
PREVENTING SQL INJECTION

By

Sumana Sattar

(2003-NUST-BIT-45)

A project report submitted in partial fulfillment of

the requirement for the degree of

Bachelors in Information Technology

In

NUST Institute of Information Technology

National University of Sciences and Technology

Rawalpindi, Pakistan

(2007)

 ii

CERTIFICATE

 It is certified that the contents and form of thesis entitled “Preventing

SQL Injection” submitted by Ms. Sumana Sattar has been found satisfactory for the

requirements of the degree.

Project Advisor:

Lecturer (Mr. Sheharzad Khattak)

 Co-Advisor:

Lecturer (Mr. Fuzan Mirza)

 Member:

Lecturer (Mr. Abdul Ghafoor)

Member:

Lecturer (Mam Sana Khalique)

 iii

DEDICATION

In the name of Allah, the Most Beneficent, the Most Merciful. I would like to dedicate

my work to my parents.

 iv

ACKNOWLEDGEMENTS

All praise to Allah Almighty Who has bestowed upon me a lot of His blessings

and made me capable of doing things which I never even thought of doing. I am deeply

beholden to my supervisor Sir Shahrzad Khattak for his continuous assistance,

encouragement, suggestions and guidance and without his valuable implications I would

not be able to complete this project. I also thank my co-advisor Fauzan Mirza and

committee members (Mam Sana and Sir Abdul Ghafoor) for being supportive. I would

like to thank all the teachers who have taught me throughout these four years of course. I

am thankful to NIIT Administration for helping me in administrative problems. In the end

I would like to thank my parents who have always encouraged me.

 v

TABLE OF CONTENTS

INTRODUCTION __ 1

1.1 MOTIVATION ... 2

1.2 PROBLEM STATEMENT ... 2

1.3 PROJECT SCOPE ... 2

1.4 PROJECT DOMAIN ... 2

1.5 SOFTWARE TOOLS ... 3

1.6 DELIVERABLES ... 4

1.7 TIME LINE ... 4

1.8 REPORT STRUCTURE ... 4

LITERATURE REVIEW ___ 6

2.1 WHAT IS SQL INJECTION? ... 6

2.2 WHAT‟S VULNERABLE .. 7

2.3 STATISTIC OF HACKING .. 7

2.6 TYPES OF SQL INJECTION ... 7

2.6.1 Authorization Bypass: .. 8

2.6.2 Insert .. 8

2.6.3 Using Stored Procedures .. 9

2.6.4 Select .. 10

2.7 TOOLS AND TECHNIQUES FOR PREVENTING SQL INJECTIONS 17

2.7.1 AUSELSQI Analysis and Design .. 17

2.7.2. AMNESIA Tool .. 18

2.7.3. PARSE TREE ... 21

METHODOLOGY ___ 23

ARCHITECTURE DIAGRAM .. 23

3.2 CLASS DIAGRAM .. 25

 vi

USE CASE DIAGRAM ... 26

IMPLEMENTATION ___ 28

4.1 DFD ... 28

TESTING __ 30

5.1 TESTING SQL PREVENTION FOR CONSOLE APPLICATION 30

5.2 TESTING SQL PREVENTION FOR WEB APPLICATION 32

CONCLUSION __ 37

REFRENCES ___ 38

 vii

LIST OF FIGURES

Figure -1.1 Database Threats and Vulnerabilities ... 3

Figure-1.2 Time lines .. 4

Figure-2.1 Main page of Pakistan largest search portal .. 11

Figure-2.2 login page of Pakistan largest search portal .. 12

Figure-2.3 home page of Adnank ... 12

Figure-2.4 Main page .. 13

Figure-2.5 Page to enter roll no to view the result .. 14

Figure-2.6 Result of Waqas Hussain .. 14

Figure-2.7 Another vulnerable website ... 15

Figure-2.8 .NET error messages ... 16

Figure-2.9 Data Flow diagram of the system.. 17

Figure-2.10 All possible out comes .. 19

Figure-2.11 High level architecture of Amnesia tool ... 20

Figure-12 parse tree without user input .. 21

Figure-2.12 with valid user input .. 22

Figure-2.13 with invalid user input ... 22

Figure-3.1 Architecture diagram ... 24

Figure-3.3 Use case diagram ... 27

Figure-4.1 Data Flow Diagram ... 28

Figure-4.2 Data Flow Diagram ... 29

Figure 5.1 SQL Injection attack .. 30

Figure-5.2 Preventing SQL injection .. 31

Figure-5.3 Query processed after validation from SQL prevention tool 31

Figure-5.4 Interface of web application .. 32

 viii

Figure-5.5 SQL injection attack on web application .. 34

Figure-5.6 – Preventing SQL injection on web application ... 35

Figure-5.7 Access granted after validation from SQL prevention tool 3

 ix

ABSTRACT

SQL injections are hacking techniques through which hackers gain unauthorized access

to the database. It has been declare as one of the most serious threat to web-base

application. Not only the web-base application but all the applications which have

dynamically generated SQL queries are vulnerable to SQL injections. SQL injections are

of many types it all depend upon the creativity of the hacker how he wants to attack the

database. But mainly it has been classified as four types: Select, Update, Authorization

bypass and Insert. Lot of research has been carried out and many solutions have been

proposed but all the solutions have some limitations. The best solution ever proposed is

parse tree technique. Parse Tree technique has been implemented in this project. The

basic concept behind the Parse Tree is that it dynamically generates two parse trees from

SQL query. One with user input and other without user input And compare at run time If

they are equal it will be consider as safe query and it will be allowed to access the

database. Otherwise it will be consider as an SQL injection attack and It will not further

be proceed.

1

Chapter 1

INTRODUCTION

SQL injection technique are use to exploit the web base application not only

web base application all the application that has a dynamic database at there back end

are vulnerable to such attacks. SQL injections are very easy to learn and master. SQL

injection is a hacking technique that allows hacker to enter the database. The hacker

can access, update and delete the records from the database. Hackers test for SQL

injection vulnerabilities by sending the application an invalid input that would cause

the server to generate an error message. Based on these error messages the hacker

will learn about the back end database and will make more attempt to learn more

about it. He will continue doing this until he has enough information to attack the

database. SQL injections are of many types. It all depends on the mind of the hacker

how creative he is. Mainly it is classified into four types: Insert, select, update and

authorization bypass.

Lot of research has been carried out and many solutions have been proposed

to prevent SQL injections but all the solutions have some limitations. The best

solution ever proposed is parse tree technique. In this project Parse Tree technique

has been used to prevent SQL injections. The basic concept behind the Parse Tree is

that it dynamically generates two parse trees from SQL query. One with user input

and other without user input And compare at run time If they are equal it will be

2

 2

consider as safe query and it will be allowed to access the database. Other wise it will

be consider as an SQL injection attack and it will not further be proceed.

1.1 MOTIVATION

SQL injections are very easy to learn and master. Lot of information related to

this issue is provided over the net and any one with little knowledge of SQL queries

and programming skills will be able to hack the websites. And once the hacker is able

to enter the database, he can modify, add, delete and access the contents of the

database .Most of the Pakistani developers are unaware of SQL injections. Therefore

most of the Pakistani websites are vulnerable to SQL injections. This is a very serious

issue, which needed to be solved. Lot of research has been carried out and lot of

solution has been proposed but with some limitations. Parse tree is the solution with

little limitation which has been implemented in this project.

1.2 PROBLEM STATEMENT

“Problem is to develop a system which prevent the SQL injection attack in

most efficient manner”

1.3 PROJECT SCOPE

My intention is to learn about SQL injections and use them to hack websites.

After that I shall attempt to provide web security against those attacks by using Parse

tree technique.

3

 3

1.4 PROJECT DOMAIN

Following are the method by which database can be hacked

1. Direct: In this method hacker gain direct access to desktop application. Here a

hacker is within the company or outsider who got the chance to sit on the system.

2. Indirect: In this method user could be anyone, anywhere he tries to access

database of the website by sitting anywhere in this world.

3. Platform: This is a generic attack e-g worms.

In this project I am trying to prevent indirect method i-e I m trying to secure

web base application from SQL injection that are using Oracle 9i at the back end.

Figure -1.1 Database Threats and Vulnerabilities

1.5 SOFTWARE TOOLS

Following are the tools and software used for my project

1. .NET

2. Oracle 9i

4

 4

3. Web server

4. Database server

1.6 DELIVERABLES

1 Web application

2 Attacks on database

3 Tool for preventing Attacks

4 Research paper

1.7 TIME LINE

Figure-1.2 Time lines

5

 5

1.8 REPORT STRUCTURE

This document will throw light on all the aspects of the project, the technique

being implemented, the existing techniques and the details of the developed tool. This

document has been divided in the following ways.

Chapter 2: Literature Review The second chapter will throw light on what are SQL

injections and how they can be prevented.

Chapter 3: Methodology: This chapter will highlight the architecture of the project

and will throw lights on the different modules that make up the tool.

Chapter 4: Implementation: In fourth chapter the detailed working of the proposed

technique will be discussed. This chapter will focus on the concepts related to

software engineering and the implementation details of the proposed solution.

Chapter 5: Testing. This chapter will highlight the techniques that were used in

order to test the proposed approach and its efficiency. This chapter explains the

testing of the implemented technique.

Chapter 6: Conclusion and References. This chapter summarizes the whole

document.

6

 6

Chapter 2

LITERATURE REVIEW

2.1 WHAT IS SQL INJECTION?

SQL injections are hacking techniques that are used by hacker to gain

unauthorized access to the database. The hacker is then free to extract, modify, add,

or delete records from the database. [1]

Hacker first tests the desire application for the vulnerabilities by giving

invalid input which in return will cause the server to generate an error message.

Though this error message the attacker will learn about the back end data. And will

make more attempts to learn more and more about the database. When he had enough

knowledge to attack the website he will try an SQL injection on the website. SQL

injections are of many types. It all depends on the mind of the hacker how creative he

is. Mainly it is classified into four types: Insert, select, store procedure and

authorization bypass.

7

 7

SQL injections are very easy to learn and master. Lot of information related to

this issue is provided over the net and any one with little knowledge of SQL queries

and programming skills will be able to hack the websites. And once the hacker is able

to enter the database, he can modify, add, delete and access the contents of the

database .Most of the Pakistani developers are unaware of SQL injections. Therefore

most of the Pakistani websites are vulnerable to SQL injections. This is a very serious

issue, which needed to be solved. Lot of research has been carried out and lot of

solution has been proposed but with some limitations. Parse tree is the solution with

little limitation which has been implemented in this project.[8]

2.2 WHAT‟S VULNERABLE

SQL injections can be made possible only because of the dynamic queries.

Because it is very difficult to validate the dynamically generated queries and hacker

take advantage of this and is able to view, modify the back end data. Now a day it is

becoming a very common practice. Because lot of information related to this issue is

present over the net.[2]

2.3 STATISTIC OF HACKING

Following are the statistics of hacking in year 2006 [3]

1. Cross Site Scripting (21.5%)

2. SQL Injection (14%)

3. PHP includes (9.5%)

8

 8

4. Buffer overflows (7.9%)

2.6 TYPES OF SQL INJECTION

Following are the type of SQL Injections [4]

 Authorization bypass

 INSERT

 Store Procedure

 SELECT

2.6.1 Authorization Bypass:

The simplest SQL injection technique is bypassing form-based logins. Let's say that

the web application‟s code is like this:

“SELECT Username FROM Users WHERE Username = ' " +Username + " '

AND Password = ' " + Password + " ' "

Enter following values in the text box

Login: ' OR ''='

Password: ' OR ''='

This will give SQLQuery the following value:

SELECT Username FROM Users WHERE Username = '' OR ''='' AND

Password = '' OR ''=''

This will make the statement true because empty is always equal to empty. And in

this way the user will by pass the login page.

9

 9

2.6.2 Insert

Normally an insert statement looks like this:

Insert into My_table Values („myvalue1‟, „myvalue2‟, „myvalue3‟);

instead of giving user name, email and phone no u enter the following values [7]

Name: „ + (SELECT TOP 1 value_fist from Mytable) + „

Email:my.email@whtever.com

Phone:12345566

The resulting SQL statement will be like this

INSERT INTO My_table values („ “ „ + (SELECT TOP 1 value_fist from Mytable) +

‟ „ , „my.email@whtever.com‟, „12345566 ‟)

 The result of this query will be the fist field from the table my table.

 2.6.3 Using Stored Procedures

Stored procedure were known for the prevention of SQL injection but now it is been

detected that stored procedures are still vulnerable to SQL injections. Lets take an

example.[5]

CREATE PROCEDURE dbo.table

 @my_name sysname

AS

10

 10

EXEC („CREATE TABLE „+@my_Name+‟(column_1 varchar(20),column_2 varchar

(20))‟);

GO

By looking at the above code it is obvious that what ever is entered in the

„my_name‟ will be appended in the create table. So instead of giving a valid input u

give the input given below.

„; SHUTDOWN WITH NOWAIT;--

What actually happens it will first close the brackets of the create table then „;‟

will end the create statement. And „SHUTDOWN WITH NOWAIT‟ will stop the

SQL server without waiting for any other request.

2.6.4 Select

Select statements are also vulnerable to SQL injections. This can be proved by

the following example.

my_query = “SELECT mycol1, mycol2, mycol3 WHERE ISBN = „ ” +user_input+ “

„ ”

if we inject the following query

11

 11

„UNION ALL SELECT my_desire col WHERE „ ‟ = „ „

The resultant query will be

SELECT mycol1, mycol2, mycol3 WHERE ISBN = „ „„UNION ALL SELECT

my_desire col WHERE „ ‟ = „ „;

so will be able to view the my_deiser_col values.

2.7 EXAMPLES OF HACKED WEBSITES

 Following are the Pakistani websites which were found vulnerable to SQL

injections.

12

 12

1. The website shown in the figure 3 claim to be largest web portal and they are

vulnerable to SQL injections.

Figure-2.1 Main page of Pakistan largest search portal

If we enter the SQL injection in the login name and password field it be

allowed to go further and will be able to login as Adnank which is probably the first

record in the data base. Figure 4 shows the login page of Pakistan largest search

portal. And figure 5 shows the home page of Adnank.

13

 13

Figure-2.2 login page of Pakistan largest search

portal

Hello, Adnank

Figure-2.3 home page of Adnank

2. Figure 6 shows another web site which is vulnerable to SQL injections. Here

students can view there results of FSc and matric.

14

 14

Figure-2.4 Main page

Figure 7 shows the page where students can enter the role number to view the

result. Instead of giving a roll SQL injection was entered and I was able to view the

result of Waqas Hussain as shown in the Figure 8.

15

 15

Figure-2.5 Page to enter roll no to view the result

Figure-2.6 Result of Waqas Hussain

16

 16

3. Figure 9 shows the website which is the most vulnerable website I have come

crossed.

Figure-2.7 Another vulnerable website

2.8 FINDINGS

Software‟s are now becoming aware of it. .NET 2006 do identify SQL

injections to some extend. If following query is at the back end.

17

 17

string CommandText ="select * from faculty where first_name=„ " +

TextBox1.Text + “ „ ";

If following query is entered, that is an SQL injection attack.

„;DELETE Login; <!==

Instead of going further it will be detected as an attack by .NET as shown in the

figure.

Figure-2.8 .NET error messages

18

 18

2.7 TOOLS AND TECHNIQUES FOR PREVENTING SQL

INJECTIONS

2.7.1 AUSELSQI Analysis and Design

 AUSELSQL before forwarding the HTTP request to the web server it first

intercepts the request as shown in the figure 3 .Following are the steps taken by

AUSELSQL tool:

Figure-2.9 Data Flow diagram of the system [6]

1. Receiver module: It takes HTTP request from the client, intercepts it and then

forwards it to the next step.

2. Header processing module: What it does, it takes input from the receiver

module extract the users input and then pass it to decoder module.

3. Decoder module: Here encoded characters are transformed to ASCCII.

19

 19

4. Decision module: Here decision making steps are taken place, this module

look for the suspicious characters. If any illegal input is found it will not let it

to proceed any further. But if it is legal, the client will be able to receive its

request.

Limitations:-

1. It makes the system really slow.

2. Very complicated.

3. As it is implemented with the help of ISAPI filters that can not read the POST

data. To read this data there is need to implement a method called

ReadRawData. This method is called at very beginning phase of the receiving

the request for the client. This will result the processing of the HTTP header

in the filter code instead of depending on the already implemented code in IIS.

This will result in double processing

 2.7.2. AMNESIA Tool

The basic concept behind the AMNESIA tool is:

 static analysis

 Runtime monitoring.

It consists of four main steps.

1. Identify hotspots

2. Build SQL-query models

3. Instrument Application

20

 20

4. Runtime monitoring

1 Identify hotspots: This step includes scanning of the whole application and

identifying the hotspots. Hotspots are those areas where there are dynamic queries

and they are vulnerable to SQL injections.

2 Build SQL-query models: Once all the hotspots are determined now in this step all

possible quires will be generated as shown in the figure-4 and will be stored in the

database.

Figure-2.10 All possible out comes [9]

3 Instrument Application: Now at each hotspot call a function for runtime

monitoring.

4 Runtime monitoring: In this step when ever dynamic query is called this Amnesia

tool is called at run time then it check whether the query is legal or illegal by

comparing it with the queries generated by SQL query model.

21

 21

Figure-2.11 High level architecture of Amnesia tool [9]

 Limitations:-

1. This is not realistic and difficult to achieve in big websites where a team of

programmers collaborate in the website development.

2. Static analysis cannot determine the exact query at compile time.

3. It is a data intensive tool.

22

 22

2.7.3. Parse Tree

In this method it will built two parse trees one with user input and the other without

user input. Then compare the two parse tree for valid and invalid input. If it is valid

then it will be precede further other wise it will not be proceed. Let‟s take an example

We have a query Select * from users where username=? AND password=?

The figure-6 presents the parse tree without user input of the above query. Now when

a user gives value to the SQL statement it will be validated by first making a parse

tree as shown in the figure 7 & 8 then comparing it with the parse tree without user

input. [10]

Figure-12 parse tree without user input

23

 23

Figure-2.12 with valid user input

Figure-2.13 with invalid user input

Limitations

1. Time load is high but its performance is far better then amnesia or any other

tool.

2. Doesn‟t work efficiently when string is long and complicated.

24

 24

Chapter 3

METHODOLOGY

To prevent SQL injections, parse tree technique was implemented. It was

deployed on the website as web service, dll file and as a function call.

First identify all the dynamically generated queries on the website because

these queries are potentially vulnerable to SQL injections. After that init() function is

called on that query. Init function generates an encrypted key for the current thread.

Then wrapper() function is called to wrap the input from the user. After wards classes

safe_connection‟s and safe_statement‟s , extended by connection and statements,

constructors are called. Where check() function of SQL_Guard are called. Here where

parse tree technique is implemented, it will identify whether the query is valid or

invalid, if it is valid then execute query function is called. Otherwise it will be

consider as an SQL injection and it will not be allow going further.

Architecture diagram

First a user will enter values in the field; the whole dynamic query will be

passed to the web server for the validity. Web server where there is implementation

of the parse tree. Where two parse trees are made one with user input and other

without user input. Both the trees will be compared if equal it will be consider as

25

 25

valid input other wise it will be consider as SQL injections and will not further be

proceeded Figure-9 shows the architecture diagram of my project.

Figure-3.1 Architecture diagram

26

 26

3.2 CLASS DIAGRAM

Figure-3.2 Class diagram

27

 27

Use Case diagram

Use case is a set of scenarios that describe an interaction between a user and a

system. A use case displays an interaction between actors and use cases.

An actor represents a user that will interact with the system. The use case diagram of

my project is shown below.

 <<Initiate>>

 SQL Injection Check

 <<Include>> <<Include>> <<Include>>

 Input Parameters Verification Output Verification Result

28

 28

Figure-3.3 Use case diagram

Use case Name

SQL Injection check

Participating actors User (hacker or any other user)

Flow of events 1. Input parameters

2. Verify whether the query is legal or an SQL

injection attack.

3. If query is legal it will be allowed to go further

if not it will not be allowed to gain access to the data

base.

4. Out put verification result

Entry Condition Input parameters

Exit Condition Output verification result

Includes Input Parameter, verification, output verification result

Extends _______

Table 1 Query use case flow of events

29

 29

Chapter 4

IMPLEMENTATION

4.1 DFD

Figure-4.1 Data Flow Diagram

30

 30

Figure-4.2 Data Flow Diagram

Explanation

The working flow of the system is that when a user enters the username and

password to gain access to a system, it is checked by the SQL Prevention tool for

SQL injection attacks. If the user enters the correct username and password, the user

is then validated and is allowed to interact with the system e.g. to view data, send &

receive email etc. If the user performs a SQL injection attack or enters an incorrect

username or password, the query processing fails and an error is generated which is

seen by the user as an invalid username or password message in the response

notification.

31

 31

Chapter 5

TESTING

This chapter tests the software tool that is developed to prevent SQL injection.

Firstly, the tool is tested on a console application to check its validity. Then it is

integrated into a web application to be tested for the prevention of SQL injection.

5.1 TESTING SQL PREVENTION FOR CONSOLE

APPLICATION

The tool to prevent SQL injection attacks was first tested on a simple console

application. In the figure below it is shown that without the tool being utilized in the

application, if a user appends a tautology after entering the username in the username

field, the password becomes irrelevant and the user has an access to the record of the

database. Even if the user enters an incorrect password, he can gain access to the

record in the database.

Figure 5.1 SQL Injection attack

As seen from the above figure, the database is susceptible to SQL injection attacks.

The user only enters the username along with an SQL injection tautology and gains

32

 32

access to the database. The actual password is „abc‟ which becomes irrelevant due to

SQL injection.

In order to prevent such attacks, the SQL prevention tool was developed. The

following figure shows that an exception is generated if the parse tree of the intended

input and the user input do no match.

Figure-5.2 Preventing SQL injection

So after integrating the SQL prevention tool with the application, the user can

only gain access to the record if he enters the username and password correctly as can

been from the figure below.

Figure-5.3 Query processed after validation from SQL prevention tool

33

 33

5.2 TESTING SQL PREVENTION FOR WEB APPLICATION

After the successful testing of the tool on the console application, it was then

integrated into a web application. A simple web application of logging in a user with

the correct username and password was developed. Figure 5.4 shows the interface of

the web application with two parts left part is where tool is not deployed and right

contain web service for the validity.

Figure-5.4 Interface of web application

34

 34

It can be seen from the figure below that without the SQL prevention tool

being integrated into the application, the user can gain access to the website through

an SQL injection attack.

35

 35

Figure-5.5 SQL injection attack on web application

After implementing the SQL prevention tool into the web application, the user

cannot enter the website through SQL injection attack as shown below.

36

 36

Figure-5.6 – Preventing SQL injection on web application

37

 37

A user can only gain access to the website if he enters a valid username and

password that is parsed by the SQL prevention tool and the SQL query is then

executed.

Figure-5.7 Access granted after validation from SQL prevention tool

38

 38

Chapter 6

CONCLUSION

SQL injections are hacking techniques which are used by hackers to gain

unauthorized access to database. The hacker takes advantage of common

programming blunders made by programmers. Actually when invalid input is entered

by hacker it is not validated first and is allowed to proceed further. Lot of

information is available over the net and any one can learn and master in this. It was

because of this reason that in 2006 it was declare as 2
nd

 biggest threat to web base

application. During this project I learn about SQL injections and checked different

websites for the vulnerabilities. And many websites were found vulnerable to SQL

injections. During this I came across a very interesting thing that now software‟s like

.NET 2006 are becoming aware of it. But they are not completely stopping the SQL

injections. Many solutions have been proposed to prevent SQL injections but with

some limitation. Parse, which is implemented in this project is the best solution for

the prevention of SQL injections. It is following a very simple rule. It makes a parse

tree without user input and parse tree with user input, compare both to check for

validity. If equal it will be considered as safe query and will be allowed to enter the

database otherwise it will not be allowed to gain access to the data base. Parse tree

has some limitations. It does not work efficiently for complicated SQL queries. I

deployed this tool on my website and then tried the SQL injections; it completely

prevents the SQL injections.

39

 39

REFRENCES

1. “Blind SQL Injection” , Dec,12 2006,

<http://www.securitydocs.com/library/2651>

2. “SQL Injection, are your web application vulnerable?”, Dec,13 2006,

<http://www.securitydocs.com/library/2656>

3. “SQLBlock: SQL Injection Protection by Variable Normalization of SQL

Statement”, Dec 14 2006, <http://www.securitydocs.com/library/3388>

4. “SQL Injection”, Feb 15 2007,

<www.imperva.com/application_defense_center/glossary/sql_injection.html>

5. “SQLInjectionWhitePaper”, Feb 16 2007,

<www.spidynamics.com/papers/SQLInjectionWhitePaper>

6. Maor Ofer, Shulman Amichai, “Blind Folded SQL injections”, RSA

Conference 2005.

7. “Blind_SQLInjection”, March 15 2007 ,

<www.spidynamics.com/whitepapers/Blind_SQLInjection>

8. “The myth of SQL Injections”, March 10 2007 ,

<http://searcsecurity.techtarget.com/tip/0,289483,sid14_gci1193902,00.html>

9. William G.J. Halfond, Alessandro Orso, “Preventing SQL Injections using

AMNESIA” ,International Conference on Software Engineering – ICSE

10. Gregory T. Buehrer, Bruce W. Weide, Paolo A. G. Sivilott, “Using Parse Tree

Validation to Prevent SQL Injection Attacks”, ACM Conference, Columbus

2005.

http://www.securitydocs.com/library/2651
http://www.securitydocs.com/library/2656
http://www.securitydocs.com/library/3388
http://www.imperva.com/application_defense_center/glossary/sql_injection.html
http://www.spidynamics.com/papers/SQLInjectionWhitePaper
http://www.spidynamics.com/whitepapers/Blind_SQLInjection
http://searcsecurity.techtarget.com/tip/0,289483,sid14_gci1193902,00.html

