
Securing Hackable IoT Enabled LTE Devices 

(S.H.I.E.L.D) 

 

 

SYNDICATE MEMBERS 

Muhammad Abdullah Farooq 

Umar Ahmad Khan 

Saif Ur Rehman 

Abdul Samad 

 

SUPERVISOR 

Dr. Mir Yasir Umair 

 

Submitted to the faculty of Department of Electrical Engineering, 

Military College of Signals, National University of Sciences and Technology, 

in partial fulfillment for the requirements of B.E Degree in Electrical Engineering 

 (July), 2020 



CERTIFICATE OF CORRECTIONS & APPROVAL 

 

Certified that work contained in this thesis titled “Securing Hackable IoT Enabled LTE 

Devices”, carried out by “NC Muhammad Abdullah Farooq, NC Umar Ahmad Khan, NC Saif Ur 

Rehman and NC Abdul Samad” under the supervision of “Asst Prof Dr Mir Yasir Umair” partial 

fulfillment of Degree of Bachelors of Electrical Engineering, in Military College of Signals, 

National University of Sciences and Technology, Islamabad during the academic year 2019-2020 

is correct and approved. The material that has been used from other sources has been properly 

acknowledged / referred. 

 

 

 

Approved by  

 

 

Supervisor 

_______________ 

______________ 

Date: _________________ 

 

 

 

 

 



 

DECLARATION 

No portion of work presented in this thesis has been submitted in support of another award or 

qualification in either this institute or anywhere else. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Plagiarism Certificate (Turnitin Report) 

This thesis has been checked for Plagiarism. Turnitin report endorsed by Supervisor is attached. 

 

 

 

 

Signature of Student  

 Muhammad Abdullah Farooq 

Registration Number 

Signature of Student  

Umar Ahmad Khan 

Registration Number 

Signature of Student  

Saif Ur Rehman 

Registration Number 

Signature of Student  

Abdul Samad 

Registration Number 

 

 

Signature of Supervisor 



Acknowledgements 

We are thankful to our Creator Allah Subhana-Watala to have guided us throughout this work at 

every step and for every new thought which your setup in my mind to improve it. Indeed, we could 

have done nothing without Your priceless help and guidance. Whosoever helped me throughout 

the course of my thesis, whether my parents or any other individual was Your will, so indeed none 

be worthy of praise but You.  

We are profusely thankful to our beloved parents who raised us when we were not capable of 

walking and continued to support us in every department of my life.  

We would also like to express special thanks to our supervisor Dr. Mir Yasir Umair for his constant 

guidance which helped us in this endeavor and also for Mobile Communication Systems course 

which he has taught us. We can safely say that we haven't learned any other engineering subject 

in such depth than the ones which he has taught.  

Finally, we would like to express our gratitude to ASC Zeeshan Ali, his drill machine and many 

others who have rendered valuable assistance to our study. 

 

 

 



 

DEDICATION 

Dedicated to our exceptional parents and adored siblings whose 

tremendous support and cooperation led us to this wonderful 

accomplishment.



ABSTRACT  

In this modern era of Global World, the importance of Internet and Telecommunication increases 

a lot.  Everyday business deals, diplomatic relations, health monitoring devices, weather stations, 

smart home appliances, goods monitoring appliances and so on, all are using Internet services. We 

are living in the world where intruders might be present. They can get access to our network and 

monitor our communication. 

So, confidentiality and integrity of data might be lost. Currently, Wi-Fi communication is very 

much secured as compared to GSM/LTE, but this is not moveable. Wi-Fi communication has some 

limitations, it can’t be used in mobile devices i.e. weather stations, transport and etc. LTE 

communication is secured but the link between sender and receiver is not secure. We are making 

an IoT device which will be secure and provide authentication as well. This device will use LTE 

SIM-7000E module, Wi-Fi ESP-8266 module, Temperature sensor BMP-280, Arduino, Google 

Sheets, PCB and AES-128-bit encryption. BMP-280 sensor will measure the temperature and send 

it to Google Sheets, where AES-128-bit encryption will be applied.  After this data will be sent to 

cloud services (Google Drive) using LTE communication and end user can monitor it on the 

Android App. As the data is encrypted, hacker/intruder can’t view the data in the form of plain 

text.  Even if the cloud services get compromised your data will remain secure.    In this way you 

can monitor your data anywhere in the world without worrying about security and privacy.



Table of Contents 

 

CERTIFICATE OF CORRECTIONS & APPROVAL ............................................................ ii 

DECLARATION.......................................................................................................................... iii 

Plagiarism Certificate (Turnitin Report)................................................................................... iv 

Acknowledgements ....................................................................................................................... v 

DEDICATION.............................................................................................................................. vi 

ABSTRACT ................................................................................................................................. vii 

Table of Contents ....................................................................................................................... viii 

Table of Figures........................................................................................................................... xii 

CHAPTER 1: INTRODUCTION TO IOT................................................................................. 2 

1.1 Overview .......................................................................................................................... 2 

1.2 Problem Statement ........................................................................................................... 2 

1.3 What is IoT? ..................................................................................................................... 2 

1.4 Why IoT?.......................................................................................................................... 3 

1.5 Hardware and Protocols ................................................................................................... 3 

1.6 Device Management Platforms ........................................................................................ 5 

1.7 Communication Protocols and Standards ........................................................................ 5 

1.8 Future of IoT Connectivity ............................................................................................... 6 

1.9 IoT Device Architecture ................................................................................................... 7 



1.10 Security Standards of IoT ................................................................................................. 7 

1.11 Best Practices of IoT Security .......................................................................................... 8 

1.12 Working Principle ............................................................................................................ 8 

1.12.1 Sensors ...................................................................................................................... 8 

1.12.2 Processing Unit ......................................................................................................... 8 

1.12.3 Cloud ......................................................................................................................... 9 

1.12.4 Android Application ................................................................................................. 9 

1.12.5 Windows Application ............................................................................................... 9 

1.13 OBJECTIVES .................................................................................................................. 9 

1.14 Scope of the Project: ...................................................................................................... 10 

1.15 Organization of Document ............................................................................................. 10 

CHAPTER 2: LITERATURE REVIEW ................................................................................. 12 

2.1 Overview ........................................................................................................................ 12 

2.2. Literature Review ............................................................................................................... 12 

2.3. Previous Work on this topic ............................................................................................... 13 

CHAPTER 3: DESIGN REQUIREMENTS ............................................................................ 15 

3.1. Project Hardware ................................................................................................................ 15 

3.1.1. ESP8266 NODEMCU .................................................................................................. 15 

3.1.2. BMP-280 ...................................................................................................................... 16 

3.2. Project Software ................................................................................................................. 16 



3.2.1. Arduino IDE ................................................................................................................. 16 

3.2.2. Android Studio ............................................................................................................. 17 

3.2.3. Visual Studio ................................................................................................................ 18 

3.2.4. Proteus .......................................................................................................................... 18 

CHAPTER 4: PLAN FOR IMPLEMENTATION .................................................................. 20 

4.1. Project Timeline ................................................................................................................. 20 

4.2. Project Implementation ....................................................................................................... 21 

4.2.1. IoT Device .................................................................................................................... 21 

4.2.2. Android Application ..................................................................................................... 21 

4.2.3. Python GUI for Windows ............................................................................................ 23 

CHAPTER 5: WORKING ......................................................................................................... 25 

5.1. Microcontroller Working .................................................................................................... 25 

5.1.1. Workflow ..................................................................................................................... 25 

5.1.2. ESP8266 code and working ......................................................................................... 26 

5.2. Google Sheets Interface ...................................................................................................... 37 

5.2.1. Google Script code ....................................................................................................... 37 

5.2.2. Working of Code .......................................................................................................... 40 

5.3. Google Sheet to Android App Transmission ...................................................................... 40 

5.3.1. Google Script code for transmission of data ................................................................ 41 

5.3.2. Working of code ........................................................................................................... 42 



5.4. Reception on Android App ................................................................................................. 42 

5.5. Google Sheet to Python GUI .............................................................................................. 51 

5.5. Printed Circuit Board Design ............................................................................................. 75 

5.6 Printed Circuit Board Design ......................................................................................... 75 

5.6.1   Overview ..................................................................................................................... 75 

5.6.2   PCB Design Process .................................................................................................... 76 

CHAPTER 6: FINISHING UP .................................................................................................. 82 

6.1 Conclusion ...................................................................................................................... 82 

6.2 Improvements for the Future .......................................................................................... 82 

6.2.1 Increase Access Interfaces ...................................................................................... 82 

6.2.2 More Security.......................................................................................................... 82 

APPENDIX-A .............................................................................................................................. 84 

SYNOPSIS ................................................................................................................................ 84 

APPENDIX-B .............................................................................................................................. 85 

Abbreviations List ..................................................................................................................... 85 

References .................................................................................................................................... 86 



Table of Figures 

Figure 1: IoT Basic Structure .......................................................................................................... 3 

Figure 2:Hardware_Sensors ........................................................................................................... 4 

Figure 3: Hardware_Actuators ....................................................................................................... 5 

Figure 4: ESP8266 Module ........................................................................................................... 15 

Figure 5: BMP-280 ....................................................................................................................... 16 

Figure 6: Arduino IDE .................................................................................................................. 17 

Figure 7: Android Studio ............................................................................................................... 17 

Figure 8: Visual Studio.................................................................................................................. 18 

Figure 9: Proteus Design Suite ..................................................................................................... 18 

Figure 10: Project Timeline .......................................................................................................... 20 

Figure 11: Android Application .................................................................................................... 22 

Figure 12: Python based GUI ....................................................................................................... 23 

Figure 13: Workflow ..................................................................................................................... 25 

Figure 14: ESP8266 in operation-1 .............................................................................................. 35 

Figure 15: ESP in operation-2 ...................................................................................................... 36 

Figure 16: ESP in operation-3 ...................................................................................................... 36 

Figure 17: ESP in operation-4 ...................................................................................................... 37 

Figure 18: Encypted data on Google Sheets ................................................................................. 40 

Figure 19: Android Application in working-1 ............................................................................... 49 



Figure 20: Android Application in working-2 ............................................................................... 50 

Figure 21: Android Application in working-3 ............................................................................... 50 

Figure 22: GUI in function-1 ........................................................................................................ 72 

Figure 23:GUI in function-2 ......................................................................................................... 72 

Figure 24:MariaDB used in the project ........................................................................................ 73 

Figure 25: GUI in function-3 ........................................................................................................ 73 

Figure 26:GUI in function-4 ......................................................................................................... 74 

Figure 27:GUI in function-5 ......................................................................................................... 74 

Figure 28: SHIELD Hardware ...................................................................................................... 75 

Figure 29: Proteus Design ............................................................................................................ 77 

Figure 30: 3D Visualization of PCB(Top) .................................................................................... 78 

Figure 31:3D Visualization of PCB (Bottom) ............................................................................... 78 

Figure 32: PCB Routing ................................................................................................................ 79 



1 

 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

 

 

 

 

 

 

 

 



2 

 

CHAPTER 1: INTRODUCTION TO IOT 

1.1 Overview 

            SHIELD communicates data to user with Wi-Fi and LTE as mode of communication while 

keeping data safe from any unauthorized person who may intercept the data. Our IoT device 

receives data from its sensors and encrypts it before transmitting to cloud and the cloud receives 

the data and re transmits the data to android application and windows GUI for the user to view his 

data. 

 

1.2 Problem Statement 

     IoT enabled equipment is being used worldwide. They are used as monitors; control systems 

and many other devices are applications of Internet of Things. The drawback of some of these 

devices is that they are not mobile and some devices which are mobile can be moved only within 

a small radius of a few meters and data transmitted by these devices does not insure confidentially 

and integrity. In the wrong hands this data can be used to bring harm to a person or to a corporation 

or even sold to data centers. SHIELD has been created to overcome this problem in the future to 

come which is a future dominated by IoT.  

1.3 What is IoT? 

 IoT stands for Internet of things. In simple words IoT is the way of connecting many 

devices to the Internet and to other devices and all such devices interact with each other to collect 

and share data. An IoT system consists of sensors/devices which communicate with each other and 

to the cloud through connectivity (which can be wired or wireless). Once the data gets to the cloud, 

software’s (or Web App) processes it and then might decide to perform an action, such as sending 

an alert or automatically adjusting the sensors/devices without the need for a human to monitor 

the process. Automated surveillance, smart transportation, Artificial Intelligence enhanced energy 

management systems, automated irrigation systems and environmental monitoring all are 



3 

 

examples of internet of things applications for smart cities of the future.  According to recent 

statistics round about 20 billion IoT devices are being used around the world today and the total 

number of devices will increase to 50 billion in 2025. And IoT market value is expected to reach 

6.2 trillion dollars by 2025. 

 

Figure 1: IoT Basic Structure 

 

1.4 Why IoT? 

      IoT provides a lot of benefits in every field. 

• IoT is an opportunity for data scientists to gather large amounts of data easily 

• IoT will provide promising career opportunities in the future 

• IoT has the feature of real time monitoring of data 

• IoT provides connectivity from domestic level to industrial level 

1.5  Hardware and Protocols 

      IoT infrastructure in the ambient of IoT devices can be divided into the two classifications 

1. General Devices  

2. Sensing Devices 



4 

 

      General devices do the processing and establishing connectivity for the platforms they are 

connected to which can be by a wired network or wireless interfaces. They are the main 

components for data collection and information processing and parsing. 

 

Figure 2:Hardware_Sensors 

 

 

      Aside from sensors, actuators are another very important part of an IoT device that performs 

similar functions with different capabilities; they work as an interface between sensors and 

embedded processing modules. They collect various information like humidity, light intensity this 

information is computed using edge layer which typically assists between the cloud and the sensor. 

They are the layers that store fragmented transfer of information; at the end backend server of the 

cloud processes this information from both the sensors and actuators for the major components of 

the IoT device. Sensors can measure temperature, humidity, light intensity and other key 

parameters of environment. 

 



5 

 

 

Figure 3: Hardware_Actuators 

 

1.6     Device Management Platforms 

     The second most important part of IoT is its Device Management Platforms or DMP’s. The 

DMP’s as they are shortly called are the platforms through which these devices interact with an 

application layer through network gateways. DMP’s come with various functionalities which 

include operating system upgrade, security patching and analysis, metrics and diagnostics report 

and alert mechanisms for triggers.  

 

1.7    Communication Protocols and Standards 

    Various Communication protocols are available to set up an IoT. 

• Satellite 

This enables a cell phone to wirelessly communicate through an antenna situated within 

10 to 15 miles. They have a stable and universal connection but it is very slow. 

• Wi-Fi 

Wi-Fi is based on 2.6 GHz and 5GHz of operating frequency; it provides internet access 



6 

 

within a certain radius and is an affordable and easily available option. It has well 

protected security protocols. 

• Radiofrequency 

It is one of the simplest forms of communication systems. For example, a Zigbee is an 

example of such system, which use low power RF radio. It consumes low energy which 

is very advantageous. It is relatively simple to configure for small scale 

implementation. 

• RFID 

Radio-frequency identification or commonly known as RFID uses wireless 

electromagnetic fields to identify sensors, objects and authentication of personnel. It 

does not require power. 

• Bluetooth 

It is useful for short term and short distance data exchange. It is present in every 

Smartphone and has sensors but it very slow and is not recommended. 

• Near Field Communication 

NFC uses electromagnetic induction and loop antennas. It comes with encryption as 

low speed communication and is used for short range data exchange. 

 

1.8    Future of IoT Connectivity 

   IoT will get a boost with new communication technologies being developed like 5G.The low 

latency and higher bandwidth of 5G will decrease response time of IoT devices ensuring faster 

communication and results. 5G and IoT are intertwined technologies both can be sliced and 

diced for predictive analytics and real-time business decisions.  

 

 



7 

 

1.9 IoT Device Architecture 

   There are four basic layers in an IoT device.  

• The base layer of IoT devices. This includes all the sensory and computative 

components like sensors with the ability to sense, compute and connect other devices. 

• The second layer which is the IoT entryway or accumulation layer. This layer 

essentially totals information from different sensors. 

• The third layer depends on cloud it's called handling motor or occasion preparing layer. 

It has various calculations and information handling components. They are at last 

shown on a dashboard. This layer essentially forms the information acquired from the 

sensor layer. 

• The last layer is known as the application layer or API the board layer. It goes about as 

an interface between outsider application and foundation. The whole scene bolstered 

by gadget directors and character and access administrators which are valuable for 

security of the design. 

1.10 Security Standards of IoT  

       Many Individuals and consortiums have taken part to create and set the standard of IoT so 

that it covers the entire network and is in connection with endpoint systems. It brings a 

structural approach with security controls in place.  Most likely the most demanding and 

essential requirement for the widespread realization of many IoT solutions is security. Security 

in IoT has an exceptionally wide scope in at least four dimensions. In terms of security scope, 

it includes rarely addressed tasks such as trusted sensing, computation, communication, 

privacy, and digital forgetting. It also asks for new and better techniques for the protection 

assets of IoT which include hardware, software, and data that considers the possibility of 

physical access to IoT devices. Sensors and actuators are common components of IoT devices 

and pose several unique security challenges including the integrity of physical signals and 

actuating events. Finally, during processing of data many man in the middle attacks can occur. 



8 

 

1.11 Best Practices of IoT Security 

     There are many leading trends in IoT security. 

• Hardware should be tampered proof. 

• They should be tested for rigorously. 

• Specific data protection algorithms. 

• Must be updated on firmware. 

• The network components must be authentic with encryption. 

             Other security measures include privacy protection for sensitive information and other     

regulations like safe harbor statements. 

 

1.12 Working Principle 

    The Working Principle of SHIELD has been divided into the following units:   

• Sensors 

• Processing Unit 

• Cloud 

• Android Application and Windows GUI 

1.12.1       Sensors 

     The sensors are the source of user data which can be temperature, pressure, humidity sensor to 

a smart thermostat which will provide data for transmission 

1.12.2      Processing Unit  

    The processing unit is responsible for acquiring the data from sensors, formatting data 

for transmission, establishment of link for transmission and transmitting the data. For this purpose, 



9 

 

we are using ESP8266 which are Wi-Fi modules with onboard Microcontroller Units.  

1.12.3     Cloud 

               The cloud is responsible for receiving, storing and retransmitting the data. For this 

purpose, we are using Google Drive (a cloud by Google). For the reception and retransmission of 

we write scripts in Google Scripts which are written in Node Java Script. 

1.12.4 Android Application  

                   The Android Application is responsible for authenticating the user, receiving data from 

cloud and decrypting the data so it can Displayed on GUI for user readability. The android 

application has been created using Android Studio and it is scripted in Kotlin for Android. 

1.12.5       Windows Application  

                   The Windows application (Python GUI) is another platform for the user to access his 

or her data. The GUI registers and authenticates user and shows them their encrypted data first 

which they can decrypt if they want to. The GUI has been created in Visual Studio and scripted in 

Python 3. 

 

1.13 OBJECTIVES 

       The primary objective of this project is to design a mobile IoT device which sends data to user 

while keeping it secure from any attackers. Furthermore, our objective is to minimize the cost of 

final product so it can me mass produced. The end goals or objectives can be broadly identified 

as: 

1. Design and Develop IoT devices which work on both Wi-Fi and LTE based Mi-FI are 

battery sustained. 

2. Microcontroller unit which processes and transmits data to cloud  



10 

 

3. Giving the device a body, which is strong but does not affect signal strength 

4. Android application development for user end 

5. Windows Application so that the user may be able to view the data on a desktop or a laptop 

1.14 Scope of the Project: 

         This project has the scope to be deployed anywhere in the world, from a small cupboard to 

an airplane which has sensors on it. Smart Home, Connected Cars, Wearable’s, Industry Internet 

of Things (IIoT), IoT in Healthcare, IoT in Agriculture, Smart Cities are some of the possible 

applications of our project. It is a time, cost and security efficient solution for IoT devices. 

1.15 Organization of Document 

         This document is divided into the following main parts: 

1. The first part includes the introduction and objectives of the project.  

2. The second part is the summary of the literature review and previous work done on this 

project . 

3. The third part includes the hardware and software description of the project.  

4. The fourth part shows Plan for Implementation.  

5. The fifth part will show working of each part.  

6. The sixth and final part is Appendixes which is abbreviations used in the theses and the 

synopsis of this project. 

 

 

 

 

 



11 

 

 

 

 

 

 

 

CHAPTER 2: LITERATURE 

REVIEW 

 

 

 

 

 

 

 

 

 



12 

 

CHAPTER 2: LITERATURE REVIEW 

2.1   Overview 

       The research work in this chapter is related to IoT (Internet of things), it has two parts. First, 

part includes the basic overview of IoT. In this we look about, what IoT is? How it works? What 

is the scope of IoT? Second, part of this chapter includes the security of IoT. In this we will look 

about security mechanism of IoT based on LTE and Wi-Fi. 

        Today’s most of communication is based on Internet. Everyone wants to use smart devices 

for their daily business and normal life. Smart devices are well capable of doing work efficiently. 

But the major problem is the security of the data which these devices are sending and receiving. 

Some of the devices use Wi-Fi and others use GSM/LTE for communication. Previously, work is 

done on the security of data for the Wi-Fi communication. But Wi-Fi communication has certain 

limitations i.e. immobility. On the other hand, no work is done for the security of data which uses 

GSM/LTE. IoT is an exponentially growing field; almost 20 billion IoT devices are present today. 

But the security of the most of IoT devices never come into consideration, especially IoT based on 

LTE/GSM. 

We are aiming to build a secure IoT device which will work in both Wi-Fi and LTE/GSM 

environment securely and effectively. The main purpose of this project is to provide security of 

data to every single customer using IoT appliances. 

2.2. Literature Review  

The following research paper was consulted to get guidance related to SHIELD:  

• Roger Piqueras Jover, Ilona Murynets “Connection-less communication of IoT 

devices over LTE mobile networks” 2015 12th Annual IEEE International 

Conference on Sensing, Communication, and Networking (SECON) 



13 

 

2.3. Previous Work on this topic  

 As far as we have researched on this topic there has been no previous work on this topic in 

the past. So, it is the first project of its kind. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



14 

 

 

 

 

 

 

 

CHAPTER 3: DESIGN 

REQUIREMENTS 

 

 

 

 

 

 

 

 

 



15 

 

CHAPTER 3: DESIGN REQUIREMENTS 

3.1. Project Hardware  

       The project utilizes the following hardware components:  

    3.1.1. ESP8266 NODEMCU 

               ESP8266 NodeMCU is an open-source microcontroller unit with integrated Wi-Fi 

and Bluetooth chipsets. Its firmware is ESP8266 Wi-Fi SoC from Espressif Systems, and 

hardware which is based on the ESP-12 module. The operating system or firmware of this 

module is written in the Lua Scripting Language. 

                                    

Figure 4: ESP8266 Module 

                            

 

 

 



16 

 

   3.1.2. BMP-280 

             The BMP280 is an absolute barometric pressure sensor, which is especially feasible for 

mobile applications. Its small size and low power usage enable it to be used in small circuits or 

mobile devices such as GPS modules or watches. The BMP280 is based on Bosch’s proven piezo-

resistive pressure sensor technology which gives it high efficiency and linearity as well as stability 

for a long period of time. Numerous device operation options guarantee for highest flexibility. The 

device is optimized in terms of power consumption, resolution and filter performance. 

                                       

Figure 5: BMP-280 

 

3.2. Project Software 

 The project required following development environments and software for this project: 

        3.2.1. Arduino IDE  

                       The Arduino Integrated Development Environment (IDE) is a cross-platform 

application (for Windows, macOS, Linux) that is written in functions from C and C++. It is used 

to write and upload programs to Arduino compatible boards, but also, with the help of 3rd party 

cores, other vendor development boards.  



17 

 

                                   

Figure 6: Arduino IDE 

      3.2.2. Android Studio 

                 Android Studio is the official integrated development environment for Google's 

Android operating system, built on JetBrains ‘IntelliJ IDEA software and designed specifically for 

Android development. 

                                

Figure 7: Android Studio 



18 

 

       3.2.3. Visual Studio 

            Microsoft Visual Studio is an incorporated scripting environment from Microsoft. It is 

used for the development and testing of computer programs, websites, web applications, web 

administrations and versatile mobile applications (android and iOS) 

                              

Figure 8: Visual Studio 

       3.2.4. Proteus 

                 The Proteus Design Suite is a trademarked software tool suite used primarily for 

electronic design automation. The software is used mainly by electronic design engineers and 

technicians to create schematics and electronic prints for manufacturing printed circuit boards. 

                               

Figure 9: Proteus Design Suite 



19 

 

 

 

 

 

 

 

CHAPTER 4: PLAN FOR 

IMPLEMENTATION 

 

 

 

 

 

 

 

 



20 

 

 

CHAPTER 4: PLAN FOR IMPLEMENTATION 

 

     4.1. Project Timeline 

                 The below picture illustrates the timeline we followed for our project 

               

Figure 10: Project Timeline 

 

 

 

 

 



21 

 

4.2. Project Implementation 

         The implementation of the project follows the following steps: 

   4.2.1. IoT Device  

   The IoT device has been designed using BMP280 as sensor, ESP8266 as gateway and 

MCU for Wi-Fi based device. For its design we first integrated sensor with Microcontroller unit 

and gateway and then established the link between gateway and cloud. Then we applied encryption 

and other security measures to data being transmitted and to the link to ensure privacy. The codes 

which the microcontroller follows have been developed in Arduino IDE and optimized for 

maximum efficiency. The power delivery for the device has been optimized so it can run for a long 

time on a small battery. 

   4.2.2. Android Application  

    The android application was developed in Android Studio. The app first authenticates the 

user operating the application and then acquires data from cloud and process (decrypt and format) 

data for user readability  

   The user can login to the app using the credentials provided by us to ensure security and 

success in authentication. The credentials are also encrypted and stored on the data base. Attached 

below is a picture of the login screen of the Application. 



22 

 

                                                     

Figure 11: Android Application 

                                 

 

 

 

 

 

 

 



23 

 

   4.2.3. Python GUI for Windows 

                 We developed a GUI for user to access his or her data in Windows environment. It also 

decrypts the data received from Google Sheets but it has an interactive interface for user to first 

view his encrypted data and then press a button to decrypt the data. A picture of the login screen 

has been shared below. 

                        

Figure 12: Python based GUI 

 

 

 

 

 

 

 



24 

 

 

 

 

 

 

 

 

CHAPTER 5: WORKING 

 

 

 

 

 

 

 

 

 

 



25 

 

CHAPTER 5: WORKING 

     5.1. Microcontroller Working  

         5.1.1. Workflow 

                   The project follows the following work flow.  

                           

Figure 13: Workflow 

  

               The data acquisition is done through ESP 8266 which is integrated with BMP 280 sensors 

which collects the data of the environment and the ESP 8266 formats the data then it encrypts the 

data using the AES 128-bit Cipher and then parses the data for transmission and transmits the data 

to Google sheets. 

 

 



26 

 

    5.1.2. ESP8266 code and working 

            The microcontroller is the most important part of an IoT device. Our IoT device follows 

the following code:  

#include <ESP8266WiFi.h> 

#include <WiFiClientSecure.h> 

#include <Adafruit_BMP280.h>                                                // library to use BMP280 

objects and get direct values of parameters 

#include "AESLib.h" 

 

AESLib aesLib; 

Adafruit_BMP280 BMP; 

String plaintext = "HELLO WORLD!"; 

String t,a; 

String readBuffer ; 

char cleartext[256]; 

char ciphertext[512]; 

 

uint8_t mac[6] {0xA8, 0xD9, 0xB3, 0x0D, 0xAA, 0xCE};    //New Spoofed MAC address 

 

const char* ssid = "Malik";    // name of your wifi network!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

const char* password = "123malik123";     // wifi pasword !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

IPAddress staticIP(192, 168, 100, 90); //ESP static ip 

IPAddress gateway(192, 168, 100, 1);   //IP Address of your WiFi Router (Gateway) 



27 

 

IPAddress subnet(255, 255, 255, 0);  //Subnet mask 

IPAddress dns(208, 67, 220,220);  //OPEN DNS which is provided by cisco and is the most secure 

const char* host = "script.google.com"; 

const int httpsPort = 443; 

// Use WiFiClientSecure class to create TLS connection 

WiFiClientSecure client; 

// SHA1 fingerprint of the certificate, don't care with your GAS service 

const char* fingerprint = "46 B2 C3 44 9C 59 09 8B 01 B6 F8 BD 4C FB 00 74 91 2F EF F6"; 

String GAS_ID = "AKfycbyVBKIQAhLQ3UXT-DPgdUdNRUamfk0b0DRgTHfyo6jHmurYcaQu";   // Replace by your GAS 

service id           !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 

 

 

// AES Encryption Key 

byte aes_key[] = { 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 

0x30, 0x30 }; 

 

// General initialization vector (you must use your own IV's in production for full security!!!) 

byte aes_iv[N_BLOCK] = { 11, 69, 75, 1, 99, 854, 712, 658, 0, 7, 9671, 111, 2, 3, 4, 71 }; 

 

// Generate IV (once) 

void aes_init() { 

 

aesLib.gen_iv(aes_iv); 

// workaround for incorrect B64 functionality on first run... 



28 

 

 

Serial.println(encrypt(strdup(plaintext.c_str()), aes_iv)); 

} 

 

String encrypt(char * msg, byte iv[]) { 

int msgLen = strlen(msg); 

Serial.println("message length = "); 

Serial.println(msgLen); 

char encrypted[4 * msgLen]; // AHA! needs to be large, 2x is not enough 

aesLib.encrypt64(msg, encrypted, aes_key, iv); 

Serial.print("encrypted = "); Serial.println(encrypted); 

return String(encrypted); 

} 

 

 

void setup() 

{ 

 

// initialize BMP280 sensor 

bool status; 

status = BMP.begin(0x76); 

if (!status) { 

Serial.println("Could not find a valid BMP280 sensor, check wiring!");          // checks if there is a 



29 

 

BMP 280 at the specified address it can be found using i2c scanner 

while (1);} 

Serial.begin(115200); //Serial 

Serial.println("Changing Mac address"); 

Serial.print("OLD ESP8266 MAC: "); 

Serial.println(WiFi.macAddress()); //This will read MAC Address of ESP 

 

wifi_set_macaddr(0, const_cast<uint8*>(mac));   //This line changes MAC adderss of ESP8266 

 

Serial.print("NEW ESP8266 MAC: "); 

Serial.println(WiFi.macAddress()); 

//connecting to internet 

Serial.print("connecting to "); 

Serial.println(ssid); 

WiFi.mode(WIFI_STA); 

WiFi.begin(ssid, password); 

while (WiFi.status() != WL_CONNECTED) { 

delay(500); 

Serial.print("."); 

} 

Serial.println(""); 

Serial.println("WiFi connected"); 

Serial.println("IP address: "); 



30 

 

Serial.println(WiFi.localIP()); 

Serial.println("new gateway is ") ; 

Serial.println("dns is ") ; 

Serial.println(dns) ; 

 

Serial.println("aes_init()"); 

aes_init(); 

} 

 

void wait(unsigned long milliseconds) { 

unsigned long timeout = millis() + milliseconds; 

while (millis() < timeout) { 

yield(); 

}} 

void loop() 

{ 

float a = BMP.readAltitude(1012.025); 

float t =BMP.readTemperature(); 

 

Serial.print("Temperature = "); 

Serial.print(t); 

Serial.print(" Altitude = "); 

Serial.println(a); 



31 

 

 

 

sendData(t, a); 

 

delay(30000); 

 

} 

 

// Function for Send data into Google Spreadsheet 

void sendData(float tem, float alt) 

{ 

String string_temperature =  String(tem); 

t= string_temperature ; 

String string_altitude =  String(alt); 

a=string_altitude ; 

 

 

byte enc_iv[N_BLOCK] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; // iv_block gets written to, 

provide own fresh copy... 

for(int i=0 ; i<2 ;i++){ 

 

 

if (i== 0) { 



32 

 

 

readBuffer = string_temperature; 

Serial.println("INPUT:" + readBuffer); 

 

sprintf(cleartext, "%s", readBuffer.c_str()); // must not exceed 255 bytes; may contain a newline 

 

// Encrypt 

 

string_temperature = encrypt(cleartext, enc_iv); 

sprintf(ciphertext, "%s", string_temperature.c_str()); 

Serial.print("Ciphertext 1 : "); 

Serial.println(string_temperature);  } 

if (i== 1){ 

readBuffer = string_altitude; 

Serial.println("INPUT:" + readBuffer); 

 

sprintf(cleartext, "%s", readBuffer.c_str()); // must not exceed 255 bytes; may contain a newline 

 

// Encrypt 

 

string_altitude = encrypt(cleartext, enc_iv); 

sprintf(ciphertext, "%s", string_altitude.c_str()); 

Serial.print("Ciphertext 2 : "); 



33 

 

Serial.println(string_altitude);  } 

} 

client.setInsecure(); 

Serial.print("connecting to "); 

Serial.println(host); 

if (!client.connect(host, httpsPort)) { 

Serial.println("connection failed"); 

return; 

} 

 

if (client.verify(fingerprint, host)) { 

Serial.println("certificate matches"); 

} else { 

Serial.println("certificate doesn't match"); 

} 

 

String JsonStr = "/macros/s/" + GAS_ID + "/exec?temperature=" + t + "&altitude=" + a  ; 

Serial.print("requesting URL: "); 

Serial.println(JsonStr); 

 

client.print(String("GET ") + JsonStr + " HTTP/1.1\r\n" + 

"Host: " + host + "\r\n" + 

"User-Agent: BuildFailureDetectorESP8266\r\n" + 



34 

 

"Connection: close\r\n\r\n\r\n"); 

 

Serial.println("request sent"); 

while (client.connected()) { 

String line = client.readStringUntil('\n'); 

if (line == "\r") { 

Serial.println("headers received"); 

break; 

} 

} 

String line = client.readStringUntil('\n'); 

if (line.startsWith("{\"state\":\"success\"")) { 

Serial.println("esp8266/Arduino CI successfull!"); 

} else { 

Serial.println("esp8266/Arduino CI has failed"); 

} 

Serial.println("reply was:"); 

Serial.println("=========="); 

Serial.println(line); 

Serial.println("=========="); 

Serial.println("closing connection");} 

 

 



35 

 

 

 

 

 

 

1.   The microcontroller (esp8266) first connects to the provided Wi-FI connection  with 

function WiFI.connect(SSID,Password)  in this the SSID and password are the 

parameters required for it to be able to connect to a Wi-Fi outlet .  

              

Figure 14: ESP8266 in operation-1 

2. The controller the calls the BMP.Begin(ox76) function with 0x76 as the  address of 

sensor on the I2C bus and it created a BMP object and checks its status to see if it is 

actually connected  



36 

 

              

Figure 15: ESP in operation-2 

3. The next is to call the aes_init() function which initializes the initialization vector and 

padding vector needed for AES encryption 

 

4. Void loop() is the next function to be accessed and it runs in every iteration . The first 

part in this loop is to acquire data from BMP280 via I2C which is done through 

bmp.Readtemperature () and bmp.Readaltitude () .  

 

                  

Figure 16: ESP in operation-3 

5. Void Send data (t,a) is responsible for sending data to Google Script web App . But first 

it converts the data to String format. Then Calls the function encrypt (key,iv,data) to 

encrypt the data before transmission . It then matches the SHA 1 fingerprint of the 



37 

 

Google Script before establishing connection. Connection is established with 

Client.Connect (host, port) function. It receives the URL of the host and port number 

for the transmission.  It then sends data to Web and App verifies response and then 

closes the connection.  

                   

Figure 17: ESP in operation-4 

             

     5.2. Google Sheets Interface 

             For data to be transmitted to Google sheets, it is first received on a web applet created in 

Google script which is written in Java Script. The script separates the data and then transfers it to 

relevant column of Google Sheets with time stamp.  

   5.2.1. Google Script code 

           The Google script is shown below: 

function doGet(e) {  

  Logger.log( JSON.stringify(e) );  // view parameters 

  var result = 'Ok'; // assume success 

  if (e.parameter == 'undefined') { 



38 

 

    result = 'No Parameters'; 

  } 

  else { 

    

     

    var sheet_id = '1Jh5_ZmYZpgwleF0VPK42VHBm2rJI2xrMkT0aKCZdGLE';   // Spreadsheet ID 

    var sheet = SpreadsheetApp.openById(sheet_id).getActiveSheet();  // get Active sheet 

    var newRow = sheet.getLastRow() + 1;       

    var rowData = []; 

    rowData[0] = new Date();          

  // Timestamp in column A 

    for (var param in e.parameter) { 

      Logger.log('In for loop, param=' + param); 

      var value = stripQuotes(e.parameter[param]); 

      Logger.log(param + ':' + e.parameter[param]); 

      switch (param) { 

         case 'temperature': //Parameter 

          rowData[1] =value; //Value in column B 

          result = 'Written on column B'; 

          break; 

         case 'altitude': //Parameter 

          rowData[2] = value; //Value in column C 

          result += ' ,Written on column C'; 



39 

 

          break;  

         

      } 

    } 

    Logger.log(JSON.stringify(rowData)); 

    // Write new row below 

    var newRange = sheet.getRange(newRow, 1, 1, rowData.length); 

    newRange.setValues([rowData]); 

  } 

  // Return result of operation 

  return ContentService.createTextOutput(result); 

} 

/** 

* Remove leading and trailing single or double quotes 

*/ 

function stripQuotes( value ) { 

  return value.replace(/^["']|['"]$/g, ""); 

} 

 

 

          The encrypted data on the Google Sheet can viewed on the sheet too if you 

have access to the sheet and it has been shown below. 



40 

 

                              

Figure 18: Encypted data on Google Sheets 

 

 5.2.2. Working of Code 

            The web app first receives the data then use switch () statement to see if relevant 

parameters are present if they are it transmits them to the attached Google sheet. The Google sheet 

is identified via its sheet ID extracted from its URL (Uniform Resource Locator). The data is 

transmitted to specified column. Each column is specified for one specific parameter. 

   5.3. Google Sheet to Android App Transmission 

   

         For data to be transmitted to android app it has to again be transmitted via a web app. Android 

App sends GET request to web app and after authentication it acquires data from Google Sheet 

and sends it to Android App.  

   



41 

 

   5.3.1. Google Script code for transmission of data 

Var ss= SpreadsheetApp.openByUrl("https://docs.google.com/spreadsheets/d/1Jp0ldvOYcEopaULFzAUkzrexR-mw8XdzmnPkdvGYX3I/edit#gid=0"); 

var sheet = ss.getSheetByName('Items'); // be very careful ... it is the sheet name .. so it should match  

function doPost(e){ 

var action = e.parameter.action; 

if(action == 'addItem'){ 

  return addItem(e); 

}} 

function addItem(e) 

{ 

var date =  new Date(); 

 

var id  =  "Item"+sheet.getLastRow(); // Item1 

 

var itemName = e.parameter.itemName; 

 

var brand = e.parameter.brand; 

 

sheet.appendRow([date,id,itemName,brand]); 

 

   return ContentService.createTextOutput("Success").setMimeType(ContentService.MimeType.TEXT); 

 



42 

 

} 

 

 

 

   5.3.2. Working of code 

             The web first authenticates the Get request from Android App and after authentication it 

acquires data from Defined Google Sheet and transmits it to the Android App in JSON (Java Script 

Object Notation) format with data and time added with it. 

5.4. Reception on Android App 

      The android app acquires data from Google Sheet to decrypt and display it. The code of the 

Android App has been shown below. 

<?xml version="1.0" encoding="utf-8"?> 

<LinearLayout 

xmlns:android="http://schemas.android.com/apk/res/android" 

xmlns:tools="http://schemas.android.com/tools" 

android:layout_width="match_parent" 

android:layout_height="match_parent" 

tools:context=".MainActivity" 

 

android:orientation="vertical"> 

 

<FrameLayout 

 

android:layout_width="match_parent" 

android:layout_height="match_parent" 

android:background="#000" 

> 

<LinearLayout 

android:orientation="horizontal" 

android:layout_marginTop="100dp" 

android:layout_width="match_parent" 

android:layout_height="wrap_content"> 

 

<Button 



43 

 

android:id="@+id/howBtn" 

android:layout_width="wrap_content" 

android:layout_height="wrap_content" 

android:layout_marginLeft="60dp" 

android:background="#0E0D0D" 

android:text="How To" 

android:textColor="#FFFFFF"> 

 

</Button> 

 

<Button 

android:id="@+id/showToBtn" 

android:text="Show Data" 

android:layout_width="wrap_content" 

android:layout_height="wrap_content" 

android:layout_marginLeft="95dp" 

android:background="#131212" 

android:textColor="#FFFFFF"> 

 

</Button> 

</LinearLayout> 

 

<LinearLayout 

android:orientation="horizontal” 

android:layout_marginTop="200dp" 

android:layout_width="match_parent" 

android:layout_height="wrap_content"> 

 

<Button 

android:id="@+id/futureDatabtn" 

android:layout_width="wrap_content" 

android:layout_height="wrap_content" 

android:layout_marginLeft="60dp" 

android:background="#0E0D0D" 

 

 

android:text="Future Work" 

android:textColor="#FFFFFF"> 

 

</Button> 

 

<Button 

android:text="About" 

android:id="@+id/aboutWorkBtn" 

android:layout_width="wrap_content" 

android:layout_height="wrap_content" 

android:layout_marginLeft="95dp" 

android:background="#131212" 

android:textColor="#FFFFFF"> 

 

</Button> 

</LinearLayout> 



44 

 

 

</FrameLayout> 

</LinearLayout> 

 

package com.example.shield 

 

import android.content.Intent 

import androidx.appcompat.app.AppCompatActivity 

import android.os.Bundle 

import android.widget.Button 

 

 

class MainActivity : AppCompatActivity() { 

 

override fun onCreate(savedInstanceState: Bundle?) { 

super.onCreate(savedInstanceState) 

setContentView(R.layout.activity_main) 

 

valbtn_show = findViewById(R.id.showToBtn) as Button 

valbtn_about = findViewById(R.id.aboutbtn) as Button 

valbtn_future = findViewById(R.id.futurebtn) as Button 

valbtn_howto = findViewById(R.id.howBtn) as Button 

 

btn_about.setOnClickListener{ 

valintent = Intent(this, About::class.java) 

startActivity(intent) 

} 

 

 

btn_show.setOnClickListener{ 

valintent = Intent(this, Login::class.java) 

startActivity(intent) 

} 

 

btn_future.setOnClickListener{ 

valintent = Intent(this, Future::class.java) 

startActivity(intent) 

} 

 

btn_howto.setOnClickListener{ 

valintent = Intent(this, HowTo::class.java) 



45 

 

startActivity(intent) 

} 

 

}} 

<?xml version="1.0" encoding="utf-8"?> 

<LinearLayoutxmlns:android="http://schemas.android.com/apk/res/android" 

xmlns:tools="http://schemas.android.com/tools" 

android:id="@+id/color" 

android:layout_width="match_parent" 

android:layout_height="match_parent" 

android:background="#100F0F" 

android:orientation="vertical" 

tools:context=".Display"> 

 

<TextView 

android:layout_width="match_parent" 

android:layout_height="80dp" 

android:paddingTop="20dp" 

android:text="Temperature" 

android:textAlignment="center" 

android:textColor="#FFFFFF" 

android:textSize="40dp"> 

</TextView> 

 

<TextView 

android:id="@+id/temperature" 

android:layout_width="match_parent" 

android:layout_height="80dp" 

android:layout_marginTop="50dp" 

android:textAlignment="center" 

android:textColor="#FDFDFD" 

android:textColorHighlight="#FDFDFD"> 

</TextView> 

 

<TextView 

android:layout_width="match_parent" 

android:layout_height="80dp" 

android:paddingTop="20dp" 

android:text="Altitude" 

android:textAlignment="center" 

android:textColor="#FDFBFB" 

android:textColorHighlight="#FDFBFB" 

android:textSize="50dp"> 

</TextView> 

 

<TextView 

android:id="@+id/altitude" 



46 

 

android:layout_width="match_parent" 

android:layout_height="80dp" 

android:layout_marginTop="50dp" 

android:textAlignment="center" 

android:textColor="#FBF8F8" 

android:textColorHighlight="#FBF9F9"> 

   </TextView 

import android.os.Bundle 

import android.os.Handler 

import android.os.Looper 

import android.os.Message 

import android.text.TextUtils.isEmpty 

import android.widget.TextView 

import androidx.appcompat.app.AppCompatActivity 

importcom.google.api.client.extensions.android.http.AndroidHttp 

import com.google.api.client.http.HttpTransport 

import com.google.api.client.json.JsonFactory 

import com.google.api.client.json.jackson2.JacksonFactory 

import com.google.api.services.sheets.v4.Sheets 
class Display : AppCompatActivity() { 

private lateinit var data: String 

valtemperature = mutableListOf<String>() 

valaltitude = mutableListOf<String>() 

private lateinit var temp:TextView 

private lateinit var alti:TextView 

 

override fun onCreate(savedInstanceState: Bundle?) { 

super.onCreate(savedInstanceState) 

setContentView(R.layout.activity_display) 

var i: Int = 0 

while (i<res.size) { 

temperature.add(res[i].replace("" + "[", "", true).replace("]", "", true)) 

 

i += 1 

 

altitude.add(res[i].replace("" + "[", "", true).replace("]", "", true)) 

 

i +=1 

}//loop ends 

var j=0 

 



47 

 

while(j<2){ 

 

if (j==0){ 

 

 j += 1 

threadMsg(temperature.toString()) } 

 

else { 

 

threadMsg(altitude.toString()) 

 

  j += 1} 

 

 

} //while loop ends 

 

 

Thread exception which may occur due to slow network or no internet issue 

 } catch (t: Throwable) { 

 

Log.i("Animation", "Thread  exception $t")}} 

 

private fun threadMsg(msg: String?) { 

 

if (msg != null && msg != "") { 

 

 

valmsgObj: Message = handler.obtainMessage() 

valb = Bundle() 

b.putString("message", msg) 

 

 

msgObj.setData(b) 

handler.sendMessage(msgObj) 

                } 

    } 

 



48 

 

private valhandler = @SuppressLint("HandlerLeak") 

 

object : Handler(Looper.getMainLooper()) { 

override fun handleMessage(msg: Message){ 

 

valaResponse: String? = msg.data.getString("message") 

if (null != aResponse) { 

s=findViewById(R.id.temperature) 

if(isEmpty(s.text)){ 

s.text=aResponse 

                        } 

else { 

alti = findViewById(R.id.altitude) 

alti.text= aResponse 

                        } 

 

 

                    } 

else { 

 

Toast.makeText(baseContext, "Not Got Response From Server.", Toast.LENGTH_SHORT).show() 

                    } 

                } 

            } 

        }) 

 

        background.start() 

 

    } 

} 

 

 

 

        It can be seen in the code above that the app first of all imports all the necessary libraries 

which are, then initialize variables for storing data and the objects are acquired from Google Sheets 

and the JSON parser function parses the objects so they can be read as string by the App.  

        Data is acquired from Google Sheet using Google Sheet API and it sends the encrypted data 

to the App. The App after formatting the data decrypts it so user can understand it easily. 



49 

 

       An example of using this App has been elaborated below: 

1. First the login screen. It will ask for a username and password and authenticate them when 

the user presses the Login button. 

                                              

Figure 19: Android Application in working-1 

 

2. Now once the user as logged in on the app he or she will see 4 more buttons. These are for 

“How to use app”, “Display Data”, “About” and “Future Work”. 



50 

 

                                              

Figure 20: Android Application in working-2 

3. Once user presses the “Show Data” button then his data will be acquired from Google 

Sheets using its API and it is parsed and decrypted and then shown to user .  

                                             

Figure 21: Android Application in working-3 



51 

 

  

5.5. Google Sheet to Python GUI 

       The GUI that displays the decrypted data was developed by using Tkinter library. Tkinter is a 

standard GUI library for Python. Python when combined with Tkinter offers a quick method of 

developing GUI applications. It provides an influential object-oriented interface to Tk GUI toolkit. 

In the GUI what we are basically trying to do is that we have registered the users within our 

MariaDB database. Those registered users log in to the system and their private JSON files i.e. 

generated from Google Sheets, are authenticated and they see the encrypted data present at that 

sheet. A ‘Decrypt’ button decrypts all the encrypted data present on the sheets. That decrypted 

data is presented to the user so that he can see the data. The decrypted data in this case will only 

be visible to the user that was already present in the database and had a private JSON file generated 

at the time of installation. 

The passwords in the MariaDB Database were firstly hashed in SHA256 format and then stored. 

This was done as a precaution so that if our database gets compromised the passwords will not be 

humanly readable (Parr, n.d.). The connection with the database was hardcoded into our GUI.  

Our GUI will only be provided to our users so the hardcoding of the connection will not be an 

issue. New users will be registered into the database by using the Register button in our GUI.  

The data of one sensor is uploaded on one sheet. We can add as many sensors as we want, but for 

every sensor a new JSON file will be required to be generated as the JSON file contains the 

authentication methods of the user. We will hardcode the new worksheet into the GUI provided to 

already existing users so that the user can access the new Google Sheet that is displaying the data 

of new sensor from now onwards. We are keeping the ability of registering new worksheets on our 

end so that if one of our users get compromised, they do not result into being a vulnerability and 

keeping the growth of the security breach limited. Already existing users are not aware of the 

sheets on which data is being uploaded so it’s not a security vulnerability. 



52 

 

In order to minimize DDoS attacks, we have programmed our GUI in such a way that only 

registered users are able to access our Database. We have allowed certain IP addresses a connection 

with our database as in order to decrypt the data while using our GUI the user must be registered 

in our database. Currently we have implemented the database on the Localhost but as soon as we 

launch our product in the market, we will be implementing a proper database and encrypting all 

the data stored in the database. Encryption of the data is the sole reason we have selected MariaDB 

as our database. 

Now, we discuss our code that was used to develop the GUI. Tkinter was used and its reason is 

discussed earlier. In order to make a connection with MariaDB Database we used mysql.connector 

library. In order to extract the data from Google Sheets we used gspread, pandas and 

oauth2client.service_account. Gspread is a python API for Google Sheets as it was used to access 

the data from the sheets. Pandas was used analyzing and manipulating the data present in the 

Google Sheets. oauth2client.service_account was used for authentication of the user so that only 

an authenticated user is allowed to access the sheets that are to be used for decryption (Dalvi, n.d.).  

In order to hash our passwords that were to be stored in our database, cryptohash was used. We 

imported SHA256 from cryptohash and hashed our passwords. We used numpy library in order to 

work with the large multidimensional Google Sheets. We accessed columns of the data and 

decrypted that data by a set of predefined and hardcoded keys and initialization vectors used for 

decryption. OS was used in order to interact with operating system and use OS dependent 

functionality. 

In the register function we are creating a registration window in which the user will enter the 

details which he wants to register to our database. A 350x200 window was created. Login function 

creates a login window, in that window the user will enter his/her personal details in order to access 

and view the decrypted data. 

Register_user function will successfully register the user in our database and upon successful 

registration a message will be displayed reading Record inserted successfully into accounts table. 



53 

 

Login_verify will verify that whether the user is present in the database or not. If the user is present 

in the database, the decrypted data will be accessible to the user.  

Decrypt function will access the data and decrypt the whole column based on predefined and 

hardcoded key alongside with initialization vectors. It must be noted that we are using PSK so that 

the key may not be leaked during the key exchange that will take place as the hacker can have an 

access to our packets, If we are not sharing the key in those packets then the attacker can never 

guess what the key is, only our registered users that are in possession of our GUI will have access 

to the key. In order to change the key the user will have to contact our team and only our team will 

be able to change the key. 

Display_list will display the data present on Google Sheets. Decrypt button will display the 

decrypted data to the user.  

In case the user enters a wrong password or is non existing in our database control will be shifted 

to password_not_recognised function and Invalid Password data is displayed on the screen, 

control is shifted to user_not_found in case of nonexistence of the user in our database. 

In the main_account_screen as the name suggests the main screen of our GUI is created with a 

custom background and two buttons for Login and Register. 

       For references the code has been attached below. 

#import modules 

 

from tkinter import * 

from tkinter import ttk 

import mysql.connector 



54 

 

from mysql.connector import Error 

import mariadb_dyncol 

import csv 

import tkinter as tk 

import os 

from string import punctuation 

from cryptohash import sha256 

import numpy as np 

from itertools import product 

from Crypto.Cipher import AES 

import Crypto.Cipher.AES 

from binascii import hexlify, unhexlify 

#data extraction part 

from oauth2client.service_account import ServiceAccountCredentials 

import gspread 

import pandas as pd 

 

global dec_temp, dec_list 

 

# Designing window for registration 



55 

 

 

def register(): 

    global register_screen 

    register_screen = Toplevel(main_screen) 

    register_screen.title("Register") 

    register_screen.geometry("300x250") 

 

    global username 

    global password 

    global username_entry 

    global password_entry 

    username = StringVar() 

    password = StringVar() 

 

    Label(register_screen, text="Please enter details below", bg="blue").pack() 

    Label(register_screen, text="").pack() 

    username_lable = Label(register_screen, text="Username * ") 

    username_lable.pack() 

    username_entry = Entry(register_screen, textvariable=username) 

    username_entry.pack() 



56 

 

    password_lable = Label(register_screen, text="Password * ") 

    password_lable.pack() 

    password_entry = Entry(register_screen, textvariable=password, show='*') 

    password_entry.pack() 

    Label(register_screen, text="").pack() 

    Button(register_screen, text="Register", width=10, 

           height=1, bg="blue", command=register_user).pack() 

 

 

# Designing window for login 

 

def login(): 

    global login_screen 

    login_screen = Toplevel(main_screen) 

    login_screen.title("Login") 

    login_screen.geometry("300x250") 

    Label(login_screen, text="Please enter details below to login").pack() 

    Label(login_screen, text="").pack() 

 

    global username_verify 



57 

 

    global password_verify 

 

    username_verify = StringVar() 

    password_verify = StringVar() 

 

    global username_login_entry 

    global password_login_entry 

 

    Label(login_screen, text="Username * ").pack() 

    username_login_entry = Entry(login_screen, textvariable=username_verify) 

    username_login_entry.pack() 

    Label(login_screen, text="").pack() 

    Label(login_screen, text="Password * ").pack() 

    password_login_entry = Entry( 

        login_screen, textvariable=password_verify, show='*') 

    password_login_entry.pack() 

    Label(login_screen, text="").pack() 

    Button(login_screen, text="Login", width=10, 

           height=1, command=login_verify).pack() 

 



58 

 

# Implementing event on register button 

 

 

def register_user(): 

 

    username_info = username.get() 

    password_info = password.get() 

    password_validator(password_info) 

 

    #establishing connection with database 

    try: 

        connection = mysql.connector.connect(host='localhost', 

                                             database='shield', 

                                             user='root', 

                                             password='saifoo 1730') 

        cursor = connection.cursor() 

 

        mySql_insert_query = """INSERT INTO accounts (username, password) VALUES 

(%s,%s) """ 

 

        recordTuple = (username_info, sha256(password_info)) 



59 

 

        cursor.execute(mySql_insert_query, recordTuple) 

        connection.commit() 

        print(cursor.rowcount, "Record inserted successfully into accounts table") 

        cursor.close() 

 

    except mysql.connector.Error as error: 

        print("Failed to insert record into accounts table {}".format(error)) 

 

    finally: 

        if (connection.is_connected()): 

            connection.close() 

            print("MySQL connection is closed") 

 

    username_entry.delete(0, END) 

    password_entry.delete(0, END) 

 

    Label(register_screen, text="Registration Success", 

          fg="green", font=("calibri", 11)).pack() 

 

# Implementing event on login button 



60 

 

 

 

def login_verify(): 

    username1 = username_verify.get() 

    password1 = password_verify.get() 

    username_login_entry.delete(0, END) 

    password_login_entry.delete(0, END) 

 

    connection = mysql.connector.connect(host='localhost', 

                                         database='shield', 

                                         user='root', 

                                         password='saifoo 1730') 

    cursor = connection.cursor() 

 

    # PREPARED STATEMENT 

    sql = """SELECT * FROM `accounts` 

          WHERE `username` = %s AND `password` =%s 

       """ 

 

    # EXECUTE WITH PARAMS 



61 

 

    cursor.execute(sql, (username1, sha256(password1))) 

 

    rud = cursor.fetchall() 

 

    if rud: 

 

        login_sucess() 

    else: 

        password_not_recognised() 

 

 

def decrypt_lists(dec_temp, dec_list): 

   key = [0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 

          0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30, 0x30] 

   s1 = [11, 69, 75, 1, 99, 8, 12, 8, 0, 7, 9, 111, 2, 3, 4, 71] 

 

 

    IV = [hex(item) for item in s1] 

 

    # Getting length of list 



62 

 

    length = len(list_1) 

    i = 0 

 

# Iterating using while loop 

    while i < length: 

        plaintext = (list_1[i]) 

        cipher = AES.new(key, AES.MODE_CBC, IV) 

        ciphertext = unhexlify(cipher.encrypt(plaintext)) 

        decipher = AES.new(key, AES.MODE_CBC, IV) 

        plaintext = decipher.decrypt(unhexlify(ciphertext)) 

        print("plaintxt: ", hexlify(plaintext)) 

        if (plaintext == plaintext1): 

            print("successful decryption") 

        plaintext = hexlify(plaintext) 

        print("\n Plaintext : ", plaintext) 

 

        i += 1 

   # Designing popup for login success 

 

 



63 

 

def display_list(list_date, list_0, list_1): 

    win = tk.Tk() 

    win.resizable(width=0, height=0) 

    global tv 

    tv = ttk.Treeview(win, selectmode='browse') 

    tv.pack(side='left') 

 

    vsb = ttk.Scrollbar(win, orient="vertical", command=tv.yview) 

    vsb.pack(side='right', fill='y') 

 

    tv.configure(yscrollcommand=vsb.set) 

 

    tv['columns'] = ('ID', 'Altitude', 'Temprature',) 

    tv['show'] = 'headings' 

    tv.heading("#1", text='ID', anchor='w') 

    tv.column("#1", anchor="w", width=80) 

 

    tv.heading("#2", text='Altitude') 

    tv.column("#2", anchor='center', width=120) 

 



64 

 

    tv.heading("#3", text='Temprature') 

    tv.column("#3", anchor='center', width=90) 

 

    for row in range(len(list_0)): 

        tv.insert('', 'end', values=(list_date[row], list_0[row], list_1[row])) 

 

    root = Tk() 

    root.geometry('50x50') 

    btn = Button(root, text='DECRYPT', bd='5', 

                 command=decrypt_lists) 

    btn.pack(side='top') 

 

    root.mainloop() 

    win.mainloop() 

 

 

def display_list_decrypted(list_date, list_0, list_1): 

    win = tk.Tk() 

    win.resizable(width=0, height=0) 

    global tv 



65 

 

    tv = ttk.Treeview(win, selectmode='browse') 

    tv.pack(side='left') 

 

    vsb = ttk.Scrollbar(win, orient="vertical", command=tv.yview) 

    vsb.pack(side='right', fill='y') 

 

    tv.configure(yscrollcommand=vsb.set) 

 

    tv['columns'] = ('ID', 'Altitude', 'Temprature',) 

    tv['show'] = 'headings' 

    tv.heading("#1", text='ID', anchor='w') 

    tv.column("#1", anchor="w", width=80) 

 

    tv.heading("#2", text='Altitude') 

    tv.column("#2", anchor='center', width=120) 

 

    tv.heading("#3", text='Temprature') 

    tv.column("#3", anchor='center', width=90) 

 

    for row in range(len(list_0)): 



66 

 

        tv.insert('', 'end', values=(list_date[row], list_0[row], list_1[row])) 

 

    root = Tk() 

    root.geometry('50x50') 

    btn = Button(root, text='REFRESH', bd='5', 

                 command=login_success) 

    btn.pack(side='top') 

 

    root.mainloop() 

    win.mainloop() 

 

 

def login_sucess(): 

    data_extraction() 

    global login_success_screen 

    login_success_screen = Toplevel(login_screen) 

    login_success_screen.title("Success") 

    login_success_screen.geometry("150x100") 

    Label(login_success_screen, text="Login Success").pack() 

    Button(login_success_screen, text="OK", 



67 

 

           command=delete_login_success).pack() 

 

 

def data_extraction(): 

    #data extraction part 

    scope = [ 

        'https://www.googleapis.com/auth/spreadsheets', 

    ] 

 

    GOOGLE_KEY_FILE = 'Shield-EncryptedSheet-1d5300762160.json' 

 

    credentials = ServiceAccountCredentials.from_json_keyfile_name( 

        GOOGLE_KEY_FILE, scope) 

    gc = gspread.authorize(credentials) 

 

    wokbook_key = '1uQYdeJwUUqQWQ8tK3srKDVlxAbCo96cvUocVvKcdPwg' 

    workbook = gc.open_by_key(wokbook_key) 

    sheet = workbook.get_worksheet(0) 

 

    date = sheet.col_values(1) 



68 

 

    temperature = sheet.col_values(2) 

    altitude = sheet.col_values(3) 

 

    display_list(date, temperature, altitude) 

 

    os.system('pause') 

 

# Designing popup for login invalid password 

 

 

def password_not_recognised(): 

    global password_not_recog_screen 

    password_not_recog_screen = Toplevel(login_screen) 

    password_not_recog_screen.title("Success") 

    password_not_recog_screen.geometry("150x100") 

    Label(password_not_recog_screen, text="Invalid Password ").pack() 

    Button(password_not_recog_screen, text="OK", 

           command=delete_password_not_recognised).pack() 

 

 



69 

 

# Designing popup for user not found 

 

def user_not_found(): 

    global user_not_found_screen 

    user_not_found_screen = Toplevel(login_screen) 

    user_not_found_screen.title("Success") 

    user_not_found_screen.geometry("150x100") 

    Label(user_not_found_screen, text="User Not Found").pack() 

    Button(user_not_found_screen, text="OK", 

           command=delete_user_not_found_screen).pack() 

 

# Deleting popups 

 

 

def delete_login_success(): 

    login_success_screen.destroy() 

 

 

def delete_password_not_recognised(): 

    password_not_recog_screen.destroy() 



70 

 

 

 

def delete_user_not_found_screen(): 

    user_not_found_screen.destroy() 

 

 

# Designing Main(first) window 

 

def main_account_screen(): 

    global main_screen 

    main_screen = Tk() 

    Height = (main_screen.winfo_height()) 

    Width = (main_screen.winfo_width()) 

    canvas = Canvas(main_screen, height=Height, width=Width) 

    canvas.pack() 

 

    background_image = PhotoImage(file='shield-bg1.png') 

    background_label = Label(main_screen, image=background_image) 

    background_label.place(relwidth=1, relheight=1) 

 



71 

 

    main_screen.title("Account Login") 

 

    Label(text="").pack() 

    Button(text="Login", height="2", width="30", command=login).pack() 

    Label(text="").pack() 

    Button(text="Register", height="2", width="30", command=register).pack() 

 

    main_screen.mainloop() 

 

 

main_account_screen() 

 

 

    A step by step working of the GUI is shown below. 

1. When you open the GUI it shows two buttons with a login and register  



72 

 

                                          

Figure 22: GUI in function-1 

2. When you click on register it asks for your username and password 

                                     

Figure 23:GUI in function-2 

3. When you successfully register on the GUI your username and password is added to SQL 

database and the passwords are hashed and then stored in data base so even the database 

administrator does not have access to passwords. 



73 

 

                                      

Figure 24:MariaDB used in the project 

4. Now when you press login it will ask for your password and match it with the passwords 

in database. The hash of entered password is created and matched with the hash stored in 

database and it it authenticates then the data from the google sheet of this user is displayed. 

                                  

Figure 25: GUI in function-3 

5.   Now the latest 10 rows of the google sheet are shown and as it can be seen it is in 

encrypted state. You can scroll through previous results if you want to see all the entries in 

the sheet.  



74 

 

          

Figure 26:GUI in function-4 
Now a button can be seen on the left top corner with “decrypt” written on it . When it is pressed 

the data of the user is decrypted and plain data can be seen in the picture below . 

               

Figure 27:GUI in function-5 
 

 

 



75 

 

5.5. Printed Circuit Board Design 

5.6 Printed Circuit Board Design 

5.6.1   Overview 

PCB design is used to make a one-piece design of a circuit. It is used for professional design of 

motherboards. PCB core material is made of fiber glass. It can have from one to upto 10 layers . 

After that we make a mask of our circuit design and print it on a butter paper. This print out will 

be placed on the PCB board and we use FeCl3 for etching (to remove access copper) on the PCB 

board. At the end we place our circuit components according to the design on the PCB board and 

solder the circuit components. Final step is to test our PCB board we use DMM to check continuity 

of our cooper traces. 

 

Figure 28: SHIELD Hardware 



76 

 

5.6.2   PCB Design Process 

PCB designing process involves following steps: 

5.6.2.1 Circuit Design 

We make circuit design using our prior knowledge of Electronics Circuit Design. Our Hardware 

involves following components. SHIELD hardware operates at 9V input voltage. 5V output 

voltage is required for the output. We use 7805 regulator IC for voltage regulation. And 2 

capacitors are used to stable the output voltage. ESP 8266 Wi-Fi module is used for Wi-Fi 

communication. BMP280 temperature and pressure sensor is used for temperature and pressure 

measurement. 

5.6.2.2 PCB 

After circuit design we simulate PCB using Proteus. Proteus does not have proper ESP package so 

we design ourselves 30 pins layout of ESP. BMP 280 sensor package is also not available in the 

Proteus we design BMP layout ourselves. 



77 

 

 

Figure 29: Proteus Design 

 

5.6.2.3 3D Visualization 

3d Visualization is the practice of using a computer to create imagery in order for the viewer to 

'visualize' a thing or things (usually a design concept) that does not yet exist. 



78 

 

 

Figure 30: 3D Visualization of PCB(Top) 

 
Figure 31:3D Visualization of PCB (Bottom) 



79 

 

5.6.2.4 Routing 

Next, step is the routing of our design using Proteus. Routing is used to place components 

according our circuit requirements. 

 

Figure 32: PCB Routing 
 

5.6.2.5 Fabrication 

After routing we performed fabrication. It has the following concepts: 

1. First step is to take print out of routes on butter paper or chart. 

2. Second step is to perform etching of the PCB. 

3.  Then we place components at their respective position and performed soldering. 



80 

 

5.6.2.6 Testing 

Last step is to test our circuit board. DMM is used to test for connections of the board and 

finally, by supplying input voltage we test our design. 

 

 

 

 

 

 

 

 

 



81 

 

 

 

 

CHAPTER 6: FINISHING UP 

 

 

 

 

 

 



82 

 

CHAPTER 6: FINISHING UP 

 This chapter will focus on how SHIELD will affect the IoT market and what future improvements 

can be made to it. 

6.1   Conclusion 

It can be said with confidence that SHIELD will have a massive effect on the IoT market as no 

such device has been made in the past with focuses on the Security of the device.  

 SHIELD can be implemented from a single home to corporate buildings. In this modern era data 

is the most valuable asset of an individual or company. SHIELD was developed to insure that 

people can move towards automation without worrying about security. 

6.2   Improvements for the Future 

In the future SHIELD can be improved in every single field of automation that can exist. But some 

changes on the lower level that can be made in future are as follows: 

6.2.1   Increase Access Interfaces  

In the future we can increase the platforms on which we provide this service. To be exact many 

people use Linux and MacOS so we can create application for them too.  

6.2.2   More Security 

More authentication protocols can be added at the user end and a moveable data access device can 

be made so if user authenticates with his fingerprint or PIN, he can access data on that device.  

 

 



83 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 



84 

 

APPENDIX-A 

SYNOPSIS 

 

S.H.I.E.L.D(Securing Hackable IoT Enabled on LTE Devices)  
 
Extended Title: Securing Hackable IoT Enabled on LTE Devices  
Brief Description of the Project/ Thesis with Salient Specifications: IoT is a field of science that is 
growing exponentially and so is its demand all across the globe. The main problem with IoT is its 
vulnerabilities which can be used to exploit the network. Securing such vulnerabilities is to be 
achieved by using protection mechanisms and securing IoT that is being implemented on LTE.  
Scope of Work: A secured link of IoT and LTE will provide assurance to the user about their privacy 
as the users’ data will be secured via protection mechanisms. Through this project we wish to 
integrate our theoretical knowledge with practical experience to gain further insight and redefine 
our skills.  
Academic Objectives:The project will give hands-on experience of the implementation of the 
courses studied so far like:  

• Computer and Communication Networks  
• Network Security  
• Microprocessor and Systems  
• Programming Techniques 

 
Application/ End Goal Objectives: For any IoT application, it is crucial to protect data, user 
privacy, and safety. Breaches can harm production continuity and business processes, customers 
trust, and worst of all human health and life. If you are an IoT platform provider, you must 
provide your business-to-business (B2B) customers a secure infrastructure for the same reasons. 
Providing this security to the users is our main objective.  
Previous Work Done on the Subject: The security of IoT has already been implemented on DSL 
based networks. We are aiming to secure the connection between IoT network and Cloud based on 
LTE to make it mobile and no such work has been done in the past.  
Material Resources Required: The system will work based on a 32-bit microcontroller and 
controller-based Wi-Fi modules. Some common software environments will be used to test the 
vulnerability of our network.  
Number of Students Required: 4 

Group Members:  
• NC Abdul Samad  
• NC Muhammad Abdullah Farooq  
• NC Saif Ur Rehman  
• NC Umar Ahmad Khan  

Special Skills Required:  
• Algorithm Analysis  
• Cloud Computing  
• Network Security  
• Programming 

 



85 

 

APPENDIX-B 

Abbreviations List 

AES Advanced Encryption System 

I2C Inter Integrated Circuit 

API Application Programming Interface 

IV Initialization Vector 

Wi-Fi Wireless Fidelity  

IoT Internet of Things 

IDE Integrated Development Environment 

PCB Printed Circuit Board 

GUI Graphical User Interface 

SHA Secure Hash Algorithm  

 



86 

 

References 

(n.d.). Retrieved from https://www.espressif.com/en/products/socs/esp8266/overview 

(n.d.). Retrieved from https://www.python.org/about/ 

(n.d.). Retrieved from https://visualstudio.microsoft.com/vs/ 

(n.d.). Retrieved from https://developer.android.com/studio/preview 

(n.d.). Retrieved from https://www.arduino.cc/en/main/software 

(n.d.). Retrieved from https://www.labcenter.com/Proteus 

(n.d.). Retrieved from https://internetofthingsagenda.techtarget.com/definition/Internet-of-

Things-

IoT#:~:text=The%20internet%20of%20things%2C%20or,human%2Dto%2Dcomputer%

20interaction. 

(n.d.). Retrieved from https://www.adafruit.com/product/2651 bmp 280 

(n.d.). Retrieved from https://www.electronicsforu.com/resources/learn-electronics/7805-ic-

voltage-regulator 

(n.d.). Retrieved from https://en.wikipedia.org/wiki/Advanced_Encryption_Standard 

(n.d.). Retrieved from https://www.google.com/script/start/ 

(n.d.). Retrieved from https://www.google.com/sheets/about/ 

(n.d.). Retrieved from https://developers.google.com/sheets/api 

(n.d.). Retrieved from https://en.wikipedia.org/wiki/Initialization_vector 

(n.d.). Retrieved from https://developers.google.com/android/guides/client-auth 



87 

 

(n.d.). Retrieved from https://www.youtube.com/watch?v=7DZR5UaAM0E 

(n.d.). Retrieved from https://www.youtube.com/watch?v=LlhmzVL5bm8 

(n.d.). Retrieved from https://iiot-world.com/ics-security/cybersecurity/main-challenges-of-

implementing-iot-security-standards/ 

(n.d.). Retrieved from https://www.zdnet.com/article/what-is-the-internet-of-things-everything-

you-need-to-know-about-the-iot-right-now/ 

(n.d.). Retrieved from https://www.hindawi.com/journals/jece/2017/9324035/ 

Dalvi, P. (n.d.). Retrieved from https://medium.com/analytics-vidhya/how-to-read-and-write-

data-to-google-spreadsheet-using-python-ebf54d51a72c 

Parr, J. (n.d.). Retrieved from http://justinparrtech.com/JustinParr-Tech/the-importance-of-

hashing-passwords/#:~:text=6.2.-,Advantages,A%20hash%20code%20is%20useless! 

 

 


