
 

 

MODELING AND CONTROL OF 5DOF 

ROBOTIC ARM USING NEURO-FUZZY 

CONTROLLER 
 

 

 

 
 

 

by 

 

ABDUL WAHAB NADEEM BUTT 
NUST201260407MSMME62112F 

 

 

A thesis submitted to the 

Department of Robotics and Intelligent Machine Engineering 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

IN 

ROBOTICS AND INTELLIGENT MACHINE ENGINEERING 

 

 

 

Thesis Supervisor 

DR. MOHSIN JAMIL 

 

 

 

School of Mechanical and Manufacturing Engineering 

National University of Science and Technology 

Islamabad 

2015



i 

 

MODELING AND CONTROL OF 5DOF 

ROBOTIC ARM USING NEURO-FUZZY 

CONTROLLER 
 

 

 

 
 

 

by 

 

ABDUL WAHAB NADEEM BUTT 
NUST201260407MSMME62112F 

 

 

A thesis submitted to the 

Department of Robotics and Intelligent Machine Engineering 

in partial fulfillment of the requirements for the degree of 

 

MASTER OF SCIENCE 

IN 

ROBOTICS AND INTELLIGENT MACHINE ENGINEERING 

 

 

 

Thesis Supervisor 

DR. MOHSIN JAMIL 

 

 

 

School of Mechanical and Manufacturing Engineering 

National University of Science and Technology 

Islamabad 

2015 



ii 

 

FORM TH-4 

National University of Sciences & Technology 

MASTER THESIS WORK 

We hereby recommend that the dissertation prepared under our supervision by: Abdul 

Wahab Nadeem Butt, Reg. No. NUST201260407MSMME62112F  Titled: 

Modeling and Control of 5DOF Robotic Arm using Neuro-Fuzzy Controller be 

accepted in partial fulfillment of the requirements for the award of MS in Robotics and 

Intelligent Machine Engineering degree with (grade) 

Examination Committee Members 

   

1. Name: _________________________ Signature: _______________ 

   

2. Name: _________________________ Signature: _______________ 

   

3. Name: _________________________ Signature: _______________ 

   

Co-Supervisor’s name: _________________ Signature: _______________ 

  

Supervisor’s name: ____________________ Signature: _______________ 

 

Date: ___________________ 

 

 

       ___________ 

Head of Department   

 

 

____________ 

Date 

 

 

COUNTERSINGED  

 

 

 

Date:__________ 

 

 

 

 

_____________ 

Dean/Principal 



iii 

 

  

To my parents, 

for their boundless care and support 

 

To my wife, 

for keeping my spirit alive 

 

To my exuberant and curious son 

for being a source of enchantment and aspiration 

 

& 

To my friends 

for their never ending encouragement 



iv 

 

ACKNOWLEDGEMENTS 

Al-Hamdulillah. 

I would like to express my sincere gratitude to my thesis supervisor Dr. Mohsin Jamil 

for his support, help and guidance throughout the course of this work and my studies.  

I am highly obliged to my Guidance and Examination Committee members; Dr. Shahid 

Ikramullah Butt, Dr. Syed Omer Gilani, and Dr. Umar Ansari for their sincere guidance 

and cooperation. 

I would like to thank department of Robotics and Intelligent Machine Engineering and 

the head of the Department Dr. Yasar Ayaz, for facilitating me to complete my MS 

degree. 

I am especially grateful to my dearest friend, Adnan Hanif for all of his assistance, 

advice and encouragement during this work. I am also grateful for my colleagues at 

Mohammad Ali Jinnah University for being a delight to be around. 

I would like to thank my family for their love and support throughout my life. 

Special thanks to those who motivated and encouraged me to pursue higher studies. 

  



v 

 

DECLARATION 

I hereby declare that this thesis is entirely and purely my own work and based on my 

personal efforts and intellect under the guidance and supervision of my thesis 

supervisor 

Dr. Mohsin Jamil 

All the sources used in this thesis are properly cited and no portion of this thesis is an 

act of plagiarism. This work is purely done for the fulfillment of requirements for 

aforementioned degree in respective department. No part of this thesis is submitted for 

any other application for any degree or qualification in this or any other university, 

degree awarding or non-degree awarding college or institute. 

COPY RIGHT STATEMENT 

• Copyright in a test of this thesis rests with the student author. Copies (by any 

process) either in full, or of extracts, may be only in accordance with the instructions 

given by author and lodged in the Library of SMME, NUST. Details may be obtained 

by the librarian. This page must be part of any such copies made. Further copies (by 

any process) of copies made in accordance with such instructions may not be made 

without the permission (in writing) of the author. 

• The ownership of any intellectual property rights which may be described in 

this thesis is vested in SMME, NUST, subject to any prior agreement to the contrary, 

and may not be made available for use by third parties without the written permission 

of SMME, NUST which will describe the terms and conditions of any such agreement. 

• Further information on the conditions under which disclosure and exploitation 

may take place is available from the library of SMME, NUST, and Islamabad. 

  



vi 

 

ABSTRACT 

Robotic Arms are considered essential components of any automation system. They 

present considerably complicated electromechanical systems with mutual interactions 

of robot mechanics and drives, at design of which the mechatronic approach should be 

taken into consideration.  

The modeling problem is necessary before applying control techniques to guarantee the 

execution of any task according to a desired input with minimum error. The physical 

modeling in the SimMechanics / SIMULINK environment facilitates simulation efforts 

of such complex systems by seamless interfacing of ordinary Simulink block diagrams. 

This is not only more intuitive, it also saves the time and effort in deriving the equations 

of motion. Problem of Inverse Kinematics (IK) is solved using a machine learning 

technique i.e. Adaptive Neuro-Fuzzy Inference System (ANFIS) in contrast with the 

analytical solution. MATLAB, Simulink, SimMechanics and SolidWorks are used as 

simulation platform. 

This research will undertake the following five developmental stages; firstly, the 

complete computer-aided design (CAD) model of a 5 DOF robotic arm is developed in 

SolidWorks. In the second stage, the CAD model is to be converted into physical 

modeling by using SimMechanics Link. Then, the ANFIS networks are trained to 

compute the inverse kinematics of the robot arm. In the fourth stage, the research 

intends to perform the simulation in which, the trajectory tracking of robot 

manipulator’s end effector is considered as a test scenario. In last stage, the performance 

parameters of implemented technique are studied i.e., residual plots, convergence plots, 

comparison between the predicted results and analytical solution, analysis of trajectory 

and dynamics of robotic arm, joint torque computation through SimMechanics. 
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Chapter 1 

Introduction 

In recent years, the industrial automation and computer-aided manufacturing (CAM) 

has been revolutionized by the deployment of sophisticated robot arms / manipulators. 

It is now a norm to see robot manipulators being used for welding, painting, fabricating, 

inspecting and repairing different machines and components. This rapid integration of 

robotic arms into wide variety of industrial environments and other commercial 

activities is due to their high accuracy, speed and cost effectiveness. For their swift and 

seamless operation, modeling and analysis of robot manipulators and applying 

intelligent control techniques are very important aspects in robotics field of study. 

Functionality and performance of manipulators can be further enhanced by introducing 

advanced machine learning methodologies such as neural networks, fuzzy logic and 

hybrid neuro-fuzzy techniques. This combination is regarded as Intelligent Systems 

which is great source of inspiration and motivation for engineers in design field. 

1.1 System Overview 

Mechanical structure is considered as a key distinction between different robot types. 

Robots with fixed base are classified as robot manipulators. The fundamental structure 

of a manipulator is the serial or open kinematic chain. A manipulator is a sequence of 

rigid bodies called links attached to each other by means of articulations (joints). In an 

open chain mechanism, each joint accounts for a single degree of freedom (DOF) of the 

structure. The joints can be of two types: revolute (rotary motion) and prismatic (linear 

motion). Any manipulator can be characterized by its three main components: an arm 

that defines mobility, a wrist that warrants its dexterity, and an end-effector that 

performs the desired task required of the robot.  

The robotic arm studied in this thesis is a five DOF articulated type [1] manipulator 

comprising of revolute joints. Dagu 5-DOF robotic arm [2] is selected as a case study, 

since it presents a simple inexpensive and a good example of robot manipulator which 
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is suitable for educational purposes. Figure 1 shows the schematic diagram of Dagu 

robotic arm with five DOF. 

 

Figure 1: Schematics of 5DOF Robotic Arm with Revolute Joints 

1.2 Problem Statement 

Study of robotic arms is relatively a young field of multidisciplinary technology. Robot 

arm is considered as a complex electromechanical systems which involves interactions 

between robot mechanics and electric drives [3] and requires knowledge from the 

domains of electrical, mechanical and computer engineering. So a mechatronic 

approach is required to be taken into consideration for the design and control of such 

complicated system. The essential problem in controlling robots is to make the 

manipulator follow a desired trajectory. In general, number of degree of freedom (DOF) 

of a robot manipulator is equivalent to number of nonlinear, dynamic, coupled 

differential equations [1]. When designing the control of manipulator, complete 

mathematical model is required to compute necessary torques and angle of rotation of 

each motor is to move the end effector of robotic arm on a desired trajectory. Although, 

accurate mathematical models exist to solve this inverse dynamics task for simpler 

robotic systems with fewer DOF, but in general, these analytical models gets more 

elusive to provide a unique solution with increasing number of DOF. Thus, researchers 

look for intelligent learning techniques as an alternate to solve the problem of robot 

dynamics. Neural networks and fuzzy systems [4] (neuro-fuzzy systems, in general) are 

raising more and more interest in the field of real-time control thanks to their superior 

performance, non-linear characteristics, the capability of learning from examples, the 

adaptation capability, etc.  
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1.3 Thesis Objective 

The main objective of this thesis is to solve the inverse kinematics problem of a five 

DOF robotic arm using adaptive neuro fuzzy inference system (ANFIS) [5]. Following 

points summarize the objective of this thesis work: 

 To develop a 3D CAD model of robotic arm in SolidWorks® 

 To represent the robotic arm in SimMechanics™ simulation environment as a 

multibody system 

 To derive a complete mathematical model for the forward kinematics and 

inverse kinematics of robotic arm 

 To develop mathematical model of motor actuators for different joints of robotic 

arm in both time domain and frequency domain.  

 To generate a desired end-effector’s trajectory by applying path planning 

algorithm. 

 To implement ANFIS for predicting the inverse kinematics of robotic arm 

moving on a desired trajectory 

 To simulate the dynamic behavior of robotic arm along with actuator motors in 

SimMechanics™ for calculating the velocity kinematics and joint torques. 

 To apply PID based classical control technique to track the movement of the 

end-effector on desired trajectory 

1.4 Thesis Outline 

This thesis is comprised of seven chapters containing introduction, literature review, 

computer aided design, forward and inverse kinematics mathematical modeling, 

adaptive neuro-fuzzy inference system, simulation and results, conclusion and future 

work followed by the references and MATLAB scripts. A brief description of each 

chapter is as followed: 

Chapter 1 provides the basic introduction, system overview and problem statement of 

the thesis. 

In Chapter 2, literature review relevant to the research conducted in this thesis is 

discussed. An effort has been made to gather as much relevant information as possible, 

with the available resources, to comprehensively present the work done in the field of 
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forward and inverse kinematics for serial manipulators and application of adaptive 

learning algorithms. 

Chapter 3 is dedicated to the computer aided modeling of Dagu 5-DOF robotic arm 

using SolidWorks® CAD software. The importing process of CAD model into 

SimMechanics explorer and different aspects of SimMechanics environment are also 

briefly discussed here. 

Chapter 4 describes the mathematics of robotic manipulators and formulation of 

forward and inverse kinematics. It highlights the role of Denavit-Hartenberg parameters 

in mathematical modeling of robotic arm and explains the mechanics of mapping the 

joint space into Cartesian space and vice-versa. 

Chapter 5 discuss the adaptive neuro-fuzzy inference system methodology and steps 

involved in developing the ANFIS networks to tackle the problem of inverse kinematics 

in serial manipulators the multiple DOF. The important aspects of ANFIS 

implementation like, generating the data samples, training and testing of ANFIS 

networks and rule base deduction are also the part of this chapter. The residual / error 

plots and test results comparison are also integrated into this chapter.  

Simulations carried out and the subsequent results are presented in Chapter 6. Complete 

Simulink model along with its subsystems, and their integration with SimMechanics 

model, required to carry out the necessary simulations are presented here. Trajectory 

tracking functionality has also been evaluated to get the idea in a broader sense. 

The thesis is finally concluded in Chapter 7 with future recommendations and 

references. 
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Chapter 2 

Literature Review 

Industrial robots usually have simplified geometric parameters such as intersecting or 

parallel joints to reduce kinematic computations.[6], [7] Obtaining the forward and 

inverse kinematics of the industrial robots like Puma 560, Motoman L-3, Kuka KR 

robot and SCARA manipulators has been the main concern in field of robotics [8]–[15]. 

Particularly for the inverse kinematics, the complexity of the solution escalates with 

increasing robot’s degree of freedom. 

Traditional methods for computing the inverse kinematics have certain drawbacks. It is 

very difficult to find a closed form solution for algebraic method [16], in case of robot 

manipulator with DOF greater than three, geometric method [17] puts the constraint 

that the manipulator must have a geometric closed form solution for the first three 

joints, while the iterative method [18] converges to a particular solution depending on 

the starting conditions and fails to work near singularities. In general these methods 

turn to be numerically complex and cumbersome. 

To overcome the difficulties and complexities of explicit mathematical modeling for 

robot kinematics, in recent years the focus has been shifted towards more ingenious 

techniques like adaptive neuro-fuzzy inference system[19]. [20]–[26] addresses the 

kinematics of robotic manipulators having three or less DOF using learning techniques 

like neural networks, fuzzy logic and ANFIS. For industrial robots with our degree of 

freedoms, like SCARA, neural network approach is opted in [27] while the neuro-fuzzy 

methodology is used in [28], [29]. Kinematics of Puma 560 and its other variants has 

been solved using neuro-fuzzy inference in [30], [31]. 

A large amount of research literature available online that discusses the kinematics 

analysis of industrial and high-end robots. But the same is not the case for the low cost, 

educational robots, like Dagu 5-DOF, which presents a huge opportunity for the young 

researchers to explore their kinematics, dynamics and analyze their behavior. Some of 

these low cost robots have also been subjected to various adaptive learning techniques 

as presented in [32], [33], but the literature is not rich enough. 
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SimMechanics and Simulink facilitates the dynamic simulation of robotic manipulators 

and reduces the mathematical modeling and computation significantly. These software 

environments are also being deployed for model validation and performance 

evaluations [34]–[37]. But with each upgraded version of the software every year, the 

capabilities of performing forward and inverse kinematics and dynamic analysis of 

robot manipulators are enhancing. So this requires much of the deserved attention and 

further advancement in research and development. For the sole purpose of highlighting 

these capabilities, SimMechanics and Simulink is integrated in the core architecture of 

this thesis.  
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Chapter 3 

Computer Aided Design 

3.1 CAD Model 

The basic CAD model based on Dagu 5-DOF robotic arm is drawn in SolidWorks®. 

The SolidWorks® CAD software is a mechanical design automation application which 

uses component based 3D design approach [38]. Each link is modeled separately as part 

file and then assembled into a complete model. Figure 2 shows the assembled model of 

robotic arm in CAD platform. The fully dimensioned, detailed drawing of robotic arm 

is given in Appendix A. 

 

Figure 2: Assembled CAD model of Robotic Arm 
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3.2 SimMechanics Model 

3.2.1 Introduction 

Simulink® with SimMechanics™ software uses a block-diagram schematic approach for 

modeling control systems around mechanical devices. SimMechanics is a multibody 

simulation environment for 3D mechanical systems, such as robots, mechanisms and 

vehicle components. The multibody system in SimMechanics is modeled using blocks 

representing bodies, joints, constraints, and force elements. SimMechanics then 

formulates and solves the equations of motion for the modeled system. Models from 

CAD systems, including mass, inertia, joint, constraint, and 3D geometry, can be 

imported into SimMechanics. An automatically generated 3D animation helps to 

visualize the system dynamics [39]. 

3.2.2 CAD Import 

CAD assembly can be translated into SimMechanics model (as shown in Figure 3) for 

simulation and analysis using SimMechanics Link which automatically bridges the gap 

between geometric modeling and block diagram modeling. CAD assembly is converted 

into SimMechanics model in two steps: 

i. Exporting CAD assemblies into physical modeling XML 

ii. Importing physical modeling XML to generate SimMechanics models 

 

Figure 3: CAD to SimMechanics Translation 

The first translation step creates an intermediate physical modeling XML file from 

CAD assembly. The XML file captures the mass and inertia of each part in the assembly 

and the constraint definitions between parts. The graphics files capture the body 

geometries of the assembly parts. The second translation step imports the XML to 

generate the SimMechanics model. The XML representations of parts and constraints 

become bodies and joints in a SimMechanics model. 
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3.2.3 Multibody Model of Robotic Arm 

 

Figure 4 shows the block diagram of 5 DOF robotic arm as multibody system. This 

model contains rigid body subsystem blocks to represent robot base, links and gripper. 

The model also contains six revolute joint blocks for actuation, a world frame that 

provides reference for all other rigid transform blocks. A mechanism configuration 

defines the gravity vector in the model. A transform sensor is attached with the robotic 

arm kinematic chain to observe the position and orientation of end-effector in world 

coordinate system. 

 

Figure 4: SimMechanics Model of 5 DOF Robotic Arm 

Each rigid body subsystem contains solid element blocks which store geometrical, 

inertial and graphical information of rigid bodies and their spatial relationship as shown 

in Figure 5 for a particular link of robotic arm. 
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Figure 5: Rigid Body Subsystem 

The SimMechanics Explorer automatically creates the 3D visualization model and 

animates the results from multiple views simultaneously during simulations. The 

completely rendered model of Dagu 5-DOF robotic arm in SimMechanics Explorer 

environment is shown in Figure 6. 
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Figure 6: Multibody Model of Robotic Arm Displayed in 3D Animation in 

SimMechanics Explorer  
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Chapter 4 

Kinematics and Modeling 

4.1 Kinematics 

Kinematics is the study of motion of a body without taking into account the dynamics 

i.e. forces and moments that cause the motion. Basically, it is the study of position, 

velocity and acceleration and other higher order derivatives of position with respect to 

time or any other variables [40]. The problem is further divided into two parts:  forward 

kinematics and inverse kinematics.  

4.2 Forward Kinematics 

Forward kinematics problem is to determine the position and orientation of the 

manipulator’s end-effector (with reference to a fixed base) in Cartesian space while 

knowing the values of different joint variables. Robot manipulators are meant to move 

parts and tools around in space which naturally leads to representing the location of 

parts, tools and robot mechanism itself. For the purpose of mathematically representing 

the location of these items, coordinate frames are assigned to these bodies and mapping 

of these coordinate frames is established with reference to one another. So the forward 

kinematics problem can be rephrased as to determine a transformation function that 

maps the frame attached to one link in terms of the frame attached to another link. Then 

these transformation functions are concatenated to solve for the position and orientation 

of last frame with respect to fixed world (reference) frame.  

4.2.1 Link-Frame Assignment 

A manipulator is a set of links connected in a serial chain by means of joints. The links 

are numbered as ‘link 0’ to ‘link n’ starting from the fixed base to the free end of a 

robotic arm. While the joints are numbered from ‘joint 1’ to joint n’ for ‘n’ degree of 

freedom robotic arm. Figure 7 shows different links and joints of Dagu 5-DOF robotic 

arm. In manipulator’s terms, kinematics establish the relationship of these joint 

variables with the location (position and orientation) of these links. 
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(a) Isometric View of Dagu 5-DOF 

 

(b) Side View of Dagu 5-DOF 

Figure 7: Links and Joints of Robot Manipulator (a) Isometric View (b) Side View 

In order to describe the location of each link relative to its neighbours, reference frames 

are attached with various parts of the mechanism and their change in location is studied 
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as the mechanism actuates. The link frames are named by number according to the link 

to which they are attached. That is, frame {𝑖} is attached rigidly to link i. Figure 8 shows 

the frame assignment of Dagu 5-DOF robotic arm. 

 

Figure 8: Robotic Arm Frame Assignment 

4.2.2 Frame Transformation 

A general tool to mathematically represent the description of one frame with respect to 

another frame is known as Homogeneous Transform. It is a 4x4 matrix which contains 

the position and orientation information of the frames. The description of frame {𝐵} 

with respect to frame {𝐴} is expressed as: 

𝑇𝐵
𝐴 = [

𝑅𝐵
𝐴

0 0 0
 |

𝑃𝐵𝑂𝑅𝐺
𝐴

1
]                                            (4.1) 

Where, 𝑻𝑩
𝑨  is a 4x4 homogeneous transformation matrix 𝑹𝑩

𝑨  is a 3x3 rotation matrix, 

which describes the orientation of frame {𝐵} relative to frame {𝐴} and 𝑷𝑩𝑶𝑹𝑮
𝑨  is a 3x1 

position vector, which locates the origin of frame {𝐵} in frame {𝐴}. 
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4.2.3 Denavit—Hartenberg Parameters 

Four parameters known as Denavit—Hartenberg (DH) parameters [41] are 

associated to each link to fully define the kinematics of any robot manipulator. Using 

conventions defined in [40] for assigning frames to links, the modified DH parameters 

are defined as: 

Link twist: 𝑎𝑖 = the distance from �̂�𝑖 to �̂�𝑖+1 measured along �̂�𝑖 

Link length: 𝛼𝑖 = the angle from �̂�𝑖 to �̂�𝑖+1 measured about �̂�𝑖 

Link offset: 𝑑𝑖 = the distance from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖 

Joint angle: 𝜃𝑖 = the distance from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖 

The DH parameters for Dagu 5-DOF robotic arm using the frame assignments as shown 

in Figure 8 are listed below in Table 1. 

Table 1: DH Parameters for Dagu 5-DOF Robotic Arm 

i αi-1 ai-1 di θi 

1 0 0 d1 = 93mm θ1 

2 90° 0 0 θ2 

3 0 a2 = 80mm 0 θ3 

4 0 a3 = 81mm 0 θ4 

5 90° 0 d5 = 195mm θ5 

The transformation matrix 𝑻𝒊
𝒊−𝟏  that describes the frame {𝑖} relative to frame {𝑖 − 1} 

can be defined in terms of four above mentioned DH parameters as 

𝑇𝑖
𝑖−1 = 𝑅𝑋(𝛼𝑖−1)𝐷𝑋(𝑎𝑖−1)𝑅𝑍(𝜃𝑖)𝐷𝑍(𝑑𝑖)                                (4.2) 

Where, 

𝑅𝑋(𝛼𝑖−1) = [

1 0 0 0
0 𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 0
0 𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 0
0 0 0 1

]                                 (4.3) 
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𝐷𝑋(𝑎𝑖−1) = [

1 0 0 𝑎𝑖−1

0 1 0 0
0 0 1 0
0 0 0 1

]                                        (4.4) 

𝑅𝑍(𝜃𝑖) = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 1 0
0 0 0 1

]                                        (4.5) 

𝐷𝑍(𝑑𝑖) = [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

]                                            (4.6) 

Here, 𝑐𝜃𝑖 is shorthand for cos 𝜃𝑖, 𝑠𝜃𝑖 for sin 𝜃𝑖 and so on. This shows that the 

transformation matrix 𝑇𝑖
𝑖−1  is a product of four sub-transforms. Where each sub-

transform matrix is function of one link parameter only. Multiplying out each of these 

transforms in Equation (4.2) to obtain the general form of 𝑇𝑖
𝑖−1 : 

𝑇𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1

𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑐𝜃𝑖𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑠𝛼𝑖−1𝑑𝑖

𝑠𝜃𝑖𝑠𝛼𝑖−1 𝑐𝜃𝑖𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑐𝛼𝑖−1𝑑𝑖

0 0 0 1

]                   (4.7) 

Once the individual link-transformation matrices have been computed using the DH 

parameters, the forward kinematic equations of the robot manipulator is 

straightforward. These link transformations matrices are then multiplied to each other 

to find the final transformation matrix 𝑇𝑁
0 , that relates the position and orientation of 

the end effector’s frame {𝑁} with respect to the fixed frame or base frame {0}: 

𝑇𝑁
0 = 𝑇1

0 𝑇2
1 … 𝑇𝑁

𝑁−1                                                    (4.8) 

 The final transformation matrix 𝑇𝑁
0  is function of all n joint variables. For Dagu 5-DOF 

robotic arm, the individual link transformation matrices are computed using Equation 

(4.7) and Table 1, as follows: 

𝑇1
0 = [

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 𝑑1

0 0 0 1

]                                             (4.9) 
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𝑇2
1 = [

𝑐2 −𝑠2 0 0
0 0 −1 0
𝑠2 𝑐2 0 0
0 0 0 1

]                                          (4.10) 

𝑇3
2 = [

𝑐3 −𝑠3 0 𝑎2

𝑠3 𝑐3 0 0
0 0 1 0
0 0 0 1

]                                          (4.11) 

𝑇4
3 = [

𝑐4 −𝑠4 0 𝑎3

𝑠4 𝑐4 0 0
0 0 1 0
0 0 0 1

]                                          (4.12) 

𝑇5
4 = [

𝑐5 −𝑠5 0 0
0 0 −1 −𝑑5

𝑠5 𝑐5 0 0
0 0 0 1

]                                       (4.13) 

Here, 𝑐1 is shorthand for cos(𝜃1), 𝑠1 for sin(𝜃1) and so on.Using Equation (4.8), the 

link transformations above are multiplied to find the final transformation matrix that 

relates the frame {5} of end-effector to fixed base frame {0} of the robotic arm: 

𝑇5
0 = 𝑇(𝜃1)1

0 𝑇(𝜃2)2
1 𝑇(𝜃3)3

2 𝑇(𝜃4)4
3 𝑇(𝜃5)5

4 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥

𝑟21 𝑟22 𝑟23 𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧

0 0 0 1

]     (4.14) 

Equation (4.14) consists mainly of two components: a 3x3 rotation matrix which 

determines the orientation of the end-effector relative to the base and a 3x1 

displacement vector which defines the position of end-effector relative to the base: 

𝑅5
0 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

]                                             (4.15) 

and 

𝑃5
0 = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

]                                                      (4.16) 

here, 

𝑟11 = 𝑐1𝑐234𝑐5 + 𝑠1𝑠5 

𝑟12 = −𝑐1𝑐234𝑠5 + 𝑠1𝑐5 
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𝑟13 = 𝑐1𝑠234 

𝑟21 = 𝑠1𝑐234𝑐5 − 𝑐1𝑠5 

𝑟22 = −𝑠1𝑐234𝑠5 − 𝑐1𝑐5 

𝑟23 = 𝑠1𝑠234 

𝑟31 = 𝑠234𝑐5 

𝑟32 = −𝑠234𝑠5 

𝑟33 = −𝑐234 

𝑝𝑥 = (𝑎2𝑐2 + 𝑎3𝑐23 + 𝑑5𝑠234)𝑐1 

𝑝𝑦 = (𝑎2𝑐2 + 𝑎3𝑐23 + 𝑑5𝑠234)𝑠1 

𝑝𝑧 = 𝑑1 + 𝑎2𝑠2 + 𝑎3𝑠23 − 𝑑5𝑐234                                   (4.17) 

Where, 𝑐23 is shorthand for cos(𝜃2 + 𝜃3), 𝑠234 for sin(𝜃2 + 𝜃3 + 𝜃4) and so on. These 

are the basic equations for all kinematic analysis of Dagu 5-DOF robotic arm. 

4.3 Inverse Kinematics 

Inverse kinematics problem is to determine the set of joint angles in order to achieve a 

desired position and orientation of the manipulator’s end-effector (with reference to a 

fixed base) in Cartesian space. The inverse kinematics problem can be interpreted as 

computing joint space description of the robotic arm with knowledge of the Cartesian 

space description of its end-effector as shown in Figure 9. The inverse kinematic 

solution of a manipulator is a more difficult due to its non-linear and transcendental 

nature. 
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Figure 9: Kinematic Loop 

For Dagu 5-DOF robotic arm this IK problem is to solve for the five joint angles 𝜃1 to 

𝜃5 for given set of numerical values of all sixteen elements of the final transformation 

matrix 𝑇5
0  in Equation (4.14). Normally, there is no unique analytical solution to a 

particular goal location for a robotic arm with five DOF. The number of solutions 

depends on the number of joint variables, link parameters (𝑎𝑖 , 𝛼𝑖−1, 𝑑𝑖 and 𝜃𝑖) and the 

allowable range ranges of motion of the joints. The allowable ranges of various joints 

of Dagu 5-DOF are discussed in Table 2 below: 

Table 2: Robotic Arm Joint Limits 

Joint Joint Limits (radians) 

1 
−

3𝜋

4
≤ 𝜃1 ≤ 

3𝜋

4
 

2 0 ≤ 𝜃2 ≤ 𝜋 

3 
−

3𝜋

4
≤ 𝜃3 ≤

3𝜋

4
 

4 −
𝜋

2
≤ 𝜃4 ≤

𝜋

2
 

5 −𝜋 ≤ 𝜃5 ≤ 𝜋  
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There are two basic approaches namely, geometric and algebraic to find the analytical 

solution of the inverse kinematics problem. We have used combination of both the 

approaches to find the analytical solution of Dagu 5-DOF robotic arm as follow: 

To solve for first joint variable 𝜃1, Equation (4.14) is rearranged as 

[ 𝑇(𝜃1)1
0 ]−1 𝑇5

0 = 𝑇(𝜃2)2
1 𝑇(𝜃3)3

2 𝑇(𝜃4)4
3 𝑇(𝜃5)5

4                           (4.18) 

By using transform arithmetic, 

[ 𝑇(𝜃1)1
0 ]−1 𝑇5

0 = 𝑇0
1 𝑇5

0 = 𝑇5
1                                         (4.19) 

Where, 

𝑇5
1 = 𝑇(𝜃2)2

1 𝑇(𝜃3)3
2 𝑇(𝜃4)4

3 𝑇(𝜃5)5
4                                    (4.20) 

Inverting 𝑇1
0 , we can write (4.19) as 

[

𝑐1 𝑠1 0 0
−𝑠1 𝑐1 0 0
0 0 1 −𝑑1

0 0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑝𝑥

𝑟21 𝑟22 𝑟23 𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧

0 0 0 1

] =  

[
 
 
 
 

𝑟1
11 𝑟1

12 𝑟1
13 𝑝1

𝑥

𝑟1
21 𝑟1

22 𝑟1
23 𝑝1

𝑦

𝑟1
31 𝑟1

32 𝑟1
33 𝑝1

𝑧

0 0 0 1 ]
 
 
 
 

 

(4.21) 

Equating right hand side of Equation (4.21) using (4.20),  

[

𝑐1𝑟11 + 𝑠1𝑟21 𝑐1𝑟12 + 𝑠1𝑟22 𝑐1𝑟13 + 𝑠1𝑟23 𝑐1𝑝𝑥 + 𝑠1𝑝𝑦

−𝑠1𝑟11 + 𝑐1𝑟21 −𝑠1𝑟12 + 𝑐1𝑟22 −𝑠1𝑟13 + 𝑐1𝑟23 −𝑠1𝑝𝑥 + 𝑐1𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧 − 𝑑1

0 0 0 1

] 

=

[
 
 
 

𝑟1
11 𝑟1

12 𝑠234 𝑝1
𝑥

−𝑠5 −𝑐5 0 0

𝑟1
31 𝑟1

32 −𝑐234 𝑝1
𝑧

0 0 0 1 ]
 
 
 

(4.22) 

Equating elements (2, 4) on both sides of Equation (4.22), 

−𝑠1𝑝𝑥 + 𝑐1𝑝𝑦 = 0 

𝜽𝟏 = 𝑨𝒕𝒂𝒏𝟐(𝒑𝒚 , 𝒑𝒙)                                             (4.23) 

Now that 𝜃1 is known, left hand side of Equation (4.22) is known. So, by equating 

elements (2, 1) and (2, 2) on both sides of this equation, joint variable 𝜃5 can be 

computed as 
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𝑠1𝑟11 − 𝑐1𝑟21 = 𝑠5

𝑠1𝑟12 − 𝑐1𝑟22 = 𝑐5
 

𝜽𝟓 = 𝑨𝒕𝒂𝒏𝟐(𝒔𝟏𝒓𝟏𝟏 − 𝒄𝟏𝒓𝟐𝟏,  𝒔𝟏𝒓𝟏𝟐 − 𝒄𝟏𝒓𝟐𝟐 )                       (4.24) 

Also, by equating elements (1, 3) and (2, 3) of Equation (4.22) we get another useful 

result: 

𝑐1𝑟13 + 𝑠1𝑟23 = 𝑠234

𝑟33 = −𝑐234
 

𝜃234 = 𝐴𝑡𝑎𝑛2(𝑐1𝑟13 + 𝑠1𝑟23,  −𝑟33)                                 (4.25) 

Here,  

𝜃234 = 𝛾 = 𝜃2 + 𝜃3 + 𝜃4                                          (4.26) 

To solve for individual 𝜃2, 𝜃3 and 𝜃4, we used geometric approach [17]. Figure 10 

shows plane of Dagu 5-DOF robotic arm with point 𝐴 at joint axis 2, point 𝐵 at joint 

axis 3 and point 𝐶 at joint axis 4. 

 

Figure 10: Plane of Robotic Arm 

where, 
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𝑙 =  √𝑙𝑟
2 + 𝑙𝑧

2 

𝑙𝑟 = 𝑟 − 𝑑5𝑐𝛾 

𝑟 = √𝑝𝑥
2 + 𝑝𝑦

2 

𝑙𝑧 = 𝑝𝑧 − 𝑑1 − 𝑑5𝑠𝛾 

𝛼 = 𝐴𝑡𝑎𝑛2(𝑙𝑧 , 𝑙𝑟)                                                 (4.27) 

 

 Using law of cosines, ∠𝐴𝐵𝐶 is solved for joint variable 𝜃3: 

𝑙2 = 𝑎2
2 + 𝑎3

2 − 2𝑎2𝑎3 cos(180 − 𝜃3) 

𝑙2 = 𝑎2
2 + 𝑎3

2 + 2𝑎2𝑎3𝑐3 

𝑐3 =
𝑙2 − 𝑎2

2 − 𝑎3
2

2𝑎2𝑎3
 

𝑠3 = ±√1 − c3
2 

𝜽𝟑 = 𝑨𝒕𝒂𝒏𝟐(𝒔𝟑 , 𝒄𝟑)                                               (4.28) 

Equation (4.28) leads to two different possible solution of joint variable 𝜃3, 

corresponding to plus or minus sign for 𝑠3. 

To solve for joint variable 𝜃2, 

𝑙 cos 𝛽 = 𝑎2 + 𝑎3𝑐3 

𝑙 sin 𝛽 = 𝑎3𝑠3 

𝛽 = 𝐴𝑡𝑎𝑛2(𝑎3𝑠3 , 𝑎2 + 𝑎3𝑐3)                                       (4.29) 

The elbow up or elbow down configuration of robotic arm leads to two possible 

solutions of 𝜃2 based on the following geometric information:  

𝜃2 = 𝛼 ± 𝛽 

Combining Equation (4.27) and (4.29) we can write above equation as 

𝜽𝟐 = 𝑨𝒕𝒂𝒏𝟐(𝒍𝒛 , 𝒍𝒓) ± 𝑨𝒕𝒂𝒏𝟐(𝒂𝟑𝒔𝟑 , 𝒂𝟐 + 𝒂𝟑𝒄𝟑)                     (4.30) 

Now that 𝜃2 and 𝜃3 are known, 𝜃4 is computed using Equation (4.26) as: 
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𝜽𝟒 = 𝜸 − 𝜽𝟐 − 𝜽𝟑                                                 (4.31) 

Equation (4.23), (4.24), (4.28), (4.30) and (4.31) are the desired results of inverse 

kinematics of Dagu 5-DOF robotic arm. 

4.4 Differential Kinematics 

In order to analyze and control the motion of manipulator and for smooth trajectory 

planning of the end-effector, linear and angular velocities of robotic arm are necessary 

along with the position analysis done in the previous sections. Since a robotic 

manipulator is a series of links, each one capable of motion relative to its neighbours, 

therefore velocity of each link is needed to be computed in a particular order, starting 

from the base frame {0}. For revolute joints, Equation (4.32) and (4.33) illustrates the 

computation of each link’s linear (�̇�) and angular (�̇�) velocities in terms of joint 

velocities �̇� with respect to origin of each links’ attached frame. 

𝜔𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 𝜔𝑖
𝑖 + �̇�𝑖+1 �̂�𝑖+1

𝑖+1                                   (4.32) 

𝑣𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 ( 𝑣𝑖
𝑖 + 𝜔𝑖

𝑖 × 𝑃𝑖+1
𝑖 )                                (4.33) 

By applying these equations from link to link, 𝑣𝑛
𝑛  and 𝜔𝑛

𝑛 for the last link {𝑛} are 

computed. The further mapping between the joint velocities �̇�, and linear (�̇�) and 

angular (�̇�) velocities of end-effector is defined by a Jacobian matrix illustrated in 

Equation (4.34). 

𝑉 = 𝐽(Θ)Θ̇                                                        (4.34) 

where, 𝑉 is 6x1 vector of linear and angular velocities of a link represented as 

𝑉 =  [
𝑣
𝜔

] 

Jacobian is a multidimensional form of derivatives. Jacobian of any dimension (even 

non-square) can be defined. The number of rows of a Jacobean defines the number of 

degree of freedom in Cartesian space, normally six ( x, y, z, roll (α), pitch (β) and yaw 

(γ) ) and the number of columns defines the number of joints (DOF) of robotic 

manipulator. Equation (4.35) shows the Jacobian matrix of dimension 6x5 for the Dagu 

5-DOF robotic arm. 
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𝐽(Θ) = [ 𝐽1 𝐽2 𝐽3 𝐽4 𝐽5] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
𝜕𝑥

𝜕𝜃1

𝜕𝑥

𝜕𝜃2

𝜕𝑥

𝜕𝜃3

𝜕𝑥

𝜕𝜃4

𝜕𝑥

𝜕𝜃5

𝜕𝑦

𝜕𝜃1

𝜕𝑦

𝜕𝜃2

𝜕𝑦

𝜕𝜃3

𝜕𝑦

𝜕𝜃4

𝜕𝑦

𝜕𝜃5

𝜕𝑧

𝜕𝜃1

𝜕𝑧

𝜕𝜃2

𝜕𝑧

𝜕𝜃3

𝜕𝑧

𝜕𝜃4

𝜕𝑧

𝜕𝜃5

𝜕𝛼

𝜕𝜃1

𝜕𝛼

𝜕𝜃2

𝜕𝛼

𝜕𝜃3

𝜕𝛼

𝜕𝜃4

𝜕𝛼

𝜕𝜃5

𝜕𝛽

𝜕𝜃1

𝜕𝛽

𝜕𝜃2

𝜕𝛽

𝜕𝜃3

𝜕𝛽

𝜕𝜃4

𝜕𝛽

𝜕𝜃5

𝜕𝛾

𝜕𝜃1

𝜕𝛾

𝜕𝜃2

𝜕𝛾

𝜕𝜃3

𝜕𝛾

𝜕𝜃4

𝜕𝛾

𝜕𝜃5]
 
 
 
 
 
 
 
 
 
 
 
 
 

                           (4.35) 

Here, 

𝐽1 =

[
 
 
 
 
 
−𝑠1𝑐234𝑑5 − 𝑠1𝑐23𝑎3 − 𝑠1𝑐2𝑎2

𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3 + 𝑐1𝑐2𝑎2

0
0
0
1 ]

 
 
 
 
 

 

𝐽2 =

[
 
 
 
 
 
−𝑠1𝑐234𝑑5 − 𝑠1𝑐23𝑎3 − 𝑠1𝑐2𝑎2

𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3 + 𝑐1𝑐2𝑎2

0
0
0
1 ]

 
 
 
 
 

 

𝐽3 =

[
 
 
 
 
 

−𝑐1(𝑠234𝑑5 + 𝑠23𝑎3 + 𝑠2𝑎2)
−𝑠1(𝑠234𝑑5 + 𝑠23𝑎3 + 𝑠2𝑎2)

𝑠1(𝑠1𝑐234𝑑5 + 𝑠1𝑐23𝑎3 + 𝑠1𝑐2𝑎2) + 𝑐1(𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3 + 𝑐1𝑐2𝑎2)
𝑠1

𝑐1

0 ]
 
 
 
 
 

 

𝐽4 =

[
 
 
 
 
 

−𝑐1(𝑠234𝑑5 + 𝑠23𝑎3)
−𝑠1(𝑠234𝑑5 + 𝑠23𝑎3)

𝑠1(𝑠1𝑐234𝑑5 + 𝑠1𝑐23𝑎3) + 𝑐1(𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3)
𝑠1

𝑐1

0 ]
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𝐽5 =

[
 
 
 
 
 
𝑐1𝑠234𝑑5

𝑠1𝑠234𝑑5

𝑐234𝑑5

𝑠1

𝑐1

0 ]
 
 
 
 
 

 

The inverse of the problem stated in Equation (4.34) is to determine the joint variable 

velocities �̇� for a known set of velocities of end-effector. This is more interesting from 

robotic manipulator’s perspective, since in practicality, the desired trajectory on which 

the end-effector is tasked to move is known in advance and the goal is to compute the 

respective joint trajectories which will result in this controlled motion. Perhaps, it is 

also surprising that inverse velocity relationship is simpler than the inverse position 

kinematics problem. When the Jacobian is square and non-singular matrix then the 

inverse problem can be simply solved by inverting the Jacobean matrix as: 

Θ̇ = 𝐽(Θ)−1𝑉                                                      (4.36) 

For Dagu 5-DOF or other manipulators that don’t have a square Jacobean, the inversion 

is either done by pseudo inverse of 𝐽 or using the integration techniques on Equation 

(4.36). 

4.5 DC Motor Modeling 

DC motor is a common actuator device that delivers energy to the load. DC motors 

have numerous control applications in robotic manipulators due to their well-behaved 

speed-torque characteristics and controllability. The DC motor works on the principle 

that a current 𝑖 carrying conductor in a magnetic field 𝜙 experiences a Force 𝑓 = 𝑖 ×

𝜙. In a permanent magnet DC Motor as shown in Figure 11, whose stator consists of a 

permanent magnet and thus has a constant flux 𝜙, the torque 𝜏𝑚 on the rotor is 

controlled only by controlling the armature current 𝑖𝑎 as: 

𝜏𝑚 = 𝐾𝑡𝑖𝑎                                                         (4.37) 

where 𝐾𝑡 is the torque constant. In addition, whenever a conductor while moving cuts 

through a magnetic field, a voltage 𝑣𝑏, called back emf, is generated across its 

terminals. 

𝑣𝑏 = 𝐾𝑒�̇� = 𝐾𝑒

𝑑𝜃

𝑑𝑡
                                                 (4.38) 
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where 𝐾𝑒 is the back emf constant. Consider the schematic diagram of the Figure 11 

where 

 

Figure 11: Circuit Diagram of an Armature Controlled DC Motor 

𝑣𝑎(𝑡) = armature voltage 

𝑖𝑎(𝑡) = armature current 

𝑅𝑎 = armature resistance 

𝐿𝑎 = armature inductance 

𝑣𝑏(𝑡) = back emf 

𝜃𝑚 = rotor position (radians) 

𝜏𝑚 = torque generated 

The differential equation for the armature current is then 

𝐿𝑎

𝑑𝑖𝑎
𝑑𝑡

+ 𝑅𝑎𝑖𝑎 = 𝑣𝑎(𝑡) − 𝑣𝑏(𝑡)                                     (4.39) 

The torque available for actuation is equal to the motor torque 𝜏𝑚 minus the torque 

delivered to the load 𝜏𝑙 with gear ratio 𝑟. The equation of motion for this system is then: 

𝐽𝑚
𝑑2𝜃𝑚

𝑑𝑡2
+ 𝐵𝑚

𝑑𝜃𝑚

𝑑𝑡
= 𝜏𝑚 − 𝜏𝑙/𝑟                                     (4.40) 

In Laplace domain, the Equation (4.38), (4.39) and (4.40) may be combined and written 

as: 
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(𝐿𝑎𝑠 + 𝑅𝑎)𝐼𝑎(𝑠) = 𝑉𝑎(𝑠) − 𝐾𝑒𝑠Θ𝑚(𝑠)                               (4.41) 

(𝐽𝑚𝑠2 + 𝐵𝑚𝑠)Θ𝑚(𝑠) = 𝐾𝑡𝐼𝑎(𝑠) − 𝑇𝑙(𝑠)/𝑟                            (4.42) 

The block diagram of the above system is shown in Figure 12.  The transfer function 

between the rotational position Θ𝑚(𝑠) and armature voltage 𝑉𝑎(𝑠) is given by (at 𝜏𝑙 =

0): 

Θ𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑚

𝑠[(𝐿𝑎𝑠 + 𝑅𝑎)(𝐽𝑚𝑠 + 𝐵𝑚) + 𝐾𝑏𝐾𝑚]
                        (4.43) 

In SI units, 𝐾𝑒 = 𝐾𝑡 = 𝐾. Thus, 

Θ𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾

𝑠[(𝐿𝑎𝑠 + 𝑅𝑎)(𝐽𝑚𝑠 + 𝐵𝑚) + 𝐾2]
                           (4.44) 

 

Figure 12: Block Diagram for a DC Motor System 

The transfer function between the load torque 𝑇𝑙(𝑠) and rotor position Θ𝑚(𝑠) is given 

by (at 𝑉𝑎 = 0): 

Θ𝑚(𝑠)

𝑇𝑙(𝑠)
=

−(𝐿𝑎𝑠 + 𝑅𝑎)

𝑠[(𝐿𝑎𝑠 + 𝑅𝑎)(𝐽𝑚𝑠 + 𝐵𝑚) + 𝐾2]
                          (4.45) 

Using Simscape library in MATLAB Simulink, the model of motor is created as shown 

in the Figure 13 below. 



28 

 

 

Figure 13: DC Motor Subsystem in Simulink using Simscape Library 

Hitec HS-645MG and HS-65MG servo motors are selected for joint and wrist actuation 

of Dagu 5-DOF robotic arm. The Model parameterization of DC Motor in Simulink is 

done by providing the stall torque and no-load speed values option. General 

specifications of both Hitec high torque servo motors are listed in Table 3.  

Table 3: General Specifications of Hitec Servo Motors 

Parameters 

Specifications 

HS-645MG HS-65MG 

Operating Voltage 4.8V ~ 6.0V 4.8V ~ 6.0V 

Stall Torque 7.7 kg.cm ~ 9.6 kg.cm 1.8 kg.cm ~ 2.2 kg.cm 

No-load Current 350mA ~ 450mA 180mA ~ 220mA 

No-load Speed 0.24sec/60° ~ 0.2sec/60° 0.14sec/60° ~ 0.11sec/60° 

Weight 55.2g 11.9g 
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Chapter 5 

Adaptive Neuro-Fuzzy Inference System 

5.1 Introduction 

Among various combinations of methodologies in soft computing, the one that has 

highest visibility at this juncture is that of fuzzy logic and neuro-computing, leading to 

neuro-fuzzy systems. Adaptive neuro-fuzzy inference system (ANFIS) is an intelligent 

modelling and control approach that combines the fuzzy logic [42], [43] with the field 

of artificial neural networks [44]. It is one of the most well-known and widely applied 

neuro-fuzzy architecture developed by Jang and Sun [5], [45]. The fundamentals of 

neural networks, fuzzy logic and control and neuro-fuzzy system are discussed here. 

5.2 Artificial Neural Networks 

Artificial neural networks (ANNs) is a machine learning technique inspired by 

biological neural networks which is used to approximate functions that are dependent 

on large number of input data. ANNs is an interconnected group of nodes that are 

composed of solely two elements operating in parallel as shown in Figure 14. The 

processing elements are called neurons and the connections are termed synapses. 

Generally, a processing elements has many inputs and a single output as shown in 

Figure 15. Each input to neuron has an associated weight. If the sum of all the weighted 

inputs are above a certain threshold, that neuron is activated. Typically, neural networks 

are adjusted, or trained, so that a particular input leads to a specific target output. The 

weights of the neurons are adjusted during the learning process to minimize the error 

objective function as shown in Figure 16. 
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Figure 14: Artificial Neural Network (ANN) 

 

Figure 15: Artificial Neuron and Synapses 

 

Figure 16: ANN Training Cycle 



31 

 

5.3 Fuzzy Logic 

Fuzzy logic is a convenient way to map an input space to an output space. Fuzzy logic 

works on the principle of working with variables in linguistic terms instead of having a 

definite single value. It is a method of characterizing knowledge in terms of fuzzy sets 

and a rule base. Figure 17 shows the basic block diagram of a fuzzy logic system. Fuzzy 

logic is synonymous with the theory of fuzzy sets [46]. A fuzzy set is a set without a 

clearly defined boundary. It can contain elements with only a partial degree of 

membership. The primary mechanism of fuzzy sets is to make a list of if-then statements 

called rules which are evaluated in parallel. Fuzzy Inference System (FIS) interprets the 

values in the input vector and, based on these set of rules, assigns values to the output 

vector. The major advantage of fuzzy control is its flexibility of defining relationship 

between different physical quantities in different number of inputs and outputs which 

is done by assigning membership values (or degree of membership) between 0 and 1 

using a defined curve known as Membership Function. 

 

Figure 17: Components of a Fuzzy Logic System 

There are two popular types of FIS: Mamdani and Sugeno. Mamdani's method was 

among the first control systems built using fuzzy set theory. It was proposed in 1975 

by Ebrahim Mamdani [47]. Mamdani-type inference outputs membership functions as 

fuzzy sets of each variable which further need diffuzification to get a crisp value. 

Sugeno or Takagi-Sugeno-Kang, method of fuzzy inference [48] was introduced in 

1985. It is similar to the Mamdani method in many respects. The first two parts of the 

fuzzy inference process, fuzzifying the inputs and applying the fuzzy operator, are 

exactly the same. The main difference between Mamdani and Sugeno is that the Sugeno 

output membership functions are either linear or constant. Some advantages of using 

Sugeno method are that it is computationally efficient, works well with linear (e.g., PID 
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control), optimization and adaptive techniques and it has guaranteed continuity of the 

output surface. 

A typical rule in a Sugeno fuzzy model has the form 

If Input 1 =  𝑥 and Input 2 =  𝑦, then Output is 𝑧 =  𝑎𝑥 +  𝑏𝑦 +  𝑐. 

For a zero-order Sugeno model, the output level 𝑧 is a constant (𝑎 = 𝑏 = 0). 

The output level 𝑧𝑖 of each rule is weighted by the firing strength 𝑤𝑖 of the rule. For 

example, for an AND rule with Input 1 =  𝑥 and Input 2 =  𝑦, the firing strength is 

𝑤𝑖 = 𝐴𝑛𝑑𝑀𝑒𝑡ℎ𝑜𝑑(𝐹1(𝑥), 𝐹2(𝑦)) 

where 𝐹1 𝑎𝑛𝑑 𝐹2 are the membership functions for Inputs 1 and 2. The final output of 

the system is the weighted average of all rule outputs, computed as 

𝐹𝑖𝑛𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 =
∑ 𝑤𝑖𝑧𝑖

𝑁 
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 

Where 𝑁 is the number of rules. A Sugeno rule operates as shown in the following 

Figure 18. 

 

Figure 18: Sugeno Type Inference 

Because of the linear dependence of each rule on the input variables, the Sugeno method 

is ideal for acting as an interpolating supervisor of multiple linear controllers that are 

to be applied, respectively, to different operating conditions of a dynamic nonlinear 

system. Typical output surface plot for the sugeno type inference is shown below in 

Figure 19.  
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Figure 19: Output Surface Plot of Sugeno Type Inference 

5.4 Adaptive Neuro-fuzzy Learning 

Neuro-fuzzy learning system uses fuzzy logic along with neuro-adaptive learning 

scheme. Neuro-adaptive learning works similar to neural networks and provides a 

method for fuzzy modeling procedure to learn information about the given input data 

set. Fuzzy logic part computes the membership function parameters that allow the FIS 

to properly map the input/output data. These membership functions and associated 

parameters (weights) are tuned / adjusted using the neural network techniques such as 

backpropagation algorithm and least squares type methods. This adjustment allows 

fuzzy system to learn from the data they are modeling. The basic ANFIS model 

structure in fuzzy logic toolbox of MATLAB is shown in Figure 20. 
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Figure 20: ANFIS Model Structure 

The modeling approach used by ANFIS is similar to many system identification 

techniques. First the parameterized model structure is theorized (relating inputs to 

membership functions to rules to outputs to membership functions, and so on). Then 

the input/output data is loaded to ANFIS for training. Then the FIS model is trained to 

emulate the training data that was provided by modifying the membership function 

parameters according to a choose error criterion. Then model validation is done in 

which the input/output data set on which the FIS was not trained, is presented to FIS 

model to judge how well the FIS model predicts the corresponding dataset output 

values. All these stages are accomplished in ANFIS editor in MATLAB [49], [50] as 

shown in Figure 21.  
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Figure 21: ANFIS Editor 

5.5 Data Clustering 

Clustering of numerical data forms the basis of many classification and system 

modeling algorithms. The purpose of clustering is to identify natural groupings of data 

from a large data set to produce a concise representation of a system's behavior. Data 

clustering is performed on the training data to find clusters in input-output data set. This 

cluster information is then used to generate a Sugeno-type fuzzy inference system that 

best models the data behavior using a minimum number of rules. The rules partition 

themselves according to the fuzzy qualities associated with each of the data clusters. 

There are two techniques of data clustering available in fuzzy logic toolbox of 

MATLAB, Fuzzy C-Mean Clustering and Subtractive Clustering. Fuzzy c-means 

(FCM) is a data clustering technique wherein each data point belongs to a cluster to 

some degree that is specified by a membership grade [51]. It provides a method that 

shows how to group data points into a specific number of different clusters. If it is not 

clear that how many clusters should be created for a given data set then Subtractive 
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clustering [52] is recommended for estimating the number of clusters in a data set. In 

MATLAB, genfis2 command generates a Sugeno-type FIS structure using subtractive 

clustering by extracting a set of rules that models the data behavior. While, genfis3 

command generates a FIS using FCM clustering technique. 
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Chapter 6 

Simulation and Results 

6.1 Robotics Toolbox 

Robotics Toolbox [53]–[55] for MATLAB is used to solve the forward kinematics of 

Dagu 5-DOF robotic arm. The toolbox provides various functions that are useful for 

the study and simulation of classical arm-type robotics, for example such things as 

kinematics, dynamics and trajectory generation. The serial-link arm-type robot is 

represented by Toolbox in terms of Denavit-Hartenberg parameters as shown in the 

Figure 22 for Dagu 5-DOF. Various pose configurations are graphically illustrated in 

the Figure 23. 

 

Figure 22: SerialLink Description of Dagu 5-DOF 
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(a) (b) 

Figure 23: Dagu 5-DOF in different poses (a) zero angle (b) ready pose 

6.2 Workspace Sampling  

In order to obtain the training data, the workspace mapping that relates the input joint 

variables to end-effectors position and orientation in Cartesian space is done by 

computing the forward kinematics that was formulated in Chapter 4 for the joint 

intervals stated in Table 2. The sampled Cartesian space for the permissible joint space 

shown in Figure 24 which accounts for various key problems involved in solving the 

inverse kinematics through neuro-fuzzy learning, namely the problems of generating 

and preprocessing training data, handling multiple solutions, reducing the 

approximation error, and lowering the training time as discussed in [56].  
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(a) 

  

(b) (c) 

Figure 24: Workspace Sampling of Forward Kinematics (a) Isometric View (b) X-Z 

View (c) X-Y View  

6.3 ANFIS Implementation 

The coordinates (𝑥, 𝑦, 𝑧) and the orientation angles (𝛼, 𝛽, 𝛾) obtained from forward 

kinematics solutions are used as the input for training data to ANFIS network with the 

triangular membership function with a hybrid learning algorithm (back propagation + 

least square method). For the neuro-fuzzy model used in this work, 13433 data points 

were analytically obtained using forward kinematics which are shown in the Figure 24, 

as discussed in the previous section, of which 10075 data points are used for training, 
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1679 data points are used as model validation and 1679 data points are used as test case 

for predicting the untrained data output values .For predicting the inverse kinematics 

solution of Dagu 5-DOF robotic arm five independent ANFIS structures with first order 

Sugeno model are selected in MATLAB with specific parametric configurations as 

listed in the Table 4. 

Table 4: ANFIS Configuration Parameters for Solving Dagu 5DOF 

Parameter Name 
ANFIS Description 

(for all Joints) 

type sugeno’ 

andMethod ‘prod’ 

orMethod ‘max’ 

defuzzMethod ‘wtaver’ 

impMethod ‘prod’ 

aggMethod ‘max’ 

input 1x6 (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾) 

output 1x1 (𝐽𝑜𝑖𝑛𝑡 𝐴𝑛𝑔𝑙𝑒 𝜃𝑖) 

rule 1x216 

No. of Training Data Pairs 10075 

No. of Checking Data Pairs 1679 

 

6.3.1 Residual Plot of Training Data and Check Data for all Joint angles 

of Dagu 5-DOF 

The residual plots of training data for 𝜃1, 𝜃2, 𝜃3, 𝜃4 and 𝜃5 of Dagu 5-DOF robotic arm 

are depicted in Figure 25. The residual plot in all five case is low which suggests that 

ANFIS is successfully converging to fit the data and since both the residual of training 

data (blue line) and check data (red line) are close enough this suggest that the FIS has 

avoided over fitting the data and it serves as an indication that the ANFIS will predict 

the new unknown data with good accuracy and minimal error. 
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6.3.2 Prediction of Inverse Kinematics for all Joints Angles of Dagu 5-

DOF and Comparison with Analytical Solution 

Having trained the networks, an important follow up step is to validate the networks to 

determine how well the ANFIS networks would perform inside the larger control 

system. The trained ANFIS for all 5 joint angles is then tested against the newly 

presented data set using the evalfis command in MATLAB. The output predicted by 

evalfis is then compared with the analytical inverse kinematic solution presented in 

Section 4.3 of Chapter 4. Figure 26 shows how close the FIS predicted outputs are with 

respect to the deducted values. 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 25: Residual Plots of Training Data and Check Data for all Joint Variables 
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(a) (b) 

  

(c) (d) 

 

(e) 

Figure 26: Model Validation of ANFIS networks for Dagu 5-DOF 
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6.4 Robot Dynamics in Simulink / SimMechanics 

SimMechanics software is a block diagram modeling environment for the engineering 

design and simulation of rigid multibody machines and their motions, using the 

standard Newtonian dynamics of forces and torques. 3D CAD model import of robotic 

arm has already been discussed in chapter 3. One of the most common requirement in 

robotics is to move the end-effector smoothly from pose A to pose B in a straight line. 

There exists two main approaches to generate such trajectories: joint space motion and 

Cartesian space motion.  

Joint space motion planning is easier in the sense as it involves interpolation between 

two configurations of joint variables 𝜃𝑖 and then by applying forward kinematics the 

end-effectors position and orientation can easily be determined for all interpolated 

configurations between the initial joint configuration 𝜃𝑖𝐴
 and the final joint 

configuration 𝜃𝑖𝐵
. But the problem with this method is that it doesn’t ensures the 

motion of end-effector to follow the desired path. This is to be expected since only the 

Cartesian coordinates of the end-points were specified. As the robot rotates about its 

waist joint during the motion the end-effector will naturally follow a circular arc. In 

practice this could lead to collisions between the robot and nearby objects even if they 

do not lie on the path between poses A and B. 

For many applications straight-line motion in Cartesian space is required for which the 

second strategy is required. That means, for the robot’s end-effector to follow a desired 

path, necessary joints angles are required to be calculated by computing the inverse 

kinematics at every specified interval. 

In this study, the trajectory tracking of the Dagu 5-DOF robotic arm’s end effector is 

considered in the SimMechanics environment using the Cartesian motion scheme. As 

a test case scenario, the reference trajectory used to evaluate the performance of the 

overall methodology is shown in Figure 27.   
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Figure 27: Reference Trajectory for Dagu 5-DOF Robotic Arm’s End-Effector 

6.4.1 Simulink / SimMechanics Model 

The complete implementation in Simulink / SimMechanics environment is shown in 

Figure 28. The reference trajectory generated with the aid of robotics toolbox for 

MATLAB is fed into ANFIS network that computes the desired joint angles for all five 

joint variables of the robotic arm as shown in Figure 29. The outputs of ANFIS 

networks are then handed over to the servo-controllers which in turn actuate each joint 

of the SimMechanics multibody model of Dagu 5-DOF robotic arm. Decentralized PID 

control scheme is used to control all the joint angles independently as shown in Figure 

30. Figure 31 shows the Simulink implementation of the PID controller. 

 



46 

 

 

Figure 28: Simulink Model for Trajectory Tracking of Robotic Arm 
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Figure 29: Reference Trajectory Generated from Robotics Toolbox 
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Figure 30: Simulink Subsystem for Individual Joint Control 

 

 

Figure 31: PID Controller Implementation in Simulink 

6.4.2 Simulation Results of Robot Dynamics 

The inverse kinematics is computed for the end-effector’s desired trajectory using the 

same ANFIS networks that are trained for entire workspace of Dagu 5-DOF discussed 

in the previous sections. Figure 32 shows the trajectory followed by the robotic arm in 

SimMechanics environment by running the simulation based on the results obtained 

from the ANFIS networks.  

The control effort and the position comparisons of all five joints controlled by PID 

controllers can be seen in Figure 33 to Figure 37. SimMechanics provides various types 

of force and torque sensing for driving individual joint primitives. The torques 

computed by SimMechanics multibody dynamics for individual joints are shown in 

Figure 38.   
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Figure 32: Trajectory Tracking by Dagu 5-DOF Robotic Arm 

PID 
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Figure 33: Control Effort and Position Comparison for Joint Variable 𝜃1 
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Figure 34: Control Effort and Position Comparison for Joint Variable 𝜃2 
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Figure 35: Control Effort and Position Comparison for Joint Variable 𝜃3 
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Figure 36: Control Effort and Position Comparison for Joint Variable 𝜃4 
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Figure 37: Control Effort and Position Comparison for Joint Variable 𝜃5 
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Figure 38: Joint Torques Computation of Dagu 5-DOF 
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Chapter 7 

Conclusion and Future Recommendations 

SimMechanics presents a powerful tool for modeling mechanics of rigid bodies. It is 

suitable for modeling of dynamics and kinematics of considerably complicated systems 

with many joints without using any mathematical description. For these advantageous 

properties it is often used in the first phase of designing robotic systems, esp. due to 

simplicity of changing parameters and dimensions of particular bodies without 

necessity to repeat design of new model.  

In this thesis, five ANFIS networks were trained to emulate control of a robotic arm. 

The fuzzification of neural networks’ inputs / outputs allow the system to learn more 

complex functions than ever before as encountered in this thesis for solving inverse 

kinematics. From the results of Chapter 6 it can be seen that for the successful 

implementation of ANFIS, number of training examples, iterations and membership 

functions are very crucial factors. 

At present time the developed model serves for further research – forward kinematics, 

analysis of dynamics and design of controllers for joint drives. In the proposed design, 

only off-line simulation were conducted which can be extended to an on-line 

controlling of the serial robot manipulator. The work done in this thesis was based on 

having PID control structure. Since the system is nonlinear, it would be interesting to 

apply nonlinear controllers such sliding mode control [57], [21], [58] algorithms. 

Alternate control schemes like LQR control [59]–[61], repetitive control [62]–[65], H-

infinity (H-∞) control [66], etc. can be implemented for performance comparisons. 

Also, programming some heuristic rules into the neuro-fuzzy inference for the robotic 

arm could improve performance, which is left for future implementation.  Future work 

in this area should also look into determining the adequacy of training samples. Are 

there enough training samples? Are all areas of the state space represented? A study of 

the relationship of the training samples and the fuzzy membership functions would be 

particularly helpful. 
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Appendix A 

 

Detailed Drawing of Dagu 5-DOF Robotic Arm 
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Appendix B 

MATLAB SCRIPTS 

%-------------------------------------------------------------------% 
%%                            dagu5dof.m                          %% 
%-------------------------------------------------------------------% 

 
clear all 
close all 
clc 

  
qz = [0 0 0 0 0]; % zero position 
qr = [0 pi -pi/2 0 0]; % ready position 
qf = [0 0 pi/2 0 0]; % forward ready position 
qv = [0 pi/2 0 pi/2 0]; % vertical stretch 
qh = [0 0 0 pi/2 0]; % horizontal stretch 

  
L(1) = Link([0, 0, 0, 0],'modified'); 
L(2) = Link([0, 0, 0, pi/2],'modified'); 
L(3) = Link([0, 0, 80, 0],'modified');  
L(4) = Link([0, 0, 81, 0],'modified'); 
L(5) = Link([0, 58, 0, pi/2],'modified'); 

  
dagu5r = SerialLink(L, 'name', 'Dagu 5DOF'); 
dagu5r.base = [1 0 0 0; 0 1 0 0; 0 0 1 93; 0 0 0 1]; 
dagu5r.tool = [1 0 0 0; 0 1 0 0; 0 0 1 137; 0 0 0 1]; 

  
dagu5r.qlim(1,:)= [-pi, pi]; 
dagu5r.qlim(2,1)=0; 
dagu5r.qlim(3,:)= [-3*pi/4, 3*pi/4]; % [-3*pi/4, 3*pi/4] 
dagu5r.qlim(4,:)= [-pi/4, 5*pi/4]; %[-pi/4, 5*pi/4] 
 

T1 = dagu5r.fkine(qz); 
dagu5r.plot(qz) 
T2 = dagu5r.fkine(qr); 

  
T= ctraj(T1,T2,51); % cartesian space 
ik_sol = dagu5r.ikcon(T,qz);  

 
via =[qh;qf;qv;qr]; % multi-segment joint space 
t = (0:4/100:4)'; 
q = mstraj(via, [], [1 1 1 1], qz, 0.04, 0.16); 
 

ik_sol = [q; q(end,:)]; 
 

T = cat(3,(ctraj(dagu5r.fkine(qz),dagu5r.fkine(qh),100/4)),... 
    (ctraj(dagu5r.fkine(qh),dagu5r.fkine(qf),100/4)),... 
    (ctraj(dagu5r.fkine(qf),dagu5r.fkine(qv),100/4)),... 
    (ctraj(dagu5r.fkine(qv),dagu5r.fkine(qr),100/4))); 
T = cat(3, T , T(:,:,end)); 

 
plot(squeeze(T(1:3,4,:))'); 
hold on 
plot(squeeze(T_sm.data(1:3,4,:))','.'); 
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figure(2) 
plot(abs(tr2rpy(T))); 
hold on 
plot(abs(tr2rpy(T_sm.data)),'.'); 
%-------------------------------------------------------------------% 

 

%-------------------------------------------------------------------% 
%%                 dagu_fkine.m     %% 
%-------------------------------------------------------------------% 
 

th1 = -pi:pi/6:pi; 
th2 = 0:pi/6:pi; 
th3 = -2*pi/3:pi/6:3*pi/4; % -3*pi/4::3*pi/4 
th4 = -pi/6:pi/6:5*pi/4; % -pi/4::5*pi/4 
th5 = -pi:pi/6:pi; 

  
syms a2 a3 d1 d5 c1 s1 c2 s2 c3 s3 c4 s4 c5 s5; 

  
T01 = [c1 -s1 0 0; s1 c1 0 0; 0 0 1 d1; 0 0 0 1]; 
T12 = [c2 -s2 0 0; 0 0 -1 0; s2 c2 0 0; 0 0 0 1]; 
T23 = [c3 -s3 0 a2; s3 c3 0 0; 0 0 1 0; 0 0 0 1]; 
T34 = [c4 -s4 0 a3; s4 c4 0 0; 0 0 1 0; 0 0 0 1]; 
T45 = [c5 -s5 0 0; 0 0 -1 -d5; s5 c5 0 0; 0 0 0 1]; 

  
T35 = T34 * T45; 
T35 = simplify(T35, 'Steps', 150); 

  
T25 = T23 * T35; 
T25 = simplify(T25, 'Steps', 150); 

  
T15 = T12 * T25; 
T15 = simplify(T15, 'Steps', 150); 

  
T05 = T01 * T15; 
T05 = simplify(T05, 'Steps', 150); 

  
d1 = 93; 
d5 = 195; 
a2 = 80; 
a3 = 81; 

  
[T_BW, TH] = TT_mapping(T05, th1, th2, th3, th4, th5); 
RPY = tr2rpy(T_BW); 
XYZ = [squeeze(T_BW(1,4,:)) squeeze(T_BW(2,4,:)) 

squeeze(T_BW(3,4,:))]; 
plot3(XYZ(:,1),XYZ(:,2),XYZ(:,3),'o','MarkerSize',2,'MarkerFaceColor'

,'b'); 

  
data1 = [XYZ RPY TH(:,1)]; 
data2 = [XYZ RPY TH(:,2)]; 
data3 = [XYZ RPY TH(:,3)]; 
data4 = [XYZ RPY TH(:,4)]; 
data5 = [XYZ RPY TH(:,5)]; 
%-------------------------------------------------------------------% 
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%-------------------------------------------------------------------% 
%%     TT_mapping.m     %% 
%-------------------------------------------------------------------% 

  
function [T, THETA] = TT_mapping(T_sym, theta1, theta2, theta3, 

theta4, theta5 ) 

  
[TH1, TH2, TH3, TH4, TH5] = ndgrid(theta1, theta2, theta3, theta4, 

theta5); 
size(TH1) 

  
if numel(TH1) == 1 
    T = sym2num(T_sym, TH1, TH2, TH3, TH4, TH5); 
    THETA = [TH1, TH2, TH3, TH4, TH5]; 
    return 
end 

   
    % Randomly select data points 
    rand_indices = randperm(numel(TH1)); 
    TH1 = TH1(rand_indices(1:end)); 
    TH2 = TH2(rand_indices(1:end)); 
    TH3 = TH3(rand_indices(1:end)); 
    TH4 = TH4(rand_indices(1:end)); 
    TH5 = TH5(rand_indices(1:end)); 

  
size(TH1) 

  
c = 1; 
for i = 1:numel(TH1) 
    if ((TH2(i)== pi && TH3(i)<-pi/4) || (TH2(i)== 0 && TH3(i)> pi/4) 

|| (TH2(i)== 0 && TH3(i)== -3*pi/4 && TH4(i)<3*pi/4) || (TH2(i)== pi             

&& TH3(i)== -pi/4 && TH4(i)>3*pi/4)) == false 

         
        T_temp(:,:,c) = sym2num(T_sym, TH1(i), TH2(i), TH3(i), 

TH4(i), TH5(i)); 
        TH_temp(c,:) = [TH1(i), TH2(i), TH3(i), TH4(i), TH5(i)]; 
        c = c + 1; 
    end 
end 

  
size(TH_temp) 

  
c = 1; 

  
for i = 1:length(TH_temp) 
    if ((T_temp(1,4,i) > 0 ) || (T_temp(2,4,i) < 0 ) || 

(T_temp(3,4,i) < 0 ) || ((T_temp(3,4,i) < 100) && (T_temp(1,4,i) < 

120) && (T_temp(1,4,i) > -120)) || ((T_temp(3,4,i) < 100) && 

(T_temp(2,4,i) < 120) && (T_temp(2,4,i) > -120)) || (T_temp(3,4,i) > 

440) || (T_temp(1,4,i) < 5) && (T_temp(1,4,i) > -5) && (T_temp(2,4,i) 

< 5) && (T_temp(2,4,i) > -5)) == false 

  
        T(:,:,c) = T_temp(:,:,i); 
        THETA(c,:) = TH_temp(i,:); 
        c = c + 1; 
    end 
end 
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size(THETA) 

  
end 
%-------------------------------------------------------------------% 

 

 
%------------------------------------------------------------------- 
%%     sym2num.m      %% 
%-------------------------------------------------------------------% 
 

function T = sym2num(Ts, TH1, TH2, TH3, TH4, TH5) 

  
s1 = sin(TH1); 
s2 = sin(TH2); 
s3 = sin(TH3); 
s4 = sin(TH4); 
s5 = sin(TH5); 

  
c1 = cos(TH1); 
c2 = cos(TH2); 
c3 = cos(TH3); 
c4 = cos(TH4); 
c5 = cos(TH5); 

  
T = double(subs(Ts)); 

  
end 
%-------------------------------------------------------------------% 
 

%-------------------------------------------------------------------% 
%%                          mapFeature.m      %% 
%-------------------------------------------------------------------% 
 

function out = mapFeature(X1, X2) 
 

%   MAPFEATURE Feature mapping function to polynomial features 

 
%   MAPFEATURE(X1, X2) maps the two input features to quadratic 
%   features used in the regularization exercise. 

%   Returns a new feature array with more features, comprising of  
%   X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc.. 

%   Inputs X1, X2 must be the same size 

 
degree = 2; 
 

out = ones(size(X1(:,1))); 
for i = 1:degree 
    for j = 0:i 
        out(:, end+1) = (X1.^(i-j)).*(X2.^j); 
    end 
end 

  
out = out(:,2:end); 

  
end 
%-------------------------------------------------------------------% 
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%-------------------------------------------------------------------% 
%%     traj_cir3d.m     %% 
%-------------------------------------------------------------------% 

  
clear qcir_c J 
R = 75; 
N = 16 ; 
Cxy = circle([115+R,0], R, 'n', N); 
Cxy = [Cxy, Cxy(:,1)]'; 

  
Cz = (174+R) - R*cos(0:2*pi/(N):2*pi)'; 
Cz = Cz(1:end-1,:); 
Cz = circshift(Cz, N/2); 
Cz = [Cz; Cz(1,:)]; 

  
Cxyz = [Cxy, Cz]; 
Cxyz = Cxyz(1:end-1,:); 
Cxyz = circshift(Cxyz, N/2); 

  
Cp = [Cxyz; Cxyz(1,:)]; 

  
figure(1) 
plot3(Cp(:,1),Cp(:,2),Cp(:,3),'b-.') 
hold on 

  
rx = zeros(1,length(Cp)-1); 
ry = zeros(1,length(Cp)-1); 
rz = zeros(1,length(Cp)-1); 

  
for i = 1:length(Cp)-1 
    rx(i) = atan2((Cp(i+1,3) - Cp(i,3)),(Cp(i+1,2) - Cp(i,2))); 
    ry(i) = atan2((Cp(i+1,3) - Cp(i,3)),(Cp(i+1,1) - Cp(i,1))); 
    rz(i) = atan2((Cp(i+1,2) - Cp(i,2)),(Cp(i+1,1) - Cp(i,1))); 
    Rcir = rotx(0)*roty(pi/2 + ry(i))*rotz(0); 
end 

  
for i = 1:length(Cp) 
    Tcir(:,:,i)= rt2tr (Rcir,Cp(i,:)'); 
    qcir(i,:) = dagu5r.ikine(Tcir(:,:,i), qr, [1 1 1 0 0 0]); 

%   ready position modified 

end 

  
Tcir_i = dagu5r.fkine(qcir); 

  
Cp_i=transl(Tcir_i); 
Crpy = tr2rpy(Tcir_i); 
ccir=[Cp_i, Crpy]; 

  
mstraj_c = mstraj(ccir(2:end,:),[],0.5*ones(1,1,length(qcir)-

1),ccir(1,:),0.04,0); 
tim = 0:0.04:length(mstraj_c)*0.04; 
mstraj_c = [ccir(1,:); mstraj_c]; 

  
Pcir = transl(mstraj_c(:,1:3)); 
Rcir = rpy2tr(mstraj_c(:,4:6)); 

  
for i = 1:length(Pcir) 
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    Tcir_c(:,:,i)=Pcir(:,:,i)*Rcir(:,:,i); 
    qcir_c(i,:) = dagu5r.ikine(Tcir_c(:,:,i), qr, [1 1 1 0 0 0]); 

%   w.r.t. ready position 
end 

  
qcir_c(:,5) = 3*qcir_c(:,1); 
length(qcir_c)*0.04; 

  
for i = 1:5 
    J(i) =mean(abs(ScopeTor.signals(i).values)) / 

mean(abs(ScopeVel.signals(3).values(:,i))); 
end 

  
p_sm = squeeze(T_sm.data(1:3,4,:))'; 
plot3(p_sm(:,1),p_sm(:,2),p_sm(:,3),'r', 'LineWidth',2) 
%-------------------------------------------------------------------% 

 

%-------------------------------------------------------------------% 
%%   Inverse_Kinematics_genfis1.m     %% 
%-------------------------------------------------------------------% 

  
inmfType = 'gbellmf';%'psigmf';%'gbellmf'; 
outmftype = 'linear'; 
epoch = 100; %500 
trnOpt = [epoch NaN NaN NaN]; 
dispOpt = [1 1 1 1]; 
optMethod = 1; % 1 = hybrid , 0 = back=propagation 
 

% split training data and check data 
cut1 = length(data1)- round(0.25*length(data1)); 

% split check data and test data 
cut2 = cut1 + round((length(data1)-cut1)/2); 

 
% Train first ANFIS network 

fprintf('-->%s\n','Start training first ANFIS network. It may take 

few minutes depending on your computer system.') 
infis1 = genfis1([data1(1:cut1,1:6) data1(1:cut1,7)], [3 3 2 2 2 3], 

inmfType, outmftype); 
[anfis1,error1,stepsize1,chkFis1,chkErr1] = anfis(data1(1:cut1,:), 

infis1, trnOpt, dispOpt,data1(cut1+1:cut2,:),optMethod);    

  
% Train second ANFIS network 

fprintf('-->%s\n','Start training second ANFIS network. It may take 

few minutes depending on your computer system.') 
infis2 = genfis1([data2(1:cut1,1:6) data2(1:cut1,7)], [2 3 3 3 2 2], 

inmfType, outmftype); 
[anfis2,error2,stepsize2,chkFis2,chkErr2] = anfis(data2(1:cut1,:), 

infis2, trnOpt, dispOpt,data2(cut1+1:cut2,:),optMethod); 
 

% Train third ANFIS network 
fprintf('-->%s\n','Start training third ANFIS network. It may take 

few minutes depending on your computer system.') 
infis3 = genfis1([data3(1:cut1,1:6) data3(1:cut1,7)], [2 3 3 3 2 2], 

inmfType, outmftype); 
[anfis3,error3,stepsize3,chkFis3,chkErr3] = anfis(data3(1:cut1,:), 

infis3, trnOpt, dispOpt,data3(cut1+1:cut2,:),optMethod); 
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% Train fourth ANFIS network 

fprintf('-->%s\n','Start training fourth ANFIS network. It may take 

few minutes depending on your computer system.') 
infis4 = genfis1([data4(1:cut1,1:6) data4(1:cut1,7)], [2 3 3 3 2 2], 

inmfType, outmftype); 
[anfis4,error4,stepsize4,chkFis4,chkErr4] = anfis(data4(1:cut1,:), 

infis4, trnOpt, dispOpt,data4(cut1+1:cut2,:),optMethod);  
  

% Train fifth ANFIS network 
fprintf('-->%s\n','Start training fifth ANFIS network. It may take 

few minutes depending on your computer system.') 
infis5 = genfis1([data5(1:cut1,1:6) data5(1:cut1,7)], [2 2 2 3 3 3], 

inmfType, outmftype) 
[anfis5,error5,stepsize5,chkFis5,chkErr5] = anfis(data5(1:cut1,:), 

infis5, trnOpt, dispOpt,data5(cut1+1:cut2,:),optMethod);  
%-------------------------------------------------------------------% 
 

%-------------------------------------------------------------------% 

%%     Testing.m         %% 
%-------------------------------------------------------------------% 

 

input = [XYZ(cut2+1:end,:) RPY(cut2+1:end,:)]; 
THETA1D = TH(cut2+1:end,1); 
THETA2D = TH(cut2+1:end,2); 
THETA3D = TH(cut2+1:end,3); 
THETA4D = TH(cut2+1:end,4); 
THETA5D = TH(cut2+1:end,5); 

  
THETA1P = evalfis(input, anfis1); % theta1 predicted by anfis1 
THETA2P = evalfis(input, anfis2); % theta2 predicted by anfis2 
THETA3P = evalfis(input, anfis3); % theta1 predicted by anfis1 
THETA4P = evalfis(input, anfis4); % theta2 predicted by anfis2 
THETA5P = evalfis(input, anfis5); % theta1 predicted by anfis1 

  
theta1diff = (THETA1D - THETA1P); 
theta2diff = (THETA2D - THETA2P); 
theta3diff = (THETA3D - THETA3P); 
theta4diff = (THETA4D - THETA4P); 
theta5diff = (THETA5D - THETA5P); 

 
figure(1); 
plot(theta1diff,'x'); 
title('ANFIS for Joint 1: Prediction of Inverse 

Kinematics','fontsize',10) 
xlabel('No. of Data Set Points','fontsize',10) 
ylabel('error: e_1 = \theta_1_d - \theta_1_p','fontsize',10) 

 
figure(2); 
plot(theta2diff,'x'); 
title('ANFIS for Joint 2: Prediction of Inverse 

Kinematics','fontsize',10) 
xlabel('No. of Data Set Points','fontsize',10) 
ylabel('error: e_2 = \theta_2_d - \theta_2_p','fontsize',10) 

 
figure(3); 
plot(theta3diff,'x'); 
title('ANFIS for Joint 3: Prediction of Inverse 

Kinematics','fontsize',10) 
xlabel('No. of Data Set Points','fontsize',10) 
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ylabel('error: e_3 = \theta_3_d - \theta_3_p','fontsize',10) 

 
figure (4); 
plot(theta4diff,'x'); 
title('ANFIS for Joint 4: Prediction of Inverse 

Kinematics','fontsize',10) 
xlabel('No. of Data Set Points','fontsize',10) 
ylabel('error: e_4 = \theta_4_d - \theta_4_p','fontsize',10) 

 
figure(5); 
plot(theta5diff,'x'); 
title('ANFIS for Joint 1: Prediction of Inverse 

Kinematics','fontsize',10) 
xlabel('No. of Data Set Points','fontsize',10) 
ylabel('error: e_5 = \theta_5_d - \theta_5_p','fontsize',10) 

%-------------------------------------------------------------------% 

 
 

 

 

 

 

 


