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Abstract

The popular uprisings in a number of countries in the Middle East and North
Africa in the Spring of 2011 were enabled in large part by local populations ac-
cess to social networking services such as Twitter and Facebook. This thesis
attempts to use language independent features of Twitter traffic mentioning
different countries to distinguish between countries that are politically unsta-
ble and others that are stable. Towards this end, we collected several data
sets of countries that were experiencing political unrest during the period
now known as the Arab Spring, as well as a set of countries that were not.
Several different methods are used to model the flow of information between
Twitter users in data sets as graphs, called information cascades. Näıve
Bayesian, Support Vector Machines (SVM) and Bayesian logistic regression
classifiers are applied to all data sets. By using the dynamic properties of
information cascades, Näıve Bayesian and SVM classifiers both achieve true
positives rates of 100%, with false positives rates of 3% and 0%, respectively.
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Chapter 1

Introduction

1.1 Background and Motivation

The role played by social media and social network services during the upris-
ings in the Middle East (ME) and North Africa (NA), particularly in Tunisia
and Egypt, during the period now known as the ‘Arab Spring,’ is well docu-
mented. Twitter [15] and Facebook were two key enabling tools that allowed
the local populations to organize themselves. In the case of Tunisia it is now
known that this organization and mobilization began as early as 2 weeks
before the first street protests. These tools enabled people to share informa-
tion about sniper locations, water distribution points and assembly locations
for more protests [11]. Very notably, crowds were effective in squashing
propaganda and misinformation that was introduced in social media by the
Tunisian government.

In a larger context, what these recent events in the ME/NA have shown
is that governments may choose to ignore the public’s sentiment, but at their
own peril. Monitoring social media has become this decade’s equivalent of the
Cold War era’s spy-in-the-sky (satellite surveillance). On the positive side,
even in situations when more traditional means of electronic communication
(TV, radio, telephones/cellphones, e-mail etc.) are unavailable, social media
can be leveraged very effectively for the quick collection, dissemination and
propagation of critical information.

The two social network services that were most widely credited with
enabling these revolutions in the ME/NA are Facebook and Twitter. Re-
cent changes in Facebook’s terms of use restrict researchers from crawling
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CHAPTER 1. INTRODUCTION 2

Facebook profiles and collecting large sets of data. Therefore, we focus our
attention on Twitter. Twitter is very open to data collection, to the extent
that it encourages it. Furthermore, data sets like those from Twitter are rare
in the sense that they are not anonymized or redacted. It allows access to
almost all data associated with a tweet, including message contents.

1.2 Limitations of Prior Art

Recent years have seen an increased interest in the analysis and modeling of
social networks. Earlier work consisted in large part of measurement studies
of social networks. Wilson, Boe, Sala, Puttaswamy and Zhao [28] studied
the correlation between social ties and network traffic. Recently, Romero,
Meeder and Kleinberg [23] analyzed data collected from Twitter and de-
tected differences in the spread pattern for hashtags belonging to different
type of topics. They collected data over a 48 hour period and used it as a
dynamic graph consisting of two 24 hour periods. In [13], Gong, Teng, Livne,
Brunetti and Adamic studied dynamic graphs and the relationship between
novelty of information flowing between two nodes in a social network and the
conductance of the link between them.

These previous works analyzed differences in the information propaga-
tion across different topics. However, to the best of the authors’ knowledge,
no previous study has explored differences in the information flow on Twitter
between data sets of the same domain.

1.3 Proposed Solution

In this work we develop a method for classifying country names appearing in
Twitter traffic (tweets) as politically stable or unstable. We propose to make
this classification based on properties of graphs underlying information flow
between Twitter users. We propose a multi-step approach to the problem of
classifying countries as politically stable or unstable.

The first step is to extract a graph from the collection of tweets collected
from Twitter. These graphs capture the flow of information between Twitter
users and are called information cascades. There are several definitions and
existing approaches to extracting information cascades from Twitter data
sets. We used three different approaches to generate information cascades
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and extracted features from them for each Twitter data set. All three ap-
proaches distinguish themselves from prior definitions of information cascades
on Twitter on the basis that besides using retweets, we include information
about mentions and replies in the cascades.

The second step, feature extraction, requires us to measure a set of
features of the cascades generated from each country’s Twitter data. Since
the Twitter data sets we have collected contain messaging (tweet) contents
as well, it would have been possible to apply natural language processing
for feaure extraction, to this end the main obstacle was the heterogeneous
nature of language used in data sets related to different countries.

The third step is classification. Classification can be further sub-divided
into feature selection, classification and verification.

1.4 Experimental Results and Findings

Three techniques are employed for data set classification. They include the
Näıve Bayesian classifier, a Support Vector Machine classifier and Bayesian
Logistic Regression.

We performed classification based on tweet content based features and
observed detection rates for data sets of unstable countries of 87.5%, 37.5%
and 37.5%, respectively, with corresponding false positive rates of 5.3%, 0%
and 5.3%, respectively. Thus, the Naive Bayesian classifier outperforms the
other two by large margins on these features.

However, the same classifiers fare significantly worse when applied to
features of graphs of individual tweets and their retweets. The true positives
rates of data sets of unstable countries were 50%, 0% and 0%, respectively,
while false positives rates of all three classifiers were 0%.

Classification was also attempted on features of graphs constructed in
a similar fashion to those constructed by Kwak et al. [20]. The true positives
rates were 89.3%, 87.5% and 98.2%, respectively. However, these were coupled
with significant false positives rates of 28.2%, 20.5% and 41%, respectively.

Finally, we perform classification on a set of features specific to dy-
namic graphs, i.e. graphs that include temporal information. All three clas-
sifiers have true positives rates of 100%. However, the false positives rate
for Bayesian logistic regression is 100%, rendering it useless. Naive Bayesian
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classifier and SVM perform better with false positives of only 3% and 0%,
respectively.

1.5 Key Contributions

Our contributions in this paper are threefold:

1. Data Set Collection: We collected data sets consisting of Tweets con-
taining names of different countries from within and outside the ME/NA
region in the Spring of 2011.1 To ensure the robustness of proposed de-
tection algorithms we also collected data related to politics and movies
as well.

2. Information Cascade Formation: We form information cascades mod-
eling the spread of information at a two different scales, at the level of
individual tweets and at a higher level that includes all topically related
tweets. Finally, we include the temporal dimension in the higher level
graph model of the Tweet data set.

3. Classifier Design: We design a classifier for Twitter data sets of different
countries based on features of their information cascades. This classifier
is able to distinguish Twitter traffic pertaining to countries experiencing
political upheaval and social unrest from those that are not.

1This data will be made publicly available, following its acceptance for publication.



Chapter 2

Related Work

2.1 Related Work

Broadly speaking the previous work related to our work can be categorized
into two groups.

2.1.1 Information Cascades

The first category of prior work focuses on different methodologies to de-
fine information cascades in a social network. The second category of prior
work aims to identify unique patterns across different topics in online social
networks.

In prior literature, researchers have defined information cascades in dif-
ferent ways. This is evident by use of cascade in different manner in recent
literature which include, [21], [26], [6], [12] and [30]. The general consensus
is to model information cascades as graphs where nodes represent users and
edges represent interaction among users. There is no single agreed upon def-
inition of what constitutes an information cascade.
Several of those definitions were developed in the context of data obtained
from Twitter. For instance, Bakshy et al. defined information cascades as
all the data related to an event, news, or URLs [3]. They used this partic-
ular definition of information cascades to track the dissemination of a URL
over users’ Twitter follower graph. In another work Kwak et al. performed a
measurement study of tweets related to a specific topic [20]. They defined an

5



CHAPTER 2. RELATED WORK 6

information cascade as the set of tweets and retweets containing a specified
set of terms, e.g. Air France Flight. In [25], Sadikov et al. discussed vari-
ous methods to construct information cascades in online social networks. An
interested reader is referred to [25] for a more detailed discussion.

2.1.2 Pattern Characterization

Detecting unique patterns shown by different topics in online social networks
has gained a lot of interest in previous years. Some of the recent work target-
ing the detection of unique patterns in social network graphs includes [19],
[17], [31], [5], [1] and [2].
It has been widely believed that user interactions about different topics ex-
hibit different propagation characteristics as they propagate over a social
network. One set of empirical results to validate this hypothesis has been
provided in [23] by Romero, Meeder and Kleinberg. They showed that infor-
mation propagation characteristics vary for different types of topics. However,
they did not investigate the difference in propagation characteristics for infor-
mation related to similar topics. In another work, Gong et al. also observed
the differences in information dissemination characteristics for different top-
ics [13]. They analyzed the properties for different temporal snapshots of the
social network graph instead of analyzing it in aggregate. In another related
work, Iliofotou et al. investigated dynamic graphs for traffic classification in
computer networks [18]. The use of dynamic graphs is not explored in details
for online social network analysis. In this paper, we will utilize a similar dy-
namic graph based approach to detect countries experiencing political unrest
using Twitter traffic.

Some recent studies have focused on finding patterns on tweets re-
lated to political campaigns. Among these kind of works Avishey Lavine
et.al [22] have used tweets generated by candidates during 2010 US midterm
elections and have pointed out difference of graph structure and content gen-
erated by candidates with different party affiliations. Avishey Lavine et al.
in [22] also used the structural and content properties to predict the suc-
cessful candidates. In other works by Sarita Yardi and Danah Boyd in [32]
and M.D.Conover et al. in [8, 7] have used Twitter platform to discrimi-
nate between users based on different party affiliations, they have utilized
the properties of content within tweets as well as graph properties of user
interaction behavior to detect the political polarisation.

We have now seen that previous work have either focused on detect-
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ing differences between traffic of different types of topics or within same
topics people have tried to detect the different type of users. But no previ-
ous work has worked on detecting political stability across different countries
and detecting political stability is the main focus of this paper. Most of the
previously used methods are not scalable, due to their reliance on tweet con-
tent for detecting patterns and content based properties will not be helpful
when input data is comprising of multitude of languages. To take care of
this shortcoming our methods do not rely on tweet text for the classification
purposes.



Chapter 3

Data Set

Twitter is very open to data collection, to the extent that it encourages it.
Data sets like those from Twitter are rare in the sense that they are not
anonymized or redacted. It allows access to almost all data associated with
a tweet, including message contents. The Twitter data used in this study
was collected using the Python [16] tweetstream package [14] which provides
access to Twitter’s Streaming API. Tweets from the streaming API were
filtered by a list of country names. This way, the collected tweets either
contained the name of a country in the tweet body or in their associated
metadata. The list of countries we targeted for data collection comprises of
countries in the ME/NA regions which were experiencing instability, political
upheaval and popular uprising during the time now referred to as the ’Arab
Spring’. Our data set comprises of two sets of countries. One set consists
of ME/NA countries which were going through the phase of social unrest
throughout the spring of 2011 and beyond. The second set was collected for
countries which were most definitely not in a state of political unrest. Data
collection for ME/NA countries commenced in March and, with some breaks
in between, continued through the end of June, 2011. In this work, we used
data from the one week period from April 11-17, 2011. The reasons we did not
use the entire data set and chose this particular time period were two-fold:

1. Data Set Size: When the duration of the data set is increased to more
than about 7 days, the computing requirements for processing it exceed
the capabilities of the high-performance computing facilities available
to the authors.

2. Peak Activity: Over the time periods for which we collected data,
social unrest in the ME/NA was (arguably) at a peak.

8



CHAPTER 3. DATA SET 9

We carried out a second phase of data collection for countries not ex-
periencing any political instability. For this purpose a set of eight countries
was selected and data collection was carried out for a 7 day duration. The
second phase commenced on July 4 and ended on July 11, 2011. To verify the
generality of our classification method we performed a third phase of data
collection. In this third phase we collected Twitter traffic on trending topics
that were unrelated to our previous data sets. These additional data sets can
be classified into two groups; a) News & politics and b) movies. In the news
and politics category we collected tweets mentioning three candidates in the
republican primary election for the 2012 U.S. presidential election; Herman
Cain, Mitt Romney and Rick Perry. We also collected tweets on the issue of
‘European debt’ and the ‘Euro zone.’ In the category of movies we collected
tweets for three upcoming titles that were apparently trying to create buzz
through a Twitter campaign. These included ‘Paranormal Activity’ (3), ‘Real
Steel’ and ’The Three Musketeers.’

Table 3.1 provides a summary of the list of keywords for which Twitter
data was collected, the number of tweets and unique users each contains,
the average number of tweets per user, the percentage of tweets that are
retweets or replies and the percentage of tweets that contain #-tags, URLs
and mentions.
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Table 3.1: Basic statistics of Twitter data sets.

Class Country Unique
Users

Tweet
Count

Tweets
per
User

Retweeted
Tweets
(%)

Reply
Tweets(%)

Tweets
w/ #-
tag(s)
(%)

Tweets
w/
URL(s)
(%)

Tweets
w/ Men-
tion(s)
(%)

Australia 100353 170378 1.70 19.93 18.50 25.23 43.97 49.58
Austria 13450 21164 1.57 20.86 17.68 28.63 38.59 51.55
New Zealand 17736 28015 1.58 14.53 13.82 19.29 55.55 37.53

Stable China 170346 269798 1.58 17.89 12.97 17.53 48.34 43.19
(7-10
Jul,

Poland 10973 19422 1.77 14.67 28.52 25.77 37.84 50.61

2011) Iceland 7449 10075 1.35 17.14 17.06 23.04 50.84 45.76
Turkey 61657 83338 1.35 13.21 21.56 21.42 24.85 47.29
Norway 9578 14695 1.53 13.09 29.81 21.75 39.99 53.36
Japan 146922 246450 1.68 22.34 8.58 41.84 52.25 44.90

Bahrain 30958 324878 10.49 60.25 6.35 78.11 37.39 72.48
Egypt, Cairo 68873 379112 5.50 39.08 6.51 74.57 46.02 53.12

Unstable Syria 29428 203923 6.93 52.97 7.29 90.02 46.70 68.01
(11-17 Libya,

Tripoli
63714 301915 4.74 38.20 6.29 57.39 54.75 53.44

Apr, Oman 114316 34674 2.42 41.23 10.55 58.87 39.50 64.48
2011) Yemen 16924 58489 3.46 34.15 7.76 67.99 53.30 49.21

Saudi Arabia 79937 182487 2.28 16.92 22.87 38.11 14.56 50.77
Iran, Tehran 34035 147545 4.34 26.23 6.74 70.24 66.67 43.19

News & Herman
Cain

66385 138571 2.09 35.31 3.62 17.51 48.46 54.88

Politics European
Debt

4137 5874 1.42 13.89 0.58 16.63 85.50 23.19

(27 Oct Euro Zone 19752 33423 1.69 26.30 3.00 31.60 61.82 39.69
-4 Nov, Rick Perry 22801 39520 1.73 31.65 4.59 20.23 56.71 52.56
2011) Romney 29513 64205 2.18 30.06 8.77 23.66 52.10 54.30

Movies Paranormal 151483 186708 1.23 14.38 9.76 15.08 6.77 40.86
(27
Oct-

Real Steel 23877 32272 1.35 4.51 13.86 8.43 16.07 51.27

4 Nov, The Three 5115 6552 1.28 10.09 8.26 14.84 38.49 46.08
2011) Musketeers



Chapter 4

Technical Approach

In this chapter, we provide the details of our proposed methods to detect
political unrest using Twitter data.

As mentioned in Section 3, Twitter allows users to post messages (or
tweets) each containing up to 140 characters. From now-onwards, we refer to
the user who originally posted a tweet as initiator. The tweets are immedi-
ately available in “timelines” of the followers of initiators. Furthermore, the
subset of these tweets which are made public also appear in a public time-
line which is accessible to all other users in the social network. Twitter users
can interact with any visible tweet in two ways: retweet and reply. In case
of retweet, an exact copy the original tweet is posted on their profile and it
is also visible to their followers’ timeline. In case of reply, a custom tweet is
created containing the tag of the initiator. In addition to the aforementioned
two ways, users can also mention (i.e. tag) other users in their tweets. In
a given tweet’s mention field, multiple users can be mentioned. Note that
replies are equivalent to mentions containing one tag. In addition to up to
140 character text, tweets also contains a timestamp and user’s profile infor-
mation. They may also optionally contain hashtags and URLs. If a tweet is
retweet, reply, or mention then it will also contain information of all referred
users.

The interactions of users with tweets is equivalent to information flow
over the social network. Each set of these interactions can be conceptually
represented as an information cascade. Note that an information cascade can
be represented using graph data structure, where nodes are users and edges
represent timestamped interactions among users. However, there are different
ways at which these information cascades can be defined. For instance, we

11
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may only consider a tweet and its retweets as one information cascade. At the
other extreme, we can also consider all tweets, retweets, replies, and mentions
containing a specific hashtag or text keyword as an information cascade.

Recall that our goal is to classify countries based on their Twitter traf-
fic. We aim to identify and explore differences among information cascades
observed in their traffic. In this paper, we present four different methods us-
ing which we can analyze differences among information cascades pertaining
to different countries. These methods differ in terms of how we define an in-
formation cascade and what properties we compute from them. We describe
each of them separately in the following text.

4.1 Individual Tweet Analysis (M1)

In this analysis method (M1), we treat each set of tweets, retweets, and replies
as an information cascade. Consider a single original tweet m by a Twitter
user v. Let R(m) be the set of Twitter users that retweeted tweet m. Let
P(m) be the set of Twitter users that replied to tweet m. Now the information
cascade is the graph comprising of the set of nodes v∪R(m)∪P(m) and the
set of directed edges among them based on interaction information. Note that
we only include retweet and reply interactions as edges in these information
cascades.

Using the above-mentioned methodology, we can obtain information
cascade graphs for all countries in our data set. We now analyze each of
these information cascade graphs using their basic properties. We analyze
two properties in this method: (1) edge count and (2) diffusion lifetime. We
define both of them below.

4.1.1 Edge Count

Let G = (V,E) denote the graph of an information cascade then edge count
is simply the number of elements in the edge set (|E|).

4.1.2 Diffusion Lifetime

The diffusion lifetime (DL) is related to the time duration between the ap-
pearance of the original tweet and the appearance of the last retweet in an
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information cascade. Given the information cascade graph G with node set
V and edge set E, and let tij denote the timestamp corresponding to the
edge eij, then the tweet diffusion lifetime is defined as:

DL = P90





⋃

vi,vj

tij



 − min





⋃

vi,vj

tij



 , (4.1)

where, P90(·) is an operators that returns the 90th percentile value and min(·)
is the minimum operator.

The aforementioned properties can be computed for each information
cascade graphs pertaining to a country. We need to define a manageable
number of “features” based on these properties that can further be used for
classification. Towards this end, we first plot probability density functions
(PDFs) of these features and observe that these distributions are highlight
skewed (see Figure 6.1). In particular, we note that they are heavy-tailed
and roughly follow a straight line when both axes are converted to the log-
arithmic scale. Given that these properties follow heavy-tailed distribution,
we can quantify their characteristics using a single parameter called scal-
ing exponent. Thus, we characterize all information cascades pertaining to a
country in terms of the scaling exponents of their feature distributions.

4.2 Multiple Tweet Static Analysis (M2)

In this analysis method (M2), we treat all tweets, retweets, replies, and men-
tions specific to a topic or set of keywords in a given time period as an
information cascade. More specifically, let m denote the set of all original
tweets by all users v during the time period T related to some topic. Also
let R(m) and P(m) be the set of Twitter users that retweeted or replied
to the tweets m. Furthermore, let M(m) be the set of Twitter users that
mentioned users any of the users in v ∪R(m)∪P(m). The information cas-
cade graph using multiple tweet static analysis comprises of the set of nodes
v ∪R(m) ∪P(m) ∪M(m) and the set of directed edges among them based
on interaction information. In contrast to individual tweet analysis method,
we additionally include mention interactions as edges in these information
cascades. For information cascades constructed in this method, we select the
time period T = 24 hours. We believe that this time period is long enough
to provide us a significant majority of all tweets related to any topic. It is
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shown in prior literature that about 75% of retweets appear within the first
24 hours of the appearance of the original tweet in Twitter [20].

Using the above-mentioned methodology, we can obtain information
cascade graphs for all countries in our data set. To analyze these information
cascade graphs, we need to analyze their basic structural properties that
are defined for individual nodes. The set of basic properties we analyze for
information cascades in this method are: (1) node degree, (2) node out-degree,
(3) node in-degree, (4) closeness centrality, (5) clique count, and (6) triangle
count. Below we define each of them separately. For introduction to graphs
and their properties, interested reader is referred to [27].

4.2.1 Node Degree

The degree of a node is defined as the number of edges incident on it. The
degree (δi) of a node vi is defined as:

δi =

∣

∣

∣

∣

∣

⋃

∀j=i∨k=i

ejk

∣

∣

∣

∣

∣

, (4.2)

where ejk denotes an edge between nodes j and k.

4.2.2 Node In-Degree

Similarly, the in-degree of a node is defined as the number of incoming edges
incident on it. The in-degree (δ↓i

) of a node vi is defined as:

δ↓i
=

∣

∣

∣

∣

∣

⋃

∀k=i

ejk

∣

∣

∣

∣

∣

(4.3)

4.2.3 Node Out-Degree

Likewise, the out-degree of a node is defined as the number of outgoing edges
incident on it. The out-degree (δ↑i

) of a node vi is defined as:

δ↑i
=

∣

∣

∣

∣

∣

⋃

∀j=i

ejk

∣

∣

∣

∣

∣

(4.4)
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4.2.4 Closeness Centrality

The closeness centrality of a node is defined as the average length of shortest
paths to all nodes reachable from it. Let lij denote the shortest path length
from node vi to node vj. Closeness centrality was defined for the first time
by Sabidussi in [24]. The closeness centrality (ci) of a node vi is defined as:

ci =

∑N

j=1 lij

|V |
(4.5)

4.2.5 Clique Count

A clique is defined as the subset of nodes in a graph that form a complete
graph. The clique count of a node is simply the number of cliques it is a part
of.

4.2.6 Triangle Count

A triangle is defined as the subset of any three nodes in a graph that are
completely connected. The triangles count of a node is defined as the number
of triangles it is part of. Let Γi denote the set of nodes that a node vi is
connected to then the triangle count (∆i) is defined as:

∆i =

∣

∣

∣

∣

∣

∣

⋃

vj ,vk∈Γi

ejk

∣

∣

∣

∣

∣

∣

(4.6)

In contrast to information cascades constructed for individual tweet analysis
method (see Section 4.1), these information cascade graphs are much larger
in terms of number of nodes and edges. Furthermore, unlike the first method
(M1), each information cascade graph here may not be completely connected
as a single component. Therefore, we can split one information cascade graph
into its components before computing its structural properties. Note that the
structural properties can be computed for each node of all components of in-
formation cascade graphs pertaining to a country. To map a large number of
these values for each component to a more manageable number of features,
we again utilize the fact that PDFs of these features have heavy-tailed dis-
tribution and use the scaling exponent to quantify their characteristics (see
Figure 6.2).
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4.3 Multiple Tweet Dynamic Analysis (M3)

In this analysis method (M3), we construct information cascades in the same
way as multiple tweet analysis in Section 4.2. However, we now study infor-
mation cascade graphs in a pairwise manner. More specifically, we compute
properties across consecutive 24-hour time sliced information cascade graphs.
Note that these properties are different than those computed for previously
mentioned methods.

We introduce some notation to define properties that are computed
across consecutive time sliced information cascade graphs. Let G[t] denote
a sequence of graphs, where 1 ≤ t ≤ T, where T denotes the number of
time slices. Note that the duration of each time slice is 24 hours. The set of
properties we analyze in this method are: (1) relative inclusion, (2) Jaccard
index, and (3) graph edit distance. We define them in the following text.

4.3.1 Relative Inclusion

Relative inclusion (RI) is can be defined based either on nodes or on edges.
For two time-neighboring information cascade graphs G[t] = (Vt, Et) and
G[t+1] = (Vt+1, Et+1), relative inclusion is defined as the ratio of the number
of nodes present in the union of graphs G[t] and G[t + 1] to the number of
nodes in the first graph G[t].

RI =
|Vt ∩ Vt+1|

|Vt| (4.7)

Similarly, relative inclusion can be defined for number of edges as:

RI =
|Et ∩ Et+1|

|Et| (4.8)

4.3.2 Jaccard Index

The Jaccard index, also known as Jaccard similarity index, is primarily used
to quantify the similarity of two sets. The Jaccard index is a normalized
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measure of the overlap in the number of vertices or edges for two time-
neighboring information cascade graphs. For graphs G[t] and G[t+1] defined
above the Jaccard index (JI) for nodes is defined as:

JIV =
|Vt ∩ Vt+1|

|Vt ∪ Vt+1| (4.9)

Similarly, the Jaccard Index is defined for edges as:

JIE =
|Et ∩ Et+1|

|Et ∪ Et+1| (4.10)

4.3.3 Graph Edit Distance

The graph edit distance is defined as the number of edit operations that have
to be performed on one graph to make it same as another graph. Graph edit
operations include addition and removal of nodes or edges. For two graphs
G[t] and G[t + 1], the graph edit distance is defined as:

D(G[t], G[t + 1]) = |Vt+1 − Vt| + |Vt − Vt+1|

+ |Et+1 − Et| + |Et − Et+1| (4.11)

Note that properties computed in this method are computed between
time-neighboring information cascade graphs. If we have a total of T slices
for a country then we get only T − 1 data points for it. Due to sparsity of
points, we cannot use the feature computation method used in previous two
methods (M1 and M2). In this method, we directly use the properties as
features for classification.

4.4 Tweet Content Analysis (M4)

This method is used for baseline comparison, where we only use aggregate
properties of tweets for each country as features. The six properties that we
use in this method are: (1) average tweets per user, (2) re-tweeted tweets
percentage, (3) reply tweets percentage, (4) hashtag tweets percentage, (5)
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URL tweets percentage, and (6) mention tweets percentage. Note that prop-
erties computed in this method are computed for each 24 hour slice of all
countries. We use these properties directly as features for classification.

4.5 Classification

We now provide details of the classification methodology used to classify
features from the aforementioned four methods for each country into two
classes: stable and unstable. We first do feature selection to remove redundant
features and then use standard machine learning classification algorithms for
classification.

In feature selection, our goal is to rank features based on their differen-
tiation power across classes. Towards this end, we use the following 3 separate
entropy based metrics for rank features [10].

For our two-class classification problem, we tried multiple machine
learning classification algorithms In this paper, we only report the results
of three of them which provided better classification accuracy. These three
classifiers are: Näıve Bayes, SVM and Bayesian logistic regression. We report
the accuracy of these classification algorithms in terms of the following four
metrics. The true positives (TP) rate is the ratio of the number of instances
that it correctly labels as belonging to the positive class to the total num-
ber of positive class instances. The false positive (FP) rate is the ratio of
the number of instances that it incorrectly labels as belonging to the pos-
itive class to the total number of positive class instances. The precision of
a classifier is the ratio of the number of instances that it correctly labels as
belonging to the positive class to the total number of instances labeled as
belonging to the positive class. The accuracy of a classifier is the ratio of the
number of instances that it correctly labels to the total number of instances.
To report classification results in terms of the aforementioned metrics, we
use the standard N -fold cross validation procedure. We have used N = 10
for all classification experiments in this study.



Chapter 5

Classification

In this chapter we will explain the machine learning algorithms used for
classifying data for stable and unstable countries. We have used supervised
learning algorithms for classification in this thesis. For further details on the
used classification algorithms interested reader is referred to [4, 29, 9]

5.1 Overview

Classification problem can be sub-divided into smaller sub-problems, in this
overview we will discuss these sub-classes of a classification problem breifly:

1. Data Aquisition: First step for solving a classification problem is the
collection of data, we collect data in raw form and perform pre-processing
operations to get a form suitable for applying classification algorithms.
For example, in the context of this work we had used API provided
the Twitter streaming application for collection of Tweets. The tweets
collected, provided us with a lot of data like tweet text, tweet user, urls,
mentions, etc. But in this form this data is of no use since we can not
use it for solving a classification problem at hand.

2. Feature Extraction: After data is being collected our aim is to extract
features for to be used for classification purposes. Consider the example
of unrest detection problem we have solved in this thesis, to extract
features from the collected Twitter data we extract graphs for tweet
propagation and user interaction behavior using the data present within
collected tweets. The properties of these graphs are then used to define

19
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the features of classification problem at hand.

3. Classifier Design: After successful extraction of features from the data
set we are finally in a position to solve the problem as a classification
problem. For the purpose of classification we use algorithms like Sup-
port Vector machine etc, brief overview of classification algorithms used
in this work is provided in next sections.

5.2 Classifiers

Based on 10-fold cross validation we have selected naive Bayesian, logistic
regression and support vector machines for classifying data. In the following
explanations x

(i)
j denote the ith training sample of the jth feature and y(i)

is used to represent the label of the ith training sample.The details about
working of these algorithms is provided in following sub-sections:

5.2.1 Logistic Regression

For input features xj, the aim of linear regression analysis is to find a line
that fits the values of xj as function of y. Objective is to find the parameter
θ such that we find hθ which as close to our original function y as possible.
For linear regression hθ is defined as:

hθ (x) = θ0 +
n

∑

j=1

θjxj (5.1)

We have defined the basic idea behind regression analysis in 5.1, now
lets turn our attention towards logistic regression. Logistic regression is a
classification method which mean instead of modeling relation between x

and y our main aim is to classify feature value x to correct label y. In case
of binary classification, to fulfill the aim of classifying data we apply sigmoid
function or logistic function to our input sequence x. Logistic function is
defined as:

hθ (x) = g
(

θT x
)

=
1

1 + e−θT x
(5.2)

The value of this function will be approaching -1 in case of negative class
and +1 in case of positive class.
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5.2.2 Näıve Bayesian

Näıve Bayesian algorithm belongs to the class of generative algorithms e.g.
for binary classification problem we model probability distributions for both
the classes based on training data and new data point for classification is
compared with both the models to decide upon the class. Näıve Baye’s al-
gorithm works under the assumption of conditional independence also called
Näıve Bayes assumption.. It is assumed that features xj are conditionally
independent given y. Probability distribution for feature x given y is given
by:

p (x1, x2, ..., xn|y) = p (x1|y) p (x2|y, x1) ...p (xn|y, x1, ..., xn−1) (5.3)

Using Näıve Bayes assumption:

p (x1, x2, ..., xn|y) =
n

∏

j=1

p (xj|y) (5.4)

Our model parameters are φj|y=1, φj|y=0 and φy, and these are defined as:

φj|y=1 = p (xj = 1|y = 1) (5.5)

φj|y=0 = p (xj = 1|y = 0) (5.6)

φy = p (y = 1) (5.7)

Values for these parameters can be estimated using maximum likelihood
estimator:

L
(

φy, φj|y=0, φj|y=1

)

=
m
∏

j=1

p
(

x(i), y(i)
)

(5.8)

Once these values are known we can use Baye’s law to find out the aposterior
probability value:

p (y = 1|x) =
p (x|y = 1) p (y = 1)

p (x)
(5.9)

5.2.3 Support Vector Machine (SVM)

To understand the working of SNM we will start by understanding the con-
cept of margin, the main goal while designing the SVM classifier is to max-
imize the margin and hence improving the classifier efficiency.
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1. Margins: Consider a binary classification problem and let:

p =
(

ωT x(i) + b
)

(5.10)

be the linear hyperplane separating the two classes. Here, ωT is the
vector representing the slope of hyperplane and b is the intercept value.
Functional margin of ith sample is defined as:

γ̂ = y(i)p (5.11)

For complete data set the functional margin γ is defined as:

γ = min γ̂(i) (5.12)

The problem with functional margin is that scaling ω and b will give
us scaled value of margin, while in reality there is no effect on margin.
In order to take care of this problem we normalize value of functional
margin by ‖ω‖, by normalizing functional margin we get geometric
margin:

p =

(

ωT x(i)

‖ω‖
+

b

‖ω‖

)

(5.13)

2. Margin maximization: After defining margin, we turn to main goal
of classification problem i.e. maximizing the margin. For optimization
right now are assuming linearly separable data. The optimization prob-
lem looks like:

maxγ,ω,b γ

s.t. y(i)
(

ωT x(i) + b
)

≥ γ

‖ω‖ = 1

(5.14)

Optimization equation in this form is not desireable since it is not a
convex optimization problem due to the second constraint, which is a
non-convex constraint. After performing some mathematical operations
we transform the problem into a convex optimization problem:

min
1

2
‖ω‖2

s.t. y(i)
(

ωT x(i) + b
)

≥ γ

(5.15)

We will now represent the problem in dual form and using Karush-
Kuhn-Tucker(KKT) conditions we will see that p∗ = d∗, where p∗ and
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d∗ are the solutions for primal and dual problems respectively.

maxα W (α) =
m

∑

i=1

αi −
1

2

m
∑

i,j=1

y(i)y(j)α(i)α(j)〈x(i), x(j)〉

s.t. αi ≥ 0, i = 1, 2, ...,m
m

∑

i=1

αiy
(i) = 0

(5.16)

Another important point obtained from dual form is that third KKT-
condition is zero for all the values of data set except for the support
vectors, hence we do not need to solve the problem for values other
than support vectors, resulting in decrease of complexity with increas-
ing data set size. Another advantage of dual representation is that we
can represent the optimization problem in kernel form.

3. Kernels: Untill now we have considered that data is linearly separable.
But in reality this assumption might not hold. Kernels can be used to
aleviate this problem of linear separation to some extent, by mapping
input attributes x of data set to a higher dimensional feature space
φ (x).

5.3 Feature Ranking Methods

We have use three entropy based feature ranking methods to rank the features
in the order of their usefulness. These methods are explained below. For
further detail on the topic interested readers are recommended to read [10].

1. Information Gain (IG) is defined in terms of another information
theoretic measure called mutual information. The mutual information
of any two random variables (or features) Xi and Xj is defined as:

I(Xi; Xj) =H(Xi) − H(Xi|Xj),
(5.17)

where, H(Xi) is entropy of feature Xi, and H(Xi|Xj) is the conditional
entropy of Xi given Xj. The information gain for feature Xi with respect
to class variable Y is defined as:

IG(Xi) =
∑

∀j

I(Xi; Yj)
(5.18)
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2. Gain Ratio (GR) is a normalized form of mutual information. It is
defined as the ratio of mutual information between feature and class
variable to the entropy of feature:

GR(Xi) =
I(Xi;Y)

H(Xi) (5.19)

3. Symmetrical Uncertainty (SU) is the sum of normalized measures
of pairwise mutual information of feature and class variable. Symmet-
rical uncertainty of a feature Xi is defined mathematically as:

SU(Xi) =
∑

∀j

2

[

I(Xi, Yj)

H(Xi) + H(Yj)

]

(5.20)

5.4 N-fold cross validation

We use N-fold cross validation to evaluate the performance of the classifiers.
Cross validation involves spliting of example data into two data sets, we use
one partition of data set for training purposes (e,g. 70% of data) and the
second partition (e,g. remaining 30% data set) as a training set. To further
improve the performance of cross validation framework we use N-fold cross
validation. In this case we split data into N partitions and use on of the
partition as a test sequence and rest of the partitions as training data set.
We use all the combinations for making one of the partition as test sequence
while using remaining partitions as training sequence and we average out the
performance for all the iterations.
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Evaluation

In this chapter, we evaluate the effectiveness of our proposed approaches to
detect political unrest in Twitter data. We provide evaluation results of all
approaches separately in the following subsections.

6.1 Individual Tweet Analysis (M1)

Recall that we used utilized two individual tweet properties: edge count and
diffusion lifetime, to extract features. We then used the slopes of heavy tailed
distributions as eventual features for classification. We plot the PDFs of both
features in Figure 6.1. The distributions indeed seem to follow a heavy tailed
distribution as they follow a straight-line on logarithmic x and y scales. The
goodness of fit values R2 are provided, which indicate a reasonable fit for all
categories. Across the two classes, i.e. stable and unstable, we note that the
values of slopes do not show a clear trend. For instance, the slope of the fitted
line for stable distribution is larger than that of unstable distribution for edge
count feature in Figure 6.1(a). This trend is reversed for the diffusion lifetime
feature, where the slope of the fitted line for stable distribution is smaller
than that of unstable distribution. We also observe that the politics category
also shows some randomness. Note that for eventual classification we merge
the politics category into the stable class to make sure that our classification
method is not just detecting unstable countries due to “trending events”. We
further use these features with machine learning algorithms for classification.
The classification results of this method (M1)provided in Table 6.3 also con-
cur our observations from Figure 6.1. The best results are obtained for näıve

25
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Bayes, which has TP rate of 0.500 and a FP rate of 0.00. This shows that
analyzing individual tweets does not reveal any distinguishing characteristics
across information cascades of politically stable and unstable countries.

6.2 Multiple Tweet Static Analysis (M2)

Recall that we analyzed a set of six node-level properties to characterize
information cascades in multiple tweet static analysis. Similar to individual
tweet analysis, we decided to use heavy-tailed distribution slopes as features
for classification. Figure 6.2 shows the plot of distributions of the six features
for stable countries, unstable countries, and politics category. We observe
that most feature distributions follow the heavy-tailed distribution. The only
exception is closeness centrality which shows a unique bimodal structure.
Therefore, R2 values for closeness centrality are significantly lower than other
features, as shown in figure 6.3. From Figure 6.2, we also note that slope
values for stable countries show difference compared to those for unstable
countries.

To further analyze these trends, we plot the conditional distribution
plots of all features in Figure 6.4. We observe different trends across different
features. For instance, the slope values are larger for unstable countries than
those for stable countries in case of node degree and node in-degree features.
On the other hand, the slope values are smaller for unstable countries than
those for stable countries in case of closeness centrality and clique count fea-
tures. We do not observe a clear separation for node out-degree and triangle
count features.

Table 6.1: Feature ranking for multiple tweet static analysis
method (M2).

Property Gain Information Symmetric
Ratio Gain Uncertainty

Degree 2 1 1
In-degree 1 2 2
Cliques 3 4 3

Closeness 6 3 4
Triangle 5 5 5

Outdegree 4 6 6
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To quantitatively study the quality of different features for classifica-
tion, we use the information-theoretic features explained in chapter 5. We use
the trio of information gain IG, gain ratio GR, and symmetric uncertainty
SU to rank features according to their classification power. Table 6.1 shows
that ranking of all features with respect to the three ranking measures. We
observe that degree and in-degree are ranked as the beast features by all of
our ranking metrics. As we observed in Figure 6.4, the ranking results also
show that node out-degree and triangle features have the lowest differentia-
tion power.

Now now jointly use all of these features with machine learning al-
gorithms for classifying politically stable and unstable countries. Table 6.3
shows the classification results for all algorithms using this method (M2).
We first note that these results are significantly improved as compared the
results of individual tweet analysis method (M1). This highlights that analyz-
ing information cascades of multiple tweets indeed provides additional useful
information. Across classifiers, we again observe that näıve Bayes provides
the best performance across all of our accuracy metrics.

6.3 Multiple Tweet Dynamic Analysis (M3)

We now analyze dynamic properties of multiple tweet method for classifying
politically stable and unstable. Recall that in dynamic analysis of multiple
tweets we computed features across consecutive time sliced information cas-
cade graphs. These features included relative inclusion for nodes and edges,
Jaccard index for nodes and edges, and graph edit distance.

To study the features across two classes, we first plot their conditional
distributions in Figure 6.5. We note that relative inclusion and Jaccard index
based features provide clear difference across stable and unstable countries.
We note that the values of these four features for unstable countries are
consistently larger than those for stable countries and politics (see Figure
6.5(a)–(d)). These feature results show that same nodes and edges appear in
consecutive information cascade graphs for unstable countries. On the other
hand, the probability of occurrence of a node or an edge across two consecu-
tive days is lower for stable countries. These observations are in accordance
with findings in the prior work. For example, Gong et al. observed that if
consecutive information cascades contain similar content then the structure
of information cascade graphs also remain similar [13]. In other words, the
probability of occurrence of same nodes and edges across consecutive days
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Table 6.2: Feature ranking for multiple tweet dynamic analysis
method (M3).

Property Gain Information Symmetric
Ratio Gain Uncertainty

Jaccard Index – nodes 1 1 1
Relative Inclusion – nodes 2 2 2

Jaccard Index – edges 4 3 3
Relative Inclusion – edges 3 4 4

Graph Edit Distance 5 5 5

is significantly higher is contents of information cascades do not change.
Likewise, Kwak et al. studied the difference between the size of active user
population for different trending topics. Their experimental results showed
that cumulative unique user count became almost constant after few days
for tweets related to Iran. In contrast, the cumulative unique user count con-
tinued to increase for the trending topic ‘Apple’. In our proposed method,
relative inclusion and Jaccard index based features are essentially captur-
ing the similar information. The only feature that does not provide clear
distinction among stable and unstable countries is graph edit distance.

We now rank of these features using the information theoretic metrics
mentioned in Section 4.5. Table 6.2 shows the rankings of the five features
using the aforementioned three metrics. As expected, we observe that relative
inclusion and Jaccard index based features consistently rank the highest with
respect to all three metrics. We also observe that node based features have
higher ranks than edge based features in Table 6.2. This highlights that
presence of same users across consecutive days has more relevant information
than the presence of same interactions or edges.

We now use these five features with standard machine learning classifier
for automated detection of politically unstable countries. Table 6.3 provides
the accuracy results of all classifiers for this method (M3). We note that
both näıve Bayes and SVM classifiers provide close to perfect accuracy. These
classification results are significantly better than those of individual tweets
analysis and multiple tweet static analysis methods. This shows that analyz-
ing information cascades of multiple tweets using dynamic features provides
about 99% accuracy, with almost perfect TP and FP rates.
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6.4 Tweet Content Analysis (M4)

For baseline comparison, we now evaluate the classification performance of
tweet content analysis method. Recall that we used content based features
(included in Table 3.1) used in our study are average tweets per user, re-
tweeted tweets percentage, reply tweets percentage, hashtag tweets percent-
age, URL tweets percentage, and mention tweets percentage. It is undesirable
to use these features because they may require manual labeling of some fea-
tures and therefore cannot be fully automated. This problem is particularly
important if the content is available in multiple languages, which is a common
case for Twitter allowing users to upload content in more than 17 languages.

Table 6.3 tabulates the classification results of the näıve Bayes, SVM,
and Bayesian logistic regression algorithms. We observe that näıve Bayes
consistently performs other classification algorithms in terms of accuracy,
where we obtain approximately 90% TP rate and 5% FP rate. Although its
classification performance is better than the first two methods (individual
tweet analysis and multiple tweet static analysis), it is still not as good as
that of multiple tweet dynamic analysis method.
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Table 6.3: Classification results of all methods used in our study.
M1 is the individual tweet analysis method, M2 is the multiple
tweet static analysis method, M3 is the multiple tweet dynamic
analysis method, and M4 is the tweet content analysis method.

Metric Method Näıve Support Bayesian
Bayes Vector Logistic

Machine Regression

M1 0.500 0.000 0.000
TP rate M2 0.893 0.875 0.982

M3 1.000 1.000 1.000
M4 0.875 0.875 0.750
M1 0.000 0.000 0.000

FP rate M2 0.282 0.205 0.410
M3 0.030 0.000 1.000
M4 0.031 0.052 0.010
M1 1.000 0.000 0.000

Precision M2 0.820 0.860 0.775
M3 0.980 1.000 0.530
M4 0.942 0.907 0.977
M1 0.750 0.500 0.500

Accuracy M2 0.810 0.835 0.786
M3 0.985 1.000 0.500
M4 0.922 0.912 0.870
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Figure 6.1: Examples of feature computation from the distribu-
tion of properties in individual tweet analysis method (M1).
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Figure 6.2: Feature computation from the distribution of prop-
erties in multiple tweet static analysis method (M2).
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Figure 6.2: Feature computation from the distribution of prop-
erties in multiple tweet static analysis method (M2).
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Figure 6.2: Feature computation from the distribution of prop-
erties in multiple tweet static analysis method (M2).
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Figure 6.4: Feature distributions from the distribution of prop-
erties in multiple tweet static analysis method (M2).
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Figure 6.4: Feature distributions from the distribution of prop-
erties in multiple tweet static analysis method (M2).
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Figure 6.4: Feature distributions from the distribution of prop-
erties in multiple tweet static analysis method (M2).



CHAPTER 6. EVALUATION 39

−0.2 0 0.2 0.4 0.6
0

0.1

0.2

0.3

0.4

0.5

RI nodes

P
D

F

 

 

Unstable
Stable
Movies
Politics

(a) Relative Inclusion for Nodes

−0.1 0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

RI edges

P
D

F

 

 

Unstable
Stable
Movies
Politics

(b) Relative Inclusion for Edges

Figure 6.5: Feature distributions from the distribution of prop-
erties in multiple tweet dynamic analysis method (M3).
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Figure 6.5: Feature distributions from the distribution of prop-
erties in multiple tweet dynamic analysis method (M3).
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Figure 6.5: Feature distributions from the distribution of prop-
erties in multiple tweet dynamic analysis method (M3).
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Figure 6.6: Feature distributions from the distribution of prop-
erties in tweet content analysis method (M4).
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Figure 6.6: Feature distributions from the distribution of prop-
erties in tweet content analysis method (M4).
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Figure 6.6: Feature distributions from the distribution of prop-
erties in tweet content analysis method (M4).



Chapter 7

Conclusions

In this chapter we will draw conclusions from the analysis provided in the the-
sis and we will also highlight the future directions regarding unrest detection
in country using Twitter traffic.

7.1 Conclusion

In this thesis, we collected multiple Twitter data sets for countries expe-
riencing political instability, countries that are stable, and other data sets
pertaining to politics and movies. Our goal was to detect unstable countries
using only properties of information cascade graphs. Towards this end, we
computed a wide range of features for information cascades constructed using
three different methods. For baseline comparison, we also computed content
based features for classification. We used the extracted features with stan-
dard machine learning algorithms for automated classification. Based on our
analysis we conclude following results for unrest detection:

1. The properties used for analysis of diffusion of individual tweet were
not helpful for unrest detection and hence are not recommended for
unrest detection task.

2. Structural graph properties used for multiple tweet static graphs per-
formed well for detection of unrest when data was collected only for
countries. But with the inclusion of data related to political campaigns
the performance of this method degraded considerably, therefore using
static interaction graphs is also not a viable option for unrest detection

45
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problem.

3. And finally, the results of our experiments showed that analyzing dy-
namic properties of information cascades of multiple tweets provides
the best classification performance. On the basis of this finding it is
recommended to use this method for the purpose of unrest detection
in a country.

In terms of classification algorithms, näıve Bayes consistently outperformed
others in terms of accuracy. It achieved TP rate, FP rate, precision, and
accuracy of 100%, 3%, 98% and 98.5% respectively, when applied to features
extracted using multiple tweet dynamic analysis method.

7.2 Future Directions

In this thesis we have empirically proved the differences in Twitter traffic as a
result of disturbance in the socio-political setup of a country. Using dynamic
properties of information cascades of multiple tweets, we were able to detect
the unrest in country with very good accuracy. The step forward from here
would be to develop a method to exploit these differences in twitter traffic
to forecast the socio-political unrest in any target country.



Bibliography

[1] A. Anderson, D. Huttenlocher, J. Kleinberg, and J. Leskovec. Effects of
user similarity in social media. 2012.

[2] L. Backstrom and J. Kleinberg. Network bucket testing. In Proceedings
of the 20th international conference on World wide web, pages 615–624.
ACM, 2011.

[3] E. Bakshy, J. Hofman, W. Mason, and D. Watts. Everyone’s an influ-
encer: quantifying influence on Twitter. In Proceedings of the fourth
ACM international conference on Web search and data mining, pages
65–74, 2011.

[4] C. Bishop and S. S. en ligne). Pattern recognition and machine learning,
volume 4. springer New York, 2006.

[5] J. Cheng, D. Romero, B. Meeder, and J. Kleinberg. Predicting reci-
procity in social networks.

[6] F. Chierichetti, J. Kleinberg, and D. Liben-Nowell. Reconstructing pat-
terns of information diffusion from incomplete observations.
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