

MODELING AND CONTROL OF 5DOF

ROBOTIC ARM USING NEURO-FUZZY

CONTROLLER

by

ABDUL WAHAB NADEEM BUTT
NUST201260407MSMME62112F

A thesis submitted to the

Department of Robotics and Intelligent Machine Engineering

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

ROBOTICS AND INTELLIGENT MACHINE ENGINEERING

Thesis Supervisor

DR. MOHSIN JAMIL

School of Mechanical and Manufacturing Engineering

National University of Science and Technology

Islamabad

2015

i

MODELING AND CONTROL OF 5DOF

ROBOTIC ARM USING NEURO-FUZZY

CONTROLLER

by

ABDUL WAHAB NADEEM BUTT
NUST201260407MSMME62112F

A thesis submitted to the

Department of Robotics and Intelligent Machine Engineering

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

IN

ROBOTICS AND INTELLIGENT MACHINE ENGINEERING

Thesis Supervisor

DR. MOHSIN JAMIL

School of Mechanical and Manufacturing Engineering

National University of Science and Technology

Islamabad

2015

ii

FORM TH-4

National University of Sciences & Technology

MASTER THESIS WORK

We hereby recommend that the dissertation prepared under our supervision by: Abdul

Wahab Nadeem Butt, Reg. No. NUST201260407MSMME62112F Titled:

Modeling and Control of 5DOF Robotic Arm using Neuro-Fuzzy Controller be

accepted in partial fulfillment of the requirements for the award of MS in Robotics and

Intelligent Machine Engineering degree with (grade)

Examination Committee Members

1. Name: _________________________ Signature: _______________

2. Name: _________________________ Signature: _______________

3. Name: _________________________ Signature: _______________

Co-Supervisor’s name: _________________ Signature: _______________

Supervisor’s name: ____________________ Signature: _______________

Date: ___________________

Head of Department

Date

COUNTERSINGED

Date:__________

Dean/Principal

iii

To my parents,

for their boundless care and support

To my wife,

for keeping my spirit alive

To my exuberant and curious son

for being a source of enchantment and aspiration

&

To my friends

for their never ending encouragement

iv

ACKNOWLEDGEMENTS

Al-Hamdulillah.

I would like to express my sincere gratitude to my thesis supervisor Dr. Mohsin Jamil

for his support, help and guidance throughout the course of this work and my studies.

I am highly obliged to my Guidance and Examination Committee members; Dr. Shahid

Ikramullah Butt, Dr. Syed Omer Gilani, and Dr. Umar Ansari for their sincere guidance

and cooperation.

I would like to thank department of Robotics and Intelligent Machine Engineering and

the head of the Department Dr. Yasar Ayaz, for facilitating me to complete my MS

degree.

I am especially grateful to my dearest friend, Adnan Hanif for all of his assistance,

advice and encouragement during this work. I am also grateful for my colleagues at

Mohammad Ali Jinnah University for being a delight to be around.

I would like to thank my family for their love and support throughout my life.

Special thanks to those who motivated and encouraged me to pursue higher studies.

v

DECLARATION

I hereby declare that this thesis is entirely and purely my own work and based on my

personal efforts and intellect under the guidance and supervision of my thesis

supervisor

Dr. Mohsin Jamil

All the sources used in this thesis are properly cited and no portion of this thesis is an

act of plagiarism. This work is purely done for the fulfillment of requirements for

aforementioned degree in respective department. No part of this thesis is submitted for

any other application for any degree or qualification in this or any other university,

degree awarding or non-degree awarding college or institute.

COPY RIGHT STATEMENT

• Copyright in a test of this thesis rests with the student author. Copies (by any

process) either in full, or of extracts, may be only in accordance with the instructions

given by author and lodged in the Library of SMME, NUST. Details may be obtained

by the librarian. This page must be part of any such copies made. Further copies (by

any process) of copies made in accordance with such instructions may not be made

without the permission (in writing) of the author.

• The ownership of any intellectual property rights which may be described in

this thesis is vested in SMME, NUST, subject to any prior agreement to the contrary,

and may not be made available for use by third parties without the written permission

of SMME, NUST which will describe the terms and conditions of any such agreement.

• Further information on the conditions under which disclosure and exploitation

may take place is available from the library of SMME, NUST, and Islamabad.

vi

ABSTRACT

Robotic Arms are considered essential components of any automation system. They

present considerably complicated electromechanical systems with mutual interactions

of robot mechanics and drives, at design of which the mechatronic approach should be

taken into consideration.

The modeling problem is necessary before applying control techniques to guarantee the

execution of any task according to a desired input with minimum error. The physical

modeling in the SimMechanics / SIMULINK environment facilitates simulation efforts

of such complex systems by seamless interfacing of ordinary Simulink block diagrams.

This is not only more intuitive, it also saves the time and effort in deriving the equations

of motion. Problem of Inverse Kinematics (IK) is solved using a machine learning

technique i.e. Adaptive Neuro-Fuzzy Inference System (ANFIS) in contrast with the

analytical solution. MATLAB, Simulink, SimMechanics and SolidWorks are used as

simulation platform.

This research will undertake the following five developmental stages; firstly, the

complete computer-aided design (CAD) model of a 5 DOF robotic arm is developed in

SolidWorks. In the second stage, the CAD model is to be converted into physical

modeling by using SimMechanics Link. Then, the ANFIS networks are trained to

compute the inverse kinematics of the robot arm. In the fourth stage, the research

intends to perform the simulation in which, the trajectory tracking of robot

manipulator’s end effector is considered as a test scenario. In last stage, the performance

parameters of implemented technique are studied i.e., residual plots, convergence plots,

comparison between the predicted results and analytical solution, analysis of trajectory

and dynamics of robotic arm, joint torque computation through SimMechanics.

vii

Table of Contents

ACKNOWLEDGEMENTS ... iv

DECLARATION .. v

ABSTRACT .. vi

List of Tables ... ix

List of Figures ... x

List of Abbreviations ..xii

Chapter 1 1

Introduction ... 1

1.1 System Overview ... 1

1.2 Problem Statement ... 2

1.3 Thesis Objective... 3

1.4 Thesis Outline .. 3

Chapter 2 5

Literature Review ... 5

Chapter 3 7

Computer Aided Design ... 7

3.1 CAD Model .. 7

3.2 SimMechanics Model .. 8

3.2.1 Introduction .. 8

3.2.2 CAD Import ... 8

3.2.3 Multibody Model of Robotic Arm ... 9

Chapter 4 12

Kinematics and Modeling ... 12

4.1 Kinematics ... 12

4.2 Forward Kinematics ... 12

4.2.1 Link-Frame Assignment .. 12

4.2.2 Frame Transformation ... 14

viii

4.2.3 Denavit—Hartenberg Parameters .. 15

4.3 Inverse Kinematics... 18

4.4 Differential Kinematics .. 23

4.5 DC Motor Modeling .. 25

Chapter 5 29

Adaptive Neuro-Fuzzy Inference System .. 29

5.1 Introduction .. 29

5.2 Artificial Neural Networks .. 29

5.3 Fuzzy Logic ... 31

5.4 Adaptive Neuro-fuzzy Learning .. 33

5.5 Data Clustering .. 35

Chapter 6 37

Simulation and Results ... 37

6.1 Robotics Toolbox ... 37

6.2 Workspace Sampling ... 38

6.3 ANFIS Implementation .. 39

6.3.1 Residual Plot of Training Data and Check Data 40

6.3.2 Prediction of Inverse Kinematics and Comparison 41

6.4 Robot Dynamics in Simulink / SimMechanics .. 44

6.4.1 Simulink / SimMechanics Model... 45

6.4.2 Simulation Results of Robot Dynamics ... 48

Chapter 7 56

Conclusion and Future Recommendations ... 56

References ... 57

Appendix A ... 63

Appendix B ... 64

ix

List of Tables

Table 1: DH Parameters for Dagu 5-DOF Robotic Arm ... 15

Table 2: Robotic Arm Joint Limits .. 19

Table 3: General Specifications of Hitec Servo Motors .. 28

Table 4: ANFIS Configuration Parameters for Solving Dagu 5DOF 40

x

List of Figures

Figure 1: Schematics of 5DOF Robotic Arm with Revolute Joints............................... 2

Figure 2: Assembled CAD model of Robotic Arm ... 7

Figure 3: CAD to SimMechanics Translation ... 8

Figure 4: SimMechanics Model of 5 DOF Robotic Arm .. 9

Figure 5: Rigid Body Subsystem ... 10

Figure 6: Multibody Model of Robotic Arm in SimMechanics Explorer 11

Figure 7: Links and Joints of Robot Manipulator .. 13

Figure 8: Robotic Arm Frame Assignment .. 14

Figure 9: Kinematic Loop .. 19

Figure 10: Plane of Robotic Arm ... 21

Figure 11: Circuit Diagram of an Armature Controlled DC Motor 26

Figure 12: Block Diagram for a DC Motor System ... 27

Figure 13: DC Motor Subsystem in Simulink using Simscape Library 28

Figure 14: Artificial Neural Network (ANN) .. 30

Figure 15: Artificial Neuron and Synapses .. 30

Figure 16: ANN Training Cycle .. 30

Figure 17: Components of a Fuzzy Logic System ... 31

Figure 18: Sugeno Type Inference ... 32

Figure 19: Output Surface Plot of Sugeno Type Inference.. 33

Figure 20: ANFIS Model Structure ... 34

Figure 21: ANFIS Editor ... 35

Figure 22: SerialLink Description of Dagu 5-DOF ... 37

Figure 23: Dagu 5-DOF in different poses .. 38

Figure 24: Workspace Sampling of Forward Kinematics.. 39

xi

Figure 25: Residual Plots of Training Data and Check Data 42

Figure 26: Model Validation of ANFIS networks for Dagu 5-DOF 43

Figure 27: Reference Trajectory for End-Effector ... 45

Figure 28: Simulink Model for Trajectory Tracking of Robotic Arm 46

Figure 29: Reference Trajectory Generated from Robotics Toolbox 47

Figure 30: Simulink Subsystem for Individual Joint Control 48

Figure 31: PID Controller Implementation in Simulink .. 48

Figure 32: Trajectory Tracking by Dagu 5-DOF Robotic Arm 49

Figure 33: Control Effort and Position Comparison for Joint Variable 𝜃1 50

Figure 34: Control Effort and Position Comparison for Joint Variable 𝜃2 51

Figure 35: Control Effort and Position Comparison for Joint Variable 𝜃3 52

Figure 36: Control Effort and Position Comparison for Joint Variable 𝜃4 53

Figure 37: Control Effort and Position Comparison for Joint Variable 𝜃5 54

Figure 38: Joint Torques Computation of Dagu 5-DOF .. 55

xii

List of Abbreviations

DOF Degree of Freedom

ANFIS Adaptive Neuro-Fuzzy Inference System

ANNs Artificial Neural Networks

IK Inverse Kinematics

FL Fuzzy Logic

FIS Fuzzy Inference System

MF Membership Function

FCM Fuzzy C-Means

CAD Computer Aided Design

DH Denavit-Hartenberg

XML Extensible Markup Language

PID Proportional, Integral, Derivative

LQR Linear Quadratic Regulator

SCARA Selective Compliance Assembly Robot Arm

PUMA Programmable Universal Machine for Assembly

DC Direct Current

emf Electromotive Force

Ref Reference

1

Chapter 1

Introduction

In recent years, the industrial automation and computer-aided manufacturing (CAM)

has been revolutionized by the deployment of sophisticated robot arms / manipulators.

It is now a norm to see robot manipulators being used for welding, painting, fabricating,

inspecting and repairing different machines and components. This rapid integration of

robotic arms into wide variety of industrial environments and other commercial

activities is due to their high accuracy, speed and cost effectiveness. For their swift and

seamless operation, modeling and analysis of robot manipulators and applying

intelligent control techniques are very important aspects in robotics field of study.

Functionality and performance of manipulators can be further enhanced by introducing

advanced machine learning methodologies such as neural networks, fuzzy logic and

hybrid neuro-fuzzy techniques. This combination is regarded as Intelligent Systems

which is great source of inspiration and motivation for engineers in design field.

1.1 System Overview

Mechanical structure is considered as a key distinction between different robot types.

Robots with fixed base are classified as robot manipulators. The fundamental structure

of a manipulator is the serial or open kinematic chain. A manipulator is a sequence of

rigid bodies called links attached to each other by means of articulations (joints). In an

open chain mechanism, each joint accounts for a single degree of freedom (DOF) of the

structure. The joints can be of two types: revolute (rotary motion) and prismatic (linear

motion). Any manipulator can be characterized by its three main components: an arm

that defines mobility, a wrist that warrants its dexterity, and an end-effector that

performs the desired task required of the robot.

The robotic arm studied in this thesis is a five DOF articulated type [1] manipulator

comprising of revolute joints. Dagu 5-DOF robotic arm [2] is selected as a case study,

since it presents a simple inexpensive and a good example of robot manipulator which

2

is suitable for educational purposes. Figure 1 shows the schematic diagram of Dagu

robotic arm with five DOF.

Figure 1: Schematics of 5DOF Robotic Arm with Revolute Joints

1.2 Problem Statement

Study of robotic arms is relatively a young field of multidisciplinary technology. Robot

arm is considered as a complex electromechanical systems which involves interactions

between robot mechanics and electric drives [3] and requires knowledge from the

domains of electrical, mechanical and computer engineering. So a mechatronic

approach is required to be taken into consideration for the design and control of such

complicated system. The essential problem in controlling robots is to make the

manipulator follow a desired trajectory. In general, number of degree of freedom (DOF)

of a robot manipulator is equivalent to number of nonlinear, dynamic, coupled

differential equations [1]. When designing the control of manipulator, complete

mathematical model is required to compute necessary torques and angle of rotation of

each motor is to move the end effector of robotic arm on a desired trajectory. Although,

accurate mathematical models exist to solve this inverse dynamics task for simpler

robotic systems with fewer DOF, but in general, these analytical models gets more

elusive to provide a unique solution with increasing number of DOF. Thus, researchers

look for intelligent learning techniques as an alternate to solve the problem of robot

dynamics. Neural networks and fuzzy systems [4] (neuro-fuzzy systems, in general) are

raising more and more interest in the field of real-time control thanks to their superior

performance, non-linear characteristics, the capability of learning from examples, the

adaptation capability, etc.

3

1.3 Thesis Objective

The main objective of this thesis is to solve the inverse kinematics problem of a five

DOF robotic arm using adaptive neuro fuzzy inference system (ANFIS) [5]. Following

points summarize the objective of this thesis work:

 To develop a 3D CAD model of robotic arm in SolidWorks®

 To represent the robotic arm in SimMechanics™ simulation environment as a

multibody system

 To derive a complete mathematical model for the forward kinematics and

inverse kinematics of robotic arm

 To develop mathematical model of motor actuators for different joints of robotic

arm in both time domain and frequency domain.

 To generate a desired end-effector’s trajectory by applying path planning

algorithm.

 To implement ANFIS for predicting the inverse kinematics of robotic arm

moving on a desired trajectory

 To simulate the dynamic behavior of robotic arm along with actuator motors in

SimMechanics™ for calculating the velocity kinematics and joint torques.

 To apply PID based classical control technique to track the movement of the

end-effector on desired trajectory

1.4 Thesis Outline

This thesis is comprised of seven chapters containing introduction, literature review,

computer aided design, forward and inverse kinematics mathematical modeling,

adaptive neuro-fuzzy inference system, simulation and results, conclusion and future

work followed by the references and MATLAB scripts. A brief description of each

chapter is as followed:

Chapter 1 provides the basic introduction, system overview and problem statement of

the thesis.

In Chapter 2, literature review relevant to the research conducted in this thesis is

discussed. An effort has been made to gather as much relevant information as possible,

with the available resources, to comprehensively present the work done in the field of

4

forward and inverse kinematics for serial manipulators and application of adaptive

learning algorithms.

Chapter 3 is dedicated to the computer aided modeling of Dagu 5-DOF robotic arm

using SolidWorks® CAD software. The importing process of CAD model into

SimMechanics explorer and different aspects of SimMechanics environment are also

briefly discussed here.

Chapter 4 describes the mathematics of robotic manipulators and formulation of

forward and inverse kinematics. It highlights the role of Denavit-Hartenberg parameters

in mathematical modeling of robotic arm and explains the mechanics of mapping the

joint space into Cartesian space and vice-versa.

Chapter 5 discuss the adaptive neuro-fuzzy inference system methodology and steps

involved in developing the ANFIS networks to tackle the problem of inverse kinematics

in serial manipulators the multiple DOF. The important aspects of ANFIS

implementation like, generating the data samples, training and testing of ANFIS

networks and rule base deduction are also the part of this chapter. The residual / error

plots and test results comparison are also integrated into this chapter.

Simulations carried out and the subsequent results are presented in Chapter 6. Complete

Simulink model along with its subsystems, and their integration with SimMechanics

model, required to carry out the necessary simulations are presented here. Trajectory

tracking functionality has also been evaluated to get the idea in a broader sense.

The thesis is finally concluded in Chapter 7 with future recommendations and

references.

5

Chapter 2

Literature Review

Industrial robots usually have simplified geometric parameters such as intersecting or

parallel joints to reduce kinematic computations.[6], [7] Obtaining the forward and

inverse kinematics of the industrial robots like Puma 560, Motoman L-3, Kuka KR

robot and SCARA manipulators has been the main concern in field of robotics [8]–[15].

Particularly for the inverse kinematics, the complexity of the solution escalates with

increasing robot’s degree of freedom.

Traditional methods for computing the inverse kinematics have certain drawbacks. It is

very difficult to find a closed form solution for algebraic method [16], in case of robot

manipulator with DOF greater than three, geometric method [17] puts the constraint

that the manipulator must have a geometric closed form solution for the first three

joints, while the iterative method [18] converges to a particular solution depending on

the starting conditions and fails to work near singularities. In general these methods

turn to be numerically complex and cumbersome.

To overcome the difficulties and complexities of explicit mathematical modeling for

robot kinematics, in recent years the focus has been shifted towards more ingenious

techniques like adaptive neuro-fuzzy inference system[19]. [20]–[26] addresses the

kinematics of robotic manipulators having three or less DOF using learning techniques

like neural networks, fuzzy logic and ANFIS. For industrial robots with our degree of

freedoms, like SCARA, neural network approach is opted in [27] while the neuro-fuzzy

methodology is used in [28], [29]. Kinematics of Puma 560 and its other variants has

been solved using neuro-fuzzy inference in [30], [31].

A large amount of research literature available online that discusses the kinematics

analysis of industrial and high-end robots. But the same is not the case for the low cost,

educational robots, like Dagu 5-DOF, which presents a huge opportunity for the young

researchers to explore their kinematics, dynamics and analyze their behavior. Some of

these low cost robots have also been subjected to various adaptive learning techniques

as presented in [32], [33], but the literature is not rich enough.

6

SimMechanics and Simulink facilitates the dynamic simulation of robotic manipulators

and reduces the mathematical modeling and computation significantly. These software

environments are also being deployed for model validation and performance

evaluations [34]–[37]. But with each upgraded version of the software every year, the

capabilities of performing forward and inverse kinematics and dynamic analysis of

robot manipulators are enhancing. So this requires much of the deserved attention and

further advancement in research and development. For the sole purpose of highlighting

these capabilities, SimMechanics and Simulink is integrated in the core architecture of

this thesis.

7

Chapter 3

Computer Aided Design

3.1 CAD Model

The basic CAD model based on Dagu 5-DOF robotic arm is drawn in SolidWorks®.

The SolidWorks® CAD software is a mechanical design automation application which

uses component based 3D design approach [38]. Each link is modeled separately as part

file and then assembled into a complete model. Figure 2 shows the assembled model of

robotic arm in CAD platform. The fully dimensioned, detailed drawing of robotic arm

is given in Appendix A.

Figure 2: Assembled CAD model of Robotic Arm

8

3.2 SimMechanics Model

3.2.1 Introduction

Simulink® with SimMechanics™ software uses a block-diagram schematic approach for

modeling control systems around mechanical devices. SimMechanics is a multibody

simulation environment for 3D mechanical systems, such as robots, mechanisms and

vehicle components. The multibody system in SimMechanics is modeled using blocks

representing bodies, joints, constraints, and force elements. SimMechanics then

formulates and solves the equations of motion for the modeled system. Models from

CAD systems, including mass, inertia, joint, constraint, and 3D geometry, can be

imported into SimMechanics. An automatically generated 3D animation helps to

visualize the system dynamics [39].

3.2.2 CAD Import

CAD assembly can be translated into SimMechanics model (as shown in Figure 3) for

simulation and analysis using SimMechanics Link which automatically bridges the gap

between geometric modeling and block diagram modeling. CAD assembly is converted

into SimMechanics model in two steps:

i. Exporting CAD assemblies into physical modeling XML

ii. Importing physical modeling XML to generate SimMechanics models

Figure 3: CAD to SimMechanics Translation

The first translation step creates an intermediate physical modeling XML file from

CAD assembly. The XML file captures the mass and inertia of each part in the assembly

and the constraint definitions between parts. The graphics files capture the body

geometries of the assembly parts. The second translation step imports the XML to

generate the SimMechanics model. The XML representations of parts and constraints

become bodies and joints in a SimMechanics model.

9

3.2.3 Multibody Model of Robotic Arm

Figure 4 shows the block diagram of 5 DOF robotic arm as multibody system. This

model contains rigid body subsystem blocks to represent robot base, links and gripper.

The model also contains six revolute joint blocks for actuation, a world frame that

provides reference for all other rigid transform blocks. A mechanism configuration

defines the gravity vector in the model. A transform sensor is attached with the robotic

arm kinematic chain to observe the position and orientation of end-effector in world

coordinate system.

Figure 4: SimMechanics Model of 5 DOF Robotic Arm

Each rigid body subsystem contains solid element blocks which store geometrical,

inertial and graphical information of rigid bodies and their spatial relationship as shown

in Figure 5 for a particular link of robotic arm.

10

Figure 5: Rigid Body Subsystem

The SimMechanics Explorer automatically creates the 3D visualization model and

animates the results from multiple views simultaneously during simulations. The

completely rendered model of Dagu 5-DOF robotic arm in SimMechanics Explorer

environment is shown in Figure 6.

11

Figure 6: Multibody Model of Robotic Arm Displayed in 3D Animation in

SimMechanics Explorer

12

Chapter 4

Kinematics and Modeling

4.1 Kinematics

Kinematics is the study of motion of a body without taking into account the dynamics

i.e. forces and moments that cause the motion. Basically, it is the study of position,

velocity and acceleration and other higher order derivatives of position with respect to

time or any other variables [40]. The problem is further divided into two parts: forward

kinematics and inverse kinematics.

4.2 Forward Kinematics

Forward kinematics problem is to determine the position and orientation of the

manipulator’s end-effector (with reference to a fixed base) in Cartesian space while

knowing the values of different joint variables. Robot manipulators are meant to move

parts and tools around in space which naturally leads to representing the location of

parts, tools and robot mechanism itself. For the purpose of mathematically representing

the location of these items, coordinate frames are assigned to these bodies and mapping

of these coordinate frames is established with reference to one another. So the forward

kinematics problem can be rephrased as to determine a transformation function that

maps the frame attached to one link in terms of the frame attached to another link. Then

these transformation functions are concatenated to solve for the position and orientation

of last frame with respect to fixed world (reference) frame.

4.2.1 Link-Frame Assignment

A manipulator is a set of links connected in a serial chain by means of joints. The links

are numbered as ‘link 0’ to ‘link n’ starting from the fixed base to the free end of a

robotic arm. While the joints are numbered from ‘joint 1’ to joint n’ for ‘n’ degree of

freedom robotic arm. Figure 7 shows different links and joints of Dagu 5-DOF robotic

arm. In manipulator’s terms, kinematics establish the relationship of these joint

variables with the location (position and orientation) of these links.

13

(a) Isometric View of Dagu 5-DOF

(b) Side View of Dagu 5-DOF

Figure 7: Links and Joints of Robot Manipulator (a) Isometric View (b) Side View

In order to describe the location of each link relative to its neighbours, reference frames

are attached with various parts of the mechanism and their change in location is studied

14

as the mechanism actuates. The link frames are named by number according to the link

to which they are attached. That is, frame {𝑖} is attached rigidly to link i. Figure 8 shows

the frame assignment of Dagu 5-DOF robotic arm.

Figure 8: Robotic Arm Frame Assignment

4.2.2 Frame Transformation

A general tool to mathematically represent the description of one frame with respect to

another frame is known as Homogeneous Transform. It is a 4x4 matrix which contains

the position and orientation information of the frames. The description of frame {𝐵}

with respect to frame {𝐴} is expressed as:

𝑇𝐵
𝐴 = [

𝑅𝐵
𝐴

0 0 0
 |

𝑃𝐵𝑂𝑅𝐺
𝐴

1
] (4.1)

Where, 𝑻𝑩
𝑨 is a 4x4 homogeneous transformation matrix 𝑹𝑩

𝑨 is a 3x3 rotation matrix,

which describes the orientation of frame {𝐵} relative to frame {𝐴} and 𝑷𝑩𝑶𝑹𝑮
𝑨 is a 3x1

position vector, which locates the origin of frame {𝐵} in frame {𝐴}.

15

4.2.3 Denavit—Hartenberg Parameters

Four parameters known as Denavit—Hartenberg (DH) parameters [41] are

associated to each link to fully define the kinematics of any robot manipulator. Using

conventions defined in [40] for assigning frames to links, the modified DH parameters

are defined as:

Link twist: 𝑎𝑖 = the distance from �̂�𝑖 to �̂�𝑖+1 measured along �̂�𝑖

Link length: 𝛼𝑖 = the angle from �̂�𝑖 to �̂�𝑖+1 measured about �̂�𝑖

Link offset: 𝑑𝑖 = the distance from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖

Joint angle: 𝜃𝑖 = the distance from �̂�𝑖−1 to �̂�𝑖 measured along �̂�𝑖

The DH parameters for Dagu 5-DOF robotic arm using the frame assignments as shown

in Figure 8 are listed below in Table 1.

Table 1: DH Parameters for Dagu 5-DOF Robotic Arm

i αi-1 ai-1 di θi

1 0 0 d1 = 93mm θ1

2 90° 0 0 θ2

3 0 a2 = 80mm 0 θ3

4 0 a3 = 81mm 0 θ4

5 90° 0 d5 = 195mm θ5

The transformation matrix 𝑻𝒊
𝒊−𝟏 that describes the frame {𝑖} relative to frame {𝑖 − 1}

can be defined in terms of four above mentioned DH parameters as

𝑇𝑖
𝑖−1 = 𝑅𝑋(𝛼𝑖−1)𝐷𝑋(𝑎𝑖−1)𝑅𝑍(𝜃𝑖)𝐷𝑍(𝑑𝑖) (4.2)

Where,

𝑅𝑋(𝛼𝑖−1) = [

1 0 0 0
0 𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 0
0 𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 0
0 0 0 1

] (4.3)

16

𝐷𝑋(𝑎𝑖−1) = [

1 0 0 𝑎𝑖−1

0 1 0 0
0 0 1 0
0 0 0 1

] (4.4)

𝑅𝑍(𝜃𝑖) = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 0
𝑠𝜃𝑖 𝑐𝜃𝑖 0 0
0 0 1 0
0 0 0 1

] (4.5)

𝐷𝑍(𝑑𝑖) = [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑖

0 0 0 1

] (4.6)

Here, 𝑐𝜃𝑖 is shorthand for cos 𝜃𝑖, 𝑠𝜃𝑖 for sin 𝜃𝑖 and so on. This shows that the

transformation matrix 𝑇𝑖
𝑖−1 is a product of four sub-transforms. Where each sub-

transform matrix is function of one link parameter only. Multiplying out each of these

transforms in Equation (4.2) to obtain the general form of 𝑇𝑖
𝑖−1 :

𝑇𝑖
𝑖−1 = [

𝑐𝜃𝑖 −𝑠𝜃𝑖 0 𝑎𝑖−1

𝑠𝜃𝑖𝑐𝛼𝑖−1 𝑐𝜃𝑖𝑐𝛼𝑖−1 −𝑠𝛼𝑖−1 −𝑠𝛼𝑖−1𝑑𝑖

𝑠𝜃𝑖𝑠𝛼𝑖−1 𝑐𝜃𝑖𝑠𝛼𝑖−1 𝑐𝛼𝑖−1 𝑐𝛼𝑖−1𝑑𝑖

0 0 0 1

] (4.7)

Once the individual link-transformation matrices have been computed using the DH

parameters, the forward kinematic equations of the robot manipulator is

straightforward. These link transformations matrices are then multiplied to each other

to find the final transformation matrix 𝑇𝑁
0 , that relates the position and orientation of

the end effector’s frame {𝑁} with respect to the fixed frame or base frame {0}:

𝑇𝑁
0 = 𝑇1

0 𝑇2
1 … 𝑇𝑁

𝑁−1 (4.8)

 The final transformation matrix 𝑇𝑁
0 is function of all n joint variables. For Dagu 5-DOF

robotic arm, the individual link transformation matrices are computed using Equation

(4.7) and Table 1, as follows:

𝑇1
0 = [

𝑐1 −𝑠1 0 0
𝑠1 𝑐1 0 0
0 0 1 𝑑1

0 0 0 1

] (4.9)

17

𝑇2
1 = [

𝑐2 −𝑠2 0 0
0 0 −1 0
𝑠2 𝑐2 0 0
0 0 0 1

] (4.10)

𝑇3
2 = [

𝑐3 −𝑠3 0 𝑎2

𝑠3 𝑐3 0 0
0 0 1 0
0 0 0 1

] (4.11)

𝑇4
3 = [

𝑐4 −𝑠4 0 𝑎3

𝑠4 𝑐4 0 0
0 0 1 0
0 0 0 1

] (4.12)

𝑇5
4 = [

𝑐5 −𝑠5 0 0
0 0 −1 −𝑑5

𝑠5 𝑐5 0 0
0 0 0 1

] (4.13)

Here, 𝑐1 is shorthand for cos(𝜃1), 𝑠1 for sin(𝜃1) and so on.Using Equation (4.8), the

link transformations above are multiplied to find the final transformation matrix that

relates the frame {5} of end-effector to fixed base frame {0} of the robotic arm:

𝑇5
0 = 𝑇(𝜃1)1

0 𝑇(𝜃2)2
1 𝑇(𝜃3)3

2 𝑇(𝜃4)4
3 𝑇(𝜃5)5

4 = [

𝑟11 𝑟12 𝑟13 𝑝𝑥

𝑟21 𝑟22 𝑟23 𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧

0 0 0 1

] (4.14)

Equation (4.14) consists mainly of two components: a 3x3 rotation matrix which

determines the orientation of the end-effector relative to the base and a 3x1

displacement vector which defines the position of end-effector relative to the base:

𝑅5
0 = [

𝑟11 𝑟12 𝑟13

𝑟21 𝑟22 𝑟23

𝑟31 𝑟32 𝑟33

] (4.15)

and

𝑃5
0 = [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] (4.16)

here,

𝑟11 = 𝑐1𝑐234𝑐5 + 𝑠1𝑠5

𝑟12 = −𝑐1𝑐234𝑠5 + 𝑠1𝑐5

18

𝑟13 = 𝑐1𝑠234

𝑟21 = 𝑠1𝑐234𝑐5 − 𝑐1𝑠5

𝑟22 = −𝑠1𝑐234𝑠5 − 𝑐1𝑐5

𝑟23 = 𝑠1𝑠234

𝑟31 = 𝑠234𝑐5

𝑟32 = −𝑠234𝑠5

𝑟33 = −𝑐234

𝑝𝑥 = (𝑎2𝑐2 + 𝑎3𝑐23 + 𝑑5𝑠234)𝑐1

𝑝𝑦 = (𝑎2𝑐2 + 𝑎3𝑐23 + 𝑑5𝑠234)𝑠1

𝑝𝑧 = 𝑑1 + 𝑎2𝑠2 + 𝑎3𝑠23 − 𝑑5𝑐234 (4.17)

Where, 𝑐23 is shorthand for cos(𝜃2 + 𝜃3), 𝑠234 for sin(𝜃2 + 𝜃3 + 𝜃4) and so on. These

are the basic equations for all kinematic analysis of Dagu 5-DOF robotic arm.

4.3 Inverse Kinematics

Inverse kinematics problem is to determine the set of joint angles in order to achieve a

desired position and orientation of the manipulator’s end-effector (with reference to a

fixed base) in Cartesian space. The inverse kinematics problem can be interpreted as

computing joint space description of the robotic arm with knowledge of the Cartesian

space description of its end-effector as shown in Figure 9. The inverse kinematic

solution of a manipulator is a more difficult due to its non-linear and transcendental

nature.

19

Figure 9: Kinematic Loop

For Dagu 5-DOF robotic arm this IK problem is to solve for the five joint angles 𝜃1 to

𝜃5 for given set of numerical values of all sixteen elements of the final transformation

matrix 𝑇5
0 in Equation (4.14). Normally, there is no unique analytical solution to a

particular goal location for a robotic arm with five DOF. The number of solutions

depends on the number of joint variables, link parameters (𝑎𝑖 , 𝛼𝑖−1, 𝑑𝑖 and 𝜃𝑖) and the

allowable range ranges of motion of the joints. The allowable ranges of various joints

of Dagu 5-DOF are discussed in Table 2 below:

Table 2: Robotic Arm Joint Limits

Joint Joint Limits (radians)

1
−

3𝜋

4
≤ 𝜃1 ≤

3𝜋

4

2 0 ≤ 𝜃2 ≤ 𝜋

3
−

3𝜋

4
≤ 𝜃3 ≤

3𝜋

4

4 −
𝜋

2
≤ 𝜃4 ≤

𝜋

2

5 −𝜋 ≤ 𝜃5 ≤ 𝜋

20

There are two basic approaches namely, geometric and algebraic to find the analytical

solution of the inverse kinematics problem. We have used combination of both the

approaches to find the analytical solution of Dagu 5-DOF robotic arm as follow:

To solve for first joint variable 𝜃1, Equation (4.14) is rearranged as

[𝑇(𝜃1)1
0]−1 𝑇5

0 = 𝑇(𝜃2)2
1 𝑇(𝜃3)3

2 𝑇(𝜃4)4
3 𝑇(𝜃5)5

4 (4.18)

By using transform arithmetic,

[𝑇(𝜃1)1
0]−1 𝑇5

0 = 𝑇0
1 𝑇5

0 = 𝑇5
1 (4.19)

Where,

𝑇5
1 = 𝑇(𝜃2)2

1 𝑇(𝜃3)3
2 𝑇(𝜃4)4

3 𝑇(𝜃5)5
4 (4.20)

Inverting 𝑇1
0 , we can write (4.19) as

[

𝑐1 𝑠1 0 0
−𝑠1 𝑐1 0 0
0 0 1 −𝑑1

0 0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑝𝑥

𝑟21 𝑟22 𝑟23 𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧

0 0 0 1

] =

[

𝑟1
11 𝑟1

12 𝑟1
13 𝑝1

𝑥

𝑟1
21 𝑟1

22 𝑟1
23 𝑝1

𝑦

𝑟1
31 𝑟1

32 𝑟1
33 𝑝1

𝑧

0 0 0 1]

(4.21)

Equating right hand side of Equation (4.21) using (4.20),

[

𝑐1𝑟11 + 𝑠1𝑟21 𝑐1𝑟12 + 𝑠1𝑟22 𝑐1𝑟13 + 𝑠1𝑟23 𝑐1𝑝𝑥 + 𝑠1𝑝𝑦

−𝑠1𝑟11 + 𝑐1𝑟21 −𝑠1𝑟12 + 𝑐1𝑟22 −𝑠1𝑟13 + 𝑐1𝑟23 −𝑠1𝑝𝑥 + 𝑐1𝑝𝑦

𝑟31 𝑟32 𝑟33 𝑝𝑧 − 𝑑1

0 0 0 1

]

=

[

𝑟1
11 𝑟1

12 𝑠234 𝑝1
𝑥

−𝑠5 −𝑐5 0 0

𝑟1
31 𝑟1

32 −𝑐234 𝑝1
𝑧

0 0 0 1]

(4.22)

Equating elements (2, 4) on both sides of Equation (4.22),

−𝑠1𝑝𝑥 + 𝑐1𝑝𝑦 = 0

𝜽𝟏 = 𝑨𝒕𝒂𝒏𝟐(𝒑𝒚 , 𝒑𝒙) (4.23)

Now that 𝜃1 is known, left hand side of Equation (4.22) is known. So, by equating

elements (2, 1) and (2, 2) on both sides of this equation, joint variable 𝜃5 can be

computed as

21

𝑠1𝑟11 − 𝑐1𝑟21 = 𝑠5

𝑠1𝑟12 − 𝑐1𝑟22 = 𝑐5

𝜽𝟓 = 𝑨𝒕𝒂𝒏𝟐(𝒔𝟏𝒓𝟏𝟏 − 𝒄𝟏𝒓𝟐𝟏, 𝒔𝟏𝒓𝟏𝟐 − 𝒄𝟏𝒓𝟐𝟐) (4.24)

Also, by equating elements (1, 3) and (2, 3) of Equation (4.22) we get another useful

result:

𝑐1𝑟13 + 𝑠1𝑟23 = 𝑠234

𝑟33 = −𝑐234

𝜃234 = 𝐴𝑡𝑎𝑛2(𝑐1𝑟13 + 𝑠1𝑟23, −𝑟33) (4.25)

Here,

𝜃234 = 𝛾 = 𝜃2 + 𝜃3 + 𝜃4 (4.26)

To solve for individual 𝜃2, 𝜃3 and 𝜃4, we used geometric approach [17]. Figure 10

shows plane of Dagu 5-DOF robotic arm with point 𝐴 at joint axis 2, point 𝐵 at joint

axis 3 and point 𝐶 at joint axis 4.

Figure 10: Plane of Robotic Arm

where,

22

𝑙 = √𝑙𝑟
2 + 𝑙𝑧

2

𝑙𝑟 = 𝑟 − 𝑑5𝑐𝛾

𝑟 = √𝑝𝑥
2 + 𝑝𝑦

2

𝑙𝑧 = 𝑝𝑧 − 𝑑1 − 𝑑5𝑠𝛾

𝛼 = 𝐴𝑡𝑎𝑛2(𝑙𝑧 , 𝑙𝑟) (4.27)

 Using law of cosines, ∠𝐴𝐵𝐶 is solved for joint variable 𝜃3:

𝑙2 = 𝑎2
2 + 𝑎3

2 − 2𝑎2𝑎3 cos(180 − 𝜃3)

𝑙2 = 𝑎2
2 + 𝑎3

2 + 2𝑎2𝑎3𝑐3

𝑐3 =
𝑙2 − 𝑎2

2 − 𝑎3
2

2𝑎2𝑎3

𝑠3 = ±√1 − c3
2

𝜽𝟑 = 𝑨𝒕𝒂𝒏𝟐(𝒔𝟑 , 𝒄𝟑) (4.28)

Equation (4.28) leads to two different possible solution of joint variable 𝜃3,

corresponding to plus or minus sign for 𝑠3.

To solve for joint variable 𝜃2,

𝑙 cos 𝛽 = 𝑎2 + 𝑎3𝑐3

𝑙 sin 𝛽 = 𝑎3𝑠3

𝛽 = 𝐴𝑡𝑎𝑛2(𝑎3𝑠3 , 𝑎2 + 𝑎3𝑐3) (4.29)

The elbow up or elbow down configuration of robotic arm leads to two possible

solutions of 𝜃2 based on the following geometric information:

𝜃2 = 𝛼 ± 𝛽

Combining Equation (4.27) and (4.29) we can write above equation as

𝜽𝟐 = 𝑨𝒕𝒂𝒏𝟐(𝒍𝒛 , 𝒍𝒓) ± 𝑨𝒕𝒂𝒏𝟐(𝒂𝟑𝒔𝟑 , 𝒂𝟐 + 𝒂𝟑𝒄𝟑) (4.30)

Now that 𝜃2 and 𝜃3 are known, 𝜃4 is computed using Equation (4.26) as:

23

𝜽𝟒 = 𝜸 − 𝜽𝟐 − 𝜽𝟑 (4.31)

Equation (4.23), (4.24), (4.28), (4.30) and (4.31) are the desired results of inverse

kinematics of Dagu 5-DOF robotic arm.

4.4 Differential Kinematics

In order to analyze and control the motion of manipulator and for smooth trajectory

planning of the end-effector, linear and angular velocities of robotic arm are necessary

along with the position analysis done in the previous sections. Since a robotic

manipulator is a series of links, each one capable of motion relative to its neighbours,

therefore velocity of each link is needed to be computed in a particular order, starting

from the base frame {0}. For revolute joints, Equation (4.32) and (4.33) illustrates the

computation of each link’s linear (�̇�) and angular (�̇�) velocities in terms of joint

velocities �̇� with respect to origin of each links’ attached frame.

𝜔𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 𝜔𝑖
𝑖 + �̇�𝑖+1 �̂�𝑖+1

𝑖+1 (4.32)

𝑣𝑖+1
𝑖+1 = 𝑅𝑖

𝑖+1 (𝑣𝑖
𝑖 + 𝜔𝑖

𝑖 × 𝑃𝑖+1
𝑖) (4.33)

By applying these equations from link to link, 𝑣𝑛
𝑛 and 𝜔𝑛

𝑛 for the last link {𝑛} are

computed. The further mapping between the joint velocities �̇�, and linear (�̇�) and

angular (�̇�) velocities of end-effector is defined by a Jacobian matrix illustrated in

Equation (4.34).

𝑉 = 𝐽(Θ)Θ̇ (4.34)

where, 𝑉 is 6x1 vector of linear and angular velocities of a link represented as

𝑉 = [
𝑣
𝜔

]

Jacobian is a multidimensional form of derivatives. Jacobian of any dimension (even

non-square) can be defined. The number of rows of a Jacobean defines the number of

degree of freedom in Cartesian space, normally six (x, y, z, roll (α), pitch (β) and yaw

(γ)) and the number of columns defines the number of joints (DOF) of robotic

manipulator. Equation (4.35) shows the Jacobian matrix of dimension 6x5 for the Dagu

5-DOF robotic arm.

24

𝐽(Θ) = [𝐽1 𝐽2 𝐽3 𝐽4 𝐽5] =

[

𝜕𝑥

𝜕𝜃1

𝜕𝑥

𝜕𝜃2

𝜕𝑥

𝜕𝜃3

𝜕𝑥

𝜕𝜃4

𝜕𝑥

𝜕𝜃5

𝜕𝑦

𝜕𝜃1

𝜕𝑦

𝜕𝜃2

𝜕𝑦

𝜕𝜃3

𝜕𝑦

𝜕𝜃4

𝜕𝑦

𝜕𝜃5

𝜕𝑧

𝜕𝜃1

𝜕𝑧

𝜕𝜃2

𝜕𝑧

𝜕𝜃3

𝜕𝑧

𝜕𝜃4

𝜕𝑧

𝜕𝜃5

𝜕𝛼

𝜕𝜃1

𝜕𝛼

𝜕𝜃2

𝜕𝛼

𝜕𝜃3

𝜕𝛼

𝜕𝜃4

𝜕𝛼

𝜕𝜃5

𝜕𝛽

𝜕𝜃1

𝜕𝛽

𝜕𝜃2

𝜕𝛽

𝜕𝜃3

𝜕𝛽

𝜕𝜃4

𝜕𝛽

𝜕𝜃5

𝜕𝛾

𝜕𝜃1

𝜕𝛾

𝜕𝜃2

𝜕𝛾

𝜕𝜃3

𝜕𝛾

𝜕𝜃4

𝜕𝛾

𝜕𝜃5]

 (4.35)

Here,

𝐽1 =

[

−𝑠1𝑐234𝑑5 − 𝑠1𝑐23𝑎3 − 𝑠1𝑐2𝑎2

𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3 + 𝑐1𝑐2𝑎2

0
0
0
1]

𝐽2 =

[

−𝑠1𝑐234𝑑5 − 𝑠1𝑐23𝑎3 − 𝑠1𝑐2𝑎2

𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3 + 𝑐1𝑐2𝑎2

0
0
0
1]

𝐽3 =

[

−𝑐1(𝑠234𝑑5 + 𝑠23𝑎3 + 𝑠2𝑎2)
−𝑠1(𝑠234𝑑5 + 𝑠23𝑎3 + 𝑠2𝑎2)

𝑠1(𝑠1𝑐234𝑑5 + 𝑠1𝑐23𝑎3 + 𝑠1𝑐2𝑎2) + 𝑐1(𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3 + 𝑐1𝑐2𝑎2)
𝑠1

𝑐1

0]

𝐽4 =

[

−𝑐1(𝑠234𝑑5 + 𝑠23𝑎3)
−𝑠1(𝑠234𝑑5 + 𝑠23𝑎3)

𝑠1(𝑠1𝑐234𝑑5 + 𝑠1𝑐23𝑎3) + 𝑐1(𝑐1𝑐234𝑑5 + 𝑐1𝑐23𝑎3)
𝑠1

𝑐1

0]

25

𝐽5 =

[

𝑐1𝑠234𝑑5

𝑠1𝑠234𝑑5

𝑐234𝑑5

𝑠1

𝑐1

0]

The inverse of the problem stated in Equation (4.34) is to determine the joint variable

velocities �̇� for a known set of velocities of end-effector. This is more interesting from

robotic manipulator’s perspective, since in practicality, the desired trajectory on which

the end-effector is tasked to move is known in advance and the goal is to compute the

respective joint trajectories which will result in this controlled motion. Perhaps, it is

also surprising that inverse velocity relationship is simpler than the inverse position

kinematics problem. When the Jacobian is square and non-singular matrix then the

inverse problem can be simply solved by inverting the Jacobean matrix as:

Θ̇ = 𝐽(Θ)−1𝑉 (4.36)

For Dagu 5-DOF or other manipulators that don’t have a square Jacobean, the inversion

is either done by pseudo inverse of 𝐽 or using the integration techniques on Equation

(4.36).

4.5 DC Motor Modeling

DC motor is a common actuator device that delivers energy to the load. DC motors

have numerous control applications in robotic manipulators due to their well-behaved

speed-torque characteristics and controllability. The DC motor works on the principle

that a current 𝑖 carrying conductor in a magnetic field 𝜙 experiences a Force 𝑓 = 𝑖 ×

𝜙. In a permanent magnet DC Motor as shown in Figure 11, whose stator consists of a

permanent magnet and thus has a constant flux 𝜙, the torque 𝜏𝑚 on the rotor is

controlled only by controlling the armature current 𝑖𝑎 as:

𝜏𝑚 = 𝐾𝑡𝑖𝑎 (4.37)

where 𝐾𝑡 is the torque constant. In addition, whenever a conductor while moving cuts

through a magnetic field, a voltage 𝑣𝑏, called back emf, is generated across its

terminals.

𝑣𝑏 = 𝐾𝑒�̇� = 𝐾𝑒

𝑑𝜃

𝑑𝑡
 (4.38)

26

where 𝐾𝑒 is the back emf constant. Consider the schematic diagram of the Figure 11

where

Figure 11: Circuit Diagram of an Armature Controlled DC Motor

𝑣𝑎(𝑡) = armature voltage

𝑖𝑎(𝑡) = armature current

𝑅𝑎 = armature resistance

𝐿𝑎 = armature inductance

𝑣𝑏(𝑡) = back emf

𝜃𝑚 = rotor position (radians)

𝜏𝑚 = torque generated

The differential equation for the armature current is then

𝐿𝑎

𝑑𝑖𝑎
𝑑𝑡

+ 𝑅𝑎𝑖𝑎 = 𝑣𝑎(𝑡) − 𝑣𝑏(𝑡) (4.39)

The torque available for actuation is equal to the motor torque 𝜏𝑚 minus the torque

delivered to the load 𝜏𝑙 with gear ratio 𝑟. The equation of motion for this system is then:

𝐽𝑚
𝑑2𝜃𝑚

𝑑𝑡2
+ 𝐵𝑚

𝑑𝜃𝑚

𝑑𝑡
= 𝜏𝑚 − 𝜏𝑙/𝑟 (4.40)

In Laplace domain, the Equation (4.38), (4.39) and (4.40) may be combined and written

as:

27

(𝐿𝑎𝑠 + 𝑅𝑎)𝐼𝑎(𝑠) = 𝑉𝑎(𝑠) − 𝐾𝑒𝑠Θ𝑚(𝑠) (4.41)

(𝐽𝑚𝑠2 + 𝐵𝑚𝑠)Θ𝑚(𝑠) = 𝐾𝑡𝐼𝑎(𝑠) − 𝑇𝑙(𝑠)/𝑟 (4.42)

The block diagram of the above system is shown in Figure 12. The transfer function

between the rotational position Θ𝑚(𝑠) and armature voltage 𝑉𝑎(𝑠) is given by (at 𝜏𝑙 =

0):

Θ𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾𝑚

𝑠[(𝐿𝑎𝑠 + 𝑅𝑎)(𝐽𝑚𝑠 + 𝐵𝑚) + 𝐾𝑏𝐾𝑚]
 (4.43)

In SI units, 𝐾𝑒 = 𝐾𝑡 = 𝐾. Thus,

Θ𝑚(𝑠)

𝑉𝑎(𝑠)
=

𝐾

𝑠[(𝐿𝑎𝑠 + 𝑅𝑎)(𝐽𝑚𝑠 + 𝐵𝑚) + 𝐾2]
 (4.44)

Figure 12: Block Diagram for a DC Motor System

The transfer function between the load torque 𝑇𝑙(𝑠) and rotor position Θ𝑚(𝑠) is given

by (at 𝑉𝑎 = 0):

Θ𝑚(𝑠)

𝑇𝑙(𝑠)
=

−(𝐿𝑎𝑠 + 𝑅𝑎)

𝑠[(𝐿𝑎𝑠 + 𝑅𝑎)(𝐽𝑚𝑠 + 𝐵𝑚) + 𝐾2]
 (4.45)

Using Simscape library in MATLAB Simulink, the model of motor is created as shown

in the Figure 13 below.

28

Figure 13: DC Motor Subsystem in Simulink using Simscape Library

Hitec HS-645MG and HS-65MG servo motors are selected for joint and wrist actuation

of Dagu 5-DOF robotic arm. The Model parameterization of DC Motor in Simulink is

done by providing the stall torque and no-load speed values option. General

specifications of both Hitec high torque servo motors are listed in Table 3.

Table 3: General Specifications of Hitec Servo Motors

Parameters

Specifications

HS-645MG HS-65MG

Operating Voltage 4.8V ~ 6.0V 4.8V ~ 6.0V

Stall Torque 7.7 kg.cm ~ 9.6 kg.cm 1.8 kg.cm ~ 2.2 kg.cm

No-load Current 350mA ~ 450mA 180mA ~ 220mA

No-load Speed 0.24sec/60° ~ 0.2sec/60° 0.14sec/60° ~ 0.11sec/60°

Weight 55.2g 11.9g

29

Chapter 5

Adaptive Neuro-Fuzzy Inference System

5.1 Introduction

Among various combinations of methodologies in soft computing, the one that has

highest visibility at this juncture is that of fuzzy logic and neuro-computing, leading to

neuro-fuzzy systems. Adaptive neuro-fuzzy inference system (ANFIS) is an intelligent

modelling and control approach that combines the fuzzy logic [42], [43] with the field

of artificial neural networks [44]. It is one of the most well-known and widely applied

neuro-fuzzy architecture developed by Jang and Sun [5], [45]. The fundamentals of

neural networks, fuzzy logic and control and neuro-fuzzy system are discussed here.

5.2 Artificial Neural Networks

Artificial neural networks (ANNs) is a machine learning technique inspired by

biological neural networks which is used to approximate functions that are dependent

on large number of input data. ANNs is an interconnected group of nodes that are

composed of solely two elements operating in parallel as shown in Figure 14. The

processing elements are called neurons and the connections are termed synapses.

Generally, a processing elements has many inputs and a single output as shown in

Figure 15. Each input to neuron has an associated weight. If the sum of all the weighted

inputs are above a certain threshold, that neuron is activated. Typically, neural networks

are adjusted, or trained, so that a particular input leads to a specific target output. The

weights of the neurons are adjusted during the learning process to minimize the error

objective function as shown in Figure 16.

30

Figure 14: Artificial Neural Network (ANN)

Figure 15: Artificial Neuron and Synapses

Figure 16: ANN Training Cycle

31

5.3 Fuzzy Logic

Fuzzy logic is a convenient way to map an input space to an output space. Fuzzy logic

works on the principle of working with variables in linguistic terms instead of having a

definite single value. It is a method of characterizing knowledge in terms of fuzzy sets

and a rule base. Figure 17 shows the basic block diagram of a fuzzy logic system. Fuzzy

logic is synonymous with the theory of fuzzy sets [46]. A fuzzy set is a set without a

clearly defined boundary. It can contain elements with only a partial degree of

membership. The primary mechanism of fuzzy sets is to make a list of if-then statements

called rules which are evaluated in parallel. Fuzzy Inference System (FIS) interprets the

values in the input vector and, based on these set of rules, assigns values to the output

vector. The major advantage of fuzzy control is its flexibility of defining relationship

between different physical quantities in different number of inputs and outputs which

is done by assigning membership values (or degree of membership) between 0 and 1

using a defined curve known as Membership Function.

Figure 17: Components of a Fuzzy Logic System

There are two popular types of FIS: Mamdani and Sugeno. Mamdani's method was

among the first control systems built using fuzzy set theory. It was proposed in 1975

by Ebrahim Mamdani [47]. Mamdani-type inference outputs membership functions as

fuzzy sets of each variable which further need diffuzification to get a crisp value.

Sugeno or Takagi-Sugeno-Kang, method of fuzzy inference [48] was introduced in

1985. It is similar to the Mamdani method in many respects. The first two parts of the

fuzzy inference process, fuzzifying the inputs and applying the fuzzy operator, are

exactly the same. The main difference between Mamdani and Sugeno is that the Sugeno

output membership functions are either linear or constant. Some advantages of using

Sugeno method are that it is computationally efficient, works well with linear (e.g., PID

32

control), optimization and adaptive techniques and it has guaranteed continuity of the

output surface.

A typical rule in a Sugeno fuzzy model has the form

If Input 1 = 𝑥 and Input 2 = 𝑦, then Output is 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐.

For a zero-order Sugeno model, the output level 𝑧 is a constant (𝑎 = 𝑏 = 0).

The output level 𝑧𝑖 of each rule is weighted by the firing strength 𝑤𝑖 of the rule. For

example, for an AND rule with Input 1 = 𝑥 and Input 2 = 𝑦, the firing strength is

𝑤𝑖 = 𝐴𝑛𝑑𝑀𝑒𝑡ℎ𝑜𝑑(𝐹1(𝑥), 𝐹2(𝑦))

where 𝐹1 𝑎𝑛𝑑 𝐹2 are the membership functions for Inputs 1 and 2. The final output of

the system is the weighted average of all rule outputs, computed as

𝐹𝑖𝑛𝑎𝑙 𝑂𝑢𝑡𝑝𝑢𝑡 =
∑ 𝑤𝑖𝑧𝑖

𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

Where 𝑁 is the number of rules. A Sugeno rule operates as shown in the following

Figure 18.

Figure 18: Sugeno Type Inference

Because of the linear dependence of each rule on the input variables, the Sugeno method

is ideal for acting as an interpolating supervisor of multiple linear controllers that are

to be applied, respectively, to different operating conditions of a dynamic nonlinear

system. Typical output surface plot for the sugeno type inference is shown below in

Figure 19.

33

Figure 19: Output Surface Plot of Sugeno Type Inference

5.4 Adaptive Neuro-fuzzy Learning

Neuro-fuzzy learning system uses fuzzy logic along with neuro-adaptive learning

scheme. Neuro-adaptive learning works similar to neural networks and provides a

method for fuzzy modeling procedure to learn information about the given input data

set. Fuzzy logic part computes the membership function parameters that allow the FIS

to properly map the input/output data. These membership functions and associated

parameters (weights) are tuned / adjusted using the neural network techniques such as

backpropagation algorithm and least squares type methods. This adjustment allows

fuzzy system to learn from the data they are modeling. The basic ANFIS model

structure in fuzzy logic toolbox of MATLAB is shown in Figure 20.

34

Figure 20: ANFIS Model Structure

The modeling approach used by ANFIS is similar to many system identification

techniques. First the parameterized model structure is theorized (relating inputs to

membership functions to rules to outputs to membership functions, and so on). Then

the input/output data is loaded to ANFIS for training. Then the FIS model is trained to

emulate the training data that was provided by modifying the membership function

parameters according to a choose error criterion. Then model validation is done in

which the input/output data set on which the FIS was not trained, is presented to FIS

model to judge how well the FIS model predicts the corresponding dataset output

values. All these stages are accomplished in ANFIS editor in MATLAB [49], [50] as

shown in Figure 21.

35

Figure 21: ANFIS Editor

5.5 Data Clustering

Clustering of numerical data forms the basis of many classification and system

modeling algorithms. The purpose of clustering is to identify natural groupings of data

from a large data set to produce a concise representation of a system's behavior. Data

clustering is performed on the training data to find clusters in input-output data set. This

cluster information is then used to generate a Sugeno-type fuzzy inference system that

best models the data behavior using a minimum number of rules. The rules partition

themselves according to the fuzzy qualities associated with each of the data clusters.

There are two techniques of data clustering available in fuzzy logic toolbox of

MATLAB, Fuzzy C-Mean Clustering and Subtractive Clustering. Fuzzy c-means

(FCM) is a data clustering technique wherein each data point belongs to a cluster to

some degree that is specified by a membership grade [51]. It provides a method that

shows how to group data points into a specific number of different clusters. If it is not

clear that how many clusters should be created for a given data set then Subtractive

36

clustering [52] is recommended for estimating the number of clusters in a data set. In

MATLAB, genfis2 command generates a Sugeno-type FIS structure using subtractive

clustering by extracting a set of rules that models the data behavior. While, genfis3

command generates a FIS using FCM clustering technique.

37

Chapter 6

Simulation and Results

6.1 Robotics Toolbox

Robotics Toolbox [53]–[55] for MATLAB is used to solve the forward kinematics of

Dagu 5-DOF robotic arm. The toolbox provides various functions that are useful for

the study and simulation of classical arm-type robotics, for example such things as

kinematics, dynamics and trajectory generation. The serial-link arm-type robot is

represented by Toolbox in terms of Denavit-Hartenberg parameters as shown in the

Figure 22 for Dagu 5-DOF. Various pose configurations are graphically illustrated in

the Figure 23.

Figure 22: SerialLink Description of Dagu 5-DOF

38

(a) (b)

Figure 23: Dagu 5-DOF in different poses (a) zero angle (b) ready pose

6.2 Workspace Sampling

In order to obtain the training data, the workspace mapping that relates the input joint

variables to end-effectors position and orientation in Cartesian space is done by

computing the forward kinematics that was formulated in Chapter 4 for the joint

intervals stated in Table 2. The sampled Cartesian space for the permissible joint space

shown in Figure 24 which accounts for various key problems involved in solving the

inverse kinematics through neuro-fuzzy learning, namely the problems of generating

and preprocessing training data, handling multiple solutions, reducing the

approximation error, and lowering the training time as discussed in [56].

39

(a)

(b) (c)

Figure 24: Workspace Sampling of Forward Kinematics (a) Isometric View (b) X-Z

View (c) X-Y View

6.3 ANFIS Implementation

The coordinates (𝑥, 𝑦, 𝑧) and the orientation angles (𝛼, 𝛽, 𝛾) obtained from forward

kinematics solutions are used as the input for training data to ANFIS network with the

triangular membership function with a hybrid learning algorithm (back propagation +

least square method). For the neuro-fuzzy model used in this work, 13433 data points

were analytically obtained using forward kinematics which are shown in the Figure 24,

as discussed in the previous section, of which 10075 data points are used for training,

40

1679 data points are used as model validation and 1679 data points are used as test case

for predicting the untrained data output values .For predicting the inverse kinematics

solution of Dagu 5-DOF robotic arm five independent ANFIS structures with first order

Sugeno model are selected in MATLAB with specific parametric configurations as

listed in the Table 4.

Table 4: ANFIS Configuration Parameters for Solving Dagu 5DOF

Parameter Name
ANFIS Description

(for all Joints)

type sugeno’

andMethod ‘prod’

orMethod ‘max’

defuzzMethod ‘wtaver’

impMethod ‘prod’

aggMethod ‘max’

input 1x6 (𝑥, 𝑦, 𝑧, 𝛼, 𝛽, 𝛾)

output 1x1 (𝐽𝑜𝑖𝑛𝑡 𝐴𝑛𝑔𝑙𝑒 𝜃𝑖)

rule 1x216

No. of Training Data Pairs 10075

No. of Checking Data Pairs 1679

6.3.1 Residual Plot of Training Data and Check Data for all Joint angles

of Dagu 5-DOF

The residual plots of training data for 𝜃1, 𝜃2, 𝜃3, 𝜃4 and 𝜃5 of Dagu 5-DOF robotic arm

are depicted in Figure 25. The residual plot in all five case is low which suggests that

ANFIS is successfully converging to fit the data and since both the residual of training

data (blue line) and check data (red line) are close enough this suggest that the FIS has

avoided over fitting the data and it serves as an indication that the ANFIS will predict

the new unknown data with good accuracy and minimal error.

41

6.3.2 Prediction of Inverse Kinematics for all Joints Angles of Dagu 5-

DOF and Comparison with Analytical Solution

Having trained the networks, an important follow up step is to validate the networks to

determine how well the ANFIS networks would perform inside the larger control

system. The trained ANFIS for all 5 joint angles is then tested against the newly

presented data set using the evalfis command in MATLAB. The output predicted by

evalfis is then compared with the analytical inverse kinematic solution presented in

Section 4.3 of Chapter 4. Figure 26 shows how close the FIS predicted outputs are with

respect to the deducted values.

42

(a) (b)

(c) (d)

(e)

Figure 25: Residual Plots of Training Data and Check Data for all Joint Variables

43

(a) (b)

(c) (d)

(e)

Figure 26: Model Validation of ANFIS networks for Dagu 5-DOF

44

6.4 Robot Dynamics in Simulink / SimMechanics

SimMechanics software is a block diagram modeling environment for the engineering

design and simulation of rigid multibody machines and their motions, using the

standard Newtonian dynamics of forces and torques. 3D CAD model import of robotic

arm has already been discussed in chapter 3. One of the most common requirement in

robotics is to move the end-effector smoothly from pose A to pose B in a straight line.

There exists two main approaches to generate such trajectories: joint space motion and

Cartesian space motion.

Joint space motion planning is easier in the sense as it involves interpolation between

two configurations of joint variables 𝜃𝑖 and then by applying forward kinematics the

end-effectors position and orientation can easily be determined for all interpolated

configurations between the initial joint configuration 𝜃𝑖𝐴
 and the final joint

configuration 𝜃𝑖𝐵
. But the problem with this method is that it doesn’t ensures the

motion of end-effector to follow the desired path. This is to be expected since only the

Cartesian coordinates of the end-points were specified. As the robot rotates about its

waist joint during the motion the end-effector will naturally follow a circular arc. In

practice this could lead to collisions between the robot and nearby objects even if they

do not lie on the path between poses A and B.

For many applications straight-line motion in Cartesian space is required for which the

second strategy is required. That means, for the robot’s end-effector to follow a desired

path, necessary joints angles are required to be calculated by computing the inverse

kinematics at every specified interval.

In this study, the trajectory tracking of the Dagu 5-DOF robotic arm’s end effector is

considered in the SimMechanics environment using the Cartesian motion scheme. As

a test case scenario, the reference trajectory used to evaluate the performance of the

overall methodology is shown in Figure 27.

45

Figure 27: Reference Trajectory for Dagu 5-DOF Robotic Arm’s End-Effector

6.4.1 Simulink / SimMechanics Model

The complete implementation in Simulink / SimMechanics environment is shown in

Figure 28. The reference trajectory generated with the aid of robotics toolbox for

MATLAB is fed into ANFIS network that computes the desired joint angles for all five

joint variables of the robotic arm as shown in Figure 29. The outputs of ANFIS

networks are then handed over to the servo-controllers which in turn actuate each joint

of the SimMechanics multibody model of Dagu 5-DOF robotic arm. Decentralized PID

control scheme is used to control all the joint angles independently as shown in Figure

30. Figure 31 shows the Simulink implementation of the PID controller.

46

Figure 28: Simulink Model for Trajectory Tracking of Robotic Arm

47

Figure 29: Reference Trajectory Generated from Robotics Toolbox

48

Figure 30: Simulink Subsystem for Individual Joint Control

Figure 31: PID Controller Implementation in Simulink

6.4.2 Simulation Results of Robot Dynamics

The inverse kinematics is computed for the end-effector’s desired trajectory using the

same ANFIS networks that are trained for entire workspace of Dagu 5-DOF discussed

in the previous sections. Figure 32 shows the trajectory followed by the robotic arm in

SimMechanics environment by running the simulation based on the results obtained

from the ANFIS networks.

The control effort and the position comparisons of all five joints controlled by PID

controllers can be seen in Figure 33 to Figure 37. SimMechanics provides various types

of force and torque sensing for driving individual joint primitives. The torques

computed by SimMechanics multibody dynamics for individual joints are shown in

Figure 38.

49

Figure 32: Trajectory Tracking by Dagu 5-DOF Robotic Arm

PID

50

Figure 33: Control Effort and Position Comparison for Joint Variable 𝜃1

51

Figure 34: Control Effort and Position Comparison for Joint Variable 𝜃2

52

Figure 35: Control Effort and Position Comparison for Joint Variable 𝜃3

53

Figure 36: Control Effort and Position Comparison for Joint Variable 𝜃4

54

Figure 37: Control Effort and Position Comparison for Joint Variable 𝜃5

55

Figure 38: Joint Torques Computation of Dagu 5-DOF

56

Chapter 7

Conclusion and Future Recommendations

SimMechanics presents a powerful tool for modeling mechanics of rigid bodies. It is

suitable for modeling of dynamics and kinematics of considerably complicated systems

with many joints without using any mathematical description. For these advantageous

properties it is often used in the first phase of designing robotic systems, esp. due to

simplicity of changing parameters and dimensions of particular bodies without

necessity to repeat design of new model.

In this thesis, five ANFIS networks were trained to emulate control of a robotic arm.

The fuzzification of neural networks’ inputs / outputs allow the system to learn more

complex functions than ever before as encountered in this thesis for solving inverse

kinematics. From the results of Chapter 6 it can be seen that for the successful

implementation of ANFIS, number of training examples, iterations and membership

functions are very crucial factors.

At present time the developed model serves for further research – forward kinematics,

analysis of dynamics and design of controllers for joint drives. In the proposed design,

only off-line simulation were conducted which can be extended to an on-line

controlling of the serial robot manipulator. The work done in this thesis was based on

having PID control structure. Since the system is nonlinear, it would be interesting to

apply nonlinear controllers such sliding mode control [57], [21], [58] algorithms.

Alternate control schemes like LQR control [59]–[61], repetitive control [62]–[65], H-

infinity (H-∞) control [66], etc. can be implemented for performance comparisons.

Also, programming some heuristic rules into the neuro-fuzzy inference for the robotic

arm could improve performance, which is left for future implementation. Future work

in this area should also look into determining the adequacy of training samples. Are

there enough training samples? Are all areas of the state space represented? A study of

the relationship of the training samples and the fuzzy membership functions would be

particularly helpful.

57

References

[1] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics - Modelling,

Planning and Control. Springer London, 2009.

[2] Arexx Engineering, “ROBOT ARM PRO V3: Documentation.” [Online].

Available: http://www.arexx.com/robot_arm/html/en/documentation.htm.

[3] V. Fedak, F. Ďurovsky, and R. Üveges, “Analysis of Robotic System Motion in

SimMechanics and MATLAB GUI Environment,” in MATLAB Applications for

the Practical Engineer, InTech, 2014.

[4] F. Berardi, M. Chiaberge, E. Miranda, L. M. Reyneri, D. Elettronica, and P.

Torino, “A Neuro-Fuzzy Systems for Control Applications,” in International

Symposium on Neuro-Fuzzy Systems, 1996.

[5] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference system,” IEEE

Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, 1993.

[6] T. C. Manjunath, “Kinematic Modelling and Maneuvering of A 5-Axes

Articulated Robot Arm,” Int. J. Mech. Aerospace, Ind. Mechatron. Manuf. Eng.,

vol. 1, no. 4, pp. 216–222, 2007.

[7] S. Elgazzar, “Efficient kinematic transformations for the PUMA 560 robot,”

IEEE J. Robot. Autom., vol. 1, no. 3, pp. 142–151, 1985.

[8] Q. Chen, S. Zhu, and X. Zhang, “Improved Inverse Kinematics Algorithm Using

Screw Theory for a Six-DOF Robot Manipulator,” Int. J. Adv. Robot. Syst., p. 1,

2015.

[9] H. Liu, W. Zhou, X. Lai, and S. Zhu, “An Efficient Inverse Kinematic Algorithm

for a PUMA560-Structured Robot Manipulator,” Int. J. Adv. Robot. Syst., p. 1,

2013.

[10] N. Chen and G. A. Parker, “Inverse kinematic solution to a calibrated Puma 560

industrial robot,” Control Eng. Pract., vol. 2, no. 2, pp. 239–245, 1994.

[11] S. Kucuk and Z. Bingul, “Inverse kinematics solutions for industrial robot

manipulators with offset wrists,” Appl. Math. Model., vol. 38, no. 7–8, pp. 1983–

58

1999, 2014.

[12] S. (Kocaeli U. Küçük and Z. (Department of M. E. U. Bingül, “The Inverse

Kinematics Solutions of Industrial Robot Manipulators,” Mechatronics, 2004.

ICM ’04. Proc. IEEE Int. Conf., pp. 274–279, 2004.

[13] I.-C. Ha, “Kinematic parameter calibration method for industrial robot

manipulator using the relative position,” J. Mech. Sci. Technol., vol. 22, pp.

1084–1090, 2008.

[14] M. Dahari and J. D. Tan, “Forward and inverse kinematics model for robotic

welding process using KR-16KS KUKA robot,” in 2011 4th International

Conference on Modeling, Simulation and Applied Optimization, ICMSAO 2011,

2011.

[15] U. Abubakar, W. Zhongmin, and G. Ying, “Kinematic Analysis and Simulation

of a 6-DOF Industrial Manipulator,” Int. J. Sci. Res., vol. 3, no. 3, pp. 323–326,

2014.

[16] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic

Manipulation, vol. 29. 1994.

[17] C. Lee and M. Ziegler, “Geometric Approach in Solving Inverse Kinematics of

PUMA Robots,” IEEE Trans. Aerosp. Electron. Syst., vol. AES-20, no. 6, pp.

695–706, 1984.

[18] J. U. Korein and N. I. Badler, “TECHNIQUES FOR GENERATING THE

GOAL-DIRECTED MOTION OF ARTICULATED STRUCTURES.,” IEEE

Computer Graphics and Applications, vol. 2, no. 9. 1982.

[19] A. Zilouchian and D. Howard, “Application of Adaptive Neuro-Fuzzy Inference

System to Robotics,” in Intelligent Control Systems Using Soft Computing

Methodologies, 2001.

[20] S. Alavandar and M. J. Nigam, “Inverse kinematics solution of 3DOF planar

robot using ANFIS,” Int. J. Comp. Commun. Cont, vol. III, no. 2008, pp. 150–

155, 2008.

[21] A. F. Amer, E. A. Sallam, and W. M. Elawady, “Adaptive fuzzy sliding mode

control using supervisory fuzzy control for 3 DOF planar robot manipulators,”

59

Appl. Soft Comput. J., vol. 11, no. 8, pp. 4943–4953, 2011.

[22] I. Branch, “A new method for position control of a 2-DOF robot arm using neuro

– fuzzy controller,” Indian J. Sci. Technol., vol. 5, no. 3, pp. 2253–2257, 2012.

[23] A.-V. Duka, “ANFIS Based Solution to the Inverse Kinematics of a 3DOF Planar

Manipulator,” Procedia Technol., vol. 19, pp. 526–533, 2015.

[24] W. E. K. III, “NEURO-FUZZY CONTROL OF A ROBOTIC ARM,” 1994.

[25] S. Kumar and K. Irshad, “Implementation of Artificial Neural Network applied

for the solution of inverse kinematics of 2-link serial chain,” Int. J. Eng. Sci.

Technol., vol. 4, no. 09, pp. 4012–4024, 2012.

[26] E. Mattar, “A Practical Neuro-fuzzy Mapping and Control for a 2 DOF Robotic

Arm System,” Int. J. Comput. Digit. Syst., vol. 2, no. 3, pp. 109–121, Sep. 2013.

[27] P. Jha and B. B. Biswal, “A Neural Network Approach for Inverse Kinematic of

a SCARA Manipulator,” Int. J. Robot. Autom., vol. 3, no. 1, pp. 52–61, 2014.

[28] W. Mohammed Jasim, “Solution of Inverse Kinematics for SCARA Manipulator

Using Adaptive Neuro-Fuzzy Network,” Int. J. Soft Comput., vol. 2, no. 4, pp.

59–66, Nov. 2011.

[29] M. Yousif Ismail and H. Safwan Mawlood, “Modeling and simulation of

Industrial SCARA Robot Arm,” Int. J. Eng. Adv. Technol., vol. 4, no. 4, pp. 220–

229, 2015.

[30] M. Aghajarian and K. Kiani, “Inverse Kinematics solution of PUMA 560 robot

arm using ANFIS,” in URAI 2011 - 2011 8th International Conference on

Ubiquitous Robots and Ambient Intelligence, 2011, pp. 574–578.

[31] Y. I. Al Mashhadany, “ANFIS-Inverse-Controlled PUMA 560 Workspace

Robot with Spherical Wrist,” Procedia Eng., vol. 41, no. Iris, pp. 700–709, 2012.

[32] D. Xu, C. a. Acosta Calderon, J. Q. Gan, H. Hu, and M. Tan, “An analysis of the

inverse kinematics for a 5-DOF manipulator,” Int. J. Autom. Comput., vol. 2, no.

2, pp. 114–124, Dec. 2005.

[33] P. Agnihotri, V. K. B. Er, and G. Singh, “Review of Anfis Tool used in 5 Dof

Robotic Arm,” Int. J. Eng. Res. Technol., vol. 4, no. 09, pp. 896–900, 2015.

60

[34] M. T. Das and L. C. Dülger, “Mathematical modelling, simulation and

experimental verification of a scara robot,” Simul. Model. Pract. Theory, vol. 13,

no. 3, pp. 257–271, 2005.

[35] S. Yuan, Z. Liu, and X. Li, “Modeling and simulation of robot based on

matlab/simmechanics,” in Proceedings of the 27th Chinese Control Conference,

CCC, 2008, pp. 161–165.

[36] Y. Shaoqiang, L. Zhong, and L. Xingshan, “Modeling and Simulation of Robot

Based on Matlab / SimMechanics,” in Proceedings of the 27th Chinese Control

Conference, 2008, pp. 1–5.

[37] T. D. Le, H. J. Kang, and Y. S. Ro, “Robot manipulator modeling in Matlab-

Simmechanics with PD control and online gravity compensation,” in 2010

International Forum on Strategic Technology, IFOST 2010, 2010, pp. 446–449.

[38] Dassault, Introducing SolidWorks. SolidWorks Corporation, 2014.

[39] MathWorks Inc., “SimMechanics User’s Guide,” in SpringerReference,

Springer-Verlag, 2014.

[40] J. J. Craig, “Introduction to Robotics: Mechanics and Control 3rd,” Prentice

Hall, vol. 1, no. 3, p. 408, 2004.

[41] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower-pair

mechanisms based on metrics,” Trans. ASME. J. Appl. Mech., vol. 22, pp. 215–

221, 1955.

[42] C. C. Lee, “Fuzzy Logic in Control Systems : Fuzzy Logic Controller - Part 1,”

IEEE Trans. Syst. Man Cybern., vol. 20, no. 2, pp. 404–418, 1990.

[43] C. C. C. Lee, “Fuzzy logic in control systems: fuzzy logic controller - Part 2,”

IEEE Trans. Syst. Man. Cybern., vol. 20, no. 2, pp. 404–418, 1990.

[44] G. G. (University O. W. Towell and J. W. Shavlik, “Knowledge-based artifical

neural networks,” Artif. Intell., vol. 70, pp. 119–165, 1994.

[45] J.-S. R. Jang and C.-T. Sun, “Neuro-Fuzzy Modeling and Control,” Proc. IEEE,

vol. 83, no. 3, pp. 378 – 406, 1995.

[46] L. Zadeh, “Fuzzy Sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965.

61

[47] E. H. Mamdani and S. Assilian, “An experiment in linguistic synthesis with a

fuzzy logic controller,” Int. J. Man. Mach. Stud., vol. 7, no. 1, pp. 1–13, 1975.

[48] M. Sugeno, “Industrial applications of fuzzy control,” Elsevier Sci. Pub. Co.,

1985.

[49] F. J. Chang and Y. T. Chang, “Adaptive neuro-fuzzy inference system for

prediction of water level in reservoir,” Adv. Water Resour., vol. 29, no. 1, pp. 1–

10, 2006.

[50] S. Kurnaz, O. Cetin, and O. Kaynak, “Adaptive neuro-fuzzy inference system

based autonomous flight control of unmanned air vehicles,” Expert Syst. Appl.,

vol. 37, no. 2, pp. 1229–1234, 2010.

[51] J. C. Bezdek, “Pattern Recognition with Fuzzy Objective Function Algorithms,”

SIAM Rev., vol. 25, no. 3, pp. 442–442, 1983.

[52] S. L. Chiu, “Fuzzy model identification based on cluster estimation.,” Journal of

intelligent and Fuzzy systems, vol. 2, no. 3. pp. 267–278, 1994.

[53] P. Corke, Robotics, Vision and Control, vol. 73. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2011.

[54] P. Corke, Robotics, Vision and Control - Fundamental Algorithms in MATLAB.

2011.

[55] P. Corke, “MATLAB toolboxes: Robotics and vision for students and teachers,”

IEEE Robot. Autom. Mag., vol. 14, no. 4, pp. 16–17, 2007.

[56] S. Raptis and E. Tzafestas, “Robot inverse kinematics via neural and neurofuzzy

networks: architectural and computational aspects for improved performance,”

J. Inf. Optim. Sci., vol. 28, no. 6, pp. 905–933, 2007.

[57] J. J. Slotine and S. S. Sastry, “Tracking control of non-linear systems using

sliding surfaces with application to robot manipulators,” in American Control

Conference, 1983, pp. 132–135.

[58] V. Parra-Vega, S. Arimoto, Y. H. Liu, G. Hirzinger, and P. Akella, “Dynamic

sliding PID control for tracking of robot manipulators: Theory and experiments,”

IEEE Trans. Robot. Autom., vol. 19, no. 6, pp. 967–976, 2003.

62

[59] F. Lin and R. D. Brandt, “An Optimal Control Approach to Robust Control of

Robot Manipulators,” Robot. Autom., vol. 14, no. 1, pp. 69–77, 1998.

[60] H. Pan and M. Xin, “Nonlinear robust and optimal control of robot

manipulators,” Nonlinear Dyn., vol. 76, no. 1, pp. 237–254, 2014.

[61] L. Bascetta and P. Rocco, “Revising the robust-control design for rigid robot

manipulators,” IEEE Trans. Robot., vol. 26, no. 1, pp. 180–187, 2010.

[62] J. J. Fu, “Repetitive Learning Control of Robotic Manipulators,” 1993.

[63] A. Tayebi, “Adaptive iterative learning control for robot manipulators,”

Automatica, vol. 40, no. 7, pp. 1195–1203, 2004.

[64] K. Kaneko and R. Horowitz, “Repetitive and adaptive control of robot

manipulators with velocity estimation,” IEEE Trans. Robot. Autom., vol. 13, no.

2, pp. 204–217, 1997.

[65] J. Kasac, B. Novakovic, D. Majetic, and D. Brezak, “Passive Finite-Dimensional

Repetitive Control of Robot Manipulators,” IEEE Trans. Control Syst. Technol.,

vol. 16, no. 3, pp. 570–576, 2008.

[66] W. L. Stout and M. E. Sawan, “Application of <e1>H</e1>-infinity theory to

robot manipulator control,” in [Proceedings 1992] The First IEEE Conference

on Control Applications, 1992, no. 2, pp. 148–153.

63

Appendix A

Detailed Drawing of Dagu 5-DOF Robotic Arm

64

Appendix B

MATLAB SCRIPTS

%---%
%% dagu5dof.m %%
%---%

clear all
close all
clc

qz = [0 0 0 0 0]; % zero position
qr = [0 pi -pi/2 0 0]; % ready position
qf = [0 0 pi/2 0 0]; % forward ready position
qv = [0 pi/2 0 pi/2 0]; % vertical stretch
qh = [0 0 0 pi/2 0]; % horizontal stretch

L(1) = Link([0, 0, 0, 0],'modified');
L(2) = Link([0, 0, 0, pi/2],'modified');
L(3) = Link([0, 0, 80, 0],'modified');
L(4) = Link([0, 0, 81, 0],'modified');
L(5) = Link([0, 58, 0, pi/2],'modified');

dagu5r = SerialLink(L, 'name', 'Dagu 5DOF');
dagu5r.base = [1 0 0 0; 0 1 0 0; 0 0 1 93; 0 0 0 1];
dagu5r.tool = [1 0 0 0; 0 1 0 0; 0 0 1 137; 0 0 0 1];

dagu5r.qlim(1,:)= [-pi, pi];
dagu5r.qlim(2,1)=0;
dagu5r.qlim(3,:)= [-3*pi/4, 3*pi/4]; % [-3*pi/4, 3*pi/4]
dagu5r.qlim(4,:)= [-pi/4, 5*pi/4]; %[-pi/4, 5*pi/4]

T1 = dagu5r.fkine(qz);
dagu5r.plot(qz)
T2 = dagu5r.fkine(qr);

T= ctraj(T1,T2,51); % cartesian space
ik_sol = dagu5r.ikcon(T,qz);

via =[qh;qf;qv;qr]; % multi-segment joint space
t = (0:4/100:4)';
q = mstraj(via, [], [1 1 1 1], qz, 0.04, 0.16);

ik_sol = [q; q(end,:)];

T = cat(3,(ctraj(dagu5r.fkine(qz),dagu5r.fkine(qh),100/4)),...
 (ctraj(dagu5r.fkine(qh),dagu5r.fkine(qf),100/4)),...
 (ctraj(dagu5r.fkine(qf),dagu5r.fkine(qv),100/4)),...
 (ctraj(dagu5r.fkine(qv),dagu5r.fkine(qr),100/4)));
T = cat(3, T , T(:,:,end));

plot(squeeze(T(1:3,4,:))');
hold on
plot(squeeze(T_sm.data(1:3,4,:))','.');

65

figure(2)
plot(abs(tr2rpy(T)));
hold on
plot(abs(tr2rpy(T_sm.data)),'.');
%---%

%---%
%% dagu_fkine.m %%
%---%

th1 = -pi:pi/6:pi;
th2 = 0:pi/6:pi;
th3 = -2*pi/3:pi/6:3*pi/4; % -3*pi/4::3*pi/4
th4 = -pi/6:pi/6:5*pi/4; % -pi/4::5*pi/4
th5 = -pi:pi/6:pi;

syms a2 a3 d1 d5 c1 s1 c2 s2 c3 s3 c4 s4 c5 s5;

T01 = [c1 -s1 0 0; s1 c1 0 0; 0 0 1 d1; 0 0 0 1];
T12 = [c2 -s2 0 0; 0 0 -1 0; s2 c2 0 0; 0 0 0 1];
T23 = [c3 -s3 0 a2; s3 c3 0 0; 0 0 1 0; 0 0 0 1];
T34 = [c4 -s4 0 a3; s4 c4 0 0; 0 0 1 0; 0 0 0 1];
T45 = [c5 -s5 0 0; 0 0 -1 -d5; s5 c5 0 0; 0 0 0 1];

T35 = T34 * T45;
T35 = simplify(T35, 'Steps', 150);

T25 = T23 * T35;
T25 = simplify(T25, 'Steps', 150);

T15 = T12 * T25;
T15 = simplify(T15, 'Steps', 150);

T05 = T01 * T15;
T05 = simplify(T05, 'Steps', 150);

d1 = 93;
d5 = 195;
a2 = 80;
a3 = 81;

[T_BW, TH] = TT_mapping(T05, th1, th2, th3, th4, th5);
RPY = tr2rpy(T_BW);
XYZ = [squeeze(T_BW(1,4,:)) squeeze(T_BW(2,4,:))

squeeze(T_BW(3,4,:))];
plot3(XYZ(:,1),XYZ(:,2),XYZ(:,3),'o','MarkerSize',2,'MarkerFaceColor'

,'b');

data1 = [XYZ RPY TH(:,1)];
data2 = [XYZ RPY TH(:,2)];
data3 = [XYZ RPY TH(:,3)];
data4 = [XYZ RPY TH(:,4)];
data5 = [XYZ RPY TH(:,5)];
%---%

66

%---%
%% TT_mapping.m %%
%---%

function [T, THETA] = TT_mapping(T_sym, theta1, theta2, theta3,

theta4, theta5)

[TH1, TH2, TH3, TH4, TH5] = ndgrid(theta1, theta2, theta3, theta4,

theta5);
size(TH1)

if numel(TH1) == 1
 T = sym2num(T_sym, TH1, TH2, TH3, TH4, TH5);
 THETA = [TH1, TH2, TH3, TH4, TH5];
 return
end

 % Randomly select data points
 rand_indices = randperm(numel(TH1));
 TH1 = TH1(rand_indices(1:end));
 TH2 = TH2(rand_indices(1:end));
 TH3 = TH3(rand_indices(1:end));
 TH4 = TH4(rand_indices(1:end));
 TH5 = TH5(rand_indices(1:end));

size(TH1)

c = 1;
for i = 1:numel(TH1)
 if ((TH2(i)== pi && TH3(i)<-pi/4) || (TH2(i)== 0 && TH3(i)> pi/4)

|| (TH2(i)== 0 && TH3(i)== -3*pi/4 && TH4(i)<3*pi/4) || (TH2(i)== pi

&& TH3(i)== -pi/4 && TH4(i)>3*pi/4)) == false

 T_temp(:,:,c) = sym2num(T_sym, TH1(i), TH2(i), TH3(i),

TH4(i), TH5(i));
 TH_temp(c,:) = [TH1(i), TH2(i), TH3(i), TH4(i), TH5(i)];
 c = c + 1;
 end
end

size(TH_temp)

c = 1;

for i = 1:length(TH_temp)
 if ((T_temp(1,4,i) > 0) || (T_temp(2,4,i) < 0) ||

(T_temp(3,4,i) < 0) || ((T_temp(3,4,i) < 100) && (T_temp(1,4,i) <

120) && (T_temp(1,4,i) > -120)) || ((T_temp(3,4,i) < 100) &&

(T_temp(2,4,i) < 120) && (T_temp(2,4,i) > -120)) || (T_temp(3,4,i) >

440) || (T_temp(1,4,i) < 5) && (T_temp(1,4,i) > -5) && (T_temp(2,4,i)

< 5) && (T_temp(2,4,i) > -5)) == false

 T(:,:,c) = T_temp(:,:,i);
 THETA(c,:) = TH_temp(i,:);
 c = c + 1;
 end
end

67

size(THETA)

end
%---%

%---
%% sym2num.m %%
%---%

function T = sym2num(Ts, TH1, TH2, TH3, TH4, TH5)

s1 = sin(TH1);
s2 = sin(TH2);
s3 = sin(TH3);
s4 = sin(TH4);
s5 = sin(TH5);

c1 = cos(TH1);
c2 = cos(TH2);
c3 = cos(TH3);
c4 = cos(TH4);
c5 = cos(TH5);

T = double(subs(Ts));

end
%---%

%---%
%% mapFeature.m %%
%---%

function out = mapFeature(X1, X2)

% MAPFEATURE Feature mapping function to polynomial features

% MAPFEATURE(X1, X2) maps the two input features to quadratic
% features used in the regularization exercise.

% Returns a new feature array with more features, comprising of
% X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc..

% Inputs X1, X2 must be the same size

degree = 2;

out = ones(size(X1(:,1)));
for i = 1:degree
 for j = 0:i
 out(:, end+1) = (X1.^(i-j)).*(X2.^j);
 end
end

out = out(:,2:end);

end
%---%

68

%---%
%% traj_cir3d.m %%
%---%

clear qcir_c J
R = 75;
N = 16 ;
Cxy = circle([115+R,0], R, 'n', N);
Cxy = [Cxy, Cxy(:,1)]';

Cz = (174+R) - R*cos(0:2*pi/(N):2*pi)';
Cz = Cz(1:end-1,:);
Cz = circshift(Cz, N/2);
Cz = [Cz; Cz(1,:)];

Cxyz = [Cxy, Cz];
Cxyz = Cxyz(1:end-1,:);
Cxyz = circshift(Cxyz, N/2);

Cp = [Cxyz; Cxyz(1,:)];

figure(1)
plot3(Cp(:,1),Cp(:,2),Cp(:,3),'b-.')
hold on

rx = zeros(1,length(Cp)-1);
ry = zeros(1,length(Cp)-1);
rz = zeros(1,length(Cp)-1);

for i = 1:length(Cp)-1
 rx(i) = atan2((Cp(i+1,3) - Cp(i,3)),(Cp(i+1,2) - Cp(i,2)));
 ry(i) = atan2((Cp(i+1,3) - Cp(i,3)),(Cp(i+1,1) - Cp(i,1)));
 rz(i) = atan2((Cp(i+1,2) - Cp(i,2)),(Cp(i+1,1) - Cp(i,1)));
 Rcir = rotx(0)*roty(pi/2 + ry(i))*rotz(0);
end

for i = 1:length(Cp)
 Tcir(:,:,i)= rt2tr (Rcir,Cp(i,:)');
 qcir(i,:) = dagu5r.ikine(Tcir(:,:,i), qr, [1 1 1 0 0 0]);

% ready position modified

end

Tcir_i = dagu5r.fkine(qcir);

Cp_i=transl(Tcir_i);
Crpy = tr2rpy(Tcir_i);
ccir=[Cp_i, Crpy];

mstraj_c = mstraj(ccir(2:end,:),[],0.5*ones(1,1,length(qcir)-

1),ccir(1,:),0.04,0);
tim = 0:0.04:length(mstraj_c)*0.04;
mstraj_c = [ccir(1,:); mstraj_c];

Pcir = transl(mstraj_c(:,1:3));
Rcir = rpy2tr(mstraj_c(:,4:6));

for i = 1:length(Pcir)

69

 Tcir_c(:,:,i)=Pcir(:,:,i)*Rcir(:,:,i);
 qcir_c(i,:) = dagu5r.ikine(Tcir_c(:,:,i), qr, [1 1 1 0 0 0]);

% w.r.t. ready position
end

qcir_c(:,5) = 3*qcir_c(:,1);
length(qcir_c)*0.04;

for i = 1:5
 J(i) =mean(abs(ScopeTor.signals(i).values)) /

mean(abs(ScopeVel.signals(3).values(:,i)));
end

p_sm = squeeze(T_sm.data(1:3,4,:))';
plot3(p_sm(:,1),p_sm(:,2),p_sm(:,3),'r', 'LineWidth',2)
%---%

%---%
%% Inverse_Kinematics_genfis1.m %%
%---%

inmfType = 'gbellmf';%'psigmf';%'gbellmf';
outmftype = 'linear';
epoch = 100; %500
trnOpt = [epoch NaN NaN NaN];
dispOpt = [1 1 1 1];
optMethod = 1; % 1 = hybrid , 0 = back=propagation

% split training data and check data
cut1 = length(data1)- round(0.25*length(data1));

% split check data and test data
cut2 = cut1 + round((length(data1)-cut1)/2);

% Train first ANFIS network

fprintf('-->%s\n','Start training first ANFIS network. It may take

few minutes depending on your computer system.')
infis1 = genfis1([data1(1:cut1,1:6) data1(1:cut1,7)], [3 3 2 2 2 3],

inmfType, outmftype);
[anfis1,error1,stepsize1,chkFis1,chkErr1] = anfis(data1(1:cut1,:),

infis1, trnOpt, dispOpt,data1(cut1+1:cut2,:),optMethod);

% Train second ANFIS network

fprintf('-->%s\n','Start training second ANFIS network. It may take

few minutes depending on your computer system.')
infis2 = genfis1([data2(1:cut1,1:6) data2(1:cut1,7)], [2 3 3 3 2 2],

inmfType, outmftype);
[anfis2,error2,stepsize2,chkFis2,chkErr2] = anfis(data2(1:cut1,:),

infis2, trnOpt, dispOpt,data2(cut1+1:cut2,:),optMethod);

% Train third ANFIS network
fprintf('-->%s\n','Start training third ANFIS network. It may take

few minutes depending on your computer system.')
infis3 = genfis1([data3(1:cut1,1:6) data3(1:cut1,7)], [2 3 3 3 2 2],

inmfType, outmftype);
[anfis3,error3,stepsize3,chkFis3,chkErr3] = anfis(data3(1:cut1,:),

infis3, trnOpt, dispOpt,data3(cut1+1:cut2,:),optMethod);

70

% Train fourth ANFIS network

fprintf('-->%s\n','Start training fourth ANFIS network. It may take

few minutes depending on your computer system.')
infis4 = genfis1([data4(1:cut1,1:6) data4(1:cut1,7)], [2 3 3 3 2 2],

inmfType, outmftype);
[anfis4,error4,stepsize4,chkFis4,chkErr4] = anfis(data4(1:cut1,:),

infis4, trnOpt, dispOpt,data4(cut1+1:cut2,:),optMethod);

% Train fifth ANFIS network
fprintf('-->%s\n','Start training fifth ANFIS network. It may take

few minutes depending on your computer system.')
infis5 = genfis1([data5(1:cut1,1:6) data5(1:cut1,7)], [2 2 2 3 3 3],

inmfType, outmftype)
[anfis5,error5,stepsize5,chkFis5,chkErr5] = anfis(data5(1:cut1,:),

infis5, trnOpt, dispOpt,data5(cut1+1:cut2,:),optMethod);
%---%

%---%

%% Testing.m %%
%---%

input = [XYZ(cut2+1:end,:) RPY(cut2+1:end,:)];
THETA1D = TH(cut2+1:end,1);
THETA2D = TH(cut2+1:end,2);
THETA3D = TH(cut2+1:end,3);
THETA4D = TH(cut2+1:end,4);
THETA5D = TH(cut2+1:end,5);

THETA1P = evalfis(input, anfis1); % theta1 predicted by anfis1
THETA2P = evalfis(input, anfis2); % theta2 predicted by anfis2
THETA3P = evalfis(input, anfis3); % theta1 predicted by anfis1
THETA4P = evalfis(input, anfis4); % theta2 predicted by anfis2
THETA5P = evalfis(input, anfis5); % theta1 predicted by anfis1

theta1diff = (THETA1D - THETA1P);
theta2diff = (THETA2D - THETA2P);
theta3diff = (THETA3D - THETA3P);
theta4diff = (THETA4D - THETA4P);
theta5diff = (THETA5D - THETA5P);

figure(1);
plot(theta1diff,'x');
title('ANFIS for Joint 1: Prediction of Inverse

Kinematics','fontsize',10)
xlabel('No. of Data Set Points','fontsize',10)
ylabel('error: e_1 = \theta_1_d - \theta_1_p','fontsize',10)

figure(2);
plot(theta2diff,'x');
title('ANFIS for Joint 2: Prediction of Inverse

Kinematics','fontsize',10)
xlabel('No. of Data Set Points','fontsize',10)
ylabel('error: e_2 = \theta_2_d - \theta_2_p','fontsize',10)

figure(3);
plot(theta3diff,'x');
title('ANFIS for Joint 3: Prediction of Inverse

Kinematics','fontsize',10)
xlabel('No. of Data Set Points','fontsize',10)

71

ylabel('error: e_3 = \theta_3_d - \theta_3_p','fontsize',10)

figure (4);
plot(theta4diff,'x');
title('ANFIS for Joint 4: Prediction of Inverse

Kinematics','fontsize',10)
xlabel('No. of Data Set Points','fontsize',10)
ylabel('error: e_4 = \theta_4_d - \theta_4_p','fontsize',10)

figure(5);
plot(theta5diff,'x');
title('ANFIS for Joint 1: Prediction of Inverse

Kinematics','fontsize',10)
xlabel('No. of Data Set Points','fontsize',10)
ylabel('error: e_5 = \theta_5_d - \theta_5_p','fontsize',10)

%---%

