by other NIRS-

based studies [83, 108, 119]. Both absorbers showed similar tendencies throughout the

analysis, thus one of them could potentially be chosen for the relevant application.

This has also been done by others, where typically O2Hb is mostly used due to larger

signal amplitudes thus often higher signal to noise ratio [96, 108]. On the basis of the

correlation coefficient between corresponding events of block 1 and 2, which to our best

knowledge has not been studied before, both absorbers performed equally well, which

also supports choosing one absorber over the other.

Whereas channel # 8 dominantly represented the highest peak-to-peak value across all

subjects (37% of the time), the same channel also represented the second-highest correla-

tion coefficient (13% of the time). Interestingly, this channel was located approximately

on top of the temple, where the muscular temporalis is accessible, and thus disturbance

in NIRS due to motion artifacts is unavoidable [85]. If the muscle artifacts were likely

the reason behind highest peak-to-peak value, the high correlation coefficients contradict

the existence of such effects because these artifacts would result in large discrepancies

between corresponding events and thus, a low correlation.
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The comparison of responses during overt and covert events across subjects showed a

significant difference towards higher peak-to-peak values for overt events. However, as

no significant difference was found for the R2-values, these results indicate that the

signals with high amplitude do not provide more replicable events. On the contrary, for

two subjects, covert events had significantly better correlation as compared to the one

subject for overt events.

In general, the classification outcomes from using O2Hb were similar to those of HHb,

which further emphasizes choosing one absorber. All classification accuracies turned

out to be higher than classification by chance. The average classification accuracy for

each of the combination of classes was comparable to those achieved by [108] in similar

studies. They used an LDA classifier to discriminate between motor imagery (MI)

simple and complex finger tapping using a 3-channel template around F3 (see Fig. 4.1)

on 12 subjects while we used SVM to classify overt and covert speech events using a

12-channel template around T3 and F7 on 8 subjects. They used hand-crafted features

such as mean, variance and skewness while we used unsupervised feature selection to

extract most discriminant features. They only used a single best performing channel for

feature extraction and classification while we used all 12 channels.

The mean classification accuracy for discrimination between overt events (58.90% for

O2Hb, 66.48% for HHb) turned out to be lower than that for covert events (65.91% for

O2Hb, 70.08% for HHb). And one reason for that might be: The holder for optodes was

too inflexible causing them to lift a small amount from skin during overt tasks which

gives rise to motion artifacts as well as light from the light sources being reflected on

the skin rather than penetrating. Furthermore, light receivers could potentially receive

light from other sources in the room, even though all lights were turned off during the

whole experiment. Although motion artifacts were not observed in the measurements, it

cannot be completely ruled out that they did occur. Similarly, if the optodes only barely

lifted from the skin, a negligible increase and decrease of the transmitted and reflected

light respectively would be expected which could be indistinguishable from fluctuations

caused by the underlying metabolic response.

The inter-subject variability in classification accuracies as conveyed by especially the

corresponding standard deviation figures (see table 7.1 and 7.2) can be explained by a

number of factors as mentioned by [83]:
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1. Different thickness of the skull, thus different penetration depth of the light

2. Varying size of activation sites

3. Diverse metabolic responses including the possibility of more superficial muscles

and/or better capillary network at some sites

4. The use of a constant DPF, corrected for age, might not generalize well to all

subjects, although similar methods have been used by [83, 108] and [67]

Although the laterality of Broca’s area can vary, especially for left handers, as shown in

an MRI study by [99], it could not be observed in this study. Another reason of relatively

low classification accuracies in SepOv and SepCov problems might be the length of the

experiment. Even though it was kept as short as possible, it was still longer than the time

any subject could refrain from using their inner voice and consequently unintentionally

produce covert speech. Moreover, sitting in a dark room with no lights lit and their

eyes closed might leave the subjects in a daydreaming state which was also reported as

a source of problem in a similar study by [119].

7.3 Conclusion

NIRS is a relatively low-cost method for non-invasive measurement of metabolic response

comparable to methods such as fMRI. As mentioned by [83], it has several advantages,

especially for studies using speech as a control source.

1. Both response for O2Hb and HHb can be measured independently,

2. It’s relatively noiseless as compared to MRI

3. It has a relatively good signal to noise ratio

4. It has been shown to be useful for overt speech where fMRI often suffers from

motion artifacts

5. It has a superior temporal resolution as compared to MRI though is inferior in

spatial resolution

6. It has already been used with compact and portable devices, allowing more freedom

and measurements in natural environments
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Albeit these advantages, the use of NIRS for a BCI is still at a very early stage providing

only a small amount of added freedom to those suffering from neuromuscular disorders

inducing paralysis of all four limbs. In conclusion, this thesis:

• Presents a study conducted to investigate if an intuitive BCI based on NIRS can

be made

• Demonstrates that speech can potentially be harnessed as an intuitive control

source for a NIRS-BCI

• Demonstrates that Broca’s area can be used to differentiate between overt and

covert speech regardless of words with classification accuracies up to 90%

• Demonstrates that Broca’s area can be used to differentiate between covertly spo-

ken words with classification accuracies up to 72%

• Demonstrates that Broca’s area can be used to differentiate between overtly spoken

words with classification accuracies up to 60%

7.4 Future Prospects

The poor spatial resolution of NIRS and relatively large equipment and sensors as com-

pared to EEG has to be overcome to create a system suitable for everyday use. Moreover,

even though NIRS has a good temporal resolution, it is still limited by the slower nature

of the metabolic BOLD response (often several seconds) as compared to, for example,

electrical activity from neurons (almost instantly). Further studies are needed to test

other cognitive areas using different feature extraction and classification pipelines. Stud-

ies are also needed to determine if the fast BOLD response occurring milli-seconds after

the event can be used to create a faster and more reliable BCI.
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