

AUTOMATIC DETECTION OF MALICIOUS SOFTWARE

NIIT INFORMATION SECURITY

RESEARCH GROUP

(ISRG)

By

Neelma Nadeem
(2003-NUST-BIT-41)

A project report submitted in partial fulfillment of

The requirement for the degree of

Bachelors in Information Technology

In

NUST Institute of Information Technology

National University of Sciences and Technology

Rawalpindi, Pakistan

(2007)

ii

CERTIFICATE

It is certified that the contents and form of thesis entitled “Automatic

Detection of Malicious Software” submitted by Ms. Neelma Nadeem have been

found satisfactory for the requirement of the degree.

Project Advisor:

Assistant Professor (Dr. Fauzan Mirza)

 Co-Advisor:

 Lecturer (Mr. Shahrzad Khattak)

 Member:

Associate Professor (Dr. Hafiz Farooq)

Member:

Lecturer (Mr. Awais Shibli)

iii

DEDICATION

I dedicate this humble effort, the fruits of my thoughts and study to my

affectionate parents and family members, who inspired me to higher ideas of life.

iv

ACKNOWLEDGEMENTS

I wish to express my sincerest gratitude and indebtedness to my

advisor/ supervisor, Professor Dr. Fauzan Mirza, for his timely assistance, guidance

and encouragement at every stage of this study. My deepest appreciation and thanks

are extended to my co-advisor, Mr. Sharzad Khattak, for his continuous and valuable

suggestions, guidance and untiring assistance, especially in the provision of requisite

facilities, throughout my thesis work.

I am highly thankful to Dr. Ali Khayam for his encouragement,

motivation and help.

I am especially grateful to my friends Ms Rabail Javed and Ms Midhat

Batool for their valuable suggestions, encouragements and support throughout the

study.

My sincere thanks are due to all of my teachers for their effective

teaching and contributions enhancement of my knowledge and ability to undertake

this challenging research work. I am especially thankful to Dr. Fauzan Miraza and

Sharzad Khattak, who motivated me for the hard work required in conducting of the

research work.

I am thankful to many friends who encouraged me to work harder and

harder and continued their moral support throughout my course and project work.

With humble regards, I offer my deepest indebtedness to my

affectionate parents and all other family members for their encouragement and

prayers to Almighty God for my success.

It is almost impossible to make note of all those, whose inspirations

have been vital in the completion of this thesis, I am grateful to all of them.

v

TABLE OF CONTENTS

ABSTRACT .. xii

INTRODUCTION .. 1

1.1 BACKGROUND ... 2

1.1.1 Static Analysis .. 3

1.1.2 Dynamic Analysis ... 3

1.2 PROBLEM STATEMENT .. 3

1.3 PROPOSED SOLUTION .. 4

1.4 METHODOLOGY .. 4

1.5 TIME LINE .. 5

1.6 REPORT STRUCTURE .. 6

LITERATURE REVIEW ... 8

2.1 INVESTIGATION TOOLS ... 8

2.1.1 Ollydbg:- ... 8

2.1.2 PE Explorer ... 10

2.1.3 Ultraedit .. 10

2.2 MALICIOUS SOFTWARE ... 11

2.3 PURPOSE OF MALWARE .. 13

2.4 VULNERABILITY TO MALWARE ... 14

vi

2.5 RELATED WORK .. 15

2.5.1 Malware Trend .. 17

METHODOLOGY ... 20

3.1 STRUCTURE OF PE FILES ... 20

3.2 DEMO RESULTS:- ... 21

3.2.1 Ms Dos Header:- .. 22

3.2.2 Signature:- .. 23

3.2.3 Image File Header:- ... 23

3.2.4 Image Optional Header:- .. 24

3.2.5 Data Directories:- ... 28

3.2.6 Section Table:- ... 30

3.2.7 Resources:- ... 31

3.2.8 TLS Directory:- .. 32

3.2.9 Import Table:- .. 33

3.2.10 Export Table:- .. 33

3.2.11 Image Load Configuration Directory:- .. 34

3.2.12 Certificates:- ... 35

3.2.13 Hex Dump:- ... 35

3.3 COMMON FEATURES IN MALWARE THROUGH PE DUMP:- 35

vii

3.3.1 Size ... 35

3.3.2 MZ.. 35

3.3.3 Packed .. 36

3.3.4 Suspicious Dates .. 36

3.3.5 Window Subsystem:- ... 36

3.3.6 Common Dll‟s .. 36

REVERSE ENGINEERING ... 37

4.1 DECODE SEQUENCE ... 37

4.2 ANALYSIS:-- .. 39

4.2.1 Dump of Dlls Percentages for Our Test Samples 40

4.2.2 Averages of selected Dll‟s;- .. 44

4.2.3 Euclidean Distance:- ... 44

4.2.4 Information Divergence:- .. 45

4.2.5 Explanation of Truth Table:- .. 48

4.2.6 Result After combining both the approaches .. 49

4.3 FINAL DETECTION CRITERIA:- .. 51

CONCLUSION ... 53

FUTURE RECOMMENDATIONS ... 54

6.1 FINITE STATE MACHINE .. 55

viii

REFERENCES ... 56

ix

LIST OF FIGURES

Figure 1 - Project Timeline ... 6

Figure 2 - Snapshot Of Ollydbg ... 10

Figure 3 - Snapshot Of Ultraedit ... 11

Figure 4 - Malware Trends[6] ... 17

Figure 5 - PE File Format [12] .. 21

Figure 6- MSDOS Header Dump ... 22

Figure 7-Signature in PE File ... 23

Figure 8-Image File Header .. 23

Figure 9-Image Optional Header .. 25

Figure 10-Data Directory .. 29

Figure 11-Section Header ... 31

Figure 12-Resource Header .. 32

Figure 13-TLS Directory .. 32

Figure 14-Import Table Dump .. 33

Figure 15-Image Load Configuration Directory ... 34

Figure 16-Certificates in PE file ... 35

Figure 17-Percentages of Each Dll ... 41

Figure 18-Percentages of Selected Dlls .. 42

Figure 19-Total API Calls Averages... 43

Figure 20-Averages Count of Dll's ... 43

Figure 21 - Averages Result ... 44

x

Figure 22 - Two Appraoches Percentages .. 47

Figure 23 -Result based on previous Truth Table .. 49

Figure 24 – Three Added Features.. 50

Figure 25 – Percentages of Other Features ... 50

Figure 26 – Final Result .. 52

Figure 27 – Final Detection Rate .. 53

Figure 28 – Finite State Machine .. 55

xi

LIST OF TABLES

Table 1- Taxonomy of Malware .. 12

Table 2-35 Dll's ... 40

Table 3 - Obtained Percentages of both the Approaches .. 47

Table 4 - Truth Table .. 48

Table 5- Final Truth Table .. 51

xii

ABSTRACT

“There has been significant interest in malware since they first

appeared in 1981 and especially in the past few years as they have outreached a large

number of computer environments. Malware Threat is serious global problems that‟s

causes productivity and time both to be wasted. Various Techniques are being used

by the anti-virus companies to detect and remove malware but each technique has its

own pros and cons. This report begins with a description of the current techniques

used by anti-virus companies to detect malware. And then proposes a new technique

by analyzing malware and benign software through reverse code engineering and

develops a methodology to detect and classify malware from benign software based

on the features that are distinct in malware.”

1

Chapter 1

INTRODUCTION

The threat of malicious software can easily be considered as the

greatest threat to Internet security. Earlier, viruses were, more or less, the only form

of malware. Nowadays, the threat has grown to include network-aware worms,

trojans, DDoS agents, IRC Controlled bots, spyware, and so on. The infection vectors

have also changed and grown and malicious agents now use techniques like email

harvesting, browser exploits, operating system vulnerabilities, polymorphism,

metamorphic viruses, code obfuscation and P2P networks to spread. A relatively

large percentage of the software that a normal internet user encounters in his online

journeys is or can be malicious in some kind of way. Most of this malware is stopped

by antivirus software, spyware removal tools and other similar tools. However, this

protection is not always enough and there are times when a small, benign looking

binary sneaks through all levels of protection and compromises user data. There may

be many reasons for this breach, such as

 a user irregularly updating his AV signatures,

 a failure of AV heuristics,

 the introduction of new or low-profile malware which has not yet

been discovered by AV vendors, and

 custom coded malware which cannot be detected by antivirus

software.

 Though AV software is continually getting better, a small but very

significant percentage of malware escapes the automated screening process and

manages to enter and wreak havoc on networks. Unfortunately, this percentage is also

growing everyday.

2

 Malware is a serious global problem that causes productivity and time

both to be wasted in the process of installing anti-virus updates, scanning for

malware, removing malware, system backup and data recovery. The major research

works on malware are done at AV companies and they are usually not published.

1.1 BACKGROUND

Currently, all commercial anti-virus software is based on string

recognition. Each anti-virus product maintains its own database of virus „signatures‟.

Anti-virus software scans programs on a computer system for occurrences of any

virus signature in its database. This enables it to positively identify a program as an

implementation of a particular virus, which facilitates subsequent removal.

A single method of detecting computer viruses has nearly eclipsed all

others: scanning for known viruses [1]. Originally, a string of bytes was selected from

some known virus, and the virus scanner looked for that string in files as a way of

determining if that file was infected with that virus. Later, more complex techniques

were developed which involved looking for various substrings in various parts of the

file. But all of these techniques have one thing in common: they look for static

characteristics of viruses that are already known.

The virus signature database is maintained by the OEM of the anti-

virus and distributed to users through the mechanism of updates. The disadvantages

of the existing methodology are:

 The dependence by users on the OEM and anti-virus software

to maintain their systems, which usually will be a running expense due to the cost of

the subscription to the signature database updates; and

 Anti-virus software can only detect malware that is contained

in its database, and users that do not maintain up-to-date signature databases (e.g.,

those users whose update subscriptions have lapsed) are susceptible to new viruses.

Current anti-virus technology relies almost entirely on finding a particular virus

3

before being able to deal with it well. This is referred to as a reactive technology [1].

Customers are required to update their anti-virus software periodically to deal with

new threats. Customers (and anti-virus marketers!) have long desired anti-virus

solutions that did not require constant updates. Some anti-virus vendors have gone so

far as to claim that their products could detect all possible viruses, never make

mistakes, and never need updates, a claim that can be easily shown to be

mathematically impossible.

1.1.1 Static Analysis

There are many ways to study a program's behavior. With static

analysis, study a program without actually executing it. Tools of the trade are

disassemblers, decompilers, source code analyzers, and even such basic utilities as

strings. Static analysis has the advantage that it can reveal how a program would

behave under unusual conditions, because we can examine parts of a program that

normally do not execute. In real life, static analysis gives an approximate picture at

best. It is impossible to fully predict the behavior of all but the smallest programs..

1.1.2 Dynamic Analysis

With dynamic analysis, study a program as it executes. Here, tools of

the trade are debuggers, function call tracers, registry monitors, file system monitors,

and network sniffers. The advantage of dynamic analysis is that it can be fast and

accurate. It is not possible to predict the behavior of a non-trivial program and it is

also not possible to make a non-trivial program traverse all paths through its code.

1.2 PROBLEM STATEMENT

“Analyze malware and benign software through reverse code

engineering and develop a methodology to detect and classify malware from benign

software based on the features that are distinct in malware”.

4

1.3 PROPOSED SOLUTION

The aim of this project is to develop a methodology to classify

malware from benign software. There are various approaches that can be taken to in

an attempt to achieve this goal. The approach that we chose is based on a manual

analysis of various existing malicious software programs to determine a set of

features that are common to malware. These will then form the basis for a „malware

detection algorithm‟ that will try to distinguish malicious software from benign

software. The features give decision criteria that are then assigned weights

(depending on the likelihood of the feature being present in a malicious/benign

program) and used to decide if a program is malicious.

This project is concerned not only with computer viruses, but also

other common malicious software. For example, worms are currently a greater threat

to computer security than viruses, due to the Internet. The implementation of viruses

and worms are so extremely different that it would not be trivial to update a typical

anti-virus product to detect and eliminate the threat from worms. Rather, the anti-

virus product would need to have code added to it to deal specifically with the threat

due to worms, in addition to viruses. I stress this because this project is novel in the

sense that it attempts to solve the malware problem by looking at malware as a

general problem, rather than examining specific types of malware.

1.4 METHODOLOGY

Today, many anti-virus (AV) scanners primarily detect viruses by

looking for simple virus signatures1 within the file being scanned. The signature of a

virus is typically created by disassembling the virus into assembly code, analyzing it,

and then selecting those sections of code that seem to be unique to the virus. The

binary bits of those unique sections become the signature for the virus. However, this

approach can be easily subverted by polymorphic viruses, which change their code

(and virus signature) every time they‟re run. In response, AV vendors implemented

5

heuristics and decryption engines that would run the decryptor/loader code of the

binary and peak inside the unencrypted binary to determine if it‟s a virus. However,

the fact is that most viruses are of the “simple” type – not encrypted or polymorphic,

and many of them have many variants that come out afterwards.[11]

A research at BELL labs believe that reverse code engineering (RCE)

can be used to better analyze viruses and provide us with better techniques to protect

against them and their variants. Our research aims at detecting malware with the

possibility to be further improved by developing methods to prevent and recover from

malware threats. RCE can be defined as analyzing and disassembling a software

system in order understand its design, components, and inner-workings [11]. RCE

also allows us to see hidden behaviors that cannot be directly observed by running the

virus or those actions that have yet to be activated. These benefits can be used to

prematurely defeat a virus‟s future variants by better analyzing the original virus.

We have attempted to document an approach for reverse engineering

malicious software. This involves manually investigating various programs and

finding common features that distinguishes malicious software from benign software.

These features are decision criteria that are then assigned weights (depending on the

likelihood of the feature being present in a malicious/benign program) and used to

decide if a program is malicious.

We would go for an approach to demonstrate the process of reverse

engineering malware using a range of system monitoring tools in conjunction with a

disassembler and a debugger.

1.5 TIME LINE

Various tasks to be carried out for completion of the research project,

along with their estimated time frame, have been shown in Figure

6

Figure 1 - Project Timeline

1.6 REPORT STRUCTURE

This document sheds light on all the aspects of the project, including

the technique(s) being implemented and details of the developed tool. This document

has been divided on the following pattern:

 Chapter 2: Literature Review. This chapter puts light on current

malware trends and different techniques used by Malware writers.

 Chapter 3: Methodology. This chapter explains the approach

that has been used, design of Detection system.

 Chapter 4: Results This chapter includes the steps followed

and the final results obtained

 Chapter 5: Conclusions. This chapter summarizes the whole

project report

7

 Chapter 6: Recommendations. In this chapter proposed

methodologies have been discussed which could further affect improvements based

on search and research carried out during the execution of this project

8

Chapter 2

LITERATURE REVIEW

The review of literature for the project has been divided in the

following Sections

1) Investigation Tools

2) Malicious Software n its taxonomy

3) Purpose of Malware

4) Vulnerability to Malware

5) Related Work

6) Malware trends

2.1 INVESTIGATION TOOLS

Numbers of tools are used for the investigating Executables. Using

these tools one can investigate different properties of the file. To get a detailed and

more real picture of an executable, different tools are used to explore a file. Some of

the tools that are used for the manual analysis of a file and for reverse engineering

purposes are given below:

 OllyDbg

 PE Explorer

 UltraEdit

2.1.1 Ollydbg:-

OllyDbg is a 32-bit assembler level analyzing debugger for Microsoft

Windows. Emphasis on binary code analysis makes it particularly useful in cases

9

where source is unavailable. OllyDbg is a shareware, but can download and use it for

free. Special highlights are: [13]

 Code analysis - traces registers, recognizes procedures, loops, API calls,

switches, tables, constants and strings

 Directly loads and debugs DLLs

 Saves patches between sessions, writes them back to executable file and

updates fixups

 Configurable disassembler, supports both MASM and IDEAL formats

 Dynamically recognizes ASCII and UNICODE strings - also in Delphi

format!

 Recognizes complex code constructs, like call to jump to procedure

 Decodes calls to more than 1900 standard API and 400 C functions

 Sets conditional, logging, memory and hardware breakpoints

 Traces program execution, logs arguments of known functions

 Searches whole allocated memory

 Finds references to constant or address range

 Examines and modifies memory, sets breakpoints and pauses program on-the-

fly

http://www.ollydbg.de/download.htm

10

Figure 2 - Snapshot Of Ollydbg

2.1.2 PE Explorer

PE Explorer is designed for inspection and editing of Windows

executable files, PE Explorer offers framework for working with EXE, DLL, ActiveX

controls, and other executable file formats that run on MS Windows 32-bit platforms.

PE Explorer tells just about every little detail that could possibly want

to know about a PE file.[14]

2.1.3 Ultraedit

UltraEdit is a commercial text editor for Microsoft Windows created

in 1994 by IDM Computer Solutions. It supports Unicode and hex editing modes

which is the main requirment of our investigaion. Files can be browsed and edited in

tabs. UltraEdit compares well feature-wise with other development editors.[15]

11

Figure 3 - Snapshot Of Ultraedit

2.2 MALICIOUS SOFTWARE

Malware or malicious software is software designed to penetrate or

damage a computer system without the owner's informed approval. The expression is

a general term used by computer professionals to mean a variety of forms of hostile,

intrusive, or annoying software or program code. All malicious software affects

productivity.

Many normal computer users are however still unfamiliar with the

term, and most never use it. Instead, "(computer) virus" is used in common parlance

and often in the general media to describe all kinds of malware.

Software is considered malware based on the perceived intent of the

creator rather than any particular features. It includes computer viruses, worms, trojan

horses, spyware, adware, and other malicious and unwanted software. Malware

12

should not be confused with defective software, that is, software which has a

legitimate purpose but contains harmful bugs [2].

According to [4], malicious programs can be divided into two

categories

 Those that need a host program (that cannot exit independently of

some actual application program, utility or system program e.g. virus,

logic bombs, backdoors are examples); and

 Those that are independent (self contained programs that can be

scheduled and run by the operating system, e.g., worms, zombies)

And also they can be differentiated between those software threats that

do not replicate (activated by a trigger, e.g., logic bombs, backdoors and zombie

programs) and those that do (e.g., viruses and worms). [4]

Taxonomy of malicious programs is described in table 1 [4]

Table 1- Taxonomy of Malware

Name Description

Virus Attaches itself to a program and propagates copies if itself to

other programs

Worm Program that propagates copies of itself to other computer

Logic Bombs Triggers actions when condition occurs

Trojan Horse Programs that contains unexpected additional functionality

Backdoor(trapdoor) Program modification that allows unauthorized access to

functionality

Exploits Code specific to a single vulnerability or set of vulnerabilities

Downloaders Program that installs other items on a machine that is under

attack, usually a downloader is sent in an email

Auto rooter Malicious hacker tools used to break into new machines

remotely

Kit(virus

generator)

Set of tools for generating new viruses automatically

13

Spammer Programs Used to send large volumes of unwanted emails

Flooders Used to attack network computer systems with a large volume

of traffic to carry out a denial of service (DoS) attack

Key-Loggers Captures keystrokes on a compromised system

Rootkit Set of hacker tools used after attacker has broken into a

computer system and gained root level access

Zombie Program activated on an infected machine that is activated to

launch attacks on other machines.

2.3 PURPOSE OF MALWARE

Since the rise of widespread broadband Internet access, more

malicious software has been designed for a profit motive. For instance, since 2003,

the majority of widespread viruses and worms have been designed to take control of

users' computers for black-market exploitation [2].

A description of several famous malicious computer programs

(computer viruses and worms) that caused extensive harm and reviews of legal

consequences of each incident, including the nonexistent or lenient punishment of the

program's author are described in detail at [3]

 E-mail delivering these malicious programs is deceptively or

fraudulently labeled, so to encourage victims to open an e-mail attachment containing

the malicious program.

 Many malicious programs delete or alter data in files on the

victim's hard drive, a result that has no benefit to the author of the malicious program,

except glee in harming other people. This is clearly a criminal act by the author of the

malicious program.

 There is an enormous total cost of removing the virus or worm

from many computers. Some of these malicious programs described in [3] infected

14

more than 10
5
 computers worldwide. The cost of removing the program from each

computer is in millions of dollars.

 Beginning with the Melissa virus in March 1999, many of

these malicious programs sent copies of the program in e-mail bearing the victim's

from: address, when the victim had neither composed the e-mail message nor

authorized the transmission. I believe that such sending of e-mail is, or ought to be, a

criminal act.

 Malicious programs that propagate by e-mail will clog e-mail

servers with millions of copies of a virus or worm, thus delaying receipt of useful e-

mail, or causing valid messages to be lost in a flood of useless e-mail i. e denial of

Service.

According to [10], Malicious programs can be divided into the

following groups: worms, viruses, Trojans, hacker utilities and other malware (DoS

and DDoS Tools ,Hacker Tools and Exploits ,Flooders ,Constructors and VirTools

,Nukers ,FileCryptors and PolyCryptors ,PolyEngines). All of these are designed to

damage the infected machine or other networked machines.

2.4 VULNERABILITY TO MALWARE

The “system” under attack may be of various types, e.g. a single

computer and operating system, a network or an application [2]. Various factors make

a system more vulnerable to malware:

 Homogeneity – e.g. when all computers in a network run the same OS, if you

can break that OS, you can break into any computer running it.

 Bugginess – most systems containing errors which may be exploited by

malware.

 Unconfirmed code – code from a floppy disk, CD or USB device may be

executed without the user‟s agreement.

15

 Over-privileged users – some systems allow all users to modify their internal

structures.

 Over-privileged code – most popular systems allow code executed by a user

all rights of that user.

According to [10], Malware appears in any given environment when

the following criteria are met:

 The operating system is widely used

 Reasonably high-quality documentation is available

 The targeted system is insecure or has a number of documented vulnerabilities

 Internet is the main way all the malware reaches victim computers. The

main channels are email, Usenet, peer-to-peer (P2P) file sharing networks and

different „live chat‟ networks like Internet Relay Chat (IRC), numerous „Instant

Messengers‟, and so on.[6].

2.5 RELATED WORK

In the mid-late 90‟s, IBM Research conducted research into

developing an anti-virus modeled on the human biological immune system [5]. Their

research led to the development and deployment of a prototype system that

demonstrably worked and could automatically detect and generate code to remove

new (previously undetected) viruses (immunization) and transmit the removal code to

all their customers (e.g., over the Internet). This system required no manual (human)

intervention and worked incredibly well (the system was patented by IBM Research

and eventually the technology was bought by a major anti-virus OEM that decided

not to deploy it, most probably to protect their main revenue stream which was from

anti-virus signature updates).

16

In a paper at IBM research center they have outlined the problems, to

suggest approaches, and to encourage those interested in research in this field to

pursue them [1]. They have discussed five problems out of which 3 are relevant to our

research Firstly as more viruses are written for new platforms; new heuristic detection

techniques must be developed and deployed. But we often have no way of knowing,

in advance, the extent to which these techniques will have problems with false

positives and false negatives. That is, we don't know how well they will work or how

many problems they will cause. IBM showed that analytic techniques can be

developed which estimate these characteristics and suggest how these might be

developed for several classes of heuristics. Secondly IBM managed to deploy a

“digital immune system” that finds new viruses, transmits them to an analysis center,

analyzes them, and distributes cures worldwide, automatically, and very quickly. At

that time, there were few instances of worms - freestanding virus-like programs that

spread themselves and may never be present in the computer's file system at all, and

consequently, virtually all anti-virus technology (which is based on technology

developed more than 10 years ago) relies on detecting and removing viruses from a

file system

This project also addresses this research issue by providing an engine

that may be deployed in a proactive malware analysis system (e.g., a network router)

or a reactive malware analysis system (e.g., desktop application).

Another major problem faced by anti virus companies is the code

obfuscation by the malware writers. According to [7], code obfuscation is used

extensively by authors of malicious code to avoid detection. Many viruses utilize

obfuscation techniques to subvert virus scanners by continually changing their code

signature with obfuscating transformations. The two main types of malicious code

that use obfuscation techniques to hide themselves from virus scanners are

polymorphic and metamorphic viruses. They rely on techniques that change their

code signature each infection generation, making it impossible for string matching

algorithms to detect their presence. This is a relevant research issue that is currently

17

outside the scope of this project, but may be addressed in future (as a continuation of

this research project).

2.5.1 Malware Trend

An interesting observation described in [6] that over the past few years

malware writers apparently shifted their efforts from creating viruses and worms „for

fun‟, from cyber vandalism, to creating backdoors, remotely-controlled bots,

password stealers, etc. pretty much „for profit‟. In fact, today we are seeing 8 to 10

times more new non-replicating malware per month than new viruses or worms. The

chart below shows annual numbers of replicating and non-replicating malware

samples added to the McAfee AVERT master malware collection. Today the trend is

mostly non-replicating malware, trying to stay inconspicuous, for theft and control

monetary gains.

Figure 4 - Malware Trends[6]

 So by looking at the above chart we can clearly see the

increasing trends of malware other then just viruses and worms.

18

The trends in virusology that we observe today have their primary

roots in the second half of 2003. Internet worms Lovesan, Sobig, Swen and Sober all

not only caused global epidemics, but also profoundly changed the malware

landscape. Each of these malicious programs set new standards for virus writers [10].

Once a piece of malware which uses fundamentally new techniques to

propagate or infect victim machines appears, virus writers are quick to adopt the new

approach. Today's new threats all incorporate characteristics of Lovesan, Sobig, Swen

or Sober. Therefore, in order to understand what virus writers are doing currently, and

to predict what the future may bring, we need to examine this quartet of worms

carefully [10].

To summarize, these malware set the following trends as described in

[10]:

 Exploiting critical vulnerabilities in MS Windows

 Propagation via the Internet through direct connections to victim machines

 Organising DoS and DDos attacks on key websites

 The creation of networks of infected machines to serve as epidemic

platforms

 Mass mailing of malware using spammer techniques

 Mass mailings of links to infected sites via email or ICQ

 Trojan proxies become a separate class of malware closely linked to

spammers

 Using vulnerabilities or holes created by other viruses

 Active deletion of competitor viruses

 Propagation in archived files (Bagle & NetSky variants)

 Propagation in password-protected compressed files: passwords were

either included as text strings or as graphics (Bagle)

 Abandoning propagation by email: instead, the malicious programs spread

by directing infected machines to sites where the worm's body was

19

downloaded or downloading the worm's body from previously infected

machines (NetSky)

Malicious software has turned into a big business. As technology has

evolved, so have malware. In the space of a couple of decades, we have seen

computers change almost beyond recognition. The extremely limited machines which

booted from a floppy disk are now powerful systems that can send huge volumes of

data almost instantaneously, route email to hundreds or thousands of addresses, and

entertain individuals with movies, music and interactive Web sites. And virus writers

have kept pace with these changes [10].

While the viruses of the 1980s targeted a variety of operating systems

and networks, most viruses today are written to exploit vulnerabilities in the most

commonly used softwares [10].

20

Chapter 3

METHODOLOGY

Since windows operating systems are most vulnerable to malware than

any other operating system as they share the home user market at the max therefore

we began our investigation with the analysis of the structure of executable (image)

files i.e. PE file format under the Microsoft Windows NT® operating system. The

name “Portable Executable” refers to the fact that the format is not architecture-

specific. The PE file format draws primarily from the COFF (Common Object File

Format) specification that is common to UNIX® operating systems. And to remain

compatible with previous versions of the MS-DOS® and Windows operating

systems, the PE file format also retains the old familiar MZ header from MS-DOS.

lets began with the structure of PE files.

We developed a program that dumps the structure of PE files. It is

used to analyze both malicious and benign softwares. Let‟s look at the structure of PE

files first.

3.1 STRUCTURE OF PE FILES

The PE file format is organized as a linear stream of data. It begins

with an MS-DOS header, a real-mode program stub, and a PE file signature.

Immediately following is a PE file header and optional header. Beyond that, all the

section headers appear, followed by all of the section bodies. Closing out the file are a

few other regions of miscellaneous information, including relocation information,

symbol table information, line number information, and string table data. All of this is

more easily absorbed by looking at it graphically, as shown in Figure 4.[12]

21

Figure 5 - PE File Format [12]

Starting with the MS-DOS file header structure, each of the

components in the PE file format is discussed below in the order in which it occurs in

the file.

3.2 DEMO RESULTS:-

PEStructureAnalyzer.exe

Sample malware: RavMon.exe

Input: file name to analyze

Output: Dump of the file

This program dumps the structure of PE files and gives the following

information:-

22

The program first opens a file using CreateFile function and checks if

the file exist or not and then calls CreateFileMapping function which creates a

named or unnamed file-mapping object for the specified file and then calls

MapViewOfFile function which maps a view of a file mapping into the address

space of a calling process.

Now that we have the pointer of the memory mapping of the file, we

can now dumps its structure, the out put of the program is in the following sequence

3.2.1 Ms Dos Header:-

It first dumps MS Dos header and gives the following attributes

Figure 6- MSDOS Header Dump

The first field, Magic Number, is the so-called magic number. This

field is used to identify an MS-DOS-compatible file type. All MS-DOS-compatible

executable files set this value to 0x54AD, which represents the ASCII characters MZ

as defined in WINNT.h

#define IMAGE_DOS_SIGNATURE 0x5A4D // MZ

23

The final field, Addr Of New Header, is a 4-byte offset into the file

where the PE file header is located. It is necessary to use this offset to locate the PE

header in the file. For PE files in Windows NT, the PE file header occurs soon after

the MS-DOS header with only the real-mode stub program between them.

3.2.2 Signature:-

Here signature of the file is verified. Three different file types are

defined in WINNT.h

#define IMAGE_OS2_SIGNATURE 0x454E // NE

#define IMAGE_OS2_SIGNATURE_LE 0x454C // LE

#define IMAGE_NT_SIGNATURE 0x00004550 // PE00

Figure 7-Signature in PE File

3.2.3 Image File Header:-

Through NT header we can get the pointer to the image file header.

PEStructureAnalyzer gives the following output for the sample malware RavMon.exe

Figure 8-Image File Header

24

The information in the PE file is basically high-level information that

is used by the system or applications to determine how to treat the file. The Machine

field is used to indicate what type of machine the executable was built for, such as the

DEC® Alpha, MIPS R4000, Intel® x86, or some other processor. The system uses

this information to quickly determine how to treat the file before going any further

into the rest of the file data.

The Characteristics field identifies specific characteristics about the

file.

One other useful entry in the PE file header structure is the

NumberOfSections field. It turns out that you need to know how many sections--

more specifically, how many section headers and section bodies--are in the file in

order to extract the information easily. Each section header and section body is laid

out sequentially in the file, so the number of sections is necessary to determine where

the section headers and bodies end.

TimeDateStamp field represents the date and time the image was

created by the linker. The value is represented in the number of seconds elapsed since

midnight (00:00:00), January 1, 1970, Universal Coordinated Time, according to the

system clock.

3.2.4 Image Optional Header:-

The next 224 bytes in the executable file make up the PE optional header.

Though its name is "optional header," but this is not an optional entry in PE executable files.

The optional header contains most of the meaningful information about the executable

image,as given below in the following example:-

25

Figure 9-Image Optional Header

 Magic shows the state of the image file

 MajorLinkerVersion, MinorLinkerVersion. Indicates version of the linker

that linked this image.

 SizeOfCode. Size of executable code.

 AddressOfEntryPoint. Of the standard fields, the AddressOfEntryPoint field

is the most interesting for the PE file format. This field indicates the location

of the entry point for the application and, perhaps more importantly to system

hackers, the location of the end of the Import Address Table (IAT). The

following function demonstrates how to retrieve the entry point of a Windows

NT executable image from the optional header.

 BaseOfCode. Relative offset of code (".text" section) in loaded image.

 BaseOfData. Relative offset of uninitialized data (".bss" section) in loaded

image.

26

3.2.4.1 Windows NT Additional Fields

The additional fields added to the Windows NT PE file format provide

loader support for much of the Windows NT-specific process behavior. Following is

a summary of these fields.

 ImageBase. Preferred base address in the address space of a process to map

the executable image to. The linker defaults to 0x00400000.

 SectionAlignment. Each section is loaded into the address space of a process

sequentially, beginning at ImageBase. SectionAlignment dictates the minimum

amount of space a section can occupy when loaded--that is, sections are

aligned on SectionAlignment boundaries. Section alignment can be no less

than the page size (currently 4096 bytes on the x86 platform) and must be a

multiple of the page size as dictated by the behavior of Windows NT's virtual

memory manager. 4096 bytes is the x86 linker default, but this can be set

using the -ALIGN: linker switch.

 FileAlignment. Minimum granularity of chunks of information within the

image file prior to loading. For example, the linker zero-pads a section body

(raw data for a section) up to the nearest FileAlignment boundary in the file.

This value is constrained to be a power of 2 between 512 and 65,535.

 SizeOfImage. Indicates the amount of address space to reserve in the address

space for the loaded executable image. This number is influenced greatly by

SectionAlignment. For example, consider a system having a fixed page size of

4096 bytes. If you have an executable with 11 sections, each less than 4096

bytes, aligned on a 65,536-byte boundary, the SizeOfImage field would be set

to 11 * 65,536 = 720,896 (176 pages). The same file linked with 4096-byte

alignment would result in 11 * 4096 = 45,056 (11 pages) for the SizeOfImage

field. This is a simple example in which each section requires less than a page

of memory. In reality, the linker determines the exact SizeOfImage by figuring

each section individually. It first determines how many bytes the section

27

requires, then it rounds up to the nearest page boundary, and finally it rounds

page count to the nearest SectionAlignment boundary. The total is then the

sum of each section's individual requirement.

 SizeOfHeaders. This field indicates how much space in the file is used for

representing all the file headers, including the MS-DOS header, PE file

header, PE optional header, and PE section headers. The section bodies begin

at this location in the file.

 CheckSum. A checksum value is used to validate the executable file at load

time. The value is set and verified by the linker. The algorithm used for

creating these checksum values is proprietary information and will not be

published.

 Subsystem:. Field used to identify the target subsystem for this executable.

Values are listed in winnt.h

o IMAGE_SUBSYSTEM_UNKNOWN

o IMAGE_SUBSYSTEM_NATIVE

o IMAGE_SUBSYSTEM_WINDOWS_GUI

o IMAGE_SUBSYSTEM_WINDOWS_CUI

o IMAGE_SUBSYSTEM_OS2_CUI

o IMAGE_SUBSYSTEM_OS2_CUI

o IMAGE_SUBSYSTEM_POSIX_CUI

o IMAGE_SUBSYSTEM_NATIVE_WINDOWS

o IMAGE_SUBSYSTEM_WINDOWS_CE_GUI

 DllCharacteristics. Flags used to indicate if a DLL image includes entry

points for process and thread initialization and termination.

 SizeOfStackReserve, SizeOfStackCommit, SizeOfHeapReserve, S

izeOfHeapCommit. These fields control the amount of address space to

reserve and commit for the stack and default heap. Both the stack and heap

have default values of 1 page committed and 16 pages reserved. These values

are set with the linker switches -STACKSIZE: and -HEAPSIZE:.

(NOTE:256 pages are now for reserved stack/heap)

28

 LoaderFlags. Tells the loader whether to break on load, debug on load, or the

default, which is to let things run normally.

 NumberOfRvaAndSizes. This field identifies the length of the DataDirectory

array that follows. It is important to note that this field is used to identify the

size of the array, not the number of valid entries in the array.

 DataDirectory. The data directory indicates where to find other important

components of executable information in the file. It is really nothing more

than an array of IMAGE_DATA_DIRECTORY structures that are located at

the end of the optional header structure. The current PE file format defines 16

possible data directories.

3.2.5 Data Directories:-

The data directory contains the locations and sizes of the important

data structures in the PE file As defined in WINNT.H, the data directories are as

given as output by PEStructureAnalyzer

29

Figure 10-Data Directory

Each data directory is basically a structure defined as an

MAGE_DATA_DIRECTORY.

To locate a particular directory, you determine the relative address

from the data directory array in the optional header. Then use the virtual address to

determine which section the directory is in. Once you determine which section

contains the directory, the section header for that section is then used to find the exact

file offset location of the data directory.

30

3.2.6 Section Table:-

Section headers are located sequentially right after the optional header

in the PE file format. An application for Windows NT typically has the nine

predefined sections named .text, .bss, .rdata, .data, .rsrc, .edata, .idata, .pdata, and

.debug Each section header is 40 bytes with no padding between them.

The default behavior combines all code segments into a single

section called ".text" in Windows NT

The .bss section represents uninitialized data for the application,

including all variables declared as static within a function or source module.

The .rdata section represents read-only data, such as literal strings,

constants, and debugs directory information.

All other variables (except automatic variables, which appear on the

stack) are stored in the .data section. Basically, these are application or module global

variables.

The dump of the first section header of the sample malware

RavMon.exe is given below.

31

Figure 11-Section Header

3.2.7 Resources:-

The .rsrc section contains resource information for a module. It begins

with a resource directory structure like most other sections, but this section's data is

further structured into a resource tree.

PEStructureAnalyzer checks for string table and dialogs table as well.

32

Figure 12-Resource Header

3.2.8 TLS Directory:-

Thread Local Storage (TLS) is the method by which each thread in a

given multithreaded process may allocate locations in which to store thread-specific

data. The TLS directory for the sample malware 09116343.EXE is given below:-

Figure 13-TLS Directory

33

3.2.9 Import Table:-

An import function is a function that is not in the caller's module but is

called by the module, thus the name "import". The import functions actually reside in

one or more DLLs. Only the information about the functions is kept in the caller's

module. That information includes the function names and the names of the DLLs in

which they reside.

Data directory keeps the information of import tables. The part of

import table in the sample malware retrieved through PEStructureAnalyzer is given

below.

Figure 14-Import Table Dump

3.2.10 Export Table:-

The place in the DLLs where the PE loader looks for the addresses of

the functions is the export table. When a DLL/EXE exports a function to be used by

other DLL/EXE, it can do so in two ways:

it can export the function

 by name or

34

 by ordinal only (An ordinal is a 16-bit number that uniquely

identifies a function in a particular DLL)

Say if there is a function named "GetSysConfig" in a DLL, it can

choose to tell the other DLLs/EXEs that if they want to call the function, they must

specify it by its name, ie. GetSysConfig. The other way is to export by ordinal.. This

number is unique only within the DLL it refers to. For example, in the above

example, the DLL can choose to export the function by ordinal, say, 16. Then the

other DLLs/EXEs which want to call this function must specify this number in

GetProcAddress. This is called export by ordinal only.

3.2.11 Image Load Configuration Directory:-

This directory contains the load configuration data of an image. The

output for sample malware is given below:-

Figure 15-Image Load Configuration Directory

35

3.2.12 Certificates:-

This encapsulates a signature used in verifying executable files. The

output retrieved from the program for sample exe i.e. SmileboxInstaller.exe is given

below:-

Figure 16-Certificates in PE file

3.2.13 Hex Dump:-

This function gives the hex dump of an executable from 1
st
 byte to the

end of the file.

3.3 COMMON FEATURES IN MALWARE THROUGH PE

DUMP:-

By taking the Pe Dumps of various executables we were able to find

out the following features that distinct a malware from benign software.

3.3.1 Size

By taking the average of sizes of more than 300 malware samples, we

came to the conclusion that most of the samples are less than 200K

3.3.2 MZ

Often things are not always as they seem. Spammers, Internet bottom

feeders, and others with ill intent often try to mask what is in reality malware so if a

file is looking suspicious, the characters “MZ” in the file can tell us that it is actually

an executables rather than an image, ziped file, a video file etc.

36

3.3.3 Packed

What is the point of compressing malware down to a smaller size?

Well it is not really all about simply shrinking the actual size, but more importantly

about trying to evade anti-virus scanners so check whether a file is packed or not?

3.3.4 Suspicious Dates

 TimeDateStamp: 00001000 ->Thu Jan 01 06:08:16 1970

 TimeDateStamp: 63617055 -> Wed Nov 02 00:15:33 2022

 No Creation Date at all.

3.3.5 Window Subsystem:-

It is seen that most if the malware samples run in windows character

subsystem rather than running in graphical user interface subsystem.

3.3.6 Common Dll’s

 "ADVAPI32.DLL”--Tries to Access Registry

 "WININET.DLL"--Tries to Conect the Internet:can be a Malware

 "URLMON.DLL"--Downloads Data from internet

“URLDownloadToFileA”--Downloads bits from the Internet and saves them

to a file

 "WS2_32.DLL"--Tries to Access Internet

 ”WSOCK32.DLL"--"Tries to Access Internet

37

Chapter 4

REVERSE ENGINEERING

Then we attempted to document an approach to reverse engineer malicious

software by looking at the binary code of the executable through OlyDbg.exe .we found the

following code sequence in order to retrieve a sequence of API calls in an executable. The

code sequence for two types of call instructions (i.e. FF15 and E8) in any executable is given

below.

4.1 DECODE SEQUENCE

FF15 | FF25 | FF35

o00402BF0 FFI5 a54714200

 followed by 4 Byte Memory address

o locate import table and see if Memory address (as offset) is with in

import table range

o compare offset if greater than code section and less than end of

import table

o if true

 Calculate VA and RVA difference of the import section and

subtract this difference from offset and jump to this offset.

 See next 4 Byte Memory Address

 Jump to this address after subtracting VA and RVA difference of the import

section

 Retrieve the string

Example PEStructureAnalyzer.exe

o00402BF0 FFI5

 followed by 4 Byte Memory Address a54714200

 o00427154 > o00401000 (VA of code section)

 o00427154 < o00428000 (VA of end of import section)

 true

o VA of import section is o00427000

o RVA of import section is o00426000

38

o VA and RVA difference = 1000

o Therefore subtract 1000 from o00427154 i.e.

o00426154

o Jump to o00426154 and retrieve next 4 Bytes

a9C720200

o subtract 1000 from o0020729C i.e. o0020629C

o jump to o0020629C +1

o Retrieve the string CreateFileA

E8

o0040108D E8 aB2120000

 Calculate VA and RVA difference of the code section and subtract this

difference from offset (pointing to E8) and jump to this offset

 followed by 4 Byte Memory address

 if 4
th

 Byte is 00 then proceed.

o add the offset and the next offset after the instruction E8

o jump to that offset

o if FF15 || FF25 || FF35 then follow the above procedure

Example msblast.exe

o0040108D E8

 VA of code section o00401000

 RVA of code section o00000400

 Code section VA n RVA difference is C00

 Therefore subtracting C00 from o0040108D gives o0040048D

and jump to it

 followed by 4 Byte Memory Address aB2120000

 4
th

 Byte is 00 hence true

o adding a000012B2 and next offset after E8 instruction

i.e. 00000492 + 000012B2 gives o00001744

o jump to this offset

o if FF15 || FF25 || FF35 then follow the above procedure

to retrieve the string i.e. RtlUnwind

39

E8

o004010D2 E8 aC9FFFFFF

 Calculate VA and RVA difference of the code section and subtract this

difference from offset (pointing to E8) and jump to this offset

 followed by 4 Byte Memory address

 if 3
rd

 and 4
th

 Bytes are FFFF then proceed.

o add 1
st
 two Bytes of offset and the offset of next instruction E8

o subtract 10000

o jump to that offset

o if FF15 || FF25 || FF35 then follow the above procedure

Example SVOHOST.exe

o004010D2 E8

 VA of code section o00401000

 RVA of code section o00001000

 Code section VA n RVA difference is 00000000

 Therefore subtracting 00000000 from 004010D2 gives

004010D2 and jump to it

 followed by 4 Byte Memory Address aC9FFFFFF

 3
rd

 n 4th Bytes are FFFF true

o adding FFC9 and next offset after E8 instruction i.e.

000010D3 + FFC9 gives o000010A0

o jump to this offset

o if FF15 || FF25 || FF35 then follow the above procedure

to retrieve the string i.e. GetStartupInfoA

4.2 ANALYSIS:--

After taking the sequence of Api calls we developed a program which

associates each function call with its Dll and counts the number of calls made for

each Dll, the percentages of the count for the 35 Dlls that we found in our sample test

sets for both malware n benign samples is shown in the following section.

40

4.2.1 Dump of Dlls Percentages for Our Test Samples

Our sample test set consists of 135 malware and 51 benign samples

and based on the testing we found the following 35 Dll‟s and combination of any of

these Dll‟s an executable is created.

KERNEL32.DLL

USER32.DLL

GDI32.DLL

ADVAPI32.DLL

VERSION.DLL

WSOCK32.DLL

SHELL32.DLL

COMCTL32.DLL

URLMON.DLL

WININET.DLL

WS2_32.DLL

CDINTOUCH50.DLL

ACDCLCLIENT30.DLL

SHFOLDER.DLL

SHLWAPI.DLL

MPR.DLL

SHELLINTMSR30.DLL

LMCLIENT.DLL

IPWSS15.DLL

CINDCODE.DLL

MFC71.DLL

MSVCR71.DLL

OLEAUT32.DLL

MSVCP71.DLL

MSVCRT.DLL

OLE32.DLL

SETUPAPI.DLL

WINTRUST.DLL

CRYPT32.DLL

MSVFW32.DLL

OLEACC.DLL

WINSPOOL.DRV

COMDLG32.DLL

CRTDLL.DLL

IPHLPAPI.DLL

Table 2-35 Dll's

41

The percentages of each Dll for our sample test set are shown in the

following graph.

Figure 17-Percentages of Each Dll

The results clearly show the Dlls that are differing in both malware

and benign samples. On the basis of the above result we selected the 8 Dll‟s as the

basis for our decision criteria. The percentages of the selected Dlls‟ for each malware

and benign sample from our program are shown in the following graph.

42

Figure 18-Percentages of Selected Dlls

The above graph clearly shows the usage of the selected Dll‟s in both

malware and benign samples, which is quite distinct. In order to improve the results,

total API calls and total number of Dll‟s used for each sample were caclulated for

each sample test set .The following graph shows the average number of API calls and

Dll‟s that are used for malware and benign samples each.

43

Figure 19-Total API Calls Averages

Figure 20-Averages Count of Dll's

44

4.2.2 Averages of selected Dll’s;-

The following table shows the averages of percentages of the selected

Dll‟s, total number of API calls, number of Dll‟s used for malware and benign

samples which shows the difference between both malware and benign samples .

DLL Name Malware Benign

GDI32.DLL 0.104940 0.556126

VERSION.DLL 0 0.111934

WSOCK32.DLL .095579 0.000370

WININET.DLL .028923 0.005306

SHELL32.DLL 0.098699 0.062693

COMCTL32.DLL .057600 0.204747

WS2_32.DLL .062694 0.000000

CRTDLL .063565 0.000000

TOTAL API CALLS 132.744000 869.764706

TOTAL DLLS USED 4.848000 7.470588

Figure 21 - Averages Result

So on the basis of the above averages we chose Euclidean Distance

and information Divergence as two approaches to see the detection rate.

4.2.3 Euclidean Distance:-

The Algorithm that we developed is based on the following formula.

For each malware and benign sample, the percentage of each Dll is calculated and

then a value of each Dll is compared with averages of both malware and benign

samples.

45

• E(m,M) = sqrt((p1-ma1)+(p2-ma2)+…. +(p8-ma8))

• E(m,B) = sqrt((p1-ba1)+(p2-ba2)+…. +(p8-ba8))

• E(b,M) = sqrt((p1-ma1)+(p2-ma2)+…. +(p8-ma8))

• E(b,B) = sqrt((p1-ba1)+(p2-ba2)+…. +(p8-ba8))

m=malware sample

b=benign sample

p1=percentage of 1
st
 Dll 1.e GDI32.DLL.

ma1=average percentage of all tha malware samples for 1
st
 Dll i.e GDI32.DLL

The Decision Criteria is the following

E(m,M)<E(m,B) || [(mApi - mAverage) && (mDllCount - mAverageCount)]

malwar

E(b,M)<E(b,B) || [(bApi - bAverage) && (bDllCount - bAverageCount)]

malware

mApi=number of Api call for given malware sample

mAvergae=number of Dlls for given malware sample

bApi=number of Api call for given benign sample

bAvergae=number of Dlls for given benign sample

4.2.4 Information Divergence:-

The Formula for Information Divergence is the following. For each

malware and benign sample, the percentage of each Dll is calculated and then a value

of each Dll is compared with averages of both malware and benign samples.

• E(m,M) = p1*log(p1÷ ma1)+ p1*log(p2÷ ma2)+…. +

p8*log(p8÷ ma8)

46

• E(m,B) = p1*log(p1÷ ma1)+ p1*log(p2÷ ma2)+…. +

p8*log(p8÷ ma8)

• E(b,M) = p1*log(p1÷ ma1)+ p1*log(p2÷ ma2)+…. +

p8*log(p8÷ ma8)

• E(b,B) = p1*log(p1÷ ma1)+ p1*log(p2÷ ma2)+…. +

p8*log(p8÷ ma8)

.The Decision Criteria is the following

E(m,M) < E(m,B) || [(mApi - mAverage) && (mDllCount - mAverageCount)]

malware

E(b,M) < E(b,B) || [(bApi - bAverage) && (bDllCount - bAverageCount)]

malware

After applying the above approaches on our samples test set we found

the following detection rates for each approach

47

Figure 22 - Two Appraoches Percentages

 Malware Detection

Rate

Benign Detection

Rate

False

Positive

Euclidean Distance

92.2% 21.568% 78.432%

Information

Divergence

32.8% 84.34% 15.66%

Table 3 - Obtained Percentages of both the Approaches

48

The Above result is quite strange as the false positive rate is quite high

for Euclidean Distance and malware detection rate is quite low for information

divergence .So we decided to combine both the approaches and see the result .the

truth table that we developed based on the above results is given below .

Euclidean

Distance

Information

DIvergence

Output

B B B

B M B

B X B

M B B

M M M

M X M

Table 4 - Truth Table

XUndetectable

4.2.5 Explanation of Truth Table:-

As Euclidean Distance Declares almost everything as malware since is

detection rate and false positive both are high therefore whenever a situation arises

where Euclidean distance declares as M and information divergence as B, we have

given priority to Information Divergence so output is B.

The situation where Euclidean distance gives B and Information

Divergence M , the output is B since Euclidean distance declares B to very less

number of samples so we have given priority to Euclidean Distance.

There are situations where none of the selected Dll is used by some

executables then the result is declared as X (undetectable).

49

So there are only two situations where an executable is declared as

malware as shown in the above table.

4.2.6 Result After combining both the approaches

After combining both the approaches following is the given graph

Figure 23 -Result based on previous Truth Table

Now the results are quite encouraging but in order to further improve

the results we selected three more features to see if result would increase or not i.e.

size, timestamp, console based feature of malware and benign samples based on the

following criteria.

50

Figure 24 – Three Added Features

The graph for the occurrence of these features in our sample test set

for both benign and malware samples is given below:-

Figure 25 – Percentages of Other Features

Based on the above results the final detection criteria were made

which is explained in next section.

1. if (size < 200K) malware

2. Suspicious Timestamp i.e.

a. year 1970
b. future Year like 2022
c. No Creation Date at all

3. Console based Subsystem

51

4.3 FINAL DETECTION CRITERIA:-

Table 5- Final Truth Table

By applying the above decision criteria, the detection rate has

increased amazingly as shown follows:-

Approach 1 Approach 2 Size<200K || Suspicious Timestamp ||

Console based

Output

B B Yes M else B

B M Yes M else B

B X Yes M else B

M B Yes M else B

M M Yes M else B

M X Yes M else B

52

Figure 26 – Final Result

53

Chapter 5

CONCLUSION

Our research aimed at detecting malware based on the features that are

common in malware by analyzing and disassembling a software system in order

understand its design, components, and inner-workings. We began our investigation

by developing a program that dumps the structure of PE files which gives important

implementation information of an executable without having a source file. Our

research on malware and benign samples shows that reverse code engineering can be

used to better analyze malware and provide us with better techniques to protect

against them.

Figure 27 – Final Detection Rate

Malware Detection Rate = 96.8%

Benign Detection Rate = 100 %

False positive Rate = (0%)

54

malware\virus2\SVOHOST.exe,CloseHandle,CreateFileA,GetFileType,Get

SystemTime,GetFileSize,GetStdHandle,RaiseException,ReadFile,RtlUnw

ind,SetEndOfFile,SetFilePointer,UnhandledExceptionFilter,WriteFile

,CharNextA,ExitProcess,MessageBoxA,FreeLibrary,GetCommandLineA,Get

LastError,GetModuleFileNameA,GetStartupInfoA,RegCloseKey,RegOpenKe

yExA,RegQueryValueExA,GetCurrentThreadId,GetStartupInfoA,LocalAllo

c,LocalFree,VirtualAlloc,VirtualFree,InitializeCriticalSection,Ent

erCriticalSection,LeaveCriticalSection,DeleteCriticalSection,Local

Alloc,VirtualAlloc,VirtualFree,VirtualAlloc,VirtualAlloc,VirtualFr

ee,VirtualFree,VirtualAlloc,VirtualFree,InitializeCriticalSection,

EnterCriticalSection,LocalAlloc,LeaveCriticalSection,EnterCritical

Section,LocalFree,VirtualFree,LocalFree,LeaveCriticalSection,Delet

eCriticalSection,EnterCriticalSection,LeaveCriticalSection,EnterCr

iticalSection,LeaveCriticalSection,EnterCriticalSection,LeaveCriti

calSection,GetLastError,CharNextA,CharNextA,CharNextA,CharNextA,Ch

arNextA,CharNextA,CharNextA,CharNextA,CharNextA,GetModuleFileNameA

,GetCommandLineA,ReadFile,GetLastError,WriteFile,GetLastError,Clos

eHandle,GetLastError,CreateFileA,GetFileSize,SetFilePointer,ReadFi

Chapter 6

FUTURE RECOMMENDATIONS

Our Methodology leads to the investigation of another technique that

has a great research potential. Our program gives the percentage of each Dll used in

an executable by reading a binary code and following a decode sequence (that we

were able to find out in our research) through which the sequence of API calls can be

retrieved.

The sequence of API calls that we retrieved for a malware sample by

decoding its binary is shown below.

55

We could see that there can be a certain pattern in the sequence in

which the API functions are called both in malware and benign samples .Based on

these patterns that are distinct in malware a finite state machine can be developed to

detect malicious softwares. A finite state machine (FSM) is a model of behavior

composed of a finite number of states.

6.1 FINITE STATE MACHINE

e.g if we take the example of sequence of Api calls for accessing and modifying

registry keys both for malware and benign samples we can develope a mehtolody to

declare a file as malware or benign based on certain pattern as showm below

Figure 28 – Finite State Machine

56

REFERENCES

[1]- Steve R. White , (1998) , Open Problems in Computer Virus Research, Presented

at Virus Bulletin Conference, Munich, Germany.

[2]-Explanation of Malware,December 2006 <http://en.wikipedia.org/wiki/Malware>

[3]- Ronald B. Standler, (2002), Examples of Malicious Computer Programs ,

Decemeber 2006 <http://www.rbs2.com/cvirus.htm>

[4]- William Stallings , (4
th

 Edition), Cryptography and network security

Principles and Practices , Prentice Hall, 680

[5]- IBM Anti-Virus Research , Jan 2007

<http://www.research.ibm.com/antivirus/SciPapers.htm>

[6]- Dmitry Gryaznov, (2006), Malware in Popular Networks, McAfee AVERT,

Network Associates, Inc., Beaverton, OR 97006, USA

[7]- Arini Balakrishnan, Chloe Schulze , (December 19th, 2005), Code Obfuscation

Literature Survey ,University of Wisconsin, Madison

[8]- VMware, Inc. “VMware Workstation FAQs.”,March 2007

< http://www.sol-tec.com/wkstnfaqs.asp>

[9]- Lenny Zeltser , (May 2001), Reverse Engineering Malware,Global information

Assurance Certificate,USA

<www.zeltser.com>

[10]- VirusList.com All about Internet Security, Jan 2007

 http://www.viruslist.com/en/trends

[11]- Konstantin Rozinov Bell Labs, Reverse code engineering: an in depth analysis

of the bagle virus, government communication laboratory, internet research, systems

and software group

[12]- The Portable Executable File Format, March 2007

<http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile.html>

[13]- OllyDbg , March 2007 < http://www.ollydbg.de/ >

[14]-Download PE Explorer, March 2007

http://en.wikipedia.org/wiki/Malware
http://www.rbs2.com/cvirus.htm
http://www.research.ibm.com/antivirus/SciPapers.htm
http://www.viruslist.com/en/trends
http://www.csn.ul.ie/~caolan/publink/winresdump/winresdump/doc/pefile.html

57

< http://3d2f.com/programs/11-286-pe-explorer-download.shtml>

[15]- UltraEdit A Text Editor , April 2007

<http://en.wikipedia.org/wiki/UltraEdit>

http://3d2f.com/programs/11-286-pe-explorer-download.shtml

