OCULUS RIFT STARRING NATURE

By
GC Hussain Murad
NC Mahnoor Ehtisham
NC Noman Ali Bajwa
NC Zainab Batool
Project Supervisor: Lt. Col Dr.Hasnat Khurshid

Submitted to
Faculty of Department of Electrical Engineering,
Military College of Signals, National University of Science and Technology, Islamabad,
in partial fulfillment for the requirements of the degree of

B.E. in Electrical (Telecommunication) Engineering

JULY 2020

DECLARATION OF ORIGINALITY

We hereby declare that the work contained in this report and the intellectual content of tis
report are the product of our work. This thesis report has not been formerly published in
any structure nor does it include any verbatim of the published resources which could be
treated as violation of the international copyright decree. We also affirm that we do
recognize the terms ‘plagiarism’ and ‘copyright’ and that in case of any copyright
infringement or plagiarism established in the thesis, we will be held fully accountable of
the consequences of any such violation.

CERTIFICATE OF APPROVAL AND CORRECTNESS

This is to officially state that the thesis work contained in this report titled “OCULUS
RIFT STARRING NATURE” is carried out by 00000186097 GC Hussain Murad,

00000186814 NC Mahnoor Ehtisham, 00000201401 NC Noman Ali Bajwa, 00000175895
NC Zainab Batool under my supervision and that in my judgement, it is fully ample, in
scope and excellence, for the degree of Bachelor of Electrical Engineering from Military
College Of Signals, National University of Sciences and Technology (NUST) and is
original with 9% of plagiarism only.

Approved by:

Lt Col Dr.Hasnat Khurshid
Military College of Signals (MCS),
National University of Sciences and Technology (NUST),

Islamabad, Pakistan

ABSTRACT

Exercise on treadmill is a boring activity and is usually augmented by installing LCD
television sets in front of the treadmill. LCD sets do not provide VR experience and there
is a requirement of a 3 Dimensional and 360-degree VR environment for a treadmill user.
This work aims at creation of an immersive video where viewers can pan around a full 360
degrees by moving their heads inside Oculus Rift. The technical problem to be solved is
concerned with making videos for Oculus Rift that can engage as well as immerse viewers

in virtual reality and creation of complete VR environment via software.

The project is implemented using Unity software and all coding of virtual reality
environment is done using C#. The Head Mounted Display used to view the 3D 360 video
is Oculus Rift. Videos are shoot using Samsung Vuze 3D 360 camera. A virtual reality

application is developed for Windows using unity software.

The project will be of great interest for gymnasium owners who can attract more people to
their gyms by providing a virtual reality experience. It will also be of interest for the people
who use treadmills at home and find it laborious, by using this app they will be able to
enjoy the tedious walking hours. Moreover this work will be helpful in future

advancements in the field of virtual reality.

© 2020
ALL RIGHTS RESERVED

Dedicated to our beloved parents and our supervisor, who proved
to be a source of motivation for us. It is their unconditional
support and words of encouragement that led us to complete a

work of such magnitude.

vi

ACKNOWLEDGEMENTS

We would first like to thank Allah Almighty for bestowing upon us His countless
blessings and without whom nothing is possible.

We are extremely thankful to our project supervisor Lt Col Dr.Hasnat Khurshid
from Military College of Signals (MCS) who in addition to providing us with
valuable technical help and guidance also provided us with moral support and

encouragement throughout the development of the project.

Our special gratitude and acknowledgments are there for the faculty and staff of
MCS who supported and guided us during our course work. Their advice,
knowledge insight, training and guidance facilitated us in completing this difficult
task.

We would also like to extent our gratitude to our families, friends, colleagues and
a long list of well-wishers whose prayers and faith in us propelled us towards our
goal.

Finally we are indebted to Electrical (Telecomm) Department of the Military
College of Signals, NUST.

vii

1.

TABLE OF CONTENTS

INTRODUCTION ...ttt ettt b et sb et sbe st e b nne s 13
110 OVEIVIBW ...ttt b bbbt 13
1.2, Problem SEAEMENT ..o e 13
1,30 APPIOACH ... 14
T 0l oL TP PP R R P PSRRI 14
15, AIM & ODJECLIVESoviiiiiiteieeeee sttt b e 15
1.6, CONIIDULIONS. ...ttt bbbttt 15
1.7, OFQANIZALION.....c.eiiiiiiiiiiteieete etttk b bbbt b ettt b e e 15

LITERATURE REVIEW ...ttt 17
2.1 INEPOTUCTION ...ttt 17
2.2, ViU REAIIEY ...c.veiieei e ettt ae e e 17

2.2.1. Virtual Reality in 201 CENTUINYc.cveveveieieiereteeeeeeeeee e ettt 18

2.2.2. Virtual Reality in 21 CONLUIYccuiiiieiiie et 18
2.3. Virtual Reality verses Augmented Reality..........ccccvviiiiiiiniieiice e 19
2.4. Virtual Reality verses Mixed Reality..........cccoriiiiiiiiiiiieieieeeee e 19
2.5. Components of Virtual REAIILYcccciriiiiiiiiiiiec s 19
2.6, INPUL DBVICES ...ttt bttt bbb 20
2.7. Handheld Controllers.........c.ooviiiiiii s 21

N T @ 1 11 | I 1=V o= SR 22

2.7.2. VISUAIS. ...ttt 22

2.7.3. SOTEWAIE ...ttt 23
2.8, HUMAN PEICEPTION.ccuiiitiiiieieieie sttt bbb 23

viii

3. DESIGN AND DEVELOPMENTooiiiiiiiiieiene et 24

3L INEFOTUCTION ...t b et n e 24
3.2, PrOJECE DESIGN ...ttt bbbt 24
3.3, Hardware SPeCIfiCatiON..........cccveviiiiiie i 25
331, OCUIUS RITE ..t 25
3.3.2. SAMSUNG VUZE CAIMEIA ...evviirieeiieeiieeiteesitessie e ee e e steestaessaeeteesteesreesssesnaesnbeesseessesssenas 26
3.3.3. Core i7 Processor With GPUcccoiiiiiiiiiss e 27
34, SOFftWare SPECITICALIONcciiviiiieieieiee e 28
TRt R U 1011 Y/ | I RSSO 28
3.4.2. Samsung Vuze Phone ApPPliCAtiON..........ccooiiiiiieieiiseseee s 32
3.4.3. VUZE VR STUAIO ..ottt sttt sta e san st enaenne s 32
3.5, Programming LANGUAGEcceruerreieieisiisiesiesie ettt st nn e 33
4. PROJECT ANALYSIS AND EVALUATIONcoiiiiiitt e 34
AL INEFOUUCTION. ...ttt bbbttt 34
4.2, OCUIUS INTBGIALION.....ccuiiiiieciece ettt e e sresbe et e sbestaesbesre s 35
4.2.1. Importing Oculus Integration PIUGIN..........ccccveiiiiiiiiiiiic e 35
4.2.2. OCUIUS CONIOIIEIS SEIUP ... voueeeeeiiiiiceie et 36
4.3, ENVIrONMENT CrEALIONoiviiieiiieieiieiese ettt 37
44, SENSOr AGJUSTMENT ..ottt bbbt e 37
4.5. Video Capturing, Stitching and Integration With Unityc.ccoceoviiinininincnciene 38
4.6. Application DEVEIOPMENTooviiiieiiieie e 38
5. FUTURE WORKttt bbbttt re e 40
5.1 FULUIE WOTK ..t 40
5.2, AUtomMatic SPEEd CONMIOL.......oiiiiiieie e st 40
5.3, Application DeVEIOPMENTociiiieie ittt s 40
5.4, ReNaDIIIAtION........cccviiiie e 41
5.5, MAIKELINGeitiieeie e 41

5.6, MIIITANY oo 41

5.7, CONCIUSTON ...ttt bbbttt n e 42
APPENDX ...ttt b ettt nreenrne s 44
6.1, APPENAIX A: SYNOPSIS c.vriveeiiecieeiie ittt sttt st e e st e be e e e sreeteenbesre e e nre e 44
6.2. AppendixX B: Oculus INtegrationccceccveieiieie i 46
6.2.1. OVR Headset Configuration...........cccecveiiiieienie et s 46
6.2.2. OVR CamMEra Rig....ccoveiiiiieiiiiiiie ittt sttt sreeneestesre e e sre e 49
6.3. Appendix C: ENVironment Creationccooeveieiininine e 61
6.3.1. Skybox Panoramic Beta Shader............cccooeiiiiiiiiiiiicsceeee s 61
6.3.2. Skybox Panoramic Beta Shader GUIcccooiiiiiiiiniicccces s 67
6.3.3. AUTIO SCIIPT....eeiitiieiieeeee ettt bbb 70
6.4.1. MaiN MENU SCIIPLovieiieieiieest bbb 70
B.4.2. UL CONLIOIEN ...ttt 72
BIBLIOGRAPHIY ...ttt bbb sbe e sae e e e s 74

Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:

TABLE OF FIGURES

Components of Virtual Reality...........ccccoceiiieiiiiiieeieccseee e 20
Input Devices from HTC and OCUIUS...........ccceevvrieivieiececeee e, 21
6-DoF (rotational and translational movement)ccccooevvvie e eie e, 22
PrOJECE DESIGN ...ttt 25
Oculus Rift, Sensors and Controllersc.ccoovvviininieiene e, 26
SamsuNg VUZE 360 CAMETAc.uviiirieiiiiie i sre e sire e sree e 27
UNILY 3D EQITOF ... 28
HIErarchy WINGOWcc.ooiiiiiiiiiiicee e 29
SCENE VIBW ...ttt bbbttt bbbttt 30
INSPECIOr WINAOW ..ot 30
GAME WINUOW......eiieiiieie ettt sttt teene e ne e e e 31
PrOJECE WINUOW ..o 32
Stages Of the PrOJECT ... 34
OCUIUS INEEQIAtiON ...c.veeeieciicciece e 35
OVRCAMEIARIG ...ttt 35
OVRCameraRig Propertiescoueeieieieiiiisiesiee e 36
Local Avatar PrOPEITIES........cccvcieeieiie ettt e 36
Layout of APPlCAtIONccoiiiiiec e 38
Graphical USer INTEIrTaCeccocvviiieiiiieiese e 39

Xi

VR

3D

IVE

AR

MR

HTC

PC

XR

DoF

SDK

GUI

HMD

LED

(ON)

UHD

GPU

ul

GUI

ABBREVIATIONS

Virtual Reality

3-Dimensional

Integrated Virtual Environment
Augmented Reality

Mixed Reality

High Tech Computer Corporation
Personal Computer

Extended Reality

Degree of Freedom

Software Development Kit
Graphical User Interface

Head Mounted Display

Light Emitting Diode
Operating System

Ultra High Density

Graphic Processing Unit

User Interface

Graphical User Interface

Xii

CHAPTER 1

1. INTRODUCTION

1.1. Overview

This is an era of innovation. Science, technology, and research has been the major
interest of everyone. Every second something striking is being created in the name
of science and technology in the neck of the woods and it is unpredictable. These
developments and discoveries are considered as an achievement. From typewriters
to Supercomputer the world has changed drastically. Now the artificial intelligence
and Virtual Reality (VR) has emerged as a new trend. Virtual reality is a technology
that makes people believe the unbelievable. This technology is ready to take over the
world and fragment the definition of reality. The thinking of the human mind has

become possible in the real world with the help of virtual reality.

Oculus Rift Starring Nature is one such project that will make humans experience
the most exotic rides while passing their monotonous treadmill hours. The project
will be capable of creating a complete 3-Dimensional (3D) immersive environment
where users can pan around a full 360-degrees by moving their head inside Oculus
Rift.

1.2. Problem Statement

Any type of exercise machine that challenges the cardio-respiratory system serves as a
great way to boost energy levels, strengthening the condition of heart and lungs, bringing
more blood to the muscles, brain and rest of the body as well as leading to greater energy
all day long. But walking on a treadmill sometimes seem more repetitious and is usually
augmented by installing LED televisions in front of treadmill but for a better experience

a person needs to find a machine that not only meet the level of fitness and impact but

13

also provides entertainment because a person only gets energy from doing something
that he enjoys. Therefore, there is a requirement of a 3-Dimensional and a 360-degree

VR environment for a treadmill user that makes his tedious treadmill hour fun.

1.3. Approach

For the development of a complete 3-Dimensional 360-degree environment for users
Unity software has been used. All the coding is done using C# programming language.
A Virtual Reality application is developed for windows. The headset that is used for
getting the output is Oculus Rift along with its sensors and controllers. The Oculus
Integration has been imported in Unity software for the interaction of the headset with
the computer. Video shooting is done using a 3-Dimensional, 360-degree Samsung Vuze
camera and Vuze application is used for the stitching and the orientation of the video in

a 3D plane.

1.4. Scope

This project has a very vast scope in gymnasiums where hundreds of people come
regularly to keep themselves fit and want to escape from the reality in the middle of
a tough workout. Huffing and puffing on treadmill surrounded by hordes of other
people counting down the minutes until they have met their goal, is rarely an exciting
experience. Immersing in virtual reality can be quite appealing for gymnasts as well
as it can help the gym owners attract more people. Moreover, the project finds its
scope for travelers who love to explore new places but due to limited resources they
cannot afford to go everywhere. The VR application can help them survey these

places while staying at their homes.

14

1.5. Aim & Objectives

Virtual reality is an immersive adventure that digitally invigorate a distant
environment. VR applications have been spread in diverse domains such as
entertainment, rehabilitation, engineering and robotics, fine arts, archeology and

digital marketing.

The main objectives that this project focuses to achieve are the following:
* Invigorating 3-Dimensional walk for a treadmill user.

» Creation of an immersive 360-degree view. Capturing the breath-taking
sceneries and acquainting them.

» Increasing the immersion and sense of presence when using Oculus headset in
Integrated Virtual Environment (IVES).

» Development of a virtual reality stand-alone application for windows
operating system.

» Making use of Unity and C# language to create a virtual environment.

1.6. Contributions

This project is designed and developed mainly for the gymnasiums and as such would

contribute the most towards social, environmental and global issues.

1.7. Organization

The first part of the thesis is the abstract which gives a basic insight of what the

project is about. It is the crux of the thesis.
The division of the chapters and the material included in them are as under:

Chapter 1 This is the introduction section where a brief overview of the project
has been given. It deals with the problem statement, approach to be

followed, scope and objectives of the project.

15

Chapter 2

Chapter 3

Chapter 4

Chapter 5

This section provides us with the literature review regarding how
VR has evolved in 20" and 21% century. The concept of Augmented
Reality (AR), Mixed Reality (MR) and how they differ from VR has
also been explained. Moreover, the components of Virtual Reality
have also been highlighted.

The design and the development part demonstrates the flow chart
exhibiting the various stages involved in this project. Also included is
a description of the hardware and software requirements of the project.
The analysis and evaluation part gives a detail of the techniques used
to create an immersive environment. The working of Windows
application has also been depicted.

The future work gives further improvements that can be
incorporated in the existing project and the additional developments
that can be made to enhance the scope of the project.

The conclusion, appendices and bibliography are given at the end of the

document.

16

CHAPTER 2

2. LITERATURE REVIEW

2.1. Introduction

An extensive research was conducted on our part before undertaking the design and
development phase of the project. This section deals with a brief review of what
Virtual Reality is, how it is different from augmented reality and mixed reality, and
the work already done in the field of Virtual Reality.

2.2. Virtual Reality

The term Virtual Reality is made out of two distinct words 'Virtual' and 'Reality’,
where processing meaning of Virtual methods not genuinely gives us the exact same
feel but all things considered yet gives an impression of physical measurements
utilizing PC projects. Reality is what is knowledgeable about the sense organs. So
Virtual Reality is a figuring aptitude that can give the vibe of reality, of any for all
intents and purposes made condition. In fact, Virtual Reality is a 3-dimensional 360-
degree, PC created condition which can be experienced and collaborated by an
individual with the assistance of physical gadgets, for example, headset and
controllers

Virtual Reality has allowed the users to immerse themselves in an artificial
environment simulated by computer. This system let the user navigate through the
environment and interact with the elements created. The user experiences a different
degree of immersion, depending on the hardware used to generate this environment
and the software that generates the simulation of this environment. One promise of
VR is to rearrange the way people and digital word interact with each other. This one
can possibly open better approaches for collaboration that are presently unrealistic.
The creation of new experience with VR has opened new expectations towards how

17

to use the current technology. An example of promise of VR is the possibility of
using VR to take virtual tours of distant locations.

2.2.1. Virtual Reality in 20t Century

The term computer generated reality was broadly utilized in mid 1980s when
diverse sort of innovation like gloves, goggles, and riggings to encounter
augmented reality were being created. In any case, before that there were
numerous researchers who were building up a mimicked situation. Among
them, Sensorama in 1956 was a major accomplishment in the field of
computer-generated reality when Morton Heilig needed to perceive how
individuals feel to encounter his film in genuine. The Sensorama reenacted a
genuine city experience riding a bicycle utilizing distinctive multi-tactile
reproduction. He likewise planned the main head mounted showcase gadget
which is the establishment of the apparatuses being grown at this point. In
1965 a PC researcher names lvan Sutherland built up an HMD that owes an
obligation of appreciation from the current designers of Virtual Reality.
(Dormehl, 2017).

2.2.2. Virtual Reality in 21 Century

Augmented Reality in the 21st century is developing at a quick speed. The
accessibility of reasonable cell phones has helped in the propelled
improvement of convenient Virtual Reality gadgets. The organizations like
Google, Facebook and Samsung are taking a shot at Virtual Reality.
Microsoft, HTC (High Tech Computer Corporation), Sony are likewise
attempting to bring their innovation with Virtual Reality applications.

The principal decade of the 21st century is known as the VR winter. There
was not much media consideration until organizations like Oculus or HTC
began giving individual VR headset, yet the innovation has just taken its pace
since the start of the 21st century. Since the significant result of VR is the
headset, numerous organizations are creating distinctive sort of headsets.

Present day headsets would now be able to be described in three kinds:

18

versatile, fastened, and independent. Portable headsets utilize a cell phone to
transform it into a VR gadget. These headsets do not require any additional
links. Fastened gadgets like Oculus Rift and HTC Vive are associated with the
PC (Personal Computer) with the assistance of a link which can give a total
VR experience. Independent VR headset is autonomous of outside gadgets

however gives a constrained ability when contrasted with fastened headsets.

2.3. Virtual Reality verses Augmented Reality

Augment means to include or build the benefit of something by adding something to
it. So Augmented Reality is a PC innovation that creates the new computerized
condition adding something to the article that dwells in reality. Enlarged reality
manages the genuine object of this present reality utilizing diverse AR cameras of
the cell phones or by including PC vision and gives a vibe of another condition with
improved sound, video, and picture to the clients. While Virtual Reality gives an
altogether new encounter of the virtual world, Augmented Reality accentuates this

present reality adding something to it. (Animate, 2016)

2.4. Virtual Reality verses Mixed Reality

Mixed Reality is a mix of Virtual Reality and Augmented Reality to give an
encounter of a virtual domain as well as give connection between the virtual items
and the client. MR makes the chance of communications between the physical and
computerized universes. (Rogers, 2018)

Extended Reality (XR) is the umbrella term utilized for various sort of advances that
may occur later that are comparable yet further developed then Virtual Reality and
Augmented Reality. XR covers every one of those spectra of Real and Virtual

conditions.

2.5. Components of Virtual Reality

19

The essential part of each PC innovation is equipment and programming. Computer
generated Reality is additionally made from programming and equipment like some
other processing gadget. Equipment is the physical segment utilized for the
distinctive working of PC innovation. In Virtual Reality, this equipment is utilized to
deliver upgrades that supersedes the feeling of the client. VR gadgets comprise of
info and yield gadgets and sensors which help in the connection between physical
gadgets and clients. PC, cell phones and consoles are significant parts of Virtual
Reality.

VR association is intended to inundate the clients into the virtual world to give the
impression of reality however much as could reasonably be expected. The total
drenching into the virtual world requires phenomenal coordination of physical body
developments, input information, handling units and other equipment sensors.

Since VR motor can enter information from different sources, for example, body
signals, discourse, locating the correct coordination between segments is

imperative.

OPERATION DATA
R
(PC)

VR ENGINE
U S E R DATA (SOFTWARE)

SENSE

G LU ECA] Ga—
(HMD)

Figure 2.1: Components of Virtual Reality

2.6. Input Devices

The physical gadgets that are utilized to enter information or data in computers are
called input gadgets. Info gadgets in VR are utilized to give a feeling of submersion
to the clients. The information gadgets in this innovation are limited to the physical
gadgets as well as incorporate pieces of human body and exercises, for example,
vision, hearing, development, breathing and pulses. With the assistance of

information gadgets client can control himself and explore in the virtual world.

20

Information gadgets are straightforwardly identified with the sensors and as a rule
sensor themselves fill in as info gadgets to procure data from the development of the

client. Figure 2.2 shows input gadgets from HTC and Oculus.

O -

VIVE oculus

Figure 2.2: Input Devices from HTC and Oculus

2.7. Handheld Controllers

The same number of organizations are making VR headsets, a ton of headway has
been made in innovation of info gadgets. Since a major piece of VR is created by
gaming organizations so Joystick has been utilized as a typical information gadget
however now Virtual Reality is moving towards a free world and utilization of
Joystick is practically out of date and rather supplanted by free wandering gadgets.
The level of opportunity is basic in VR innovation as it identifies with the
development of an article in the virtual world. For the cooperation of client and
article in virtual world two tomahawks, rotational and translational, are utilized.
Three rotational tomahawks and three directional tomahawks make the level of
opportunity regularly known as Degree of Freedom (DoF). 6 DoF permits a client
to follow both translational and rotational developments, forward or in reverse,
along the side or vertically, all over. These give an increasingly vivid and practical

view to the client.

21

_ -—

< 5N

S—-IDOoF

Figure 2.3: 6-DoF (rotational and translational movement)

2.7.1. Output Devices

Each PC innovation has a yield gadget to show the outcomes carefully in
various structures like sound and video. Yield gadgets utilized in Virtual
Reality incorporate video show screen and a headset to picture the virtual
condition. Yield gadgets animate the sense organs introducing the virtual
condition to the client producing a vivid inclination. Huge organizations like
Oculus, Samsung, HTC, and Microsoft are creating propelled headsets for a

superior encounter for the client.

2.7.2. Visuals

The fundamental factor in Virtual Reality is the making of a artificial
environment in a reasonable manner with the goal that the client can encounter
a genuine virtual world. Visual registering is a term utilized in software
engineering that handles each visual substance saw on screens. 3D models,
for example, PC illustrations, Al, video preparing, human PC connection has
been made conceivable because of visual registering. The essential and
straightforward visual creation to make a vivid encounter is 360-degree video.
Typically, recordings are seen in two measurements so 3D displaying is
utilized to make an item in three measurements utilizing particular

programming.

22

2.7.3. Software

Software can be characterized as a computer program or a lot of directions
that help a computer to do an assignment to secure a specific outcome rather
than a related equipment gadget. As the VR advertise is growing quickly there
are a ton of apparatuses and stages accessible to the engineers. The most
usually utilized work area apparatuses for Virtual Reality are Unity 3D and
Unreal motor. Numerous Software Development Kits (SDKSs) are accessible
with these products that help in better cooperation among programming and

equipment.

2.8. Human Perception

The job of humans in VR is not only a client yet he is additionally a piece of the
virtual condition. The fundamental motivation behind VR is to inundate into a virtual
domain keeping up a harmony between with the assistance of equipment and
programming parts. There are various perspectives on people with respect to Virtual
Reality innovation. It is essential to comprehend the physiology of human body to
make an optical figment or submerge the sense organs of people so most extreme
sentiment of reality can be experienced. It is significant that the framework
synchronizes all boosts with clients' activity for legitimate working of VR
framework. (Guenard, 2017)

23

CHAPTER 3

3. DESIGN AND DEVELOPMENT

3.1. Introduction

This section clarifies the undertaking design and venture specifications including the
equipment required and programming required for the implementation of this project.
It explains in detail the proposed methodology and how the application will work.
Furthermore, the brief description of the programming language used is given at the
end of the chapter.

3.2. Project Design

The client provides an order to the Graphical User Interface made for the Windows
application, the Oculus SDK senses the data from the controllers and accordingly
sends the command to the game engine which in this case is Unity 3D software. The
software executes the instructions in accordance with the scripts running in
background and opens a virtual scene that is demanded by the user (GawnYong Park,
2017). Unity with the help of Oculus SDK and the Oculus sensors, senses the
position of the user and sends the data to the Head Mounted Display (HMD) where

the user is able to view the 3D 360-degree video in the headset.

The schematic outline of the venture configuration is delineated in the figure 3.1.

24

DATA GRAPHICAL USER DATA GAME ENGINE
INTERFACE (UNITY)
INPUT
DEVICE
(PC)
DATA

OCULUS RIFT

»

VIRTUAL SCENE

Figure 3.1: Project Design

3.3. Hardware Specification

The following hardware has been used for the implementation of the design depicted
in figure 3.1

e QOculus Rift
e Vuze 3D 360 camera

e Computer

The description of each device is given below

3.3.1. Oculus Rift

An Oculus Rift is a head-piece equipment for display produced by Oculus’' VR
group. It is expressly planned Virtual Reality show that utilizes ultra-current
showcase frameworks, optics, and revive/refresh rates to give a significant
level of visual accuracy and a vivid wide field of view. It has a latest used
technology for displays joined with a low inertness following framework to
give an actual existence like understanding to the user. It fills in as a wearable
headset fit for letting the clients experience a virtual domain.

The specifications of Oculus Rift are

e Head-gear display

25

e Light Emitting Diode (LED) display technology

e 2160 x 1200 resolution

e 90 Hz fast refresh rate

e 110 degrees wide view field (nominal)

e Microsoft Windows compatibility (plans for Operating System (OS)
X and Linux compatibility)

The Oculus Rift comprises of a coordinated sound VR that gives a 3D sound
impact. It additionally incorporates rotational and positional tracking skilled
with the assistance of infrared sensors. In this manner it very well may be
utilized while clients are sitting, standing, or trekking.

Figure 3.2 shows the Oculus Rift along with its sensors and controllers.

Figure 3.2: Oculus Rift, Sensors and Controllers

3.3.2. Samsung Vuze Camera

The camera that has been used to acquire immersive 360-degree videos is the
Vuze 360 camera. It features eight cameras spread out evenly in pairs across
its four sides. Each camera pair is intended to mimic human eyesight and each
individual camera image sensor can record Ultra-high definition (UHD) 4K

video at 30p. It also contains four built-in microphones for capturing audio.

26

Figure 3.3 shows the Vuze 360 camera

Figure 3.3: Samsung Vuze 360 Camera

3.3.3. Corei7 Processor with GPU

Since VR gaming and video shooting is very demanding therefore a powerful
gaming desktop is required to run the tiles smoothly on the Oculus Rift.
Graphic card plays the most vital role in providing VR experience hence a

discrete video card is required that is powerful enough to drive VR.

The processor used in this project is Intel core i7 with NVidia GeForce GTX
1060 Graphic Processing Unit (GPU). It provides 90 fps frame rate. Since
frame rates that waffle below this mark can be nauseating for some users so
this consideration has been considered while choosing the hardware.

27

3.4. Software Specification

The following software has been used for the implementation of the design depicted
in figure 3.1.

e Unity 3D

e Samsung Vuze phone application

e Vuze VR studio

The description of the software is given below

3.4.1. Unity 3D

The software utilized in this project for the advancement of a 3D domain is
Unity 3D since it is the most generally utilized platform for VR development.
Unity has a profoundly enhanced rendering pipeline and fast iteration
capacities that makes innovative XR vision a reality. It supports all the latest
and greatest platform including Oculus Rift. It has super high frame rates and

the tools further optimize the stereoscopic rendering pipeline (Moreno, 2017).

Initially when Unity 3D is opened it has the structure shown below in figure
3.4.

Inspector

Hierarchy Windeii

Window

Project Window

Figure 3.4: Unity 3D Editor

The components of Unity are explained on next page.

28

3.4.1.1. Hierarchy Window

The hierarchy window contains all the game articles in the present scene.
A portion of these are immediate cases of the asset records like 3D
models and other are cases of prefabs. It is conceivable to choose objects
in the hierarchy window and drag one item on to the next to utilize
parenting. As items are included the scene, they show up in the hierarchy
chain too.

= Hierarchy

SampleScene*

Figure 3.5: Hierarchy Window

3.4.1.2. Scene View

This window is the intuitive view in the designed world. Whatever is
displayed in this window can be viewed in the head mounted display. It
utilizes view to choose and situate landscape, camera lights, characters,
and all other sort of game items. Objects can be manipulated and
modified in this view.

29

Scene
= o .| % ~

| shaded

Figure 3.6: Scene View

3.4.1.3. Inspector Window

The inspector window is utilized to alter and see the characteristics of
Game Objects, Assets and different inclinations and settings in the
editor. At the point when a game article is chosen in the hierarchy
window or scene, inspector will show the component's properties and

materials on that object.

|_© inspecor =

[Directional Light | []Static

Tag [Untagged #] Layer | Default %
¥ A Transform o
Position X O ¥ [3 |z [0]
Rotation X [S0 v [-30 |z [o]
Scale X1 [|1 |Z |1 |
v o ¥Light oo,
Type [Directional E]
Color [| 22
Mode [Mixed -]
Intensity {1 |
Indirect Multiplier E! |

Figure 3.7: Inspector Window

30

3.4.1.4. Game Window

The game view is provided from the camera in the project. It is the final
portrayal of how the project looks and functions. It is important to utilize
at least more than one camera to control what the player really observes
when they are running the venture. When in play mode any progressions
made are temporary and will be reset when leave play mode. The Editor
User Interface (Ul) obscures to remind this.

€ Game
Display 1 +| | Free Aspect +| Scale «Jmw 1.34x | Both Eyes % | Maximize On Play | Mute Audio

Figure 3.8: Game Window

3.4.1.5. Project Window

The left panel shows the folder structure of the task as a various leveled
list. At the point when the organizer is chosen its substance are appeared
in the board to the right. The independent resources are appeared in the
right panel as symbols that shows their kind. The left of the slider shows
the right now chosen thing, including a full way to the thing if a hunt is
being performed.

31

@3 Project | =

Create ~ (R E i 14,‘, %
Y7 Favorites Assets

(O All Materials @@ Editor

© All Models & Fonts
lr[-]«A" Prefabs W Materials
O All Scripts & Models

Wl Resources

. R Wl Scenes

W Editor @ Scripts

W Fonts @@ Sounds
_ Materials @ Textures

¥ & Models
W Characteres

W Environment
W Resources
W Scenes
W Scripts
W Sounds
W Textures

Figure 3.9: Project Window

3.4.2. Samsung Vuze Phone Application

Since Vuze 360 camera is being used to shoot videos therefore to operate the
Vuze camera the company app is downloaded and installed on phone. It
enables one to record videos, preview the content and have large amount of
control over the images, from exposure control to the ability to switch between
lenses and change the field of view. The graphical overlay of the Vuze tells
whether the camera is level or not. If it is not at a level the app highlights the

section of the camera that needs to be adjusted to make it level.

3.4.3. Vuze VR studio

As the Vuze camera do not stitch the footage in camera so to render what is
shot, VR software is used. It includes features like 2D videos at 60 fps, native
photos, and horizon stabilization and zoom tools. The software consists of
three panels: import, preview and edit, and render. In ‘import’ footage is
downloaded from the Vuze camera. In ‘preview and edit’ footage can be

watched either in the stereo or from left or right eye perspective. ‘Rendering’

32

allows one to choose between 4K or 2K resolution and 16:9 or 2:1 aspect ratio.

Rendering can be done in 3D or 2D.

3.5. Programming Language

In Unity one can utilize scripts to grow basically all aspects of the real-time
intelligent and interactive content. Unity underpins scripting in C#. Consequently,
C# language is utilized all through the project to assemble codes. It is an industry
level language and has a few similitudes to C++ and Java. It is an overseen language
as it naturally does the management of memory: assigning unassigning memory,
covering memory spills and so forth. Since scripting advises the Game Objects how
to carry on accordingly an item situated language is required for the advancement of
the codes. Unity runs in a major circle, it peruses the entirety of the information in
the game scene, for instance perusing the lights, the lattices, what the practices are
and forms the entirety of the data. Subsequently a statically composed language is
required so the code is checked before it is transformed into an application. This
makes it simpler to discover blunders which is especially valuable for the designers
(Wang, 2020).

33

CHAPTER 4

4. PROJECT ANALYSIS AND EVALUATION

4.1. Introduction

After the software and hardware acquisition, the task of integration and evaluation
was undertaken. The Oculus Rift was integrated with Unity. An immersive 3D 360-
degree environment was originated by using panoramic skybox material. Videos
were captured and the stitching of the 3D videos was performed using Vuze VR
studio. Moreover, the video was integrated with the unity software and finally an

application for windows was developed.

The project had been completed in five stages which are shown below in figure 4.1.

OCULUS
INTEGRATION

STAGE 1

ENVIRONMNET
CREATION

STAGE 2

SENSOR
ADJUSTMENT

STAGE 3

STAGE 4

APPLICATION
DEVELOPEMNT

STAGE 5

Figure 4.1: Stages of the Project

34

4.2. Oculus Integration

Since Rift is a very popular headset so it was used as an HMD in the project. So, the
first step needed was to familiarize the development software Unity with this headset.
For this purpose, Oculus SDK was used. It is a Unity plugin that enables us to make

apps for Oculus with the right framework. The following set of operations was
performed to integrate Oculus with unity.

4.2.1. Importing Oculus Integration plugin

Figure 4.2 shows the Oculus integration plugin which was imported to Unity
using the Unity Asset store.

Assets

Oculus Scenes

Figure 4.2: Oculus Integration

After that the main camera of unity was deleted from the scene and rather
the OVRCameraRig for Oculus was dragged into the scene.

= Hierarchy =
| Create 1'| & all
w <« SampleScene*

i i

| | Directional Light

™ OVR CameraRig

w) TrackingsSpace
|) LeftEyeAnchor
|) CenterEyeAnchor
I RightEyesAnchor
|) TrackerAnchor
» |) LeftHandANnchor
») RightHandAnchor

Figure 4.3: OVRCameraRig

35

The properties of the OVRCameraRig were adjusted as shown in the
figure 4.4.

Figure 4.4: OVRCameraRig Properties
4.2.2. Oculus Controllers setup

Cameras in Unity represent the player’s eyes. After the cameras, controllers
were set which represented the player’s hands. To allow the user to use the
Oculus Avatar hands, the Local Avatar prefab was dragged in the scene and
its properties were adjusted as shown in figure 4.5.

Figure 4.5: Local Avatar Properties

36

The complete coding of Oculus Integration is attached in Appendix B

provided at the end of the document.

4.3. Environment Creation

The Skybox Panoramic Shader had been used in this project since it exhibits both the
180-degree and 360-degree videos in either equirectangular or cube map layout as a
scene backdrop. The video in any of these formats can be played by the Video Player

component and output to a render texture.

To use this shader a new render texture was created. The resolution of the render
texture was adjusted in accordance with the resolution of the video. After that to
create a video player in the scene the video that had been captured was dragged into
the scene. A player was automatically created with the video allotted to it. The render
mode of the video player was changed to render texture and the render texture from

the project view was dragged into the target texture field (Subash, 2019).

Next the skybox material was assigned to the render texture in equirectangular i.e.
the latitude-longitude format. The complete coding for the skybox is attached in

Appendix C provided at the end of this document.

4.4. Sensor Adjustment

To create a natural experience, the movement of the HMD and the controllers must
be traced in real time otherwise the environment is perceived as artificial. Therefore,
the position of the sensors was adjusted as to give maximum sense of immersion. For
this purpose, the Oculus application was used. The standing height was set so that
the Rift calculates the distance from the ground. It only needs to be set once after
which anyone can use the Rift. The standing height adjustment makes the experience
in VR more realistic. It was made sure that nothing blocks the line of sight between
HMD and the sensors. Also, the glossy side of the lenses was made to point towards

the game window.

37

4.5. Video Capturing, Stitching and Integration with Unity

To capture the video Samsung Vuze 360 had been used. The videos were recorded
in mp4 format. Since there are eight lenses in the Vuze camera so eight different
recordings were acquired but the camera does not stitch the videos. Since the purpose
of stitching the videos is to create an ideal panoramic video from a set of overlapping
videos therefore, Vuze VR studio was used to stitch the videos and the center of the
video was adjusted accordingly. After stitching the video, it was rendered using the
same Vuze VR studio application. Later the video was imported in Unity to be used

in the VR application built for Unity.

4.6. Application Development

An interactive Windows stand-alone application was developed using Unity to be
used with Oculus Rift headset. For that purpose, the GUI screen was designed in
Adobe Photoshop (Ahola, 2019). The interface of the application was kept simple
and understandable.

DOWNLOAD
i
RUN APP
i
LOADING SCENE
7
MAIN MENU > VIDEOS = —— MCS WALK
I I
ABOUT MARGALLAHILLS [——— PLAY
T T
EXIT ISLAMABAD RIDE

Figure 4.6: Layout of Application

Figure 4.6 present above shows the main menu is the first screen that appears in
front of the user after executing the application. The Main menu has three options.
‘VIDEOS’ button will take the user to a next scene which displays all the videos
that the user can play in Oculus Rift. The ‘ABOUT” button takes the user to a text

38

document that explains the working and other details of the application. While
pressing the ‘EXIT’ button the user gives the consent of leaving the application.

Figure 4.7 below represents the GUI of the proposed application.

Figure 4.7: Graphical User Interface

The complete coding for the Graphical User Interface (GUI) of the application is
attached in Appendix D provided at the end of the document.

39

CHAPTER5

5. FUTURE WORK

5.1. Future Work

VR technology is becoming more accessible with each passing day. Its use is not
only restricted to games and entertainment but it has proved to be an amazing tool
that can be used successfully in tourism, marketing, recruitment and training, creating
ideas and forecasting trends, pain management, digital marketing, architectural

designs, social science, occupational safety and clinical therapies.

The scope of the proposed project was limited to the exploration and creation of a
3D 360-degree environment for the user and the development of Windows
application that can be used with HMDs. However, by venturing deeper into the
project and exploring the depth of the process we can achieve some additional

objectives which are discussed below.

5.2. Automatic Speed Control

Wearing and not wearing HMDs to adjust the speed of the video with the user’s own
motion can be frustrating for the user so by using motion sensors such as pedometer
and accelerometer, speed of the video can be automatically matched with the speed
of the user in motion. The foot count from the motion sensor can be fed as input to
Unity where it calculates the speed in meters per second and plays the video at that

speed.

5.3. Application Development

The project develops an application for Windows. Since different people are using
different operating systems so VR applications can also be developed for Android,

40

i0S, Linux, and other operating systems. Moreover, applications can be developed
that reduces the memory utilization by making videos available at run-time. In this
way the Central Processing Unit (CPU) and GPU resources can be saved. This can
also enable people to download the VR application on their mobile devices as well
(Aseeri, 2013).

5.4. Rehabilitation

In the proposed project the VR application is developed for healthy users to engage
their interest in keeping themselves fit but it is not restricted to only healthy beings,
it can be a very effective tool for the rehabilitation process. It can provide opportunity
to assimilate stimulation and enjoyment into the rehabilitation process. A virtual
environment can be created for the patients using an HMD to help them overcome
the discomfort and suffering. Patients exercising their lower limbs can find a
treadmill walk equivalent to a walk in a park or countryside with the help of VR. It
can be used to treat stroke patients, people suffering from back pain and having any
sort of disorders. VR can show a spike in patient’s motivation thus improving the
patient’s coordination skills when doing physical therapy (Larsen, 2018).

5.5. Marketing

Applications like this can be explicitly used for marketing purposes, especially in
tourism. Hotels can have interactive 3D tours of their rooms, lobby, and restrooms to
attract tourists. Hotel owners can let everyone visit their hotels through VR before

booking the room. This can help them gain the confidence of more clients.

5.6. Military

It can be used for the training of soldiers. Simulated environments depicting the
enemy’s area can be created which can give an insight to the soldiers about the
opponent’s land. Moreover, they can practice working together in realistically

replicated environments before they enter the opponent’s area. This mesmeric

41

environment can be significantly important because the training that captures the

consciousness of the learner is often retained longer and better understood.

5.7. Conclusion

Virtual Reality has come a long way. It is a comprehensive medium of interaction
that discloses information with an extra spectacular dimension. This thesis has made
a minute effort in bringing to light another possibility of taking advantage of this
technology in field of entertainment. In the future, new probable platforms of
computation, virtual reality, augmented reality, and mixed reality can play a
remarkable role in fields of entertainment, scientific research and business. With the
implementation of this thesis, it has been illustrated that a virtual reality application
for a treadmill user is not only plausible and meaningful but also feasible.

Of course, this prototype has still a long way to go off on a tangent, there are still
number of refinements to be made. For example, the application should not only be
available for Windows but for other operating systems as well. It is not difficult to
device this feature anymore. Game engines like Unity have integrated high level
APIs. Moreover, third parties developed SDKs and APIs can also be integrated with
Unity for application development.

Another important dimension is the performance. Due to the limitation in the
efficiency of application, the frame rate is significantly dropped at run-time. So,
optimization needs to be done for smooth VR experience. Future improvements
should be taken on rationalizing and optimizing the application. For example, when
all the scripts are executed at run-time, it consumes huge amount of central
processing unit and GPU resources and ultimately results in low frame rates and
motion sickness. Thus, there is a need to boost the performance of the VR

application.

42

To conclude, this thesis has provided an outline of Virtual Reality and has explained
the composition of VR and how all elements can be integrated to create an application
that can help fitness enthusiasts to boost up their exercises. Technologies such as VR
and AR holds unlimited possibilities in scientific research and development. In the
upcoming year virtual reality seems to reach new heights and as per prediction, in
2022, 121 million virtual reality and mixed reality devices and applications will be

sold.

43

6. APPENDIX

6.1. Appendix A: Synopsis
OCULUS RIFT STARRING THE NATURE

Extended Title: Creation of Oculus Rift featured treadmill incorporating Pakistan’s
vista.

Brief Description of The Project / Thesis with Salient Specifications: This work
aims at creation of an immersive video where viewers can pan around a full 360
degrees by moving their heads inside oculus rift. The technical problem to be solved
is concerned with making videos for oculus rift that can engage as well as immerse
viewers in virtual reality and creation of complete VR environment via software.

Scope of Work: The oculus rift featured treadmill finds its application in gyms
where many people show interest in 3D walking and home to facilitate the
monotonous walk hour.

Academic Objectives:
e Attaining software programming skills
e Proficiency in 3D design skills
e Getting insight of Unity3D, the current development choice among game
engines

Application / End Goal Objectives: To create a complete 360-degree 3D
experience for treadmill users by using oculus rift.

Previous Work Done on The Subject:
¢ Digital Signal Processing
¢ Digital Image Processing
e Object Oriented Programming
e Data Structures and Algorithms
e 3D project using AutoCAD software

Material Resources Required:
e 3D camera
e Core i7 laptop with graphic card
e Oculus Rift
e Treadmill
e Unity 3D software
e SDK for oculus rift
o C#

44

No of Students : 4

Group Members: Hussain Murad
Mahnoor Ehtisham
Noman Ali Bajwa
Zainab Batool

Special Skills Required:
o C#
e Unity 3D software
e Image Processing
e App development

Approval Status

Supervisor Name & Signature: LT COL Dr. HASNAT KHURSHID

Assigned to: Hussain Murad
Mahnoor Ehtisham
Noman Ali Bajwa
Zainab Batool

HoD Signature

R&D SC Record Status

File # Coordinator Signature

45

6.2. Appendix B: Oculus Integration
6.2.1. OVR Headset Configuration

using System.Collections:
using System.Collections.Generic;
using UnitvEngine;

public class OVERHeadsetEmulator : MonoBehaviour §

public enum OpMode

i
Off,

EditorQOnly,
AlwaysOn

public OpMode opMode = OpMode.EditorOnly;
public bool resetHmdPoseOnRelease = true;

public bool resetHmdPoseByMiddleMouseButton = true;

public KeyCode[] activateKeys = new KeyCode[] { KeyCode.LeftControl,
KevyCode.RightControl };

public KeyCode[] pitchKeys = new KeyCode[] | KeyCode.LeftAlt, KeyCode RightAlt }:

OVRManager manager;

const float MOUSE_SCALE X =-2.0f;

const float MOUSE_SCALE X PITCH =-2.0f;
const float MOUSE_SCALE_Y = 2.0f:

const float MOUSE_SCALE_HEIGHT = 1.0f;
const float MAX _ROLL = 85.0f;

46

private bool lastFrameEmulationActivated = false;

private Vector3 recordedHeadPoseRelativeOffsetTranslation;
private Vector3 recordedHeadPoseRelativeOffsetRotation;

private bool hasSentEvent = false;

private bool emulatorHaslnitialized = false:

// Use this for initialization

void Start () {

M Update is called once per frame
void Update () {
if ('emulatorHasInitialized)
t
if (OVRManager.OVRManagerinitialized)
t

Cursor.lockState = CursorLockMode. None;

manager = OVRManager.instance;
recordedHeadPoseRelativeQiffsetTranslation =

manager.headPoseRelativeOffsetTranslation:
recordedHeadPoseRelativeQififsetRotation =

manager.headPoseRelativeOffsetRotation;
emulatorHasInitialized = true;

¥
e

Ilse

return;

)
bool emulationActivated = IsEmulationActivated():

if (emulationActivated)
{

Cursor.lockState = CursorLockMode.Locked:

47

if ('lastFrameEmulationActivated && resetHmdPoseOnRelease)

!
manager.headPoseRelativeOffsetTranslation =
recordedHeadPoseRelativeOffsetTranslation:

manager.headPoseRelativeOffsetRotation =
recordedHeadPoseRelativeOffsetRotation;

;

if (resetHmdPoseByMiddleMouseButton && Input.GetMouseButton(2))
{

manager.headPoseRelativeOffsetTranslation = Vector3.zero;

manager.headPoseRelativeOffsetRotation = Vector3.zero;

!

1]
—
7]
]

"

WVector3 emulatedTranslation =

manager.headPoseRelativeOffsetTranslation;
float deltaMouseScrollWheel = Input.GetAxis("Mouse

ScrollWheel™);

float emulatedHeight = deltaMouseScrollWheel *
MOUSE SCALE HEIGHT;

emulated Translation.y += emulatedHeight:

manager.headPoseRelativeOffsetTranslation =

emulated Translation;

float deltaX = Input.GetAxis("Mouse X");
float deltaY = Input.GetAxis("Mouse Y");

Vector3 emulatedAngles =

manager.headPoseRelativeOffsetRotation;
float emulatedRoll = emulatedAngles.x:

| float emulatedYaw = emulatedAngles.v;

48

6.2.2. OVR Camera Rig

using System;

using System.Collections;

using System.Collections.Generic;
using UnityEngine:

#HEfUNITY 2017 2 OR NEWER

using InputTracking = UnityEngine. XR.InputTracking:
using Node = UnityEngine. XR.XRNode:

#else

using InputTracking = UnityEngine. VR InputTracking:
using Node = UnityEngine. VR . VR Node:

#endif

Ml <summary=
/fi A head-tracked stereoscopic virtual reality camera rig.
M </summary=
[ExecuteInEditMode]
public class OVRCameraRig : MonoBehaviour
d
/ff <summary=
/{{ The left eye camera.
M </summary=
public Camera leftEveCamera { get | return (usePerEveCameras) ?
leftEveCamera : centerEyeCamera: | |
/ff <summary=
/{/ The right eye camera.
M </summary=
public Camera rightEveCamera { get { return (usePerEveCameras) ?
rightEveCamera : centerEveCamera; | |}

—

M <summary=

[/ Provides a root transform for all anchors in tracking space.
M </summary=

public Transform trackingSpace | get: private set; }

M <summary=

M Alwavys coincides with the pose of the left eye.

M </summary=

public Transform leftEveAnchor | get; private set; }

M <summary=

M Alwavs coincides with average of the left and right eye poses.
M =/summary=

public Transform centerEveAnchor { get; private set; }

49

M <summary=

/! Always coincides with the pose of the right eye.

M </summary=

public Transform rightEveAnchor { get; private set; }

M <summary=

! Alwavs coincides with the pose of the left hand.

M </summary=

public Transform leftHandAnchor { get: private set; }

Ml <summary=

1 Alwavys coincides with the pose of the right hand.

M </summary=

public Transform rightHandAnchor { get; private set; |}

M <summary=

/! Anchors controller pose to fix offset issues for the left hand.
M </summary=

public Transform leftControllerAnchor { get; private set; }

M <summary=

/! Anchors controller pose to fix offset issues for the right hand.
M </summary=

public Transform rightControllerAnchor { get: private set; }
Ml <summary=

/1 Alwavys coincides with the pose of the sensor.

M </summary=

public Transform trackerAnchor { get; private set; |}

M <summary=

/{/ Occurs when the eye pose anchors have been set.

M </summary=

public event System. Action=<OVRCameraRig= UpdatedAnchors;
M <summary=

/{/ If true, separate cameras will be used for the left and right eves.
M </summary=

public bool usePerEveCameras = false;

Ml <summary=

//{ If true, all tracked anchors are updated in FixedUpdate instead of Update to
favor physics fidelity.

//{ \note: If the fixed update rate doesn't match the rendering framerate
(OVRManager.display.appFramerate), the anchors will visibly judder.

M </summary>

public bool useFixedUpdateForTracking = false;

/! <summary=

//{ If true, the cameras on the eyeAnchors will be disabled.

/// \note: The main camera of the game will be used to provide VR rendering. And
the tracking space anchors will still be updated to provide reference poses.

50

/Il </summary=
public bool disableEveAnchorCameras = false;

protected bool skipUpdate = false;

protected readonly string trackingSpaceName = "TrackingSpace"
protected readonly string trackerAnchorName = "TrackerAnchor”
protected readonly string leftEye AnchorName = "LeftEyveAnchor";
protected readonly string centerEyeAnchorName = "CenterE‘geAnchor";
protected readonly string rightEveAnchorName = "RightEveAnchor";
protected readonly string leftHandAnchorName = "LeftHand Anchor";

protected readonly string rightHandAnchorName = "RightHand Anchor";

protected readonly string leftControllerAnchorName = "LeﬂControllerAnchor

protected readonly string rightControllerAnchorName =
"RightControllerAnchor";

protected Camera _centerEveCamera;

protected Camera _leftEyeCamera:

protected Camera rightEyeCamera;

#region Unity Messages
protected virtual void Awake()

]
skipUpdate = true
EnsureGameObjectIntegrity();
}

protected virtual void Start()

!

UpdateAnchors(true, true);
Application.onBeforeRender += OnBeforeRenderCallback:;

}

protected wvirtual void FixedUpdate()
{
if (useFixedUpdateForTracking)
UpdateAnchors(true, true);
3

protected wirtual void Update()

{
skipUpdate = false;

if (luseFixedUpdateForTracking)
UpdateAnchors(tiue, true);

51

protected virtual void OnDestroy()
d

)

#endregion

Application.onBeforeRender -= OnBeforeRenderCallback;

protected virtual void UpdateAnchors(bool updateEveAnchors, bool
updateHandAnchors)
]
if ('OVRManager.OVRManagerinitialized)
return;

EnsureGameObjectIntegrity();
if (!Application.isPlaying)

return;
if (_skipUpdate)

{
centerEveAnchor. FromOVRPose(OVRPose.identity, true);
leftEyve Anchor.FromOVRPose(OVRPose.identity, true);
rightEveAnchor.FromOVRPose(OVRPose.identity, true);

return;

)

bool monoscopic = OVRManager.instance. monoscopic;
bool hmdPresent = OVRNodeStateProperties.IsHmdPresent():

OVRPose tracker = OVRManager.tracker.GetPose();

trackerAnchor.localRotation = tracker.orientation;

Quaternion emulatedRotation = Quaternion.Euler(-
OVRManager.instance.headPoseRelativeOffsetRotation.x, -

OVRManager.instance.headPoseRelativeOffsetRotation.y,
OVRManager.instance.headPoseRelativeOffsetRotation.z);

/{Note: in the below code, when using UnityEngine's API, we only update
anchor transforms if we have a new, fresh value this frame.

//If we don't, it could mean that tracking is lost, etc. so the pose should not
change in the virtual world.

52

/IThis can be thought of as similar to calling InputTracking
GetLocalPosition and Rotation, but only for doing so when the pose is valid.

//1f false is returned for any of these calls, then a new pose is not valid and
thus should not be updated.

if (updateEyeAnchors)
{
if (hmdPresent)
t
Vector3 centerEyePosition = Vector3.zero;

Quaternion centerEyeRotation = Quaternion.identity;

if
(OVRNodeStateProperties. GetNodeStatePropertyVector3(Node.CenterEye,
NodeStatePropertyType.Position, OVRPlugin.Node. EyeCenter, OVRPlugin.Step.Render,
out centerEyePosition))
centerEve Anchor.localPosition =
centerEvePosition;
if
(OVRNodeStateProperties. GetNodeStatePropertyQuaternion(Node.CenterEye,
NodeStateProperty Type.Orientation, OVRPlugin. Node.EveCenter,
OVRPlugin.Step.Render, out centerEyeRotation))
centerEveAnchor.localRotation =
centerEyveRotation;

1]
7]
1]

centerEveAnchor.localRotation = emulatedRotation;
centerEveAnchor.localPosition =
OVRManager.instance.headPoseRelativeOffsetTranslation;
)

if ('hmdPresent || monoscopic)
d
leftEveAnchor.localPosition =

centerEveAnchor.localPosition;
rightEveAnchor.localPosition =

centerEveAnchor.localPosition;
leftEve Anchor.localRotation =

centerEveAnchor.localRotation;
rightEveAnchor.localRotation =

centerEveAnchor.localRotation;
}

else

{
Vector3 leftEyePosition = Vector3.zero;

53

Vector3 rightEvePosition = Vector3.zero;

Quaternion leftEveRotation = Quaternion.identity;
Quaternion rightEveRotation = Quaternion.identity:;

if
(OVRNodeStateProperties.GetNodeStatePropertyVector3(Node.LeftEye,
NodeStatePropertyType.Position, OVRPlugin Node.EyeLeft, OVRPlugin.Step.Render,
out leftEyvePosition))

leftEveAnchor.localPosition = leftEvePosition;

if
(OVRNodeStateProperties.GetNodeStatePropertyVector3(Node.RightEye,
NodeStatePropertyType.Position, OVRPlugin Node.EyeRight, OVRPlugin.Step.Render,

out rightEyvePosition))
rightEveAnchor.localPosition = rightEyePosition;
if

(OVRNodeStatePro perties.Ge?Node StatePropertyQuaternion(Node.LeftEye,

NodeStatePropertyType.Orientation, OVRPlugin.Node.EyeLeft,
OVRPlugin.Step.Render, out leftEyeRotation))

leftEve Anchor.localRotation = leftEveRotation;

if

(OVRNodeStateProperties.GetNodeStatePropertyQuaternion(Node.RightEye,
NodeStatePropertyType.Orientation, OVRPlugin.Node.EyeRight,
OVRPlugin.Step.Render, out rightEyeRotation))

rightEveAnchor.localRotation = rightEveRotation;

|

;

if (updateHand Anchors)

]
//Need this for controller offset because if we're on OpenVR, we

want to set the local poses as specified by Unity, but if we're not, OQVRInput local
position is the right anchor

if (OVRManager.loadedXRDevice =
OVRManager.XRDevice.OpenVR)
]

Vector3 leftPos = Vector3.zero;

Vector3 rightPos = Vector3.zero;
Quaternion leftQuat = Quaternion.identity;
Quaternion rightQuat = Quaternion.identity;

if
(OVRNodeStateProperties. GetNodeStatePropertyVector3(Node.LeftHand,

NodeStateProperty Type.Position, OVRPlugin.Node. HandLeft, OVRPlugin. Step.Render,
out leftPos))

54

leftHand Anchor.localPosition = leftPos;

if
(OVRNodeStateProperties.GetNodeStatePropertyVector3(Node.RightHand,
NodeStateProperty Type.Position, OVRPlugin.Node.HandRight,

OVRPlugin.Step.Render, out rightPos))
rightHandAnchor.localPosition = rightPos;
if

(OVRNodeStateProp erties.GetNode StatePropertyQuaternion(Node.LeftHand,

NodeStatePropertyType.Orientation, OVRPlugin.Node . HandLeft,

OVRPlugin.Step.Render, out leftQuat))
leftHand Anchor.localRotation = leftQuat:

if
(OVRNodeStateProperties.GetNodeStatePropertyQuaternion(Node . RightHand,
NodeStatePropertyType.Orientation, OVRPlugin.Node.HandRight,
OVRPlugin.Step.Render, out rightQuat))
rightHandAnchor.localRotation = rightQuat;

=
j—

A

1]

a

lefiHand Anchor.localPosition =

OVRInput.GetLocalControllerPosition(OVRInput.Controller.LTouch);
rightHandAnchor.localPosition =

OVRInput,GetLocalControllerPosition(OVRInput. Controller.RTouch);
leftHand Anchor.localRotation =

OVRInput.GetLocalControllerRotation(OVRInput.Controller.L. Touch);
rightHandAnchor.localRotation =

OVRInput.GetLocalControllerRotation(OVRInput.Controller. RTouch);

}

trackerAnchor.localPosition = tracker.position;

OVRPose leftOftsetPose = OVRPose.identity;

OVRPose rightOffsetPose = OVRPose.identity:;
if (OVRManager.loadedXRDevice ==

OVRManager. XRDevice.OpenVR)

{
leftOftsetPose =

O\?'Rl\ff[anager.GetOEen\VRCOWNOde.Lefﬂ{and :
rightOffsetPose =
OVRManager.GetOpenVR ControllerOffsetiINode.RightHand);

//Sets poses of left and right nodes, local to the tracking
space.

55

OVRManager.SetOpenVRLocalPose(trackingSpace.InverseTransformPoint{leftC

ontrollerAnchor.position),

trackingSpace.InverseTransformPoint(rightControllerAnchor.position),
Quaternion. Inverse(trackingSpace.rotation) *

Quaternion. Inverse(trackingSpace.rotation) *

rightControllerAnchor.rotation);
}
rightControllerAnchor.localPosition = rightOffsetPose.position;

rightControllerAnchor.localRotation = rightOffsetPose.orientation;
leftControllerAnchor.localPosition = leftOffsetPose.position:

leftControllerAnchor.localRotation = leftOffsetPose.orientation;

i

RaiseUpdated AnchorsEvent();
|

protected virtual void OnBeforeRenderCallback()

{
if (OVRManager.loadedXRDevice == OVRManager. XRDevice.Oculus)
//Restrict late-update to only Oculus devices
{
bool controllersNeedUpdate =
OVRManager.instance. LateControllerUpdate;
#if USING_XR_SDK
//For the XR SDK, we need to late update head pose, not just the
controllers, because the functionality
//is no longer built-in to the Engine. Under legacy, late camera
update is done by default. In the XR SDK, yvou must use
//Tracked Pose Driver to get this by default, which we do not use.
So, we have to manually late update camera poses.

UpdateAnchors(true, controllersNeedUpdate);

#else
if (controllersNeedUpdate)
if (controllersNeedUpdate)
UpdateAnchors(false, true);
#endif
]
!

protected virtual void RaiseUpdated AnchorsEvent()
{
if (UpdatedAnchors = null)

{
UpdatedAnchors(this);

56

}

publi¢ virtual void EnsureGameObjectIntegrity()
]
bool monoscopic = OVRManager.instance '= null ?
OVRManager.instance.monoscopic : false;

if (trackingSpace == null)
trackingSpace = Configure Anchor(null, trackingSpaceName);

if (leftEveAnchor == null)
leftEve Anchor = Configure Anchor(trackingSpace,
leftEve AnchorName);

if (centerEve Anchor = null)
centerEveAnchor = ConfigureAnchor(trackingSpace,
centerEyveAnchorName);

if (rightEye Anchor = null)
rightEveAnchor = Configure Anchor(trackingSpace,
rightEveAnchorName);

if (leftHand Anchor = null)
leftHand Anchor = ConfigureAnchor(trackingSpace,
leftHandAnchorName);

if (rightHand Anchor == null)
rightHandAnchor = ConfigureAnchor(trackingSpace,
rightHandAnchorName);

if (trackerAnchor == null)

trackerAnchor = ConfigureAnchor(trackingSpace,
trackerAnchorName);

if (leftControllerAnchor == null)
lefiControllerAnchor = ConfigureAnchor(leftiHand Anchor.,

leftControllerAnchorName);
if (rightControllerAnchor =— null)

rightControllerAnchor = ConfigureAnchor(rightHand Anchor,
rightControllerAnchorName):

57

if (_centerEveCamera = null || _leftEyeCamera = null ||
rightEyveCamera = null)
{
centerEyveCamera =
centerEve Anchor.GetComponent<Camera=();
leftEveCamera = leftEve Anchor.GetComponent<Camera=();
rightEveCamera = rightEveAnchor.GetComponent<Camera=();

if (_centerEyeCamera = null)
t
centerEveCamera =
centerEve Anchor.gameObject. AddComponent<Camera=():
centerEveCamera.tag = "MainCamera";
}

if (_leftEyeCamera = null)
t
leftEyeCamera =
leftEveAnchor.gameObject. AddComponent<Camera=();
leftEyeCamera.tag = "MainCamera";
}

if (_rightEyeCamera == null)

t
rightEveCamera =
rightEyeAnchor.gameObject. AddComponent<Camera>();
rightEveCamera.tag = "MainCamera";
}

centerEveCamera.stereoTargetEye = StereoTargetEveMask.Both;
leftEyeCamera.stereoTargetEve = StereoTargetEyeMask.Left;
rightEveCamera.stereoTargetEve = StereoTargetEyeMask.Right;

if (monoscopic & & 'OVRPlugin.EveTextureArravEnabled
i
/{ Output to left eye only when in monoscopic mode
if (_centerEveCamera.stereoTargetEve !=
StereoTargetEveMask.Left)
'
centerEveCamera.stereoTargetEve =
StereoTargetEveMask.Left;
b
¥

Ise

]

58

{
if (_centerEyeCamera.stereoTargetEve !=

StereoTargetEyeMask.Both)
]
centerEveCamera.stereoTargetEye =

StereoTargetEyeMask.Both;
b
|

if (disableEveAnchorCameras)
{
centerEveCamera.enabled = false;

leftEveCamera.enabled = false;
rightEveCamera.enabled = false;

else

/ disable the right eye camera when in monoscopic mode
if (_centerEveCamera.enabled == usePerEyeCameras ||
leftEveCamera.enabled == !usePerEveCameras ||
rightEveCamera.enabled == !(usePerEveCameras
& & (!monoscopic || OVRPlugin.EveTextureArrayEnabled)))
t

}
centerEveCamera.enabled = lusePerEveCameras;

leftEveCamera.enabled = usePerEveCameras;
rightEveCamera.enabled = (usePerEveCameras &&

(!monoscopic || OVRPlugin. EveTextureArrayEnabled));
i

skipUpdate = true;

;

protected virtual Transform ConfigureAnchor(Transform root, string name)

d
Transform anchor = (root != null) ? root.Find{name) : null;
if (anchor == null)
t

anchor = transform.Find(name);

i

if (anchor == null)

59

t
;

anchor = new GameObject(name).transform;

anchor.name = name;

anchor.parent = (root !=null) ? root : transform;
anchor.localScale = Vector3.one;
anchor.localPosition = Vector3.zero;

anchor.localRotation = Quaternion.identity:

return anchor;

}

public virtual Matrix4x4 ComputeTrackReferenceMatrix()
t
if (centerEveAnchor = null)
{
Debug.LogError("centerEyeAnchor is required");
return Matrix4x4.identity;

;

/! The ideal approach would be using

UnityEngine. VR.VRNode. TrackingReference, then we would not have to depend on the
OVRCameraRig. Unfortunately, it is not available in Unity 5.4.3

OVRPose headPose = OVRPose.identity;

Vector3 pos;

Quaternion rot;
if (OVRNodeStateProperties.GetNodeStatePropertyVector3(Node.Head,
NodeStatePropertyType.Position. OVRPlugin.Node.Head, OVRPlugin.Step.Render, out
pos))

headPose.position = pos;
if
(OVRNodeStateProperties.GetNodeStatePropertyQuaternion(Node.Head,
NodeStatePropertyType.Orientation, OVRPlugin. Node.Head, OVRPlugin.Step.Render,
out rot))
headPose.orientation = rot;

OVRPose invHeadPose = headPose.Inverse():
Matrix4x4 invHeadMatrix = Matrix4dx4. TRS(invHeadPose.position,

invHeadPose.orientation, Vector3.one);

Matrix4x4 ret = centerEveAnchor.localToWorldMatrix * invHeadMatrix;

return ret;

60

6.3. Appendix C: Environment Creation

6.3.1. Skybox Panoramic Beta Shader

Shader
"Skybox/PanoramicBeta

"

Pmpelfties i
_Tint ("Tint Color”, Color) = (.5, .5, 5. .5)
[Gamma)] Exposure ("Exposure", Range(0, 8))=1.0
_FRotation ("Rotation”, Range(0, 360)) =10
[MoScaleOffset] Tex ("Spherical (HDR)", 2D)) =
"grey” {}
[EeywordEnum(6 Frames Layout, Latitude Longitude
Lavout)] Mapping("Mapping”, Float) = 1
[Enum(360 Degrees, 0, 180 Degrees, 1]]
_ImageType("Image Type", Float) =0
[Toggle] MirrorOnBack("Mirror on Back”, Float) =0
[Enum(None, 0, Side by Side, 1, Over Under, 2)]
_Layout("3D Layout", Float) =0
¥

SubShader {
Tags { "Queue"="Background"
"RenderType"="Background" "PreviewTvpe"="Skybox"

¥
Cull Off ZWrite Off

Pass {

CGPROGEAM

#pragma vertex vert

#pragma fragment frag

#pragma target 2.0

#pragma multi compile
_MAPPING 6 FRAMES LAYOUT

#include "UnityCG_cginc”
sampler?D Tex;
floatd Tex TexelSize;

half Tex HDR:
halfd _Tint;

61

half Exposure;
float _Rotation;
#ifndef MAPPING 6 FRAMES LAYOUT
bool MirrorOnBack;
it ImageType;
int _Layout;
#endif

#ifndef MAPPING 6 FRAMES LAYOUT
inline float? ToRadialCoords(float3 coords)

{

float3 normalizedCoords = normalize(coords);

float latitude = acos(normalizedCoords.v);

float longitude = atan?{normalizedCoords.z,
normalizedCoords x);

float? sphereCoords = float?(longitude, latitude) *
float2 (0.3/UNITY _PI. 1.0/UNITY PI);

return float2(0.5,1.0) - sphereCoords;

¥

#endif

#ifdef MAPPING 6 FRAMES LAYOUT
inline float? ToCubeCoords(float3 coords, float3
layout, floatd edgeSize, floatd faceXCoordLavouts, floatd
faceYCoordLavouts, floatd faceZCoordLayouts)
{

/{ Determine the primary axis of the normal

float3 absn = abs(coords);

float3 absdir = absn = float3(max(absn. y.absn.z),
max(absn x absn), max({absn x.absn)1 7 1 - 0;

/! Convert the normal to a local face texture coord
[-1.41]. note that tcAndlen z=—=dot(coords_ absdir)

/! and thus 1ts sign tells us whether the normal 1s
pointing positive or negative

float3 tcAndLen = mul(absdir,
float3x3(coords zyvx_ coords xzy, float3(-
coords xy,coords.z)));

tcAndLen xv /= tcAndlLen z;

/! Elip-flop faces for proper onientation and
normalize to [-0.5 +H).3]

bool? positiveAndV Cross = float2(tcAndLen z,
layout x) = 0;

62

tcAndLen xv *= (positiveAndVCross[0] 7
absdir vx - (posittve AndVCross[1] ? float?(absdir[2].0) -
float2(0_absdir[2]))) - 0.5;

/f Clamyp values which are close to the face edges
to avoid bleeding/seams (ig enforce clamp texture wrap
mode)

tcAndLen xv = clamp(tcAndLen xv_ edgeSize xv,
edgeSize zw);

/{ Scale and offset texture coord to match the
proper square in the texture based on layout.

floatd coordLayout = mul{floatd (absdir,),
floatd=x4(faceX CoordLavouts, faceY CoordLayouts,
faceZCoordLayouts, faceZCoordLayouts));

tcAndLen xyv = (tcAndlLen xv +
(positive AndWV Cross[0] ? coordLayout.xyv -
coordLayout. zw)) * layout.vz;

return teAndlen xvy;

¥

#endif

float3 Rotate Around YInDegrees (float3 vertex, float
degrees)
{
float alpha = degrees * UNITY PI/ 180.0;
float sina, cosa;
sincos(alpha, sina_ cosa);
float?x? m = float?x?(cosa, -sina, sina, cosa);
return float3(mul{m, vertex xz), vertex v) xzy;

¥

struct appdata t {

floatd vertex : POSITION;

UNITY VERTEX INPUT INSTANCE ID
¥

struct v2f {
floatd vertex - §WV_POSITION;
float? texcoord : TEXCOOERDO;
#ifdef MAPPING 6 FREAMES LAYOUT
float3 layout - TEXCOORDI1;
floatd edgeSize : TEXCOQRIDZ;
floatd faceXCoordLayouts : TEXCOORD3;
floatd faceYCoordLayouts : TEXCOORD4;

63

float4 faceZCoordLayouts : TEXCOORDS;
#else
float? imagel80S5cale AndCutoff - TEXCOORD;
float4 layout3DScaleAndOffset : TEXCOOERD?2;
#endif
UNITY VERTEX QUTPUT_STEREO
¥

v2fwvert (appdata t v)
i
v2fo;
UNITY _SETUP_INSTANCE ID(v);

UNITY INITIALIZE VERTEX OUTPUT STEREO(o)

float3 rotated =
Fotate Around Y InDegrees(v.vertex, Rotation);
o.vertex = UnityObjectToClhipPos(rotated);
o.texcoord = v.vertex xyz;
#ifdef MAPPING 6 FRAMES LAYOUT
/{ layout and edgeSize are solely based on texture
dimensions and can thus be precalculated in the vertex
shader.

float sourceAspect = float{ Tex TexelSize z) /
float(_Tex TexelSize w);
/{ Use the halfway point between the 1:6 and 3:4
aspect ratios of the strip and cross layouts to
/! guess at the correct format.
bool3 aspectTest =

sourcefspect =

float3(1.0, 1.0£/6.0f+ (3.0f/4.0f - 1.0f/ 6.0
F20f 60/ 108+ (4.0£/3.0f-6.0f/1.0£) / 2.0f);
/{ For a given face layout, the coordinates of the 6
cube faces are fixed: build a compact representation of
the
/! coordinates of the center of each face where the
first float4 represents the coordinates of the X axis faces,
/! the second the Y, and the third the Z. The first
two float componenents (xv) of each floatd represent the
face
/! coordinates on the positive axis side of the cube,
and the second (zw) the negative.

64

! layout.x 1s a Boolean flagging the vertical cross
layout (for special handling of flip-flops later)
M lavout vz contains the inverse of the layout
dimensions (1.e.. the scale factor required to convert from
!/ normalized face coords to full texture
coordinates)
if (aspectTest[0]) // horizontal
{
if (aspectTest[2])
{ // honzontal strip
o.faceX CoordLavouts =
float4(0.5,0.5,1.5,0.5);
o.faceY CoordLavouts =
float4(2.5,0.5,3.5,0.5);

==y 2

o faceZCoordLavouts =
float4(4.5,0.5.5.5,0.5);
o layout = float3(-1.1.0/6.0.1.0/1.0):
h
Else
{ // horizontal cross
o faceXCoordLavouts =
float4(2.5,1.5,0.5,1.5);
o.faceY CoordLavouts =
float4(1.5,2.5,1.5,0.5);
o faceZCoordLayouts =
float4(1.5,1.5,3.5,1.5);
olayout = float3(-1,1.0/4.0.1.0/3.0);
¥
¥
else
{
if (aspectTest[1])
{ // vertical cross
o.faceXCoordLayouts =
float4(2.5,2.5,0.5,2.5);
o.faceY CoordLayouts =
float4(1.5,3.5,1.5,1.5);
o.faceZCoordLayouts =
float4(1.5,2.5,1.5,0.5);
o.layout = float3(1,1.0/3.0,1.0/4.0);
¥

else
{ // vertical strip

65

o faceXCoordLayouts =
float4{0.5,5.5,0.5.4.5);

o_face¥ CoordLayouts =
float4(0.5.3.5,0.5,2.5);

o.faceZCoordLayouts =
float4{0.5,1.5,0.5,0.5);

o layout = float3(-1,1.0/1.0,1.0/6.0};

¥

¥
/1 edgeSize specifies the mimmum (xy) and

maximum (zw) normalized face texture coordinates that
will be used for
/ sampling in the texture. Setting these to the
effective size of a half pixel honzontally and vertically
! effectively enforces clamp mode texture
wrapping for each individual face.
o.edgeSize xy = Tex TexelSizexy * 0.5/
olayout.vz - 0.5;
o.edgeSize zw = -o0.edgeSize xy;
#else // | MAPPING 6 FRAMES LAYOUT
/! Calculate constant horizontal scale and cutoff
for 180 (vs 360) image type
it (ImageType =—0) // 360 degree
o.1magel B0ScaleAndCutoff = float2(1.0, 1.07;
else // 180 degree
o.imagel B0ScaleAndCutoff = float?(2.0,
_MirrorOnBack 7 1.0 - 0.5);
/{ Calculate constant scale and offset for 3D
layouts
1if (Layout==10) // No 3D layout
o layout3DScaleAndOffset = floatd{0.0,1,1);
else 1f (Layout == 1) // Side-by-Side 3D lavout
o layout3iDScaleAndOffset =
floatd(umty StereoEvelndex 0.0.5.1);
else // Over-Under 3D layout
o layout3DScaleAndOffset = floatd(0, 1-
unity StereoEvelndex. 1,0.3);
#endif
return o]

}

fixed4 frag (v2f1) - SV _Target
i

66

#ifdef MAPPING 6 FRAMES LAYOUT

float? tc = ToCubeCoords(i texcoord, 1.1ayout,
1.edgeSize, 1. faceXCoordLayouts. 1.faceY CoordLavouts,
1.faceZCoordLayouts);
#else

float? tc = ToRadialCoords(1.texcoord);

if (tc x > 1.1mage180Scale AndCutoff[1])

return half4(0,0,0,1);
tc.x = fmod(tc x*1.1mage180ScaleAndCutoff]0],

1):
tc = (tc + 1.layout3DScale AndOffset xy) *
tlayout3iDScale AndOffset zw,;
#endif
half4 tex = tex2D (_Tex, tc);
half3 ¢ = DecodeHDR (tex, Tex HDR);
c=c* Tintrgb * unity ColorSpaceDouble rgb;
c *= Exposure;
return halfd(c_ 1);
¥
ENDCG
¥
¥

CustomEditor "SkyboxPanoramicBetaShaderGUI"
Fallback Off }

6.3.2. Skybox Panoramic Beta Shader GUI

using
UnityEngin
=N
using UnityEditor;
using UnityEditor AnimatedValues;

namespace UnityEditor

{
internal class SkyboxPanoramicBetaShaderGUI : ShaderGUI

{
readonly AnimBool m ShowLatLongLayout = new AnimBool();
readonly AnimBool m_ShowMirrorOnBack = new AnimBool();

67

readonly AnmimBool m_Show3DConirol = new AmmBool();
bool m_Initialized = false;

public override void OnGUI(MaterialEditor matenalEditor,
MaterialProperty[] props)
{
if (Im_Initialized)
{

m_ShowLatl.onglayout valueChanged AddListener(materialEditor Re
paint);

m_ShowMirrorOnBack valueChanged AddListener{materialEditor e
paint);

m_Show3DControl valueChanged AddListener{matenialEditor Repaint
)
m_Imitialized = true;
¥

/{ Allow the default implementation to set widths for
consistency for common properties.

float lw = EditorGUIUtility labelWidth;

matenalEditor. SetDefaultGUIWidths();

showProp(materialEditor, FindProperty(”_Tint", props));

ShowProp(materialEditor, FindProperty("_Exposure”, props));

showProp(materialEditor, FindProperty(”_Rotation", props));

ShowProp(matenialEditor, FindProperty("_Tex", props));

EditorGUIUt1lity labelWidth = lw;

m_ShowLatLonglLayout target = ShowProp(materialEditor,
FindProperty("_Mapping". props)) = 1;
if
(EditorGUILayout BeginFadeGroup(m_ShowLatLongLayout faded))
{
m_ShowMirrorOnBack target = ShowProp(matenialEditor,
FindProperty("_ImageType", props)) — 1;
if
(EditorGUILayout BeginFadeGroup(m_ShowMirrorOnBack faded))

{
EditorGUL indentlevel++;

68

ShowProp{matenialEditor,
FindProperty(" MirrorOnBack", props));
EditorGULindentl evel-;
)
EditerGUIL ayout EndFadeGroup();

/f No 3D zettings unless PlayerSettings have VR support.
m_Show3DControl value =
PlayerSettings virtualReality Supported;
if
(EditorGUILayout BeginFadeGroup(m Show3DControl faded))
ShowProp{matenialEditor, FindProperty(™_Layout”,
props));
EditorGUIL ayout EndFadeGroup();

¥
EditorGUILayout EndFadeGroup();

!/ Let the defaunlt implementation add the extra shader
properties at the bottom.
matenialEditor PropertiesDefault GUI(new
MaterialProperty[0]);
¥

private float ShowProp(MaterialEditor materialEditor,
i
matenialEditor. ShaderProperty(prop, prop.displayName);
refumn prop.floatValue;
¥
i
}

69

6.3.3. Audio Script

using System.Collections;
using System.Collections.Generic:
using UnityEngine:

public class AudioScript : MonoBehaviour

i
AudioSource myAudio;

// Start is called before the first frame update
void Start()

]
myAudio = GetComponent<AudioSource=();
myAudio.clip = Resources.Load<AudioClip=("music");

myAudio.Plav():
]

// Update is called once per frame
void Update()
d

i

6.4.Appendix D: Graphical User Interface

6.4.1. Main Menu Script

70

using System.Collections:

using System.Collections.Generic;
using UnitvEngine:

using UnityEngine.SceneManagement;

public class MainMenuScript : MonoBehaviour

i
public GameObject VideosPanel:

public void OpenMCSMainRoadScene()

t
SceneManager.LoadScene("MCSMainRoad");
i

public void GoToSelectVideo()

!
VideosPanel SetActive(true);

;

public void GoBackToMainMenu()

t
VideosPanel . SetActive(false);

;

// Start is called before the first frame update
void Start()
t

;

/f Update is called once per frame
void Update()
t

E

71

public void OnApplicationQuit()
d

Application.Quit();
i
|

MCS main road control

using System.Collections;

using System.Collections.Generic:
using UnityEngine:

using UnityEngine.SceneManagement;

public class MCSMainRoadUIControls : MonoBehaviour
!

public void GoBackToMainMenu()

d
SceneManager.LoadScene("MainMenu"):

}
// Start is called before the first frame update

void Start()
]

;

// Update is called once per frame
void Update()
d

;
;

6.4.2. Ul Controller

using Systems.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.SceneManagement;

72

public class MCSMainRoadUIControls:
MonoBehaviour

{
Public void GoBackToMainMenu()
f
SceneManager.l.oadScene(“MainMenu™);
}
//start 1s called before the first frame
update
void start()
{
}

/lapdate is called once per frame
void update()

g

§

73

7. BIBLIOGRAPHY

. Ahola, S. (2019). DEVELOPING A VIRTUAL REALITY.

. Aseeri, S. A. (2013). Virtual Reality Interaction Using Mobile Devices.

. GawnYong Park, J. K. (2017). Development of virtual reality walking interface using.
Larsen, T. F. (2018). Virtual Reality games and gamified exercises in
physioterapeutic treatment of non-specific low back pain patients with kinesiophobia.
Moreno, J. T. (2017). Virtual Reality Interaction Using Mobile Devices.

. Subash, G. (2019). VIRTUAL REALITY ANALYSIS.

. Wang, Y. (2020). AN OBJECT-ORIENTED SOFTWARE FRAMEWORK FOR

IMMERSIVE VIRTUAL REALITY EXERGAMES.

74

Oculus Rift Starring The Nature

ORHGE PsaL

T AEPORT

9.,

4, 1o 6

SIMILARITY INDEX INTERMET SOURCES PLUBLICATIOMS STUDENT PAPERS

PREFASARY EOLIRCEER

Submitted to Higher Education Commission
Pakistan

Swdant Papar

~

epb.bibl.th-koeln.de

Frherrat Source

WWW.ONOISE. COMm
Intesmat Sourca

C. Bolognesi, D. Aiello. "THE SECRETS OF S.
MARIA DELLE GRAZIE: VIRTUAL FRUITION
OF AN ICONIC MILANESE ARCHITECTURE",
ISPRS - International Archives of the
Photogrammetry, Remote Sensing and Spatial
Information Sciences, 2019

Fu bt

o

Submitted to Coveniry University
Sdant Papar

o

Submitted to Nottingham Trent University

Siudant Papar

etd.uwc.ac.za

75

nisersl Sourcs

*=1 %

doaj.o

“ h'llhr'-ll 3I:Il:.lgl"ﬂll q 1 %
Submitted to University of Huddersfield

n Sdant Papar / ‘:1 %

m Submitted to University of Northumbria at ‘:1 %
Newcastle
Siudant Papar
www.slideshare.net

n nilseral Sourca ﬂ 1 %
certs.|bl.gov

m - ﬂmmgn ‘:1 %o
Submitted to University of Queensland

n Swdant Papar / "=1 %
hdl.handle.nat

m iserat Sourss q 1 %‘

H Entregado a University of Sheffield el 2012-09- {1 o
05
Shudant Papar

 wiki.hackpgh.

Irilesreal Sourcs g Erg {1 %
Submitted to University of Auckland

E Studant Papar ¥ "':1 %

76

submitted to University of Northampton
m Shidant Papsr I F p ‘:1 %‘
"Advances in Human Factors and Ergonomics in {1 o
Healthcare", Springer Science and Business
Media LLC, 2017
Publicabon
Submitted to RMIT Universi
E Sidant Papar h' { 1 ﬁ'
e Submitted to University of H
2l Shidant Papar ly m‘g Km q: 1 %
oro. n.ac.uk
122 [<1«
m Submitted to North West University ‘:1
Swdaent Paper Yo
aetds.lib.ncku.edu.tw
nisrmal Souros { 1 %‘
nrl.northumbria.ac.uk
H i e | Sounrce ﬁ 1 ﬁr‘
E Submitted to Liverpool John Moores University _:1
Sdant Papar %
m Hassan Umair, Niaz Muhammad, Tayyab {1 %

Hassan, Imran Rashid, Faroog A. Bhatti.
"Aperture-coupled ESPAR antenna with unique
feed network for symmetric switched beam

77

radiation patlerns®, International Jowrnal of

Microwave and Wirelass Technologees, 2018
Flesn

I i e L e R (=
Esbpie W i

78

